MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A
HERMITIAN AND NONNEGATIVITY PRESERVING SUBSPACES

by

Thomas Mathew

Center for Multivariate Analysis
University of Pittsburgh
Pittsburgh, PA 15260

Center for Multivariate Analysis
University of Pittsburgh

Approved for public release; distribution unlimited.
HERMITIAN AND NONNEGATIVITY PRESERVING SUBSPACES

by

Thomas Mathew

Center for Multivariate Analysis
University of Pittsburgh
Pittsburgh, PA 15260

July 1985

Technical Report No. 85-25

Center for Multivariate Analysis
Fifth Floor, Thackeray Hall
University of Pittsburgh
Pittsburgh, PA 15260

*Research sponsored by the Air Force Office of Scientific Research (AFSC) under Contract F49620-85-C-0008. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
HERMITIAN AND NONNEGATIVITY PRESERVING SUBSPACES

by

Thomas Mathew*

Department of Mathematics and Statistics
University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT

The concepts of hermitian preserving and nonnegativity preserving subspaces of complex square matrices are introduced. Characterizations of such subspaces are obtained and applications are discussed.

1. INTRODUCTION

We introduce the concepts of hermitian preserving and nonnegativity preserving subspaces of complex square matrices. These are special cases of the concepts of hermitian preserving and positive semidefinite preserving linear transformations given in dePillis [5] and later investigated by Hill [6], Bose and Mitra [4], Poluikis and Hill [12] and Barker, Hill and Haertel [1]. In the next section, we give several characterizations of hermitian preserving and nonnegativity preserving subspaces. In section 3, we use these results to investigate the existence and characterization of hermitian and nonnegative definite solutions to linear equations. Some applications are discussed in section 4. An important application in statistics, originally investigated by Pukelsheim [13] and later by the author [9], is also given.

The following notations are used in the paper: $C^{n \times m}$ and $R^{n \times m}$ respectively denote the vector spaces of complex and real matrices of order $n \times m$. For a complex matrix A, A^* denotes its complex conjugate transpose and A', its transpose.

The inner product of two complex matrices A and B of the same order is assumed to be the trace inner product; i.e. $\langle A, B \rangle = \text{tr } B^*A$. The range of a linear transformation T is denoted as $R(T)$. For a hermitian matrix A, A_+ and A_- denote the positive and negative parts of A respectively. A_+ is obtained from the spectral decomposition of A by deleting the negative eigenvalues and the corresponding projectors. A_- is then defined as $A_+ - A$. If a square matrix A is hermitian nonnegative definite, we denote $A \succ 0$.

2. HERMITIAN AND NONNEGATIVITY PRESERVING SUBSPACES

Let A be a subspace of $C^{n \times m}$ and let P denote the orthogonal projector onto A (where orthogonality is with respect to the trace inner product).
DEFINITION (1) A is said to be hermitian preserving if $P(A)$ is hermitian for every hermitian matrix A.

(2) A is said to be nonnegativity preserving if $P(A) \geq 0$ for every $A \geq 0$.

We notice that nonnegativity preserving subspaces are those which preserve the Loewner ordering, i.e. if A and B are hermitian matrices, then A is nonnegativity preserving iff $A-B \geq 0$ implies $P(A)-P(B) \geq 0$.

THEOREM 1. A is hermitian preserving iff anyone of the following equivalent conditions holds:

(i) $A^* \in A$ whenever $A \in A$

(ii) $P(A^*) = P(A)^*$ for every $A \in \mathbb{C}^{n \times n}$.

Proof: (i) Let $A^* \not\in A$, for every $A \in A$. Let B be a hermitian matrix and suppose $P(B) \neq P(B)^*$. Write $P(B) = P$. Then $||B-P||^2 = ||B - \frac{P+P^*}{2}||^2 + ||P+P^* - P||^2 + \text{tr} \left(\frac{P+P^*}{2} - P \right) \left(B - \frac{P+P^*}{2} \right) + \text{tr} \left(B - \frac{P+P^*}{2} \right) \left(\frac{P+P^*}{2} - P \right)$. Using the fact that B is hermitian, the last two terms simplify to $\frac{1}{2} \text{tr} \left(B - \frac{P+P^*}{2} \right) \left(P-P^* \right) + \frac{1}{2} \text{tr} \left(B - \frac{P+P^*}{2} \right) \left(P-P^* \right)$, which is zero. Thus we get the contradiction $||B-P||^2 > ||B - \frac{P+P^*}{2}||^2$. Conversely, let A be hermitian preserving and let $A \in A$. Suppose $A^* \not\in A$. Since $A+A^*$ is hermitian, $P = P(\frac{A+A^*}{2})$ is also hermitian. Then $||A - \frac{A+A^*}{2}||^2 = ||A-P||^2 + ||P - \frac{A+A^*}{2}||^2 + \text{tr} \left(A-P \right) \left(\frac{A+A^*}{2} - P \right) + \text{tr} \left(A-P \right) \left(\frac{A+A^*}{2} - P \right)$, which is zeros since $A-P \in A$ and $P = \frac{A+A^*}{2} \in A^\perp$ (the orthogonal complement of A). Thus we get $||A - \frac{A+A^*}{2}||^2 > ||A-P||^2$, which is a contradiction since $\frac{A+A^*}{2}$ is the hermitian matrix closest to A; see Marshall and Olkin ([8], p. 264).

(ii) If $P(A^*) = P(A)^*$ for every $A \in \mathbb{C}^{n \times n}$, it follows that $P(A)$ is hermitian whenever A is. To prove the converse, write $A = \frac{A+A^*}{2} - i \frac{1}{2} (A-A^*)$ ($i = \sqrt{-1}$). Since $\frac{A+A^*}{2}$ and $\frac{1}{2} (A-A^*)$ are hermitian matrices and since $A = \frac{A+A^*}{2} + i \frac{1}{2} (A-A^*)$, it follows that $P(A^*) = P(A)^*$ when A is hermitian preserving. □
The 'if' part in part (ii) of Theorem 1 also follows from the lemma in Hill ([6], p. 260).

COROLLARY 1. A hermitian preserving subspace has a basis consisting of hermitian matrices.

THEOREM 2. Let A_1, A_2, \ldots, A_s form an orthonormal basis for A. Let a^h_{jk} denote the $(jk)^{th}$ element of A_h ($h=1,2,\ldots,s$; $j,k=1,2,\ldots,n$). Then A is hermitian preserving iff anyone of the following equivalent conditions holds:

1. The matrices $\sum_{h=1}^s a^h_{jk} A_h$, $\sum_{h=1}^s (a^h_{kj} + a^h_{jk}) A_h$ and $\sum_{h=1}^s (i a^h_{kj} - i a^h_{jk}) A_h$ are hermitian for $j,k=1,2,\ldots,n$.

2. $\sum_{h=1}^s A_h^* \otimes A_h$ is hermitian.

Proof: It is easy to see that the set of hermitian matrices of order n can be obtained by taking real linear combinations (linear combinations with real coefficients) of the following n^2 hermitian matrices: (a) the matrix E_{jj} having j^{th} diagonal element 1 and zeros elsewhere ($j=1,2,\ldots,n$) (b) the matrix F_{jk} having $(jk)^{th}$ and $(kj)^{th}$ elements 1 and zeros elsewhere ($j<k; j,k=1,2,\ldots,n$) and (c) the matrix G_{jk} having $(jk)^{th}$ element i, $(kj)^{th}$ element $-i$ and zeros elsewhere ($j<k; j,k=1,2,\ldots,n$). We have $P(B) = \sum_{h=1}^s (\text{tr} A_h^* B) A_h$. In the place of B if we substitute the matrices E_{jj}, F_{jk} and G_{jk} defined above, we get part (i) of the theorem. It can be shown that part (i) of the theorem is equivalent to $\sum_{h=1}^s a^h_{jk} a^h_{uv} = \sum_{h=1}^s a^h_{kj} a^h_{vu}$ ($j,k,u,v=1,2,\ldots,n$), which is equivalent to $\sum_{h=1}^s A_h^* \otimes A_h$ being hermitian. \qed

Part (ii) of the above theorem also follows from Proposition 1.2 in dePillis [5] or Theorem 1 in Hill [6].

THEOREM 3. A is nonnegativity preserving iff (i) A is hermitian preserving and (ii) $A_+ \in A$ for every hermitian matrix $A \in A$.
Proof: Suppose \(A \) is nonnegativity preserving. If \(B \) is hermitian, we can write
\[
B = B_+ - B_- \quad \text{and} \quad P(B) = P(B_+) - P(B_-).
\]
Since \(P(B_+) \geq 0 \) and \(P(B_-) \geq 0 \), \(P(B) \) is hermitian, showing that \(A \) is hermitian preserving. Let \(A \in A \) be hermitian. Then we have
\[
A_+ - A_- = A = P(A) = P(A_+) - P(A_-).
\]
Hence \(\|A_+\|^2 + \|A_-\|^2 = \|P(A_+)\|^2 + \|P(A_-)\|^2 - 2\text{tr} \, P(A_+)P(A_-) \leq \|P(A_+)\|^2 + \|P(A_-)\|^2 \) (since \(P(A_+) \geq 0 \) and \(P(A_-) \geq 0 \)). From this, it follows that \(A_+ = P(A_+) \) or \(A_- = A_- \). Conversely, suppose (i) and (ii) in the theorem hold. Let \(B \geq 0 \). Then \(C = P(B) \) is hermitian and \(C_- \neq 0 \) if \(C \) is not nonnegative definite. Now, \(\|B-C\|^2 = \|B-C_- - C_+\|^2 = \|B-C_+\|^2 + \|C_-\|^2 = 2\text{tr} \, (B-C_+)C_+ > \|B-C_+\|^2 \) (since \(C_+ + C_- = 0 \) and \(\text{tr} \, BC_+ > 0 \)). This is a contradiction since \(C_+ \) cannot be closer to \(B \) than the projection \(C \). □

The proof of the "if" part is similar to the proof of Lemma 2 in Pukelsheim [13] and the proof of the "only if" part is similar to the proof of Lemma 1 in Mathew [9].

Corollary 2. A nonnegativity preserving subspace has a basis consisting of hermitian nonnegative definite matrices.

Theorem 4. Let \(A_1, A_2, \ldots, A_s \) be an orthonormal basis for \(A \). If \(\sum_{h=1}^{s} A_h^* A_h > 0 \) for every \(A > 0 \), then \(A \) is nonnegativity preserving. This condition is also necessary if \(s = 2 \) or if there exists a nonsingular matrix \(Q \) such that \(Q^* A Q \) is diagonal for every hermitian matrix \(A \in A \).

Proof: Let \(A_j \) \((j = 1, 2, \ldots, s)\) be as given in the theorem and let \(A > 0 \). Then \(P(A) = \sum_{h=1}^{s} (\text{tr} \, A_h^* A_h)A_h \) and \(P(A) > 0 \) for every \(A > 0 \) iff \(\sum_{h=1}^{s} (a^* A_h a)A_h > 0 \) for every vector \(a \) or equivalently
\[
(a^* \otimes I)(\sum_{h=1}^{s} A_h^* \otimes A_h)(a \otimes I) > 0 \quad (1)
\]
for every vector \(a \). This proves the sufficiency of the condition as asserted in the theorem. Conversely, suppose \(A \) is nonnegativity preserving. Then \(\sum_{h=1}^{s} A_h^* \otimes A_h \) is hermitian, in view of Theorem 3(i) and Theorem 2(ii). Since \(A \) now has a basis con-
s t i n g of hermitian matrices (Corollary 1), if there exists a matrix Q as specified in the theorem, then \(Q^* A Q \) is diagonal for every \(A \in A \). It now follows that (I) holds for every \(A \) if \(\sum_{h=1}^{s} A_h^* A_h \geq 0. \) When \(s = 2 \), in view of Corollary 2, let \(A_1 \geq 0, A_2 \geq 0 \) be a basis for \(A \). Then, using Theorem 6.2.3 in [15], we see that there exists a nonsingular matrix \(Q \) satisfying \(Q^* A_1 Q \) and \(Q^* A_2 Q \) are diagonal. Arguing as before, the proof can be completed. \(\Box \)

We observe that the condition \(\sum_{h=1}^{s} A_h^* A_h \geq 0 \) is similar to the condition given in Corollary 2.2 in dePillis [5]. This condition is not in general necessary for \(A \) to be nonnegativity preserving. For example, if \(A \) is the vector space of \(2 \times 2 \) complex matrices, then clearly, \(A \) is nonnegativity preserving. The matrices \(A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, A_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) and \(A_4 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) form an orthonormal basis for \(A \) and do not satisfy the condition \(\sum_{h=1}^{s} A_h^* A_h \geq 0. \)

REMARK 1. The existence of a nonsingular matrix \(Q \) satisfying the requirement in Theorem 4 could be verified as follows: When \(A \) is nonnegativity preserving, let \(B_1, B_2, \ldots, B_s \) be a basis for \(A \) satisfying \(B_j \geq 0 \) \((j = 1, 2, \ldots, s) \). From Theorem 3(ii) and the proof of Theorem 1(ii), it is easy to see that such a basis can be obtained. Then there exists a nonsingular matrix \(Q \) satisfying \(Q^* B_j Q \) is diagonal for \(j = 1, 2, \ldots, s \) iff \(B_j B_k^* B_j = B_k B_j^* B_j \) for \(j, k = 1, 2, \ldots, s \). Here \(B_0 = \sum_{j=1}^{s} B_j \) and \(B_0^* \) denotes a generalized inverse of \(B_0 \). For a proof of the above assertion, we refer to Bhimasankaram ([3], Corollary 2) or Rao and Mitra ([15], Theorem 6.5.2).

Suppose \(A \) is a subspace of real square matrices of order \(n \), i.e. \(A \subset \mathbb{R}^{n \times n} \). We shall call \(A \), a symmetry preserving subspace if \(P(A) \) is symmetric whenever \(A \) is symmetric (the inner product under consideration is \(\langle A, B \rangle = \text{tr} \ B'A \) for \(A, B \) real matrices). "Nonnegativity preserving" is defined similarly. We now give characterizations of a symmetry preserving or nonnegativity preserving subspace \(A \) of \(\mathbb{R}^{n \times n} \).
THEOREM 5. A subspace A of $\mathbb{R}^{n \times n}$ is symmetry preserving iff anyone of the following equivalent conditions holds:

(i) $A' \in A$ whenever $A \in A$

(ii) $P(A') = P(A)'$ for every $A \in \mathbb{R}^{n \times n}$.

Proof: The proofs of (i) and the 'if' part of (ii) are similar to the corresponding proofs of (i) and (ii) in Theorem 1. We shall now prove the 'only if' part of (ii). Suppose A is symmetry preserving and let A_1, A_2, \ldots, A_s form an orthonormal basis for A. Then, for any $A \in \mathbb{R}^{n \times n}$, $P(A) = \sum_{h=1}^{s} (\text{tr} A A_h') A_h$. In view of part (i) of the theorem, it follows that the matrices A'_1, \ldots, A'_s also form an orthonormal basis for A. Hence $P(A') = \sum_{h=1}^{s} (\text{tr} A' A'_h) A'_h = P(A)'$. □

THEOREM 6. Let A be a subspace of $\mathbb{R}^{n \times n}$ and let A_1, A_2, \ldots, A_s form an orthonormal basis for A. Let a_{jk}^h denote the $(jk)^{th}$ element of A_h $(h=1,2,\ldots,s; j,k=1,2,\ldots,n)$. Then A is symmetry preserving iff anyone of the following equivalent conditions holds:

(i) the matrices $\sum_{h=1}^{s} a_{j}^{h} A_h$ and $\sum_{h=1}^{s} (a_{k}^{h} + a_{j}^{h}) A_h$ are symmetric for $j,k=1,2,\ldots,n$

(ii) $\sum_{h=1}^{s} [A_h \otimes A_h + A'_{h} \otimes A_h]$ is symmetric.

Proof: The matrices $E_{jj} j=1,2,\ldots,n$ and $F_{jk} j<k; j,k=1,2,\ldots,n$ defined in the proof of Theorem 2 form a basis for the subspace of real symmetric matrices. The proof of the theorem can now be completed along the lines of the proof of Theorem 2.

THEOREM 7. Let A be a subspace of $\mathbb{R}^{n \times n}$. Then

(a) A is nonnegativity preserving iff (i) A is symmetry preserving and (ii) $A_+ \in A$

for every symmetric matrix $A \in A$

(b) If A_1, A_2, \ldots, A_s are as in Theorem 6 and if $\sum_{h=1}^{s} [A_h \otimes A_h + A'_{h} \otimes A_h] \geq 0$, then A is nonnegativity preserving.
Proof: The proofs of (a) and (b) are similar to the proofs of Theorem 3 and the first part of Theorem 4 respectively. □

REMARK 2. When \(A \) is a subspace of \(\mathbb{R}^{n \times n} \), the conclusions in Corollary 1 and Corollary 2 are not true in general if we replace "hermitian" by "symmetric". This is easily seen by taking \(A \) to be \(\mathbb{R}^{n \times n} \) itself.

REMARK 3. When \(A \) is a subspace of real symmetric matrices, all the conclusions in Corollary 1, Corollary 2, Theorem 4 and Remark 1 remain valid if we replace "hermitian" by "symmetric" wherever applicable.

3. **HERMITIAN AND NONNEGATIVE SOLVABILITY OF LINEAR EQUATIONS.**

Let \(T \) be a linear transformation from \(\mathbb{C}^{n \times n} \) into \(\mathbb{C}^{p \times q} \). In this section, we are interested in the existence and characterization of hermitian and hermitian nonnegative definite (nnd) solutions to the linear equation \(TX = Q \), where \(Q \in \mathbb{R}(T) \) (the range of \(T \)). \(T^* \) denotes the adjoint of \(T \) and \(T^+ \) denotes the maximal generalized inverse of \(T \) as defined in Ben Israel and Greville ([2], p. 318). \(T^+ \) is also the pseudoinverse of \(T \) as defined in Holmes ([7], pp. 216–226). Then \(R(T^+) = R(T^*) \) and \(T^+T \) is the orthogonal projector onto \(R(T^*) \) (see Theorem 2 on p. 320 in [2]). When \(T \) is a matrix, \(T^+ \) coincides with the Moore Penrose inverse of \(T \). We say that \(TX = Q \) is hermitian solvable (nonnegatively solvable) if there exists a hermitian (respectively hermitian nnd) matrix \(X \) satisfying \(TX = Q \).

DEFINITION. We say that \(T^+ \) characterizes the hermitian solvability (nonnegative solvability) of \(TX = Q \) if the existence of a hermitian (hermitian nnd) solution to \(TX = Q \) implies that \(T^+Q \) is hermitian (respectively hermitian nnd).

Thus, if we know that \(T^+ \) characterizes the hermitian solvability (nonnegative solvability) of \(TX = Q \), in order to examine if \(TX = Q \) has a hermitian (hermitian nnd) solution, it is enough to check if \(T^+Q \) is hermitian (respectively hermitian nnd).
Theorem 8. (i) For every $Q \in R(T)$, T^+ characterizes the hermitian solvability of $TX = Q$ iff $R(T^*)$ is hermitian preserving.

(ii) For every $Q \in R(T)$, T^+ characterizes the nonnegative solvability of $TX = Q$ iff $R(T^*)$ is nonnegativity preserving.

Proof: Suppose $R(T^*)$ is hermitian preserving. Then T^+TX is hermitian whenever X is hermitian. Thus when X is a hermitian solution to $TX = Q$, $T^+TX = T^+Q$ is also a hermitian solution to $TX = Q$. Conversely let T^+ characterize the hermitian solvability of $TX = Q$ for every $Q \in R(T)$. Let X_0 be any hermitian matrix and let $TX_0 = Q_0$. Then T^+Q_0 is hermitian. But $T^+Q_0 = T^+TX_0$ and X_0 is an arbitrary hermitian matrix. Hence $R(T^*)$ is hermitian preserving. This proves (i). (ii) is proved similarly.

Remark 4. If T is a linear transformation from $\mathbb{R}^{n\times n}$ into $\mathbb{R}^{p\times q}$, the conclusions in Theorem 8 remain valid if we replace "hermitian" by "symmetric". (Symmetric solvability of $TX = Q$ is defined analogous to hermitian solvability.)

4. Applications.

(a) Let $A_j \in \mathbb{C}^{p_j \times n}$ and $B_j \in \mathbb{C}^{p_j \times p_j}$ for $j = 1, 2, \ldots, s$. Let $\sum_{j=1}^{s} p_j = p$ and consider the system of equations $A_jX_j^* = B_j$ ($j = 1, 2, \ldots, s$) (assumed to be consistent). Here TX is a vector consisting of the s matrices $(A_1X_1^*, \ldots, A_sX_s^*)$ and $R(T^*)$ consists of all complex matrices of the form $\sum_{j=1}^{s} A_j^*Z_jZ_j^*$, where $Z_j \in \mathbb{C}^{p_j \times p_j}$. From Theorem 1(i), it follows that $R(T^*)$ is a hermitian preserving subspace. Hence the existence of a common hermitian solution to the above equations can be verified by examining if T^*B is hermitian, in which case T^*B itself gives a hermitian solution (B denotes (B_1, B_2, \ldots, B_s)).

(b) Let A_j and B_j be as defined in (a) and assume further that $B_j \geq 0$ and $R(B_j) = R(A_j)$. Let A be a matrix satisfying $R(A^*) = R(A_1^*; A_2^*; \ldots; A_s^*)$. Now consider the equations
\[A_j^* X A_j^* = B_j, \ j = 1, 2, \ldots, s \] and suppose we want to examine if the above equations admit a common hermitian positive definite solution \(X \). This problem arises in connection with the identification problem for shorted matrices, see the proof of Theorem 1 in Mathew and Mitra [10] (see also Mitra [11] for the details of this problem). Let \(T \) denote the corresponding linear transformation (as in the case of (a) above). We notice that if \(X \) is a hermitian nnd solution to the above equations, then \(P_A X P_A + (I - P_A) \) is a hermitian positive definite solution, where \(P_A \) denotes the projection matrix \(A(A^* A)^{-1} A^* \). Thus, it is enough to know if the above system of equations admits a common hermitian nnd solution. In case \(R(T^*) \) is nonnegativity preserving, this can be verified by applying Theorem 8(ii).

(c) Nonnegative estimation of variance components.

Let \(Y \) be a random \(R^k \)-vector with mean vector of the form \(A \beta \) and dispersion matrix \(\sum_{j=1}^k \theta_j V_j. \) Here \(A \) is a known matrix, \(\beta \) is a vector of unknown parameters, \(V_j (j = 1, 2, \ldots, k) \) are known real symmetric matrices and \(\theta_j (j = 1, 2, \ldots, k) \) are unknown parameters known as variance components. \(\theta = (\theta_1, \theta_2, \ldots, \theta_k) \) is such that \(\sum_{j=1}^k \theta_j V_j \geq 0. \) We are interested in estimating the linear parametric function \(q^\prime \theta = q_1 \theta_1 + \ldots + q_k \theta_k. \) Let \(M = I - A A^* \) and let \(T \) be the linear transformation from \(R^{n \times n}_s \) into \(R^k \) defined as \(T X = (\text{tr} XM_1 M, \ldots, \text{tr} XM_k M)', \) for \(X \in R^{n \times n}_s. \) Here \(R^{n \times n}_s \) denotes the space of real symmetric matrices of order \(n. \) Then it is known that \(q^\prime \theta \) admits a translation invariant quadratic unbiased estimator iff \(T X = q \) has a solution \(X \in R^{n \times n}_s, \) in which case \(Y^\prime MMXY \) is an estimator with the desired properties (see [14], pp. 302-305). When \(q \in R(T), \) \(q^\prime \theta \) admits a nonnegative definite quadratic unbiased estimator iff \(T X = q \) admits a solution \(X \geq 0. \) When \(R(T^*) \) is nonnegativity preserving, this can be verified by examining if \(T^+ q \geq 0. \) We notice that \(R(T^*) \) is the vector space spanned by the matrices \(M V_1, \ldots, M V_k. \) Also, \(Y^\prime (T^+ q) Y \) is the well known minimum norm quadratic unbiased estimator (MINQUE) of \(q^\prime \theta, \) introduced by
C.R. Rao ([14], pp. 302-305). Thus, when $R(T^*)$ is nonnegativity preserving, the existence of an nnq quadratic unbiased estimator of $q'\theta$ is equivalent to the nonnegativity of its MINQUE. Further details regarding this observation are given in [13] and [9].

(d) Nonnegativity preserving subspaces of \mathbb{R}^n

Let S be a subspace of \mathbb{R}^n and let P denote the orthogonal projector onto S. (Here we assume that orthogonality is with respect to the inner product $(x,y) = y'x$. More general inner product can be considered and the modifications in such a case will be obvious). We say that S is nonnegativity preserving if Px has nonnegative components whenever the vector x has nonnegative components. Clearly, S is nonnegativity preserving iff the matrix P has nonnegative entries. Let $A \in \mathbb{R}^{k \times n}$. Then, for every $b \in R(A)$, A^+b characterizes the nonnegative solvability of $Ax = b$ iff $R(A')$ is nonnegativity preserving. Thus, when $R(A')$ is nonnegativity preserving, in order to verify if $Ax = b$, $b \in R(A)$, has a solution x with nonnegative components, it is enough to examine if the vector A^+b has nonnegative components, in which case $x = A^+b$ is a desired solution.
REFERENCES

Title: Hermitian and Nonnegativity Preserving Subspaces

Authors: Thomas Mathew

Performing Organization: Center for Multivariate Analysis, University of Pittsburgh, Pittsburgh, PA 15260

Report Date: July 1985

Number of Pages: 11

Abstract:

The concepts of Hermitian preserving and nonnegativity preserving subspaces of complex square matrices are introduced. Characterizations of such subspaces are obtained and applications are discussed.