IDENTIFICATION AND QUANTIFICATION OF THE WATER-SOLUBLE COMPONENTS OF JP-4. (U) NORTH DAKOTA STATE UNIV FARGO DEPT OF ZOOLOGY. J D BRAMMER ET AL. 01 JUL 85
AFOSR-TR-85-0743

FINAL TECHNICAL REPORT
AFOSR-78-3709
25 July 1985

September 30, 1978 - February 27, 1984

Title: Identification and Quantification of the Water-Soluble Components of JP-4 and a Determination of their Biological Effects Upon Selected Freshwater Organisms

Submitted By:
DR J D Brammer and DR R L Puyear
Zoology Department
North Dakota State University
Fargo, ND 58105

Submitted To:
Directorate of Life Sciences
US Air Force Office of Scientific Research
Bolling AFB DC 20332-6448

Approved for public release: distribution unlimited.
This final technical report includes a brief summary of research performed, results obtained, graduate students supported and theses written.

One paper published was of a technical nature and describes the use of reversephase C-18 minicolumns for concentrating water soluble hydrocarbons derived from JP-4 jet fuel. Another technical paper using the same technique as the first was used to concentrate water soluble hydrocarbons produced by...
running an outboard motor in water. Analytical methods used for hydrocarbon separation and identification was GC, GC/MS and HPLC.

The toxicity of toluene on the fathead minnow was the basis of three papers and a Ph.D. thesis. It was found that the embryo was as sensitive to toluene than was the protolarvae or adult fish. This was determined using 96-hr LC50 tests. A detailed embryonic study of the fathead embryo was performed. It was found that toluene produced the following terata: distorted embryonic axis, abnormal heart and circulatory system development, hydration and swelling of the pericardial coelom, hemorrhaging, an overall stunted appearance, microphthalmia, and a unique migration of the ventrally located yolk syncytial layer and its associated nuclei. An MS thesis was written on the effects of toluene on gill structure in the fathead minnow adult. Little effect of toluene on gill structure was noted.

A comparative study on the effects of administration of benzene, toluene and xylene isomerese on their in vitro metabolism and various drug metabolizing enzymes in rat liver, and the covalent binding of toluene to rat liver microsomes has resulted in one Ph.D. thesis and the preparation of three manuscripts for publication.
Work Scope of Final Technical Report
(September 30, 1978 to February 27, 1984)

This report is divided into the following sections:

I. Abstracts of papers published during the tenure of this grant.
II. Abstracts of papers in press or submitted for publication.
III. Abstracts of papers in preparation for publication.
IV. List of graduate students supported and theses written.
V. List of papers and presented.

Accession For

NTIS GRAI
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Avail and/or
Special
Dist
A-1

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)
NOTICE OF TECHNICAL JUDGMENT
MATTEN
Chief, Technical Information Division
I. ABSTRACTS FROM PAPERS PUBLISHED AND SENT TO USAFOSR

Reverse phase C-18 minicolumns (Sep-Pak) proved to be a useful tool for concentrating aliphatic hydrocarbons and alkylbenzenes from water. They were 5-10\% less efficent than XAD-2 for concentrating some of the same aromatic hydrocarbons. This, however, is not a great reduction in efficiency when the ease and convenience of using these cartridges is considered. The C-18 paking material is rather hydrophobic. A useful extension of this technique for the concentrating of more water soluble hydrocarbons and organics would be to use minicolumns packed with more polar-bonded phases such as C-4 or C-2.

The 96-hr LC50 for toluene in three age groups of the fathead minnow was determined. The toluene concentration that caused a 96-hr LC50 for embryos ranged from 55-72 mg/L, one day old post-hatch protolarvae 25-36 mg/L, and 30 day old fathead minnows 26-31 mg/L. The 96-hr LC50 was significantly higher for the embryos. The 96-hr LC50 values for the protolarvae and 30 day old minnows was the same.

Equipment used in this research was purchased with funds provided by USAFOSR, NDSU, and USDA. Therefore, even though this research was not directly sponsored by USAFOSR it was cited as providing support.

A 7.0 horsepower (HP) and a 10.0 HP outboard motor were operated at 3,500 ± 200 rpm and 1,700 ± 200 rpm, respectively for 30 min in a 160 L tank of tapwater. Exhaust hydrocarbons were concentrated by passage through a C-18 reverse phase extraction column, and eluted with either ethylacetate or acetonitrile. Gas-liquid and/or high pressure liquid chromatographic procedures were used for identification and quantification of eight hydrocarbons. Identities were confirmed for seven of the compounds by GLC/mass spectrometry. Four additional hydrocarbons were tentatively identified with these procedures. Aromatic compounds composed the majority of the hydrocarbons detected; a few aliphatics were present in trace amounts.

1. The in vitro metabolism of the volatile aromatic hydrocarbon toluene by enzymes associated with the 12,000 g supernatant fraction of hybrid sunfish (Lepomis macrocirus x L. cyanellus x L. gibbosus) liver homogenates was studied.
2. Aminopyrine demethylase (APDM) and aniline hydroxylase (AH) activities were measured.

3. Intramuscular injections of Aroclor 1254 (a polychlorinated biphenyl) produced significant increases in APDM and AH activities (P<0.1, ANOVA). There were no significant changes in the metabolism of toluene, liver wet weights, or liver protein concentrations following treatment.

II. ABSTRACTS OF PAPERS IN PRESS OR SUBMITTED FOR PUBLICATION.

The effect of toluene on teleost development was investigated using the fathead minnow *Pimephales promelas* Rafinesque, a native North American Cyprinid. Live embryos as well as serial sections of paraffin-embedded embryos were examined to determine effects of the toxicant. Toluene concentrations utilized in this study (30-45 mg/l) were quite high and may be approached in the environment only under extreme conditions. Terata noted under these conditions included distorted embryonic axis, abnormal heart and circulatory system development, hydration and swelling of the pericardial coelom, hemorrhaging, an overall stunted appearance, microphthalmia, and a unique migration of the ventrally located yolk syncytial layer and its associated nuclei. Similarities between the effects of toluene and those of other environmental and chemical stressors are discussed.

Male Sprague Dawley rats were injected ip with benzene, toluene or a mixture of xylene isomers at 20 mmol hydrocarbon/kg daily for 3 days. The effects of pre-exposure to these hydrocarbons had upon their own in vitro metabolism, as well as upon cytochrome P-450, NADPH-cytochrome c reductase, aminopyrine N-demethylase, aniline hydroxylase, glutathione, glutathione S-transferase, and UDP-glucuronyltransferase in liver were studied. Each hydrocarbon studied increased its own in vitro metabolism. Benzene had no effect on the metabolism of toluene or xylenes. Toluene and xylenes increased the metabolism of benzene, toluene, and xylenes. Cytochrome P-450 level was elevated by toluene and xylenes, but was not affected by benzene. NADPH-cytochrome c reductase was induced by all three hydrocarbons. Aminopyrine N-demethylase and aniline hydroxylase were induced by toluene and xylenes and were not affected by benzene. Glutathione level was elevated by benzene, decreased by xylenes, and not affected by toluene. Glutathione S-transferase was induced differentially by these hydrocarbons towards various substrates; towards 1-chloro-2,4-dinitrobenzene by benzene and toluene, towards 1,2-dichloro-4-nitrobenzene by benzene and xylenes and no effect towards 1,2-epoxy-3-(p-nitrophenoxy) propane by any hydrocarbons. UDP-glucuronyltransferase was induced by benzene and toluene when o-aminophenol and phenol was used as the substrate. Xylenes had no effect. Benzene was more effective at inducing conjugation enzymes. Xylenes were more effective at inducing cytochrome
P-450 dependent enzymes. Toluene was equipotent at inducing both types of enzymes. The results indicate that the addition of methyl groups to the aromatic ring affects the enzymes induced by these monocyclic aromatic hydrocarbons.

III. ABSTRACT OF PAPERS IN PREPARATION FOR PUBLICATION OR BEING REVIEWED

A. Devlin, E.W., J. D. Brammer and R. L. Puyear. 1985. Prehatching development of the fathead development (Pimephales promelas Ref.). Being reviewed by Dr. Jim McKim at the Duluth EPA Laboratory

The fathead minnow, Pimephales promelas Raf. represents a classical model of teleostean embryogenesis. Its prehatching development has been divided into 32 stages, each representing an interval in the developmental continuum. Embryos were examined live and histologically under controlled laboratory conditions. Fertilization, early cleavage, epiboly, and organogenesis are very similar to that of other cyprinids except for the timing of the appearance of specific structures. Hatching was found to occur in approximately 120 hours post-fertilization at 25 C. Rapid embryonic development, coupled with a short generation time of 3-6 months under laboratory conditions, make it a useful native North American species for studies in experimental embryology.

A headspace gas chromatographic method for the metabolic studies of benzene, toluene, and xylene using vial equilibration method of Sato and Nakajima (1978) is described. At the end of the incubation with hydrocarbon in a closed vial, the unreacted hydrocarbon in the headspace was loaded into a 0.5 ml Teflon loop attached to a 6 port Valco valve using a vacuum. Then the hydrocarbon in the loop was injected onto the gas chromatographic column. Effect of incubation time, protein, and hydrocarbon concentration on their metabolism was studied. Toluene and xylene metabolism was induced by the pretreatment of rats with phenobarbital (75 mg/kg) or 3-methylcholanthrene (20 mg/kg) or Aroclor 1254 (75 mg/kg) for 3 days, whereas benzene metabolism was not induced by any of these pretreatments. Investigating metabolic rates of various subcellular fractions of liver reveals that glutathione and glutathione S-transferase in cytosol are involved in metabolism of benzene and toluene by microsomes.

14C-Toluene was incubated with rat liver microsomes in the presence of a NADPH generating system and metabolites were concentrated on cyclohexyl Bon Elute cartridges. The metabolites were separated by reverse phase high performance liquid chromatography and identified by comparing the retention time of known standards. Toluene was converted to 14C-benzylalcohol (30.6%), 14C-cresols (4.5%), and an unidentified 14C-metabolite (0.6%). The radioactivity was found to preferentially
bind covalently to microsomal proteins and not to RNA. The binding was greatly diminished when microsomes were heat denatured. The binding was proportional to incubation time and microsomal protein concentration and required NADPH and molecular oxygen. Binding process was inhibited by carbon monoxide and SKF 525-A. When microsomes from phenobarbital and 3-methylcholanthrene treated rats were employed, the binding process was markedly enhanced to 8 and 4 folds respectively. The binding process was effectively diminished by the presence of reduced glutathione or cystein in the incubation mixture and was not affected by lysine. Styrene oxide greatly enhanced the binding process. UDP-glucuronic acid, superoxide dismutase and ascorbic acid also diminished the binding to some degree. It was concluded that toluene undergoes a hepatic microsomal monooxygenases mediated activation and the resultant reactive metabolites bind covalently to microsomal macromolecules, preferentially to proteins.
IV. LIST OF GRADUATE STUDENTS SUPPORTED AND THESSES WRITTEN

Fred Drake Carter. Metabolism of toluene by liver 12,000 x g supernatants from rats and sunfish. M.S. 1983.

V. LIST OF PAPERS PRESENTED

Identification and quantification of the water-soluble components of outboard motor exhaust and of gasoline in a North Dakota lake, and a determination of their biological effects upon selected freshwater organisms. Presented at the North Dakota-South Dakota Joint Academy of Science Meeting, Aberdeen, SD.

