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1. Introduction.

Let £(+/h) be a nonparametric, kernel estimator of an unknown density f,
with bandwidth (window size) h. A considerable amount has been written about i

"optimal" selection of bandwidth, usually in the context of minimising L

error (see e.g. Fryer [6], Wegman [23]). In particular, there are well-

known asymptotic formulae for the window h. which minimises mean integrated
square error for a given f (see Parzen [14], Rosenblatt [17]). Of course,

hf depends intimately on the unknown density, and so is not a practical choice.
Furthermore, a statistician who has been given a sample to analyse should
really be interested in minimising integrated square error for that part-

icular sample, not in minimising the average error over all possible samples.

A

Unfortunately the window hf which minimises integrated square error is also i

an intricate function of the unknown f.
~
j? Any practical method of constructing a bandwidth ?pstldepend only on the

'§ a‘l:‘:";"’_“" Lx
) S The purpose of this

paper is to show that there are well-defined limits to the accuracy of all

data-driven bandwidth estimates. Put another way, there is an unbridgeable

k
gap between the minimum integrated square error attained using the optimal

bandwidth hf, and the minimum achievable integrated square error using a data-

- * 74 - / s - N -
driven bandwidth estimate. .5ZQ;¢1'”‘L’- TN PR o 2TV 22,
W" VWM»; . Nandrmnm l/ a/Ml e ( ’

We pause now to intfoduce notation. Let X{s vees X be a random sample

from an unknown density f, and let K be a kernel function. Here and during :

most of this paper we work in one dimension, although extensions to higher

dimensions will be indicated at the end of Section 2. We assume at least
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that K is continuous with compact support, and is constructed to suit a

density f with t(> 2) bounded derivatives:

(
1 ifi=0
(1.1) / ziK(z)dz = 0 if1<ic<t-1

dK if i=t,

where dK#(L (The most common case, where K is symmetric and positive, has
t =2 in these specifications, see Parzen [14] and Bartlett [1] for discussions

of the general case.. Our density estimate is

n
fx) = o)t § K{x-x)/h),  e<xc<s,

i=1

and has integrated square error

Ah,£) = S{E(x[h) - £0x)}dx .

Mean integrated squafe error is given by )

E{ACh,£)} . /H ,’

D(h,f) = ACh,f) - M(h,£) .

R4}

M(h,f)

Define also:

Assume f has at least t continuous deviratives, and suppose for the
sake of argument that f vanishes outside a compact interval. (This property
permits us to avoid cumbersome regularity conditions, but is not essential.)
Then the "optimal fixed bandwidth" he minimises M(h,f) and is asymptotic to
-1/(2t+1)

a constant multiple of n , and the '"optimal bandwidth" hf minimises

A(h,f) and satisfies hf/hf + 1 in probability as n » = . Any practical

procedure for constructing a bandwidth produces a random variable h which is
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a function solely of the sample; it clearly must not depend on the unknown f.
A statistician who claims that a certain procedure ﬁ is "best possible", is
recally saying: 'In some sense, the closest you can come tominimizingA(h,f),
iszlg,f)". Of course, A(ﬁ,f) exceeds the true minimum A(ﬂf,f), but we
cannot realistically expect to close that gap. It is known [9] that if ﬁc

is the cross-validatory window, then n{A(ﬁc,f) - A(gf,f)} has an asymptotic
chi-square distribution with one degree of freedom. Therefore the distance
between A(ﬁ,f) and A(ﬁf,f) can be reduced to at least order n-l. In Section
2 we shall show that in a minimax sense, order n’! is a lower bound as well
as an upper bound. From this point of view, least-squares cross-validation

is second-order optimal; it is already known to be first-order optimal

[7,8,21,4].

Throughout this discussion we have assessed optimality on the A-scale,
not the h-scale. However, the two are interchangeable. To see this, observe
that if the kernel K has two continuous derivatives then we may expand A(ﬁ,f)

~

in a Taylor series about hf, obtaining:

A(h, £) = A(ﬁf,f) + (ﬁ-ﬁf) A(l)(ﬁf,f) + %(ﬁ-ﬁf)z 2B e,y

~ A

where h* lies inbetween h and hf, and

s n,£) = (8/6n)t AGh,E) .

N

Since hf minimises A(+,f) ,

2 ,(2) s
g A f) . .

Ath,f) - Ahg,f) = 3(h-h
Suppose the data-driven bandwidth h has at least a chance of being '"good",

so that h/hf + 1 in probability. Then it may be shown, under the conditions

stated earlier about f, that as n + «,




el
LJ
2o latad

n2(t-1)/(2t+1)

2@ (h* £) > c£,5) >0

in probability. In fact,

c(£,K) = lim p2(t-1)/(2t+1)

n-bw

Mhg,£) .

Therefore

-2(t-1)/(2t+1)(‘ ~

~ ~ \ 2
Ath,f) - A(hf,f) = 3 c(f)n h-hf) {1 + op(l)}.

It follows from this expansion that whenever A(ﬂ,f) - A(hf,f) is of

order n'l, we also have h-ﬁf of order n~3/2(2t*1) ' Fyrthermore

the fact that n ' cannot be improved upon is equivalent to the statement

that h and hf must be at least n—3/2(2t+1) apart in some sense. Therefore

-3/2(2t+1)

a procedure h for which |h-hf|:ll is "best possible".

It is instructive to specialise these formulae to the important case

t=2, where the kernel is usually taken to be positive. There, the bandwidths

h and hf are both asymptotic to a constant multiple of n'llS

3/10

claiming) their distance apart is at least n_ , in a minimax sense. There-

, and (we are

fore the fastest rate of convergence of ﬁ to ﬁf is excruciating slow:
(ﬂ/ﬁf)-— 1 can be no smaller than order n'l/lo, in a minimax sense.

For most of this paper we discuss our results on the h-scale, not the
A-scale, since we feel statisticians arc more familiar with bandwidth than
they are with integrated square ervor. The statistician must make an
explicit choice of bandwidth, but only chooses integrated square error
indirectly. Our main results will be formulated in Section 2, and proved
in the ensuing two sections. Section 3 will give introductory lemmas, while
Section 4 will present main proofs.

It is worth pointing out that our results (as well as their proofs)

are quite different in character from traditional works on "optimal rates

. .
)
-, 0, -
bW WY
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‘
‘ﬁ of convergence' for nonparametric density estimators {5,10,12,13,18,19,22,2].
E The classical argument involves showing that a certain kernel estimator
I, (for example) is asymptotically optimal in the class of all possible density
é; estimators; that class includes orthogonal series estimators, spline
‘; estimators, etc. But in our case we confine attention not only to kernel
estimators, but to kernel estimators constructed using a specific, fixed -
kernel K. The only variable is the bandwidth in that special estimator.
We are, in effect, switching attention from the problem of ''best estimates"
- of a density, to that of 'best estimates' of the bandwidth ﬁf. But ﬁf is
a random varible, and our problem of "estimating a random variable" is
:j quite different from that of estimating a density function. Works of Rice
7L [16] is perhaps closest in spirit to this paper and [9], although Rice did
:; not view the minimiser of integrated square error as the benchmark bandwidth.
Z? Rice's work is for the case of nonparametric regression, and a sequel to
f; our paper will describe analogues of our results in that context. -
z
=
7
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2. Main results.

Minimax theory is usually developed by assessing performance over a
specific '"test class'" O of distributions. It is clear that if Q' is any
- class containing O, then the worst performance over Q' is at least as bad
as the worst performance over O. Therefore a basic result about distributions
in O may be generalized in many ways.
To define O, we begin with any compactly supported density fo having

t+2 derivatives on (-@,©) and (for convenience) satisfying fo(x) = c(o):>0

for x € [0,1]. Define S sup %lfo(J)(x)l. Let y be any function on
X;j<t+2

[0,3] which has t+2 derivatives and satisfies sup Iw(j)(x)| <§c(0),
0<x<}

w3 (1)1 >0 and ¥ 0) = 4U) () = 0 for 0 < j < te2. set y(x) = —p(1-x)

for x € [3,1], and extend y from [0,1] to (-»,») by periodicity. Let m

1/(2t+1)

cqual the integer part of n , and define

m ¢ ymx) for 0<x<1

y(x) = y(x,n)

0 otherwise.

For v = 0,...,m-1,

let Yv(x) = y(x) on Cv [vm'l, (v+1)m_1], and Yv(x) = 0 off Cv’

Let {Tv, 0 < v < m-1} be any sequence of length m all of whose elements

are zeros and ones, and let

.:' ) e(X) = e(To"":Tm_l)(x) Efo(X) {1 + ‘Z,: TV YV(X)}’ -0 < X <oo,

The set 0=0 (n) is defined to be the class of all such functions 6.
The elements of Oare all probability densities with support equal to the

support of fo and satisfying

..............................................
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In particular, the t'th derivatives of densities in O are all uniformly

bounded. The kernel K specified by (1.1) is designed for just this type

of density.

We are now in a position to state our main theorem. Let K be any
Compactly supported kernel satisfying (1.1), and having two Holder-
continuous derivatives on (-°,®), Let ﬂ be a data-driven bandwidth estimate.
Any positive function of the sample Xl,...,Xn is a candidate for ﬁ. Recall

that he is the bandwidth which minimizes A(h,8).

THEOREM 2.1. Under the above conditions on K,

(2.1) lim liminf sup Po(|h-h| sen Y202ty g

e*0 n > B0
In this sense, no data-driven bandwidth can get closer than order

a73/200 ) o b

Next we introduce the cross-validatory bandwidth. Let fi denote the
kernel estimate obtainedby leaving out the i'th sample value:
£ (x[h) = {(n-11} ! 5 K{x-X.)/h}.
j#i ]
Define

A n A
5(h,8) =2/ £(x|h)g(x)dx - 2n"" § £ (x,|h),
i=1 1 1

Ah,8) + 8(h,8) - [6°

I

(2.2) Cv(h)

A n
S5 (x|hydx - a7t )
i=1

£. (X, |h) .
ivi
The cross-validatory window, hc’ is that value of h which minimizes CV(h). -
Our next theorem is the natural complement of Theorem 2.1, in the case

where h=h .
c
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THEOREM 2.2 Under the same conditions on K,

(2.3) lim limsup sup Pe(lhc-heb;‘ n'3/2(2t+1)) 0.

Ar»o > o HEQ

A~

Thus, hc is as close to h6 as it is possible to get, in a minimax sense.

Result (2.3) fails to hold if O is replaced by the class of densities f
with t uniformly bounded derivatives, or even by the class C(BO""’Bt) of

all compactly-supported densitives satisfying

sup lf(l)(x)l <B,, 0<ic<t,
_oo<x < -1 -

for given constants B B_. To see this, suppose Z has density fe C(B),

o’ " By
and let ZD =pZ for p > 1. The density fp of Zp is in C(B), and since

~

scalar expansion of the data leads to an identical expansion of both hc and

hf, we have:

_3/2(2t+1)) - 1 )‘n-3/2(2t+1)) )

Pfo(lhc-hf | > An Pe(|h -he|>p

P
Consequently,

sup Pg([h -he| > an¥/2(2ED))

fe C(E)

for each A >0 and each n > 1. (A similar property may be observed if we
work on the A-scale instead of the h-scale.)

There are several ways of re-defining C(g) so as to avoid this type of
behaviour. For example, we might insist that densities in C(B) be above a
Certain level over an interval of predetermined length. However, we prefer
to avoid the obscuring technicalities involved in this specificaiton by

using the same test class O to measure both upper and lower bounds to

performance.




. Theorems 2.1 and 2.2 have analogues on the A-scale. We state them

together here, without proofs. Once again, h denotes an arbitrary data-

driven window .

THEOREM 2.3. Under the same conditions on K,

Iim liminf sup P

{Ah,8) - (hy,0) >en”1} = 1,
C_po n > « eﬁe

0

lim 1limsup sup PG{A(hc’e) - A(he,e) >~}

As0 N o> o BEQ

}=0.

To obtain analogues of these results for p-dimensional density estimators,
modify the class O along the lines of Stone [20]. Theorem 2.3 continues to

hold without change.




for all 6¢ O and all large n; for some n, >0

3. Preparatory lemmas.

In this and the next section, the symbols C, Cl’ Cosens denote generic
positive constants. E denotes the complement of an event E. Superscript
notation in A(j), é(j), M(j) and D(j) indicates differentiation with respect
to bandwidth, h., We keep our proofs very brief, leaving out all arguments
whose development closely parallels work in [9]. There are no essential
differences between arguments for different values of t, and so we work
only with t=2, to simplify notation.

Several useful, intuitively obvious technical properties of densities from
©® are summarised in our first lemma. The proofs are tedious but straight-

forward, and so we give only an outline.

LEMMA 3.1 Take t=2 in all that follows. Then: for some ng > 0,

3.0 o< inf n'Ph < sup /> k<o
n>n ., 8¢9 i n>n, €0

for any ¢ >0 there exists n = n{e) > 0 such that

(3.2) inf M(h,0) > (1+n)M(h_,8)
|h-hg| > en™1/3 °

>

(3.3) 0 < inf nz/S M(Z)(he,e)j_ sup n2/5 M(Z)(he,e)<<»
n>n,, 08¢0 n>n,,0¢€0

.
’

for any € > 0 there exists n= n(e) >0 such that

B n,0) - P (g 0)[ < n(en”?

for all 80 and all large n, and n(e) >0 as €+0.




OUTLINE OF PROOF: Write

M(h,8) = V(h,8) + B(h,0),
where
-1 -1 2 -1 2
V(h,8) = n "h * f/ K(u)” 6(x-hu)dudx - n"~ [[fK(u)@8(x-hu)du]“dx,
B(h,0) = S[/K(u){6(x-hu) - 8(x)}du]dx .

The derivatives M(l)(h,e) and M(Z) (h,0) may be studied by differentiating
V(h,8), then approximating as in Rosenblatt {17], and by differentiating

B(h,6) and using a Taylor expansion with integral form of the remainder. L]

Proofs of Lemmas 3.2 and 3.3 below closely parallel those of Lemmas 3.1

and 3.2 in [9]. In establishing (3.10), note (3.1).

LEMMA 3.2. For each 0<a<b<w and all positive integers ¢,

7 _

(3.5) sup  E,[n/ 10D /5, gy 20 c,(a,b,1),
n,"<0,a<t<b -

(3.6) sup  Egin’ 10 @5 0y 1P < ¢ qa,b,0)
n,0-0,a<t<b

Furthermore, there exists €. >0, not depending on a,b or &, such that

1

3.7 g M 35,6 - W V5% 6)) P < ta,b, 0 |s-t ]S 1

’

3.8)  EgIn/ 100 W @35 0) - s W@ V5 gy 2 < Cyla,b,0) [s-t|E 1t

for all 8c®andaisit§b.

LEMMA 3.3, For some €>0 and any 0<a<b<o

’

(3.9) sup pe[ sup {lD(l)(n"l/st’e)l . |6(1)(n-1/5t,6)l}>n-3/s—€] +>0.
£ 0 a<t<b

Furthermore, for any €52 0Oand n >0,
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(3.10)  sup Pg[ e sup 20 M (V5 6y - pW (g, 0]
9, 0 |t-n helf_n 2

e [s W@V e) - sV mg,0)(F>n] > 0.

LEMMA 3.4, For any €¢>0,

sup Pe(lhe-hel > engl/S) + 0.
8-0
PROOF. It suffices to show that for any sequence of choices 8; = 61n€ 0, and

for each £>0,

(3.11) Py (|h -h, |>en‘1/5) +0.
1 1

5

b
We may easily prove that for some b>0, Pe (n < he < nb) + 1. Let H=Hn

1 1
be a set of bandwidths in the range [n-b,nb], and such that #(H) < n? for

some a > 0. Arguing as in the proofs of Lemmas 2 and 4 of Stone [21] we may

show that for each €>0,

(3.12) P, {sup |A(h,8.) -~ M(h,8.)[/M(h,0.)>€}~>0,
0 1 1 1
1 heH
Now use HOlder continuity of K to show that for any (random) bandwidth h with
PE) (n" <h« nb)->1,
. >Rz

P, {16(h,0,) - M(h,8,)|/M(h,6,) >} 0.
1

Finally invoke (3.2), to obtain (3.11). |

Recall that hc is the cross-validatory window, chosen to minimise the

function CV(h) at (2.2).

LEMMA 3.5. For any €>0,

1/5y 5 0.

sup P,(|h_-h.|>en
60 g 'c 6
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‘.
“' PROOF. Again, it suffices to prove that for any € >0 and sequence 61= 61n€ o,
b
." ~
> (3.13) P, (|h-h, |>en" %) >0,
: 6 c 8
1 1
> L : b2 b .
N and it is easily shown that for some b >0, Pe (n " < hC <nj+1. Define
" 1
: 2 -1, -1 T
cv(h,8) =CV(h) + fo° + 2n "(n-1) (n+1) {o(xi) - Eee(xi)},
i=1

y and let H be as in the proof of lemma 3.4. Minimising CV is equivalent to
X minimising CV(-,8), for any 6. Using the argument leading to Stone's [21]
:fj Lemmas 2,3 and 4, we may show that for any ¢>0,
P, {sup {Cv(h,8,) - M(h,0,)|/M(h,08.) >e}+0.
8, . 1 1 1
. 1 h" H
3
. This formula serves as an analogue of (3,12) in the proof of Lemma 3.4. The
proof of (3.13) may now be completed as was that proof. U

LEMMA 3.6 For some £¢>0,
- ~ ~ -1/5-¢
- sup Pg(|hg-hg| + [h -hgf>n / )+0.
. Be O
N PROOF. Argue as in Lemma 3.3 of [9], but use Lemmas 3.4 and 3.5 above to

replace the limit theorems ho/hO P 1and hc/h0 _I: 1 (in notation of {9])},

and use our Lemma 3.3 in place of Lemma 3.2 of [9]. U
- LEMMA 3.7
_‘: lim lim sup sup Pe([he-hel > )\n-3/10) =0,
- A»© > o €60
- PROOF, It suffices to show that for any sequences 81 = eln“ C and J\n 4 oo
N ~ -3/10
. (3.14) Pe(‘he—h8|>)\nn ) = 0.

1 1 1 .

- Observe that

(3.15) 0 = A(l)(hel,el) - M(l)(hel,el) . D(l)(hel,el) - (hel-hel)M(z)(h*,el)

+ D(l)(he ’el) >
1




where h* lies inbetween h, and h, . Define ¢ _=c (n) and c,=c,(n)
61 8 1 1 272
. -1/5
by h0 cn and M

1

away from zero and infinity as n -+ « (note (3.1) and (3.3) from Lemma 3.1).

(2) 2/5

(hol,Ol) Teon Then <, and c, are bounded

Given any £ >0, there exists n(§) >0 such that n(§) >0 as £+0 and for large n,

MPD w0 - P, 600 < e Y3,

|h-h 1

(Note (3.4) of Lemma 3.1.) Let al, bl be fixed positive lower, upper bounds

to s respectively, and let a, be a fixed positive lower bound to Cye
Choose £, (0,%a1) so small that n(§) < la

— 2°
By (3.15),
! - 1, =2/5,-1, (1) "
. |he -hg | < (Ga,n ) 7| D (h, »8y) |
1 1 1
5 < 2:12'1n2/5 su |D(1)(n-1/5t,9 )|
%alitijal+b1

/

whenever the event Ei E{Ihe -h6 | < En_l 5} holds. Let E, be the event

1 1
-7 -
5t,el)[ <n s €}, where a=}la

U A I T B I

{ sup [D(l)(n'l/ 1,b==5al-vb1, and ¢ is as

a<t<b

in (3.9) of Lemma 3.3. Whenever Eln E2 holds, so does the event

E.={|h_ -h [ < 2a —1n-1/5-e}. Let £, be the event that

3 H e1 2 a4
- |D(1)(he ,8)) - DM n, ,o)5n” 710,
. 6 1
- 1 1
f Then:
) ~ -3/10 - =

(3.16) pel(lhel-hell >\ n ) <Py (E)) + Py (E,)) + Py (EgnEy)

1 2 1
(1) -3/10 -1.2/5. -1 -7/10
+ Pel{ID (hel,61)|> An n (Za2 n“’v) " -n .
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Chebychev's inequality and (3.5) of Lemma 3.2 show that the last-written

probability converges to zero as n > ®. Lemma 3.4 gives P, (El)-+0, (3.9)

1

of Lemma 3.3 gives P, (E,) >0, and (3.10) of Lemma 3.3 gives Py (E5nE,) >0.
1 1

Result (3.14) now follows from (3.16). U

LEMMA 3.8

-3/10

lim limsup sup Pe(|hc-he| > An ) =0,

A0 n > oo B€Q

PROOF. Use essentially the argument employed to prove Lemma 3.7, but

replace (3.15) by

0=cvBmy =P a0+ 0P w00 + s B0,

" (2) (1a (o . s
(hc-hel)M (h ,el) +D (hc,el) 8 (hc,el),

where h* lies inbetween h  and hg . g
1
We pause to introduce further notation. Let 7 be a kernel function, and

let
n

pCx|n) = )™ § w{(x-X;)/h}
i=1

be the corresponding density estimator. Set

s (0= [ (p(x[h) - 8() hy(x)x,

CV

where vy is as in Section 2.

LEMMA 3.9. Assume m is Holder continuous, vanishes outside a compact

interval, and satisfies fn(x)dx =1, fx m(x)dx = 0. Then for each

O0<a<b<wo and each £ >0,

sup Pe{ sup lsv(n'l/st,e)|:>n'1+€} >
3 v;a<t<b

o
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PROOF. Using Holder continuity of 7 and the fact that 7 vanishes outside
a compact interval, we may choose X >0 so large that

-1/5 -1/5 -1
s, (n s,8) - s (n t,0)] < c, n

uniformly inn > 1, €¢0, v, a <s <t <bwith |s-t]| < n'x, and samples

X

1,...,Xn. Partition (a,b) in the manner a=t0<t1< <t\) < b<t\)"
where each ti-ti+1= n'A. It suffices to show that for each ¢>0 ,
(3.17)  sup Pe{suplsv(n'l/sti,8)|'>n-1+c} + 0.

6 v,i
Let £ > 1 be an integer, let HCvll denote the length of C , and notice

that

s, 0,03 2% < fle 1 27T o Hptx[n) - 80 by x) [ *ax
\4

<c, n OFDB 1 pxny - e ax
A

uniformly in 6, h and v. Therefore the left-hand side of (3.17) is

dominated by

5T -1/5 -1+¢e
(3.18) L 2% sgp Pe{|sv(n t.,0)|>n }

1-¢€ -1/5 22
5.5 E sgp Ee{ln s, (n / ti,e)l }
(42+1)/5-2¢ ~ -1/5 22
< C2 n E sgp ffw Ee{p(x|n ti) - 8(x)} " "dx

f_c3 n(4Q+D/5-2€Q§ n-4£/5

The last inequality uses the following facts:

{;(xln'l/sti) - 8(x) 2t < C4{;(x|n°1/5ti) - Ee;(xln'l/sti)}22

+ CuEp(x|n M5 ) - e}t

{EGS(XIn-l/Sti) - o) )%t < Cg n~4%/5

Ee{p(xln-l/sti) - Ee;(xln.l/sti)}22 <c, a5
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all uniformly in x, i and 6, the latter by an inequality for centered
sums of independent random variables (formula (21.4) of Burkholder [3]);
and the integrandin (3.18) vanishes outside a compact set, independent of
i and 6. The number of summands in the sum over i in (3.18) is of order
nx, and so if we choose ¢ so large that X + (1/5) - 2¢2<0, the right-

hand side of (3.18) converges to zero as n + <. This proves (3.17). []

LEMMA 3.10. For each 0<a<b<«= and all positive integers &,

sup Ee[nl/zD(z)(n'l/Sti,e)l22 < C(a,b,1).
n,6:0,a<t<b

One consequence of this result and (3.1) of Lemma 3.1 is that for each
€>0,

2/5

(3.19)  sup Pyin |D(2)(he,6)|> £}>0.

Be O
PROOF OF LEMMA 3.10. Use the argument employed to derive (3.5) of

Lemma 3.2, U

4. Main proofs.

Theorem 2.2 is immediate from Lemmas 3.7 and 3.8. (Remember that we
are taking t=2 throughout, to simplify notation.) The remainder of this
paper is devoted to proving Theorem 2.1, The classification argument used
by Stone [20] and Marron [11] is an important element of our proof.

Given a data-driven bandwidth ﬁ, define 8 to be any element of O
such that lﬁé-gl = inf Iﬁe-ﬁl. Then h’ is also a data-driven bandwidth -

60 6

that is, it is a function of n and X .,Xn alone; it does not employ any

10"

additional knowledge about the unknown density. For each OleO s

|ha-h61| < |hg-h[ + |h-hy | < 2|h-hy | .

1 1

. e -
. DL et e* e
PR P A WA PR W
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Therefore result (2.1) will follow if we prove it for ha insead of h:

(4.1) lim lim inf sup Py (|hg-hg| > en”3/10

€0 n > o Q@

)=1.

Choose 0<a, <b, <= such that 2a, < nl/she < b

0. 0. (Note (3.1) of Lemma 3.1.) We keep 3, b
-1

1
. R S -1/5 7. /5 o -
section. Define he he if an <h6 < bln , andh6 = :(a1+b1) n

1 for all n and all

fixed throgghout this

1/5

otherwise. Set L(z) -zK'(z), and observe that fL(z)dz = 1 and fzL(z)dz = 0.
(In the case of general t, if K satisfies (1.1) then so does L, although
with dK replaced by (t+1)dK.) Let

~ n
gx ) = )™ ] L{Gx-X,)/n)
L

1
be the density estimate constructed using kernel L instead of K. Define
£0) = f(F(x ') - gx[i'5)}6(x) - 0(x)}dx,

for 6 < 0. The first step in establishing Theorem 2.1 is to prove:

€0

PROPOSITION 4.1. Given "y >0, we may choose n2>'0 and a sequence el =0

In
such that, for all large n,

-9/10

Pel{la(el)lmz n }>1-n, .

The proof is via a sequence of three lemmas. Let Py be the probability

measure defined by

P.(E)z2™ 5 P.(B),
0 6 O 0

and let E denote expectation with respect to Py- Under Py,6 should be

regarded as a random variable. There are precisely 2™ elements in 0.
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gz Writing 6 = (1+ T v v )f;and 6 = (1 + 5 T, ¥, )y for sequences {t }
o and {1 } of O's and 1's, we see that
y (8) = - ¢4 S,
:: & 0
}: where ¢, is the constant value taken by £, onu C ,
. 0 0 vV Vv
- Sz LT -1t )w ,
- v v v v
2- and
:._ A - A A'A : A A'A
W, = va{f(xlhe ) - g(x|h 6)}Y(x)dx.

(The function y was defined in Section 2.) Notice that S depends on 6

only through the indicators T, this observation is crucial to our argument.
3 Let X denote the sample xl""’xn' Under the probability measure PO,
- and conditional on X, the TV'S are independent Bernoulli random variables

with
- ~ v v -

(4.2) g, = Pylr,=1[0 = P ey« 1M uevxnt,

1 1
™ where H(VJ denotes the product over indices i with xie Cv' Thus,
u s EG(S|X) = (g, -1 )W, ,

: 0.2 = var (S|X) = I q (1-q )W >
= v 0 Vv Y viv
L) ~ _ A ~ 3 A 3
; B =2 Ey{l(r,-q ) |7|X} 5‘;|wv| .

The next two lemmas describe asymptotic properties of 02 and 8.
- LEMMA 4.1, There exist tixed constants 0<d1<d2<°o such that
- Poldy n'9/5<82<d2 n'9/5)+1.




PROOF. Let NV denote the number of elements of X within Cv’ and notice

that the P_-distribution of the sequence {Nv¥ does not depend on 6.

)
Observe that for a constant ¢ >0, Ee(Nv) = Ee(Nl).-cn4/5. Therefore for
large n,
4/5 1/5 4/5
Pe(NV >3 <, for some v) <Cn Pe(N1:>3 cn ' 7)

1/5 4/5
<Cn Pe{]Nl-Ee(Nl)I >cn’'"}

Pl i

< C nlls(c n4/s -2 E{|N E (N )I }

-3/5

O(n ).

. . . . 4
Thus, if E is the event that no interval Cv contains more than 3cn /5

elements of X, then inf P (E)»>1.
80

v . e .
Letiﬁ ) denote summation over indices i with Xie Cv’ and observe that

1V e yxpY = expl § 037 sy
j=1
- exp(T(V) . T(V)),
where
(v) 2 ¢ (V) W ¢ 7 15 izpw)
T,V vy, T, lijZZJ DAMERTe 9 REd=l g
Bearing in mind that sup|y] <C n_Z/S, we may easily prove that on the

set E and for all large n, Tgv) f~C2 uniformly in v.

Thus, for each z >0 there exist numbers 0< az(z) §_b2(2)<:w such that,

on the set {|T§VJl <zlak
ay(2) < 1V(1 + y(x)} < b,(2)

for all v. Remembering the definition (4.2) of av in terms of H(v){1-+Y(Xi)},

oL.q_‘.; \' \ '-




we now deduce the existence of a positive, decreasing function a(z) < 3,

such that on E, T(V) < z implies -3| < 3-a(z). Therefore on E,
1 — p qv —_

>
N

(4.3) la(z) % w2 I{|Z(V) Y| <2} <
v

v

<O

| A

PO

<™
£ >

for all z>0.
Let

w2 = 12 )] < 2) o (B - gx[n)) yixodx,
v

uv(h,z,e) = Ee{wvz(h,z)} and wu(h,z,0) = Z, uv(h,z,e). We claim that the
function c(n,h,z,8) defined by u(h,z,8) = c(n,h,z,G)n-gls, is bounded
1/

away from zero and infinity uniformly in n > 1, he n~ S(al,bl), z> 2

0

and 6 « 0, for some Zg> 0. This is relatively easy to verify if we take

zy = . To see that 2y < is permissible, notice that

w,(h,z,6) >
3 (u) Sip (o4 i,
> uy(h,e,8) - P2 v(X,) | >2}] [Eglw ~(h,=)}]*;

Ee{wv4(h,oo)} <C n~4 uniformly in he n'l/s(al,bl) and 6¢ 0; and

Pol 12(¥ v(X)| > 2}

<27 gyt yx ) |%)

272 Ee[NVE{YZ(Xl)fXIr c )+ (NVZ-NV)E{y(Xl)Y(Xz)|X1,X25 ¢,

-2

| A

<z C

uniformly in v and 6. (Remember HCVII denotes the length of C,.)

- 2 -
27% C,lEgN ) [ic f 7! [CV vidx + g N e || ! ,’Cv T, v (x)dx}?
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\'4 »“ . v LR ] 3

uniformly in v,h,z and 6. Adding this inequality over v, we see that tae
stated properties of the function c¢ are available for some finite 24> 0.

Take z = z in (4.3). In view of the properties of ¢ established in

the previous paragraph, Lemma 4.1 will follow via (4.3), if we prove that

for each €>0, and for z= Z4 and z=

1/5 9/5

4.4) sup Pe[ sup |§{av2(n- t,z) - uv(n_l/st,z,e)}] > en '71->0.

80 ° a <t<b,

Using Holder continuity of K and L, and the fact that these functions

have compact support, we may choose A>0 so large that

(4.5) 5{[‘:‘72(“-1/55,2) - ;VZ(n-I/St,z)[ + |uv(n'1/55,z,e) - uv(n-l/st,z,e”}
<C n"2

uniformly in n, z= 24 and =, 8, v, a, <sz<t 5-b1 with |s-t] §'n'x, and

samples Xl,...,Xn. Let a;=t,< t1< cee < t\)_1 f.bl <tv be a partition of

(al’bl) with t n'A for each i. In view of (4.5), result (4.4) will

i~ %17

follow if we show that for each ¢>0,

1/5 -1/5 9/5

-3 Siw 2(n” . -
Pg = 1 Pe[(v{wV (n t.,z) uv(n ti,Z,e)Jl > en ]

converges to zero uniformly in 6¢ @ and z=2z_, and o,

0

Since K and; L have compact support, and each t; € (al’bl)’ then for each
i we may divide the subscripts v among a fixed finite number k not depending
on i or n) of sets vil""’vik such that for each i and j, and for z=12z,. and

0
», the variables wvz(n'l/S

ti,z), vE Vij’ are stochastically independent, and
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for each i, each subscript v is contained in just one set vij' Consequently,

for all integers £ > 1,

1]
An inequality for moments of sums of independent random variables [3,
formula (21.4)] now gives

k
po<C ) ¥ T r eV e T By 1%h,
i1 vev vev, s

where Y, =w z(n_l/5
1y

v ti,z) - uv(n-l/sti,z,e). The same moment inequality gives

EQ({YiVIZQ) < C2 n_42 uniformly in i, v and 8. Since the number of partition

points t; is of order nx, then

182/5 1/Sn-4 L . n1/5 n-42} nX—Q/S

Sup pqy vaS n ) = 0( )=+ 0

Z{(n
6 i

provided only that £>5X. 0

LEMMA 4.2. For each €>0,

-14/5+¢

p0(§ >n ) > 0.

PROOF. The argument used to prove Lemma 4.1 shows that for some c,>0,

3

’ 2 s e n—9/5

P v 3

) - 0.

<™

0(

~ A~ ~ ~

Applying Lemma 3.9 twice, once with p = f and once with p = g, we obtain:

-1+¢

Po(sgplwvl > n ) ~ 0.

Lemma 4.2 follows on combining these results. U

k
£ o2 -1/5 -1/5 -1 _-9/5
Py = i jgl pe[IVeg__ {wv (n ti’z) B uv(n ti’z’e)}|>€ k'n ]
1)
k N
~ L) Eell(s:k-ln*g/s)-1 ) {wvz(n-l/sti,z) - uv(n'llsti,z,e)}lzﬁ].
i j=1 VeV, .

T TN
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Let ¢ be the standard normal distribution function.

+

LEMMA 4.3, For some fixed ¢ > O,
. liminf inf [P (|S| > n"¥1%; _ 201 - ¢(cx)}] > 0.
" n >« x>0
3 ~ 13 -1/20 .

PROOF. Let E denote the event that B o <n . According to Lemmas
4.1 and 4.2,
N P.(E) <P (02 <d n-g/d) + P {B > n'l/zo(d n-9/5)3/2} + 0.
. 0 -0 -1 0 1

On the set £ , the Berry-Esseen bound [15, page 111] gives
.. sup  [Py(S < x|X) - o{(x-w)/o}| < A n~1/20,
- -0 X <0
f where A is an absolute constant. Therefore on E, and for x > 0,
'..' ~ - A A~ _1/20
b PoUIS] > x| X) > 1 - o{(x-u)/o} + &{(-x-p)/o} - 2A n
x > 2{1 - o(x/0)} - 2a n /%0,
% Taking expectations, and using Lemma 4.1 again, we obtain Lemma 4,3, 0
;j To obtain Proposition 4.1 from Lemma 4.3, choose x > 0 so small that
o 2{1 - ®(cx)} >1 -1} Ny and let n, = calx. Then for large n,
'.;f -9/10
3 1-mn < PO(|c0 s| > n, n )
} - ~ -9/10

= 2™ 7 e {le®] > n, n" 10
& 0 2
\: €e®
f: Therefore there must exist some elee such that
3 r 9/10
x -
) 1-n, < Pel{li(el)l >n, n }.

.: Throughout the remainder of our proof of (4.1), we work with the "worst
o case" density 8, = eln specified by Proposition 4.1, for some fixed nysNy>0.
.
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Notice that

(3/3h) £(x|h) = h"l{g(x]n) - £(x|h)}

and

B(h,8) = A(h,6,) - 2 [ {(£(x|h) - 8, )HEM) - 6, (x) Jdx

+

J {80x) - 0, (x)Hax .

~ ~

Differentiate the latter formula with respect to h, and take h=h7,
obtaining:

0= aWag0) « 2057t [ (£x|ng) - gx[hp)}  {680x) - 8, (x}}dx.

That 1is,

(1) £~ Pa r

provided hac n_lls(al,bl). Expand A(l)(ha,el) in a Taylor series about he :
1

~

(1) pa - (h~ (2) 1 »

where h* lies inbetween ha and he . This definition of h* is used in all
1 ~
1/4 +

that follows. Define h' = h* if |hs-ng | <n"/%, and ' = h, otherwise.
1

%

LEMMA 4.4. For each €>0,
2/5
Pe {n

(2) ot (2)
. |a*“7 (h 8) - A (hel'el)l > e}~+0.

PROOF. From our definition of h+,

IR AN
1 1 9

Therefore by Lemma 3.7,

4.8) Py (hT-ng [ > 20714 40,
1 1

It now follows from (3.4) of Lemma 3.1 that

A R S A A . .,..“-_- e T T ERRORGA A :..... .......... NSRS e e
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2/5(,.(2) OF (2)
pel{n IM<’ (n 6 - M (hel,el)l >¢el+0,

and since (by (4.8})

ot
(4.9) Pe {h', he

en V3@ by,
1 1

the proof of Lemma 4.4 will be completed if we show that

@.10) e, 0P @t,0)] > e}>0 ana py P

el)l >e}+0.
1 1

e1
Using Holder continuity of K, K' and K*'', and the fact that each of

these functions has compact support, we may produce X >0 such that

P (35,6 - 0P @0y <cn’l

uniformly in n > 1, s and te (a;,b,) with |s-t] f_n-x, and samples X;,...,X .
Let a; = ty<t, <...<t . <b <t bea partition of (a;,b,) such that

ti- ti-1= n_x for each i. In view of (4.9), to prove (4.10) it suffices to

prove that

p=LIPy {nZ/SID(z)(n-l/Sti,Gl) | > el +o0.
i 1

But this is immediate from Lemma 3.10 and Markov's inequality:
1 -1/10

p<CZI(en
i

ZQ*

) 0,

provided & is sufficiently large. U

In view of (3.19),

Py {n2/5|A(2)(h91,61) -uPm, 6] > e}s0

1 e1

for each £¢>0, and so by Lemma 4.4,

@11 py 3P @ty - P el>er -0,
1 1
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Noting (3.3) of Lemma 3.1, let O<a
7
n“/SM(ZJ(he

2< 3 b2<°° be constants such that

,61) < (a,, ] bz) for all n, and take € = a

2 in (4.11). Then
1

(4.12) by {0<A(‘°')(ﬁ’“,el)<b2 5.,
1

Let Ny Ny be as in Proposition 4.1, and set nSE (blbz)-lnz. Let E1

be the event that lha-he [ f_n-1/4, E, the event that |A(2)(h+,61)| <
1
b, n-Z/S’ and E3 the event that hg en'l/s(al,bl). Remember that

h' = h* on E,, and that (4.6) holds on E,. By (4.6) and (4.7),
AA ~ ~3/10
(4.13) P61(|he-h61[ > ngn 5 E)

1) 7. -3/10 -2/5 z
> e, ams,000] > ng 0710 p 05 6 - b, ()

1 1

o -7/10 | -1/5. e p

> p61{|2 £(6)] >ng by m by n T E ) - Pel(Ez) - Pel(Es)
. -9/10, r £

> Pel{IE(el)l >n,n ; EjY - Pel(Ez) - Pel(E3)

> Pel(El) - Pel(Ez) - Pel(E3) =Ny

the last line following from Proposition 4.1. Result (4.12) and Lemma 3.4

imply that Py (Ez).+ 0 and Pe (ES) + 0, respectively. If n is so large
1

1
that nq w310 n-1/4, then by (4.13),
P (]ﬁ“-g | >n n~3/10, )
6 6 6 3
1 1
. Ao -3/10, - :
= Pe (]he-he | > ng N ; El) + P6 (El)
1 1 1
1 1 1 1
=1 - Pel(Ez) - Pel(Es) -0 7 1 - Ny
as n-+o,

This proves (4.1), and completes the proof of Theorem 2.1.
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