Structural properties of randomized times

Personal Author(s):
- Alan E. Karr and A. O. Pittenger

Type of Report:
- Interim

Time Covered:
- From ____________ to ____________

Date of Report (Yr, Mo, Day):
- December 1984

Page Count:
- 19

Abstract:

Suppose a measure \(\mu \) dominates a measure \(\nu \) in the ordering induced by the excessive functions of a transient Markov process. Rost shows that \(\nu \) can be represented as the distribution of the process stopped at a randomized optional time and started with initial distribution \(\mu \).

In this paper, we introduce a shift operator to the class of randomized optional times, inducing the class of randomized quasi-terminal times and that of randomized terminal times. The abstract analyzes the algebraic properties of these classes and obtains some compactness results for the class of randomized quasi-terminal times. Some applications, including remplissage by hitting times, are presented.

COSATI Codes:

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB GR</th>
<th>CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>XXXXX</td>
</tr>
</tbody>
</table>

Subject Terms:

Randomized optional times, randomized quasi-terminal times, randomized terminal times, remplissage by hitting times

Distribution Availability of Abstract:

Unclassified/Unlimited

Abstract Security Classification:

Unclassified

Name of Responsible Individual:

Brian W. Woodruff, Maj, USAF

Telephone Number:

(202)767-5027

Security Classification of This Page:

Unclassified
Structural Properties of Randomized Times

by

A.F. Karr *
Department of Mathematical Sciences
The Johns Hopkins University
Baltimore, Md. 21218 USA

and

A.O. Pittenger **
Department of Mathematics and Computer Science
University of Maryland Baltimore County
Baltimore, Md. 21228 USA

Technical Report 421
December, 1984

* Research supported in part by Air Force Office of Scientific Research grant AFOSR 82-00299.

** Research supported in part by NSF grant MCS-8404539.
Abstract

Suppose a measure μ dominates a measure η in the ordering induced by the excessive functions of a transient Markov process. Rost shows that η can be represented as the distribution of the process stopped at a randomized optional time and started with initial distribution μ. In this paper we introduce the shift operator to the class of randomized optional times, inducing the class of randomized quasi-terminal times and that of randomized terminal times. We analyze the algebraic properties of these classes and obtain some compactness results for the class of randomized quasi-terminal times. Some applications, including remplissage by hitting times, are presented.
1. **Introduction.** Suppose we have a Markov process X on a suitable state space S with Borel σ-algebra S. If A is a measurable subset of S and μ an initial distribution for the process, then the μ-hitting distribution of A is defined by starting the process with distribution μ and running it until it hits A for the first time. This probabilistic construct has close links with the balayage of measures, a potential-theoretic construct, and plays a central role in probabilistic potential theory. (The geometric meaning of these concepts becomes clearer when A is the boundary of an open connected set G and μ is required to have support in G.)

In earlier work ([7], [8], [9]) the authors investigated the reverse of this construction, the so-called inverse balayage problem. One is given a distribution η on A and tries to characterize the family of measures whose balayage onto A is η. For finite state Markov chains rather straightforward techniques yield a complete description of the convex set of measures which balayage onto the given η. The same kind of analysis works for a diffusion on an interval, but more sophisticated techniques are required for general state spaces.

The questions arising in the inverse balayage problem are closely connected with Skorokhod's problem and work of Rost. Rost [12] shows that if μ dominates η in a partial ordering defined by the excessive functions for X, then η can be realized as the distribution of the process started with initial distribution μ and stopped using a randomized optional time $\{T_u : 0 < u \leq 1\}$:

\[
\eta(dx) = \int_0^1 p_u^\mu(x(T_u)) \xi dx \, du.
\]
One interpretation of (1.1) is that \(\eta \) is represented as a sort of convex combination of optional times, and this motivates the definition of a convexity structure on the space of randomized optional times. The inverse balayage problem can be viewed as a search for measures \(\nu \) which satisfy (1.1) with \(T_u = T_A \) for all \(0 < u \leq 1 \).

Another related result is that of Heath [6]. Drawing heavily on potential-theoretic work of Mokobodski and Watanabe [16], Heath shows that for discrete-time processes the randomized times in (1.1) can be chosen to be "nested" terminal times: for each \(u \), \(T_u \) is a terminal time and \(u < v \) implies \(T_u < T_v \) a.s. If one specializes to finite state Markov chains, it is easy to obtain that result using a less sophisticated approach - we call it remplissage via hitting times and present details in Section 5 as an example of the construction of a randomized terminal time.

In [1] Baxter and Chacon studied compactness properties of randomized times in a suitable topology, and Falkner [3] remarked on the use of this compactness to obtain (1.1). (Several of Falkner's related papers are listed in the references.)

Motivated by all of these ideas and results, we examine here structural properties of randomized times in the presence of the shift operator. Of special interest is the class of randomized quasi-terminal times, which lies between randomized optional times and randomized terminal times. This class is motivated by the interaction between the shift operator and basic algebraic operations, and the requisite definitions are given in Section 2.
In Section 3 we discuss algebraic consequences of the definitions, while Section 4 is devoted to sequential compactness of quasi-terminal times. Technical questions of null sets arise and a complete generalization of Baxter and Chacon's results to quasi-terminal times does not seem possible without additional hypotheses. In Section 5 we illustrate some of these ideas, including applications of sequential compactness results to Markov chains and to Rost's original proof of (1.1) for Markov processes.

2. Randomized times and random measures. The motivation for this work comes from Markov processes, and we record some of the basic definitions. Let S denote the Borel σ-algebra on a state space S assumed to be Lusin—that is, S is homeomorphic to a Borel subset of a compact topological space. Let $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \Theta_t, P^X)$ be a Markov process on S. We assume that the associated semigroup $P_t f(x) = P^X(f(X_t))$ maps Borel functions into Borel functions and that the process is right-continuous. (We follow the convention of using P^X to denote both a probability and an expectation.)

Our immediate concern is less the Markov process itself than the filtration $(\mathcal{F}_t : t \geq 0)$, which we assume to be right-continuous and the usual completion of the separable σ-algebra

$$F^0_t = \sigma(X_s : s \leq t).$$

One way of introducing the randomization is via the product space

$$\tilde{\Omega} = \Omega \times [0, \infty), \quad \mathcal{F}_t = F_t \times \mathcal{B},$$

where \mathcal{B} denotes the Borel sets on $[0, \infty)$. The first class of randomized times with which we are concerned is given, for example, in Baxter and Chacon [1]; we use a slight variation of their definition.
(2.3) **Definition.** \(\mathcal{T}_0 \) is the set of mappings \(T : \tilde{\Omega} \rightarrow [0, \infty] \) with the properties

(a) \(T(\cdot, u) \) is optional for each \(u \) - that is,
\[\{\omega : T(\omega, u) \leq t\} \in \mathcal{F}_t \text{ for each } t \geq 0. \]

(b) \(T(\omega, \cdot) \) is nondecreasing and left-continuous for each \(\omega \).
\[\text{(We define } T(\omega, 0) = T(\omega, 0^+).) \]

(c) \(u_T(\omega) = \inf \{u : T(\omega, u) = \infty\} < \infty. \)

The set of random measures corresponding to \(\mathcal{T}_0 \) coincides with the following class.

(2.4) **Definition.** \(\mathcal{A}_0 \) is the set of random measures \(\mathcal{A} \) on \([0, \infty]\) with the properties

(a) \(\mathcal{A}(\cdot, s) \in \mathcal{F}_s \), all \(s \in [0, \infty) \), where \(\mathcal{A}(\omega, s) = \mathcal{A}(\omega, [0, s]) \).

(b) \(\mathcal{A}(\omega, s) \) is right-continuous in \(s \).

(c) \(\mathcal{A}(\omega, [0, \infty)) < \infty. \)

The relationship between \(\mathcal{T}_0 \) and \(\mathcal{A}_0 \) is defined in the usual manner: given \(T \) in \(\mathcal{T}_0 \) define \(A_T \) by

\[
A_T(\omega, s) = \sup\{u : T(\omega, u) \leq s\}.
\]

Then \(A_T \) is nondecreasing, and it is easy to check that

\[
\{\omega : A_T(\omega, s) \geq u\} = \{\omega : T(\omega, u) \leq s\}.
\]

Routine computations show that \(A_T \in \mathcal{A}_0 \). In fact, the mapping \(M_1 : \mathcal{T}_0 \rightarrow \mathcal{A}_0 \) defined by

\[
M_1(T) = A_T
\]

has the following properties.
Lemma. The mapping M_1 is one-to-one and onto, and its inverse map $M_2 : A_0 \to T_0$ is given by $M_2(A) = T_A$, where

$$T_A(\omega, u) = \inf\{s : A(\omega, s) \geq u\}.$$

We now bring in shift operators using the "big shift". For $T \in T_0$ and $s \geq 0$ define

$$\Theta_s T(\omega, u) = s + T(\Theta_s \omega, u);$$

$$\Theta_s A(\omega, t) = A(\Theta_s \omega, t-s)1(s \leq t \leq \infty).$$

The definition of Θ_s on random measures seems to have been introduced by Sharpe (see [2] for example), and $\Theta_s T$ appears in one guise or another throughout the literature, usually in the simpler form of T_s. (Note that we should really define two shifts, since one applies to random times and the other to random measures.)

Next we define subclasses of A_0 and T_0 suggested by the shift operator and the applications mentioned in the introduction.

Definition. Let

$$T_1 = \{T \in T_0 : \text{for all } 0 \leq s < \infty, \Theta_s T \in T_0 \text{ and}$$

$$\text{for all } 0 \leq r \leq s \text{ and } 0 \leq u, \Theta_r T(\omega, u) \leq \Theta_s T(\omega, u)\};$$

$$A_1 = \{A \in A_0 : \text{for all } 0 \leq s < \infty, \Theta_s A \in A_0 \text{ and for}$$

$$\text{all } 0 \leq r \leq s, 0 \leq t, \Theta_r A(\omega, t) \geq \Theta_s A(\omega, t)\};$$

$$T_2 = \{T \in T_1 : \text{for all } 0 \leq s < \infty, s < T(\omega, u)$$

$$\text{implies } \Theta_s T(\omega, u) = T(\omega, u)\};$$

$$A_2 = \{A \in A_1 : A(\omega, s) < A(\omega, t) \text{ implies } \Theta_s A(\omega, t) = A(\omega, t)\}.$$

-6-
These definitions can be weakened by allowing inequalities to fail on null sets depending on the time parameters. Thus \(\tilde{A}_1 \) denotes the set of \(\lambda \in \tilde{A}_0 \) such that \(\lambda A < \lambda A \) for all \(s > 0 \) and such that for \(0 < r < s \) there is a null set depending on \(r \) and \(s \) off which \(\lambda A(\omega, t) > \lambda A(\omega, t) \) for all \(t \). Similarly, \(\tilde{T}_1 \) shall denote the analogous class of randomized times. The need for these classes arises in Section 5, where we apply our results to the representation theorem of Rost [12], and only the sets \(\tilde{A}_1 \) and \(\tilde{T}_1 \) are available.

A random time in \(T_2 \) has the property that \(T(\cdot, u) \) is a terminal time for all \(u \). One can construct such a time by defining \(T(\cdot, u) \) as the hitting time of a Borel set \(B_u \), where \(0 < u < v < 1 \) implies \(B_u \supset B_v \). (An example of how such times arise in practice appears in Section 5.) Times in \(T_2 \) shall be referred to as randomized terminal times, while those in the intermediate class \(T_1 \) are called randomized quasi-terminal times, since the defining property comprises part of the definition of a terminal time.

We single out those times in \(T_1 \) which correspond to ordinary random times.

(2.12) Definition. A time \(T \) in \(T_0 \) is called natural if \(T(\omega, u) = T(\omega) \) for all \(u \leq u_T \). Correspondingly, we call a natural \(T \) a quasi-terminal time or a terminal time if it is also in \(T_1 \) or \(T_2 \), respectively.

We conclude these definitions by showing \(T_1 \) and \(A_1 \) are related in the same way that \(T_0 \) and \(A_0 \) are related and also that the shift operators commute with \(M_1 \) and \(M_2 \). We leave it to the reader to check that the same results apply to \(T_1 \) and \(A_1 \).

(2.13) Proposition. For \(i = 1, 2, M_1 \) and \(M_2 \) restricted to \(T_i \) and \(A_i \) respectively are inverses. Furthermore, for all \(s > 0 \)
\[(2.14) \quad 0M_2 = M_20s, \quad 0M_1 = M_10s. \]

Proof: Suppose \(T = M_2(A) \) with \(A \) in \(A_1 \). Then with \(u > 0 \) and \(r < s \)

\[(2.15) \quad 0sT(\omega, u) = s + T(\theta_s, u) \]
\[= s + \inf\{t : A(\theta_s, t) > u\} \]
\[= s + \inf\{t : 0sA(\omega, s+t) > u\} \]
\[> s + \inf\{t : 0sA(\omega, s+t) > u\} \]
\[= r + \inf\{t > s-r : A(\theta_r, t) > u\} \]
\[= 0rT(\omega, u). \]

Line three above translates to \(0sM_2(A) = M_2(0sA) \), and the entire sequence gives \(T \) in \(T_1 \). Now set \(r=0 \). If \(t_0 = T(\omega, u) > s \), then for \(s+t_1 < t_0 < s+t_2 \), we have

\[A(\omega, s+t_1) < u \leq A(\omega, s+t_2). \]

Hence, if \(A \in A_2 \), \(A(\omega, s+t_2) = 0sA(\omega, s+t_2) \) and there is equality in line four of (2.15). Further, the infimum implicit in the last line is over \(t > s \), so that \(T \) must be in \(T_2 \).

For the other direction we have an analogous argument. Suppose \(r<s<t \) and \(T \in T_1 \). Then with \(A = M_1(T) \),

\[0sA(\omega, t) = A(\theta_s, t-s) \]
\[= \sup\{u : T(\theta_s, u) \leq t-s\} \]
\[= \sup\{u : 0sT(\omega, u) \leq t\} \]
\[< \sup\{u : T(\omega, u) \leq t\} \]
\[= \sup\{u : T(\theta_r, u) \leq t-r\} = 0rA(\omega, t), \]

confirming \(0sM_1(T) = M_1(0sT) \) and \(A \) in \(A_1 \). If in addition \(T \in T_2 \) and \(A(\omega, s) = u_0 < u_1 = A(\omega, t) \), then \(T(\omega, u) > s \) for \(u > u_0 \), which gives
\(T(\omega, u) \) equal to \(T(\omega, u) \). If \(r \) is set equal to zero it follows that the suprema above can be restricted to \(u > u_0 \) and that we have equality in the fourth line, completing the proof. \(\square \)

3. Algebraic structure on \(A_1 \) and \(T_1 \). Suppose \(X \) is two-dimensional Brownian motion absorbed at the circle of radius two. If \(\mu \) denotes the point mass at the origin and \(\eta \) a probability measure with half of its mass at the origin and half uniformly distributed on the unit circle, then \(\mu \) dominates \(\eta \) in the ordering induced by the excessive functions. Furthermore, \(\eta \) can be realized as the process with initial distribution \(\mu \) stopped "half the time" at zero and otherwise at the unit circle. If \(D_0 \) is the hitting time of \((0, 0)\) and \(D_1 \) is the hitting time of the unit circle, then one could think of \(\eta \) as the process with initial distribution \(\mu \) stopped at \(\frac{1}{2} D_0 + \frac{1}{2} D_1 \).

We make this approach rigorous by defining an appropriate algebraic structure on \(T_0 \) using \(A_0 \) and the mapping \(M_2 \). Before proceeding let us note that the intuition behind these ideas is not new; Meyer, for example, alludes to order and convexity properties in his discussion [11] of Baxter and Chacon's work.

Addition and positive scalar multiplication on \(A_0 \) are defined in terms of the distribution functions.

(3.1) Definition. For \(A_1, A_2 \in A_0 \) and \(c \geq 0 \) let

\[
(A_1 + A_2)(\omega, t) = A_1(\omega, t) + A_2(\omega, t);
\]

\[
(cA_1)(\omega, t) = c \cdot A_1(\omega, t).
\]

Since the properties characterizing \(A_0 \) are satisfied for both \(A_1 + A_2 \) and \(cA_1 \), \(A_0 \) is closed under these operations. It is easy to check that \(A_1 \) is also closed under both operations and that \(A_2 \) is closed under scalar multiplication. (The latter assertion follows from the use of \(c \cdot 0 A = 0_s(cA) \).)
However, \(A_2 \) need not be closed under addition. For example if
\[
A_i(\omega, t) = \mathbb{1}(T_i(\omega) \leq t \leq \infty), \quad i = 1,2,
\]
where the \(T_i \) are finite terminal times, then the inequality \(A_i(\omega, s) < A_i(\omega, t) \) obviously implies equality of \(\mathbb{1}_s A_i(\omega, t) \) and \(A_i(\omega, t) \). However, if
\[
T_1(\omega) < s < T_2(\omega) < t < \mathbb{1}_s T_1(\omega),
\]
then \((A_1 + A_2)(\omega, s) < (A_1 + A_2)(\omega, t) \), but
\[
\mathbb{1}_s (A_1 + A_2)(\omega, t) = 1 < 2 = (A_1 + A_2)(\omega, t).
\]

The following result summarizes these observations.

\[\text{(3.2) Lemma.} \quad \text{The sets } A_0 \text{ and } A_1 \text{ are positive cones under addition and positive scalar multiplication, while } A_2 \text{ is closed under positive scalar multiplication. Furthermore, if algebraic operations on } T_i \text{ are defined by}
\]
\[
T_1 + T_2 = M_2(A_1 + A_2)
\]
and
\[
c \cdot T_1 = M_2(cA_1),
\]
then \(T_0 \) and \(T_1 \) are positive cones, and \(T_2 \) is closed under scalar multiplication.

\[\text{Proof.} \quad \text{The definitions of multiplication and addition on } A_0 \text{ show these operations satisfy the required algebraic properties. Moreover, these properties are preserved under the bijection } M_2, \text{ so that } T_0 \text{ is a positive cone; for example,}
\]
\[
(a \cdot T_0) + (a \cdot T_1) = M_2(aA_0 + aA_1) = a \cdot (T_0 + T_1).
\]

Since \(M_2 \) maps \(A_1 \) onto \(T_1 \), we easily deduce that \(T_1 \) is a positive cone. Note that part of the verification uses commutativity of scalar multiplication with the big shift:
\[\Theta_s(cT) = \Theta_s(M_2(cA)) = M_2(\Theta_s(cA)) = M_2(c\Theta_sA) = c \cdot \Theta_sA.\]

We omit the remaining details. [1]

The effect on \(T\) of scalar multiplication is to rescale the randomizing parameter:

\[cT(\omega, u) = \inf\{t : cA(\omega, t) \geq u\} = \inf\{t : A(\omega, t) \geq u/c\} = T(\omega, u/c).\]

Addition has the effect of mixing up the values assumed by the constituent times, an effect noted by Meyer [10]. Thus, for the example preceding (3.2)

\[(T_1 + T_2)(\omega, u) = \inf\{r : A_1(\omega, r) + A_2(\omega, r) \geq u\} = \begin{cases} T_1(\omega), & 0 < u \leq 1 \\ T_1(\omega) + T_2(\omega), & 1 < u \leq 2 \\ \infty, & 2 < u. \end{cases}\]

Order and convexity structures are defined in the obvious way.

(3.3) Definition. \(A_1 \leq A_2\) iff \(A_1(\omega, t) \leq A_2(\omega, t)\) for all \(t \geq 0\); \(T_1 < T_2\) iff \(T_1(\omega, u) < T_2(\omega, u)\) for all \(u \geq 0\).

To ease the exposition we assume we are working on a fixed \(\Omega\) with the inequalities holding for all \(\omega\). However, the presentation can be easily modified so that the inequalities are valid except on a null set.

(3.4) Definition. For \(A_1, A_2\) in \(A_0\), let

\[(A_1 \lor A_2)(\omega, t) = A_1(\omega, t) \lor A_2(\omega, t);\]

\[(A_1 \land A_2)(\omega, t) = A_1(\omega, t) \land A_2(\omega, t).\]

Similarly, given \(T_1, T_2\) in \(T_0\) let

\[(T_1 \land T_2)(\omega, u) = (T_1(\omega, u)) \land (T_2(\omega, u)).\]
The sets A_i and T_i, $i = 1$ and 2, are closed under \land and \vee. In addition scalar multiplication and the shift operators commute with \land and \vee, while
\begin{align*}
A_1 + A_2 &= (A_1 \lor A_2) + (A_1 \land A_2) \\
T_1 + T_2 &= (T_1 \land T_2) + T_1 \lor T_2.
\end{align*}
Finally,
\begin{align*}
M_2(A_1 \land A_2) &= M_2(A_1) \lor M_2(A_2) \\
M_1(T_1 \land T_2) &= M_1(T_1) \lor M_1(T_2).
\end{align*}
Proof. It is easy to check that A_0 is closed under \lor and \land and that the first part of (3.6) holds. Moreover, since Θ_s commutes with both \land and \lor, the same assertions hold for A_1.

Now if $T = M_2(A_1 \lor A_2)$, then
\begin{align*}
T(\omega, u) &= \inf\{t : A_1(\omega, t) \lor A_2(\omega, t) \geq u\} \\
&= \inf\{t : A_1(\omega, t) \geq u\} \land \inf\{t : A_2(\omega, t) \geq u\} \\
&= T_1(\omega, u) \land T_2(\omega, u).
\end{align*}
Similarly $M_2(A_1 \land A_2) = M_2(A_1) \lor M_2(A_2)$. This shows T_0 and T_1 are closed under \land and \lor and also that the equations in (3.7) hold.

Finally, the second part of (3.6) follows from (3.7) and the first part of (3.6). □

The example preceding (3.2) shows that T_2 need not be closed under \lor. However we do have a partial result.
Lemma. A_2 and T_2 are closed under \vee and \wedge respectively.

Proof. Let A_1 and A_2 be in A_2. Suppose $s < t$ and

$$(A_1 \vee A_2)(w, t) > (A_1 \vee A_2)(w, s).$$

If $A_i(w, t) > A_i(w, s)$ for $i = 1, 2$, then

$$(3.10) \quad (\theta_s A_1 \vee \theta_s A_2)(w, t) = (A_1 \vee A_2)(w, t).$$

If $A_2(w, s) = A_2(w, t)$, necessarily $A_1(w, t) > A_2(w, t)$ and

$A_1(w, t) > A_1(w, s)$ for (3.9) to hold. This suffices for (3.10) as well, and the assertion for A_2 follows. The assertion for T_2 then follows using the usual mapping.

It is natural to ask about convexity properties, which requires that we use bases of the positive cones described above. In doing this we impose a condition for all w - or again for a full set if we use the weaker definitions mentioned above.

Definition. For $i = 0, 1, 2$, let

$$T_i(1) = T_i \cap \{T : u_T(w) \leq 1\};$$

$$A_i(1) = A_i \cap \{A : A(w, [0, \infty)) \leq 1\}.$$

Further, we require natural times in this context to have $u_T(w) = 1$. It is easy to check that M_1 and M_2, restricted to $T_i(1)$ and $A_i(1)$, remain inverses of one another. The sets defined in (3.11) are those used by Baxter and Chacon [1].

The next result identifies extreme points.

Theorem. For $i = 0$ and $i = 1$, $A_i(1)$ and $T_i(1)$ are convex sets. The extreme points of $T_0(1)$ correspond to natural times, while those of $T_1(1)$ are quasi-terminal times.
Proof. The first assertion is immediate from the definitions. For the second, given \(a \in (0, 1) \) and \(A \in A_1(1) \), define \(A_1 = a^{-1}(a \land A) \) and \(A_2 = \max\{0, (1 - a)^{-1}(A - a)\} \). It is easy to check that \(A_1 \) and \(A_2 \) are also in \(A_1(1) \) and that \(A = aA_1 + (1 - a)A_2 \). If \(A \) is an extreme point, \(A = A_1 = A_2 \). Thus if \(A(\omega, t) < a \), \(A_2(\omega, t) = 0 = A(\omega, t) \). If \(A(\omega, t) > a \), \(A_1(\omega, t) = 1 = A(\omega, t) \). Hence for each \(\omega \) there is a \(T_0(\omega) \) such that \(A(\omega, t) = 1(T_0(\omega) \leq t \leq \infty) \). (Note that \(T_0 = \infty \) is a possibility and also that we could have done the foregoing analysis on a set of probability one.) It is easy to check that if

\[
T(\omega, u) = \begin{cases}
T_0(\omega) & 0 \leq u \leq 1 \\
\infty & u > 1,
\end{cases}
\]

then \(T \) is a natural time if \(A \in A_0(1) \) and is a quasi-terminal time if \(A \notin A_1(1) \). The proof that natural and natural quasi-terminal times are extreme points is trivial, and details are omitted.

Having characterized extreme points we proceed one step further and characterize edges, i.e., faces of dimension one.

(3.13) Proposition. Let \(T_1 \) and \(T_2 \) be extreme points of \(T_0(1) \). Then \(T_1 \) and \(T_2 \) define on edge iff one of the times is smaller than the other, say \(T_1 < T_2 \), and \(F(T_1) \) is trivial.

Remark. If we are working with respect to a fixed measure \(P^\# \), then the null sets should be interpreted with respect to that measure. Indeed, the proposition implies that edges will exist only for initial measures whose support is at one point.

Proof. Suppose \(T_1 \) and \(T_2 \) are natural, \(T_1 < T_2 \) and \(F(T_1) \) is trivial.

Suppose there exist random measures \(B_1 \) in \(A_0(1) \) and \(a, b \in (0, 1) \), such that

\[
bB_1(\omega, t) + (1 - b)B_2(\omega, t) = aA_1(\omega, t) + (1 - a)A_2(\omega, t).
\]
Since B_1 can have a jump only where A_1 or A_2 has a jump, it follows that for some random variable C_1, we have $B_1 = C_1 A_{T_1} + (1 - C_1) A_{T_2}$; however it is straightforward to show that C_1 must be $F_{T_1 \wedge T_2} = F_{T_1}$ - measurable, and hence constant a.s. Consequently T_1 and T_2 define an edge.

Conversely, suppose T_1 and T_2 define an edge. Then going to the random measures we have

\[\frac{1}{2}(A_1 + A_2) = \frac{1}{2}(A_1 \lor A_2 + A_1 \land A_2). \]

By hypothesis there then exists a constant c so that

\[A_1(\omega, t) \lor A_2(\omega, t) = c A_1(\omega, t) + (1 - c) A_2(\omega, t). \]

If there is a set with positive measure such that $T_1 < t < T_2$, then

\[1 \lor A_2(\omega, t) = 1 = c + (1 - c) A_2(\omega, t), \]

which implies the constant c equals one. If $T_2 < T_1$ is also possible on a set with positive measure, we obtain c equals zero. Both cases can't occur, and we assume $T_1 < T_2$.

Now suppose $F(T_1)$ is not trivial. Then there exists a nonconstant $F(T_1)$-measurable random variable $C(\omega)$ with $0 < C(\omega) < 1$. If we define

\[B_1(\omega, t) = (1 - C(\omega)) A_1(\omega, t) + C(\omega) A_2(\omega, t) \]

and

\[B_2(\omega, t) = C(\omega) A_1(\omega, t) + (1 - C(\omega)) A_2(\omega, t), \]

then B_1 and B_2 are both in $A_0(1)$ and

\[\frac{1}{2}(B_1 + B_2) = \frac{1}{2}(A_1 + A_2). \]

However, B_1 and B_2 cannot be represented as a convex combination of A_1 and A_2 over the nonnegative reals, and that contradiction completes the proof. □
4. Compactness of $A_1(1)$. In this section we deal with problems qualitatively different from the algebraic topics of Sections 2 and 3. In particular, the role of a fixed initial distribution μ means we shall be dealing with one family of probability measures on (Ω, F):

\[(4.1) \quad P^\mu_B(\Lambda) = \int \mu(dx)P^X_B(\Lambda) \equiv \int \mu(dx)P^X(\theta^{-1}_B \Lambda).\]

We hereafter write P for P^μ_0.

Let \mathcal{B} denote the Borel sets on $[0, \infty]$ and let \mathcal{C} denote the set of bounded $F^0 \times \mathcal{B}$-measurable functions that are continuous in t. We recall that F^0 is separable, so that \mathcal{C} is generated by a countable family of functions of the form $Y(\omega) \cdot f(t)$, where f is continuous. In fact we can and frequently will assume that f is chosen from the countable family $\mathcal{D} = \{\exp(-rt) : r \in \mathbb{Q}\}$, where \mathbb{Q} denotes the set of nonnegative rationals.

In [1] Baxter and Chacon use \mathcal{C} to define a topology on $A_0(1)$ and prove sequential compactness of $A_0(1)$ relative to it. This requires the following kind of convergence.

\[(4.2) \quad \textbf{Definition.} \quad \text{A sequence } (A_n) \text{ in } A_0(1) \text{ converges (BC) to } A \in A_0(1) \text{ if for all } Z \text{ in } \mathcal{C} \\]
\[P[\int_0^\infty Z(\omega, t)A_n(\omega, dt)] \rightarrow P[\int_0^\infty Z(\omega, t)A(\omega, t)].\]

Our goal is to prove the analogous result for $A_1(1)$, but that does not seem possible without restrictions on the underlying process. Our approach is to push as far as possible without additional assumptions and then to illustrate hypotheses that allow stronger conclusions. Here is the general result.

\[(4.3) \quad \textbf{Theorem.} \quad \text{Assume } X \text{ is a Markov process satisfying the hypotheses of Section 2 and let } (A_n) \text{ be a sequence in } A_1(1). \text{ Then there exist a countable set } \mathcal{H}, \text{ possibly empty, a subsequence } (A_{n_k}) \text{ and } \tilde{A} \in A_1(1) \text{ such that}\]
for all b, except possibly for b in the set H. Moreover, \tilde{A} is defined using $A \in \mathcal{A}_0(1)$ having the properties: $\Theta A \in \mathcal{A}_0(1)$ for r in $Q' \equiv H \cup Q$, $\Theta A \rightarrow A$ converges (BC) to ΘA for $r \in Q'$, and if r and s are in Q' with $r < b < s$, then for all $t > 0$

$$\Theta A(\omega, t) \geq \Theta b \tilde{A}(\omega, t) \geq \Theta s A(\omega, t).$$

(We subsequently abbreviate this as $\Theta A \geq \Theta b \tilde{A} \geq \Theta s A$.)

It is tempting to try to combine A and \tilde{A} into one random measure in $\mathcal{A}_1(1)$ satisfying (4.4) for all b. Unfortunately this does not seem possible without restrictions on the process. Before going into that point further we shall prove Theorem (4.3). In doing so we will obtain the following corollary, which illuminates the role of the set H.

(4.5) **Corollary.** Suppose \tilde{A} has the property that for all nonincreasing f

$$P[\int f(t + r)\tilde{A}(\theta t, dt)]$$

is continuous in r. Then $H = \emptyset$, and (4.4) holds for all $b > 0$.

The proof of (4.3) relies heavily on certain results from Baxter and Chacon [1], which we record here. Baxter and Chacon define a functional α for $Y \in L_1(P)$ and $f \in C[0, \infty]$ by

$$\alpha(Y, f) = \nu[Y(\omega) \cdot \int f(t)A(\omega, dt)]$$

and establish that functionals of the form (4.6) are characterized by the following properties

(4.7a) α is bilinear and positive: $0 \leq Y$ and $0 \leq f$ imply $0 \leq \alpha(Y, f)$;
\[(4.7b) \quad \alpha(1, 1) = 1; |\alpha(Y, f)| \leq \|Y\| \cdot \|f\|_\alpha;\]

\[(4.7c) \quad \text{for all } b, \text{ supp} (f) = \text{support} (f) \subset [0, b] \text{ implies } \alpha(Y, f) = a(P(Y \mid f_b), f).\]

(We note that to fulfill the first condition in (4.7b) we need to define \(A(\omega, [\infty]) \) as \(1 - A(\omega, \infty)\).)

We need two additional conditions. Let \(r \geq 0\) be fixed.

\[(4.7d) \quad \text{supp}(f) \subset [0, r] \text{ implies } \alpha(Y, f) = 0;\]

\[(4.7e) \quad \alpha(Y, f) = \alpha(P(Y \mid G_r)), \text{ where } G_r = \theta_r^{-1}(F).\]

\[(4.8) \quad \text{Lemma.} \quad \text{A functional } \alpha \text{ has the representation (4.6) with } A = \Theta B \text{ if and only if (4.7a-e) hold; } B \text{ is unique up to } P \text{ a.s. equivalence.} \]

\textbf{Proof.} If \(A = \Theta B\), it is easy to check that the conditions in (4.7) hold. Conversely, as in [1], (4.7a-c) produce \(A\), and one need only verify it is of the asserted form. Fixing \(f\) and defining \(Y\) as \(\int fA(\omega, dt)\), we can use (4.7e) to prove

\[P\left(\left\{Y - P(Y \mid G_r)\right\}^2 \right) = 0\]

i.e., \(Y\) is \(G_r\)-measurable. Repeating this for a countable determining class in \(C[0, \infty]\) gives existence of a random measure \(B\) such that \(A(\omega, dt) = B(\theta_r \omega, dt)\) almost surely. Moreover, (4.7d) shows that support of both measures is \([r, \infty]\) a.s. Redefining \(B\), we have \(A = \Theta_r B\). The verification that \(B\) is unique up to a.s. equivalence is then immediate. (Actually, we have uniqueness with respect to the measure \(P^\mu_r\) on \((\Omega, F)\).)

Another result from [1] that we shall find useful is:

\[(4.9) \quad \text{Let } S \text{ and } T \text{ be in } T_0(1), \text{ with } A \text{ and } B \text{ their corresponding measures. Then the following are equivalent:}\]

\[(i) \quad S(\omega, \cdot) \leq T(\omega, \cdot) \text{ a.s. ;}\]
Here is the first step in proving (4.3).

Proposition. Given a sequence \((A_n)\) in \(A_1(1)\), there exist a subsequence \((A_{n'})\) and random measures \(\{\theta _b : b \geq 0\}\) such that:

(i) for each \(b\), \(\theta _{A_{n'}} \rightarrow \theta _{B_b}\) (BC);

(ii) there exists a set \(\Omega _0\) of full measure such that if \(0 < b < c\), then \(\theta _{B_b} > \theta _{B_c}\) on \(\Omega _0\);

(iii) except possibly for \(B\) in a countable set \(H\)

\[
\lim _{c \uparrow b} P[Y \cdot \int f(t + c)B_b(\theta _\omega , dt)] = P[Y \cdot \int f(t + b)B_b(\theta _\omega , dt)]
\]

for \(f\) a continuous nonincreasing function and \(Y \geq 0\).

Proof. Let \(Q\) denote the rationals as before and select a subsequence \(A_{n'}\)

such that for each rational \(r\), \(\theta _{A_{n'}}\) converges (BC) to a limit random

measure \(A_r\) in \(A_0(1)\). Since (4.7 d, e) hold for \(\theta _{A_{n'}}\), they hold for \(\theta _{A_r}\)

and hence \(A_r\) is of the form \(\theta _{B_r}\). Thus

\[
\int _0^\infty f(t)A_r(\omega , dt) = \int _0^\infty f(t + r)B_r(\theta _\omega , dt).
\]

Since \(A_n \in A_1(1)\), it follows that for \(Y \geq 0\),

\[
P[Y \cdot \int _0^\infty f(t + r)A_n(\theta _\omega , dt)] \geq P[Y \cdot \int _0^\infty f(t + s)A_n(\theta _\omega , dt)],
\]

provided \(f\) is nonincreasing and \(r \leq s\). For \(r\) and \(s\) in \(Q\), this inequality

persists in the limit, and we can define a set \(\Omega _0\) of full \(P\)-measure such

that (ii) holds for all \(b\) and \(c\) in \(Q\). Moreover, since \(q(r) = q(r, Y, f) = \cdots\)
\[P[\int_0^\infty f(t + r)B_r(\theta \omega, dt)] \text{ is monotone on } Q, \text{ we can define a countable} \]

set \(H \) such that for \(b \) not in \(H \), \(g \) is continuous across \(b \) for all \(Y \) and \(f \) in the family \(\mathcal{D} \) of functions \(f(t) = \exp(-rt), r \in Q \).

We now extract a further subsequence so that \(\frac{\partial A_n}{r} \) converges to \(\frac{\partial B_r}{r} \) for \(r \in Q' = H \cup Q \). Since \(Q' \) is also countable, the preceding analysis applies to the new measures, and we use the same letters.

On \(\Omega_0 \) we define \(b_b \) for all \(b \) by

\[
\int_0^\infty f(t + b)B_b(\theta \omega, dt) = \sup_{s \in Q'} \int_0^\infty f(t + s)B_s(\theta \omega, dt).
\]

Note that the family \(\{0_bB_b : b > 0\} \) extends the family with \(b \) restricted to \(Q' \) and that conditions (ii) and (iii) have been established.

For condition (i) we observe that (BC) convergence is valid by definition for \(b \) in \(Q' \). For \(b \) not in \(Q' \) we have

\[
P[\int_0^\infty f(t + s)B_s(\theta \omega, dt)]
\leq \lim P[\int_0^\infty f(t + b)A_{bn}(\theta \omega, dt)]
\leq \lim P[\int_0^\infty f(t + b)A_{bn}(\theta \omega, dt)]
\leq P[\int_0^\infty f(t + r)B_r(\theta \omega, dt)]
\]

provided \(r < b < s \), \(r \) and \(s \) are in \(Q' \), \(0 \leq Y \), and \(f \) nonincreasing.

Since \(b \) is not in \(Q' \), we have continuity across \(b \) for a generating class of \(C \). Therefore the limit exists and can be represented using \(0_bB_b \).

This completes the proof of (4.10). \(\square \)
We are now able to prove Theorem (4.3).

Proof of Theorem (4.3): It would be pleasant if we could simply drop the

\(b \) as a subscript of \(B \) and aver that we had obtained the limit random measure.

Unfortunately, that seems to be the most difficult step. Our approach is
to define a new initial measure \(\rho \) and a limit distribution relative to

\(P^0 \). The properties of \(\rho \) will enable us to define \(\hat{A} \).

Let \(\{g_s : s \in Q\} \) denote a countable family of nonnegative, bounded
continuous functions that generates \(\mathbb{B} \); then with \(a(s) \) and \(b(r) \) denoting
positive normalizing constants, we define

\[
\rho(dx) = \sum_{s \in Q} a(s) \int_0^\infty b(s) e^{-b} \mathbb{P}^u \{X_s \in dx\} db + \sum_{r \in Q'} b(r) P^u \{X_r \in dx\}.
\]

Next apply Baxter and Chacon's result to \((A_n \cdot) \) relative to the measure

\(P^0 \) on \((\Omega, \mathcal{F}) \) and extract yet another subsequence converging (BC) to a random
measure \(A \in A^0(1) \). We then use standard techniques to obtain an \(\mathcal{F}^0 \)-measurable
random measure \(P^0 \)-equivalent to \(A \) and denoted by the same letter.

Now it is clear that on path space \(P^u_r \) is absolutely continuous with
respect to \(P^0_r \) for \(r \in Q' \). Hence there exists a Radon-Nikodym derivative

\(W_r \) such that

\[
P^u_r[Y \cdot \theta_r \cdot \int f(t + r) A_n \cdot(\theta,\omega, dt)]
\]

\[
= P^u_r[Y \cdot f(t + r) A_n \cdot(\omega, dt)]
\]

\[
= P^c_r[Y \cdot W_r \int f(t + r) A_n \cdot(\omega, dt)]
\]

\[
+ P^0_r[Y \cdot W_r \int f(t + r) A(\omega, dt)]
\]

\[
= P^u_r[Y \cdot f(t + r) A(\omega, dt)].
\]
It follows that on a set of full P-measure we have $\theta_{r,r} = \theta_{r} A$ for all r in Q'. In effect we can eliminate the subscript from B_{r} for all $r \in Q'$. Moreover, we can retain the inequalities $\theta_{r} A > \theta_{s} A$, $r < s \in Q'$, on this set of full measure.

A repetition of the argument using absolute continuity confirms that for each s

$$\iint_{Q'} g_{s}(b) e^{-b P_{b}^{\mu}} [Y \cdot \int_{0}^{\infty} f(t + b) A_{n}^{-}(\omega, dt)]db$$

converges to the same expression with A replacing A_{n}^{-}. Indeed with our usual $Y > 0$ and $f \in D$, we can get an upper bound for the expression above, to wit

$$f_{k+1} g_{b_{k}}(b) e^{-b P_{b}^{\mu}} [Y \cdot \int_{0}^{\infty} f(t + b) A_{k}^{-}(\omega, dt)]db$$

and a lower bound of the same form but using b_{k-1} in place of b_{k} inside the integral. If the b_{k} are restricted to Q', we can pass to the limit and express the upper and lower bounds using $B_{b_{k}}$ and $B_{b_{k}+1}$ as the random measures. Finally, assume the mesh size of the partition is taken smaller and use countability of the set of discontinuity points to obtain

$$(4.11) \quad \int_{0}^{\infty} g_{s}(b) e^{-b P_{b}^{\mu}} [Y \cdot \int_{0}^{\infty} f(t + b) B_{b}(\omega, dt)]db$$

$$= \int_{0}^{\infty} g_{s}(b) e^{-b P_{b}^{\mu}} [Y \cdot \int_{0}^{\infty} f(t + b) A(\omega, dt)]db.$$

Since A was chosen F^{0}-measurable, it follows that for Y F^{0}-measurable the function $G(\omega, b)$ defined as $Y(\omega) \cdot \int_{0}^{\infty} f(t + b) A(\omega, dt)$ if $F^{0} \times B$-measurable. By assumptions on the (P^{X}), that means $P^{X(\omega, b)} [G(\omega', b)]$ is $F^{0} \times B$-measurable.
and Fubini's theorem than gives the B-measurability of $p^\mu \left[F^{X(b, \omega)}(\omega', b) \right]$.

We can argue that the corresponding expression with B_b in place of A is also B-measurable, since it is the limit of B-measurable functions. It then follows that (4.11) holds for all Borel measurable g, as well as the g_s, from which we can conclude that for all b except those in a real null set,

$$p^\mu_b \left[Y \cdot \int_0^\infty f(t + b)B_b(\omega, dt) \right] = p^\mu_b \left[Y \cdot \int_0^\infty f(t + b)A(\omega, dt) \right].$$

Hence, except for b in a null set

$$\theta_b B_b = \theta_b A, \text{ a.s. } p^\mu.$$

Again by Fubini's theorem, on a set of full p^μ-measure $\theta_b B_b = \theta_b A$, except for a real null set depending on ω. But this means that if we use the concept of essential limits - that is, with respect to a topology on $[0, \infty)$ in which open sets are Borel open sets minus a set of Lebesgue measure zero - we can define a random measure \tilde{A} by

$$(4.12) \quad \int_0^\infty f(t)\tilde{A}(\omega, dt) = \text{ess lim}_{b \to 0} \int_0^\infty f(t + b)A(\omega, dt),$$

for f nonnegative, nonincreasing and continuous. Note that the monotonicity property of $\theta_b B_b$ and its a.s. equivalence to $\theta_b A$ also give

$$\int_0^\infty f(t)\tilde{A}(\omega, dt) = \lim_{b \to 0} \int_0^\infty f(t + b)B_b(\omega, dt),$$

for f nonnegative, nonincreasing and continuous. Note that the monotonicity property of $\theta_b B_b$ and its a.s. equivalence to $\theta_b A$ also give

$$\int_0^\infty f(t)\tilde{A}(\omega, dt) = \lim_{b \to 0} \int_0^\infty f(t + b)B_b(\omega, dt).$$

The key feature of (4.12) is that we obtain the same random measure $\tilde{A}(\omega', dt)$ for all ω' of the form $\omega' = \theta_{b_1} \omega_1 = \theta_{b_2} \omega_2$, where ω_1 and ω_2 lie in the set of full measure defined in the preceding paragraph. This is because we can use $A(\theta_{b,b_1} \omega, \cdot) = A(\theta_{b+b_1} \omega, \cdot)$ in
the limit and need not worry about accumulation of null sets that would result were we to try to use B_b directly in (4.12).

Those unfamiliar with the concepts used in (4.12) can refer to Walsh [15], in which these topics are described and from which the F-measurability of \tilde{A} follows. Since $\bigcap_r B_r = \bigcap_r A$ on a set of full measure, the inequalities asserted in (4.3) have been established, and at times b not in H the convergence of $\bigcap_b A_n$ to $\bigcap_b \tilde{A}$ is immediate. We have thus devised a way to "drop the subscripts from B_b" - at least to the point of reducing the statement to two limit measures \tilde{A} and A. That is enough for (4.3) and completes the proof of the theorem.

Without additional restrictions on the process we cannot eliminate the need for two random measures in the statement of (4.3). In view of the generality in which the theorem is formulated, that is not entirely unexpected, but neither is it entirely satisfactory. The difficulty is that in regularizing A to get $\tilde{A} \in A_1(1)$, we imposed a type of right-continuity not required for $A_1(1)$. The effect is that we cannot assert that $(A_n)_{n=1}^\infty$ converges to \tilde{A} even though we do know $(A_n)_{n=1}^\infty$ converges to A.

As an example, let X be uniform motion to the right on the line and let A_n correspond to the first hit of $\{1/n\} \cup [1, \infty)$. Then A evidently corresponds to the first hit of $\{0\} \cup [1, \infty)$; in particular if $X_0(\omega) = 0$, $A(\omega, \cdot)$ puts all its weight at $\{0\}$. However, for that same ω, $\tilde{A}(\omega, \cdot)$ corresponds to the first hit of $[1, \infty)$ and thus is not the limit of the A_n.

There are a variety of assumptions restricting either the process X or the sequence $(A_n)_{n=1}^\infty$ that enable us to make sharper assertions. The first is motivated by the counterexample above.
(i) Uniformity of convergence of right-continuous A_n. Without loss of generality, replace the subsequence (A_n) by the original sequence.

Let Z_r stand for $Y(\omega) \cdot f(t + r)$ for our usual Y and f and use $(Z_r, \Theta_r A)$ to denote

$$
P^n \int_0^\infty Z_r(\omega, t) \Theta_r(\omega, dt).
$$

We make two assumptions:

(4.13a) for all sufficiently large n, $\lim_{r \to 0} (Z_r, \Theta_r A_n) = (Z_r, A_n)$.

(4.13b) for each such Z there is a $\delta > 0$ such that

$$
\lim_{n \to \infty} \sup_{r \in Q, r < \delta} \left| (Z_r, \Theta_r A_n) - (Z_r, \Theta_r A) \right| = 0.
$$

It follows from (4.13) that (A_n) converges to A. To see this fix

Z and the δ guaranteed by (4.13b). Then

$$
\left| (Z, \bar{A}) - (Z, A) \right| \leq \left| (Z, \bar{A}) - (Z_r, \Theta_r A) \right|
$$

$$
+ \left| (Z_r, \Theta_r A) - (Z_r, \Theta_r A_n) \right| + \left| (Z_r, \Theta_r A_n) - (Z, A_n) \right|
$$

$$
+ \left| (Z, A_n) - (Z, A) \right|.
$$

The fourth term on the right can be made small for large n, as can the second term uniformly in $r < \delta$, by virtue of (4.13b). Fixing such an n, we can then make the first and third terms small by choosing small r.

Hence $(Z, \bar{A}) = (Z, A)$ for a generating class of Z, which verifies the assertion.

(ii) Markov chains with countable, stable states. The conditions in (4.13) hold in this case, so that $A_1(1)$ is sequentially compact.

(iii) Discrete time Markov processes. In this case there is no difficulty with null sets accumulating, and the Baxter-Chacon argument easily gives sequential compactness of $A_1(1)$.

25
(iv) Domination of the transition probabilities. (We are indebted to J. Glover for suggesting this condition.)

(4.14) Proposition. Suppose \(\eta \) is a measure on \(S \) such that

\[
P^\mu(x_b \in \cdot) \ll \eta(\cdot)
\]

for all \(b > 0 \). Then \(\tilde{A}_1(1) \) is sequentially compact.

Proof. It is easy to use an absolute continuity argument to show that for all \(b \in Q' \), \(\Theta_b \tilde{A} = \Theta_b A \) almost surely. Hence \(\Theta_b A \) works as the limit measure for all \(b \) and the almost sure inequalities defining \(A_1(1) \) follow immediately. \(\square \)

5. Applications. As noted in the introduction, motivation for studying structural properties of randomized times arose from problems concerning transient Markov processes. In this section we consider three applications of the material from the preceding sections. In the first we use a modification of the remplissage (filling) scheme to give an explicit construction of a randomized terminal time that realizes (1.1), thereby solving in \(T_2(1) \) Skorokhod's problem for finite state Markov chains. In the second application we pursue an analogous example for a transient Markov chain with countable state space and see how (4.13) can be applied. The third application concerns Rost's original work [12] and illustrates how the class of randomized times could be narrowed in his context.

We begin by assuming \(X \) is a Markov chain with a countable state space \(S \). Let \(A \) be a finite subset of \(S \) and \(\mu \) a fixed probability with support in \(A \). Define by \(\mathcal{M}(\mu) \) the set of probabilities \(\eta \) with support in \(A \) and such that

\[
\int f d\eta \leq \int f \mu d
\]

(5.1)
for all \(f \in \mathcal{E} \), the cone of bounded excessive functions. (The integral in this context is just a finite sum, but in subsequent discussions we shall interpret (5.1) as an integral over a more general space.)

We have the following result.

(5.2) **Theorem.** For each \(\eta \) in \(M(\mu) \) there exist an integer \(N \leq \text{card} (\text{supp} (\eta)) \), a set of positive reals \(\{s_i : 1 \leq i \leq N\} \) with \(\sum_{1}^{N} s_i = 1 \) and a strictly decreasing family \(\{A_i : 1 \leq i \leq N\} \) of subsets of \(\text{supp}(\eta) \) such that:

(a) \(P^I(D_i < \infty) = 1 \), \(1 \leq i \leq N \), where \(D_i = \inf \{n > 0 : X_n \in A_i\} \), and \(A_1 = \text{supp} (\eta) \);

(b) \(\eta(x) = \int_{0}^{1} P^I(x(T_u) = x) \, du \),

where \(T \) is the randomized terminal time

\[
T(\omega, u) = D_1(\omega), \quad u_{i-1} < u < u_i,
\]

with \(u_0 = 0 \) and \(u_i = \frac{i}{1} s_i \).

Proof. In the filling scheme cited above one fills in the measure \(\eta \) step by step, with each step corresponding to one time unit. In our approach each step corresponds to one hitting time. Specifically, let \(\mu_0 = \mu \), \(\eta_1 = \eta \) and \(A_1 = \text{supp} (\eta_1) \). Since the function \(f(x) = P^X(D_1 < \infty) \) is excessive, (5.1) gives

\[
P^{\mu_0}(D_1 < \infty) = \int f \, d\mu_0 \geq \int f \, d\eta_1 = P^{\eta_1}(D_1 < \infty) = 1.
\]

Thus the measure \(\mu_1(x) = P^{\mu_0}(x(D_1) = x) \) is a probability with \(\text{supp}(\mu_1) \subseteq \text{supp}(\eta_1) \). If \(\mu_1 = \eta_1 \) we are done. Otherwise define

\[
t_1 = \max\{t : \eta_1 - t\mu_1 > 0\}
\]
\[\eta_2 = (1 - t_1)^{-1}(\eta_1 - t_1 \mu_1), \]
and let \(A_2 = \text{supp}(\eta_2) \subset A_1 \). To see that \(\eta_2 \in M(\mu_1) \), suppose \(f \in \mathcal{E} \) and define its réduite
\[r_1 f(x) = P^x[f(x(D_1)); D_1 < \infty]. \]
The function \(r_1 f \) is excessive, and \(r_1 f \leq f \), with equality on \(A_1 \). Hence
\[\int f d\eta_1 = \int r_1 f d\eta_1 \leq \int r_1 f d\mu_0 = \int f d\mu_1. \]
It follows that
\[\int f d\eta_2 = (1 - t_1)^{-1}[\int f d\eta_1 - t_1 \int f d\mu_0] \leq \int f d\eta_1 \leq \int f d\mu_1, \]
confirming \(\eta_2 \in M(\mu_1) \). Setting \(A_2 = \text{supp}(\eta_2) \), the function \(f(x) = P^x[D_2 < \infty] \) is excessive, and
\[P^{H_0}(D_2 < \infty) = P^{H_1}(D_2 < \infty) = \int f d\mu_1 \geq \int f d\eta_2 = 1. \]

Proceeding recursively, define \(\mu_2(x) = P^{H_0}(X(D_2) = x) \). If \(\mu_2 = \eta_2 \), we have
\[\eta_1(x) = t_1 P^{H_0}(X(D_1) = x) + (1 - t_1) P^{H_0}(X(D_2) = x) \]
and need only set \(N = 2 \), \(s_1 = t_1 \) and \(s_2 = 1 - t_1 \) to complete the proof.

Otherwise, we define
\[t_2 = \max\{t : \eta_2 - t \mu_2 \geq 0\}, \]
\[\eta_3 = (1 - t_2)^{-1}(\eta_2 - t_2 \mu_2), \]
and set \(A_3 = \text{supp}(\eta_2) \subset A_2 \). We then repeat the argument of the preceding paragraph.

Since the sets \(A_i \) are strictly decreasing this procedure ends after at most \(\text{card}(\text{supp}(\eta)) \) steps, and the constants can be identified as \(s_1 = t_1 \) and \(s_i = \left(\prod_{j=1}^{i-1} (1 - t_j) \right) t_1 \), \(2 \leq i \leq N \), where \(N \) is the number of steps. \qed
Replissage with hitting times also applies in the finite state case even when (5.1) fails. One proceeds in the same fashion, but since \(D_i = \infty \) is possible, the \(\mu_i \) may be sub-probability measures, the \(\eta_i \) may have mass greater than 1 and the \(t_i \) must be constrained not to exceed one - all of this in order to account for mass that "escapes."

(5.3) Theorem. Let \(\mu \) and \(\eta \) be probability measures on the finite set \(A \) and assume \(A \) is transient for the process. Then there exist an integer \(N \geq 0 \), strictly decreasing subsets \(\{ A_i : 1 \leq i \leq N+1 \} \) and positive constants \(s_i, 1 \leq i \leq N \) such that \(\sum s_i \leq 1 \) and

\[
\eta(x) = \sum_{i=1}^{N} s_i \mu(D_i = x) + (\eta - \mu) H_{N+1}(x),
\]

where \(H_{N+1}(x, y) = \mathbb{P}[X(D_{N+1}) = y, D_{N+1} < \infty] \).

Proof. One proceeds as in (5.2), stopping at stage \(N \) if either \(\mu_0 = \eta_0 \) or \(t_N > 1 \). In the first case we have (5.2). In the second case, the \(s_i \) are defined as before and

\[
\eta = \sum_{i=1}^{N} s_i \mu_i + \eta_\infty,
\]

where

\[
\eta_\infty = \prod_{i=1}^{N-1} \left(1 - t_i \right) (\eta - \mu_i) .
\]

If \(A_{N+1} = \text{supp}(\eta_0 - \mu_0) \), the proof will be completed by showing \(\eta_\infty \) has the asserted form. For \(f \in \mathcal{E} \)

\[
\int f d\eta_\infty = \int f d\eta - \sum_{i=1}^{N-1} s_i \int f d\mu_i - s_N \int f d\mu_N .
\]

By construction \(\eta = \sum_{i=1}^{N-1} s_i \mu_i \) on \(A_1 - A_N \).
\[
\int f \nu = \int f \nu - \sum_{i=1}^{N-1} s_i \int f \mu_i + (1 - s_N) \int f \nu_N.
\]

Since \(f \) equals its réduite \(r_n f \) on \(A_n \), we can replace \(f \) by \(r_n f \) above to obtain

\[
\int f \nu = \int r_n f (\eta - \mu) - \sum_{i=1}^{N-1} s_i \int r_n f \mu_i + (1 - s_N) \int f \nu_N.
\]

(Recall that \(\int f \nu_N = \int r_n f \mu \).) The integrals in the summation have the form \(\int f \nu \), yielding the last step:

\[
\int f \nu = \int r_n f (\eta - \mu) = \int f (\eta_N - \mu_N).
\]

It follows that \(\eta_\infty \) and \(\eta_N - \mu_N \) have the same potential and are thus equal.

It is then easy to show that \(\eta_N - \mu_N = \eta_{N+1} - \mu_{N+1} \), where \(A_{N+1} = \text{supp}(\eta_\infty) \), and this completes the proof. \(\square \)

Note that the procedure always terminates in a finite number of steps.

This contrasts with the time-step method of remplissage, which may require infinitely many steps. However, it is easy to construct examples which show the approach used here is generally applicable only in the finite state case. In fact these examples motivate Theorem (4.3), which would allow us to use a limiting process to define an appropriate randomized quasi-terminal time, at least in the Markov chain case.

Thus, for our second application we assume \(X \) is a transient Markov chain on a countable state space, \(\mu \) and \(\eta \) are measures satisfying (5.1) on this countable set, and we replace the assumption of finite support for \(\mu \) and \(\eta \) by the assumption that \(\text{supp}(\eta) \) is a transient set. Under these hypotheses, (5.1) is equivalent to \(\mu G(x) \geq \eta G(x) \) for all \(x \in S \), where \(G \) is the potential matrix.
Define $T(C)$ as $\inf\{n > 1 : X_n \in C}\}$, $D(C)$ as $\inf\{n \geq 0 : X_n \in C\}$, $T_\eta = T(\text{supp}(\eta))$, and $D_\eta = D(\text{supp}(\eta))$. Then $B_0 = \{x : p^x(T_\eta < \infty) < 1\}$ cannot be empty. In fact, since $P^\eta[D_\eta < \infty] = 1$ by (5.1), we have a more precise result.

(5.4) **Lemma.** If (5.1) holds, then $P^\eta[D(B_0) < \infty] = P^\eta[D(B_0) < \infty] = 1$.

We then have the following.

(5.5) **Theorem.** Suppose μ and η satisfy (5.1) and $\text{supp}(\eta)$ is transient. Then there exists a randomized quasi-terminal time T such that for all $x \in S$

$$\eta(x) = \int_0^1 p^\mu[x(T_u) = x]du.$$

Proof. Let C_1 be a finite subset of $\text{supp}(\eta) - B_0$ and let $A_1 = C_1 \cup B_0$.

Using the réduite as before it is easy to show that μ_1 dominates η_1 in the potential ordering, where μ_1 and η_1 are the balayages of μ and η onto A_1. By (5.4), $D(A_1) < \infty$ a.s. P^μ and P^η, so that μ_1 and η_1 are probabilities.

We will now show that the recursive procedure in Theorem (5.2) works in this context as well. In fact, inspection of that procedure shows we need only verify $\mu_1(x) \leq \eta_1(x)$ for all $x \in B_0$. That being so, the set B_0 will be carried intact in the iteration, and the same proof applies.

Define, then,

$$G_1 = \{x \in B_0 : \mu_1(x) > \eta_1(x)\},$$

$$G_2 = \{x \in B_0 : \mu_1(x) \leq \eta_1(x)\},$$

and

$$f(x) = p^x[D(C_1 \cup G_2) < \infty].$$

31
Then f is excessive, \(\int f d\eta_1 \leq \int f d\mu_1 \), and from that we can obtain

\[
\int (1 - f) d\mu_1 \leq \int (1 - f) d\eta_1 .
\]

Since \(\mu_1(x) > \eta_1(x) \) on \(G_1 \), on \(G_1 \) we have

\[
f(x) = P^x(T(C_1 \cup G_2) < \infty) = 1 .
\]

But for all \(x \in B_0 \), \(P^x(T \eta_1 < \infty) < 1 \) by definition, which leads us to conclude that \(G_1 \) is empty, and \(\mu_1(x) \leq \eta_1(x) \) everywhere on \(B_0 \).

We now proceed as follows. Let \((C_n : n \geq 1) \) be an increasing sequence of sets converging to \(\text{supp}(\eta) - B_0 \), let \(\eta_n \) be the balayage of \(\eta \) onto \(C_n \cup B_0 \), and let \(T_n \) be the randomized terminal times constructed in Theorem (5.2):

\[
P^U_{T_n}(x) = \frac{1}{0} P^U(x(T_n(u)) = x) du = \frac{1}{0} P^n(x(T_n(u)) = x) du = \eta_n(x) ,
\]

where \(\mu_n \) is the balayage of \(\mu \) onto \(C_n \cup B_0 \). Condition (iii) at the end of Section 4 applies, so we can extract a subsequence converging (BC) to a randomized quasi-terminal time \(T \) such that \(\eta_G(x) \geq P^{U_T}_n(x) \geq \eta_n G(x) \) for all \(n \). Since \(\eta_n(y) \geq \eta(y) \) on \(C_n \cup B_0 \), it follows that \(\eta_G = P^{U_T}_n \), and that forces \(\eta \) to equal \(P^{U_T}_n \).

We have relied upon the assumption that time and state space are countable, and it is reasonable to ask whether this assumption is indispensable. In fact it is not, and we shall indicate how Rost's original proof remains
valid with times restricted to $\tilde{T}_1(1)$, at least under the assumption of (4.14). The first thing to record is Meyer's observation that Baxter and Chacon's work can be extended. For the details we refer the reader to [11] and content ourselves here with stating the relevant result.

(5.7) Theorem. Suppose X is a standard, transient Markov process with potential kernel G. Then if (A_n) converges (BC) to A, for any bounded \mathcal{S}-measurable function f

$$P^\mu \left[\int_0^\infty Gf(X_t)A_n(\omega, dt) \right] + P^\mu \left[\int_0^\infty Gf(X_t)A(\omega, dt) \right].$$

Now suppose X is a standard, transient Markov process on $(\mathcal{S}, \mathcal{S})$ and that μ and η satisfy (1.1) in that context. Rost [12] approaches the problem of finding an S in $\tilde{T}_0(1)$ such that $\eta = P^\mu_S$ by first obtaining a "maximal" S such that P^μ_S dominates η in the potential ordering. That argument can be carried over to $\tilde{T}_1(1)$ by using sequential compactness, at least in the context of Proposition (4.14). The next step is to use the potentials $P^\mu_S G$ and ηG to construct a certain nonrandomized, terminal time T that is conjoined with S to form $S' = \tilde{S}_T$. With the sort of algebraic structure introduced in Section 3, Rost shows a convex combination of S and S' also dominates η and thus by maximality $P^\mu_S[T = 0] = 1$. The form of T coupled with an extension of Hunt's domination principle forces equality of $P^\mu_S G$ and ηG, completing the proof.

If one could show S' was also in $\tilde{T}_1(1)$, then the same arguments Rost used would apply, and we could assert that there is an S in $\tilde{T}_1(1)$ such that $\eta = P^\mu_S$, at least in the context of (4.14). We conclude by stating the missing fact as a lemma, omitting the proof, which is merely a matter of tracing out the definition.
5.8) Lemma. Suppose $T \in \mathcal{T}_1(1)$ and $S \in \mathcal{T}_1(1)$. Then $S' = S + T \circ \theta_S$ is in $\mathcal{T}_1(1)$.
References

[16] T. Watanabe, "Balayées of excessive measures and functions with respect to resolvents," ibid, 319-341.