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I. INTRODUCTION

The purpose of this study is to create and implement a graph theoretic

‘algorithm useful for the generation of a contour surface display. A Large

Contouring Tree Algorithm for the operations used to generate the contour
lines for a regularly subdivided grid is developed. The new afgorithm solves the
picture efficiency problems found in the literature [Refs. 1-8].

A. SOME DEFINITIONS

A contour defined surface display is a visual representation of a surface,
either wholly or partially, by the collectior of lines formed when that surface is
intersected by a set of parallel planes. The lines formed on each of those planes
are called Contours. A contour represents the set of points that belong to both
the surfac. and the particular intersecting plane.

A formal definition is that a Contour Surface Display is a visual display
that represents all points in a particular region of a three-space <x,y.z> which
satisfy the relation f{<x,y,z>)=k, where k is a constant known as the contour
level. The visual display created by this algorithm is the collection of lines that
belong to the intersection of both the set of points that satisfy the relation
f{<x,y,2>), and a set of regularly spaced parallel planes that pass through the
region of tkree-space for which the relation is defined.

For this study, the function f is approximated by a discrete, three-
dimensional grid created by sampling that function over the volume of interest.
The three-dimensional grid contains a value at each of its defined points that
corresponds to the physical quantity obtained from the function, i.e. the value
associated with point (zq,ye,z0) iS vy, Where f {z4.90.20)= vo. In order to minimize
confusion, we wili specify the value at a particular grid point (x,y.z) by a{x,y.z),
and will specify the value at a particular point (x.y.z) of the function by f(x.y.z).

The visual display of the contour surface is created from this three-
dimensional grid by taking two-dimensional slices of the grid, and constructing

the two-dimensional, planar contours for each slice at the designated contour




level. A slice of a three-dimensional grid is & planar, orthogonal, two-dimensional
grid assigned a constant coordinate in three-space, i.e. an x-y slice of a(<x,y,z>)
corresponds notationally to a(<x,y>) for a particular z coordinate. The two-
dimensional, planar contours created are the lines that satisfy the relation
a(<x,y,z>)=k for a particular planar coordinate, either x,y, or z, where again k is
the constant contour level. If we contour all x-y slices of three-dimensional grid at
contour level k, we will have a stack of parallel contours approximating the
contour surface, each planar set of contours corresponding to a particular z
coordinate. If we contour all x-z slices of the three dimensional grid, we again will
have a stack of parallel contours approximating the contour surface, each planar
set of contours corresponding to a particular y coordinate.Likewise, if we contour
all y-z slices of the three-dimensional grid, we will have a stack of parallel
contours approximating the contour surface, each planar set of contours
corresponding io a2 particular x coordinate.The assemblage of the three sets of
parallel, planar contours, i.e. the simultaneous display of all the contcurs created
for the x-y. x-z, and y-z planes of the three-dimensional grid, produces a
Chicken- Wire-Like contour surface display (see Figure 1.1). The three-
dimensional contour surface display described in this study is created by such a
procedure.

Given that the core of the contour surface display generation algorithm is the
two-dimensional slice of the three-dimensional grid, it is best that we start our
study with an understanding of the operations performed on that slice. Figure
1.2 shows a single, x-y, two-dimensional grid, with the contours drawn
correspending to contour level 50. Figure 1.3 shows that same two-dimensional
grid, with the contours drawn corresponding to contour level 100. The two-
dimensional grid of those figures is 4x5 grid; it has four values in the x direction.
and five values in the y direction. The goal of the two-dimensional contouring
operation for such a grid is the determination of where lines are drawn on that
grid given a fixed contuur level k. In order to develop an intuitive feel for that
determination mechanism, we restrict our focas to a swmallest portion of the
complete two-dimensional grid, the 2x2 subgrid. The 2x2 subgrid is defined to be

that portion of the two-dimensiorn.al grid hounded by four adjacent grid points. In




Figure 1.1
Contour Surface Display Generated from a Hydrogen Atom
Wavefunction Squared (3dxy orbital)
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the two-dimensional grid of Figure 1.2 and 1.3. the lower, lefthand 2x2 subgrid is
bouaded by points (1 1), (2,1), (2,2), and (1,2). The upper righthand 2x2 subgrid
of the same example is bounded by points (3,4), (4,4}, (4,5) and (3,5). This-core
algorithm has been presented in [Ref. 1] and is called the 2x2 Subgrid Algorithm.

B. A MODEL FOR CONTOURING THE 2X2 SUBGRID

The procedure used to generate the contours for a single 2x2 subgrid is the
core part of two-dimensional contouring. If we compute the contours
correspoading te contour ievel k for all 2x2 subgrids of a two-dimensional grid,
then we will have determined the complete set of contours for that grid. Note
that this does not make any statement as to the efficiency of that picture, i.e.
there can be duplicate copies of contours, particularly for contours drawn along
the border of a 2x2 subgrid. We briefly summarize the operations that comprise
that procedure in order to highlight potential probiems.

1. Contouring The 2x2 Subgrid

The procedure used to generate the contours for a particular 2x2 subgrid
first determines if any contours shculd be generated for that subgrid. That
determination is based upon whether any of the subgrid’s edges contain the
desired contour level k. An edge contains contour level k if the value of that
contour level is within the range of values defined by the grid points that
comprise the edge.

The next part of the contour generation procedure for the 2x2 subgrid is
the computation of the contour edge intersections for any subgrid edges shown to
contain the contour levei. The point of intersection is computed through linear
interpolation, using the grid values assigned to the endpoints of the edge and
their corresponding coordinates. The point of intersection represents the location
on the subgrid edge corresponding to the contour level k.

The determination of the connectivity necessary to form the appropriate
contours from the list of edge intersections is the next part of the contour
generation procedure. Before attempting to describe the procedure that assigns
those connectivities, we first examine the subgrid's contour crossing possibilities.
We accomplish that by looking at Figure 1.4. which shows all possible ways for

contours to cross or intersect a 2x2 subgrid.
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Figure 1.2
Example Contour Grid with Contours Drawn for Level 50
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In Figure 1.4, there are ten cases, each of which belongs to one of three
contour crossings categories:(1) single edge cr:xeing of the 2x2, (2) double edge
crossing of the 2x2, and (3) constant edge borders at the contour level for the
2x2. The ten cases are drawn according tc the following small set of rules for
contour crossings. (a) Contours are directed by the values associated with the
edges, and are directed towards edge intersections. (b) For non-equivalued edges,
if contours are indicated for a particular 2x2 subgrid, i.e. there are edges in the
subgrid that contain the contour level, there is oniy one point of intersection for
each edge of that subgrid. (c) Contours are continuous, i.e. if a contour enters a
2x2 subgrid, it must also leave that 2x2 subgrid. (d) Equivalued subgrid edges at
the contour level are special cases, and are drawn in their catirety. The only
exception to this rule is that constant valued 2x2 subgrids are not drawn. This is
by convention.

Once we have an idea of the types of contour crossings possible for a 2x2
subgrid, and once we have an outline of the rules used in composing those
possibilities, we can then address the problem of forming a procedure for
assigning connectivities to the computed edge intersections. Starting with the
simaplest cases of Figure 1.4. the equivalued edge cases. we clearly see that the
connectivity generation procedure for subgrids containing such edges at the
contour level is relatively simple once those equivalued edges have been detected.
If we find that we have a Constant 2z2, we do not need to issue any coordinates
or connectivities because by convention we have decided not to draw that case.
The other two possibilities. the Contour Along One Edge. or the Contour Along
Two Edges cases, are equally as simple. The only operation necessary once such
cases have been detected is to issue coordinates and connectivities corresponding
to the detected edges.

At first glance. given the edge intersections for a 2x2 subgrid. the
connectivity generation procedure for the single contour cases of Figure 1.4 seems
quite casy. It appears as if the only operation that has to be done is to issue
coordinates and connectivities corresponding to the straight line between the two
points of edge intersection. Such a procedure works well if we know that we have

a single contour crossing the subgrid. The only single contour crossing case for
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Single Contour Crossiags

Case 1: Contour Tangent
to the 2 x 2

Expected Picture:
Drawpoint a

Czse 2: One Contour

Through Adjacent Edges
Expected Picture:
Setpoint a
Drawto b

\\\ Drawto ¢
AN
SN

Case 3: One Contour

Through Parallel Edges

Expected Picture:

. Setpoint a

c Drawto b
Drawto c¢

\#

Case 4: Contour Across
The Diagonal

//Expected Picture:
Setpoint a
Drawto b

——J Drawto ¢

2
// Figure 1.3
All Possible Contour Crossings of a 2 x 2 Subgrid
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Double Contour Crossings

Case 5: Two Contours

Tangent to the 2 x 2

Expected Picture:
Drawpoint a
Drawpoint b

Case 6: One Contour Tangent,
One Contour through Adjacent Edges
Expected Picture:
Setpoint a
‘ Drawto b
Drawto ¢
b | Drawpoint d

SN
. Case 7: Two Contours

Through Adjacent Edges

. N\ Expected Picture:
Setpoint a
Drawto b

\\\ Drawto c
Kb Setpoint d
\\\ Drawto e

a\\ Drawto f

v

Figure 1.4b (continued)
All Possible Contour Crossings of a 2 x 2 Subgrid
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Bquivalued Edges at the Contcur Level

Case 8: Contour Along

One Edge
Expected Picture:
Setpoint a
Drawto b

a b

Case 9: Contour Along

Two Edges
Expected Picture:
Setpoint a
Drawto b
Setpoint b
Drawto c

a b

Case 10: Constant 2 x 2

Expected Picture:
None.

Figure 1.4c (coatinued)
All Possible Contour Crossings of a 2 x 2 Subgrid
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the Contowr Tangent To The 22 case. which is an even simpler case for connectivity
generation.

It is not until we consider the iwo contours crossing the subgrid cases of Figure
1.4 that we realize the potential for problems with the above single contour crossing
procedure. A procedure based only on connecting edge intersections cannot differentiate
between cases such as the Two Contosrs Tangent To The 222 and the Contour Across
The Diagonal cases. There are other similar connectivity generation problems evident for
the two contours crossing cases. The Two Contowrs Throsgh Adjacent Edges case has
four edge intersections. For that case. information needs to be provided to the
connectivity generation orocedure that determines which of three possible intersection
pairs should be connected.

Now that we have established a background for the connectivity problem for
contour crossing of the 2x2 subgrid. we can detail the procedure used to solve that
problem. Before we describe that algorithm. we first briefly review some of the problems

cited in the literature for two-dimensional contouring.

C. TWO-DIMEXNSIONAL CONTOURING PROBLEMS

The literature on two-dimensional contouring. and the use of two-dimensional
contouring for creating a contour surface display is extensive, encompassing a number of
fields iRefs. 2-5i, Refs. 7-17. A thorough review of the historical development of two-
dimensinnal contouring algorithms and the properties of those algorithms is found in
Ref. 15.. Many of the contouring algorithms presented in that study are flawed either in
that they generate an incorrect picture for some contour crossing cases. or in that they
require special handling for "problem™ 2x2 subgrids. Some of the typical algorithm
problems detailed are identical to those described above, i.e. they concern degenerate
points, where there are ambiguities as to which points to connect. In all of tae
algorithms reviewed. no attempt is made to fit the special cases inside of a general
algorithmic framework. This is quite evident for the subgrid having a saddle point. That
contour crossing case is handled by selecting the two lines "for which the direction
changes the least” when compared against neighboring subgrids 'Ref. 15. Again. this
requires special algorithmic resolution. None of the papers attempts to build a general
framework useful for the generation of the coordinates and drawing instructions for ary
2x2 subgrid. The following section describes both a data structure. the contouring tree.
and an algorithm for using that data structure. that provide both a coherent framework
for 2x2 subgrid contouring. and a comprehensive resolution to the 2x2 subgrid crossing

problem.

17




30 J 80
(2,3) (3,3)
(4) _ (3)
A 70
(2.5,2.5)
(5)
P
150 150 40
(2,2) 5 (3,2)
(1) (2,2) (2)
2
40 70 30

(3,2) (2.5,2.5) (2,3)

1 0 \\ o

40 80 30
(3,2) (3,3) 2,3)
o o o

40 30
(3,2) (2,3)
o 1

Figure 1.5a

Sample Contouring Tree for a 2 x 2 Subgrid
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Tree Rooted At Value 150.00

Level 50

X Y | 2

2.9091 | 2.0000 | 1.0000
2.8383 | 2.16687 1.0000
S.0000 | 2.5000 1.00C0
. 2.6667 | 3.0000 | 1.0000
2.2500 | 2.7500 ! 1.0000
2.0000 | 2.8333 | 1.0000

olo|~|oloI=ID

Tree Rooted At Value 150.00 |
Level 100
X Y z
2.4545 | 2.0000 | 1.0000
2.3125 | 2.3125 1.00060
2.0000 | 2.4167 | 1.0000

oic-—U

Column D is the drawing command, ie. 1 = SETPOINT, ¢ = DRAWTO.

Figure 1.5b

Coordinates Generated for Sample 2x2 Subgrid
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150 40
(2,2) : (3,2)
(4) (3)
Y 82.5
(2.5,1.5)
(5)
-
50 90
(2,1) 3,1)
(1) (2)
90 150
(3,1) (2 2)
sz‘tj\\\\ /////,82 5
3 2) (2. 5 1.5) (2 1) (2 1) (2. 5 1.5) (3 2)
(3,2) (2,1) (2,1) (3,2)
0 1 0 1
Figure 1.7a

Sample Contouring Tree for a 2 x 2 Subgrid with Saddle Point
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First Tree Rooted At Value 80.00
Level 50
X Y | 2
$.0000 | 1.8000 | 1.0000
2.8824 1.8824 1.0000
2.00r" 1.000¢ 1.0000
2.0000 1.0000 1.0000

Ol D

First Tree Rooted At Value 90.00
Level 100

X Y|[z2!D

| no coordinates generated

| Second Tree Rooted At Value 150.00
Level 50
X Y 3 D
2.0000 1.0000 1.0000 1
2.0000 1.0000 1.0000 0
2.8824 1.8824 1.0000 1
2.9091 2.0000 1.0000 (1]

Second Tree Rooted At Value 150.00
Level 100
X Y z D
2.0000 1.5000 1.0000 1
23704 1.6296 1.0000 0
&45_45. 2.0000 1.0000 (4]

Column D is the drawing command, ie. 1 = SETPOINT, 0 = DRAWTO.

WL

v,
*

el

Figure 1.7b

Coordinates Generated for Sample 2 x 2 Subgrid with Saddle Poirt
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D. THE CONTOURING TREE

A contouring tree is a data structure that represents the edge value
relationships of a 2x2 subgrid in a form that permits.the rapid generation of the
contour display for any contour level contained within the represented subgria
(see Figure 1.5), The formulation of the contouring tree is based upon the
observation that for any two-dimensional grid a continuous series of contour
displays can be created for contour levels in the range of the minimum and
maximum grid values (see Figure 1.6, and [Refs. 1-5].

The use of the contouring tree is outlined best with an example of a small
two-dimensional grid. Figures 1.2 and 1.3 depict the contours generated for
contour level 50 and 100. The contours at level 10Q are closed contours, forming
simple, connected loops. The contours at level 50 are open contours. Figures 1.5
and 1.7 present the contouring trees created for two 2x2 subgrids of the 4x5
plane. The edges of the contouring trees correspond to the directed, downhill
edges inscribed on the 2x2 subgrids of the figures. There are eight directed edges
on each subgrid, four for the boundary edges and four for the edges to the
subgrid’s center point. The value used for the center point is the average of the
four values comprising the corners of the 2x2 subgrid. (A reference as to the
usefulness cf the center point average value in generating smooth contours is
found in [Ref. 15].) The edges of the contouring trees are ordered, maintaining
the same counterclockwise ordering as in the original subgrids. A "1" under a
node indicates that a Setpoint display command should be generated for any
coordinate that is created along an edge that has that connectivity on its lower
valued node. A "0" indicates a Drawto display commund in a similar fashion
and a "2" indicates a Drawpoint.

Display generation from a contouring tree is accomplished by performing a
pre-order traversal of that contouring tree, producing a coordinate and drawing
instruction whenever the desired contour ievel is fcand to be within the range of
an edge of the contouring tree. A pre-order traversal visits the roct. the left
subtree, the middle subtree, and then the right subtree. An edge’s range is

defined to be the set of values between those associated with the nodes on either
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end of the edge. More precisely, we say a contour level is within an cdge if the
following condition holds:
lower_node’s_value <= contour_level < higher node’s_value

For example, in Figure 1.5a at contour level 100, we issue coc;rdinates and
drawing instructions for the edges (2,2)-(3,2), {2,2)-(2.5,2.5), and (2,2)-(2,3). The
drawing instruction issued for each of these edges is again the one associated with
the lower valued node of the edge. The coordinate for each of these edges is
generated by a linear interpolation of the edge’s endpoint coordinates according
to the decrease in contour level along the edge. The coordinates and drawing
instructions generated for the contouring trees of Figures 1.5a and 1.7a are
represented in Figures 1.5b and 1.7b.

There are some subtleties not evideat from the above that are best detailed
using a pseudocode description of the traversal algorithm. Figure 1.8 depicts the
traversal procedure for the contouring tree assuming a particular data
organization. The notation is quite standard. The pointers to the descendent
nodes of NODE are LEFT(NODE), MIDDLE(NODE), and RIGHT(NODE). For
each node of the contouring tree, there are three pieces of information: the value
associated with the node, VALUE(NODE), the coordinate associated with the
node. XYZ(NODE),and the connectivity associated with the node,
CONN(NOBDE).

The generation of coordinates and drawing instructions from a contouring
tree bepmns with routine CONTOUR SUBGRID of Figure 1.8. That routine
receives a pointer to the root node of the contouring tree. It then starts the
traversal by calling routine VISIT with that root node. Routine VISIT checks to
see if the edge defined by the passed in node and that node’s ancestor, NODE
and ANCESTOR. contains the contour level. If the edge does contain the contour
level. the cdge intersection coordinate is computed using linear interpolation and
issued to the display along with the connectivity associated with that node.
COXNN(NODE). If we issue a coordinate and connectivity for a node. we need to
check the subtree under that node for equivalued edges. If an equivalued edge at
the contour level is found, a coordinate and drawing instruction pair are issued

for that equivalued edge (routine VISIT SUBTREE). Once a coordinate and
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Contouring Tree Description
Pointers to descendent nodes:
LEFT{NODE

MIDDLE(NODE)
RIGHT(NODE)

Values associated with each node:

VALUE l\ODE ): grid value

XY"QI . coordinate of that grid value.
CONN(NODE): drawing instruction.
procedure CONTOUR_SUBGRID(ROOT)

VISIT(ROOT.ROOT) #begin the traversal of the pointed at
contouring tree.

end.

Procedure VISIT(NODE . ANCESTOR)
if (NODE == NULL)

return

if((VALUE(NODE) <= CONTOUR_LEVEL < VALUE(ANCESTOR))
{(\'ALUE(NODE)==CONTOUR _LEVEL AND NODE==ANCESTOR))

#Edge contains the coatour level.

Issue a coordinate cnmputed via linear interpolation
along the edge.

Issue CONN(NODE) as the drawing instruction.

Figure 1.8

Pseadocode of the Traversal Algorithm for the Contouring Tree
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Check subtrees of this node for eguivalued edges.
ISIT SUBTREE(LEFT NODEB. ODE
VISIT SUBTREEMIDDLE(NODE),NODE)
RIGHT(NODE),NODE)

VISIT"SUBTREE
return # no need to exaraine the subtree further.

} # endif coordinates were generated for 2n edge.

VISIT(LEPT(NODE).NODE) £ visit left subtree.
VISITIMIDDLE(NODE) NODE) £ visit middle subtree.
VISIT(RIGHT(NODE),NODE) # visit right subtree.

return

end

Procedure VISIT SUBTREE(SUBNODE,SUBANCESTOR)
if(SUBNODE == NULL)
[§

return

i{f(VALUE(SUBNODE) == CONTOUR LEVEL)

Issue coordinates for the e&uivalued edge.
Setpoint on XYZ(SUBANCESTOR).
Drawto XYZ(SUBNODE).

}

VISIT SUBTR.EE{LEFT SUBNODE SUBNODE}:W)

VISIT"SUBTREE(MIDDLE(SUBNODE).SUBNO
VISIT SUBTREE(RIGHT(SUBNODE), xUBNODE)

return

end

L,

el

L |
NSRS

Figure 1.8 (continued)

Pseudocode of the Traversal Algorithm for the Contouring Tree
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drawing instruction pair have been issued for an edge, and once the subtree
beneath that edge has been investigated for equivalued edges, further traversal of
that subtree is terminated. If an edge is found not to contain the contour level,
the traversal continues as depicted at the bottom of routine VISIT.

The pre-order traversal procedure described above generutes the coordinates
and drawing instructions for the part of the 2x2 subgrid the contouring tree
represents. To generate the coordinates for a larger two-dimensional grid, we
generate the contouring trees for each 2x2 subgrid of that grid and then apply
the traversal procedure to those trees. We note here that no ordering is required

in the generation of coordinates for the 2x2 subgrids.

E. PROBLEMS WITH THE 2X2 SUBGRID ALGORITHM

Having presented the use of the contouring tree, we must look back and
discuss its capabilities and limitations. The initial impression is that the
contouring tree provides a nice, uniform framework for generating the coordinates
and drawing instructions appropriate to the 2x2 subgrid. The algcrithm also
takes care of the difficult two contours crossing case for the 2x2 subgrid. The
algorithm correctly handles subgrids containing equivalued lines at the contour
level. The algorithm aiso handles subgrids containing a single grid point at the
contour level.

The core problems with this algorithm all concern issues of picture efficiency.
Since the display gene-ated for each 2x2 subgrid is generated independently of
any neighboring 2x2 subgrids, equivalued lines at the contour level on the border
of a subgrid will be duplicated. A similar problem occurs for subgrid corner
values that equal the contour level. If we display either of the above cases on a
calligraphic display device, we will see a bright line for the equivalued edge. and
a bright point for the grid value equal to the contour level. Another problem. also
due to the independent computation of each 2x2 subgrid. is that no ordering is
provided for coordinates that come out of this algorithm. For calligraphic
dispiays. this is a problem because for such de—-ices electron beam movement is
expensive. A contour display that causes the maximum movement of the electron
beam every other subgrid greatly decreases the vector capability of the

calligraphic display device.
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II. TAE NEW LARGE CONTOURING TREE ALGORITHM

The 2x2 Subgrid Algorithm builds a general framework useful for the
generation of the coordinates and drawing instructions for any 2x2 subgrid. But
as described above, there is a picture efficie..:v problem with this algorithm, i.e.
edge duplication and vector ordering problems. We have developed a new
algorithm, called the Large Contouring Tree Algorithm, that solves these

problems.

A. OVERVIEW OF THE NEW ALGORITHM

The new algorithm generates contours for two-dimensional, rectangular grids,
i.e. grids composed of multiple 2x2 subgrids. In this chapter, we use a 3x3 grid
for our examples of the component parts of the algorithm (see Figure 2.1). This
grid is a portion of the grid shown in Figure 1.2.

The input data to the Large Contouring Tree Algorithm is the size of the
grid, the density values in the grid, and the contour level. The output of the
algorithm is the set of the coordinates and drawing instructions representing the
chosea contour level. Figure 2.2 shows the contours generated for the sample
subgrid of Figure 2.1 for contour levels 50 and 100.

To generate contours, the Large Contouring Tree Algorithm goes through the
following steps. The first step of the algorithm is to calculate the density values
of the center points of each 2x2 subgrid of the larger grid. (A reference as to the
usefulness of the center point of average value in generating smooth contours is
found in [Ref. 15].) Figure 2.3 shows the sample grid with the calculated average
density values for the center points on the grid.

The second step is the creation of the directed graph from the grid using the
density values. We create the directed graph by assigning a direction to each
edge of :he grid based upon the values assigned to each node of the grid.

Equivalued edges are assigned an arbitrary direction.
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Figure 2.2b

The Contours Generated For The Sample Grid At Contour Level 100
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The next step is the crestion of the in-degree matrix of the directed graph.
The in-degree matrix of a directed grapn is defined in [Ref. 18]. We provide more
detail about in-degree matrix creation in the following section.

We create a contouring tree for each node of the in-degree matrir that hzs
the property in-degree(i,i)=0, i.e. for each node lacking incoming edges.
Contouring tree creation is accomplished in a manner similar to that used for the
2x2 subgrid, i.e. we construct directed trees from the information contained in
the in-degree matrix, making sure that the order of edge attachment in the tree
corresponds to the order in the directed graph. The difference between the 2x2
subgrid algorithm and the large contouring tree algorithm is that the tree
construction process of the large contouring tree algorithm is not limited to a
single 2::2 subgrid but rather is allowed to extend to multiple subgrids.

After contouring tree creation for the two-dimensional grid, the next step in
the tree construction process is to associate drawing commands with each of the
trees’ nodes. Drawing comrnands are placed in the contouring tree to indicate
when a line enters the region represented by the contouring tree either from a
neighboring subgrid, or from a location off of the grid. We insert the drawing
commands by way of a pre-order traversal of the contouring tree, placing a
setpoint command on each node that is a new lowest value for the tree. There
are other more detailed considerations with respect to drawing command
placement. These are discussed below.

Once the contouring tree for a two-dimensional grid has been constructed.
and once the drawing commands have been placed into that structure, the
contouring tree is ready for use in generating a contcur display. Display
generation is accomplished by performing a pre-order traversal of the contouring
tree. producing a coordinate and drawing instruction whenever the desired
contour level is foun: to be within the range of on edge of the contouring tree. If
an equivalued edge at the contour level is found. a coordinate and drawing

instruction pair are issued for that equivalued edge.
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B. CONTOURING TREE CREATION

Contouring tree construction is best understood if we describe that procedure
in graph theoretic terms. The first step in that procedure is to create all of the
nodes that take part in the directed graph. This set of nodes consists of all grid
crossing points and the set of nodes corresponding to the center points of average
value for each individual 2x2.subgrid of the larger two-dimensional grid. Figure
2.3 shows the sample 3x3 grid with the center points of average value labeled.

Once we have the collection of nodes for the directed graph, we then need to
assign directed edges between those nodes. Edges are directed from nodes of high
value towards nodes of low value. The edge connections between each node
correspond to their connection in the original two-dimensional grid. Equivalued
edges are assigned directions arbitrarily. For example, the grid in Figure 2.3 has
thirteen nodes in its directed graph, counting the grid crossing nodes and the
center points of average value. Figure 2.4 shows this same grid with arrowheads
indicating edge directions. .

Once we have the directed graph corresponding to the two-dimensional grid.
the question then becomes, how do we obtain the contouring tree, or trees from
the directed graph? We can put this question in terms of graph theory if we
notice that a contouring tree ic a directed tree. The problem then becomes one of
obtzining the directed tree, or trees, from the directed graph such that the order
of edge attachment in the tree corresponds to the order in the directed graph.
From graph theory, we have the requirement that a directed tree has the in-
degree of its root uode equal to zero, and the in-degree of every other node equal
to one [Rof. 18]. To examine the in-degree of eacii node of the directed graph, we
must construct the in-degree matrix D for that graph. The in-degree matrix D of
a directed graph G is defined in [Ref. 18] as :

BiY = el o
v in G From 1oy
(i.e., -1 for all our graphs).

Figure 2.6 shows the in-degree matrix for the directed graph of Figure 2.4.

The node numbering scheme of Figure 2.5 is used for the in-degree matrix of

Figure 2.6. From Figure 2.6. we note that the roots of the contouring trees are
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The Directed Graph Created From The Sample Grid
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Figure 2.5
The Numbers On The Directed Graph Represent The Node Number
Associated With The Node In The In-Degree Matrix
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recognizable from the in-degree matrix as D(i,i)=0. This matches the first part of
the directed tree requirement. For multiple roots (in-degree(vj=0 for more than
one node), we create as many trees as the number of roots in the in-degree
matrix. For each diagonal ertry D(i,i)=n, where n > 1, we create n-1 duplicates
of that node, for a total of n, taking care to copy the appropriate values,
coordinates, etc. We then reassign the original edges that went to the single
node, such that each edge receives its own copy of the duplicated node.

1. In-Degree Matrix Creation

The first problem we encounter once we have a two-dimensional, regular
grid, and its ccnter nodes of average value, is how to create the in-degree matrix.
We solve that problem by enumerating all possible configurations of edges that
could form such a grid. We call each of these configurations, or cases, situations.
For example, Situation 4 is the name of the case for the node in the center of a
2x2 subgrid. We locate and classify all of the nodes and edges of the original grid
into one of ten possible situations. We have a number/name and characteristic
assigned to each situation. Some situations are comprised of only one node in the
grid, and some include multiple nodes. Each node in the grid belongs to one of
these situations. For example, the rode in the upper righthand corner of Fijure
2.7 is a Situation 10 grouping, i.e. it is comprised of the upper righthand node of
the two-dimensional, grid. The complete set of situations are defined as follows.

Situation 1 is the name of the case for the node in the lower lefthand
corner of the grid. Situation 3 is the name of the case for the node in the lower
righthand corner of the grid. Situation 8 is the name of the case for the node in
the upper lefthand corner, and Situation 10 is the name of the case for the node
in the upper rig..thand corner. Situation 4 is the name of the case for the node in
the center of a 2x2 subgrid. Figure 2.7 shows a 2x2 subgrid which is a
combination of situations 1,3.4,8, and 10.

All nodes on the perimeter grid line with the lowest valued Y coordinate.
except for the first and last nodes, are named Situation 2 nodes. All nodes on the
perimeter grid line with the highest valued Y coordinate, except for the first and
last nodes, are named Situation 9 nodes. All nodes on the perimeter grid line with

the lowest valued X coordinate, except for the first and last nodes. are named
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Figure 2.6
Sample In-Degree Matrix For The Disected Graph Of Figure 2.3
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Figure 2.7
Grid Nodes .Are Narmed By Their Situation Number

Situation 5 nodes. All nodes on the perimeter grid line with the highest valued X
coordinate. except for the first and last nodes, are named Situation 7 nodes.
Non-perimeter nodes that occur at crossing points of the two-dimensional grid,
i.e. non-center point of average value nodes, are named Situation 6 nodes. Frgure
2.8 shows all ten possible grid node name situations. Figure 2.9 is a sumnmary of
those situations.

Once we have a mechanism for naming each of the possible node
configurations for a two-dimensional grid, we then need to provide a node
visitation naming scheme that aliows the association of a node in the two-
dimensional grid with its record in the in-degree matrix. We call this naming
scheme the Visiting Node Order. The numnbers on Figure 2.10 show this
visiting node order for the example grid. We begin by visiting the first node (1.1).

then the second node (2.1), and then the other nodes respectively (2.2). (1.2).
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Figure 2.8
All Ten Possible Grid Node Name Situations

(1.5.1.3). etc. What we mean here is that the first node (1.1) is associated with
the node number 1 in the in-degree matrix. The second node (2.1) in the grid is
associated with the node number 2 in the in-degree matrix. The third node (2.2)
1s associated with the node number 3 in the in-degree matrix. and so on.
According to our rule. we visit every node in the 2x2 subgrid before going oato
the next 2x2 subgrid. The same rule is then applied 1o the next 2x2 subgrid.
Already visited nodes in the 2x2 subgrid are <kipped. The rest of them are visited
in counterclockwise order. If we cxhaust all 2x2 subgrids in the X direction. then
the next 2x2 subgrid to be visited is on top of the 2x2 subgrid which we visited
first. Let’s say that we are on the node number 8 of Figure 2.10. The next 2x2
subgrid to be visited is bounded by nodes (1.2). (2.2). (2.3). and (1.3). According
to our rule. the first node we should visit is nods {1.2). then node (2.2). But these

nodes have been already visited. Given the rule above, we <kip these nodes and
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The Definition Of Situations

SITUATION 1 is the name of the case for the node in the lower lefthand

corner of the griG.

SITUATION 2 is the name of the case for all nodes on the perimeter grid line

with the lowest valued Y ~oordinate, except for the first and last nodes.

SITUATION 8 is the name of the case for the node in the lower righthand

corner of the grid.

SITUATION 4 is the name of the case for the node in the center of a 2x2
subgrid.

SITUATION 5 is the name of the case for all nodes on the periineter grid line

with tke lowest valued X coordinate. except for the first and last nodes.

SITUATION 6 is the name of the case for non-perimeter nodes that occur at

crossing points of tue two-dimensional grid.

SITUATION 7 is the name of the case for all nodes on the perimeter grid line

with the highest valued X coordinate. except for the first and last nodes.

SITUATION 8 is the name of the case for the node in the upper lefthand

corner of the grid.

SITUATION 9 is the nam# of the case for all nodes on the perimeter grid line

with the highest valued Y coordinate. except for the first and last nodes.
SITUATION 10 is the name of the case for the node in the upper lefthand
corner of the grid.

Figure 2.9

Summary of the Ten Possible Grid Node Name Situations
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Figure 2.10
The Visiting Node Order Of The Sample Grid
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then visit nodes (2.3). (1.3). and (1.5.2.5) respectively. The procedure is to first

exhaust all 2x2 subgrids in the X direction. then 70 to the 2x2 subgrid (if there is

<

oo .. .

R one) on top of the first visited 2x2 subgrid. and then apply the same rule on the
h X

[:-: following 2x2 <ubgrids in the X direction. This process is repeated until there are
€ -3

no more 2x2 subgrids to be visited in the zrid.

Visiting node order is the order in which the nodes of the two-

J i3
oSl

dimensional grid and center points of average value are visited during in-degree
matrix creation. The in-degree matrix procedure works in the following fashion as

it steps through cach node. First. the situation name for the node i< determined.
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The second step is to call a procedure that examines the edges attached to the
node. The procedure called is selected cn the busis of the situation name for the
node. Figure 2.11 shows the pseudocode of the .in-degree matrix creation
procedure. Figure 2.6 holds the in-degree matrix for the directed graph of Figure
2.4.
2. Contouring Tree Construction

In the first chapter, we described the contouring algorithm for the 2x2

subgrid. The difference between the 2x2 subgrid .lgorithm and the large

coniouring tree algorithm is that the tree construction process of the large

contouring tree algorithm is not limit=d to a single 2x2 subgrid but rather is
allowed to extend to multiple subgrids. In this chapter, we show how to create
the large contouring trees from the in-degree matrix. This creation operation is a
"tree growth" process. We build each contruring tree by adding edges
successively, starting at the root, and then recursively to each descer.dent node.

Above, we created the directed graph from the given grid and then built
the in-degree maszrix from this directed grapn. The in-degree matrix and the
directed graph provide the information necessary to create the contouring tree.
The in-degree matrix reflects the direction cf the edges in the directed graph. We
use this feature of the in-degree matrix dvring the tree growth process. Before we
describe the tree growth process, it is necessary to provide some background on
how edges are related to the nodes of the grid.

As mentioned above, each node in the grid can be characterized as
belonging to one of ten situations. The number of edges in each of the ten
situations is constant. For example, situation 1 has three edges, 2 has five edges,
etc. This constancy allows the creation of an edge list for each situation. This. in
turn. allows the assignment of a number-name to each edge. The numbers
assigned each edger represents the order used for edge addition in the tree growth
process. This edze ordering is maintained in the contouring tree. Given this
background. we then exawmin in detaill contouring tree creation from the in-
degree matrix.

The alre=-lm of Figure 2.13 outlines the general procedure for

contouring tree construction. The first part of this prucedure is a loop that starts
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NOTE: The range of MidNum is the set of visiting node order numbers on the
node in the center of each 2x2 subgrid. The range of Xnum is the set of visiting
node order numbers for the rest of the nodes in the grid.

Procedure CREATE IN DEGREE MATRIX (XMAX,YMAX)
# XMAX and YMAX are the maximum values of X and Y coordinate

MidNum <-- 5
XNum <-1

For X=1 to XMAX
For Y=1 to YMAX

If (X=1) AND (Y=1 )
EVALUATE SITUATION 1 (X,Y.MidNum,XNum)

Else If (X < XMAX) AND (¥ = 1)
EVALUATE SITUATION 2 (X.Y.MidNum XNum)

Else If (X = XMAX) AND (¥ = 1
EVALUATE SITUATION 3 (X,Y,MidNum XNum)

Else If ( X > XMAX )
EVALUATE SITUATION 4 (X,Y MidNum XN .x)

Else If (X = 1) AND NOT (Y = YMAX)
EVALUATE SITUATION 5 (X,Y,MidNum XNum)

Else If NOT (X = XMAX) OR (¥ ~ YMAX))
EVALUATE SITUATION 6 (X,Y,MidNum, XNum)

Else If (X = XMAX) AND NOT (Y = YMAX)
EVALUATE SITUATION 7 (X,Y,MidNum,XNum)

Else If (X = 1) AND (Y = YMAX
EVALUATE SITUATION 8§ (X,Y,MidNum.XNum)

Else If (X = XMAX) AND (Y = YMAX)
EVALUATE SITUATION 9 (X,Y . MidNum. XNum)

Else EVALUATE SITUATION 10 (X.Y MidNum.XNum)}

Endfor
} $ }En#dfor

- Find the_ diagonal values by counting the minus one values of the
column in the in-degree matrix.

End  # procedure

Figure 2.11
Pseudocode Of Creation Of The In_Degree Matrix
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Procedure EVALUATE SITUATION 1 (X,Y.MidNum.XNum)

# Check all the edges connected to the node

# Check edge number 1 '

If (NodeDnsty(X.Y) => NodeDnsty(X+1,Y))
In-Degree(X.X+1) <~ -1

else In-Degree(X+1.X) <- -1

# Check edge number 2

If (NodeDnsty ‘X.Y) => NodeDnsty(XMAX+1,Y))
In-Degree(X,MidNum) <-- -1

else in-Degree(MidNum,X) <-- -1

# Check edgze number 3

If (NodeDasty(X,Y) => NodeDnsty(X,Y+1))
In-Degree(X ,MidNum-1) <- -1

else In-Degree(MidNum-1,X) <-- -1

# Increments of MidNum and XNum

XNum <— XNum + 1
I ( XMAX <> 2)
M:idNum <—- MidNum + 3
end # Procednre

Procedure EVALUATE SITUATION <Number> (X.Y MidNum.XNum)

- Check all the edges connected to the node in situation<number>.
- Put the results into the In_Degree Matrix. using "MidNum" and "XNum"
- Issue the next value of "MidNum"

- Issue the next value of "XNum"

End # Procedure

Figure 2.11 (continued)
Pseudocode Of Creation Of The In_Degree Matrix
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Figure 2.12

Counterclockwise Edge Order For Bach Situation

46




Situation 8 Situation 7

. 1
2
3:::::::::%
4 S5
Situation 9

Situation 8 1 S
—_— 3

\ . 3 \

1 2

Situation 10

N
-

3

Figure 2.12 (Continued)
Counterclockwise Edge Order For Each Situation
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Procedure CONSTRUCT _LARGE_CONTOURING_TREE ( MAX SIZE )
# MAX SIZE is the maximum node number of the in-degree matrix
for i =1 to MAX SIZE

?'In_Degree(i.i) =0 # zero value on diagonal means the root node

Growth Node <-- Node(i)
Repeat
{

- Find which sxtuauon th owth node belon s

- Put_the edges on the ge list correspon to the
growth node into clockwise order (see Figure 2 1

- Push the new ordered edge list onto the stack.

Repeat

{

- Pop one edge from the top of the stack.

}

Until ( Edge direction is outwaglRfrom the growth node )
( Stack is empty )

If ( Stack is NOT empty )

{

- The node on the end of the outward edge becomes
the new growth node.
- Link the new growth node to the contouring tree.
} # Endif Stack is not empty
}

Until ( Stack is empty )

- Put the root node of the tree constructed onto the tree head
pointer list.

} # Endif In_Degree(i.i)=0
} # Endfor Fori =1 to MAX SIZE

End # Procedure

[

X
»
‘
-
.

S
a
A
.
)
)

Figure 2.13
Pseudocode for Constructing the Contouring Tree from the in-degree Matrix

By
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with a test for nodes whose in-degree is zero. When the algorithm finds such a
node, it determines its situation number. The algorithm then places the edges
corresponding to that situation onto a stack in clockwise, or reverse numerical,
order (see Figure 2.12).

Once the situation’s edges are on the stack, the algorithm then takes one
edge at a time from the stack and determines if the edge is directed away from
the growth node. If the edge is directed away, the node on the other end of the
edge becomes the new growth node. The new growth node is linked to the trece. If
the edge is not directed away from the growth node, i.e. it is directed towards the
giowth node, that edge is discarded. Tlie next edge on the stack is then examined
in a similar manner. This continues until either an edge directed away is found,
or until the stack is emptied. If a directed away edge is found, a new growth node
is established and the process repeats (see Figure 2.13). This process continues
until all diagonal entries of the in-degree matrix have been examined, and all
edges have been a-lded to the contouring trees.

The above section outhnes the main steps of the contouring tree growth
process. The following sections explain each of those steps in detail.

a. Procedure Search Path

When the contouring algorithm finds a root node in the in-degree
matrix (as shown at the top of Figure 2.13), procedure SearchPath i: called (see
Figure 2.14). This procedure is the one that searches through all paths from the
root node to the other nodes of the directed graph. During this search, the
procedure links to the contouring tree any previously unvisited nodes that pass
the growth node eligibility test. The procedure finishes when all reachable nodes
have been visited A node is reachable if it can be visited from the root by way of
a directed path through previously-unvisited nodes.

During the first call cf procedure SearchPath, a node corresponding
to the root node of the contouring tree is created. Procedure
EdgesInSitu<Number> is then called (see Figure 2.15). The procedure called
is determined by the situation number of the root node. Procedure
EdgesInSitu<Number> has the list of edges corresponding to the situation’s

number. These edges are processed by procedure EdgesInSitu< Number> by way
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Some descriptions

NODE(RowNum): the node defined ’%’ "RowNum" in the in-degree matrix
NODE(Coord): ine node defined by "Coord" in the in-degree matrix

Deter: takes the zero value (0) for the root node otherwise. the one value (1)
EdgeNum: the edge number used to visit the growth node

Exxstwaﬁy: true for the outward edge, otherwise false

FirstCall: true if the %rocedure is in first call. otherwise false

LastEdge: true if the last edge on the edge list is being checked. otherwise false

Procedure SearchPath (Situation.Coord.RowNum.EdgeNum)

i If there is a path from the node defined by "RowNum" to the node
defined by NODE(Coord) in the in-degree matrix.

If (In-Degree(RowNum,NODE(Coord)) == -1)

¢ # Reset the growth node to be NODE(Coord).

RowNum <-- NODE(Coord)
ExistWay <-- True

}
Else ExistWay <- False

i If the growth node has already been visited and the edge is
directed away from the growth node.

If (( NODE(RowNum) has already been visited ) AND ( ExistWay ))
{

- Link the NODE(RowNum) to the coatouring tree
- Link the one or two edfge(s) immediately adjacent to the edge
defined by EdgeNum (see Figure 2.17)

Else

- Link the new growth node to the contourinﬁ tree. depending upon
;hfs)values of "FirstCall". "LastEdge" and "LxistWay" (see Figure

If (ExistWay ) OR ( FirstCali)

- Issue that the node defined by NODE(Coord) has been visited

- Assign zero value to "Deter" if the growth node is the root
node. otherwise one value (1) is assigned.

- Find the edge number of the edge used to visit the growth node
and then assign that number to "EdgeNum"

Figure 2.14
Pseudocode Of Procedure Search Path

50




i Push all the edges on_the edge list of situativn 1 onto a stack
by calling procedure EdgesInSitu_1

If ( Situation == 1)
EdgesInSitu_1(Deter.EdgeNum.Coord.RowNum)

i Push all the edges on_the edge list of situation 2 onto a stack
by calling procedure EdgesInSitu_2

Elseif { Situation == 2 l:
EdgesInSitu_2(Deter,EdgeNum.Coord,RowNum)

i Push all the edges or_the edge list of situation 3 onto a stack
by calling procedure EdgesInSitu_3

Else if ( Situation == 3 )
EdgesInSitu j(Deter,EdgeN um,Coord,RowNum)

..........
..........

.........

i Push all the edges on_the edge list of situation 9 onto a stack
by calling procedure EdgesInSitu_9

Eise if ( Situation == 9 }‘:
EdgesInSitu_9(Deter,EdgeNum,Coord, RowNum)

i Push all the edges on_the edge list of situation 10 onto a stack
by calling procedure EdgesInSitu_10

Else EdgesInSitu_10(Deter.EdgeNum,Coord,RewNum)

if (ExistWay) OR ...
} pedil GlstWay)

End # procedure

Figure 2.14 (continued)
Pseudocode Of Procedure Search Path
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# Sample code for situation 1.

Procedure EdgesInSitu_1 (Deter,EdgeNum,X,Y,RowNum)
# Push all the edges on the edge list of situation 1-onto a stack.
Fori =1 to ( Deter + 2)

"Deter" takes value one (1) if the growth node is not the root node,
otlierwise it takes zero value.

Put the edges on the edge list of situation 1
in a counterclockwise order.

If ( EdgeNum == 3)
EdgeNum <--1

Else EdgeNum <- EdgeNum + 1
# If the last edge on the edge list of situation 1 is checked.

if (i == (Deter + 2))
LastEdge <-- true

# Check edge number 1 of situation 1.

?‘ ( EdgeNum == 1)
# If the maximum value of X coordinate is two, then edge number 1
goes to edge number 3 of situation 3, otherwise it goes to cdge

number 2 of situation 5.

If ( (XMA ?=2k
earchPath( 3, X+1, Y, NODE(X,Y), 3)

Else SearchPath( 2, X+1, Y, NODE(X,Y), 5)
} # end if ( EdgeNum == 1)

# Check edge number 2 of situation 1.
If ( EdgeNum == 2)

# Edge number 2 of situation 1 always goes to edge number 1 of
situation 4.

SearchPath( 4, XMAX+X, Y, NODE(X,Y), 1)

Figure 2.15
Pseudocode of the Algorithm of the Tree Growth Process

52




# Check edge number 3 of situation 1.
?( EdgeNum == 3)

of situation 1 goes to edge number 1 of situation 8, otherwise

§ If the maximum value of Y coordinate is two, then edge number 3
it goes to edge number 1 of situation 5 (see Figure 2.12).

If (YMAX ==2) ‘
SearchPath( 8, X, Y+1, NODE(X,Y}, 1)

Else SearchPath( 5, X, Y+1, NODE(X,Y), 1)
end if ( EdgeNum == 3
} #}Ex?dfor for i(=1 5 )
End” # Procedure
# General algorithm for all situations
Procedure EdgesInSitu_<Num> (Deter,EdgeNum,Coord,RowNum)

MAXEDGE is the maximum number of edges belonging to the riode
corresponding to situation <Num>

# Push all the edges of situation <Number> onto a stack.
for i =1 to (Deter + (MAXEDGE-1)

# Put the edges on the list into a counterclockwise order

If ( EdgeNum == MAXEDGE )
EdgeNum <-- 1

Else EdgeNum <-- EdgeNum + 1

# Take one edge fror- the top of the stack and then check it.

# if the edge number taken from the stack is one.

If (EdgeNum == 1)

{
- Find which situation edge number 1 must be connected to and lien
assign that situation number to "Situation"

- .-}issign the new value to "Coord" for the coordinate of the growth
node

- Find the edge number of the edge used to visit the growth node
and then assign that edge number to "EdgeNum".

- Assign the new value to "RowNum" to show the node in the in-
degree matrix associated with the previous growth node in the grid

Figure 2.15 (continued)
Pscudocode of the Algorithin of the Tree Growth Process




# Call procedure SearchPath for finding all the paths from edge
number f of situation <Number> to other nodes in the grid.

SearchPath (Situation,Coord,RowNum,EdgeNum)
} # eud if (EdgeNum == 1)
# if the edge number taken from the stack is two.
?lse I (EdgeNum == 2)

- Same above process is repeated for edge number 2
}
# if the edgze number taken from the stack is three.
%lse if (EdgeNum == 3)

- Same above process is repeated for edge number 3

..............
..............
..............

..............

# if the edge number taken from the stack is MAXEDGE.
}Else if (EdgeNum == MAXEDGE)
i

- Same above process is repeated for edge number MAXEDGE

}
} #endfori=1

End # Procedure

L&A
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v
¥
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Figure 2.15 (continued)

Pseudocode of the Algorithm cf the Tree Growth Process
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of calls to procedure SearchPath. SearchPath determines each edge’s direction
with respect to the growth node. If the edge is directed away from the growth
node, then the node on the end of that edge becomes the new growth node.

In the above, we note that procedures SearchPath and
EdgesInSitu< Number> call each other recursively. Procedure
EdgesInSitu<Number> pushes the ordered edges onto a stack. Procedure
SearchPath takes an edge from the top of that stack and then checks if that edge
is directed away from the growth node. This process repeats until the stack is
empty of edges. At that point the contouring tree gro' % process is complete.

The procedure used to link a new growth node to the contouring
tree, GrowingTree, is shown in Figure 216. The notation we use in that
procedure is quite standard. CHILD(NODE) represents the child pointer of the
node. SIBLING(NODE) the sibling pointer of the node and FPREN(NOLE)
the predecessor node in the contouring tree.

Procedure SearchPath always calls procedure GrowingTree.
Growing » € is the procedure that links new growth nodes to the contouring
tree. In the first call, GrowingTree creates 2 node with the necessary data and
then assigns this node to be the root node of the tree. The next growth nodes are
linked to the field CHILD(NODE) of the root ncde. Each new growth node is
linked to the field CHILD(NODE) of the previous growth node. This continues
until the last edge on the list associated with the growth node has been traversed
and there are no further nodes reachable from the growth rode. When this
condition occurs. procedure GrowingTree resets the growth node to be the closest
to the right «<ibling node in the tree. The next growth node is linked to the field
SIBLING(NODE) of that node. The next growth node is linked to the field
CEILD(NODE) of the newly linked node. This tree growth process is repeated
until all the edges belonging to the root node in the directed graph are exhausted.

If procedure SearchPath runs into a node which has alrcady been
visited during the contouring tree growth process. then SearchPath calls
procedure SharedEdge. (see Figure 2.17). SharedEdge processes the edges
immediately adjacent tc the edge used to visit the growth node. If the adjacent

»dges are directed away from the growth node. then the nodes on the ends of the
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Procedure GrowingTree (Coord.ExistWay.LastEdge)

I ({Fimcm )

- Create the new growth node for the tree

- Put the necessary data on this node

- Assign this node to be the root node of the tree.

- Issue that the next growth node will oe linked to field
CHILD(NODE)

Else}lf (;Ii\lle) edge is directed away from the growth node )

{ Z LastEdge )

- Link the growth node to the tree
-hRaet the growth node to be the closest to the right sibling node in
the tree.

%lse If ( ExistWay )

# Growth node was moved over to the closest right sibling node.
?’ ( Declared field to be linked is SIBLING(NODE) )

- Link the growth node to the field SIBL}’NG(NQDQ
- Issue that the next growth node will be linked to the field
CHILD(NODE)

%lse
{

- Continue linking the new growth node to the same %’evious

field (It can be the field CHILD(NODE) or SIBLING(NODE)).
}
}
Else If ((&'ﬁlle) edge is NOT directed away from the growth node )
{ { LastEdge ))

- Find the immediate father node in the tree.
- Issue that the next growth node will be linked to the field
SIBLING(NODE)

1
]

End # GrowingTree

Figure 2.16

Pseudocode Of Algorithm Linking The Growth Nodes To The Contouring Tree
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outward edges are linked to the tree, as children of the growth node. Edges
directed towards the growtk node are ignored.

When procedure SearchPath reaches the empty stack condition, the
contouring tree growth process is over. This same process is repeated for all root
ncdes in the directed graph. Figure 2.18 illustrates the two contouring trees
created from the in-degree matrix of Figure 2.6.

3. Drawing Command Placement

Drawing commands are placed in the contouring tree to indicate when a
line enters the region represented by the contouring tree either from a
neighboring subgrid or from a location off of the grid. If we look at the structure
of the contouring tree and consider that during the traversal, the edges are
examined in a counterclockwise, and downward ordering from the root, we note
that we need to place setpoint drawing commands on the lower valued node of
each edge that preserts a new lowest value for the tree. { Note that the drawing
command Setpoint indicates to the display device that it should move its
"drawing instrument”, i.e. electron beam. pen. etc.. in a non-draving mode to the
specified location, and that it should then place that drawing instrument into a
drawing mode. Drawto indicates to the display device that it should move its
drawing instrument in a drawing mode to the specified location. Drawpoint
indicates to the display device that it should move its drawing instrument in a
non-drawing mode to the specified location, and that it should then turn that
drawing instrument on for the space of a single point.) We insert these drawing
commands by way of a pre-order traversal of the directed tree. placing a setpoint
command on each node that is a new lowest value for the tree. This drawing
command placement strategy is based upon the fact that if we have a contour
level for which we desire a picture. the first drawing command we generate for
any contouring tree is a setpoint. Although fairly effective. thic proccdure does

not provide a complete solution to drawing command insertion.

C. DRAWING COMMAND PLACEMENT PROBLEMs
1. Split Edge Problem

The drawing command placement strategy outlined above does not

provide a complete solution to drawing command insertion. Some nrighboring
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Procedure SharedNode (Situation.Coord. RowNum.EdgeNum)

If ( Situation == 1) L
# If we are looking at edge number 1 o1 situation 1.

If ( EdgeNum ==1)

- Find the ccordinates of the edges adjacent to edge number
1 in situation 1 {see Figure 2.12). .

# If we are looking at edge number 2 of situation 1.
Eise If ({ EdgeNum == 2)

- Find the coordinates of the edges adjacent to edge number
2 in situation 1 (see Figure 2.12).

Else ( Do the same above process for EdgeNum = 3 )
Else If ( Situation == 2 ) .
If we are looking at edge number 1 of situation 2.
If ( EdgeNum == 1))

- Find the coordinates of the edges adjacent to edge number
1 in situation 2 {see Figure 2.12).

# If we are looking at edge number 2 of situation 2.
Else If ( EdgeNum == 2}

- Find the coordinates of the edges adjacent to edge number
2 in situation 2 (see Figure 2.12}.

................

................

Else If ( EdgeNum == 35)

- Find the coordinates of the edges adjacent to edge number
5 in situation 2 (see Figure 2.12).

Else If { Sl}tuation == 3)

- Find the coordinaies of the edges adjacant to the edge number
defined by "EdgeNum" in situation 3 (as above}.

................................

# Checi( whether the adjacent edges are directed away from the growth node.
If ( The adiacent edge{s) are directed away from the growth rode )
- Link the adjacent edge{s) to the contouring tree
End # pr({)cedurr sharedNode

Figure 2,17 .
Pseudocode Of Algorithm Evaluating Already Visited Nodes
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edges in the contouring tree, i.e. edges shariag an ancestor node, have a "split"
between them, i.e. the edges are not immediate counterclockwise neighbors in the
original grid. In this case, we must indicate the discontinuity in the contouring
tree. We register the discontinuity on the lower valued node o the edge where
the discontinuity occurs. For example, in Figure 1.3a the edges (3.3)-(3.2) and
(3,3)-(2,3) are neighbors in the contouring tree but are not immediate neighbars
in the original grid. We indicate this split by placing a "1" on the lower valued
node of edge (3,3)-(2,3).

in order to recognize the nodes that require a drawing command
indicating a split edge in the contouring tree, we must take care of all possible
places where split edges occur in the larger grid. The algorithm of Figure 2.19
solves this problem.

The main idea behind this algorithm comes from the definition of the
split edge prceblem. During drawing command placement, the father node pointer
and his child node pointer are given to procedure Split Edge Control. This
procedure determines to which situation the father node belongs. The edge
number between the father node and the child node is then fcnnd. When the
edge number is known. the edge immediately adjacent to that edge in the grid is
easily determined. For the continuous case. i.e. non-split edge case. this edge also
exists in the contc.:ng tree. The algorithm finds the edge number between the
father node and the next child node in the contouring tree. The adjacent edge
number in the tree is compared with the edge number in the grid. If these two
edges are the same. it means that there is no split edge problem If the edges are
different. a split edge problem exists. We put a setpoint indicator on the lower
valued node cf the split edge. This procedure aiso takes care of edges lacking an
adjacent edge in counterclockwise order. For example. edge number 3 in situation
1 ha~ no adjacent edge in counterclockwise order. In this case. if there is another
child node in the contouring tree. a split edge condition exists.

2. Edge Duplication Problem

The core problems with the 2x2 subgrid algorithm all concern issues of
picture efficiency. Since the display generated for each 2x2 subgrid i« generated

independently of any neighboring 2x2 subgnds. equivalued lines at the contour
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Procedure Split_Edge _Control (FATHER{NODE).CHILD/SIBLING(NODE))
# "/" means "OR"

End

# Find the edge number of the edge in the grid and the edge number in the .

tree construction.

- Find to which situation FATHER(NODE) belongs.

- ___Find _ the ed% number between FATHER(NODE) and
CHILD/SIBLING(NODE) in the tree construction.

- If&nd the edge number immediately adjacent to that edge number in the
grid.

- Find the next SIBLING(NODE) -next child of the same father-

- Find the edge number between FATHER(NODE) and SIBLING(NODE)
in the tree construction.

# Determine if there is a split edge.

If (The adjacent edge number in the tree construction is NOT the same
as the adjacent edge number in the grid ) # Split Edge Exists

{

- Put a Setpoint command in node.

}
Else # No Split Edge
{
- Put a Drawto command in node.
}

# Split_Edge Control

Figure 2.19
Pseudocode Of Aigorithm Solving The Split Edge Problem
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ievel on the border of a 2x2 subgrid are duplicated. A similar problem occurs for
subgrid corner values that equal the contour level. If we display either of the
above cases on a calligraphic display device, we see a bright line for- the
equivalued edge, and a bright point for the grid value equal to the contour level.
Another problem, also due to the independent computation of each 2x2 subgrid is
that no ordering is provided for coordinates that come out of this algorithin.
These are the problems with the 2x2 subgrid algorithm.

In the Large Contouring Tree Algorithm, we eliminate contour line
duplications in two ways. First, during the tree growth process we don’t allow
repeated subtirees to be linked to the contouring tree. Repeated subtrees cause
the duplication of contour lines during the traversal process. For this reason,
when we visit any node more than once during the tree growth process. we take
into account only edges immediately adjacent to the edge used to visit the
growth node. If these adjacent edges are directed away from the growth node,
then we link those adjacent edges to the tree. Edges directed towards the growth
node are ignored. Figure 2.20 shows how to handle a node that has been visited
more than once.

The second procedure we use to eliminate contour line duplications is to
keep track of the coordinates of equivalued edges at the contour level in order to
prevent the equivalued edges from appearing more than once. Before outputing
the coordinate and drawing command of an equivalued edge. we check to
determine if there is another equivalved edge with the same coordinates as the
one already on hand. If there is. we discard that second set of coordinates and
drawing instructions.

3. Decision On Closed Contour Lines

The contours at level 100 on Figure 1.3 are closed contours. forming
simple. connected loops. The contours at level 30 on Figure 1.2 are open
contours. In the creation of the closed contours. we can’t complete the connected
loops by traversing contouring tree. The contour lines between the starting point
and the ending point stay open. We need a procedure that determines when

contour lines should be closed.




ASSUMPTION: the growth node is at the center of this picture. The node is a
situation 6 node.

CASE 1: the first visit is via edge number 6
Edge numbers te be linked are 7.2.4 and 5
CASE 2: the sc¢cond visit is via edge number 8
Edge number to be linked is 7
CASE 3: the third visit is via edge number 1
Edge number to be linked is 2
CASE 4: the fourth visit is via edge number 3
Edge numbers to be linked are 4 and 2

Figure 2.20

Elimination Of Repeated “ubtree During The Tree Growth Process

Two conditions must occur for the closed coniours decision. First. the
root node of the contouring tree must belong to situation 6. Situation 6 is the
only situation with a complete set of adjacent edges that is eligible to serve as the
root of a contouring tree. The second condition is that the starting and the

ending coordinates of the concerned contour cannot be on the border lines of the
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grid. If the coordinates are on the border lines (outermost lines) of the grid, then

we don’t close the contour.

D. DISPLAY GENERATION

Display generation from a contouring tree is accomplished by performing a
pre-order traversal of that contouring tree, producing a coordinate and drawing
instruction whenever the desired contour level is found to be within the range of
an edge of the contouriilg tree. A pre-order traversal visits the root, the left
subt-ee (CHILD{{{ODE)) and then the next right subtree, etc. An edge’s range
is defined to bc the set of values between those associated with the nodes on
either end of edge. More precisely, we say a contour level is within an edge if the
following condition holds:

lower node’s_value <= contour level < higher node’s value

The drawing instruction issued for each edge is the one associated with the
lower valued node of the edge. The coordinate for each of these edges is generated
by a linear interpolation of the edge’s end point coordinates according to the
decrease in contour level along the edge.

There are some subtleties not evident from the above that are best detailed
using a pseudocode description of the traversal algorithm. Figure 2.21 depicts the
traversal procedure for the contouring tree assuming a particular data
organization. The pointers to the descendent nodes of NODE are CHILD(NODE)
and SIBLING(NODE). For each node cf the contouring tree, there are three
pieces of information: the value associated with the node. VALUE(NODE). the
coordinate associated with the node, XYZ(NODE). and the connectivity with the
node. CONN(NODE).

The generation of coordinates and drawing instructions from a contouring
tree begins with routine CONTOUR SUBGRID of Figure 2.21. That routine
receives a pointer to the root node of the contouring tree. It then starts the
traversal by calling routine VISIT with that root node. Routine VISIT checks to
see if the edge defined by the passed in node and that node’s ancestor. NODE
and ANCESTOR. contains the contour levei. If the edge does contain the contour
level, the edge intersection coordinate is computed using linear interpolation and

issued to the display along with the connectivity associated with that node.
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CONN(NODE). If we issue 2 coordinate and connectivity for a node, we need to
check the subtree under that node for equivalued edges. If an equivalued edge at
the contour level is found, a coordinate and drawing instruction pair are issued
ior that edge (routine VISIT SUBTREE). Once a coordinate and drawing
instruction pair have been issued for an edge, and once the subtree beneath that
edge has been investigated for equivalued edges, further traversal of that subtree
is terminated. If an edge is found not to contain the contour level, the traversal
continues as depicted at the bottom of routine VISIT.

The pre-order traversal procedure described above generates the coordinates
and drawing instructions for the part of the grid the contouring tree represents.
Figure 2.22 shows the coordinates generated for the 3x3 grid of Figure 2.1 Figure
2.2 shows the contour lines drawn by using those coordinates and drawing

commands.
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using the situation naming scheme described in chapter 2. The procedure works
in the following fashion.

The first step is to determine to which situation each node of the directed
graph belongs. The second step is to examine the edges belonging to the situation
and to set the appropriate values in the in-degree matrix. For example, for node
(1,1), we call procedure situation 1. In this procedure, the directions of three
edges are examined and recorded in the in-degree matrix. The first edge
examined is (1,1)-(2,1). The value of minus one is put in D{2,1) to indicate the
edge is direcied from node 2 to node 1. For the second edge, (1,1)-(1.5,1.5), the
value of minus one is put in D(5,1) to indicate the edge is directed from node 5
to node 1. For the third edge, (1,1)-(1.2), the value of minus one is put in D(4,1).
Once the edges associated with node (1,1) have been examined. the in-degree
matrix construction procedure then performs a similar set of operations on node
(2,1).

Once the above operations have been performed on all nodes of the directed
graph. the in-degree matrix is completed by computing the values on its diagonal.
The value of in-degree matrix D(i.i) indicates the number of edges directed
towards node i in the directed graph. This value is computed by summing the
total number of minus one values in column i. Figure 3.5 shows the in-degree

matrix for the directed graph of Figure 3.4.

B. CONTOURING TREE FOR THE EXAMPLE GRID

Contouring tree construction is a growth process that begins from each node
indicated in the in-degree matrix as lacking incoming edges. These nodes. termed
root nodes. have D(i.i) values of zero. The in-degree matrix of Figure 3.5 has
three zero valued entries on its diagonal at node 3. 6, and 19. The contouring tree
construction procedure grows a ~separate contouring tree from each of these nodes.

Figure 3.6 ~shows the three contouring trees created out of the in-degree
matr.x. Let’s try to create the contouring tree rooted at node (2.2).

There are eight edges connected to node (2.2). We push those edges into a
stack in a clockwise order. The starting edge for this order is selected by the rule
shown on Figure 2.12. In our case. edge (2.2)-(2.5.1.5) is the starting edge. Edges

(2,2)-(2.5.1.3), (2.2)-(2.1). (2.2)-(1.5.1.5). (2.2)-(1.2). (2.2)-(1.5.2.5). (2.2)-(2.3).
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tCheck subtrees of this node for eq%ivalue& edges.
ISIT SUBTREE(CHILD NODEJ B OD%
VISIT SUBTREE(SIBLING(NODE),NODE)

return # no need to examine the subtree further.
} # endif coordinates were generated for an edge.

VISIT cmwg:omxs)) 'oml:) visit left subtree.
VISIT(SIBLING(NODE),NODE) # visit right subtree.

return
end
Procedure VISIT SUBTREE(SUBNODE,SUBANCESTOR)
i{f(SUBNODE == NULL)
return
i{f(VALUE(SUBNODE) == CONTOUR_LEVEL)

Issue coordinates for the equivalued edge.
Setpoint on XYZ(SUBANCESTOR).
Drawto XYZ(SUBNODE).

}
VISIT SUBTREE(CHILD(SUBNODE).SUBNODE)
VISIT SUBTREE(SIBLIN (SUBNODE).SUBNODE)
return

end

Figure 2.21 {continued)

Pseudocode of the Travsreal Algorithm for the Contouring Tree
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First Tree Rooted At Value 150.00 |
Level50 |
X Y 'z [ b
2.9091 | 2.0000 ! 0.0000 1
2.8383 | 2.1667 | 0.0000 0
30000 | 25000 | 00000 | O
3.2222 | 2.7718 00000 | 0 |
3.2500 | 3.0000 | 0.0000 | 0
3.2000 | 3.2000 0.0000 0 |
3.0000 | 40000 | 0000C 1 0 |
26687 | 2.0000 0.0000 1
2.2500 | 2.7500 | 0.0090 | 0 |
2.0000 | 2.8333 00000 | O |

"Second Tree Rooted At Valre 190.00

Level 50
X | Y Z i D
[2.0000 | 3.1250 0.000C il
{2.1905 | 3.1905 0.0000 0 |
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. A COMPLETE EXAMPLE

In this chapter we apply the contouring tree algorithm: to the 4x5 grid of
Figur: 3.1. We create the in-degree matrix for the grid. We then build the
contouring trees from the in-degree matrix. The final step we show is the
generation of coordinates and drawing instructions from the contouring trees.

Figure 3.1 shows the density values of the two-dimensional grid of our
example. The density vaiues are input to the aigorithm as a two-dimensional
array. The first step of the algorithm is to compute the average density values
for the center points of each 2x2 subgrid of the 4x5 grid. Figure 3.2 shows the 4x5
grid with the calculated center point densities.

The second step in the algorithm is to create the directed graph from: the 4x5
grid. To get the direc’ed graph from the grid, we assign a direction to ench edge
of the 4x5 grid using the density ~alue assigned to each node. For the equivalued
edge. we assign a direction to the edge that is counterclockwise with respect to
the growth node. Figure 3.4 shows the directed graph of the 4x5 grid of Figure
3.2. In this directed graph. there are no equivalued edges. The arrowheads on the
edges of the directed graph point in the direction of the lower valued node. For
example, the arrowhead on edge (1.1)-(2.1) is toward to node (1.1).

A. IN-DEGREE MATRIX CREATION

We create the in-degree matrix to reflect the directed graph better. To create
the in-degree matrix. we need to provide a mapping from the nodes of the 4x5
grid to the nodes of the in-degree matrix. Figure 3.3 shows thix mapping. The
number on the node in the 4x5 grid is the node number in the in-degree matrix.
For example. node (1.1} in the gnd is associated with node number 1 in the in-
degree matrix. Node {1.2) is associated with node number 2 in the in-degree
matrix. Node (3.1} s assoriated with node number 6. ete.

The mapping procedure that associates a node number in the directed graph

with a node number in the in-degree matrix is ormed on a case-by-case basis
g A

71




70 40 10
10 199 80
Q 130 60
PO 15C 40
<0 29 20
Figure 3.1

(@]

10

20

30

70

An Example 4X5 Grid With Density Values

72




10

70

10

180

§ )

Figure 3.1

An Example 4X5 Grid With Density Values

72

A WA Py 4 ¢ S
_ﬁu‘\.&h’%. ‘ M

2 8 P



Figure 3.3
The Number On each Node In The Grid Is The Node Number Used
For Reference To The In-Degree Matrix
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using the situation naming scheme described in chapter 2. The procedure works
in the following fashion.

The first step is to determine to which situation esch node of the directed
graph belongs. The second step is to examine the edges belonging to the situation
and to set the appropriate values in the in-degree matrix. For example, for node
(1,1), we call procedure situation_1. In this procedure, the directions of three
edges are examined and recorded in the in-degree matrix. The first edge
examined is (1,1)-(2,1). The value of minus one is put in D{2,1) to indicate the
edge is direcied from node 2 to node 1. For the second edge, (1,1)-(1.5,1.5), the
value of minus one is put in D(5,1) to indicate the edge is directed from node 5
to node 1. For the third edge, (1,1)-(1.2), the value of minus one is put in D(4,1).
Once the edges associated with node (1,1) have been examined. the in-degree
matrix construction procedure then performs a similar set of operations on node
(2,1).

Once the above operations have been performed on all nodes of the directed
graph. the in-degree matrix is completed by computing the values on its diagonal.
The value of in-degree matrix D(i.i) indicates the number of edges directed
towards node i in the directed graph. This value is computed by summing the
total number of minus one values in column i. Figure 3.5 shows the in-degree

matrix for the directed graph of Figure 3.4.

B. CONTOURING TREE FOR THE EXAMPLE GRID

Contouring tree construction is a growth process that begins from each node
indicated in the in-degree matrix as lacking incoming edges. These nodes. termed
root nodes. have D(i.i) values of zero. The in-degree matrix of Figure 3.5 has
three zero valued entries on its diagonal at node 3, 8, and 19. The contouring tree
construction procedure grows a separate contouring tree from each of these nodes.

Figure 3.6 ~hows the three contouring trees created out of the in-degree
matr.x. Let’s tov to create the contouring tree rooted at node (2.2).

There are eight edges connected to node (2.2). We push those edges into a
stack in a clockwise order. The starting edge for this order is selected by the rule
shown on Figure 2.12. In our case. edge (2.2)-(2.5.1.5) is the starting edge. Edges
(2,2)-(2.5.1.5), (2.2)-(2.1). (2.2)-(1.5.1.5). (2.2)-(1.2). (2,2)-(1.5.2.5). (2.2)-(2.3).
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(2,2)-(2.5,2.5), and (2,2)-(3,2) are pushed into the stack respectively. When we
take an eqge from the stack, the order for checking the =dges is counterclockwise.
The first edge pushed into the stack is the last edge to be checked.

Edge (2,2)-(3,2) on top of the stack is taken and checked. Since this edge is
directed away from the growth node, node (3,2) on the end of that outward edge
becomes the new growth node We link this node to the contouring tree. We push
the edges connected to node (3,2) into the stack in a clockwise order. There are
then two differents groups of edges in the stack, one for node (2,2), one for node
(3,2). We take edge (3,2)-(2.5,1.5) from the top of the stack and check it. It is
an inward edge. The next two edges, (3,2)-(3,1) and (3,2)-(3.5,1.5), are also
inward. We skip those edges and take another edge from the stack. Edge (3,2)-
(4,2) on tov of the stack is outward. Using this edge, we go to node (4,3) and
then link that node to the tree. We push all the edges connected to node (4,3)
into the stack. This process continues until we reach the empty stack. During
this process, we go through all possible paths from the root node to the other
nodes in tne directed graph. We link the nodes on the paths, to the contouring
tree, except for the following case.

If we come to a node which has already been visited. we apply a different
procedure to that node. We don’t push all the edges connected to that node onto
the stack, except the edge(s) immediately adjacent to the edge used to come to
that node. If these edges are outward, then we link the node on the end of the
outward edge to the tree. We don’t push any edge connected to this newly linked
node. In other words, we don’'t take into account the descendents of that node.
We then go back to the previous node. The reason for this is that the outward
edges, connected to the already visited node. have been linked before to the
contouring tree. If we again link those edges to the tree. then we create repeated
subtrees in the contouring trece. Reveated subtrees cause the duplication of the
contour lines. Let’s see how we apply this rule to the directed graph of Figure 3.4.

After creating the first tree rooted at node (2.2), we go from the root node to
node (3.2) by using edge (2.2)-(3.2). After going through all the paths from node
{3.2) to the other nodes in the directed graph. we go back to the stack and check

~dge (2.2)-(2.5.2.5) on top of the s1ack. This edge is outward. Using that edge. we
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