
AD-ISSSf TH RLATIONSHIP BETWEEN NATERIAL FAILURES AND FLIGHT IdolFHOURSSTATISTICAL..(U) CENTER FOR NAVAL ANALYSES
ALEXANDRIA VA NAVAL PLANNING NANPON. N S GOLDBERG

UNCLASSIFIED JAN 85 CN -PP-43 0 N 
1114- 3-C- 725 

F/ 1/3EnEEEEEEEEE

IIIIIIIIIIII



|.7

1.0 W L L

I1, .__= 11 I,

MICROCOPY RESOLUTION TEST CHART

NA'OA 8 6QAV~ OF STAOAROS -19 -A

- -- 3". -" " '- " .- .i -;. . -' '- .' ' '. i .- "i .i' - -.. ." .- -' i . .- .-i " " - ' i ". -.. -.. i .i .i . . 2 " ' ' . " . . .' - -" " .i .i ' ' -' "



Professional Paper 430 /January 1985

In'

. THE RELATIONSHIP BETWEEN
MATERIAL FAILURES AND
FLIGHT HPURS: STATISTICAL

~CONSIDERATIONS

Matthew S. Goldberg

/g >1-1-e I

i f , . -d

CENT MFOR.NAVALANALYSES
LU 4401 Ford Ammne Post Office Bo 16l268 Alexamliarw Vt ia 2302-02b8 (703) 824-2M000

-, -. ELECTE

SEP 24 1985

u P1e. LU

85 09 23 032



The ideas expressed in this paper are those of the author
The paper does not necessarily represent the views of either the
Center for Naval Analyses or the Department of Defense.

I,

a. S . '. *



Professional Paper 430 / January 1985

THE RELATIONSHIP BETWEEN
MATERIAL FAILURES AND
FLIGHT HOURS: STATISTICAL
CONSIDERATIONS

Matthew S. Goldberg

~~ANaval Planning, Manpower, and Logistics Division

CENMERFOR NAVALANALYSES
4401 Ford Avnue Pixt (Ace~ Box lb2b,!7 Alexandria, ir~ima 22302-0268

%. %



TABLE OF CONTENTS

Page ...

Introduction ....................................................... 1

Statistical Preliminaries ............................................ 2

Correlation between X and t ...................... 3

Tests for a Poisson Distribution ...................................... 6 "-

Negative Binomial Model ........................................... 12

Poisson Regression Model ........................................... 13
C c i ..

Conclusions ....................................................... 15

References .................................................. 17 ,-.

Accpo'son For

1 a"

P-.-

-i- rt t /

-1.-

- • . . ... . . . . , • . . . .... -



THE RELATIONSHIP BETWEEN MATERIAL FAILURES AND
FLIGHT HOURS: STATISTICAL CONSIDERATIONS

INTRODUCTION

- This paper attempts to clarify the relationships among the following four
I hypotheses: (1) The number of material failures across intervals of calendar

time containing equal accumulated flight hours follows a Poisson distribution;
(2) the number of elapsed flight hours between successive independent
material failures follows an exponential distribution; (3) the expected number
of monthly material failures is exactly proportional to monthly flight hours;
and (4) the observed number of monthly material failures is strongly corre-
lated with monthly flight hours.

By a well-known result, hypotheses (1) and (2) are equivalent. By a
*second well-known result, hypotheses (1) and (3) are also equivalent. How-
Rt ever, hypotheses (1) and (4) are not equivalent. That is, while the expected

number of failures is exactly proportional to flight hours under a Poisson dis-
tribution, this relationship is not revealed by a linear regression between
failures and flight hours. For example, we demonstrate that if the mean and
variance of flight hours across months are equal and if the failure rate per
flight hour equals .01, then the correlation between failures and flight hours
will equal only .10. Moreover, the squared correlation, cousponing to the
regression R-squared statistic, will equal only .01. .. i

.tr - .. , , . - . ,- _ _______ --_¢-_.

To test ior trelationship between flight hoiurs and the expected number
of failures, linear regression is not the appropriate tool. Instead, we must test
the underlying hypothesis that the data follow a Poisson distribution. If the
Poisson distribution fits the data, then the expected number of failures will be
exactly proportional to flight hours because hypothesis (1) implies hypothesis
(3) above.

We present three goodness-of-fit tests for a Poisson distribution. It is
sometimes asserted that, despite its mathematical tractability, the Poisson
distribution does not fit any real-world data. Contrary to this assertion, we
show that the Poisson distribution is perfectly adequate to describe data on
Navy A-7 accidents over the period CY 1977 -CY 1983.

Use of the Poisson distribution imposes the restriction that the mean and
variance of the data are equal. In many situations the negative binomial dis-
tribution may provide a superior fit to the data, because the negative binomial
distribution allows the variance to exceed the mean. Moreover, the negative
binomial distribution may be derived from the Poisson distribution by
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assuming that the mean of the Poisson distribution is itself randomly
distributed across the observational units according to a Gamma distribution.

Although the negative binomial distribution is more flexible than the
Poisson distribution, it is not completely satisfactory because it "explains" the
excess variation in the data by simply adding an additional source of
randomness. A more useful approach may be to explain the data by intro-
ducing observable variables thought to influence the failure rate, such as crew
manning and experience levels. The correct technique for estimating the
influence of the variables is not linear regression, because linear regression
does not even reveal the proportionality between flight hours and the expected
number of failures. A better approach is to express the failure rate (rather
than the number of failures) as a function of explanatory variables using a
maximum likelihood technique known as Poisson regression. We present an
exposition of Poisson regression and also some recently developed generaliza-
tions of that technique.

STATISTICAL PRELIMINARIES

The Poisson distribution is frequently used to describe the number of
occurrences of an event in a fixed-length interval of time. Let g(X,t) denote
the probability of X occurrences in an interval of length t. Then the Poisson
distribution is given by:

g(x, , X) (X Ox exp (-X t)IX!()

for X = 0, 1, 2, 3... where X > 0 is the instantaneous failure rate. The Poisson
distribution has the property E(X; X) = Var(X; X) = At, so that the mean and
variance are constrained to equality.

There are several alternative characterizations of the Poisson dis-
tribution. Let o(t) be any function with the property o(t)/t-, 0 as t 0. Then
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by a well-known result,'the following comprise a set of sufficient conditions
for the Poisson distribution:

1. g(1, t) = Xt + o(t) for all t > 0 and some X > 0

2. E g(X,t) = o(t)
X=2

3. The numbers of occurrences in any set of non-overlapping intervals
are statistically independent.

The first condition states that the probability of exactly one occurrence is
proportional to the length of the interval for arbitrarily small intervals. The
second condition states that the probability of multiple occurrences ap-
proaches zero as the length of the interval approaches zero.

Finally, by another well-known result,2 the number of occurrences in a
fixed-length interval of time has a Poisson distribution if and only if the
elapsed time between occurrences has an exponential distribution:

f(t) = X exp (-,Xt) . (2)

CORRELATION BETWEEN X AND t

As we stated earlier, a property of the Poisson distribution is E(X; X)
At, so that the expected number of occurrences is proportional to the length of
the interval. Suppose we have monthly data on material failures (X) and
flight hours t). If we believe that the observations follow a Poisson distribu-
tion, then in view of the proportionality of the mean we might expect a high
correlation coefficient between X and t. Perhaps surprisingly, this is not the
case.

1. See, for example, Hogg and Craig[ 11, pages 94-96.
2. See, for example, Hogg and Craig l1, pages 100-101.
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Note that the density of t across months is arbitrary; we require only
that it have finite mean and variance. Let E, denote the expectation over the
density oft. Following the analysis of Brown and Rogers' [2]:

E(X) = Ei E(Xlt)

= Et (At)

= A E(t).

E(Xt) = Ef E(Xlt)

= E t [t E(xlt)]

= A E(t2).

E(X 2) = EtE(X21 t)
= Et [Var(Xl0t) + E2 (,yt)]

= A E(t) + A2E(t).

Combining these results:

Var(X) = E(X 2 ) - E2 (X)

= AE(t) + 2 [E(t 2)-E 2 (t)]

= KE(t) + X2 Var(t).

Cov(X,t) = E(Xt) - E(X)E(t)
= AE(t 2) - E2(t)

= WVar(t).

It follows that:

Correlation (X,t) = [Cov2(X,t)/Var(X)Var(t) ] 1/2

= [1 + E(t)/AVar(t)] -1/2 (3)

The correlation will be small as long as A is small and Var(t)/E(t) is not
too large. For example, suppose E(t) = Var(t) and A = .01. Then the corre-
lation will equal .10. Moreover, the squared correlation, corresponding to the
regression R-squared statistic, will equal .01. Hence even if the observations

1. Brown and Rogers actually derive a generalization of what follows in the case of a
negative binomial distribution rather than a Poisson distribution.
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follow a Poisson distribution exactly, we would not expect a linear regression
between X and t to reveal any apparent relationship. The relationship be-
tween E(X) and t is exactly proportional, but this relationship is not revealed
in the simple scatter plot between X and t. Moreover, even if Var(t)/E(t) is
large so that the correlation is high, a regression equation will still not
provide accurate forecasts of future material failures because future flight
hours are highly uncertain and unpredictable in this case.

We may also examine the regression coefficient rather than the
correlation coefficient. A linear regression of material failures on flight hours
will be unbiased:

E() = Cou(X,t)IVar(t) = .

However, the variance of the regression coefficient will be quite large so that
the coefficient, although unbiased, will not be precisely estimated. To com-
pute the variance of the regression coefficient, recall the following relation-
ship between the R-squared statistic, t-statistic, and F-statistic from elemen-
tary regression theory:'

A2 2 2 2
(X) /Var(X) = t = F = (N-2)R /(1-R 2)

where N is the sample size. Using equation (3), we find that Var(A) reduces to:

Var( W = [E (t) ]/[ (N-2) Var (t) ]

To illustrate the magnitude of Var(X) again suppose that E(t) = Var(t) and
X = .01. Then Var(X) reduces to .01I(N-2). Hence to achieve a "t-ratio" of 2.0,
implying statistical significance, the sample size would have to be at least
402. Expressed differently, confidence intervals for X will be extremely wide
even for sample sizes of several hundred. Like correlation analysis, regression
analysis2 fails to reveal the proportionality between E(X) and t.

1. See, for example, Johnston (31, pages 35-38.
2. The regression may also be computed without an intercept, to reflect the strict pro-
portionality between E(X) and t. The regression slope will still be unbiased, the only
difference being that (N-1) replaces (N-2) as the degrees-of-freedom in the formulae derived
in the text.
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To test for a relationship between E(X) and t, we must test the
underlying hypothesis that the observations follow a Poisson distribution.
Examples of such tests are given in the next section.

TESTS FOR A POISSON DISTRIBUTION

It is sometimes asserted that, despite its mathematical tractability, the
Poisson distribution does not fit any real-world data. In this section, we will
discuss several tests for a Poisson distribution and provide a counterexample
to the above assertion.

As we stated earlier, a property of the Poisson distribution is E(X; X) -
Var(X; X) = At. This property provides a test of the Poisson distribution. If
the mean and variance are equal, then we accept the Poisson distribution; but
if the variance exceeds the mean, we must consider an alternative such as the
negative binomial distribution.

We apply this test to data on Class A accidents' involving Navy A-7
aircraft over the period CY 1977 -CY 1983. Figure 1 plots the monthly
number of Class A accidents against the monthly number of A-7 flight hours.
Although there does not appear to be any visual relationship, the simple
correlation across these 84 monthly data points is actually negative,2 equal to
-. 245. However, as we saw in the previous section, this perverse correlation
does not invalidate the assumption of a Poisson distibution or the resulting
positive proportionality between flight hours and the expected number of
accidents.

To test for equality between the mean and variance, we tabulated the
number of monthly accidents and then calculated the sample mean and
sample variance across the 12 months of each respective year. If the data
follow a Poisson distribution, then the mean in each year should equal the
variance in that year. The mean and variance may differ from one year to
another, but they should move in proportion to each other and to annual flight
hours. Hence, if we plot the mean and variance in each year, the seven annual
data points should lie along a 45-degree line through the origin.

1. Class A accidents are those which result in either a fatality, complete destruction of an
aircraft, or at least $500,000 damage.
2. If the distribution is Poisson, then equation (3) is applicable. Using our sample
estimates of E(t), Var(t), and A, equation (3) predicts a correlation of +.141. We have not
tested whether this discrepancy could reasonably be due to chance.
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Figure 2 presents the plot of the mean and variance. Two of the points
lie exactly along the 45-degree line. Four points lie slightly below the line,
and one outlier lies well above the line. The outlier is due to the five accidents
that occurred during a single month of that year. Overall, the data do not
depart radically from the pattern expected under a Poisson distribution.

As a second test, we compared the observed frequency distribution of
accidents per period to the best-fitting theoretical Poisson distribution. We
could not make this comparison directly using the monthly data because flight
hours and hence the Poisson parameter vary across months, so that no single
Poisson distribution could possibly fit the entire data set. Instead, to stabilize
the Poisson parameter we divided our sample into 81 intervals of calendar
time each containing 15,000 accumulated flight hours.' We estimated the
Poisson parameter for an interval of this length as 15,000 times total
accidents divided by total flight hours, yielding the value 1.372. This
parameter is quite precisely estimated, with a standard error of only 0.130.
The observed distribution and the theoretical distribution with parameter
1.372 are both presented in table 1.

TABLE 1

OBSERVED AND THEORETICAL DISTRIBUTION
OF ACCIDENTSa

Number of accidents Observed frequency Theoretical frequency

0 23 20.5

1 28 28.2

2 16 19.3

3 8 8.8
4 4 3.0

5 1 0.8

6 1 0.2

a. The time interval is 15,000 flight hours, and the corresponding Poisson
parameter is 1.372.

1. Actually, the final interval contained only 13,495 flight hours because the total number
of flight hours was not evenly divisible by 15,000.
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We performed a chi-squared goodness-of-fit test to compare the observed
and theoretical frequencies. We combined the cells corresponding to 4, 5, and
6 accidents in order to achieve a frequency of at least 4 in every cell. We
computed a chi-squared statistic of 1.943 with 3 degrees-of-freedom. This
value is much less than the 10 percent significance point of 6.251. Hence we
cannot reject the hypothesis of a Poisson distribution.

As a final test, we exploited the fact that the number of accidents per
time period has a Poisson distribution if and only if the elapsed flight hours
between successive accidents have an exponential distribution. We first
computed the elapsed flight hours between successive accidents and placed
them in ascending order to obtain the sample order statistics, which we denote
ti,..., t n. If the time between successive accidents, T, is exponentially dis-
tributed, then the cumulative distribution function at T, Y = F(T) =
1-exp(-Xt), is uniformly distributed in the interval (0,11. The ith order
statistic in a sample of size n from a uniform distribution has expected value
i/(n + 1). It follows that:

E[1 -exp (-Xt)] = i/(n + 1)

If we ignore the expectation operator and solve for t,, we obtain:

t=-(l/X) log [1-i/(n + 1)] . (4)

Equation (4) suggests plotting the ith order statistic, t ,, against
-log[l-i(n+ 1)]. If the distribution is exponential, then all n points should fall
along a straight line with slope 1/K.

Figure 3 contains the plot described above. While we do not perform a
formal statistical test, the points indeed seem to fall along a straight line.
Moreover, if we fit a least-squares regression line through these points and
constrain it to pass through the origin, we obtain a slope coefficient of
11,570.8. Taking the reciprocal of the slope coefficient and multiplying by
15,000, we obtain an estimate of 1.296 as the expected number of accidents in
an interval containing 15,000 flight hours. This estimate is quite close to our
earlier estimate of 1.372.

Since the Poisson distribution fits the data according to all three
goodness-of-fit tests, we conclude that the expected number of accidents is
exactly proportional to flight hours. This is true despite the negative simple
correlation between monthly accidents and monthly flight hours reported
earlier.

-10-
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NEGATIVE BINOMIAL MODEL

Although we have provided an example of real-world data that follow a
Poisson distribution, other situations may require a more flexible
distribution. In particular, the Poisson distribution constrains the mean and
variance to equality. By contrast, the negative binomial distribution allows
the variance to exceed the mean.

An interesting derivation of the negative binomial distribution was first
given in a classic paper by Greenwood and Yule [4]. Their paper dealt with
the distribution of industrial accidents among workers. They assumed that
the number of accidents for a given workman in a fixed-length interval of time
followed a Poisson distribution. However, they found that different workmen
had different degrees of "accident-proneness," hence different means for their
respective Poisson distributions. They assumed that the Poisson mean had a
Gamma distribution across workmen:

h (X) = [0a/G (a) I X-1 exp (- PA) (5)

where G is the gamma function. Note that the gamma distribution has mean
ao3 and variance a/p2. The distribution of accidents across workmen is given
by:

g1 g(X,tAA) h A

where g(X, t; X) is the Poisson distribution in equation (1). After repeated
integration by parts, we find that the distribution is equal to:

X a

for X = 0, 1, 2, 3,...

Equation (6) is the negative binomial distribution. Its mean is given by:

E(X) = E E(XIX)
" Ej(at)
"at/l (7)

-12-
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To compute the variance, observe that:

E(X2) =E E(X2 1X)

= E. (Var(AX) + E2(X IX)]
= at(P + t + at)/j2

It follows that:

Var(X) = E(X 2) - E2(X)
= at (j + t)/p2  (8)

Brown and Rogers [2] have applied the same line of reasoning to an
analysis of material failures. Moreover, they derived an upper bound on the
correlation between X and t that generalizes the expression for the Poisson
distribution that we derived earlier in equation (3). Their bound is:

Correlation (Xt) < [1 + PE(t) /aVar(t)]-1/2 (9)

Equation (9) is quite analogous to equation (3) because a/p, the mean of the
prior distribution of A, replaces the single value of A appearing in equation (3).
However, equation (9) is an inequality while equation (3) is an equality.
Hence the correlation may be even smaller under a negative binomial dis-
tribution than under a Poisson distribution.

We fit a negative binomial distribution to the data on Class A Navy A-7
accidents reported earlier in table 1. Using the method-of-moments, we
equated our sample mean of 1.372 to the population mean given by equation

-* (7), and our sample variance of 1.711 to the population variance given by
equation (8). We then solved for the values a = 5.492 and J = 60,154. These
values imply that the prior distribution of X has a mean of .0000913 and a
variance that vanishes to 8 decimal places. The negligible variance of the
prior distribution implies that the simple Poisson distribution with a fixed
value of X seems perfectly adequate to describe the data.

POISSON REGRESSION MODEL

The negative binomial model provides a flexible tool for situations in
which the variance of the data exceeds the mean. However, a drawback of this
model is that it "explains" the excess variation in the data by simply adding

-13-
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an additional source of randomness. A more satisfying approach may be to
explain the data by introducing observable variables thought to influence the
propensity to fail, such as crew manning and experience levels. The correct
technique for estimating the influence of these variables is not a linear
regression because, as we have seen, linear regression does not even reveal
the proportionality between flight hours and the expected number of failures.
A better approach is to express the failure rate (rather than the number of
failures) as a function of explanatory variables, using the technique of Poisson
regression.

To insure non-negativity, the failure rate in the Poisson regression
model is written as an exponential function of the vector Zi of explanatory
variables:

X. = ep(Zi P) (10)

where [P is an unknown but estimable vector of coefficients. The likelihood
function is obtained by substituting equation (10) into equation (1), and
forming the product over all observations in the sample. The vector 1 is
chosen to maximize the likelihood function. It is easy to show that the log-
likelihood function is globally concave as long as the data matrix (the matrix
with rows Z,) is of full rank. Hence the maximum likelihood estimate of 13 is
readily obtained using standard algorithms such as Newton's method.

The introduction of explanatory variables will help to eliminate a
portion of the excess variation in the data. However, even after controlling for
the explanatory variables, the variance of the data may still exceed the mean.
To deal with this situation, Hausman, Hall, and Griliches [5) generalized the
Poisson regression model to allow random variation in the failure rates
beyond the systematic variation induced by the variation in the explanatory
variables.

Hausman et al. express the failure rate as:

A = uI exp (Zij ) = exp(Z t + u) (11)

where v, = exp(uj). They assume that v, has a Gamma distribution across the
observational units. Further, they set the two parameters of the Gamma
distribution equal, so that the distribution has mean 1 and variance 1/a where
a is the common value of the two parameters. This normalization involves no
loss of generality as long as the data matrix contains a column of l's
corresponding to an intercept.
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After repeated integration by parts, we find that the distribution of
failures is equal to:

. )X( a+t) (12)

for X = 0, 1, 2, 3... Equation (12) is a negative binomial distribution, but its
moments are different from those of the negative binomial distribution

, -derived ealier in equation (6). The mean is given by:

E(X) = EuE(Xlv)

= E[v t exp (Z3)]

= t exp(Z3.

To compute the variance, observe that:

E(X2) = E E(X 2Iv)
= E [Var(Xlv) + E 2 (Xv) ]

= t exp (ZA3) + t2 [exp (Z1)]2 (1 + a)/a.

It follows that:

Var(X) = E(X2) - E2(X)

= t exp (ZA) + t2l[exp(Z3)]2/a.

The parameters a and ji may again be estimated using the method of
maximum likelihood. The estimate of A obtained from the Poisson regression
model provides a convenient starting value for the iteration. However, the
log-likelihood function is no longer globally concave, so more care must be
exercised in searching for the global maximum.

CONCLUSIONS

If material failures follow a Poisson distribution, then the expected
number of failures is exactly proportional to flight hours. However, this pro-
portionality will not be revealed by simple correlation or regression analysis
between monthly flight hours and the number of monthly failures. To test for
proportionality, we must test the underlying hypothesis that the data follow a

*L Poisson distribution.
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We have presented three goodness-of-fit tests for a Poisson distribution.
We have shown that the Poisson distribution is perfectly adequate to describe
data on Class A Navy A-7 accidents over the period CY 1977 -CY 1983.

In cases where the Poisson distribution does not fit the data, we present
several alternative models. First, the mean of the Poisson distribution may
itself be randomly distributed across observational units according to a
Gamma distribution. If so, the number of failures will have a negative bi-
nomial distribution. Second, the mean of the Poisson distribution may depend
systematically upon a set of observable explanatory variables. In this case,
the Poisson regression model is appropriate. Finally, the mean of the Poisson
distribution may contain both a systematic component that depends upon

I observable variables and a random component that follows a Gamma dis-
tribution. This situation yields a generalized Poisson regression model.

Ps

-16-
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