
RD-AI59 56? RUNNING ROSS IN ON ENACS ENYIRONNENTCU) RND CORP SANTA 1/1
1011CR CR D J XCRRTHUR APR 85 RAND/P-7S98

UNCLA6SIFIED F/O 9/2 UL

E l UNIORS

IN C

1 2" 2.

1111.6
liii!ii.

1111 1.4 -1.1 ~1.6

MICROCOPY RESOLUTION TEST CHART

NATIONA4L BUREA OF STANOAROS-963-

'- --- -----.- . - -- ---- "-" . " . 2 .:i • - - . . - . .- . .. - .- •,, I•

' - . . - ' . .' - - . . - '. .'' -. .- . - . - ' -. . - '. .' -. . -.. -.-.-' ,".-. -. 4 i - ~ i 22 -

In

* In

II

RUNNING ROSS IN AN EMACS ENVIRONMENT

D. 3. McArthur

April 1985

°.'

_ OTIC
ELLCTE f
OCTO03 1685

1
C::-

1 Ito

La 085 02.0..

,"..

%

IA

The Rand Paper Series

Papers are issued by The Rand Corporation as a service to its profes-

i -S.

sional staff. Their purpose is to facilitate the exchange of ideas among
those who share the author's research interests; Papers are not reports
prepared in fulfillment of Rand's contracts or grants. Views expressed
in a Paper are the author's own and are not necessarily shared by Rand

bd or its research sponsors.
TMS

The andCororaton,170 Mai Steet P.O Bo 218, SntaMonca, A 9406213

i ".

p,

S.

.

5555

RUNNING ROSS IN AN EMACS ENVIRONMENT

D. J. McArthur

April 1985

5ACcensj.on For

N TI S ~
D T IC 7,:,?

Distr, : Aw I
Dist

0
T

C

PP11C

Running ROSS in an Emaca Environment

1. Introduction

I) This paper describes a software environment in which to run ROSS, an object-oriented simulation

language, developed at Rand [MCA82, KLA821. The goal of the facility is to provide the user

with tools that can increase the speed at which the user creates, tests and debugs large ROSS sys-

tems. Using ROSS alone, making permanent fixes to code was tedious. The user had to get out of

ROSS, into an editor, make the changes, return to ROSS, then re-load the changed file.

-Os approach is to embed ROSS inside Emacs, a powerful, personalizable, screen-oriented, editor.

(hence we refer to it as the "ROSS-Emacs" facility). We have tailored Emacs to provide just the

tools the ROSS programmer needs. For example, the user never has to leave ROSS to make code

changes, and all the lower-level details of code management-such as finding the file (and location

in the file) of behaviors or functions, saving permanent changes onto disk, and loading new

definitions back into ROSS-are done automatically. This facility makes ROSS a much more

friendly and powerful environment for debugging.

i u= . ..-ai:ig ~a--tin !describe various facets of the ROSS-Emacs facility. begi* 7ith a brief

overview, followed by descriptions of commands for editing functions and behaviors, managing

Emacs windows, evaluating Lisp forms, compiling Lisp forms, and defining ROSS systems. Each

section starts with a brief description, followed by a list of the Emacse commands that implement

the described capabilities. (--

2. Starting and typing ROSS/Lisp forms

In this environment, the user is actually in the Emacs editor. ROSS is invoked automatically as a

subprocess of Emacs. The ROSS session has its own buffer, called "lisp" in an Emacs window.

The user types forms in the window just as he would to ROSS. When he hits a <CR> Emacs

takes the form just typed, submits it to ROSS, and prints the value out on the screen. Thus, in

simple interactions, the environment looks just like it did before. However, because you are also

h.. 2 . . - 7
b- j . - .-. "° '. • °. .- .. "Q -.- ' " -o . e .- . . . , .'. ' . " 9 . 9- - -o , . , . - ' ' Q l m . b . ' " ' '

, J ' . _- . . - . - . ,. " . . _ . . - . .. + o o - - : • . -. -. .- -. .

in Emacs, many new things a- possible. For example, in the Lisp (ROSS) window, you may

move the cursor back and forward across the current line, or go back to point to previous lines.

In this way you can even re-evaluate expressions you submitted earlier to ROSS. For example,

assume that 10 lines earlier in a ROSS session you typed "(setq foo 5)" and now you want foo to

have the value 6. Instead of typing a new setq, you can just move the cursor in the Lisp window

to the "5" in the previous setq, then change the "5" to "6" in the normal Emacs fashion. Now

go to the end of the setq and hit <CR>. Since Emacs submits the expression just prior to the

last <CR> to ROSS, this <CR> this wil have the desired effect of re-evaluating the form and

setting foo to 6. In general, the ability to edit your interactive ROSS session will make it much

easier to correct errors and execute repetitive actions.

3. Emaca commands for ROSS and Llsp

A number of new Emacs commands have been defined to make things simpler when interacting

with ROSS. Like normal Emacs commands, they have a name and are often associated with spe-

cial keystroke combinations. But unlike other commands, they know about ROSS and Lisp struc-

tures and actions. They not only allow you to reference characters (primitive text structures) but

also to reference s-expressions, function-definitions, behavior-definitions, messages and objects

(primitive ROSS and Lisp structures). They not only allow you to move or delete things (primi-

tive text operations) but also to evaluate, edit or compile them (primitive ROSS and Lisp opera-

tions).

All of the commands, whose operation will be explained below, can either be invoked by the keys-

trokes indicated in the bindings or by using the Emacs ESC-X prefix. For example, to evaluate

the current list you can either say ESC-e or ESC-Xzap-expr; to go to the previous window you

can say either "X-n (hitting the "CTRL" and "x" keys simultaneously, followed by the "a" key),

or use ESC-Xprevious-window.

•. ... -.. "..-..................

-3-

4. Editing function and behavior definitions

The main reason for using ROSS in Emacs is to exploit its powerful editing facilities. To edit

functions or behavior definitions use:

Function Binding Action
edit-function ESC-f Prompts for a function name, then goes to a window with the file where

this function is contained, putting the cursor at the start of the
definition. If Emscs doesn't know which file the function is in, it will ask
you for the file name. It will only have to ask once, since it remembers
the name.

edit-pointed-function ESC-g Like edit-function, except it will edit the function you are pointing at.
You should be pointing at a function defining form (beginning with
"(der,. If you are not pointing directly at such a form, it will search
backward for the nearest such form, and edit that function.

edit-behavior ESC-b Like edit-function, only it prompts for an object and a behavior pattern,
then goes to the appropriate file. In specifying the behavior pattern the
user need only type enough of the initial portion of the pattern to allow
unique identification. However, ROSS pattern variables "+" and "

cannot be used.
edit-pointed behavior ESC-c Like edit-pointed function, except it applies to behaviors. You should

be pointing to a behavior definition: "(ask xxx when receiving ...)".

ROSS-Emacs commands for editing

The functions edit-function or edit-pointed function edit Lisp function definitions. The former

prompts for a function name, the latter assumes you are pointing at the function definition you

intend to edit (which you might be doing if you had just asked Lisp to pretty-print the function

definition), so doesn't prompt for anything. In either case, if Emacs can find the function (it may

prompt you for a file name if it has trouble) it will open a new window containing the file and will

position the cursor at the start of the function definition. You can treat this window as in an or-

dinary Emacs session. In particular, you can modify the definition, add new functions, use

evaluation commands (see Section 6.) and then save the file (^X^S) when you are satisfied with

the changes. At this point you will probably want to go back to the Lisp window. You can do

this in several ways using standard Emacs commands. These options are discussed in the next

section.

To edit behaviors use the Emacs commands edit-behuvior and edit-pointed.behavior. These are

perfectly analogous to their counterparts for functions.

* .

-o,

- 4- m

In searching through files, these four functions must make assumptions about the syntactic pat-

terns normally associated with function and behavior definitions. Therefore, if you write your

functions and behaviors in non-standard ways, these functions may fail to find them. To make

your life easier follow these simple rules:

" All function and behavior definitions should be uniformly lower-case.
" Function and behavior definitions should begin in the first column of the file.
* Don't put any extra spaces between definition keywords (e.g., use "when receiving"

not "when receiving".
" Always put the function name on the same line as the word "defun" and always put

the message-pattern of a behavior definition on the same line as the words "when re-
ceiving", even if this exceeds 80 characters.

" Always terminate the line that begins a function or behavior definition with a <CR>
or <LF>

5. Wndow management

When you've finished editing functions or behaviors in a file you will probably want to get back

to the window containing the Lisp session. To do this the following commands are useful:

Function Binding Action
switch-to-buffer 'X-b Prompts for the name of the buffer and associates it with the current

window. The old buffer associated with this window merely Ioses
that association: it is not erased or changed in any way.

delete-buffer ^X-d Removes the current window from the screen and gives it's space to its
neighbor below (or above). You do not lose the buffer associated with
the window, it just is not visible.

delete-other-windows 'X-1 Deletes all windows but the one you are in, which now takes up the
whole screen. The buffers associated with the other windows are not
lost.

next-window "X-n Switches to the window (and associated buffer) that is below the
current window.

previous-window X-p Switches to the window (and associated buffer) that is above the
current window.

ROSS-Emacs commands for window maintenance

.. .

There are several ways to use these commands to get back to Lisp and ROSS: (i) use iX-b and

respond "lisp" to the prompt, to put Lisp in the window you are now in (thus losing the edited

file); (ii) use ^X-n or "X-p to get to the previous (higher) or next (lower) window on your screen,

repeating until you are in the Lisp window; (iii) use ^X-d to delete the current (i.e., edit) window

then go to the Lisp w. adow. The latter method is often preferable if you find your screen becom-

ing cluttered with windows associated with previously edited files. It is a good practice to get rid

of unneeded windows.

6. Evaluating things

One important thing you'll want to do is evaluate pieces of code you are pointing at. If you are

in a window associated with a ROSS session a <CR> can do this, but in any other window

<CR> just inserts a new line (the normal Emacs action for <CR>). There are several special

functions that allow you to evaluate what you are pointing to in any window.

Function Binding Action

sap-thing ESC-t Marks the "thing" currently being pointed at, submits it to Lisp where
it is evaluated, then returns to the original point in the current buffer.
Exactly what "thing" is pointed at is determined by the prefix argu-
ments the user supplies to zap-thing. If no prefix is supplied then the
current atom is evaluated; if one argument ('-U) is supplied then the
smallest (first-level) list embedding the cursor is evaluated; if two argu-
ments (^-U ^-U) are supplied then the second smallest (second-level) list
embedding the cursor is evaluated, and so on. If more arguments are
supplied than there are embedding lists, an error is signalled. Zap-thing
is the most general evaluation function.

sap-expr ESC-e Marks the list s-expression currently being pointed at, submits it to Lisp
where it is evaluated, then returns to the original point in the current
buffer. Equivalent to ^-U ESC-t.

sap-message ESC-m Marks the region around the cursor that begins with any message form
"(ask" or "(tell", submits it to Lisp for evaluation, then returns.

sap-defun ESC-d Marks the current function defining form, submits it to Lisp, and stays
there.

sap-defun-stay ESC-s Marks the current function defining form, submits it to Lisp, then re-
turns to the original point in the current buffer.

sap-string ESC-y Prompts the user for a Lisp or ROSS form, then submits the form to
ROSS, where its value is printed, and finally returns to the original
point in the current buffer.

ROSS-Emacs commands for evaluating

.. •. ... o....................

-.-- rrrr

In general these functions can be used in any window (not just "lisp"), providing Emacs under-

stands that the code in the window is Lisp or ROSS code.

* It will understand this only if the file has the extention type ".1". So make sure you
use this extention if you want to be able evaluate, edit or compile code via Emacs.

When evaluating things just make sure the cursor is in the window containing the code you want

to evaluate and is pointing to the exact Lisp or ROSS expression you are interested in. Generally,

this means pointing at a top-level element in the target list-structure. If you point to an element

in an embedded list, then that list, not the inclusive target list will get evaluated.

Once you are pointing at the right expression, just give the correct keystroke sequence. The

result of evaluation should appear in the Lisp window, regardless of whether the evaluated code

was in that window or some other one.

7. Comp~lng code

The current facility enables the user to interactively compile function (not behavior) definitions as

well as interactively modify interpreted ones. This can be especially useful when speed is essen-

tial.

Function Binding Action
compile-function ESC-i Takes the function definition currently pointed at, submits it to the Lisp

compiler, liszt, then loads the resulting ".o" file into Lisp, finally return-
in& you to where you started.

compile-file ESC-o Like compile-function, except the whole file currently being pointed at is
written, recompiled, and loaded into Lisp.

ROSS-Emacs commands to compile code

During compilation, a trace of liszt's activity will be appended to the Lisp window so that the

user can diagnose errors in compilation.

. . C

-7-

8. Defining ROSS systems and searching them

As a ROSS system gets larger you may lose track of where various functions, objects and

behaviors are. This may make it difficult to rapidly access pieces of code, for example when edit-

function (see Section 4) asks you where a function is. There is a simple facility that allows Emacs

to construct a "map" of your system, obviating the need for you to have one.

Function Binding Action
load-ross-system -- Prompts you for a file name, which should contain the names of each of

the files in your ROSS system. The names should be one to a line, be-
ginning in the first column. If you envision loading the system from
various directories, each file should be specified by full absolute path.
names. A ROSS system must be loaded using this function before any
of the following functions will work.

re-tag-ross-system Goes through each of the files in a loaded ROSS system and remembers
the location of each function, macro, variable, object, and behavior in
the system. After this, e&t.fusnction and eit-beiaior will never have
to ask you where a function or behavior is located.

whereis-function Prompts for the name of a function and returns the name of the file
where it is located. Will work for defmacros, and defvars as well as de-
fun. Returns its answer much more rapidly if it has rememebered (e.g.,
via re-tag-ross-system) where the function is.

whereis-behavior Like whereig-function .except it prompts for an object and behavior.

ROSS-Emacs commands for defining and searching a ROSS system

The recommended procedure is to re-tag your ROSS system petiodkally. This task may take a

minute or two, but it greatly speeds up the operation of edit-function, edit-behatior, whereis-

function, and whereis-behavior. Re-tag whenever you have made substantial additions to the sys-

tem, or have moved things from one file to another. If you don't tag your system, and then ask

Emacs where a certain function is, it may have to do a search through all your system fles to

find it. When you get back from lunch it might be done.

9. Moving around structures

In addition to the normal Emacs commands for moving forward and backward by character or by

line, there are some commands that are especially useful for moving around Lisp or ROSS expres-

sions and manipulating them.

-8-

Function Binding Action
forward-word -- Move dot forward to the end of a word. If not currently in the middle

of a word, skip all intervening punctuation. Then skip over the word,
leaving dot positioned after the last character of the word. A word is a
sequence of alphanumerics. Note: this is normally bound to ESC-f in
Emacs. If you envision using it frequently, rebind it to something.

backward-word If in the middle of a word, go to the beginning of that word, otherwise
go to the beginning of the preceding word. A word is a sequence of al-
phanumerics. Note: this is normally bound to ESC-b in Emacs. If you
envision using it frequently, rebind it to something.

delete-previous-word If not in the middle of a word, delete characters backwards (to the left)
until a word is found. Then delete the word to the left of dot. A
word is a sequence of alphanumerics. Note: this is normally bound to
ESC-h in Emacse. If you envision using it frequently, rebind it to some-
thing.

delete-next-word ESC-D Delete characters forward from dot until the next end of a word. If
dot is currently not in a word, all punctuation up to the beginning of
the word is deleted as well as the word.

backward-higher-paren ESC-(Moves backwards to a higher opening parenthesis that is unmatched by
any closing parenthesis before the current position of the cursor. Exactly
which such parenthesis is determined by the number of prefix arguments
given to the function. If zero or one argument is given ('-U) the cursor
goes to the first unmatched parenthesis; that is, the "(" of the first-level
list embedding the cursor. If two arguments are given (^-U '-U) the
cursor goes to the opening parenthesis of the second-level list embedding
the cursor, and so on. If more prefixes are given than there are lists
embedding the cursor, the cursor goes to the opening parenthesis of the
top-level list, and an error 's signaled.

forward-higher-paren ESC-) Analogous to backward-higher-pren, but moves forward in the file.
newline-and-indent LINEFEED Insert a newline, just as typing <CR> does, but then insert enough

tabs and spaces so that the newly created line has the same indents-
tion as the old one had. This is quite useful when you're typing in a
block of program text, all at the same indentation level.

re-indent-line TAB Causes the line you are on to shift left or right so that the expressions
on it will be aligned correctly with the ones on the previous line. In oth-
er words, it pretty-prints the line.

mark-list Causes the list you are pointing at to be marked (e.g., so it can be sub-
sequently killed, copied, etc). Exactly which of the embedded lists gets
marked is determined by the number of prefix arguments you supply,
accordini to the logic of beckwsrd- Aigler-pare.

ROSS-Emacs commands for moving around structures

.2t

• .---. ".--i - . -.

- 9- :

10. Retrieving names of entitles

There are a few commands which return the names of entities currently being pointed at. These

are mainly used by other functions, hence have no key bindings.

Function Binding Action
current-function -- If pointing at a function defining form (i.e., one beginning with "(der'),

returns the function name. If not, returns the name of the nearest func-
tion defining form, searching back up through the buffer.

current-object -- Returns the name of the object sent the message now being pointed at
or nearest the cursor.

current-behavior -- Returns the pattern of the behavior definition ("when receiving") now
being pointed at or nearest the cursor.

ROSS-Emacs commands for retrieving names

11. Help and Documentation

There are a couple of functions for on-line help with ROSS in general and the ROSS-Emacs facili-

ty in particular.

Function Binding Action
ros-emacsahelp ESC-h Prints information on ROSS-Emscs commands in the Help window.
ross-manual -- Prompts user for the name of a ROSS command, then prints the ROSS

manual documentation for that command in a window. The command
should be entered in upper case. The whole command need not be en-
tered, just enough of the beginning to provide unique identification.

ROSS-Emacs commands for help and documentation

12. Getting started j
To run the facility you need to have an Emacs initialization file that loads the ROSS-Emacs utili-

ties. A reasonable initialization file to begin with is /a/ftpross/emacspro. Copy it into a file

named ".emacs pro" (note the ".") in your home directory. The actual mlisp (mocklisp) code

that implements the ROSS-Emacs facility can be found in /a/ftpross/ross-emacs.ml on rand-unix.

Finally, /a/ftpross/ross-emacs is a simple shell file for initiating ROSS under Emacs. If you exe-

cute this file you will find yourself in an Emacs session, with ROSS running in one window.

A

:: : - : . :. 2; .- , -. i : -.. i'2 : ,-i : .F i: .; . ; - i iiiF . : .% . .::i : i - --.. ; _. - :i ;.

. . ..

- 10-

To use the ROSS-Emacs facility, the user must have access to an extensible version of Emacs,

such as Unix Emscs by James Gosling. Unix Emac is available from Unipres Softwae, for a fee.

You might aso be able to get it for fm from CMU, if you're lucky.

13. e3..,,

KLA824 SWIRL: SIMULATING WARFARE IN THE ROSS LANGUAGE, Rand N-1885-AF,

September 19S2.

IMCAS21 THE ROSS LANGUAGE MANUAL, Rand N-1854-AF, September 1982.

:-

...........

FILMED

1 1-85

DTIC

