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SUMMARY

Electric resistance gauges have been used to investigate
the strains induced around a pair of closely-spaced interference-fit
fasteners (nominal centre distance equalling two hole diameters) in a
D6ac steel plate. For comparison, a finite element analysis was
performed for the same geometry using the penalty element method.

Measured strains showed broad agreementwith the results of the
finite element analysis and the latter indicated that the peak stress
level in the plate at the hole circumference would be 1.14 times the
level for a single similar interference-fit fastener in a infinite plate.
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P
) NOTATION ‘
E Modulus of elasticity
G Shear modulus
. . . 4G
q Stress non-dimensionalising factor Py
er Penalty element stiffness matrix
fpe Penalty element force vector
’ R Hole radius
X,¥Y Cartesian co-ordinate system relative to origin
at fastener centre
4
a Penalty number
p .
€ € Circumferential, radial strains in plate
pé, “pr
Y Poisson's ratio +
§ Fastener radial interference '24
A Fastener interference ratio = §/R )
A
%
K = (3-v)/ (14v) for plane stress 3
= 3-4v for plane strain
.../contd
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NOTATION (CONT'D)

L
o . . . .
°po, pr Circumferential, radial stresses in plate
OfU, Oty Circumferential, radial stresses in fastener
0 Angular position (c.f. Fig. 1)
i
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I. INTRODUCTION

The widespread use of various fatique enhancement
processes, such as the cold-working of bolt holes and the use of
interference-fit fasteners has led to many studies on the benefits
available and the mechanisps by which the gains are achieved. Even so,
a recent literature survey has found that current capabilities in
respect to stress analysis around life enhanced holes is insufficient
for the reliable prediction of the effects of such processes on fatigue
life.

In order to further the knowledge of stress/strain fields
associated with one such life-enhancement system, studies are being
pursued at the Aeronautical Research Laboratories (ARL) on tapered
interference-fit fasteners. These studies particularly relate to various
fastener/parent plate configurations. Topics already reported include
the elastic stress fields induced by a fastener located centrally in
a large plate2,3, and a fastener near an edge of a plate3'4'5. In this
paper we consider the elastic stress fields induced by a pair of
fasteners situated close to one another; by experimental methods (using
strain gauges) and numerically by the penalty finite element method
which has previously been found effective for similar problems3. The
general notation adopted in this paper is covered by the Notation section
and Fig. 1.

2. EXPERIMENTAL PROGRAM

2.1 Test Specimens

Two specimens were used. Both were made from Déac
steel heat-treated to an ultimate tensile stress in the range 1510 to
1650 MPa. The stress-strain characteristics of the material of specimen F
are shown in Fig. 2. The form of the specimens is illustrated in
Figs 3 and 4 - basically Specimen F was a simple square plate, while
Specimen 8/9 was of 'dogbone' shape. Both specimens contained a pair
of tapered holes centred npminally two diameters apart. The holes were N
finish-reamed with an 18 flute tungsten carbide reamer and fitted with &
tapered bolts of the Taper-Lok type, Code 2TLHC2-6, having a nominal
diameter of 3/8 inch (9.525mm). The bolts were manufactured from H-11
steel, and finished by nickel-cadmium plating and coating with cetyl
alcohol. The taper of one in 48 allowed accurate increments of interference
to be calculated from measured increments in insertion distance.

Short gauge length electric resistance strain gauges
were attached near the holes on one face of the specimens and also on
the sides of the Specimen 8/9. The gauge types are given in Table 1.
Their locations are shown in Fig. 3 (Specimen F) and Fig. 4 (Specimen 8/9).
With the exception of those gauges located on the specimen sides, the

gauges were bonded to the faces from which the bolts were inserted in the 3

holes.
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Althouygh there were differences in geometry the specimens

were considered to be essentially equivalent with respect to elastic
behaviour close to the fasteners. The key ratio of hole centre distance
to hole diameter was virtually the same in both specimens (1.99 for
Specimen F, and 1.97 for Specimen 8/9, measured at the fastener insertion
face). The lug ends of Specimen 8/9 were sufficiently distant to have
little influence, whilst the differences in the hole-centre-to-specimen-
edge distance were considered to be of secondary importance and that any
effects would not be significant. The ratio of hole-centre-to-edge
distance to hole diameter was 2.9 in Specimen F and 2.6 in Specimen 8/9.

2.2 Test Procedures

Each tapered bolt was inserted with firm thumb pressure
while one side of the specimen was clamped in a vice. Interference was
increased in steps of approximately 0.0lmm on diameter by tightening
the fastener nuts. Corresponding strains and insertion distances were
measured - the latter by a depth micrometer from displacements of the
fastener he.d. Tables 2 and 3 give the values recorded for each
specimen. The procedure was repeated until an interference on diameter
of 0.137mm was attained, but data collected only within the elastic
regime are presented here.

2.3 Experimental Results

The measured (elastic) strains were plotted against
fastener insertion distance (Figs 5 to 8), and straight lines fitted
using regression analysis. Some of the lowest strain readings were
excluded from the analysis because of inconsistencies arising, possibly,
from hole imperfections.

The slopes of the fitted lines represent strains per
unit insertion distance. These are readily converted to strain per
unit (dimensionless) interference, which are listed in Table 4. They
are also plotted, in Figs 9 and 10, against non-dimensional distance
from a fastener centre for two radial traverses - perpendicular to and
parallel with the axis joining the fastener centres.

2.4 Estimation of Yield Incipience

As the initial stage of pin insertion often induces a
non-linear response in the specimen, strain level rather than insertion
distance was used to determine the upper limit of the elastic regime, i.e.
yield incipience. For this purpose the strain gauge nearest to each
hole was adopted as the control gauge. The strain corresponding to
yield incipience was computed from a finite element analysis at the

Ry

SO



relevant gauge positions, and used to define the upper limits of
insertion corresponding to fully elastic behaviour at each hole.

In more detail, the peak stress levels for a known
interference level were obtained from finite element analyses for both
plane stress and plane strain conditions. When these stress levels
were considered in relation to a yield stress of 1100 MPa (estimated
from Fig. 2) it was found that yield onset (according to the Tresca
criterion) could be expected at a threshold non-dimensicnal interference
level of 0.00474. Strain distributions from the finite element analyses
(see Figs 9 and 10) were then utilized to estimate the critical strain
at the control gauges.

2.5 Error Levels

Strain measurement in similar tests indicated4 that
the largest error was less than 2.8%. An approximate comparison with
the present case indicates the maximum error levels should be no greater.

The measurement of fastener insertion by depth
micrometer would usually be accurate to within approximately *0.02 mm.
However, the pattern of data from Specimen 8/9 (Figs 6,7, and 8)
suggests larger errors - possibly resulting from irreqularity in the
thickness of the strain gauge waterproofing material covering the
surface of the specimen which was used as a reference face for the depth
micrometer measurements. }

3. NUMERICAL INVESTIGATION ’

Finite element analyses were carried out to verify the
experimental results for Specimen 8/9 detailed in Section 2. For this
work the specimen was modelled exactly; except for the regions around the
lug ends, which are remote from the fastener holes. The specimen material
properties were taken as E & 209 GPa, and v = 0.3.

3.1 Modelling Details

In performing the analysis it was necessary to deal
with a problem common to interference cases, i.e. the values of
displacement and forces around the fastener/hole interface are unknown.
A method for overcoming this difficulty has been formulated and
implemented in a previous investiqation3 by applying the penalty finite
element method®,7, The analysis given in Reference 3 allows the
required constraint condition around the fastener/hole interface to be
enforced in a finite element solution - the constraint condition being
that the sum of the radial displacements of the fastener and hole i
corresponds to the interference level; this condition is enforced for
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all nodal points around the interface. To implement the method very
large external penalty forces are applied at interface nodes and
correspondingly large stiffness values for the penalty elements added
to the standard finite element formulation. The penalty forces f

and stiffness matrices K were determined using equations (3.6) and
(3.7) respectively of ReYference 3 and weighted over the circumfere..:tial
length of the standard iso-parametric elements using a three-point
Simpson's rule. The value of the penalty number a used in the
equations was 7500E, which was chosen since it was previously found to
be effective in Reference 3. The suitability of this value was verified
for the present analysis, since convergence to the required constraint
condition was achieved to within 0.001%.

Because of symmetry of Specimen 8/9 it was sufficient
to model one quarter of the structure. The resultant finite element
mesh (Figs 11 and 12) consisted of 129 eight noded iso-parametric
quadrilateral elem=nts, 36 six noded iso-parametric triangular elements
and 25 two noded penalty elements.

It was assumed that there was no slip along the fastener/
hole interface and hence adjacent nodes on the fastener and lwle were
restrained to have no displacement relative to one another in the
direction tangential to the hole.

Two separate solutions were obtained based on the
following assumptions:

(1) that an elastic plain stress state existed for
both the fastener and plate, and

(ii) that an elastic plain strain state existed
for both the fastener and plate.

The stiffness matrices of the standard elements were
obtained using double precfsion and reduced integration and double
precision was also used in the solution.

3.2 Results

Stresses derived from the finite element analyses for
points on the fastener/hole interface are presented in Figs 13 to 16.
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In the above, stresses have been presented in the
non-dimensional form stress/q,

4GA
where X1’
A = fastener interference ratio,
and K = (3 -v) (1L +v) for plane stress
or K = 3 - 4v for plane strain.

Curves have been fitted by eye to the data to smooth
out small local irregularities introduced by the finite element analyses.
In each case one curve was adequate to represent both the plane stress
and plane strain finite element results, and for radial stress plots a
single curve was applicable to both plate and fastener stresses.

In addition strains were derived, using the information
from finite element analyses, at convenient positions along the axes
on which strains were measured. Comparisons are given in 'igs 9 and 10.

4. DISCU$SION

Various tests can be applied to estimate the accuracy
of the finite element analysis. For example:

(a) the variation between stress levels determined from
different elements at the same node;

(b) the differences between the radial stresses in the
fastener and plate at the interface (Figs 14 and 16);
and,

(c) the variation, about a smooth curve, in the circumferential

stresses in the plate and pin at the interface (Figs 13
and 15).

Examination of these aspects suggests, for the finite

element analysis, an accuracy of about % 2% at the hole perimeter.




Fig. 13 depicts non-dimensional circumferential
stresses at the hole boundary in the plate. The maximum value is 1.14,
located nearest to the other hole on the common centreline. For
comparison, the non-dimensional stress ratio for a similar interference-
fit fastener in an infinite plate would be exactly 1.0.

A good correlation was found between the experimental
strain results and the finite element analysis for the limited data
from Specimen F. The strains measured on the other specimen (8/9)
exhibit similar trends to the numerical results and there is broad
agreement. However it is felt that the accuracy of fastener insertion
measurements may have been reduced by uneveness in the thickness of
gauge waterproofing {(c.f. § 2.5) with some effect on the overall
accuracy of the results for the latter specimen.

The experimental evidence is not precise enough to
indicate whether the plane stress or the plane strain solution is the
more accurate.

Hole irregularity is reflected in delayed strain
response (see Fig 5 to 8) - corresponding to approximately 0.5 mm
ineffective insertion distance, or 0.00l1 non-dimensional interference.

5. CONCLUSIONS
1. Stress and strain levels in the vicinity of a pair of closely-

spaced interference-fit fasteners in a steel plate (nominal pitch of
two hole diameters) have been evaluated by the finite element method

and appear to be accurate to within #2% in the vicinity of the hole boundary.

The analysis assumed perfectly accurate hole and pin geometry and a
no-slip interface.

2. Strain measurements in one specimen with close-spaced fasteners
agree well with the finite element results at four gauge positions.
Results from the second spaci.en are less accurate but follow the trends
of the finite element results.

3. The peak stress level around the holes (as derived by finite
element method for a hole centre distance to diameter ratio of 1.97)

is 1.14 times the peak stressfor asingle similar fasterer in an infinite
plate.
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TABLE 1. ELECTRIC RESISTANCE STRAIN GAUGES
Gauge
Gauge Type Specimen '
N ert Orientation relative |Length |Width
—— to hole (mm) {mm)

Metalfilm F All circumferential 0.38 | 0.51
C6-1X1-M15E ’
Micromeasurements 8/9 1,11 specimen side
WA-06-125-BT-120
Micromeasurements 8/9 2,3,5,6,7 circumferential 0.38 0.51
EA-06-015-DJ-120
Kyowa 8/9 4 circumferential .
KFC-03-Cl1l-11 8,9,10 radial 0.3 .

Adhesive used:

M Bond 200 with catalyst.

* For locations see Figs 3 ard 4.
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TABLE 2: STRAINS RESULTING FROM INSERTION OF TAPERED BOLTS
SPECIMEN F
-3
Strain (x10 )
Fastener Insertion Distance (mm)
G:‘:’e Thumbt ight 0.254 0.667 | 0.954 1.248 1.899
1 0.000 0.092 0.311 0.506 0.821 1.561
2 0.000 0.070 0.387 0.604 1.064 1.824
Thumbtight 0.320 0.670 0.938 1.301 2.001
3 0.000 0.058 0.191 0.563 0.731 1.731
4 0.000 0.113 0.229 0.598 1.132 1.792
) - I s A nprumsastitntain "
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TABLE 3: STRAINS RESULTING FROM INSERTION OF TAPERED BOLTS
SPECIMEN 8/9

—— e e ——— - e
-3
Strain (x10 )
Fastener Insertion Distance (mm)
Guage No. Thumbtight 0.735 1.724 2.156 2.409
1 0.000 0.101 0.302 0.362 0.449
H
i 2 0.000 0.302 0.955 1.010 1.304
3 0.000 0.446 1.445 1.532 1.986
4 0.000 0.391 1.256 1.575 2.050
5 0.000 0.499 l1.611 1.822 2.368
6 0.000 0.308 1.117 1.271 1.692
7 0.000 0.229 0.965 1.099 1.533
p
Thumbtight 0.558 1.801 2.156 2.587
8 0.000 -0.020 -1.288 -1.773 -2.733
9 0.000 -0.022 -0.628 -1.097 -1.983
10 0.000 -0.068 -1.213 -1.692 -1.900
11 0.000 0.033 0.243 0.316 0.405

.hww
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TABLE 4: MEASURED STRAIN PER UNIT INTLRFERENCE RATIO

Gauge

Specimen . - Lo Strain/i

No Location Position

— . _Axis x/R or y/R .
F 1 Oy 1.16 0.482
2 Oox 1.19 0.558
3 ‘ Oy 1.20 0.523
4 i Ox 1.21 0.548
b
8/9 1 l Ox 5.19 (spec. side) 0.093
2 i Ox 1.49 0.263
3 Oox 1.20 0.404
4 Oy 1.23 0.439
5 Oox 1.25 0.492
6 Ox 1.54 0.363
7 Ox 1.79 0.338
8 Ox 1.14 -0.593
9 oy 1.14 -0.412
10 Ox 1.12 -0.436
11 0; 5.20 (spec. side) 0.085
————|,
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200 22.6 mm? cross-section).
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FIG. 2 STRESS-STRAIN CHARACTERISTICS FOR D6AC
STZEL (MATERIAL OF SPECIMEN F).
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762 — Centreline
A distance from
2845 1193 Gauge No. hole edge
(mm)
1 42 1 0.76
% —3§g+g?7—- 2 0.91
Hole Hole| 3 0.99
7 4 3 4 1.02
Plate thickness = 4.55 mm
Holes taper-reamed to suit 9.525 mm
nominal diameter Taper-Lok bolts.
Hole diameters at insertion face are
9.701 mm (hole 3) and 9.709 mm (hole 4)
FIG. 3 CONFIGURATION AND GAUGE LOCATIONS - SPECIMEN F.
F r\-—/\—/\-’-\/.
4 9
6 g 0
1 23 S7 1"
+
Hole 9 Hole 8
P Centreline distances from hole
edge (mm).
] fs— 4, 85 25.36 Gauge No. 1 20.4
> 2 2.41
9101!{“ 1 4€>T€i;:]L' 3 0.96
—~>»19.8}=— > Holes taper-reamed 4 1.12
to suit 9.525 mm ' 5 1.21
1-4——69.9-—-1 nominal diameter
Taper~Lok bolts. 6 2.63
// 7 3.83
- 8 0.70
9 0.67
10 0.56
11 20.4
Hole diameters at insertion
L face are 9.747 mm (hole 8)

‘] and 9.764 mm (hole 9).

All dimensions in mm.

FIG. 4 CONFIGURATION AND GAUGE POSITIONS
SPECIMEN 8/9,
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Finite element solutions: -05¢
Plane stress -0.6
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Exzerimental results:

x Specimen F

o Specimen B8/9

FI1G. 9 CIRCUMFERENTIAL AND RADIAL STRAIN RATIOS ON LINE JOINING
CENTRES OF CLOSELY-SPACED FASTENZRS - COMPARISON OF
EXPERIMENTAL RESULTS WITH FINITE ZILEMENT SOLUTIONS.
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FIG. 12 FINITE EZLEMENT MESH IN REGION OF HOLE - INTERACTION
BETWEEN FASTENER AND PLATE.
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