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ABSTRACT

A variety of operations research techniques and models

that are applicable to human factors engineering problems

are identified and classified according to the functions or

purposes for which they are useful. Several of these tech-

niques are described in sufficient detail for a human

factors engineer to determine if they are applicable to a

problem of interest. Uses for techniques are illustrated in

military-related human factors settings, primarily related

to the Navy's antiair warfare mission. References are

provided for additional information on each technique.
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1. INTRODUCTION

This thesis is intended for human factors engineers who
seek additional techniques to use in evaluating the adequacy

of new systems. The techniques discussed here are commonly

used in the field of operations research. They are readily
applicable to many human factors problems, but are not

widely known in that discipline. Most of these techniques

result in quantitative answers--numbers or equations which

represent how much money or time will be saved, or how many

errors can he expected, etc., if this particular system or

change is implemented.
9 Human factors engineers certainly recognize the need for

numerical answers to engineering problems, based on measures

of effectiveness. 7he design and systems engineers who

oversee major programs are justifiaLly skeptical of qualita-

tive judgements--especially ones like, "It is my infurmed

opinion that the operator will make fewer errors if we raise

the widget 2 inches." Since it costs money to change a

design and raise a widget, at least three questions need to

be asked. How much does an error cost? By how much will

errors be reduced? In the long run, will it be cost effec-

tive (in money or lives), if we raise the widget?

Numerical answers may be available, in specific cases,

as a result of directly-applicable experimentation (either

previously carried out or done especially to answer a

current question). Usually, however, they are not. When

empirical data are not available, the human factors engineer

must rely either on intuition or on extrapolation of what is

known, through the use of some model, to make evaluations.

The operations research techniques presented here are

intended to assist in the latter process.

9
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A. BACKGROUND

For some time, human factors engineers have been

intrigued by a possible liaison of human factors with opera-

tions research, notes DeGreene [Ref. 1]. However, he

continues, human factors and operations research have

largely gone their separate ways. The former perhaps have

made somewhat more use of operations research techniques

than the latter have incorporated psychological knowledge

from human factors research. Still, much of the mathematics

and many of the concepts used in operations research remain

outside the general knowledge pool of human factors

specialists.

DeGreene describes the gap between the two disciplines

as follows:

Operations research tends to be formal and guanta-
tive, and applied at the subsystem level, or lower, and
toward suboptimizations, in Zhe systems sense, rather
than towards optimizations. To a great extent, there is
an emphasis on theory over applications.

Yet in many ways, operations research represents a
natural extension of t e methods long practiced in
psychological and human factors research. In bothcases, problem. "fields". and methodologies (e.g.sampling surveyn and simulation) are similar an
5uantitative proceaures have a basis in probaLility

hneor y.

Operations research tends to require more mathe-
matict than most psychologists and human factors
specialists possess or need. We know of no texts, arti-
cles, or university courses entitled "Operations
Research Techniques for the Human Factors Specialist".
Such courses would require a respectable understanding
of human behavior, as well as mathematical
manipulations.

DeGreene does acknowledge a number of human factors

problems that actually have utilized operations research
techniques. These include panel layout; work space design; P
visual sampling and display design; information system data-

file, data-bank, and data retrieval designs; organizational
data flows; and manpower determinations and allocations.

I00
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However, he notes that a large number of potentially useful

techniques are not widely used. He lists queueing theory,

linear programming, and game theory as especially fruitful

areas for human factors applications.

This study is intended as a slender bridge across the

gap DeGreene has described. It may be useful to operations

researchers who happen to work with man-machine systems.

However, the primary intended audience consists of human

factors engineers. Specific operations research techniques

are identified and described here, then correlated with

human factors-related problems. Thus, human factors engi-

neers may be able to pick up some of these procedures, as

applicable to their individual areas of interest, without

having to study the whole of operations research.

According to Cogan [Ref. 2], good operations research

and good human factors have several points in common. Both

are concerned with how to implement innovations. And both

require a general imagination, elastic feats of the mind,

and adventurousness. Effective work in both fields must be

based on an intimate knowledge of the system being studied.

Discovery, invention, or creativity puts this knowledge in a

new light. A formal epistemological or mathematical review

then provides a firm foundation for inovation.

While human factors principles are appliei (or can be

applied) throughout the whole range of human activities, one

of the most promising areas for the melding of that disci-

pline with operations research is in military svstems. The

enormous expense of these systems, coupled with the severe

consequences of human error, suggest that all applicable

techniques that might result in system improvements should

* be utilized. Therefore, military applications are

emphasized in the examples given below.

To aid in understanding the techniques presented here,

it is useful to provide a common thread throughout the

11
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explanations and examples. Actually, two "threads" are

used. The first is the employment of a constant format in

describing all of the techniques (as discussed in the next

chapter). The second is the application of each technique

to the same (or close to the same) scenario or mission. The

Navy's mission area of antiair warfare (AAW) has been

selected for this purpose. Insofar as practical, that

tactical category known as air combat maneuvering

(ACM) -direct air battles between two or more fighter

aircraft--is used to illustrate how the various operations

research techniques may be applied.

B. OBJECTIVES AND PROCEDURE

The objectives of this study are:

1. To identify and classify a number of operations

research models and techniques which are applicable

to certain human factors problems.

2. To describe several of these models and techniques in

enough detail to enable the human factors engineer to

determine if they are useful for his or her

particular problems.

3. To illustrate the use of some of these techniques in

a military-related human factors setting.

4. To provide references for additional information on

each listed technique, to enable further study if the

human factors engineer is interested.

In short, this is intended as a "how to" manual, not a
"why so' textbook. Readers who desire or need a theoretical

basis for the techniques discussd here are referred to the

more standard mathematics and operations research texts

cited in each section.

12



II. DEFINITIONS

Before beginning discussion of operations research tech-

niques applicable to human factors engineering problems, the

following sections briefly describe what is meant (in this

study) by the following terms:
1. Human factors and human factors engineering

2. Systems engineering, systems analysis, and operations
analysis

3. Operations research

4. Operations research techniques

The procedure used in this study to combine human factors
engineering problems with operations research technique.s

also is discussed.

A. HUMAN FACTORS ENGINEERING

Human factors engineering is the application of informa-

tion about human behavior in the design of equipment, facil-

ities, and environments, in order to meet man-machine system

objectives. It is not synonymous with, but rather is a

subset of, the more general field of human factors. The

latter also includes research into human capabilities and

the enhancement of capabilities through training, as well as

application of research findings to design problems.

Closely related to human factors engineering is the
field of engineeri. syo The difference is in

focus. Human Factors engineering adopts the perspective of

the engineer, and is concerned with the entire human body

and its performance. Engineering psychology, on the other

hand, adopts the perspective of the psychologist, and so

focuses on the brain, the mind, and behavior.

13
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According to McCormick and Sanders [Ref. 3], the primary

fo~c§ of the general field of human factors is on human

beings carrying out functions to meet an objective (or, as

Bailey [Ref. 4] puts it, "Somebody doing something some-

place"--that is, a person converting inputs to specified

outputs, via work activities). The combination of person,

activity, and surroundings--including equipment needed to

perform the activity--can be considered a man-machine

s.stem, and thus is amenable to the techniques of systems

analysis.

The a ach used in human factors engineering is the

systematic application of relevant information about human

abilities, characteristics, behavior, and motivation, in the

execution of functions or activities as described above. In

other words, engineering techniques and knowledge, about the

human being are applied to the man-machine system, to bring

about some desired output from given inputs. In doing so,

as Jones points out LRef. 5], the psychologist is well aware

that the man is, at best, statistical in nature (while the

typical systems engineer is only vaguely aware that human

behavior is variable, nonlinear, and time varying).

It is important to note that the human factors engineer

attempts to apply research-based information (as opposed to

logic or common sense) to systems problems, as is emphasized

by Chapanis [Ref. 6]. He notes:

Because psychologists work so intimately with the
tangled skein of re ationships which consti ute human
behavior, they are not much inclined to trust their
common sense, intuitions, or. logical powers of analysis
when it comes to matters of this kind. Most good human
engineers, I find, are always a little uneasy when they
have to make decisions unsupported by empirical find-
ings. To such people, one good experiment is worth a
hundred guesses, because they know how often guesses
turn out to be wrong....

As a result, the twa kinda of engineers--human aid
systems--do not often understand each ther. The one is
re±uctant to play his hunches, and argues constantly for
empirical evidence; the other is impatient at the long-
haired scientific attitude which demands validation, and

14
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argues that an "informed guess" is better than none. In
the long run, however the validity of any model must
face the stern test of empirical validation. In this
restect, .the human engineer's scepticism can contribute
to rhe work of the operations analyst.

It also is important to note that knowledge about human

performance is unavailable, to cover every possible situ-

ation and under all conditions. What we know--through human

factors research--is how a typical or anticipated user Pro.-

ab-y will perform in some previously-studied situations.

Thus, when a new situation arises (througki development

of a new system) we usually have only two ways to ,'find out"

how well we may expect the man-machine system to do its

intended job. We can perform research and measure perform-

- ance under the precise conditions of interest. Or we can
* take the closest, best data presently at hand and extend its

usefulness (make predictions) through some form of analysis.

The field of human factors engineering, and the measure-

.: ment and analysis techniques used by that discipline to

attack various problems, often are divided into established

cateoris. It is useful for our purposes to classify these

• categories under the objectives for which they are

" intended--objectives which then can be related to the opera-

tions research techniques to be discussed here. These

objectives may be stated as:

1. Deghibg individual human dif ferenes: permanent

differences, such as those that are inherent or due

to experience, *or transitory differences, such as

those due to physical or emotional state, motivation,

etc.

2. Desrq&1inq a man-ma hine system.
3. Desqnin (or modifying) Il s o oRtiam

: -.'[4 per form an ce.

4. Evaluajgj "ujga perLfoKrma&e within the system, to

-- " *judge whether given criteria are met for such things

15
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as perceiving inputs, performing mental activities

(mediation) , communicating, and making responses

(motor processes).

Table 1 illustrates how various "standard" human factors
* categories fit within these four general objectives. As

noted, these objectives sometimes have been met by easurin.
attributes or performance, through tests and-experiments.

At other times, techniques of prediction have been used, via

analysis and modeling.

Those human factors engineering methods and procedures

listed in Table 1 that have been extensively exploited in
the past are not covered in this study. These include func-
tion, task, timeline, workload, link, and environment anal-

ysis, as well as the design, conduct, and analysis of

* experiments and tests. The intent here is to break new

ground, not to review the entire spectrum of techniques.

Similar human factors objectives often can be met, in some-

what different ways (and sometimes with better results),

using the less familiar operations research techniques

discussed below.

B. SYSTERS ANALYSIS AND OPERATIONS ANALYSIS

Analysis, of course, is the separation of a whole into

its component parts. Analysis can be looked upon as a

detailed examination of anything complex, in order to under-

stand the nature and to determine the essential features of

-"that complex object or concept.

. - A system can be considered an assemblage of constituents

(people, hardware, and software) that interact to fulfill a

common purpose, transcending the individual purposes of the

components [Ref. 7]. Thus a system consists of several

". parts (each with attributes) plus the relationships among

." . them. Often the inputs to and outputs from this collection

16
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TABLE 1

HUMAN FACTORS OBJECTIVES AND CATEGORIES

HUMAN FACTORS OBJECTIVE HUMAN FACTOPS CATEGORYj

1. Qescribe Iniida 2ifferences:
-Tflfient

-IEMro pometric measares
Ph ysio logical measures
Inlelligence tests
Psychological tests

Exp erience
=owlIedge level tests

Skill level tests

--- Myical states
Emotional states

* Motivation measures
Satisfaction measures

2. 2~i~Functional analyses
Task analyses
workload analyses
Link analyses
Environment analyses

3. Dei~ ~Function allocation
Eauipaent design
Environment design
Job desIg
Personnel selection
Training design

4. 2valuation of Human Performance: mesren

monitor, recognize

Decision making

Communications measurement

Nonverbal

i3otr Processes measurement

Complex/cont inuous

17



of objects also are considered part of the system. Since,

as John Muir pointed out, "Everything in the universe seems

to be hitched to everything else," systems (and systems

problems) often are large and complex. Figure 2.1 is a very

simple model of a man-machine system, using this definition.

INPUTS OUTPTS

ARE;o ~HARDWARE SFWR

Figure 2. 1 Simple Model of a Ban-Machine System

_..stems enineerinq is the application of s=ientific and

engineering knowledge to the planning, design, evaluation,

and construction of man-machine systems and system compo-

nents, according to Chapanis (Ref. 8]. The process prima-

rily is concerned with the construction of new hardware and

software systems. Since the knowledge to be applied must

include information about human behavior, haman factors

engineering may be considered a subcategory of systems

engineering.

STstems Ingisis is the process of taking unmanageably

large problems of system design or control (espacially prob-

lems that are ill-defined) and "cutting" them into small

problems--known as suboptimization. Solutions to these

small problems can be sought, then combined in some manner

to yield solutions for the large ones [Ref. 9].

18
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When does a problem exist? According to Daellenbach and

others [Ref. 10], for a problem to exist,

1. There must be a decision maker who has a goal to be

achieved.

2. At least two altqa tive courses of action are

available.

3. There must be some doubt about which is the best

course of action.

4. The problem must be treatable within a relevant

environment.

Operations analysis is the term usually applied to anal-

yses of the operation of an existing system (as opposed to

the design or development of a new system) [Ref. 11].

According to Raiffa [Ref. 12], problems tackled by opera-

tions research are more limited in character than those of

systems analysis, and have better defined structure and

goals. There is no hard and fast demarcation line between

the two, however.

The basic role of operations analysis is to provide

carefully reasoned, technical, and predictive advice to the

system's users, according to DeGreene [Ref. 13]. He lists

as the sequential steps used for all operations analyses:

1. Recognition that a Rroblem exists and that the solu-

tion may be amenable to operations analysis
techniques.

2. Definition of that problem in an appropriate form,

including definition of objectives, requirements, and

constraints.

3. Definition of the sstem itself, beginning with gross
approximations and working toward minute preciseness;

the result should be a conceptual molel on which

quantitative analysis may be performed.

4. efnition of perfoFmance criteria for the system as

a whole, for the various levels of organization, and

for the combination of its constituents.

19



5. Definition of alternalive configurations, and evalua-

tion of trade-offs (using operations research

techniques).

6. r:E.2ntjtion 2L alternatives aad trade-offs to the

user.

7. Performance of onjqoin, iterative engineering and

human factors andlyses during system development.

8. Analysis 2f opegrational: se s ,  to gather

performance data.

Although operations analysis may have a qualitative

beginning, quantification is required as the system

develops. The ensuing guantative analyses then include:

1. Determination of the functional relationships of

performance parameters, using mathematical models to
n 4describe subsystems and systems.

2. Optimization of the system, using predetermined

criteria.

3. Determination of the variations in system performance

associated with chan_ es in constraints, external

requirements, etc.
Note that "quantitative" refers to the degree or level

of measurement of some quality or attribute. Thus it

includes ordinal relationships such as "more versus less"

and "better versus worse", in addition to interval and ratio
measurements. It also includes probabilities, as well as

discrete numbers.

C. OPERATIONS RESEARCH

According to DeGreene [Ref. 14], o2iations research is

the application of quantitative, mostly probabilistic tech-

niques (largely at the subsystem level) to the management
and control of secific complex systems. He contrasts this

. with systems analysis or operations analysis, which applies

20
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a similar body of techniques to systems to obtain general
(as opposed to system-specific) data--which then can be used

for general predictions of system and human performance

reliability.

As noted in the above section, the techniques developed

under the umbrella of operations research are used during
the process of operations analysis-- specific-ally, during

definition of alternative configurations and evaluation of

trade-offs. Thus, in this sense, operations research can be

considered a subcategory of operations analysis.

Operations research techniques usually are applied to

problems of conducting or coordinating operations or activi-

ties withiin an or ganizat ion, according to Hillier and

Lieberman [Ref. 15]. The nature of the organization is
immaterial; breadth of applications is wide. The discipline

is concerned with optimal decision making in, and modeling

of, deterministic and probabilistic systems that originate

from real life.

Not all operations research problems involve systems

engineering or human factors engineering. However, when

predictions about the most efficient operation of a not-yet-

constructed man-machine system are needed, the knowledge

provided by human factors engineering becomes vital

[Ref. 16].

The approach of operations research basically involves

use of the scientific method. Daellenbach and others

provide five major steps or phases for a successful

operations research project [Ref. 17]. These include:

1. 2efinin an4 formulatii the probl
2. Constructinq a mathematical model to represent the

.* operation studied.

3. Derivinq a solution to the model.

4. Testjn the model with empirical or other practical

data, evaluating whether the solution yields

21
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acceptable values for the measures of effectiveness,

and, if not, making appropriate changes or

ref inem en ts.

5. Jmel~pin, maittaihng, _4 ujin e solution for

predict ions

The above steps assume that the problem is well-
structured, a condition necessary if we are to approach it
with the usual operations research procedures. Daellenbach

and others [Ref. 18] list six characteristics of a
well-structured problem:

1. Any knwledq relevant to the problem can be
represented in an acceptable model.

2. An acceptable model will encompass all feasible
solutions.

3. Definite gria are available for judging the

feasibility and optimality of any solution.

4. A Programmable method (that is, one which can be laid

out in logical steps). exists for finding the optimal
solution.

5. The solution method does not require more computation

than is economically practical.

6. All informatig required by the acceptable model is
available or can be obtained economically.

Wagner [Ref. 19] notes that the distinguishing

-haracturistics of operations research include the
following:

1. A Primary focus on decision making: the analysis

must have direct and unambiguous implications for

action.

2. An a_paisal resting on criteria of economic efiec-

tiveness: a recommended solution must take into
account the cost and return tradeoffs, based on some

measure of effectiveness, so that a balance has been

struck.
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3. Reliance on a formal mathematical model: data manip-

ulation procedures should be so explicit that they

can be described to another analyst, who could then

derive the same results.
4. Dependence on an electronic computer: this charac-

teristic is not necessarily desirable, but is a

reflection of the complexity and size of most prob-

lems tackled under the banner of operations research.

The concept of measure of effectiveness (NOE) deserves

elaboration. Under the "systems point of view", final

criteria of overall system performance are used to evaluate

individual design decisions [Ref. 20]. The measure of

performance or effectiveness used most often in operations

research is cost in dollars.

Some operations research techniques are intended for

problems where only a single objective (e.g., cost) is to be

met, and only one measure of effectiveness is used. Other

techniques can handle several objectives at once. Still

others are used within a framework of continuous (rather

than discrete) variables and objectives.

A conflict between operations research and human factors
engineering must be considered here. For the human factors

engineer, measures of effectiveness usually are based on

some human performance outcome, described by one or more

observable attributes (such as speed or accuracy), that is

associated with each of the operator's alternative courses

of action. These attributes are used to measure how effec-

tively each outcome will meet the decision maker's objec-

tives. Pre-set criteria or standards mast be available in

order to measure the "goodness" of each outcome (for
example, a criterion that data will be entered on a keypad

with an error rate of five or fewer incorrect entries per

100 keystrokes).
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The problem, as Chapanis points out [Ref. 21], is that

most human factors research is carried out under carefully-

controlled, generalizable conditions so that results will be

widely applicable. This creates an extremely serious short-

coming in most human factors data: since they were not

obtained under realistic conditions (which are not so gener-

alizable), they cannot be entered directly into the opera-

tions researcher's cost equations. It does little good to

set a measure of effectiveness of error rate unless we know

how much an error costs--in dollars, lives, time, etc.

Chapanis recommends that, whenever human factors results

are to be used in operations research models, these results

be expressed in systems-relevant measures. These include

measures such as a pilot's delay-time expressed in the

amount of fuel consumed by the aircraft during the delay,

and pilot error rates expressed as the probability of

mid-air collision as a function of these errors.

D. OPERATIOIS RESEARCH TECHNIQUES

An operations research technia_.e can be considered to be

a verbal, physical, or mathematical procedure (usually

mathematical), defining or performed on a model, that either

1. elucidates a specific 'uestion about a system,
condition, or event (using a descriptive model); or

2. that gives a quantitative answer to such a question

(using either a descriptive or prescriptive model).

The basic categories of models (descriptive, prescrip-

tive, etc.) and the relationships between models and

techniques are discussed further in Chapter V.
Table 2 lists a number of operations researzh models and

techniques, applicable to human factors engineering prob-

lems, which are discussed in this study. These have been

categorized under three "purposes":
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TABLE 2

OPERATIONS RESEARCH MODELS AND TECHNIQUES

PURPOSE MODEL TECHNIQUE

1. Describing Systems. and Description-Based Predictions

Deterministic models

Regression analysis
Factor anal sis
Discriminani analy sis
Canonical correlation
Multidimensional scaling
Manual control
Optimal control
Time series models

Stochastic models

Markov chains
Poisson processes
ueueinq processes

ieliabili y models

Simulation models

2. Maximizina/minimizinq and Meetina Constraints

Linear programming models

Nonlinear programming models

Network models

Distribution models

3. Making Choices and Decisions

Decision theory models, decision analysis
Signal detection theory models
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1. Describin s sa And description- based

predict ions. These techniques involve finding or

developing some mathematical formulation that repre-
sents existing knowledge about the system well enough

so it can be extrapolated to predict the performance

which is expected under somewhat different condi-

tions. These describing functions are divided here

into deterministic, stochastic, and - simulation
models--to make it easier to see differences and

relationships. Meanings of these terms are discussed

in Chapter V or in the introduction to Chapter VI
(and also in the Glossary).

2. Maximizing, minimizinq, and mee__n constraints.
These techniques find ways to satisfy a number of

criteria simultaneously (or sometimes serially),

within bounds set by nature or human organizations,

to obtain the best possible solution to a problem.

Linear and nonlinear programming, network, and
distribution models are included in this category.

3. Making choices and decisions. Given a list of alter-

natives, these techniques are used to perform anal-

yses and evaluations in order to determine which

alternative will best meet some given criterion or

aspiration level. This category includes techniques

derived from decision theory and from signal

detection theory.

Any scheme for separating models into some set of

categories is of course based on someone's judgement. It is

also pointless, unless there is some value to be gained by

this categorization. The value here lies in the fact that

models aLn techniques must be used, must have a purpose.

Otherwise, they are merely intellectual exercises. The

purposes or categories used here suggest what the models

included in this study are good for. They should aid the
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human factors engineer as he screens the various techniques

to see which (if any) are applicable to whatever questions

he needs answered.

Other scientific disciplines will be required for imple-

menting such techniques-- primarily those of mathematics.

Therefore, we will define a mathematical tool as a procedure
which does not, in and of itself, answer a specific ques-

tion, but which is necessary in order to use an operations
research technique. That is, it can be considered an

instrument, or a means to an end.

Table 3 lists some of the most common mathematical tools

used with operations research techniques. Several of these

already are an integral part of the psychologist's or human
factors engineer's bag of tools (probability, statistics,

experimental design, etc.). These tools for measuring and

estimating, for making decisions about hypotheses, and for

planning are equally important for many operations research

techniques.

Others of these mathematical tools may not be so
familiar. It is important to note that not all of these
tools are necessary for any single operations research tech-
nique. As each technique is discussed, we will note which

specific tools are needed, so the user can determine whether
he already has the requisite skills or whether he can obtain

them easily enough to make the technique practical for his

use.

E. COMBINING HUMAN PACTORS AND OPERATIONS RESEARCH

The basic procedure used in this study is to identify

and describe specific operations research models and their

accompanying techniques, and to apply some of these models

to given human factors-related problems. Table 4 illus-

trates the format which is used throughout the report. For

each model or technique, the following are provided:
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rABLE 3

MATHEATICAL TOOLS FOR OPERATIONS RESEARCH TECHNIQUES

Arithmetic

Algebra, simple
Algebra, linear or matrix
Algebra, Boolean

Geometry plane
Geometry spherical
Geometry, anal ytic

Trigonometry

Calculus, single variable
Calculus, multiple variable

Logic and set theory
Fuzzy set theory

Probability theory

Statistics, 4escriptive
Statistics, inferential

Experimental design

Graphs and plots

Computer programming
Computer packages

1. The kinds of questions or problems for which it is

especially useful--that is, what it is good for.

2. The kinds of mathematical skills required for proper

use.

3. In general, the kinds of human factors engineering

applications we see as particularly appropriate.

4. Examples of the use of the model for human factors-

related problems, as reported in the literature

(where available).

5. References and texts for more information, if

desired.
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TABLE 4

DESCRIPTION OF OPERATIONS RESEARCH MODEL/TECHNIQUE

OPERATIONS RESEARCH MODEL/TECHNIQUE:

1. PURPOSE OF MODEl/TECHNIQUE:

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

3. HUMAN FACTORS APPLICATIONS:

4. DESCRIPTION:*

a) Model:

b) Assumptions:

c) Strengths:

d) Weaknesses:

e) Procedures:

fOther calculations that may be made:

5. ACM EXAMPLE:*

a) Situation:1
b) Procedures:

6. USED IN LITERATURE:

* 7. REFERENCES AND TEXTS:

*For selected models only
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For several of these techniques (primarily those that are

among the most important for the operations research field),

additional elaboration on the model or technique is

provided:

6. The assumptions underlying the use of this model or
t echni que .

7. What its strengths and weaknesses are.

8. General procedures for using the technique.

9. A worked-out example of application of this technique

to a human factors problem.
Descriptions necessarily are brief; no attempt is made

to be mathematically rigorous or to cover all of the rich

complexity of many of these techniques. Such a compendium

would require many volumes. It also would defeat the

purpose of this study, which is to familarize human factors

engineers with a set of practical tools, and help them

decide which of these tools may be applicable to their

specia] problems.
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II. NAVY MISSIONS: AIR COMBAT MANEUVERING

The U.S. Navy is tasked with a number of critical

missions, all related in some way to defense of our forces

at sea. Table 5 lists these mission areas.

TABLE 5

NAVY MISSIONS

Sea control

Power projection

Fundamental missions
Antiair warfare
Antisubmarine warfare
Antisurface ship warfare
nine warfare
Air-to-gr ound warfare

Su gorng missionsoblty .
Command, Control, Communicatons
IntellegenceElectronic warfareLogistics

For simplicity and consistency, a single mission area,

that of antiair warfare, has been selected here for illus-

tration of how operations research techniques may be applied

to a variety of human factors engineering problems. Within

that broad area fall both surface-to-air and air-to-air

combat. The latter of these will be given primary emphasis

in this study.
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Air-to-air combat most often is referred to as "air

combat maneuvering" or ACS. It involves in-air battles

between two or more adversary aircraft. The three-

dimensional nature of such battles in space makes them espe-

cially rich material for modeling. Navy fighter aircraft

carry either a single pilot or a pilot and a weapons system

officer (often called a radar officer (RO) or a radar inter-

cept officer (RIO)) . Depending on the type of plane,

on-board sensors include various radars, infrared systems,

television systems, and laser detectors (plus occassionally

rifle scopes purchased at a local sporting goods store).

Electronic countermeasures also can add complexity to sample

scenarios, as can various rules of engagement (such as a

requirement for visual identification of the adversary

* before missile engagement).

The Navy's fighter aircraft include the F-4 Phantom,

7-14 Tomcat, and F-18 Hornet. The first two are two-seat

and the third a single-seat aircraft. U.S. Navy air-to-air

weapons consist of:

1. Aircraft guns, for close-in engagements (often called

dogfights)

2. Sidewinder (AIM-9) heat-seeking missiles, for

short-range engagements

3. Sparrow (AIM-7) radar-guided missiles, for short- and
intermediate-range engagements

4. Phoenix (AIN-54) radar-guided missiles, for long-

range engagement of enemy aircraft (F-14 aircraft

only)

For this study, data, procedures, and tactics from

various ACM-related activities will be used in modeling,

analysing, and making decisions about this type of mission,

using a variety of operations research techniques.
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IV. LIT_!ATURE SEARCH

A major attempt was made to review existing literature
involving some aspect of the combination of human factors
and operations research. Some 1500 citations were obtained,

using keywords related to both of those two disciplines.

Review of abstracts of these publications revealed a signif-

icant point: authors and abstractors use extremely broad

definitions of these two fields. Numerous citations

involved neither of the two, as they are defined for this

study.

An early review, conducted by Raben in 1960 [Ref. 22],

apparently yielded a similar result. She reviewed 1000

references, and included approximately 500 of these in her

report. The definition of operations research she uses is

very broad:

1. moving scientific research into the everyday world of

business, government, and industry.

2. Providing decision makers with an efficient basis for

making decisicns regarding the operations under their
control.

3. Going after the immediate problems in complex

organizations.
Operations research was still a young field at that time

(the original text on the subject, Morse and Kimball's

"ethods of Operations Reseach, was only 10 years old).

Basically, four operations research techniques are included

in Raben's study:
.0 1. Communicaton and information theory

2. Game or decision theory (which includes a very brief

reference to linear programming)

3. Computers and simulations
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4. Queueing theory (including work measurement

techniques)

For choosing an operations research technique, Raben

quotes Hoag [Ref. 23] as proposing that one examine the

problem at hand and ask:

1. What are the relevant alternatives?

2. What test of preferences should be applied in

choosing among alternatives?

3. How do we go about the process of weighing otjectives

against costs?

Of the 500 reports cited by Raben, less than 20 appear

to meet our present criteria of human factors engineering

and operations research in combination. The rest are about
evenly divided between relatively "pure" psychology or human

factors books, reports, or studies (i.e., E.J. McCormick's

Human Encineerinq), and relatively "pure" mathematics or

operations research books, reports, or studies (i.e., R.L.

Ackoff's Principles of Operations Research).

For this present study, citations were obtained from the

Defense Technical Information Center (DTIC), and the DIALOG

Information Services PSYCINFO database, along with the Naval

Postgraduate School thesis and reports database retrieval

system. In addition, a collection of about 500 citations of
operations research/human factors reports, compiled by
students for human factors courses in the Operations

Research Department, were reviewed for applicability to this

project.

Of these varied citations, 55 definitely pertain to both

operations research and human factors, and are listed in

this thesis either in the list of references or under the

technique or model to which they apply. An additional 234

citations have some applicability; the most pertinent of

these are included here. Another 159 were noted and

reviewed, to some extent, but were found of little interest
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for this stud~y. All-in-all, more than 450 reports were

* - reviewed, either in the form of the original publications or

from an abstract.I
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V. HODELS AND MODELING

Before beginning discussion of some of the specific

types of models used in operations research, it is useful to

consider the topic of models in general. What is a model?

How do we develop or select an appropriate model? And what

do we do with a model, after we have one?

A. THE NATURE OF HODELS

Model building is considered by Wagner (and many others)

to be the essence of operations research [Ref. 24]. By

formulating, manipulating, and analysing models, it is

possible

1. to put the complexities and uncertainties attending a

decision-making problem into a logica.l framework

amenable to comprehensive analysis,

2. to clarify decision alternatives and their
anticipated effects,

3. to indicate the data that are relevant for analysing
the alternatives, and

4. to lead to informative conclusions.

In short, the model is a vehicle for arriving at a

well-structured view of reality.

Even more important, the model is what is used with
operations research techniques. These procedures are not

intended for operations on real-world objects, but rather on

some abstraction of reality--on some representation (shadowy

or concrete) of such objects.

But what is a model? According to Kantowitz and Sorkin

[Ref. 25], models are abstract representations of systems or

subsystems. Models attempt to describe, explain, predict,
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or control the behavior of whatever they represent. Models

can be verbal, physical, mathematical, or a combination of

these. Examples include:

1. Verlsmbolic: a description in words and geome-

tric symbols, such as a sequential flow diagram (as

in Figure 2.1) or an operational sequence diagram.

2. Physical: a model airplane in a wind tunnel, or a

set of electronic components wired together to

represent a tornado--or even a military exercise.

3. Mathematical: almost any function, equation, or

inequality: e=mc2 is a model of the energy-mass

relationship; speed _< 55 mph is a model representing

a standard constraint placed on highway travel;

computer simulations usually are based on math

0 models.

Rouse likens a model to an analo.U [Ref. 26]. One of

the most powerful problem solving methods in science, this

involves viewing a new problem as if it were an old problem

for which one may know the answer, or at least possess

considerable insight. The set of analysis tools already

proven for the old problem then is available for attacking

the new one.

Continuing in this vein, Rouse suggests nine analogies

of human behavior he considers useful in the modeling

process [Ref. 27]. These are:

1. Electrochemical network: treating the human as a

simple net of neurons which interact according to

basic physical laws.

2. Information processor: using models normally used
for storage and retrieval of symbols, or during

employment of information theory (as in a

communications channel).

3. Pattern recoqnizer: use of product inspection and

process monitoring modeling techniques.
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4. Ideal observer: models used in estimation theory or
in signal detection theory.

5. Servomechanism: vehicle control, tracking, and

process control analogies and models.

6. Time-shared computer: resource allocation models.

7. Logical problem solver: use of set theory opera-
tions, including logical implications and procedures.

8. Planner: rule-based (or production) systems and

models, or time/frequency domain series models.

9. Reflector-daydreamer: the upper limit on modeling
the human, requiring techniques that are not fully

established.

These individual analogies or simple moiels may be

combined into what Rouse calls compsite analogies: struc-

*0 tures or frameworks integrating two or more of the basic

analogies into a cohesive, purposeful entity. Such a

structure then may be used to describe behavior.

When an analogy within a particular area of research

gathers a sufficient number of adherents, it is often termed

a paradiqm. Rouse awards paradigm status to the analogy of
the human as a servomechanism--an error-nulling or

self-correcting device.

What characterizes a qood model? According to

Daellenbach and others [Ref. 28], there are five impcrtant

qualities:
1. simplicity. Only those aspects of the system that

have significant effects on performance should be

included.

2. Robustness. It should be difficult to cause the
model to give bad answers, particularly answers that

are outside the previous range of experience.

3. Ease of manipulation and use. Extensive training or

experience should not be required.
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4. Adaptability. It should be easy to change input

parameters and obtain updated solutions.

5. Completeness. All important aspects of the system

should be included in the model.

6. Ease of communication. The user should be able to

change inputs easily and obtain answers quickly.

There are a number of ways models can be classified into

categories. Two of the most useful divide them into either

deterministic or probabilistic classes, and into either

descriptive or prescriptive classes.
In brief, a deterministic or mechanistic molel considers

nature to be a fully predictable machine, and implies that

one will use it "to find out exactly". This is known as

decision making under certainty. Such a model yields a

* number (or a sequence of numbers) as its end product--with

certainty. For example, given a specific input, the output

will be a number or range of values (dollars, kilograms,

etc.) which will result from a given manufacturing process,

under controlled conditions.

A probabilistic model deals with problems of decision

making under uncertainty or risk, typically assuming that

the probabilities of the alternative states of nature are

known. A stochastic model is a probabilistic model which

has time as one of its factors. These types of models work

with a collection of assumed possible outcomes, and usually

yield a probability or set of probabilities for these

outcomes as its end product, according to Larson [Ref. 29].

'eather forecasting models are probabilistic. So are many

other forcasting models, which provide the likehood of some

*i occurrence, based on a given set of conditions.

A descriptive model is just what it sounds like: it

attempts to describe the system being modeled. This

description then can be used for prediction or decision

making, if desired. Most stochastic models ara descriptive

in nature.

39

-.- . . .. * ... ..* 7 .-. . -.-*- -**. -*V *-*7



A prescriptive model prescribes what action should be

taken with a system to obtain a desired outcome. Linear and

nonlinear programming models are examples of prescriptive

models. Given a set of variables, 1, under our control, and
a set of variable outcomes, Y, not under our control except
that they depend on X, then our criterion function or objec-

tive function is f(x,y), a function of both of these vari-

ables. This criterion function often is used used in

setting up a measure of effectiveness (AlOE). The possible

values of X result in various values for Y and for the func-

tion f--some "better" or more effective than others, for the

system of interest. The goal is to select a value of X
* which will yield a solution that is "good enough" (or, to

use the decision theory term, is "satisficing").

- Rouse suggests that models can serve four purroses

[Ref. 30]. These include:

1. Providing insight into the system and its interrela-

tionships, for which the modeling process in and of
itself is beneficial (regardless of the ability to

make further use of the model).

2. Giving s ucgcrejrelti2ns a explanations of
data, allowing clearer comparisons among tasks and

experiments.

3. Assisting in design _f e12eriments, after an approxi-
mate model suggests what parameters may affect

performance most strongly.

4. Yielding _guntitative qredicjin about the system

that was modeled.

Rouse also makes a distinction between human-system

behavior models and peforaance models (Ref. 31]. The
former are more general and more difficult to develop, since

a variety of patterns of behavior might result in the same
performance. For many engineering applications, performance
predictions are all that are necessary. While the
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"stronger" behavioral models more completely describe the

human as the task of interest is performed, they also may

result in such generality that the engineer cannot use their

answers.

Models may be special Purpose (peculiar to a specific

problem) or genera P (adaptable to any system which

satisfies the underlying assumptions). Although general

purpose models are sometimes simply referred to as tech-
nig.ues [Ref. 32], for purposes of this study, the two terms

will be kept separate. Here, the model will be used to

represent the system, while the techniqut will be used to

shed light on the system or to answer questions about the

system, via operations performed on the model.

Many problems may be solved through the use of several

techniques (perhaps using several different models), each

offering certain advantages. In order to choose the tech-

nique that best fits the problem at hand, it is necessary to

be familiar with the features of each which make it espe-

cially useful under various conditions. We will attempt, in

this study, to point out these features.

As a final point here, the limitations of models and of

their corresponding technigues must be considered (Ref. 33].

The ability to develop practical, useful models of

human-machine interaction is limited by:

1. Measurement and comutati onal diffculies, since

many human processes cannot be directly observed, and

no two individuals may perform alike.

2. The fgt tLhat the _!an often behaves in a non-

optimal maale, settling for "good enough"--a very

difficult situation to model. This may be a function

of the artificiality of the laboratory environment.

It also may be due to the limitations of working

(short term) memory and the division of attention--

for example, conservatism in decision making is
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nonoptimal, yet is consistent with known human

limitations.

3. Criticlijt 2fo the environment in which a task is to

be performed, making it difficult to generalize from

one set of data to another.

4. The virtual imp b = of modeng the 1_it of

human behavior, including the above-mentioned

reflecting and daydreaming activities.

5. The difficulty of tral undesan'inH most models by

anyone other than the model's developer.

B. TBE PROCESS OF MODELING

Sinclair and Drury suggest four questions to ask before

beginning any modeling process [Ref. 34].

1. Is mathematical modeling likely to be alicable and

useful? Two areas representing safe ground for

modeling are:

a) Where it is reasonable to assume the man in the
system is acting as a "logical machine".

b) Where physiological or biodynamic processes of the

human body are being modeled, with no "willful"

control by the operator.

2. At what level are you working? The man-machine system
as a whole can be modeled, or only individual compo-

nents within a single man-machine system can be

considered.

3. Which is the limitinga subsystem? Is it the man's

anatomy and physiology, his perceptual capability, or

his dezision making ability? Choosing the limiting

subsystem will to a large extent force the selection

of the type of model needed.

4. Does an appropriate model already exist? The authors
include a fairly comprehensive list of models (14 in
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all) which have been successfully used in human

factors work. These are categorized as biomechani;s,

man-in-loo9, decision theon, visual search, and

metabolic. Only if there is no satisfactory existing

model should one consider building a new one "from
scratch".

Olkin [Ref. 35] considers models to be abstract and

simplified descriptions of given phenomena. To build a

model, certain basic aspects of the phenomenon are isolated

as being of primary interest. An analogy is drawn between

these aspects and some logical structure--concerning which
we already have detailed information (see Figure 5. 1).
odels most often are based on mathematical structures of

various kinds.

Abstraction iSOLATE Anaogy
PMODEL

" " m"" New Insight New Ideas and
"' i_" Exp lanat ions

Figure 5.1 modeling Process, as Described by Olkin

A model need not be complex or completely precise to be

useful. Criteria for choosing a model are practical, not

metaphysical, Olkin emphasizes. Does the model provide a

simple, yet comprehensive exFlanation of the known phenom-

enon? At the same time, does it have strong potentiality

for providing insight into the natural world? If so, it
warrants consideration.
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To be of use, a model must be elaborate enough to repre-

sent reality, but also sufficiently simple to remain trac-

table, Daellenbach and others emphasize [Ref. 36].

Simplicity in a model can be achieved only by making suit-

able approximations. These authors list six useful ways to

do so:

1. Omittinq variables. To determine whether a variable

has a significant effect on the measure of effective-

ness, statistical tests and techniques such as corre-

lation, regression analysis, and analysis of variance

and covariance are used. Variables which contribute

only insignificantly to description of the system

should be removed.

2. Aggregating vaziables. Activities and items which

are similar can be lumped into a single variable, as

can those which individually have low values.

3. Chan q the nature of variables. Sometimes vari-

ables may be treated as constants, for simplicity's

sake--such as when an average value is substituted

for a random variable, or when conducting a para-

metric analysis. Discrete variables may be treated

as continuous, and vice versa, when it is useful.

4. A the reIations" between _

Linear and quadratic functional relationships are

easier to deal with than are cubic or other nonlinear

functions, and the simpler relationship may be

entirely adequate for modeling purposes.

5. Omittina constraints. Limitations which make

modeling difficult may be ignored, initially. If the

solution is found to violate one or more of these

constraints, they subsequently may be introduced.

6. DisaQ reqati the entl modeled. One single model

that covers the entire system may be highly complex

and difficult to find a solution for; such a prcblem
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may be broken into smaller and partially

-self-contained submodels, as an approximation.
There is no "recipe" for making models, notes Morris

[Ref. 37]. The teaching of modeling is not the same as the

teaching of models, he states. Modeling tends to be an

intuitive or artistic skill, largely the result of imitation

and practice. Facility in modeling appears to be associated

with a feeling of being at ease with mathematics, an appre-

ciation of the various purposes models may serve, and

familiarity with the characteristics of models.

Morris provides seven suggestions for the novice

model-builder:

1. Factor the system problem into simpIler problems,

which can be modeled individually, then recombined

into a system model.

2. Estabigsh , clear statement of the deductive obje-

tives: the purpose of the model and what the results

are to be used for.

3. Seek anjljies between the problem at hand and some

previously well-developed logical structure; is the

problem one in linear programming, in queueing, or in

inventory?

4. Consider a specific numerical instance of the

problem; retreating from generality and complexity

helps to make clear the assumptions which charac-
terize the example, and frequently allows "solution"

by inspection.

5. Establish soe s~mboqjs: write down in symbolic terms

(letters and numbers and arithmetic operator charac-.

ters) some of the obvious things which can be seen in

the numerical example.

6. Wrt 1_4 obvio u: conservation laws, input-

output relations, ideas expressed in the assumptions,

or the consequences of trivally simple policies.
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7. If a tractable model is obtained, enrich it.

Otherwise, siarlify.

Given the model, regardless of its type or degree of

complexity, it now should be possible to apply various oper-

ations research techniques in order to answer some of the

questions of interest (or at least to understand the

problems better)

C. FINDING AID EVALUATING SOLUTIONS

Having settled upon an appropriate model for a given

human factors engineering problem, the next step is to find

a solution. Operations researchers speak of solving the

model or of finding its solution. Specific ways of finding

solutions using the operations research techniques covered

in this study are included in each technique's section.

However, the more generalized concept of finding optimal or

acceptable solutions should be discussed first.

The desired solution sometimes may be discovered simply

by breaking a problem down into its component parts, laying

these out in some logical pattern, and inspecting them

closely. This is solution b analysi.

More often, numeric methods are required. The most

powerful numeric methods are based on an al_rithm

[Ref. 38]. An algorithm may be defined as a set of logical
and mathematical operations performed in a specific

sequence. Sometimes this is done by hand--paper and pencil

and a hand calculator. More often (in operations research,

at least) a computer is used.

To use an algorithm, usually an "initial solution" is

needed. This may be obtained by some arithmetic or logical

technique, or simply by guessing, based on whatever data are

available about the system of interest. The algorithm is

applied to the initial solution, in order to derive a new
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(and, ideally, better) solution. The sequence of operations

leading to the new solution is called an Lteration. The new
solution is substituted as the starting point, and the

process repeated. This continues until certain conditions

(called stopping rules) are satisfied. At this point, the

optimal solution has been reached with the desired degree of

accuracy--or else no feasible and bounded solution exists,

as the problem is presently set up.

Daellenbach and others list the properties of a

practical, useable algorithm:

1. Each successive solution must be an improvement over

the preceding one.

2. Successive solutions must converge to the optimum

solution.

3. Convergence must occur in a finite number of

iterations.

4. The computational requirements of each iteration must
be sufficiently small to remain economically

feasible.

Given a possible solution, sens ivitj analysis usually
is performed on it. How the optimal solution would change

if input data are changed (as they might change in the real

world) is systematically evaluated. This is especially

useful in determining just how accurate the input data for

the model must be. It also establishes the range within

which input values may vary, given this model, and still
result in a near-optimum solution. And if some of the vari-

ables represent resources which are scarce, sensitivity

analysis enables one to place a value on these resources

[Ref. 39].

Before any solution is implemented into a real-world

system, it must be validated or tested. This is necessary

to determine that the solution will remain feasible when

introduced into the actual (versus the model) situation, and
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that the benefits will be sufficient to warrant the required

changes.

Cross validation usually is done by zhecking the

proposed solution with new data (not that used to derive the

model and optimal sclution). These data values must be

representative of future behavior of the system, and the

testing should be extensive enough to allow for evaluation

of the variability of the outcomes with time.
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VI. ODE FOR DESCRIBING A PREDICTING

A vastly heterogeneous set of mathematical procedures is
included in this chapter. They are linked together by their

common purpose: describing some system in m thematical
terms, so that predictions may be made about the system.

Under some conditions, each technique provides more

predictive ability than could be obtained simply by using

the average value of past performance as a predictor of
future perfromance. This is a good criterion for a useful

model [Ref. 40].

Researchers collect varying kinds of data, in a variety

of ways, depending on the situation of interest. According

to Nie and others [Ref. 41], the most common situation is
one in which only a relatively small number of variables are

to be analysed. For any one piece of analysis, it usually

is possible to arrive at one dependent variable that is to

be explained and at a limited number of other variables with
which to explain it. Multiple re.ression is the procedure

of choice in such an instance.

As the number of variables in the data set becomes

larger, multiple regression becomes an unwieldy technique.

Some form of data reduction is needed in order to make sense

of it all. Factor analZs s is the most common technique

used for this purpose, combining several variables together

to yield a single new variable (representing some larger

concept).

Closely related to the above two techniques is that of

Sdiscriminant a nalsis. This is the technique of preference
if we desire to separate two or more groups of individuals

on the basis of some discriminating factor. As with the
above two (and also the following two) , this technique
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relies on a deterministic model, and requires that the meas-
urement level of the variables be at least interval in

nature, that relationships be linear, and that data values

be known constants.

A fourth related technique is canonical correlation. To
use this procedure, the experimenter divides his variables

into two sets, each of which can be given theoretical
-' meaning as a set (such as a behavioral set and an attitu-

dinal set) . Then a linear combination is derived from each

set in such a way that the correlatiuon between the two

linear combinations is maximized. The goal is to account
for a maximum amount of relationship between two sets of

variables (rather than accounting for the maximum total
*variance). A redundancy index is used for this purpose.

gultidimensional scalinq is the fifth technique covered
here. This procedure is intended for analysis of opnions

- about proximity from populations of interest, rather than

for analysing and modeling experimental data. The end
result is a graphical representation which describes a
system and perhaps may be used in making predictions.

Control models are already in wide use in human factors
analysis, at least in theoretical descriptions of the human

as a controller. Thus these are touched on only briefly
here. Time series models also are described only briefly

here. They require computer packages to be of use
(Box-Jenkins in SPSS, for example), and are best understood
in the context of the particular computer and software that

are available.

The next three techniques fall in the category of

stohastic models. Markov chains, Poisson processes, and
* _ujueinq processes are important general operations research

models. Two of the three are discussed in depth, so that
* . human factors engineers may observe the usefulness of such

i "procedures for their own modeling problems.
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Reliabilit7 models also usually are stochastic in

nature, since they rely heavily on various probability

distributions to predict failure rates. Little used by

human factors engineers, they deserve consideration where

human errors are an important consideration (and the avail-
able data suggests that a known distribution is an adequate

approximation for error rate).
The final modeling technique covered in this chapter

falls in the broad category known as simulation models.
These versatile models can be either deterministic or
stochastic. They are growing in popularity with human

factors personnel, and are discussed here in depth.

A. REGRESSION ANALYSIS

1. PURPOSE OF MODEL/TECHNIQUE: Determining the mathe-

matical relationship between a dependent or criterion
variable and one or more independent or predictor

variables, in order to describe that relationship and

to make predictions based on whatever data values are
available.

For example, the researcher may wish to predict the

effect of age and of IQ (independent variables) on
ability to operate a new tactical computer system.

The criterion is the time required to solve a stan-
dard problem using that computer. One hundred

subjects of known ages and IQs are tested on that

problem, and their times for solution recorded.

Multiple regression techniques then are used to
develop an equation of the form:

Y = A + BX(1) + CX(2),

where Y represents the estimated or predicted time

value that will result from this equation. A is the
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Y-axis intercept, B is the regression coefficient

related to age, X(1), and C is the regression coeffi-

cient related to IQ, X (2). Once A, B, and C have
been determined from the collected data through

multiple regression techniques, various values of age

and IQ may be substituted for X(1) and X(2) in the

equation, to come up with predicted time values, Y.

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra

b) Descriptive statistics

c) Inferential statistics

d) Graphs and Flots

e) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, in terms of

expected responses or characteristics resulting

from given inputs or from other personal

characteristics.

b) Describing systems, when a functional relationship

is lesired between one or more independent vari-

ables and some other variable which presumably is

dependent on these.

c) Designing systems, when predictions or inferences

are needed in order to determine whether a system

with certain given characteristics will result in

desired (or necessary) human performance.

d) Evaluating human performance, where performance

can be measured in numerical terms and seems to be

a direct result of certain conditions (which also

can be measured numerically) imposed on or

inherent in the human population of interest.
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4. USED IN LITERATURE: It should be noted that the

following list contains only a very small sample of

the use of regression analysis for human factors

research. This technique, which is an important one

in operations research, has long been a mainstay of

psychology, also.

a) Bateman, R.P. "An Heuristic Approach to Work
Analysis", Proceedi~ga of the 23rd Annual Meetina
of the Human- a-cE soc'rt - ltoston,--X, 1-T7,
pp. 554=5"77.

Regression analysis is used to develop an equa-
tion showing the relationship of trackin perform-
ance to certain variables associale with
multifunction keyboards.

b) Chawla S., and others. "Human Factors
Considerations for a Combined Brake-Accelerator
Pedal" Eronomics, Vol. 14, No. 2, 1971, pp.279-29M .-- - --. 17

Linear regression is used to relate accelerator
and brake reaction time with various pedal
designs.

c) Kvalseth, T.O. "A Generalized Model of Temporal
Motor Control Subject to Movement Constraints",
Erjnomics, Vol 20 No 1, 1977, pp. 41-50.

Tr!St-and seconA order linear regression models
are formulated which relate mean arm movement time
to Fitts's index of difficulty variable and to a
lateral movement constraint variable, for a number
of kinds of constraints.

d) Wardle, M.G. "A Psychophysical Approach to
Estimating Endurance in Performing Physically
Demanding Work" Human Factors, Vol. 20, No. 6,
1977, pp. 745-747-.. . .

Regression equations are developed which
provide point estimates of the maximum wcrking
time to be expected at various levels of strenuous
workloads.

e) Williges, R.C., and Williges, B.H. "Modeling the
Human Operator in Computer-Based Data Entry,"
Human Factors, Vol. 24, po. 3, 1982, pp. 285-299.

Flman-omputer interfaces were evaluated via
operator satisfaction ratings, work-sampling tech-
niques, and imbedded performance measurement.
Polynomial regression anal sis wAs used to
generate functional relationsnips amon; these four
metrics and four independent varia les repre-
senting system delay, display rate, keyboard echo
rate, and keyboard buffer rate.
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5. REFERENCES AND TEXTS:

a) Larson, H.. Introduction to Probability Theoryand Statistical -Inrfe ,- Tniiton.
Yr" -'J=5"f"-7''l'e'y ffn.-5'off 7 1982. .

Provides theoretical and mathematical founda-
tions for regression, for the mathematically
inclined.

b) Mendenhall, William, Scheaffer, R.L., and
Wackerly, D.D. Mathematical Statistics With
1p_ cations, Secon= !Ftlo-. - osFT ux~iury

Clearly written, and nicely laid out for refer-
ence. Heavy reliance on matrix allebra. Again,
for the mathematically sophisticate

c) Nie, N H. and others. SPSS: Statistical Packa e
for the Social Sciences, --- ecw -- 1T16 .--- W
Y k7.-fcG i awH-- I- -om pan y, 1975.

An excellent introduction lo the technigue, as
well as to the SPSS software programs to perform
it. Note that the later SPS S-X Manual does not
have the useful introductory i- rr tin.

d) Wright, R.L.D. Understandinq Statistics: An
Informal introducti n E e aVai- Zlc enceg.

s as , non-threatening introduction to the
subjec of regression and to statistics in
general. Only simple linear regression is
included.

e) Wonnacott, T.H., and Wonnacott, R.J. Introductory
Statistics Third Edition. New ork: --o-n- - yU ZI ons, 

in/An excellent introduction to statistics in
qeneral, and to re ression in particular, for
hose with limited mathematical experience.

Simple and multiple linear regression and nonli-
near regression are discussed.

f) Youn er, M.S. Handbook for Linear Regression.
Nortg Scituate, Nas.--bi 7 Press, 1

Clear, com plete and eas to read text and
reference booR. Includes tKe use of computer
3rograms for regression, such as BMD, SPSS, andAS.

B. FACTOR ANALYSIS

1. PURPOSE OF MOD1/TECHNOQUE: Obtaining a parsimonious

description of observed data. This is done by

reducing an apparently large number of variables
(many of which are correlated with others) to a
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smaller number of source variables representing the

same concepts, but under broader categories.

For example, perhaps empirical data values have been

obtained for a number of children on their age,

height, weight, reading ability, and grale in school.

Age, height, and weight are correlated, as are age,

reading ability, and grade in school. Factor anal-

ysis may be used to reduce the five data values for

each child to two--probably representing a physical

maturity variable and an intellectual maturity

variable.

2. MATHEMATICAL TOOLS REOIRED OR USEFU:
a) Algebra, simple, linear
b) Calculus, single variable, multiple variable

c) Logic and set theory

d) Descriptive statistics

e) Inferential statistics

f) Graphs and plots

g) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, where data

values have been obtained for several human vari-

ables, and it is desired to reduce these dimen-

sions to a smaller, more meaningful set (factors).

b) Describing systems, whea numerous kinds of vari-

able values are available for a system, and there

is a need for reduced dimensionality.

c) Designing systems, when the variables for the

proposed system are needed in a succinct and

orthogonal form.
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d) Evaluating human performance, if a few, relatively

uncorrelated descriptive variables are desired for

use in the measurements.

4. USED IN LITERATURE:

a) Burke, E. 3. "A FactoV Analytic Investigation of
Tests of Physical Working Ca~a city",l KgoolQcs,
Vol. 22, No. 1, 1979 pp*11-18.

Sixteen tests of ptysical working capacity,
submitted to factor analysis, are reduced to three
factors which account for 71 percent of the total

* variance.

b) Haslegrave, C. M. "Anthropometric Profile o~f
British Car Drivers", EraooMIcS& Vol. 23, No. 5,
1980 ' 437-467.

Factor analysis is used to explore the rela-
tioniships among 17 dimensions used in design of
cars. Three factors are extracted, then used in
construction of a set of* body inidices for use in
resigning of anthropometric dummies.

05. REFERENCES AND TEXTS:

a) Harmon, H.U !1oder~n Fact:)r Analisj&. Chicago:
The Universit oEI ar S, -JI

A comprehensive and detailed text for those who
want to know the theoretical and mathematical
formulations for this procedure.

b) Miorrison, D.F. Mlultivariate Statistical Methods.
iNew York: McGraw-91li 31C~l 797 -__I_

A mathematical explanation, 2ith heavy reliance
on matrix algebra.

c) Nie, N H an~d others. SPSS: Statistical Packg e
for the - ocial Sciences,---ec3Hffa3ETroiiJ New
!U-kT-cGaw R1113515TConpan y,1975.

An excellent introduction TO, the technique, as
well as to the SPSS software programs to perform
it. Note that theolate r SP.SSX Manual does not
have the useful intro uctor 7'Tfft~rztio

d) Rulon, P.J., and oth ers. M!ultivariate Statistics
for Personnel Classificationfi.-- T~Yo=. -U36H

3-~e -T~7:-------
A fairly comnple te explanation, including mathe-

matical derivations, relying on graphical and
matrix technigues.

56

U 7.7



C. DISCRIMINANT ANALYSIS

1. PURPOSE OF MODEL/TECHNIUE:. To find and make use of

characteristic variables which can distinguish

between two or more groups. This is done via a

collection of discriminatinq variables that measure

levels of the characteristics on which the groups are
expected to differ. These discriminating variables

are weighted and combined so as to force the groups

(and individuals in them) to be as statistically

distinct as possible. Both linear and nonlinear

combinations are possible.

For example, it may be desired to discriminate

between persons who will work effectively with

computer systems and those who will not. A set of

discriminating questions could be devised and tested,

for this purpose. These might query the individuals'

attitudes towards working alone, self-correction of

errors, sedentary occupations, etc.

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra, simple, linear

b) Logic and set theory

c) Descriptive statistics

d) Inferential statistics

e) Graphs and plots

f) Computer packages

3. HUMAN ACTORS APPLICATIONS:

a) Describing individual differences, by selecting
group characteristics which can be used to define

.0 those differences.

b) Describing systems, making use of the known char-

acteristics of groups into which they might fail,

and with which analogies might be useful.
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c) Designing systems, taking advantage of knowledge

of those characteristics that user groups prefer.

d) Evaluating human performance, by determining

whether various individuals fall into various

performance categories (inexperienced, average,

superior, etc.).

4. USED IN LITERATURE:

a) Miller, R.E, Optimal Assignment of Air Force
Pilots, Final G5VnmLt--Re Z0s
Ann oU9ce menTs--Feb fary-1974. JAD-781 035/iGA)

A multiple discriminant analysis is performed,
using ten test scores and training grades to clas-
sify a new pilot as optimally assignable to a
transport, fighter, or reconnaissance aircraft or
mission.

5. REFERENCES AND TEXTS:

a) Nie, N H. and others. SPSS: Statistical Packaqe
for the ocial Sciences, ec5a'T56.--I
or kT c Gfaw .±1-go-='ompany, 1975.

An excellent introduction to the technique, as
well as to the SPSS software programs to perform
it. Note that the later SPS S-X Manual does not
have the useful introductory-YEinrN6r2n.

b) Rulon, P.J., and others. .ultivariate Statistics
fo Personnel Classif cat' on. Ye otw-YorF:7cnWiley NU onsg

A good, clear explanation, inc.luding mathemat-
ical derivations, relying on graphical, calculus,
and matrix techniques.

D. CANONICAL CORRELATION

1. PURPOSE OF MODEL/TECHNIgE: Given two sets of vari-

ables, each of which has a theoretical meaning, a

linear combination is derived from each set so that

correlation between the two linear combinations is

maximized. Several such pairs (canoni:al variates)
of linear combinations may be derived from one data

set. A redundanql index is used to account for a

maximum amount of relationship between the two sets
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of variables. This technique can be considered an

extension of multiple regression analysis to the case

of multiple criteria.

For example, individual attitudes toward reading and

toward arithmetic may be scaled by a group of indi-

viduals (from zero for dislike to 10 for extreme

enjoyment). The same individuals may be tested on

reading speed and on computational speed. Data

values for these two sets of variables (two variables

per set, one set representing attitude and the other

behavior) then can be compared, using canonical

correlation. The resulting correlation coefficients

are used in a mathematical function to describe the

relationships between the two attitudes and two

behaviors.

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra

b) Descriptive statistics

c) Inferential statistics

d) Graphs and Flots

e) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, where differ-
ences can be measured and grouped into two sets of

variables whose correlations are useful.

b) Describing systems, when system parameters can be
treated as described above for individual

differences.

c) Designing systems, when it is important to relate

one set of parameters with another in order to

maximize the system's usefulness.

59

*



d) Evaluating human performance, when performance

variables can be measured and correlated with

other variables in order to determine that

performance will be good enough for the job to be

done.

4. USED IN LITERATURE: No examples of the use of canon-

ical correlation were found, relating both to human

factors and to operations research.

5. REFERENCES AND TEXTS:

a) Morrison, D.F. Multarate Statistical Methods.
New York: McGraw-Hll- OOKC C-m an.7=67

A brief explanation in mathematical terms, with
heavy reliance on matrix algebra.

b) Nie, N. H and others. SPSS: Statistical Packare
for the ocial Sciences, --- ecnd=1 ton.--- --Yo T-1 CGfaV=111-'o-=-ompan , 1975..An excellent introduction To the tecnique, as

well as to the SPSS software programs to perform
it. Note that the later SPSS-I Manual does not
have the useful introductory- fTrUTIo.

c) Stewart, Douglas, and Love William. "A General
Canonical _orrelation fndex", " y svcholoqical
Bulletin, Vo . 70, No. 3 1968, pp. IVU-TO6.
rre unancy index is &escrited, to handle the

previous canonical correlation problem of not
providing a measure of redundancy in one set of
variables, with respect to a second set. The
index represents the amount of predicted variance
in a set of variables.

E. RULTIDIMEISIOIIL SCALING

1. PURPOSE OF MODEL/TECHNIIU: Determining the under-

lying structure of a set of points in n-dimensional

space (for n-dimensional scaling), after individuals
have assigned a set of RPoiities to the points
describing how close (in distance or similarity) they

believe each point is to every other point. The %
resulting multidimensional scaling solution provides

the minimum number of dimensions underlying the
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structure, and gives the order of the instances along

each dimension.

This technique may be used in determining the dimen-

sions of a given task, thus leading to development of

as many unidimensional scales as the task has dimen-

sions. If each task component is rated in criti-

cality, then weights can be assigned to each

dimension.

For example, 100 aviators may be tested with a symbol

set proposed for use on a cockpit map display, to

determine whether they feel they can discriminate

rapidly between each pair. The result is a "contu-

sion matrix", showing the percent of time each symbol

*will be confused with another. This matrix of values

is entered into a multidimensional scaling computer

program for analysis. The result is a two-

dimensional plot which places easily confused symbols

next to one another, and those seldom or never

confused at greater distances from one another. The
researcher then provides an interpretation to the

results, based on his expertise and on this

configuration of points.

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra, simple, linear

b) Logic and set theory

c) Descriptive statistics

d) Inferential statistics

e) Graphs and plots

f) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, where opinions

about similarities and disimilarities between

individuals are desired. r
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b) Describing systems, where similarities or proximi-

ties between various components can be judged by

individuals and then subjected to analysis for use

in predictions.

c) Designing systems, where it is necessary to deter-

mine that two or more components are or are not

similar or close, in ocder to make choices and

decisions.

d) Evaluating human performance, when performance can

be judged in terms of proximities or similarities

to various criteria.

4. USED IN LITERATURE:

a) Harris, D.H. "Human Dimensions of Water ResourcesPlanning" Human Factors, Vol. 19, Io. 3, 1977,
pp. 2141-21"-.

Computer-based multidimensional scaling tech-
niques are used to determine the underling dimen-
sional structure of 42 factors relate o water
resources planning and decisions. A value
reflecting social importance is developed for each
of these and for the five basic dimensions
emerging from the multidimensional analysis.

5. REFEBENCES AND TEXTS:

a) Kruskal, J.B., and wish, Myron. Multidimensional
Scalina. Beverly Hills: sage Publ1caEi iI 7 .--- 51plete and readable explanation of the theory
and procedures. Computer programs for the tech-
nique also are discussed.

b) SAS Institute, Inc. SAS User's Guide. SAS
Institute, Inc., 1979.

Instructions for the Alternating Least Sguares
Algorithm (ALSCAL) program, using the SAS computer
package.

. F. MANUAL CONTROL HODELS

1. U_ 2§OS 0 F ODEL/TEICHNI UE: Describing human

behavior in terms of a s ervomechanism (error-nulling
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device), in order to predict the effect of varying

conditions on the operator's performance while

controlling a system. The most important performance

criterion is minimization of deviation of the state

of the controlled process from a desired state. A

simple tracking task, where an observer must keep a

pipper on a target, is a good example of a use of

this model.

2. MATH_&ICAL TOOLS REQUIRED OR USEFUL:

a) Algebra

b) Single variable calculus

c) Descriptive statistics

3.. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, when an indi-

vidual receives information through his senses

about some world state and uses that information

to control some situation manually.

b) Describing systems, when a system's present state

is used as input in order to provide direct

outputs back to the system via some manipulation,

with the goal of minimizing system error.

c) Evaluating human performance, when performance at

simple control of some system is being measured

and compared with a criterion.

4. USED IN LITERATURE:

a) Bekey, G.A., Burnham, G.O and Seo, J. "Control
Theoletic Models of Human Drivers in Car
Followin of Human Factors, Vol. 10, No. 1, 1977,
pp. 399-113.

Three mathematical models are used to describe
control behaviors of human drivers. First is
classical (manual) control, with assumptions about
the driver s stimulus-response characteristics and
control strategy algorithms. Second is based on
optimal control theory, assuming a performance
index and a driver's control strategy intended to
minimize this index. Third is a set of heuristic
models.
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b) Lau, C.G.Y. A Review of Human Operator Models in
manual control "'S sfiff. -Pa-i~ic-Kiissfleie-s
CETer CA, February 1977
(PMTC4fP-760 AD Ba 783L).

Includes both quasi-linear describing function
models and optima Icontrol models. An extensive
bibliograpy of manual control models is included.

C) Levison, W. "A Methodology for Quantifying the
Effects of Aging on Perceptual-Motor Capability",
Human Factors, Vol. 23, No. 1, 1981, pp. 87-96?
TFe appl-liation of experimental and analytical

techniques of manual control is made, for quanti-
fication of aging effects in a model of human

* perception and control.

d) Pew R.N. et al. Critical Review and Analysis of
Prormanc e Models-X Ilci t MiE
E-e1V-auaT13Lf-. Boltf, Beren-a a-Tewman,Inc-Caii - MA, March 1977 (35N No. 346

AFOSA-TR-7 7-0526 AD-A 038 597).
Simple, quasilinear, and opimal control models

are among t~e numerous models reviewed as part of
this 300-page comprehensive report.

5. REFERENCES AND AETS

a) Rouse, W,B. Svtes aineerini Models of
Human-Machine In~-To. 3 -- orKr-ror1E1E

=0ran J, ~y
*.Theoretical presentation, wvith some applicati.oninformation; greatest emphasis is on discrete time

optimal ccntrol, but manual control also is
covered.

*b) Sheridan, T.E., and Farrell, W.R. Man-Machine
$vistems: Information, Contorl, and Decision If53eI

~1flha~n Ferorlancae. Be~rd7 7 T T
7rel3_.T9 f 4, 19gwr

Detailed theoretical an mathematical presenta-
tion on manual control, with lesser discussion of
optimal control.

G. OPTIMAL CONTROL MODELS

1. PUPS OF MODELECHNIQUE: Describing human

behavior in terms of an aptinu regulator (well-

motivated, highly-trained individual, subject to
*known personal limitations). The controller is

affected by and affects state va ables of a system.
Given a process to control, constraints on the accu-

racy with which he may observe state variables, and
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limited energy or time for control tasks, the optimal

ccntroller seeks to maximize a cost function or

performance criterion within his own constraints.

The criterion usually is stated as a linear quadratic

function of error, control effort, and time.

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra

b) Calculus, single variable, multiple variable

c) Descriptive statistics

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, when the oper-

ator is considered sophisticated enough to recog-

nize his own dynamics and the dynamics of the

4 controlled process, his own variablility, and the

criterion to be met.

b) Describing systems, when the situation is similar

to that discussed above for the individual.

c) Evaluating human performance, when actual perform-

ance can be compared to optimal behavior as

described by this model.

4. USED Il LITERATURE:

a) Barron, Sheldon. "A Model for Human Control and
Sonitoring Based on Input Control Theory", Journal
of C4 bernetics and Information Scienge, Vor.-7-

The state variable optimal control model of the
human operator is reviewed and described in
detail. Examples of its use in prediction and
analysis are presented, along with advantages and
limitations o1 the model.

b) Barron, Sheldon and Levison, W.H. "Display
Analysis with tfie Optimal Control Model of the
Human Operator" Human Factors, Vol. 19, No. 5,
1977 pp. 437-457.-
*Tne optimal control model is applied in deter-

mining what information is needed on a display so
the o erator can meet his performance objective.
The fechniques are then applied to analysis of
advanced display and control systems.
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c) Harvey, T.R. An caion of an Optimal Control
Pilot -Model to- r-E~iF-c5b-T.- MgyrTs

ffys -SEE-ol1-f BEI-ef-g 1--r-7rce Institute
of Tec~ng-logy, Wrigh Patterson AFB, OH, 1974.

Two-dimensional kinematics of air-to-air combat
tracking with a lead computing optical sight
system were simulated on an analog computer, using
a fixed-base simulator. Tracking error data
values were collected from three pilots, using the
simulator.

d) Hess, R.A. "Prediction of Pilot Opinion Ratings
Using an Optimum Pilot Model", Human Factors, Vol
19, No. 5, 19771 pp 5-475.

'lultiloop piloting t asks can be modeled via the
optimal control formulation with relative ease.
Numerical pilot opinion ratings concerning partic-
ular vehicles and tasks are related to the numer-
ical value of the model's index of performance,
using data from piloted simulations.

e) Ince Fuat. Aplication of Modern Control Theoryto tfie Design 5f X5ysZii ~ems. nv~~
olE rTliffors, Auguft773-PTS V-15758).

Results from optimal control theory and the
optimal control model of the human operator are
used in desigjn of control and display dynamics,
and in predicting tracking performance.

f) Seifert, D.J. Combined Discrete Network
Continuous Control Moeing 6f Sdn-ai~ne MiTemg

AFB OH, liarch 1979 (AMEL-TR-79-34 AD-A071 574).
5pen-loop optimal control models are combined

with network models to describe the human operator
as supervisor of a system. Tasks incliude informa-
tion retrieval and cognitive processing, as well
as flight control.

5. REF--RENCES AND TEXTS:
a) Rouse, WR.B. Systems Eineerin5 Models of

Human-Machine Interacflon. newTorK: o r E

Theoretical presentation, *with some appl.ication
information; greatest emphasis is on discrete tim~e
optimal control, but manual control also is
covered.

b) Sheridan, T.B.,t*and Farrell, W.R. Man-Machine
S tems: onoma~ , Contorl, and DeciiFHEo e '9
?eT an TrWT

Detailed theoretical and mathematical presenta-
.4 tion on manual control, with lesser discussion of

optimal control models.
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H. TIME SERIES MODEIS

1. PURPOSE OF MODEL/TECNIQU: To assess the magnitude

and statistical significance of any changes in

behavior or performance, as a result of an interrup-

tion (change of conditions) during a series of meas-

urements over time.

For example, the accuracy with which an observer
tracks a symbol on a CRT display can be measured over
a period of days. The interruption is considered to

occur when the observer is given a different type of

display on which the same task will be done in the

future. Time series analysis is used to determine

whether any real change in performance (not due to

simple learning) is evident, after the interruption.

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra

b) Probability theory

c) Descriptive statistics

d) Graphs and plots

e) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, where the

differences can be attributed to different

responses to an interruption in a time series of

measurements.

b) Describing systems, where system performance over

time is the factor of interest, especially as

affected by some kind of change in conditions.

c) Evaluating human performance, when performance
changes may be expected as a result of known

changed conditions, and a series of measurements

(before and after) will be made.
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4. USED IN LITERATURE:

a) Cartei, R.C. "Time Series Models of Human Factors
Dynamics I" Human Factors, Vol. 26, No. 1, 1984,
pp. 83-9S. -

The Box and Jenkins multivariate time series
model is used for analysis of human factors data
representing U.S. Navy enlistments, career
progression of technicians, spatial and verbal
time cycles, and simple and choice reaction times.

b) Krause, P.B. "The Impact of High Intensity Street
Lighting on Nighttime Business Burglary", Human
Factors, Vol. 19 No. 3, 1977, pp. 2 5-239.

An.interruptea time series design is used in an
eperiment which demonstrates te effect of night
lighting on crime. Hazards that can arise if the
serial dependence of successive observations is
ignored also is illustrated.

c) Shinners, S.M. "Modelling of Human Operator
Performance Utilizing Time Series Analysis", IEEE
Transactions on Sytems, an and Cbereeti--97

VoI -15-57-1977p 44691VS8.-
Tne time series approach is a useful method for

modelling any set of discrete observables
corrupted with noise, be it human or some other
deterministic/stochastic process. Actual ingut-
output data are used, in this time series model.
The technique first identifies the model then
estimates the parameters of the identifieA model,
based on the data. Finally, model improvement is
made, by checking the fitted model wit5 data.

5. REFERENCES AND TEXTS:

- -'- a) Cook, T.D and Campbell, D.T.
Ouasi-Ex erimentaion: Desijn and Anal sis issues

a 97':--

.ompiete and detailed discussion of the back-
ground and use of time series models in general
and the Autoregressive Integrated Moving Average
(ARIMA or Box-Jenkins) model in particular.

b) SPSS, Inc. SPSS-X User's Guide. New York:
McGraw-Hill Book~ mpa nyF~

Detailed instructions for carrying out the
Box-Jenkins procedure foc time series data. SPSS
PUdate 7-9 (1981) also includes the Box-Jen i-
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I. FINITE MARKOV CHIS

1. PURPOSE OF MODEL/TECHNIORE: Describing possible

"states" of a system, and predicting the probability

the system will be in one of these states at some

time in the future.

2. MATHEMATICAL TOOLS REUIRE 2k USEFUL:
a) linear or matrix algebra

b) Probability theory

c) Descriptive statistics

d) Computer programming (the APL programming

languaging is especially useful for operations on

matrices)

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences; Eor example,

illustrating the probability that someone will

transition from one to another of four states

(asleep, bored, alert, frantic) in the next time

period.

b) Describing systems; for example, noting in concise

form (matrix) the probability that a system will

move from one state (OFF) to any one of three

others (WARMUP, MANUAL, AUTOMATIC) in its next

transition.

c) Evaluating human/system performance; for example,

determining the probability that an individual or

system will be in a state-of-interest, at some

given time in the future.

4. DESCRIPTION:

a) Model: A system or process is described as a

function of four things:

i) A finite set of ob jects (usually one).
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ii) A finite collection of possible discrete

states the objects can be in or assume.

iii) The initial probabiliy: probability for

each state that the process begins there.
iv) The transition probability: probability the

object will stay in that state or enter

another state in the next time period.

b) Assumptions:

i) Markov proprtI. The likelihood of entering

any state in the future depends only on the

present state the object is in, not on any
past states (also called the memoryless

property); that is,

! i -P[ X(n I1)=j IX (n) =i, X (n- 1 i (n- 1) ,. . X (0) =i (0)]

P[X(+1)=jIX(n)i] = P(ij)

for all states i(O), i(1,...,i(n-1) , i,. j;
and all n>O.

ii) Stationarit!. Transition probabilities do

not change with time (are "stationary").

iii) Certainty. All states and all transition

probabiliites used in the model are known

constants, obtained through some empirical

data collection process; the system is

completely characterized by the set of

states, initial probabilites, and transition

probabilities.

c) Strenths:

. i) The procedure is simple to follow, appeals

to logic, and is easy to defend.
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d) Weaknesses:

i) Values for the transition probabilities are

critical; small errors in estimates for
these can give significantly incorrect

answ ers.

ii) The independence of the probability of the

next state from that of all past states,
except the present one (Markov property),

often does not mirror reality.

iii) The requirement that states of existence be
discrete can be difficult to meet, for many

continuously varying situations.

e) Procedures:

i) Define an exhaustive and mutually exclusive

set of states the system can assume over

time (preferably no more than a dozen).

ii) Taking one state at a time, assign (by what-

ever means) a probability to the event that

the process begins in that state, plus

another probability that it either stays

there or enters each of the other possible

states from that state. These latter prob-

abilities must sum to 1, for each beginning
state. That is, if there are four possible
states (including the one the system pres-

ently is in) and the chances are equally

likely that it will be in any one of the
four during the next time period, each event

.* is given the probability 0.25).

iii) As the first stage in the modeling process,

put this information into matrix form, as
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illustrated below in 5.c. This is the

tansition matr, P (also called the one-

step transition matrix). This transition

matrix plus the set of initial probabilities

now (under the model's assumptions)

2onletel characterizes the system or

process--this is the complete model.

iv) To determine the probability the system will

be in a given state two steps or stages

onward (two time periods ahead), square the

transition matrix (use matrix multiplication

to multiply it by itself) to obtain the

two-step transition matrix, P(ij) 2 . Cubing

the matrix yields the three-step transition
matrix, P(ij)3 (the probability the system

will be in a given state three time periods

ahead) , etc.

v) The long-run probabilities (also known as

steady-state, stationary, or equilibrium

probabilities) , i, are obtained by repeat-

edly multiplying the transition matrix by

itself until limiting (essentially constant)
values for the probabilities are reached (if

they exist). These represent the long-run

proportion of time the system will be in

each of its possible states. These values

also may be obtained by solving a set of

linear steady state eq.uations of the form

7r~ = 7Tiipi11) + 7T2 p21) j njPn1
7r 12) + V74 2 P J22) + *:*

7Mj) = 7T(1) p(j) + 7Tr(2) p(2j) + + 7(n) p(nj):
77(n) = 7(1p(ln) + 7 (2)j(2n) ::: + 7T(n p(nn):
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Values are found for each of the limiting

probabilities, 7r(i), using a subset of

(n-i) of these eguations, along with the

relationship that the sum of all the 77 (i)

i=1, 2,...,n, must equal 1 (normalization

eq uation).

f) Other calculations that ma be lade, using the

transition matrix, include the following. See

references below, for details of these

calculations.

i) Probability of first pas sa. time: the

likelihood the system will enter a specific

state, t(i), at a future time, given that it

started in some specified state, t(j).

ii) Expected first passage time: the mean value

of the time it takes the system to move from

state t(i) to state t(j).

iii) Expected recurrance time: the average value

of the time it takes the system to return to

state t(i), when it has been there once.

iv) Absorbtion probabilities: the probability

that a system will enter one of its possible

states and never be able to leave that state
(be "absorbed'" into that state).

5. ACM EXAMPLE (adapted from Oberle; see below):

a) Situation: A one-on-one engagement between a

fighter and adversary. the relative positions and

orientations of the two combatants are divided

into five tactically meaningful states (although

such transitions between states in actuality would

Le continuous, they are discretized here for use
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with the Markov property), as follows (see Figure

6.1):
i) Offensive weapon (OW): the fighter has a

"rule of thumb" weapon opportunity, giving

him an almost-sure kill opportunity.

ii) Of fensive (Q): the fighter is acting in the
role of pursuer and has a tactizally signif-

icant advantage in position.-

iii) Neutral (N): both combatants are maneu-
vering head-to-head in an attempt to achieve

a position of tactical advantage.

iv) Defensive (2): the adversary is acting in
the role of pursuer and the fighter is

reacting to the adversary's positional
advantage.

v) Fatal defensive (f_.: the adversary has a
"rule of thumb" weapon opportunity.

b) Procedures:

i) Direct (one-step) transitions Can occur only
between adjacent states. At each 5-second
time division during an engagement, the
fighter is classified as being in one of the
five states. Oberle provides the simulated
data shown in Figure 6.1 for a hypothetical
115-second exercise (artificially divided

here into 23 5-second time segments).

ii) Although Oberle does not do so, the same

data can also be given in the format of a
more standard Markov chain model, as is
illustrated as in Figure 6.2. States are

shown as circles, transitions as arrows, and
transition probabilities as fractions.
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*1ow L
0

N

D 5-Second Intervals IU

FD

Figure 6.1 Transition States During a Simulated Engagement

iii) One-step transition matrix: Oberle does not

put his simulated data into transition

matrix format, nor does he make any further

calculations in this report. However, given

this data, it is easy to carry out addi-
tional operations usually performed with

Markov chains.

For purposes of this example, it is

hypothesized that the initial probability of

being in a neutral position at time 0 is

0.5; the probability the fighter will still

be in that neutral position at the end of

the first time segment is 0.56 (calculated

from the data in Figure 6.1 or 6.2), that he

will be in an offensive position is 0.11,

and that he will be in a defensive position

is 0.33.
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52/5

2/5 2/5

1/1

1/55

1/21

Figure 6.2 One-Step Transition Diagram for an ACH Engagement

Similarly, it is hypothesized that the
initial probability of being in an offensive

position at the start of the engagement is

0.25, and that he will still be in an offen-
sive position at the ead of the first time

segment is 0.40. This process is repeated,

with results as shown in the one-step tran-
sition matrix:
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Initial
prob. ON 0 N D FD

OW 0 ON 0 1 0 0 0

o.25 0 1.40 .40 .20 0 0

N .50 p N 0 .11 .56 .33 0

D .5D 0 0 .60 .20 .20

P D 0FD 0 0 0 .50 .501

i v) The total probability that the fighter will

be in an offensive position at the end of

the first tine segment is:

(0.25) (0.40) + (0.50) (0.11) 0.16.

V) :Two-ste trnsitign matrix:

011 0 N D FD

OW .40 .40 .20 0 0

0 .16 .58 .19 .07 0
=2 N .04 .11 .53 .25 .07

D 0 .06 .46 .34 .14

FD 0 0 .30 .35 .35J

vi) 1,oaagru pr~.babiliix values-

The long-run proportion of time th e

fighter aircraft can be expected to spend in

each of the five states is:
owd 0 N D FD

77(i W [87 217 .394 .217 .087
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6. USED IN LITERATURE:

a) Bell, E.L. optimal Ba_1sian Estimation of the
State of aU_ iis_Hemorv-Con21-1tona± -1arKoiv 7rocess w Mn

ica-tins to Mnual Wors-De cod1-n.--Doctor-
EZngineerin 1Te3-,-NX-" P-69ggluate School,
September 1977 (NPS T 180049).

First and second order Markov chain models are
used to describe the decoding of hand-keyed Morse
code signals. A Baysian solution process is then
used to find an optimal estimate of the state of
the Morse process.

b) El Shanawani, A.A. Availability of Maintained
Systems. Master's the.-f gineering
AFr -- Force Institute of Technolo
Wright-Patterson AFB Marzh 1
(AF T/GOR/MA/82D-7 AD-A127 365).

A survey and classification of the literature
relevant to availability, with emphasis on prob-
abil.ity density functions of fail are times and
repair times. models include those based on
Markov processes.

c) Newman, LA., and Tiffany, P.B. "Discrimination
of Density and Clustering on Four Versions of a
Stochastic. Display", Proceedin_ _o. the 21st
Meeting of the Human ?acTors S~c. , Xa
rincsco,[CA, -7 77,-p. 1-7-TT -- -
A two-dimensional arkov process is used to

control the variables, in a study of the interac-
tion of two texture variables (density and
cluster) with two display .parameters (positive/
4egative image and adjacency/separation of
images).

d) Oberle, R.A. Air Combat Evaluation: the Reduced
Dimension Measures. i -3s-1iaTes, -E-cT 155.
, -.- 31r9 , -(RES 83-6-2).
See the above example.

e) Snow, R.E. "Eye Movement and Cognitive-Process
Research in Europe: Some Examples from
Switzerland," European Science News, Vol. 38, No.
6, 1984, pp. 297 --..

Eye movements and fixations, associated with
problem solving durin stimulus search and
processing are model ed as Markov chains to
predict different eye fixation paths and lengths.

f) Thomas, M.U. "A Human Response Model of a
Combined Manual and Decision Task," IEEE
Transactions on Systems, Man and CQtbenetcs,
To 7I 3C="7NU7 5- pW~p p_'8 -14EW7

A combined manual and decision task is
described in terms of a Markov chain model
combined with a discrete probability function.

g) Thomas, M.U. Some Models of Human Error for
Man-Machine SYst_EvaIiiftfIfo -- arT- t -

78

U .. , . , , . .. .. . ..-. .. . . . . .-.... . . -. .. .. .. .-. . . . . . . ., , ., : '. . ., , . -



System Desin. Wisconsin University, December 1978
(TR-79-5, )±D072 8.38).

A general semi-Markov formulation is used to
describe transitions among error states.
Interdecision times are treated as a renewal
process.

7. REFERENCES AND TEXTS:

a) Bronson, Richard. Schaum's Outline, Theory and
Problems of O PerationsA---H~seXE _- feW -Yo IkT1c Raill-B oB1-Company, 1-,

A brief explanation, with a number of worked
out examples.

b) Oki raam, Glaser, L.J. and Derman Cyrus.
P roa i Models and ai .Icat ions. fiew York:ffacff1=affnu TuME snng o., nc., T97U.

A readable introduction to Aarkov processes and
chains.

c) Ross, S.M. Introduction to Probability Models.
New York: Acaem-PFres-, | 1.-

Extremely succinct explanation, in strictly
mathematical terms; a high level of mathematical
sophistication is advised.

d) Taylor, H.M., and Karlin, Samuel. An Introduction
to Stochastic Modeling. Orlando: Xca i'r-,

Iighly mathematical explanation; not for
beginners.

J. POISSON PROCESSES

1. PURPOSE OF MODEL/TECHNIQU_: Determining such quanti-

ties as the number of arrivals into a system (or

tasks that must be performed) over a period of time,

the expected "population" size at a given time, and

the probability of any given population size at a

specified time. Arrivals must be according to an

exponential distribution with a known rate parameter.

Then the number of arrivals by a given time has a

Poisson distribution dependent on the rate parameter

.4 and elapsed time.

For example, a person may be tasked with learning the

Chinese language. The length of time required to
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learn any given character is a random variable. If

data collection indicates that the distribution of

this random variable is approximately exponential and

a rate parameter can be calculated, the learning

process can be described as a Poisson process. Then

it is possible to predict such quantities as how many

characters will be learned in an hour and the prob-

ability that the student will know 100 =haracters at

the end of five hours.

2. MATHEMATICAL TCOLS REQUIEED OR USEFUL:
a) Algebra

b) Probability theory

c) Descriptive statistics

d) Graphs and plots

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, where the

differences are a function of some characteristic

that can be considered in terms of arrivals, with

exponential distribution.

b) Describing systems in which events occur with

time, expressible as an exponential random

variable.

c) Evaluating human performance under conditions

which meet the Poisson and exponential distribu-

tion requirements of this model. This is espe-
cially useful in accident and error predictions,

as is discussed in the section on reliability

models.

4. USED IN LITERATURE:

a) Haight, F.A. "A Mathematical Model of Driver
Alertness", Eromics, Vol. 15, No. 4, 1972, pp.
367-378.

A non-homogeneous Poisson process is used to
develop a model of driver decision making, based
on observations of driver behaviors.
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5. REFERENCES ANDl TEXTS:

a) Barlow, R.E., and P~oschan, Frank. Statistical
Theor of Reliability and LifeT!~

C~opany9 f LtdT91. gi
Aombrhief deaiscalio lof atheuo Poissonse

asrtceyelat to relabliabilityrmiandirna.

Prosm Sof! Introdtin tow Prbaii odl.

Comvetbefdto q explnati n to;ahg ee

i o lf mathematical oh lcton is adised.poese

d.~ ) Taor!,an ln S.M.l A IntroductiontoPbaityldes

to Stochastic ModeliMg. Orlando: Waimc 7es

sood, brief explanation, but not for beginners.

K. QUEUEING PROCESSES

1. PURPOSE OF M'ODEL/TECHNIQUE: Determining the length

of time a customer (person, object, or task) must
wait "in a line,' (in giueue) to get attention, the

time needed to provide service or perform the task,

the number of customers in the system and in queue at

one time, etc.

2. MATHEMATICAL TOOLS REQIRE D OR USEFUL:

a) Algebra

b) Probability theory

3 c) Descriptive statistics

d) Graphs and plots

81



3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences in task

performance.

b) Describing systems, where these can be viewed as

consisting of "customers" and "services".

c) Evaluating human performance, such as how long it

probably will take to perform a series of tasks.

4. DESCRIPTION:

a) Model: A system or process is described as a

function of seven things:

i) Population size of the arriving customers or

input source, either finite or infinte

(usually assumed to be infinite, since

calculations are easier).

ii) State of the system, that is, the number of

customers actually in the queueing system at
a given time of interest, either waiting or

being served.

iii) Arrival patterns, usually specified by the

interarrival time, the time between succes-
sive customers into the system. More

complex models may specify single versus
batch arrivals, and whether customers may

balk (refuse to enter the system because
lines are too long), re ne_ (a customer in a

queue gets tired of waiting and leaves

before being served), or Joke_ (move from

his original line into another that is

shorter). Simple models assume single arri-
vals, and no balking, reneging, or

jockeying.
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iv) Service patterns, usually specified by the

service time required to serve one customer.

This can be deterministic (a constant, known U

value), or a random variable with some known

probability distribution. More complex

models specify whether a customer requires a

series of servers or is served completely by
one server (the usual simplifying

assumption) .

v) 3umber of parallel servers at the facility

who provide the needed services for

customers in the queue. All such servers

are assumed to be interchangeable and equal.

6 vi) Queue discipline or service discipline,

which specifies the order in which customers

are served. Usual orders are first-come,

first-served or first-in, first-out (FIFO) ,

as with customers at a supermarket checkout
stand; last-in, first-out (LIFO), as with

items in a suitcase; random order (RO) ; or
priority order (PO), where certain customers

get preferential treatment. Most commonly a

service order is not specified, but the

model is referred to as a general discipline

(GD) model.

vii) Kenaall's notation, which is simply a stan-

dardized shorthand for specifying the above

parameters:

(X/Y/Z) (U/V/W).
X is the interarrival time distribution

and Y the service time distribution. These

usually are denoted as N (for Markovian or
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exponential), D (for deterministic), E (k)

(for Erlang), or G (for general).

Z is the quantity of parallel servers.

U represents the service discipline.

V and W indicate the system capacity and

size of the task population, respectively--

both often infinite in size (oo)

b) Assumptions: 1he first four assumptions are

common for most queueing problems. The last seven

assumptions will be made for this study, in order

to keep the model at its most basic, easy-to-

follow level: (N/M/1): (GD/oo/oo).

i) Stationaritl. Arrival time and service time

probabilities do not change with time (are
"sta tion ary,)

ii) Certainty. The population size, system

capacity, and number of servers used in the

model are known constants--have been empiri-

cally determined in some manner.

iii) domogeneity and qui valence. Customers,

servers, and service all are homogeneous.

It makes no difference who serves whom.

iv) Non-neativity. All variables are non-

negative (exist in quantities greater-than-
JOL_ or-equal-to zero).

v) Exponentially-distributed interarrival times

and service timea (also known as Markovian
or Poisson processes). It is a property of

this probability distribution that the
arrival time of the next customer is inde-
pendent of when the last one arrived, and
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that the expected time for completion of

service is independent of how long the
customer already has been in service (memo-
ryless property or Markovian property).

vi) Sinale events. Time increments under

consideration are small enough that the

probability is approKimately zero that two

or more events will occur in one time incre-

ment (two arrivals, one arrival and one

service, or two services). There is,

however, a positive probability of either

one arrival or one service during any time

increment.

vii) General queue discialine (GD), with a sinqle

server.
viii) Infinite pqulation size and sse

apacitv, at least as an approximation.

ix) Si r_1 arrival patterns. Customers are not

allowed to balk, renege, or jockey.

x) Underutilization of servers. Server occu-

pancy or utilization is not perfect. If
servers are alwas busy (100.) , waiting

lines slowly will become infinitely long. A

useful rule of thumb, according tc Rouse

(see References and Texts), is that servers

are occupied 70% of the time, for an effi-

cient system.

xi) Steady state conditions. The system has

been in operation long enough to have

reached equilibrium or steady state

behavior. That is, we are not considering a
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new queue just forming when a store has just

opened for the day.

c) Strenths:

i) The procedure is applicable to a wide

variety of problems which can be viewed as

having "waiting line"-type characteristics.

ii) Qualitative and approximate quantative

answers to a number of questions of interest

about a given gueueing system can be
obtained via this relatively simple model.

iii) Using advanced mathematics and a computer,

large and complex problems can be solved via
sophisticated queueing model techniques.

d) Weaknesses:

i) For the model to remain simple and easily
tr ac tible, both interarrival times and

service times must follow an exponential
distribution--a condition not always easy to

justify in the real world.

ii) The model requires that customers (tasks) be

handled serially; yet, in many situations,
simultaneous attention often is necessary to

accomplish a job.

iii) Many queueing problems are analytically

intractible, and require both approximation

and simulation to obtain even rough answers.

iv) The non-equilibrium situation is especially

difficult to deal with, limiting the useful-

ness of the model to on-going, mature

processes.
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e) Procedures: The example that follows illustrates

the process in more detail.

i) Determine that interarrival times and

service times are approximatly exponential

random variables, from available data (see

Figure 6.3 in the example) . Note the values

of the mean time between arriva ls, A, and

the mean service time, pi.

ii) Also determine that other parameters of the

situation may approximately be modeled as an

(MM/!/1) : (GD/Oo/oo) system. That is, there

should be a single server, the service

discipline should be general in nature, and

the customer population and number of

customers allowed in the system should be

very large, if not actually infinite.

iii) Decide what the state of the sstel, a, is

likely to be at the time the modeling

process begins. What juantity of customers,

either waiting or being served, are already

in the system?

iv) The quantities that will be calculated are:

Server occupancy or server utilization,

P =A/

Probability the system will be in state n,

P (n);

if n = 2, P(2) p (1 - p ).

Average number of customers in the system,

L = P/(1 - p ).

Average number of customers in queue,

Lq = p 2/(1 - p ).
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Average time a customer spends in the

system,
W = 1 - .

Average time a customer spends in queue,

= A

Probability a customer spends more than t

units of time in the system,

W(t) = exp (-t/W).

Probability a customer spends more than t

units of time in queue,

Wq (t) = p exp (-t/W).

v) Three other equations may be used, if

o- desired, for calculations:

i = Wq + 1/p

L AW.

Lg= AWq.

f) Other calculations that may be made: Queueing

models considerably more complex than the one

illustrated here have been used to obtain answers

to questions similar to those described above (and

illustrated below), when a simple model is not

applicable. See the various authors cited under

References and Texts for details.

5. MILITARY EXAMPlE (hypothetical)

a) Situation:

i) A fighter aircraft is ingressing toward a

fixed target, crossing hostile territory.

Various enemy ground-based radar systems

illuminate the aircraft from time to time,
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f (t)
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0 0.5 1,0 1.5 2,0 t

Figure 6.3 Exponential Distributions for Arrivals and Service

with time distribution approximately that of

an exponential random variable with rate

A = 1/2 per minute (2 minutes average

time between threats). Figure 6.3 illus-

trates this distribution.

ii) Warning that he is being illuminated by a

threat radar is provided to the pilot on his

radar warning display (RWD). He must take

some kind of defensive or deceptive action

when this occurs: drop chaff or flares, jam

the radar, or make jinking maneuvers with

his aircraft. The time required to take an

appropriate action also approximately is an

exponential random variable (Figure 6.3),

with rate p 2 per minute (0.5 minute or

30 seconds average time to take an action).
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iii) At time zero (the start of the scenario
being modeled), the aircraft will be consid-

ered to be in a steady state condition,
since it has been behind enemy lines for

five minutes. One radar system presently is
illuminating the aircraft, and no defensive

maneuvers are underway.

Source of
Customers _.

Customer
9UUEIn Departing

QEU Service Customers

-~ ***SEPMER

Figure 6.4 Illustration of Single Server Queueing System

b) Procedures:

i) This molel can be specified as
(A/!/1): (GD/o/co). Both the interarrival
times and service times are exponentially

distributed (Markovian). There is a single
server (the aircraft), an infinite

"customer" population (the enemy radars) ,
and an unspecified (presumably infinite) %
number of customers allowed in the system.
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No particular service discipline is speci-

fied, so it will be considered "general".

ii) A sketch of this very simple system is shown

in Figure 6.4

iii) To perform the desired calculations, we

first note that:

Arrival rate A = 1/2 per minute.

Service rate i = 2 per minute.

Number of servers c = 1.

State of the system n = 1.

iv) The "server occupancy", p , is a rough

measure of the pilot's workload. In this

steady state condition,

p = Alji = 1/2 divided by 2 = 0.25.

Thus we see that, on the average, the pilot

is spending 25% of his time responding to

threats.

v) The probability of the system being in the

state where n = 1 at any given time (that

is, where exactly one threat is present) is

given by

P(1) = p, (1 -p) = (0.25)1(0.75) = 0.188.

That is, there is less than a 20% chance of

this state occurring at any specified time.

vi) The averaqe number of threats illuminating

the aircraft is given by:

L = P /(1- p) (0.25)/(0.75) = 0.333.
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The average number of threats "in queue", or

illuminating the aircraft and not yet count-

ered, is:

Lq = p 2 /(l -p) = (0.25)210.75) = 0.083.

vii) The average time a threat will illuminate

the aircraft is given by:

W = 1/( p -A) = 1/(2 - 1/2) 2/3 = 0.667

minutes.

The average time a threat will illuminate

the aircraft before it is countered is:

Wq = p/( I - A) = (0.25)/(1.5) = 0.167

minutes.

viii) The Probability that a threat will illumi-

nate the aircraft for longer than one minute

is:

W(t) = exp (-t/W)

W(1) = exp (-l/W) = exp (-1/(0.667) = 0.223.

The probability that a threat will illumi-

nate the aircraft for longer than a minute
before it is countered is:

W. (t) = p exp (-t/W)

Wq (1) = (0.25) exp (-1/0.667) =

(0.25) (0.233) = 0.056.

ix) The other three equations may be used to

*I check our work:
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W = Wq + (1/p) = 0.167 + 0.5 = 0.667.

L = AW = (0.5) (0.667) = 0.333.

Lq = A Wq (0.5) (0.167) 0.083.

6. USED IN LITERATURE:

a) Carbonell, J.R. "A Queueing Model of
Many-Instrument Visual Samp]4ng" IEEE
Transactions on Human Factors in Electronic_,

,-7" -, T766 ,p. I 57--TU7.

Carbonell J.R., Ward, J.L. and Sanders, J.W. "A
Queueing Aodel of Visual ampling: Experimental
Validation" IEEE Transactions on Man-Machine
Systems, fl.l -9, -5. 3-,-7-Z-p--82-7.

719TT-1nstrument scanning eh avior of pilots was
studied, and a queueinq model developed to predict
the fraction of time devoted to each instrument.
The model later was compared with performance of
three pilots flying simulated airport approaches,
and compared well with observed performance.

b) Eltermann, L.J. Comauter Simulation Design,
Development and Valid-aio n.--Mireorp., Belora,

Jf- u --- [M7T-- . ,-ID-BQ67 977L)
SINSCRIPT is used for a discrete-event gueueinq

simulation of a communications system controlsystem, as part of system support analyses of
man-machine resources within a computer system.

c) Groves, A.W., and Kaercher, R.L. A Simulation to
Anal se Pilot Workload in an Ele-t To-oFi-c aT7
F- -t7,Lo -vel-ZiWroi~meiit. -Xi r-F~rU ce sTITuE e
o-Tchff -I3-r--VW Ei-'P- 51 rson AFB, OH, March
1981 (AFIT/GST/OS/81M-5, AD-AI01 138).

A time-sequenced network of required tasks,
with priority servicing by a single server, is
used to model 30 minutes of visual navigation and
terrain following, incorporating 20 tasks.

d) Schmidt, D.K. "A Queueing Analysis of the Air
Traffic Controller's Workloa d", I EEE Transactions
on Systems Man and Cbernetics,-UC='7-5-. F7

A Ljueueing theory formulation was used to
analyse the workload of air traffic controllers.
The model was then used to predict average delay
and server occupancy as a function of demand.

e) Taguchi, K. and Murotsu, Y. "Simulation Studies
of Evacuation of Passengers and Crews on Board,"
E _nomics, Vol. 20, No. 3, 1977, p 329.

fueue'ing models are applied to the flows of
passengers from doorways an exits, to determine
selection of passa es and widths of passageways,
based on delays of ?he flows and evacuation times.
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f) Wichansky, A.M. "Human Factors Aspects of
ueueing: A Critcal Review", Human Factors, Vol.
8,No. 2, 1976, pp. 161-172. -_-_ --
A general look at queueing theory and its use

in describing customer behavior and human waiting
behavior.

7. REFERENCES AND TEXTS:

a) Bronson, Richard. Schaum's Odtline, Theory and
Problems of OperatiZ Rs---RsT-c.- Y V--Yofr.

Excellent, clear introduction to queueing
systems and (HIM/l) queues, plus separate explana-
tion of more complex models and how to use them.

b) Daellenbach H.G,, and others. Introduction to
0perations Aesearch Techniques SW5FU-- - on-

Simple m odels are qlosse&A overi heavier reli-
ance on mathematical derivations than is usual in
this text.

c) Hillier, F.S., and Lieberman, G.L. Introduction
to jperations Research. San --7 -cisco:
T 1def-y ,---..,1

Heavy emphasis on exponential distribution, but
no simple explanation of how to use the simple
models to find answers. Detailed discussion of
mathematical derivations and manipulations.

d) Ross S.M. Introduction to Probability .1odels.
New fork: Acaddes.- , 199.

Succinct explanation in mathematical terms,
with no numerical examples provided.

e) Rouse, W.B. Systems Eaineerinq Models of
Human-Machine Infer-!ion. -1-7---lo r7-.- --- orf

Considers queues of tasks, and queueing theory
is used to predict human perzormance at comleting
tasks. However simple models are glossed over,
and great detail is given to one rather complex
model of flight management.

f) Wagner, H.M. Principles of Operations Research.New Jersey : PrenF3:Z--- T-a, 77c. ,-T77-5.. ..
Excellent, clear introduction to the sub ject,

and to the exponential distribution family. Clear
explanation of more complex models, also.
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L. RELIABILITY MODELS

1. PURPCSE OF MODEL/TECHNIQUE: Estimating expected time

of failure, probability of failure in a given time

period, etc., for a given system with known failure

rate (or survival rate) distribution.

For example, data collected on frequency of misinter-

preting information on a given CET display format may

indicate that time between errors is a random vari-

" " able that closely fits an exponential listribution,

with rate A = 2 per hour. Given this, we can use

" . properties of that distribution to make calculations.

On the average, the mean time to failure will be 1/A

= /2 hour. The probability that no failure will

* occur in the first 15 minutes is the exponential

survival function, exp(-At) = exp(-2 X 0.25) = 0.61.

Probability nf no failure in 1/2 hour is 0.37, in 1

hour is 0.14, etc.

2. MATHEMATI.CAL TOOLS RE.UIRED OR USEFUL:

a) Algebra

b) Single variable calculus

c) Probability theory

d) Descriptive statistics

e) Graphs and plots

3. HUMAN FACTORS APPLICATIONS:

* a) Describing individual differences, as related to

accuracy and errors.

b) Describing systems, and predicting how long we

expect them to perform.

c) Evaluating human performance over a long period of

*' time, based on measured failures/errors during a

shorter data collection period which can be used

to develop a model.
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4. USED IN LITERATUR:

a) Askren, W.B., and Requlinski, T.L. "Quanti.fying
Human Performance for Reliability Anal yss or
Systems," Human Factors. Vol. 11, No. 4, 1969, pp.3 3-350. - - -

A general mathematical model of the probability
of errorless human performance was derived, and
equated to human reliability for time-continuous
tasks. eibull gamma, and log-normal density
functions were aetermined to be relevant descri-
bers of the data.

b) Meister David. Comparative Analysis of Human
Reliability Models. -- mE oo---m p7-5r, I-oviBef
T97T -- U74-TU77-NPS U 147484).

A total of 22 models were analysed to evaluate
their ability to predict .performance of humans in
operating and maintaining military systems.
Simulation models were founad more powerful than
analytic models. Output usually consisted of
probability.of successful task/system performance
and completion time.

c) Meister David. "Methods of Predicting Human
Reliability in Man-Machine Systems", Human
Factors, Vol. 6 1964, . 621-64
--- imple multiplicative proabilit model for
human error prediction is reviewed ani evaluated.
Performance reliabilities for task elements are
progressively combined through the use of the
series product rule, to yield reliability esti-
mates for tasks, mission phases, and the overall
system. Altman s Data Store is used to obtain the
elemental reliability values.

d) Naval Sea Systems Command. Human Reliabili Zt
Prediction Sys.tem User's Manua= a~Igfn
D. ., December 7977 13D--U58-6-6BS).

Both human and equipment , mean-time-before-
failure and mean-time-to -repair valaes are used
in predicting and demonstrating system effective-
ness and for predicting human reliability, in a
weapons system environment.

e) Pew R.W. et al. Critical Review and Analysis of
* Performance Models~ c tD1- Na n-N....

is a.uaflon. Bo=,-f er ena, and ewman,
In -CaMD e- MA, March 1977 (BBN No. 3446,
AFOSfi-TR-77-0526, AD-A038 597)

Altman's Data Store and other data bank-type
models of human reliability are surveyed and eval-
uarer as part of this 300-page zomprehensive
report.

f) Pollard, D., and Cooper, M.B. "An Extended
Com arison of Telephone Keying and Dialing
Perpormance", Eronomics, Vol. 21, No. 12, 1979,
p. 107.

The reliability of office workers performing
dialing and keying tasks was investigated. An
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exponential curve was found to be a good fit for
keying error data.

g) Siegel, A.I. Wolf, J.J., and Lautman, M.R. "A
Family of MoAels. for Measuring Human Reliability
Prio eain .o the 1_7 Annual Reliabilij_ and

T; ,~uz '5rET1
A[ ' se f stochastic,, digital simulation models

for human performance in man-machine systems is
described. One of these will yield predictions of
integrated system reliability, considering both
equipment ann human performance.

5. REFERENCES AND TEXTS:

a) Brlow, ROE., a E4P Lochan, Franko . Statistcal
The Or .  f Re ia ility an -LifT
PFoB illV Hofe =sI^ver Spllngs,-9., To 7egin
WITn e'ress 1775 . 1981.

Probabilistic underpinnings of reliability
determination; very complete; mathematically
sophistica ted.

b) Cox, D.R. Renewal Theory. London: Methuen andCompany, Ltd. ,-77-6. -C oanief, succinct mathematical text on the

renewal aspect of reliability.

B. SISIUlATIOI MODELS

1. PURPOSE OF QDEL/TECHNIOUE: Building an experimental

model of a system when uncertainties, dynamic or

complicated interactions, and interdependence among
variables makes the development of an analytical

model difficult or impossitle. The simulation model
then can be used with a computer to evaluate and

compare specific alternatives, and to make
predictions abcut the system. Simulation can be

considered the laborator or experimental arm of

operations research.

2. MATHEMATICAL TOOLS REQUIRED QR USEFUL: While any of

the following may be needed for a given simulation

model, only logic and set theory, descriptive statis-

tics, experimental design, computer programming, and
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computer software packages will almost always be

required.

a) Algebra, simple, linear, Boolean

b) Geometry, plane, spherical, analytic

c) Trigonometry

d) Calculus, single variable, multiple variable

e) Logic and set theory p-
f) Fuzzy set theory

g) Probability theory

h) Statistics, descriptive, inferential
i) Experimental design

j) Graphs and plots
k) Computer programming (in languages such as

SIMSCRIPT, GPSS, etc.)

1) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, where the indi-

vidual is considered in more detail or complexity

than can be handled through simple analytical

models; examples include the Computerized

Acc3modated Percentage Evaluation model (see

Bittner), and Computerized Biomechanical

Man-4achine Model (see McDaniel), both anthropome-
tric descriptions of humans.

b) Describing systems, where the systems are dynamic

in nature or where variables are known to

interact; examples include describing a man-
machine system during an air intercept mission

(see M eldrum).

c) Designing systems such as control panels (see

Bonney and Williams), vorkspaces (see McDaniels),
task allocations (see Parks and Springer) , and
individual tasks (see Wortman and others).

98

o



d) Evaluating human performance such as that observed
in complex crewstations (see Strieb and Wherry)

4. DESCRIPTION:
a) Aoftl: A system or process is described as a

function of ten things:

i) The system itself, which has dynamic

phenomena--inputs, components, behaviors,

and outputs--that are being studied.

ii) Entities or elements of the system--

components whose behaviors are traced

through the system or time period of
interest. Classes of entities can be

concrete or abstract, and include people,

machines, various objects, signals, bits of
data, and tasks.

iii) Attributes of the entities--size, quantity,

requirements, responses--that characterize
their behaviors in the system. Attribute

values can be numerical or Can be word
descriptions (responses can be verbal, hand-

written, keyed, etc.).

iv) Membershi relationships of entities, such

as shared attributes which cause them to

belong to sets or files (temporarily or

permanently). riles also may have attri-
butes, such as capacity or a finite useful

life.

* v) Activites related to the entities: dynamic

operations which entities can perform or

which can be performed upon them.

9
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vi) States of the entities and of the system as

a whole: the configuration at a given point

in time which has been defined by file or

entity attributes and ongoing activities.

The initial state is a special zase which is

defined by the experimenter at the start of

the simulation.

vii) v.entg, which describe any change in the

state of a system and which result in its

dynamic behavior. Events can be exogenous,
the result of some occurance outside the

system, or endo2enoR, resulting from activ-

ites of the system's own entities. If all

events result either from constant exogenous

inputs or from deterministric endogenous

consequences, the simulation is called

deterministic that is, the same set of

inputs always will result in exactly the

same simulation outputs. If events result

from inputs that are subject to random

phenomena, this is considered to be a

stochastic simulation or a Monte Carlo simu-

lation. Randomness in the initial values of

entity attributes, in changes in attribute

values, or in the timing of events can be

provided through inputting of random numbers

representing the probability distribution
most appropriate for the system under study.

As a result of this randomness, simulation
outputs will differ from run to run,

reflecting that specified probability

distribution.
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viii) !iae rt .,n, as the system

progresses through the events of interest.

Fix ed-time increments (also known as time-

step incrementation) can be used if events

occur on a fairly regular basis, so that

there are not long periods of inactivity; in

this case, time elapses period by period

(second by second, or day by day).

Variable-time incrementing (also called

event-step incrementation) is used if many

time periods will contain no activities.

This kind of program progresses according to

an event UI, which governs the progress of

the program in much the same manner as

* seconds or days would--except that the

length oZ periods is not a constant. This

latter type of programming requires more
skill than does the simpler time-step

incrementing.

ix) Decision rules or operating rules, which

provide logical links between entities,

activities, events, and resulting states of

the system. To use computer jargon, if

certain entity and activity requirements are

met, then a specified change of state will

occur, else the system's state will remain

unchanged.

x) A flow diagram or algorithm. This is a

useful tool which depicts the orderly and

. logical flow of events as a series of boxes

and arrows, covering the sequence or time

period of interest. The above-noted system

parameters are described in that diagram
*' (see Figure 6.5).
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b) Assumtions: Simulation models vary widely,

depending on the system being modeled. As a

result, assumptions must be made on a case-by-case

basis (and should be clearly stated for each

model). However, the following three assumptions

probably apply to most such models.

i) Algorithm validity. The flow diagram

describing the system, used for developing

the computer program, is an adequate repre-

sentation of the real system for obtaining

useful results.

ii) Known constants. All constant parameters

used in the model are known values, obtained

. through some empirical data collection

process or through logical deductions.

iii) Known Pr.obabilj distributions.

Randomly-distributed events can be

adequately characterized by known discrete

or continuous probability distributions;
values for these distributions can be

obtained for use in computer runs by means

of mathematical transforms of values

obtained from a random number generator.

For many simulations, the assumption is made

that the individual observations of the

variables (variable values obtained for use

in the simulation) are independent (uncorre-

lated) and are drawn from a single normal

(Gaussian) distribution with constant mean

and standard deviation. A second popular

distribution is the exponential distribu-

tion, for which the same assumptions of a
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constant mean and independent values are

made.

c) stren ts:

i) Simulation techniques can be used for prob-

lems which cannot be handled through analyt-

ical modeling techniques.

ii) Simulations provide a means of eAgerimentn

with proposed systems before they actually

are developed and implemented.

iii) Simulation models do not require as great a

degree of abstraction, simplification, and

approximation as do analytical models; simu-

lation models may be fairly true representa-

tions of the real world.

iv) The procedure of preparing an algorithmic

flow diagram is a very useful tool in

designing a model which represents a system

adequately; the orderly thought process

required can aid the experimenter in picking

up flaws in his logic.

d) Weaknesses:

i) Simulation cannot be used to find the "best"

solution for a system problem. Rather, it

is an aid to analysis which can be used to

compare various alternatives--but does not

find a better one if the experimenter has

not already thought of it. Optimization is

done via trial and error.

ii) Simulation models must include a great deal

of detail in order to be successful repre-

sentations of a system. Thus model building
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effort is much greater than for an analyt-

ical model.

iii) The answers resulting from stochastic simu-

lation must be considered estimates, and are

subject to statistical error. A large

number of simulation runs are necessary in

order to achieve statistical significance

(similar to other forms of experimentation).

iv) Simulation models, being complicated,

frequently can eat up computer time at an

enormous rate. Large numbers of runs can be

required to validate that the model behaves

like the real system, to estimate model

responses to various parameter settings, and

to determine relationships among these

parameters. The process is expensive.

v) Although many simulation studies concern

investigation of systems that operate

continually in a steady-state condition,

simulation models cannot operate

continually; they must start and stop. The

performance of the simulated system cannot

be representative of the real one until it

essentially has reached a steady-state

condition, through many runs. This makes it

especially difficult to use these models to

predict steady-state behavior.

vi) Selection of values for starting conditions

(initial states) is important in determining

how soon a simulated state similar to the

real system's steady state is achieved. Yet

estimating such values with an adequate
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degree of accuracy can be impossible--

indeed, may be the purpose for which the

simulation is intended!

vii) The assumption of statistically independent

random observations from a given probability

distribution often is not correct, when

modeling the real world. For example, the.
waiting time of one customer in a gueue is
definitely dependent on the waiting time of

the person ahead of him in line.

e) Procedures: Not all of the procedures listed here

will be appropriate for any one simulation model;

the user must pick and chaose according to what

the system actually is like.

i) Define the system of interest, setting

limits on just what portions will be modeled

and to what degree simplification and

approximation will be allowed.

ii) Specify the classes of entities to be

included, and enumerate the entities

themselves.

iii) Assign attributes to the entities, including

only those attributes which are appropriate

for this system and this degree of system

. representation. Give a range of allowed

values for each attribute (numerical or

otherwise descriptive).

A iv) Determine the relationships among the

entities--what similarities do they have,

and how does a change in one affect another?

Identify appropriate sets or files into
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which entities will fall during the

simulation.

v) For each entity, define what activites it

will be allowed to perform, and what opera-

tions can be performed on it.

vi) Define the allowable states for each entity,

and specify the initial value which will be

used for the state of each entity.

viij Determine the events which will occur during

the simulation process, including both those

that are exogenous and those that are

endogenous. Ascertain which events are most

appropriately represented as deterministic

inputs and which are better modeled as

stochastic inputs. For stochastic values,

decide what probabiity distribution will be

used to generate thbse values. Find the

correct mathematical transform formula to

convert randomly-generated numbers into

values of that probability distribution (for

inverse transformations, see Daellenbach an3

others, p. 469; Hillier and Lieberman, p.

650; or Wagner, p. 930).

viii) Decide whether fixed-time or variable-time
incrementatior. will be used.

ix) Prepare the set of decision rules which will

be used in the program. These should be

based on the entities, attributes, relation-

.* ships, activities, and states of the system.

x) Design the experiment which is to be run via

simulation. This includes both the

106

6 . I '.



selection of the constants, independent

variables, and dependent variables, and also

determiniation of the statistical procedures

which will be used to evaluate experimental

results. Use of statistical analysis

computer packages (SAS, SPSS, etc.) can be

very helpful.

xi) Draw an algorithmic flow diagram describing

the system and the process it will go

through during the simulation runs.

xii) Write a computer program for the algorithm

(or have it written by someone who does that

for a living). Use of one of tae specially-

designed simulation languages is highly

recommended (SIMSCRIPT, GASP, SIMULA, GPS3,

etc.). For some simulation problems, canned

software packages may already be available

(for human factors use: SAINT, HOS, CAPABLE,

COMBIMAN, CAFES, etc. ; see literature

references at the end of this section).

xiii) using the values of the independent vari-

ables previously decided upon in the

computer program, run the simulation to

validate its ability to represent the system

being modeled. Modify the program, if

necessary. Once the model is validated,

continue the runs until the desired degree

of precision is reached for the resulting

dependent variables (for I stochastic

simulation)

xiv) Use the pre-s(lected statistical evaluation

techniques on data obtained from the

1
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simulation runs to determine if results are

statistically significant, etc. Sensitivity

analysis also is especially important here,

to determine which variables are the crit-

ical ones.

f) Other calculations that ma be made: The variety

of purposes for which simulation models are being

used in the human factors field is illustrated

below in the literature references. Other uses

certainly will be found, as human factors engi-

neers become familiar with simulation techniques.

5. MILITARY EXAMPLE (adapted from examples in Hillier

and Lieberman, and in Wagner; see References and

Texts)

a) Situation:

i) Essentially the same situation will be
modeled here as was described in Chapter 6,

Section H., Queueing Processes. However,

interarrival times and service times will be

assumed to follow a uniform (square) prob-

ability distribution rather than an exponen-

tial one. Thus, queueing model calculations

cannot be aade in the usual way.

ii) A fighter aircraft is ingressing toward a

fixed target, crossing hostile territory.

Various enemy ground-based radar systems

illuminate the aircraft from time to time,

with time distribution approximately that of

a continuous uniform random variable with

range 6 to 24 seconds (average time 15

seconds).
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iii) Warning that he is being illuminated by a

threat radar is provided to the pilot on his

radar warning display (RWD). He must take

some kind of defensive or deceptive action

when this occurs: drDp chaff or flares, jam

the radar, or make jinking maneuvers with

his aircraft. The time required to take an

appropriate action also approximately is a

continuous uniform random variable, with
range 1 to 19 seconds (average time 10

seconds).

iv) At time zero (the start of the scenario

being modeled), the aircraft will be consid-

ered to be in a steady state condition,
since it has been behind enemy lines for

five minutes. No radar systems presently
are illuminating the aircraft, and no defen-

sive countermeasures maneuvers are underway.

b) Procedures:

i) The system of interest will be defined as a
single-server queueing system.

ii) There are two classes of entities: radar

illuminations (threat warnings), which are

the "customers", and aircraft pilots (the
"servers") There is only one entity in the

class of pilots: the single pilot of our

aircraft of interest. The class of threat

warning entities is infinite in size, with

entities considered all equivalent, and

identitifed only by the sequence of their
arrivals.
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iii) Threat warning entities have only one attri-

bute of interest for this study: their

interarrival times. As previously noted,

these are considered to be uniformly

distributed, with range 6 to 25 seconds.

The pilot also has only one attribute of

interest: his countermeasure response times.

These also are uniformly distributed, within

a range of 1 to 19 seconds.

iv) Relationships between the entities that are

of interest to this study are: (a) a threat

warning must preceed a pilot response, and

(b) a threat warning will not go away until -*

the pilot has responded to it.

v) Activites of the two entities will be

limited to the following: (a) a radar illu-

minaticn will result in a threat warning to

the pilot, and (b)the pilot will take a

defensive countermeasure action which will

result in disappearance of the threat

warning (and presumably supression of the

threat).

vi) Allowable states of the radar illuminations

are (a) absent, or (b) present. Allowable

states for the pilot are (a) free, or (b)

busy.

vii) Only two kinds of events will occur: (a)

arrival of radar illumination threat warn-

ings, as stochastic inputs, and (b) comple-

tion of a defensive maneuver by the pilot,

also as a stochastic input.
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viii) Time incrementing for this example will be

done using the event-step procedure for

variable time increments.

ix) Two decision rules may prove useful in

programming this situation: (a) If the pilot

is free when a threat warning arrives, then

the threat is countered, else the threat

joins the queue; (b) If a pilot countermea-

sure is completed when at least one threat

is in queue, then the next threat will be
countered, else the pilot is free.

x) The experiment to be performed for this

simulation is to determine the percent of

time the pilot will not be able to complete

his mission, given these circumstances. It

will be assumed that "mission completion"

will be eguivalent to "no more than two

threats in the system at any one time" (an

extremely simple definition, but one that

can be tested and measured). A. "mission"

will be considered to be one complete cycle,

or that period of time between queues: a new

mission will be started (for testing

purposes) each time the number of threats in

the system drops to zero.

The statistic to be calculated is:

Expected % of mission failures =

100 X no. of cycles containing 3 threats-- - ota± no. or cyc es.

xi) An algorithmic flow diagram of the system of

interest is shown in Figure 6.5.
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xii) One-digit random numbers can be used to

generate the random observations from the

two uniform distributions. If random number

0 is drawn, this will represent an interar-
rival time of 6 seconds, or a service time

of 1 second; 1 will give an interarrival

time of 8, or a service time of 3; 2 will

give an interarrival time of 10, or a
service time of 5; and so on, incrementing

interarrival times by twos, up to random

number 9 representing 24 seconds, and incre-

menting service times by twos, up to random

number 9 representing 19 seconds.

xiii) Although a computer program could be written

to perform the required simulation (and

certainly should be, if enough runs are to

be made for statistical significance), the

required procedure can be illustrated here

simply as is shown in Table 6.

xiv) This table follows the simulation through

five cycles (number of threats drops to zero
five times). In only one cyzle does the

number of threats in the system climb to

three--criterion for mission failure.

The resulting statistic for mission failure

is:

Expected of mission failures

100 X 1/5 = 20%.

6. USED IN LITERUMARE:

a) Bittner, A.C. Jr. Computerized Accomodated
kerzentage Evaluation: aevw oT-T __-_
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TABLE 6

SARPLE SIBULATION RUNS: FIVE CYCLES

Arrival Service Next
time time service Number

Random incre- Next Incre- comple- Event of
nube met rriva j~jto time threats

Cycle 1
S24 24 0 0

2 6 10 34 1i 3 24 1
414 48 34 2

6 13 50 37 1
4 14 62 '48 2
1 3 5 50 1

Cyce 2
53 0

118 70 3 65 62 1
Cyclie 3 6
3 9 12 82 19 89 70 1

i8 90 82 24 9 98 89 1
-0 1 8 98 90 21 5 8 106 11 109 98 2

18 124 106 113 1 0

C~cl '4117 0
5 6 16 140 13 137 124 1

Cycle 5
93 24 164 7 147 04

147 0

Pacific Missile Test Center Pt. Mu qu CA,
December 1976. (PHTC-TP-76--4t AD-i035 20sf.

About a dozen research efforts are reviewed
which employ Monte Carlo simulation for computer-
ized accomodated percenta e evaluation (CAPE)
These models are used to dez ermine what proportion
of the population will be able to use a given
system, based on anthropometry.

b) Bonney, M.C., and Williams, R.W. "CAPABL-: A
Computer Program to Lay Out Controls and Panels",
Ergonomics Vol. 20, No, 3 1979, p.297-316.

o rprogram called Contrl n ae
Arrangement by Logical Evaluation (CAPABLE) is
described, and results of its use are discussed.
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C) Hudson, E.M. "Adaptive Technigues on
Multiparameter Problems", Human Factors, Vol. 11,
Ro. 6, 1969 pp. 561-568.

A simulatLon technique is used for conducting
multiparameter experiments so that the number o
data points investigated is a minimum. The method
is based on observations that human responses to
psychophysiological inputs are lawful rather than
random, and so can be predicted from mathematical
euations. Data collected from a few points in
t e experimental matr.x are fitted with a low-
order polynomial, using a computer program to
evaluate the coefficients. various values
predicted from this equation are compared with
other data values, and improvments are made in the
fit as needed.

d) McDaniel J.W. Computerized Biomechanical
Man-Model. Aerospace-- Re39cXa
wrig 9--t terson AFB, OH, July 197t
(AMRL-TR-78-30, AD-A032 ' 402). '

OMBIMAN is a computerized interactive graphics
technique for workplace design. The simulation
allows manipulation of a three-dimensional male
form of variable anthropometry, and the designing
of a workspace around him, using a lightpen.

e) Meldrum, W.G. A Djital Simulation with Human
Interaction of One vs. Myarai-to-irr Tntercf .
1973 (NPS !r 154600).

A. single- vs. multiple-aircraft intercept
mission is modeled using digital simulation,
incorporating computer graphics and namic human
interaction. NOE is probability of ill at each
position of possible weapon release.

f) Parks, D.L., and Springer, W.E. "Human Factors
Engineering Analytic Process Definition and
Criterion Development for CAFES" rgonoics
Abstracts, Vol. 10, No. 1, 1978 p. .4.

e-- Computer Aided function-Allocation
Evaluation System (CAFES) is evaluated for ability
to support human factors engineering in systems
development.

g) Shubik, Martin, and Brewer, G.D. Models
Siuula _on s, and Games--a Surwve. ---CrtE, ~ay 1977-1=1U60-APRT, N PS U
151 21).

Approximately 450 active military models, simu-
lations, and games were identified, from which 132
were chosen for study. Four types were identifed:
analytic models, machine simulation, man-machine
simulation, and free-form gaming. Purpose,
usefulness, and expense of each molel was anal-
ysed. An inverse relationship between size and
usefulness was observed.

h) Siegel, A.I., and Wolf, J.J. I Behavioral
Simulation: Stateofthe-krt nd tTfns.
XIprae sychoI3ca CervUices, TUE., Waynea-!,
June 1981 iAD-Al28 641).
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A review, analysis, and appraisal, along with
resentation of examples or current models.

Problems in model desi n cost-benefit tradeoffs,
and future trends in gehavioral modeling also are
discussed, along with recommendations for develop-
ment and maintenance of current Army models.

i) Streib, M.I., and Wherry, R.J., Jr. An
Introduction to Human Operator Simulator.AnalTics In. il~ow Zrove, PX17D ec~imiTe
(TR- 4QO.62-D, AD-A097 520).

HOS is a digital computer program used in eval-
uationof performance in comp ex crewstations. The
activities of an operator (perce ption, physicalmovement, decision making, etc.} are simulated
dynamically. The system predicts how long each
activity will take.

See also The Human Operator Simulator Vol. 9
HOS Study Gui3: T.. UeEX&liia
..- Nerr r. (September 1918, TR-1320-Vo-9,

AD-A094 353f.

j) Wortman, D B. and others. The SAINT User's
Manual. Pritsker and Associate-s -n-, ---o
taaltte, IN June 1978 (AD-A058 7&L)

SAINT (Systems Analysis of Integrated Networks
of Tasks) is a network modeling and simulation
technique used in design and anal ysis of complex
man-machine systems. Systems can consist of
discrete tasks, continuous state variables, and
interactions between them.

See also Simulation Usinq SAINT: A
User-Oriented Infauctio-- by--tM same
auTEE 7 'i'u 1977X , =7'T78

7. RFEEZNCES AND TEXTS:

a) Daellenbach H.G. and others. Introduction to
Oerat ons _esearch Technique Seo--n-T- 1o-
osEon Al0fn U-acon, Tc., 913.

Good introduction to the sub ject. Exdellent
examples of flow diagrams, and of setting up data
for simulation runs. Good discussion of simula-
tion programming languages.

b) Hillier, F.S., and Lieberman, G.L. Introduction
to Operations Research. San Ffaisco'9id en- Uy ,-., 15Z . ---

ood examples. Good discussion of variance
reducing techniques (Monte Carlo techniques).

c) Wagner, H.. Principles of Qerations Research.
New Jersey: Pren ic-H--- a[r7 1nc., -T77_ .

Excellent, clear introduction to the subject,
with emphasis on the procedures used in building a
simulation model.
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VII. HODELS FOR OPTIMIZING

The techniques covered here are representative of those

used to obtain the best possible solution to a problem when

a number of constraints also must be met. These constraints

may be laid on us by physical laws (we cannot exceed the

speed of light, for example), man-made laws

(55-mile-per-hour speed limits), or simple economics (we

have only so much money to spend on gasoline).

In this section, we will consider linear programming,

nonlinear programming, network analysis, and distribution

models. These four operations research models (and corre-

sponding techniques) are used to find satisfactory solutions

to problems involving the allocation, use, or distribution

of scarce resources. The scarce resources usually are

money, time, equipment, or people--all available in less-

than-infinite quantities. The optimum solution for such a

problem may be one that maximizes some measure of benefit or

utility (such as profit or survivability), or minimizes some

measure of cost [Ref. 42].

Linear proarammig, the first of these four techniques,

is a geometric or algebraic procedure for optimum allocation

of some resource between two or more alternatives, in light

of certain goals and in light of certain constraints or

conditions [Ref. 13]. Emphasis is on optimum allocation or

mix, and on linear (straight line) relationships among vari-

ables. The term "programming" does not refer to computer

programming (although that usually is involvel, for real-

life problems) ; rather, it is a synonym for "planning"--for

an orderly, step-wise approach to a problem.

Nonnar prLoaammin also is used for obtaining an

optimum allocation of resources, but does not require that
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relationships be linear. Only rarely can graphical or alge-

braic procedures be used "by -hand's to solve real-life prob-

lems which have nonlinear constraints. Computer software
packages are widely used for this purpose.

Network flow models are useful for determining the best

path along which to transport resources, in order to meet

needs for these at various locations or times. In addition

to their use for transportation of physical goods, network

analysis techniques are used for project planning and
control--the flow of a project through the steps needed for
its completion. Two well-known network techniques for the
latter problem are the Program Evaluation and Review

Technique (PERT) , and the Critical Path Method (CPS).

Finally, distribution models are used when a commodity

4 is available at a number of sources and is needed at a

number of destinations. The goal is to identify the least-

cost transportation plan, from sources to destinations,

while meeting the reguirements of the users at the destina-

tions and remaining within the amounts of the commodity

available for distribution.

A. TINEAR PROGRAMMIUG NODELS

1. PURPOSE OF MODEL/TECHNIQUE: Determining the best way

to allocate scarce resources among the demands of

competing activities so that either the level of
service (productivity) is maximized or the cost is

minimized--while operating within a set of

constraints.

2. MATHEMATICAL TOOLS BE.QIRED OR USEFUL:

a) Algebra, simple, linear
b) Descriptive statistics

c) Graphs and plots
d) Computer prcgramming

e) Computer packages
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3. HUMAN FACTORS APPLICATIONS:

a) Designing systems, where relationships among

system variables can be described in terms of a

set of linear equations, and an optimum allocation

of a scarce resource is needed.

4. DESCRIPTION:

a) Model: A system or process is described as a

function of seven things:

i) A set of decision variables (factors over

which the allocator has control) that repre-

sent the amounts of each scarce resource

(people, dollars, weapons) to be allocated

among those who want them.

ii) An obiective function or mathematical state-

ment which relates the decision variables to

each other via a linear equation; for

example:

a(xl) + b(x2) =z,

representing the proportions, a and b, of

dollars, x, going to activities 1 and 2, to

yield a total of z dollars. This function

may be minimized (e.g., total zosts, z, be

as small as possible) or maximized (e.g.,

productivity, z, be as great as

possible)--depending on whether the decision

variable represents costs or benefits.

iii) A set of maximum-settinq constraints (supply

constraints), which say that various deci-

sion variables cannot exceed certain values

(that the amounts are limited-- by law,
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physics, economics, the nature of measure-

ments, etc.). These must be expressed as

linear equations or as linear inequalities.

iv) A set of minimum-settinq constraints (demand

constraints), which say that at least a

certain amount of some decision variables

must be available--again expressed as linear

equations or inequalities. This includes

non-neqativity constraints, which say that

the amount of each decision variable must be

greater-than-or-equal-to zero.

v) At least one feasible solution which simul-

taneously satisfies all constraints. If

there are more than one, the set of feasible

solutions is called a feasible region.

vi) At least one optimal solution, which is a

feasible solution that yields the most

favorable value for the objective function

(sometimes there will be an infinite number

of these, if the line representing the

objective function happens to be parallel to

the constraint line that is setting the

limits).

vii) A stoppin rule (needed for the algebraic

* sialex method) which specifies a way to

recognize an optimal solution and to discon-

tinue the iterations that have been seeking

that optimum.

b) Assumptions:

i) Divisibility. All variables can assume any

real value--fractional or integer (in teIer
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linear prgramminq is a subcategory which

does not require this assumption; see

Daellenbach and others, p. 519; Hillier and

Lieberman, p. 714; Wagner, p. 469)

ii) Non-negativity. All variables are non-

negative (exist in quantities greater-than-

or-equal-to zero). If it should happen that

an activity can occur at negative as well as

positive levels (e.g., we have the option of

either buying or selling one of the items we

consider to be decision variables), two

separate decision variables are introduced:

x for non-negative levels and x- for non-

positive levels. Their difference,

x = (x+) - (x-)

represents the actual level of the activity.

iii) Linearit. All relationships among vari-

ables are linear or can be represented

linearly through transformations. That is,

the contribution of each variable is

strictly proportional to its value, constant

over the entire range of values that vari-

able can assume. Also, the contributions of

the variables are additive: the total

eguals the sum of the individual contribu-

tions, regardless of the values of the vari-

ables (i.e., there are no interactions).

Even if this assumption is not met exactly,

linear programming remains a convenient and

powerful approximation, if relationships are

close to linear within the range of solution

values [Ref. 44].
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iv Known constants. All parameters of the

model are known constants. That is, the
relationships expressed in the describing

equations (the coefficients of the decision
variables in the objective fun-tion and in

the constraints) have already been deter-

mined. This assumption also is violated at
times, since linear programming models are

used to select some future Zourse of action.

This requires that the parameters be based
on predictions of future conditions--
introducing some uncertainty.

v) Convexity. The set of constraints must form

a feasible region which is a convex polyhe-
1 dron. This guarantees that any locally

maximum solution is also globally maximum,

and that no two constraints are mutually

exclusive.

c) Strenqths:

i) Commercial computer programs are available

that are capable of solving huge problems

with thousands of variables and constraints,

using variations of the simplex method.

This is possible since the number of itera-
tions needed to find a solution increases

only linearly with the number of

constraints.

ii) Smaller problems (two or three variables and

a half-dozen constraints) can be solved
graphically (as is illustrated below). Axes

on the graph represent the decision
variables, and the contraints are shown as

lines setting bounds for these variables.
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d) Weaknesses:

i) It is necessary to set up both the objective

function and all constraints as linear equa-

tions or inequalities. Thus relationships

among the variables must be expressable in

the same general terms and be approximately

line ar.

ii) Even with the use of efficient computer

programs, solving large systems of equations

simultaneously is time-consuming and

expensive.

iii) While the algebraic simplex method can be

used "by hand" for problems of up to half-a-

dozen variables and constraints, computa-

tions are arduous and prone to error.

e) General Procedures:

i) Define clearly the resources that are to be

allocated (the decision variables); deter-

mine what units these will be expressed in

(dollars, man-months, kilograms, years,

miles, etc.--as is appropriate to the

problem). Assign a different symbol to

represent each decision variable (xl, x2,

x3, etc., for dollars going to activity 1,

activity 2, activity 3, etc.). Determine

whether maximizing or minimizing will be

done.

ii) Determine the mathematical relationships

among the decision variables, and express

these in the form of a linear equation

(objective function). linear re_gression may
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be useful for setting up this equation, if

empirical data are available but the linear

relationships among them are not obvious.

The resulting equation should be of the

form:

(al) (xl) + (a2) (x2) * ... = z, (7.1)

where al and a2 are the coefficients

relating the variables, xl and x2, and z is

the total value to be maximized or

mini mized.

iii) Enumerate the constraints which must be met.

Formulate these into linear equations or

0 inequalities, using the same symbols and

units for decision variables as appear in

the objective function. These constraints

usually will be in the form of inequalities,

such that the sum of some of the variables

cannot be greater than some specific number

(or less than a given value, in other

cases).

f) Procedujs for a Graphical Solution. (no more

than three decision variables; two preferred; see

example below).

. i) Label the coordinate axes of a standard

Cartesean coordinate system to represent the

decision variables.

. ii) Plot all constraints (including non-

negativity constraints) onto these axes to

define the feasible region.

124

I



iii) Lay out the objective function as a series

of contour lines which represent the
constant slope of that equation, at several

values of z, as it intersects the axes at

various values of the decision variables

iv) For a maximizing problem, that point

farthest to the "northeast" where a contour

lies within the feasible region represents

the best (biggest) possible combination of

decision variables, and the optimum solution

for the objective function within the

constraints.

v) For a minimizing problem, the optimum point

will be found in the "southwest" corner of

the feasible region, in that non-negative

quadrant.

g) Broaedures for an Alaebraic Solution (using a

computer software package; see references below,

for details of how these computations are done)

i) Convert all inequalities to equations by

introducing slack (for _< inequalties) or

surplus (for _> inequalities) variables.

These represent the amount by which the sum

of the decision variables could be increased
(slack) or decreased (surplus) and still lie

within the feasible region. For example, if

a constraint says that

5(xl) 2(x2) _< 30, (7.2)
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-i. -

we can introduce a new variable, (s1), and

say that

5(xl) + 2(x2) + (si) -30. (7.3)

ii) Represent the entire linear programming

problem in the form of a table, in detached

coefficient form (see example below).

Variables are laid out across the top of the

table to form columns (xl, x2, x3, sl,

etc.). The far right-hand column contains

the right-hand side of each constraint equa-
tion. Each row represents one of the

constraints. The coefficients for each

variable in each constraint then form the

body of the table (or matrix). For conven-

ience in entering data, the objective func-
tion also is laid out in this form, either

at the top or the bottom of the constraint

matrix.

iii) Follow the instructions that came with the

computer package, for data entry and for

running the program.

iv) The computer program will provide an optimum

solution for the problem (or say why it

cannot do so), yielding the recommended

amounts of each scarce resource to be allo-

cated to each activity.

5. __M EXAMPLE (Hypothetical)

a) Situation:

i) A one-on-one engagement is planned between a

fighter and a simulated adversary, in a
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practice dogfight. The fighter is testing

the concept of carrying two types of pod-

mounted guns, each using a different

ammunition. The pilot's performance in

being able to switch between the two, as

needed, will be measured.

ii) One type of ammunition (UR) uses spent-

uranium rounds. It weighs 250 lb per 1000

rounds, compared with 200 lb per 1000 rounds

for standard rounds (SR) . The aircraft can

carry a maximum of 1500 lb of ammunition.

iii) Since this is a practice engagement, it is

necessary to keep the cost of ammunition

* below $20,000, while enabling the fighter to

be as "lethal" as possible in the dogfight.

The UR ammunition costs more than the SR

($7000 per 1000 rounds, versus $4000)--but

is considered twice as lethal (a fact to

use, if we wish to maximize "lethality'

value).

iv) The gun using the UR ammo is less efficient,

firing rounds at a rate of 75 rounds-per-

second (13 sec per 1000 rounds), to the SR

gun's rate of 100 rounds-per-second (10 sec

for 1000 rounds). For this engagement, a

total of at least 30 sec of gun employment

time is desired.

v) In order to ensure a fair test, at least

1000 rounds of each of UR and SR must be

carried.
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b) Procedures:

i) Decision variables are UR and SR, repre-

seating the amounts of the two kinds of

ammunition to be carried on one engagement,

in 1000-round units.

ii) The objective function, to be maximized, is

the lethality of fighter performance. Since

OR contributes twice as much as SR to

lethality, the equation is

2UR + SR = z. (7.4)

Our goal is to find the values of OR and SR

which will yield the maximum value for z,

while meeting the zonstraints below.

iii) Our constraints, placed in inequality form,

are costs:

7UR + 4SR 5 20 (in 31000 units), (7.5)

leight:

0. 25UP 4 0.2SR < 1.5 (in 1000-1b
units) , (7.6)

time:

13UR + 1OSR 2! 30 (in seconds), (7.7)

gjuantities:

UR Z 1 (in 1000-round units), (7.8)
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SR _: 1 (in 1000-round units) (7.9)

(note that this also satisfies non-

negativity requirements).

iv) This same constraint information can be

represented in tabular form:

Per 1000 Rounds OR SR Total

$1000 cost 7 4 <_20

1000 lb weight 0.25 0.20 S_1.5

Firing time, sec 13 10 ?30

Quantities, 1000s 1 1 _2

c) graphical Solution. Figure 7.1 illustrates how

the constraints are mapped onto a two-dimensional

representation of the decision variables, UR and

SE (the axes) and the objective function, z

(dashed lines) The point where the largest

possible z-contour still lies within the feasible

- - - region (cross-hatched) is at (2.2, 1), and repre-

sents the optimum values for UR and SR, respec-

tively, for this linear programming problem.

"Lethality value" of 5.4 is the largest we can
get, within the constraints. Note that the weight

constraint is not a determining factor in the

solution--maximum weight allowance is generous

enough that it does not limit the amounts of the

decision variables, in this instance, and the line
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'~ Quantity

\ ~ Weight

costs\

3 ie

represeting itdoesantitly efn h fail

.4 d) Chgkjn the Graplhical Solution. Substituting the

values of 2.2 for OR and 1 for SR in each of the

constraints, we can show that these are indeed

met:
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(2) (2.2) + (1) (1) = 5.4 "lethality units"

(7) (2.2) + (4) (1) = 19.4 <_ $20K

(0.25) (2.2) + (0.2) (1) = 0.75 5 1.5 K lb

(13) (2.2) + (10) (1) = 38.6 _> 30 sec

(2.2) k 1 (1) k 1 1000 rounis

e) Simplex solution.

i) Introduce slack and surplus variables:

7UR + 4SR + sl = 20

0.25UR + 0.2SR + s2 = 1.5

13UR + 10 SR - s3 30

UR -s =1

SR -s5= 1

ii) Prepare a detached coefficient table:

ostains I_ SR s1 s2 s3 s4 s5 RHS

costs 7 4 1 0 0 0 0 20

weight .25 .2 0 1 0 0 0 1.5

time 13 10 0 0 -1 0 0 30

quantity 1 0 0 0 0 -1 0 1

quantity 0 1 0 0 0 0 -1 1

object. funct. 2 1 0 0 0 0 0 max. z

131

.,.i.. '. . i . - .' - . . .. ... - " -,. -.--.. - -, -'-" -" -"- .".-



iii) Enter the above data values into whatever

linear programming software package you have

available on your computer, and follow

instructions for obtaining a solution.

6. USED IN LITERAIURE:

a) Ayoub, Ayoub .. and Walvekar, A.G. "ABlomechnacal odef lor the Upper Extremity Using
Optimization Techniq ues", Human Factors, Vol. 16,
No. 6, 1974, pp. 585-594. -.

Three approaches are used for solving an opti-
mization moael for arm articulation joints: linear
and geometric programming, dynamic programming,
and simulation.

b) Benjamin, R. "Resources Deployment", Eronomics,
Vol. 15, No. 2, 1972, pp. 192-208.

A basic optimization technique is used to allo-
cate skilled workers accordin to ob require-
ments. The technique should ge use ul for small
scale problems.

c) Bland, R.G. "The Allocation of Resources by
Linear Programmin q" Scientific American, Vol.
244 No. 6, June 1981, p-.T"4

the simplex method is discussed in terms of a"polytope" (three-dimensional solid). Several
assignment problems are considered in depth. An
excellent tutorial.

d) Freund, L.E., and Sadosky, T.L. "Linear
Programming Applied To Optimization of Instrument
Panel and orkplace Layout", Human Factors, Vol.
9, No. 4, 1967, pp. 29;-300. --

Small linear pligramming problems are solved by
hand via the Hungarian method (see Daellenbach an
others, p. 175) and product method (described).
The simplex method is used with a computer
pro ram, for a slightly larger problem in instru-
ment layout.

e) Reid, R.A., and Sheets, E.E. "Applying Linear
Programming to Logistics Planning, Defense
Management Journal, Vol. 20, No. 2, 198-, pp.

Use of "canned " linear programming packages
for desktop microcomputers is described in detail.
A fine tutorial.

7. REFERENCES AND TEXTS:

a) Bazaraa, M.S., and Jarvis, J.J. Linear
Pro.rammin. and Network Flows. New York:T
wi1ey anT ons, 1g77-. -

Highly technical; requires much comfort with
mathematics to follow.
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b) Daellenbach H G and others. Introduction to
Oerations. esear; Technijues Se-onZ- -on_-O-Xn: llyn- Nacon- nC.e,-TSosrff* T-63.

An excellent introauctory text, for both linear
and nonlinear programming; easy to read.

c) Hillier, F.S., and Lieberman, G.L. Introduction
to pations Research. San " ranCISC-

A reada le explanation, for both linear and
nonlinear models.

d) Nagel, S.S., and Neef, Marian. Operations
Research Techniques. Beverly Hills: --

Provides a very clear, brief example of how
linear programing can be used.

e) Wagner, H. M. Principles of Oerations Research.
New Jersey: PrenE fi-iar, Tc. ,-T7_.. .

A large number of examples are provided--
clever, but not always easy to follow. Both
linear and nonlinear cases are included.

B. NONLINEAR PROGRARRIEG MODELS

1. PURPOSE OF MODEL/TECHNIQUE: Determining the best way

to allocate scarce resources among the demands of

competing activities so that either the level of

service (productivity) is maximized or the cost is

minimized--while operating within a set of

constrain ts.

There is no "universal,, NLP alogrithm or technique.

Algorithms are tailored to specific program classes.

Computer software packages vary widely, both in

applications and in requirements for use. Thus is it

quite difficult to generalize about this technigue.

Potential users are advised to determine whether a

nonlinear programming package is available to them;

if so, they should study documentation on that

particular software package.
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2. KATHEATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra, simple, linear

b) Calculus, single variable, multiple variable

c) Logic and set theory

d) Descriptive statistics

e) Graphs and plots

f) Computer programming

g) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Designing systems, where relationships amc'ng

system variables can be described mathematically

in a form acceptable to whatever nonlinear

programing computer package is available, and an

optimum allocation of a scarce resource is needed.

4. USED IN LITERATURE:

a) Faerb@r, R.P., Jr. Oh &l Multimolel Parameter
Identification in the SE~ pU-f-eT-7r-7M

I~uan OFa-Tor- Air -Force- I~ETu9 -31
'TWefolog y -- r-ght-Patterson AFB, OH, December
1974 (GE/Ern/74-42, AD-AO08 707).

Bounded random search techniques are used to
identify parameters of interest, which are input
into a ciustering algorithm which identifies the
human's (modeledf j-dimensional hypersurface.
Newton-agnhson or gradient search techniques then
are used o determine local and global maxima for
the performance parameters.

b) Kou, R.S., Glass, B.C. and Vikmanis, M.W.
Reduced Order Observer Model for Antiaircraft
X Ier y_-.TA) ---- TNk e F-- s onse. -

-- Mn Labs- Inc a--yto7 -,- August 1979
(SRL-6872-7, AD-AO80 932).

Luenberger reduced-or er observer theory, least
squares curve fitting, and the Gauss-Newton
radient algorithm are used in an iterative simu-

lation of human tracking error.

5. REFERENCES AND TEXTS:

a) Daellenbach H.G. and others. Introduction to
* Operations fesearcA Techniques ScW1- -n F - o E.

Pd'EZ5n- - E, -- Won -Tc., 4763.
An excellent introductory text; easy to read.

b) Hillier, F.S., and Lieberman, G.L. Introduction
to Operations Research. San -- Mncsco:
Mlden-U £Tu-- ., -----

A readale explanation.
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c) Nagel, S.S., and Neef, Marian. Operations
Research Te ues. Beverly Hills: 3age

Provides a very clear brief example of how
nonlinear programing can De used.

d) Wagner, H.M. Priniples of Qperations Research.
New Jersey: PrenE-d--Il-, Tic. ,-73_ --

A large number of examples are provided--
clever, gut not always easy to follow.

C. WETWORK MODELS

1. PURPOSE OF HODELLTECHNIUE: Determining the best

possible path through a series of events or loca-

tions, in order to maximize flow (or minimize cost or

time) between the start of a process (or a source of

goods) and a specified endpoint.

2. MATHEMATICAL TOOLS REQ_ IRED OR USEFUL:

a) Logic and set theory

b) Probability theory (for PERT)

c) Descriptive statistics

d) Graphs and plots

e) Computer programming

f) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Describing systems, where one or more paths

through a system of events can be determined.

b) Designing systems, so that the best .ossible path

is determined.

4. DESCPIPTION:
a) Model: A network system or process is described

as a function of eight things:
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i) Nodes (vertices): points in time or space

which represent events, tasks, or locations

(usually shown as circles on a network

ii) Links (lines, arcs, edges, or branches):

connections between any two nodes, associ-

ated with a flow from one to the next.

iii) Direction of the flow, as it moves between

nodes (shown by an arrow head). All links

can have a flow in either direction

(although flow capacity may have a value of

zero in one direction) ; net flow is the

difference between the two opposing flows.

iv) a2paciy (distance, cost) of the flow along

a link between two nodes; a numerical value

which is used in maximizing or minimizing

the quantity of interest, over the entire

network, by choosing the best links. A flow

direction that is not permitted is given a

capcit imit of zero. Positive excess

capacity is whatever capacity is unused, in

a given link.

v) Source: a node which has all those links

that are connected to it directed away from

it.

vi) Sink: a node which has all those links that

are ccnnected to it directed toward it.

vii) Path: a set of connected links such that

any node is passed through at most once.

Excess capacit_ 2_ 29ath is the minimum

of the excess capacities of all links in
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that path. A feasible h is a path that

has positive excess capacity, as it goes

from the source to a given node.

viii) Tree: A network having one more node than

links; i.e., the path through the network is
unique for each pair of nodes.

b) Assumptions:

i) Divisibility. Flow capacity can assume any

real value--fractional or integer. This

assumption often is violated in the case of

discrete units, if they are sufficiently

numerous to be "essentially" continuous.

ii) Conservation of flow. No flow is lost

within the network.

iii) OptimalitY. The solution is optimal if

there is no path from source to sink which

has positive excess capacity in every link.

iv) No-neativily. All variables exist in

quantities greater-than-or-equal-to- zero.

v) Linearity. All relationships among vari-

ables are linear (contributions proportional

to values, constant over the possible range

of values, and additive).

vi) jjnn constanAts All parameters of the

model are known constants--have been empiri-

cally determined in some manner.

vii) Hom iene_ and e_qivalence. The product or

commodity is homogeneous, regardless of its

source or destination. All sources are

equivalent (as are all destinations), except
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for flow capacities along the links.

Otherwise, we do not care from which source

any destination gets its product.

c) Strenaths:

i) The procedure is simple to follow, appeals

to logic, and is easy to defend.

ii) The algorithm is easy to program for

computer use, as is illustrated in the

references below (Daellenbach and others,

Hillier and Lieberman).

d) Weaknesses:

i) Only problems with less than a dozen nodes

and links can be done using the graphical

method shown here.

ii) The capacity values for the links are crit-

ical, and must be known with fair accuracy

and precision if a useful answer is to be

obtained.

e) Procedures: The process described here is known

as the labejinj techniaue. It is used to keep

track of a feasible path (if one exists) from the

source to each node, and to record excess capaci-

ties of the feasible paths to each node [Ref. 45].

i) Identify nodes and links for the problem of

interest, and assign capacity values, using

a network graph to lay out the problem (as

is illustrated in Figure 7.2, in the example

below). It is convenient to identify nodes

with alphabet letters.

ii) Starting at the source, find an7 path from

source to sink that can accommodate a
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positive flow of material (or whatever the

flow consists of). Only one path through

the network should be kept track of at a

time; it is not necessary to consider all

feasible paths for each iteration. The
smallest capacity value of any link in that

path will determine the total flow for that

path.

iii) write down the amount of the excess capacity

that will be required for the total flow

along that path, for the link from the first
node to the second. Also write down the

letter-designator of the previous node in

the path (A, in this case). These are the

labels for that second node (B), and are

noted next to it in vector form: (excess

capacity value, previous node letter). Do
not label a node if the flow equals zero;

even though a link exists there, no feasible

path exists.

iv) Taking the nodes in alphabetic order

(convention), continue labeling, taking in
turn each node in that path, as above.

Continue until the sink is reached. At the

sink, note the maximum amount (m) that can

be transported along this path.

v) Subtract the value m from the excess

capacity (in the source-to-sink direction)

for each link along that path. Add m to the
reverse-flow (sink-to-source) capacity for

each link. This process yields the "updated

excess capacity" value for each link, once
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that first path has been considered--the

amount that still can be carried along that

link, if another feasible path can be found.

vi) Return to the source, and choose another

path to the sink. Using the updated excess
capacity values, repeat the above process.

vii) Add the amount of flow resulting from this

new path to that obtained from following the

first path. This is the updated total flow,
ml, which is also subtracted from each

link's capacity, to obtain a new "updated

excess capacity" value.

viii) Continue this path-definition process, from

source to sink, until all feasible paths

have been traced. At this point, an optimum

solution for the maximal flow from source to

sink has been obtained.

f) Other calculations that may be made: See refer-

ences below, for details of these calculations.

i) Determination of the sho-tes route through

a network, from source to sink.

ii) Zinimization of the total legth of connec-

tions among all nodes ("minimal spanning

tree problem") , needed (for example) for

transporting goods which are used at a
number of locations along a network of

roads.
iii) Project planin and control, for which

events are scheduled along a timeline so

that scheduled project completion date is

met, at minimal cost.
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5. C EXAPL (Hypothetical)

a) Situation:

i) A total of 25 fighter aircraft aboard a

carrier must be moved to the catapult area

and launched, for a combat air patrol (CAP)

mission.

ii) There are three routes along which the

fighters may be transported. One of these

is a direct route from parking area to cata-

pult, on the carrier deck. The other two

routes involve moving aircraft from below
deck, via elevators, to the deck.

iii) Based on accessibility and conditions of the

aircraft in their present locations and on

the personnel available to move them, ten

aircraft (maximum) can be moved to one

elevator area (node B) and seven to the

other (node C) within the alloted time.

Five aircraft may be transported between the

two elevator loading areas, in either direc-

tion (or both directions, if needed) , within
that timeframe. From elevator B, four

aircraft can be gotten to the catapult

within the time limits, and ten may be

transported from elevator area C.

iv) The maximum quantity of aircraft possible

must be gotten from storage to catapult,

within the time available.

b) Procedures:

i) Prepare a network graph, as is illustrated

in Figure 7.2, to describe the problem and
the initial information that is available.
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(4, A)A

(3,C)

Figure3,A 70 ewr rp lutrto o C xml.a
ii)~~ ~ Tain fis th iet rue AD ae

ii) STacgft the aluec 8fromute (A,D), linkl

capacity value, leaving a remainder of 0.

Add 8 to the reverse flow value (originally

zero) , yielding a value of 8.

iv) Returning to the source, A, trace out path

(A,B,D) . The label for node B is (4,A), and
for node D, at this iteration, is (4,B).

v) Flow resulting from this path has a value o

4, which is added to the value of 8 from th,

first path traced, to get a current total

S flow of 12.

vi) Retracing the path just followed, 4 is

subtracted from link (B,) s capacity,
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leaving a flow capacity of 0 (and added in

the (D,B) direction, to yield 4). For the

(A,B) link, subtracting 4 from 10 leaves an

unused capacity of 6 for this link (and a

reverse direction value of 4).

vii) At this point, either the path (AB,C,D) or

the path (A,C,D) may be traced. For

simplicity, (A,C,D) will be used next.

Labels at this iteration become (7,A) for

node C and (7,C) for node D. Total flow is

increased by 7, yielding a value of 19 at

this point.

viii) The final path (A,B,C,D) now is traced.

• Labels for this iteration are (3,A) for node

B, (3,B) for node C, and (3,C) for node D.

It should be noted that the remaining excess

flow capacity of 3 at link (C,D) has limited

this entire path to a maximum of that value.

ix) The final total flow value is 22, when 3

aircraft are added from this final path

iteration. Within the time constraints,

this is the maximum number of aircraft which

can be gotten to the catapult.

x) The reverse-flow values which were calcu-

lated during the problem-solving process

were not needed, for this example. In other

cases, however, it will be found that

increased flow values will be obtained some-

times by what at first appears to be

"backtracking".
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6. USED IN LITERATURE:

a) Callahan, L.G., Jr. and Lovell James. Graceful
Degradationof Airaeense CgRa_ ilities. o.orgia
TInsilfTu--Te'ecnEology, oune T87-. XD No. B 75
5621-cludes a brief review of approaches to
weapons systems modelin a review of network
methodologes,, and a moael of a battalion-level
air defense network.

b) Fakan, J.C. A lication of Modern Network Theory
to Analsis or-aB d 3-Eem-- Yational
Xeron a ut-c-and--SPa-e- Xmin sraTion, October
1970. (TN-D-6034, NPS U 135276)

Network theory is used for describing man's
functional roles in a human subsystem. Human
parameters include heart rate, as a measure of
work output. A FORTRAN program is proyided which
outputs time of expected task degradation, based
on input of human performance characteristics,
etc.

c) Lewis, Leslie, and Copeland, Melinda. Human
Performance Requirements in cI sstems and UNIE
1HI It-Iaflons inSr e 9e_ m i . TREw--1etense ann
3pace sZzs---eaonao BUNU,-CA, March 1983. (AD
NO. P0 0 890).

The user interface with C3I systems is modeled,
defining cognitive processes a s quantitative,
testable units. Tec niues include the use o
networks to translate these processes into system
requiremen ts.

d) Pew R..W and others. Critical Review and
Analhsis ;I Performance i - Ia-Te -pian-riaci nl- s.7sTUeM a U37tion. 151t, enaX, affi

eManC T-ncamb r 1iWe [A March 1977 (BBfi No.
3446, IFOSE-TR-77-0520, AD-A638 597).

Five network-based techni ues for predicting
human performance are surveyea and evaluated as
part ot this 300-paq e comprehensive report. These
include the SAINT, PERT, and TH2RP models.

e) Pulat, B.. A Computer Aided Workstation Assessor
for Crew Oeratio-ns--WOS _ - oE£5 ri aT

aKB-.- -0o. Al16 045)
• KA network- ased model which is art of the
Multi-Man-Machine Work Area Design an. Evaluation
System (NAIADES). WOSTAS groups activities or
tasks of a crew so that all j9b stations have a
fairly equal amount of work, in terms of time to
perform tasks.

f) Randolph, P.H., and Pingeisen R.D. "A Network
Learninq Model with GERT Anay sis", Journal of

Mat i11 PsycholiX V l 1, No 17TMIW7 Pf
Graphical Evaluation and Review Technigue

(GERT) is used to analyse the teaching and learning
process when that process is represented as a
stochastic network. A topology equation for a
closed network is used to obtain parameters for
the teaching-learning process.

144

6°

" t .*



g) Smillie, R.T., and Ayoub, M.A. "Job Performance
Aids: Evaluation of Design Alternatives Via
Network Simulation", ErQonomics Vol. 23, No. 4,
1980, pp. 319-339.

Network simulation is used as an alternative to
laboratory experimentation to evaluate different
combinations of job performance aid formats,
combined with the effects of stress.

h) Wortman, D.B. and others. The SAINT User's
Manual. Pritsker and Associate-.--EU7, -- s
Laaette, IN June 1978 (AD-A058 724).

SAINT (Systems Analysis of Integrated Networks
of Tasks) is a network modeling and simulation
technique used in design and analysis of complex
man-machine systems. Systems can consist of
discrete tasks, continuous state variables, and
interactions between them.

See also Simulation Us inq SAINT: A
User-Oriented IngEFi'EI- ManuaI, by--H-- sang
auTS~-sTU~I 1 77UTID1U5 8 M7'-.

7. REFERENCES AND TEXTS:

a) Bazaraa, M.S., and Jarvis, 3.J. Linear
Proqramminq and Network Flows. New York:-'-U-fE
V=II y aNEU-ol7 T

1l.ghly technical; requires much comfort with
mathematics to follow.

b) Bronson, Richard. Schaum's Outline, Theory and
Problems of 0perati3-n sea ecE-$- e--o r-.
XRU~l- -il T-B o UkCU -mpay,12

Abrief but clear discussion of the maximal-
flow, minimum-span, and shortest route problems.

c) Daellenbach, H.G. and others. Introduction to
Operations ResearcL Techniles~ S9650 EdTi~o37=osfon: Ailyn 6 sacon=,- 903, Or.,i

An excellent introductory text; easy to read;
good sections on CPM and PERT techniques.

d) Hillier, F.S., and Lieberman, G.L. Introduction
to L perations Research. San - -6i--o:

An excellent, readable explanation, with clear
applications of the technique to four classes of
problems, including CPM and PERT.

e) Wagner, H.M. Principles of O_,erations Research.
New Jersey: Preni'e-[aII, Inc..-T9_-

Several examples are providea--clever, but not
always easy to follow.
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D. DISTRIBUTION K1ODELS

1. PURPOSE OF MODEL/TECHNIQUE: Finding the least-cost

distribution schedule for transporting a commodity

between a number of sources and a number of destina-

tions, to meet demands from current inventory.

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Matrix or linear algebra

b) Logic and set theory

c) Probability theory

d) Descriptive statistics

e) Graphs and plots

f) Computer programming

g) Computer packages

3. HUMAN FACTORS APPLICATIONS:

a) Describing systems, where they can be considered

as a set of starting places and end points,

connected by paths.

b) Designing systems, in order to find the most effi-

cient path between points.

4. DESCRIPTION:

a) Model: A system or process is described as a

function of four things:

i) Sorces, each of which has available a given

quantity of units of a specified, homoge-

neous commodity or product.

ii) Destinations, each of which requires a given

quantity of units of that same commodity or

product.

iii) Cost of transporting one unit of product

from one of these sources to one of these
destinations.
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iv) Variables, that is, the to-be-determined

number of units to be shipped between a

given source and a given destination. Basic

variables are variables which are assigned

numerical (non-zero) values in the current

solution. Nonbasic variables are "unas-

signed variables"; that is, they have a

value of zero (no goods are shipped from

that source to that destination, for this

solution).

b) Assumptions:

i) Integral units. The product occurs in

integer units only; that is, a unit cannot
be further broken down or fractionalized.

ii) Non-negativity. All variables exist in

quantities greater-than-or-eiual-to- zero.

iii) Linearitl. All relationships among vari-

able are linear (contributions proportional

to values, constant over the possible range

of values, and additive).

iv) Known constants. All parameters of the

model are known constants--have been em-iri-

cally determined in some manner.

v) Conservation of flow. No product is lost

within the transportation Letwork.

vi) E~al supply and demand. Total supply and

total demand are equal. If this is not true

in actuality, either a fictitious source or

a fictitious destination is created to

provide or absorb the extra product.
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vii) Homogeneit and equivalence. The product or

commodity is homogeneous, regardless of its

source or destination. All sources are

equivalent (as are all destinations) , except

for cost of distribution. Otherwise, we do

not care from which source any destination

gets its product.

c) Strenqths:

i) The procedure is simple to follow and

appeals to logic, so is easy to defend.

ii) The algorithm is easy to program for

computer use (see Daellenbach and others,

pp. 157-168).

0 d) Weaknesses:

i) The procedure of optimization becomes

arduous, if there are more than a handful of

sources and destinations. In this case, the

aid of a computer is mandatory.

ii) Degeneracy is a frequent occurance in the

distribution problem. This results in the

"stepping stone" algorithm going from itera-

tion to iteration without any improvement in

the distribution. See Daellenbach and

others, p. 165, or Bronson, p. 72, for a

treatment of this problem.

e) Procedures: These procedures are illustrated

below in the example.

i) Set up a matrix or tableau (see Figure 7.3)

" showing complete data for the problem:

sources and availability (supply) of prod-

ucts (rows), destinations and requirements
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(demand) for products (columns), and distri-

bution costs (noted in the upper left corner

in each cell).

ii) Find an initial solution, via the "Northwest

Corner,' rule. Beginning with the northwest

(top left) corner cell in the tableau, allo-

cate from the amount available at Source 1

as many units as possible to Destination 1

(up to the total amount available or the

total required). Write this number in the

cell. Thereafter, continue by moving one

cell to the right (if some product remains),

allocating units of product to the next

Destination. If no supply remains in Source

1, move down the matrix one cell. Now the

product from Source 2 will be allocated to

the Destinations, until it is all used up.

The procedure is continued until the "south

east" (lower right) corner of the matrix is

reached. This yields an initial feasible

solution.

iii) Test this solution for o~timality, which is

a function of the cost of this particular

solution for the given probiem. To do so,

create testin variables, u (associated with

the "supply" rows; see Figure 7.3), and v

(associated with the "demand" columns). For

each cell, the sum (u + v) must equal the

cost value, c, for that cell. Arbitrarily

choose some u variable associated with one

supply row, and set it equal to zero. Now

we can set up sufficient (u + v = c) equa-

tions to solve for u and v for each column
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and row, starting with the basic variable

cells. Note that some values of u and v may

be negative at this point. Next, subtract

both u and v from c, for each nonbasic vari-

able cell in the matrix, to find the value

(c - u - v) for cells that presently have no

allocation of product from that source to

that destination. Place this number in the

lower right-hand corner of this nonbasic

variable cell. If at least one of these (c

- u - v) values is negative, the current

solution is not optmal. A better solution
will be found by increasing the allocation

(presently zero) in the cell having the most

negative value for (c - u - v). Place a " "

sign in that cell, to signifiy that increase

is desired.

iv) Improve the solutjon. Identify a 192p in

the matrix, so that the loop contains the

cell with the "+" and at least three other

cells all of which contain values for basic,

variables. The sequence of cells in a loop

must be such that each pair of consecutive

cells lies either in the same row or the

same column (no diagonals), but no three

consecutive cells do. No cell can appear in

a loop more than once, and the loop must be

closed, with beginning and end lying in the

same cell. Increase the allocation to the

" " cell as much as possible, while

adjusting other cell allocations in the loop

so that supply, demand, and nonnegativity

constraints are not violated. This results
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in a new solution to the distribution

problem. Prepare a new tableau showing the

solution (see Figure 7.4).

V) Once again check for optimality, as in step

(iii). If the solution still is not

optimal, repeat step (iv). Continue this

process until a solution is obtained for

which no value of (c - u - v) is negative.

This solution will be optimal.

f) Other calculations that may be made: See refer-

ences below, for details of these calculations.

i) Transshipment poblems, with "warehouses"
available to facilitate shipments in two

stages, rather than directly from source to

destination.

ii) AssiQnment poblem, where a given number of

candidates must be assigned uniquely to a

specified number of jobs (one-to-one) in
such a way that all jobs are completed in

the minimum total time. The Hungarian

method is the most efficient technique for

this problem (see Daellenbach and others, p.

175, or Bronson, p. 85).

iii) T1alia salesman 2robie_!s, where one indi-

vidual must leave a base location and visit

a number of other locations, one time each,

then return to the starting location.

Objective is to minimize the distance or

* cost of travel (see Bronson, p. 85, or

Daellenbach and others, p. 662).
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5. ACK EXjjPLE (Hypothetical)

a) Situation:

i) A new cockpit is being designed for a
two-man fighter aircraft. The crew station

will contain several CRT-type displays,

capable of providing a wide variety of

information to the crew from a number of

sources. These displays will be placed so

that each is available for monitoring by

either crew member during a typical air-to-

air mission. However, it is critical that

each display _e monitored, and that neither

crew member be overloaded with monitoring

tasks, which also include radio communica-

tions and visual out-the-window inspections

of the area.

ii) Task analyses indicate that the pilot must

spend 60% of his time in flight control

tasks, leaving 40% for monitoring the infor-

mation displays, etc. The radar officer

(RO) will be busy with navigation and weapon

delivery tasks 40% of the time, leaving 601 V
for monitoring-type tasks.

iii) Five sources of information must be moni-

tored: a radar warning receiver display

(BWR), a tactical information display (TID),

and the air-to-air radar scope (RDR), plus

radio communications (COM) and frequent

out-the window (OTW) checks of the surround-

ings. Table 7 shows the percent of time

each must be monitored, based on analysis of

the mission (totaling 90% of available

time). Since it is desired to account for

152



100% of the crew's "spare', time, a "dummy"

column is included for the remaining 10% of

ti2e time-- perhaps representing time to

stretch, scratch, etc.

TABLE 7

PERCENT OF TIME INFORMATION SOUREcS MUST BE MONITORED

INFORMATION SO[URCE

RR OTW T"ID COM RDR DUJMMY

MONITORING
TIMlE, % 15 30 10 10 25 10

;2

iv) Monitoring each of these information sources

is not equally easy for both crew members,

due to locations, to interference with

primary tasks, and to difficulty of inter-

preting the information. "Costs" or diffi-

culty values have been assigned to these

monitoring tasks, as is shown in Table 8.

b) Procedures:

i) Set up an initial tableau for the problem,

using all the information that has been

provided. The tableau is shown in Figure

7.3.
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TABLE 8
RELATIVE DIFFICULT! OF MONITORING INFORMATION SOURCES

INFORMATION SOURCES
CREW MEMBER R W__ OTW TID CON RDR DUII!I..Y

Pilot 5 3 9 1 9 0

Radar Officer 5 7 6 1 7 0

.- DORWR RDR Dummy vSupplv u

iPilot 15 -.- 25 40 -4

RO + 5 10 10 25 10 60 0

Demand 15 30 10 10 25 10 100

v 9 7 6 1 7 0

Figure 7.3 Initial ICM Distribution Tableau, First Solution

ii) The initial solution, shown in Figure 7.3,

is found using the Northwest Corner rule.
The pilot would spend 15% of his time moni-

toring the RWR display and 25% looking out
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the window. The RO would spend 5%, 10%,

10%, and 25%, respectively, with the window

monitoring, TID, radio communications, and

radar display tasks, and 10% on the "dummy"

task (unassigned time).

iii) This solution is tested for optimality by

finding, first, the values of u and v, via

solution of the equations, (u + v = c)z For

ease of computation, u2 is assigned the

value of zero. Then, from the cost for cell

(2,2), v2 is found t3 be 7 (0 + v2 = 7, or

v2 = 7). Similarly, V3 = 6, v4 = 1, etc.

Now from the v2 value of 7 and the cell

(1,2) cost of 3, we can determine that al

must be -4 (ul +7 = 3, or ul = -4) .Finally,

we determine the value of v1 from (ul + v1 =

5): -4 + v1 = 5, or v1 = 9.Now we examine

the nonbasic variable cells to find the

values for (c - u - v). For cell (1,3), (9

- (-4) - 6 = 7), as is noted in the lower

right-hand corner. For cell (1,4), (1 -

(-4) = 5), etc. Continuing the process, we

discover that the value for cell (2,1) is (5

- 0 - 9 = -4). Thus we find that this solu-

tion is not optimal. This value of (-4) is

the most negative (only negative, in this

instance), so a "+" is placed in cell (2,1).

iv) A loop is now constructed (as is shown by

the heavy lines in Figure 7.3), containing

the cell with the " " (cell (2,1)) along

with the three nearest cells with basic

variables (adjacent cells, in this

instance). The most by which cell (2,1) can
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be increased is 5, in order to remain within

the "demand" constraints of 15 for the RWR.

Thus, 5% of the RO's time will be taken away

from monitoring OTV so that he can spend 5%
of his time on the RWR display. The

resulting new solution is shown in Figure

7.4.

RWR OTW TID COM RDR Dummy Suppl u

5 3 9j 9 0

Pilot 0l40 0

- 3 0 2 0 -

51 _7] _6 1j _7j

RO 00,00@®60 0
4

Demand 15 30 10 10 25 10 100

v 5 3 6 170

Figure 7.4 Second Solution to ACMI Distribution Problem

V) The optimality ofL this solution now is

tested, as above. This time none of the (c
-u - v) values is found to be negative (see

Figure 7.4) . The solution is optimal, with

the pilot spendinag 10% of his time moni-

toring the RWR display and 30% looking out
the window. The RO has no out-the-window

tasks, but instead spreads his time over all

the other displays and has 10% "free" time

to do things not called out in the model.
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c) Caveat: This example points up the importance of

assumptions. For simplification, we have assumed

here (assumption (vii)) that it makes little

difference whether each of the tasks is performed

by the pilot or by the RO, as long as the assigned

costs are considered. Thus, under the formulation

here, the pilot ends up doing all the out-the-

window monitoring, and gets none of the "surplus"

(dummy) time. Under the Northwest Corner initial-
ization process, a completely different allocation

of tasks would result were the RO assignments
listed in the first row of the matrix and the

pilot assignments in the second. Whether the

resulting allocation under this set-up would be
equally good is debatable.

6. USED IN LITERATURE: No examples of use of distribu-

tion models were found in the human factors

literature.

7. REFERENCES AND TEXTS:

a) Bazaraa,* H.S., and Jarvis, J.J. Linear
Pro ramminq and Network Flows. New York: -- !T
1911-y-an-So- l7n--- ----

Highly technical; requires much comfort with
mathematics to follow.

b) Bronson, Richard. Schaum's Outline, Theory and
Problems of Operati-O-s --- esr5--NoET

ZrM-Hilr-BooT-ompany, .'
A brief but clear discussion of the transporta-

tion problem and degeneracy.

c) Daellenbach, H.G and others. Introduction to
F_20rations_ esearc_ Techniaues S4_c -i5Ed-ioRT

An excellent introductory text; easy to read.

d) Hillier, F.S., aad Lieberman, G.L. Introduction
to O pera tions Research. San -Tfhcs co:TrId'en-ay,EEL, 1I1M.
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I good general explanation of the transpor-
taion pro lea and related algorithms.

e) Wagner, H.M. Principles of 0jerations Research.
New Jersey : PrenE~IZ aIi, Tc. -T975.- -

Several examples are provide&--clever, but not
always easy to follow.
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VIII. HODELS FOR DECISIONS

A decision usually is considered to be a choice among

alternatives. If there is only one solution or course of

action worthy of consideration, there is no decision, as

such, to be made. Instead, optimization techniques may be

used to make the best of the situation (as described in

Chapter VII). Or descriptive models may be developed to

describe the situation better, and make predictions about

the results of taking that course of action (see Chapter

VI).

The various alternatives may be discrete, separate enti-

O ties ("Shall I hire John Smith or Mary Jones?"); or they may

he continuous functions (or nearly so) within a given range

. ("How certain should I be that an aircraft is unfriendly, on

a target recognition continuum scale, before I shoot it

down?") .

One factor common to decision models is the need for at

least one measure of effectiveness (MOE) and for some

criterion or standard for making a choice. The decision

model will not provide these; they come from the decision

maker himself, outside the modeling process. A NOE is

needed if we are to measure the "acceptableness" of a given

alternative. A criterion is required to tell us exactly how

good an alternative must be, on that "acceptableness scale",

in order to be "good enough" (in terms of money, time,

pleasure, etc.). This concept is called "satisficing" (as

opposed to the process of "optimizing", or finding the

.* optimum solution).

If no numerical MOES and cut-off criteria are available,

it still will be possible to rank alternatives. However,

- subjective techniques then will be needed to choose the most

*B value-effective possibility.
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In the first section of this chapter we consider in

detail the models and procedures used in what variously is
described (with differing emphasis) as decision theory, game

theory, or utility theory. Decision theorU is the broadest

of the three, and may be considered to include the others.
, Decision analysis is the basic technique used with these

decision theory models.
Game theory emphasizes decisions where two or more indi-

viduals are in conflict over their opposing goals.
According to Raiffa [Ref. 46], classical game theory
attempts to offer advice to each of the conflicting individ-
uals (a jointly prescriptive approach). More recent theo-
retical studies have considered conflict situations from a
one-sided prescriptive point of view, with the goal of
helping one (and only one) party win.

Utility theory emphasizes the expected usefulness or
value of the various outcomes. Its major feature is devel-

opment of a utility function (usually linear) that trans-

forms payoffs (say in dollars) into a utility scale, based

on some useful value of each payoff (perhaps whether that

many dollars will be enough to pay the rent). The resulting
scale is then used in the decision analysis procedure.

S d theo odels are briefly covered in

the second section. These models already are used exten-
sively in human factors analyses, so are not discussed in
great detail here. They can be valuable tools in evaluating

the various outcomes of choosing different alternatives

along a continuum of values. Interested persons may refer

to the listed references for more details.

A. DECISION THEORY BODELS AND DECISION ANALYSIS

1. PURPOSE OF MODF/TECHNIOUE: Choosing one of several

well-defined alternatives that will meet an
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aspiration level, or predetermined criteria or stan-

dards of adequacy.

2. HATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra

b) Boolean algebra

c) Logic and set theory

d) Fuzzy set theory

e) Probability theory

f) Descriptive statistics

g) Graphs and plots

3. HUMAN FACTORS APPLICATIONS:

a) Describing systems, where a system includes alter-

native outcome states, with varying probabilities

of occurance.

b) Designing systems, where a choice among alterna-

tive systems or subsystems must be made.

c) Evaluating human performance, when utility values

can be assigned to various levels of performance,

along with criteria for acceptable performance.

4. DESCRIPTON:

a) Model: A system or process is described as a

function of 11 things:

i) A problem which requires that at least one

decision (choice) be made.

ii) A time horizon within which that decision is

reguired.

iii) The sequnce of decisions which are

required, in a multiple-stage problem.

iv) A well-defined set of alternative actions

(decision variables) from which a choice
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must be made, for solution of the problem.

These are under the decision maker's

control.

v) A set of events that possibly may occur

(future states of nature, or chance points)
If possible, these should be mutually exclu-

sive and collectively exhaustive. These are

not under the control of the decision maker.

vi) The probabilities of occurance for these

events.

vii) The set of pavoffs or outcomes (outcome
variables) which accompany these alternative

actions and events.

viii) The structural relationships between

alternatives/events and their zorresponding

outcomes, expressed as a mathematical func-

tion, if possible. The parameters of these

relationships are included in this function.

ix) The utilitv values or "expected worth" of
each of the outcomes. This may be the same

as the outcomes themselves. If more than
one factor is included in assessing the

value or worth of a given outcome, these are

considered multi-attribute utilities.

Associated with the utilities are measures

of effectiveness (MOEs), used to evaluate
the outcomes. This may be as simple as

"more is better". If more than one MOE will

- be used, the importance of each should be

weighted. Then the MOEs may be aggregated

into a single criterion function (usually a
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linear combination), which can be used for

evaluations.

x) At least one criterion or asiration level,

which is used to determine that an alterna-

tive and its associated outcome will result

in a satisfactory solution.

xi) A payoff matrix and/or a decision tree.

These lay out the above information in

logical form, so that the analysis can be

performed. A payoff matrix usually is

adequate for a single-stage decision

problem. A decision tree is required if a

series of alternatives and events must be

* evaluated in order to reach a final outcome.

b) Assumptions:

i) Steady state conditions. The system is in

equilibrium; we are considering a problem

that is not in a state of flux.

ii) Relationship validity- The choices open to

the decision maker may be adequately

described in terms of payoff values or util-

ities and their associated probabilities.

The payoff matrix/decision tree used to

describe the system is an adequate represen-

tation of the system, for purposes of

obtaining useful results.

iii) Certainty, risk, and uncertaint y. It is

possible to place the decision being made in

one of the following categories:

* under certaintI: we assume that one given

state will occur, and all others have zero

probability.
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- under risk: we can estimate the prob-

ability of occurrence for each possible

future state, and two or more of these
probabilities are positive.

under uncertaintz: we are unable to esti-

mate the probabilities of various future

states (although we can list those

states).

iv) Known constants. All constant parameters

and utilities used in the model are known

values, obtained through some empirical data

collection process (objective values) or

through logical deductions (subjective or

Bayesian values).

v) Known probabilities and probabilitiy distri-

butions. Randomly distributed events can be

characterized by known discrete or contin-

uous probability distributions. These prob-

abilities may be strictly objective,

obtained through observations and measure-

ments (the limit of long-term relative

frequencies). They also may be subjective

(Bayesian), based on a pliori probabilities

assigned by experts.

vi) Stationarity. Probabilities of events and

outcomes do not change with time, within any

one stage of a decision analysis process.

vii) Independent alternatives and events. All

* alternatives and all events are mutually

exclusive. Thus, joint probabilities may be

obtained by multiplying individual probabil-

ities together.
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viii) Loqical consisten_ v or coherence. Rational

beliefs and actions all are logically

consistent with one another, involving no

mutual contradictions. Note that coherence

is not sufficient to guarantee rationality,

but it is necessary.

ix) Ordering. It is possible for the decision

maker to express preference or indifference
between any pair of payoffs. That is, he

can rank payoffs in order of value to him,

or he can express no preference at all among

them.

x) Linearity of multi-attribute utilities. If

several 3OEs are considered in developing a

utility value, relationships among them may

be expressed as a linear combination

(contributions are proportional to values,

constant over the possible range of values,

and additive).

c) Strengqths:

i) The technique oZ decision analysis is an

excellent way to provide greater insight

into a decision problem, and especially to

open it up for discussion and conflict reso-

lution. It encourages scrutiny of the

problem as a whole, and forces the decision

maker to determine quantitative relation-

ships among the various parts of his

problem. New sources for gathering and

organizing information may be suggested by

the process, and new alternative actions may

be uncovered.
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ii) The structures of payoff matrices and deci-

sion trees provide a convenient basis for

communicating and justifying an analysis.

iii) The process can aid in identifying who the

decision maker actually should be, for a

given problem, once alternatives and

outcomes are laid out. The person most

affected by (and affecting) the system then

more easily can be identified.

iv) The decison maker's preferences for various

outcomes can be separated from his judge-

ments about probabilities, using this

technique.

d) eaknesses:

i) Emphasis on the construction of a disci-

plined structure (payoff matrix or decision

tree) may divert attention from the value of

creative inputs to problem solving. This

analytical pattern of thinking does not take

advantage of other styles of thought, such

as intuitive, lateral, and imaginative.

ii) It is easy to oversimplify a problem during

its decomposition into manageable pieces.

This is especially true in utility function

assessment, where simple, contrived ques-

tions may be used to elicit relative values

in some usable form--when the values actu-

ally are much more complex than the process

would indicate.

iii) Analysing the wrong problem is a real

hazard. The decision analyst seldom is the
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decision maker. The analyst must take great

care to learn precisely the nature of the

problem being faced. Otherwise, he may

seize on some facit of the situation that

interests him (and that he can handle)--but

that is of no real concern to the client.

iv) Independence of variables is rare, in the

real world. It may be necessary to parti-

tion uncertain quantities into categories

that then may be nearly independent. Or

mathematical transformations sometimes may

be used (for example, using differences

between values rather than the values them-

4selves), which more nearly meet the require-

ments of independence.

v) Utility functions are not always linear, in

real life. A given risk when a person is at

one state in a system ("I'm broke anyway")

will be viewed differently than when at

another state ("I'm already comfortably

off"). Also, differences between utility

values usually express merely the rank of an

outcome, not the actual proportional

strengths of preference.

vi) Utilities are not comparable from person to

person. A utility function is a personal

statement 3f an individual's risk attitude,

and cannot be aggregated with the utility

function of another individual without the

use of normalization techniques.

e) Procedures: Not all of the procedures listed here

will be applicable (in this exact form) to all
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decision problems. The user must select those

that are appropriate to his situation, and revise

the steps as necessary. This general procedure is

illustrated below in the example.

i) Define the problem: what is the immediate

decision to be made? Determine that choices

among alternatives are required, and that

some measure of effectiveness and criterion

of a satisfactory solution can be found.

Check that the required assumptions can be

(approximately) met. Strip away irrelevant

factors from the situation and system.

Determine who the actual decision maker

should be.

- ii) Set the time horizon which will be consid-

ered for this study. Will we begin with the

situation right now, and look at the next

two days? Or might we begin with hypothet-

ical states five years hence, and consider

the period of the following 20 years?

iii) Determine whether this is a single-stage or,

multiple-stage decision. After the problem

has been laid out, will we make one decision

and be done? Or will a series of decisions

be made, each relying on the preceding deci-
sion? If multiple-stage, lay out the

sequence in which choices will be made.

iv) List the alternative courses of action open

to the decision maker. Be as comprehensive

as possible; less useful options can be

eliminated as we go along. Remember that

"do nothing" and "delay the decision" also
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are alternative courses of action. Insofar

as possible, the alternatives should be
mutually exclusive.

v) Lay out the events that possibly may occur,

in their expected sequence. These events

will determine the "state of nature" of the

system by their occurrence. Decide if this

will be a decision under certainty, under

risk, or under uncertainty.

vi) If this will be a decision under risk,

assign probabilities to the occurrence of
each of the above events. These probabili-

ties should be based on available data, or

on some logical process of determination.

vii) List all possible outcomes that can result

from the above-noted alternatives and the

possible events. If possible, state these

in terms of payoffs--though not necessarily

in money alone. Remember that payoffs can
be negative as well as positive.

viii) If possible, express the relationships

between alternatives/events and their

resulting outcomes in the form of a mathe-

matical equation or other function. This

will be easiest for decisions under

certainty. A logical flow diagram can be

used if numbers cannot be assigned to the

various parameters, showing relationships in

time.

ix) Determine the utility value for each listed

outcome, based on the decision maker's value

J
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system. If a number of attributes of each

outcome must be considered in valuing it
(cost, weight, color, size), this must be

considered a multi-attribute utility

problem. It will be necessary to add extra

sub-steps here to combine these into a

single, useful utility function--a process

beyond the scope of this presentation (see

References and Texts below for books that

cover this situation). It is preferable to

choose one significant, numerical result
that easily can be determined and ranked

(such as profit or time saved). This
utility value may be considered the measure

of effectiveness, or it may be some function

of the MOE (which then also must be defined

here).

X) Set the aspiration level, or criterion for

satisfaction, success, or usefulness, based

on the MOE, outcome, and/or utility values.

Early determination of this criterion,

before the actual anilysis begins, lessens

the chance of biasing criterion point selec-

tion by knowledge of "what is possible".

xi) Prepare a payoff matrix incorporating the

above information (see Figure 8.1 for an

example). The various events that may occur
are listed at the top of the matrix, along

with their respective probabilities of

. occurrence. Down the left side are listed
the alternatives from which the decision

maker may choose. The body of the matrix

contains the pavLoffs which result from each
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pairing of alternative and event. The

completed matrix organizes the information

needed to make a decision into a convenient

form for beginning the analysis. If this is

a multiple-stage problem and parameters
differ for the various stages, a separate

payoff matrix may be needed for each stage.

xii) Check the payoff matrix for dominance. If

one alternative is as good as or better than

another under all states resulting from the
events, the dominated alternative should be

eliminated from the analysis.

xiii) For a multiple-stage problem, draw a deci-

sion tree similar to that shown in Figure

8.2. In such a diagram, time moves from

left to right. A square box indicates a

decision point, where the decision maker

chooses one of his alternatives. A circle

denotes a chance point, where an event

outside the decision maker's control occurs

(or its pre-existence comes to light).

Branches and twigs represent the alternative
paths leading to the various outcomes--with

the outcomes themselves at the ends of the

twigs. Probabilities are noted along the

branches and twigs, wherever they apply.

xiv) The completed decision tree now is used to

determine a strategy which will achieve the

aspiration level or criterion set earlier.

If more than one alternative path results in

a satisfactory outcome, the first one

encountered may be selected or all
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strategies may be evaluated and the one

yielding the "best," outcome may be choosen.

5. ACM EXAMPLE (hypothetical)

a) Situation:

i) ~ fighter aircraft is on a combat air patrol

(CAP) mission, protecting a carrier worth $2

billion. Replacement cost for the aircraft

itself and for similar friendly aircraft is

$25 million. It carries long-range and
short-range air-to-air missiles (each

costing about $1 million), and also carries

an internal gun (negligible cost per

encounter).

ii) The fighter is equipped with an automatic

target recognition system which can tell the

pilot whether an observed aircraft is

friendly or hostile with 90% probability,

when in range. He also knows that 70% of

the aircraft in the area are friendly and

that 30 % are hostile, from pre-briefed

information.

iii) The pilot has observed an aircraft beyond

the range of his target recognition system.

He has four alternatives:

* assume it is a friendly aircraft and

continue his patrol pattern, L

* assume it is an enemy and fire a long-

range missile at it immediately,

* approach closer for better identification
IL and use his short-range missiles on it if

it is an enemy (with 20% chance he will be

downed himself),
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* approach close enough for positive identi-

fication and attack with his aircraft gun

(with 50% chance he will be downed

himself).

b) Procedures:

i) As defined above, the pilot must be the

decision maker, zhoosing one of the four

alternatives.

ii) The time frame for this decision is the next

few seconds, during which one of the alter-

natives (which are considered to be exhaus-

tive and mutually exclusive) must be

selected.

iii) This is a multiple-stage problem. If one

alternative is considered "to delay", a

second decision point will be reached. At

this point, the pilot must decide to use his

short-range missile, or to delay further and

use his gun.

iv) The alternatives open to the pilot are

listed above.

v) The events (world states) are:

* the approaching aircraft is either enemy

or friendly,

* the pilot either downs the approaching

aircraft or is himself downed (if it is an

enemy). We will make the simplifying

assumption that, as a result, his carrier

is destroyed.

vi) This is a decision under risk. The prob-

abilities of the above events are based on
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the stage of the decision problem, as noted

above; i.e., the probability that the pilot

himself is downed is zero if he fires imme-
diately, is 20% if he delays and uses a
short-range missile, and is 50% if he delays

and uses his gun. The probability that he

fires on a friendly aircraft is 70% if he

fires now, 10% if he delays, and zero if he

waits for positive identification.

vii) There are eight possible outcomes:

* the aircraft is friendly and he chooses to

continue on patrol (cost: nothing);

* the aircraft is hostile, he continues on

patrol, and his carrier is attacked and

destroyed (cost: $2 billion);

* the aircraft is friendly and he fires his

long-range missile at it (cost: $1 million

for the missile + $25 million for the
destroyed friendly aircraft = $26

million) ;
* the aircraft is hostile and he destroys it

with his long-range missile (cost: $1

milion for the missile);

* the aircraft is friendly, the target

detection system says it is hostile, and

he destroys it with his short-range

missile (cost: $26 million);
* the aircraft is hostile, and he has an 80%

chance of surviving to destroy it with his

short-range missile and a 20% chance both
he and his ship will be destroyed
(expected cost, based on probabilies:

. (0.8) ($1 million) that he kills the
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enemy] + ( (0.2)($2025 million) that he and
ship are killed] = $406 million);

* the aircraft is friendly, and he kills it

with his gun (cost: $25 million, except

this event will occur with zero

probability);

* the aircraft is hostile, and he has a 50%

chance of surviving to kill it (at negli-

gible cost) and a 50% chance it destroys

both him and his ship (expected cost,

based on probabilities: C (0.5) ($2025

million) ) $1012 million).

viii) For purposes of this study, money will be

considered to be the payoff, with minimum

cost to be considered the utility value and

MOE.

ix) Aspiration level for this problem will be an

expected loss (based on probabilities of

occurrence) no greater than $500 million--a

highly artificial situation, on the surface.

However, it is convenient for demonstration

of this technique. S

x) Both a payoff matrix (Figure 8. 1) and a

decision tree (figure 8.2) are useful to

structure the situation for analysis

(although each shows essentially all of the

information--in different forms). From the

matrix we can determine that none of the

alternatives exhibits dominance over any

other. Thus they all will be retained for

consideration.
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Probability Enemy. Friendly
-S~g@-- U73 =.7-Stage 2 0.9 0.1Stage 3 1.0 0.0

Probability State-of-the-world
enemy Alternative Cost, $Mdowns Li actions Enemy Friendl EMV

0.0 Do nothing 2000 0 -600

0.0 Shoot now 1 26 -18.5

0.2 Short-range missile 406 26 -368

0.5 Aircraft gun 1012 25 -1012

Figure 8. 1 Payoff Matrix for the Example Probles

o

xi) Although the proLlem could be evaluated in

several ways, it will be useful to use the

concept of expected mone tarl value (EMV)

here. Remembering that cost is a negative

value, we make use of the expected costs

calculated above for each of the eight

outcomes. The cost of that outcome is

multiplied by the probability of that

outcome occurring, to obtain an expected

outcome value. Then these expected values

are summed for a given alternative.

* do nothing: 1(0.3 probability it is

hostile) (2000 cost) ] + [ (0.7 probability

it is friendly) (0 cost) J = -600 E5V;

* shoot now: C (0.3 probability it is

.* hostile) (1 cost) + C (0.7 probability it

is friendly) (26 cost) 3 = -18.5 EMV;
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Expected

Out- Path outcome Path

come, proba- value, value,

$M bility $M $M

0 0.7 0
Friendly ~-600

Enemy -2000 0.3 -600

*/

; " ~nothing Sot

range Enemy -406 0.9 -365
J missile

Friendly -26 0.0 0

range |

missile
E nemy "-1012 1.0 -1012

Friendly -26 0.7 -18.2

Enemy -1 0.3 -0.3 1

,I

Figure 8.2 Decision Tree for the Example Problem
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. use short-range missile: [(0.9 probability

it is hostile) (406 cost) ] f (0. 1 prob-

ability it is friendly) (26 cost)] = -368

EMV;

* use gun: [ (1.0 probability it is

hostile) (1012 cost) + [ (0.0 probability

it is friendly) (25 cost) ] = -1012 EMV.

xii) Making use of our aspiration level, we now

can see that two alternatives are satisfac-

tory. shoot now (at an expected cost of
$18.5 million) , or use the short-range

missile (expected cost of $368 million).

c) Caveat: This example points up the importance of

* choosing a good measure of effectiveness for

determining the usefulness of a decision.

Obviously shooting down a friendly aircraft is

considera-bly less desirable than cost/value alone

would indicate. Some multi-attribute utility

probably should be developed that would include

such concepts as morale and the loss of life.

6. USED IN LITERAIURE:

a) Findler N.V., Sicherman, G.L., 4nd McCall, Bede.
A Multi-Strategqy Gamin Enviroment. State
univ tor-3-w o ---BuffI,--- -Y March 1982
(GCSS-TR-9, GCSS-TR-196, AD-A115 380).

Human recognition behavior and machine
intellegence-oriented competative strategies are
used to study how decisions are made under uncer-

* tainty and risk. Work on automatic analysis and
synthesis of strategies also is described.

b) Puscheck, H.C. "Sequential Decision Making in a
Conflict Environment", Human Factors, Vol. 14, No.
6, 1972, pp. 561-571.

A two-sided wargame simulation was developed,
to study game-playing strategy. Four decision-
making models also were developed, to play one
side of the game.

c) Rouse, W.B. "A Theory of Human Decisionmaking in
Stochastic Estimation Tasks", IEEE Transactions on
Sstems, Man, and C.jeics,--Vor7. 77-"Y'- IT;

4'7JT, pp.277 -283.
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Concepts from stochastic estimation theory are
used to aevelop a theory of human decision making
that employs optimal stochastic estimators with
short-term and long-term memory models and esti-
mates tradeoffs.

d) Slovic, Paul, Fischhoff, Baruch, and Lichtenstein
Sarah. Behavioral Decision Theory. Decisions andDesigns,Tnc., cen-VX,-Se-p ier 1976 (AD-A036

survey of the field to determine what is
known, whatit is good for, and what else must be

learned, with.empgasis on research on how people
do make decisions versus how they should make
decisions.

7. REFERENCES AND TEXTS:

a) Bunn, D.W. Anolied Decision Analysis. New York:
McGraw-Rill BTinay, 84

A clear and complete short text on how to use
decision analysis techniques. Good section on
multi-at tribute utility problems though more
mathematical than Raiffa's explanations.

b) Raiffa, Howard. Decision Analisis: Introductory
Lectutres on Choiceg~~a hdY9ETny

a--s- s- se ia fly, 1968.
A delightful snort text, very readable.

Excellent continuing example used to demonstrate
the procedures. Includes choices under risk, as
well as those under uncertainty.

c) Sheridan, T.B., and Farrell, W.R. Man-Machine
Systems: Information, Contorl, and Decigi-o--oe
ofMan PerorNcfS. -Fdg, RUEs. s. T-7IT

Discussion of utilities of dynamic decision
making, and of games, in a theoretical framework.

d) Williams, J.D. The Compleat Strateayst. New
York: McGraw-Hill B3o- Company, 13.---

This is the classic primer on game theory and
game strategy. .. Intended for the non-
mathematician, it is pleasant reading, while being
a comprehensive look at the uses of payoff
matrices.

B. SIGNAL DETECTION THEORY MODELS

1. PURPOSE OF MOLEL/TECHNIQUE: Describin$ the prob-

ability or percent of time that two classes of events

will be discriminated by an observer. A relative

operatinq characteristic (FOC) curve is used to show
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a cross plot of hit rate versus false-alarm rate, for

a given situation and observer population.

For example, a series of observers may be shown fuzzy

CRT images of ships, in a laboratory, and told to

identify each as friendly or hostile. Their
responses are classed as: correct identification as

hostile (hit), correct identification as not hostile
(correct rejection), incorrect response as non-

hostile (miss), and incorrect response as hostile

(false alarm) . The proportions of the various

responses under laboratory conditions are used to

prepare a ROC curve. This then will be used to

predict how good ship identificaiton performance will
be under real-world conditions with similarly fuzzy

images from TV system on a tactical fighter aircraft.

2. MATHEMATICAL TOOLS REQUIRED OR USEFUL:

a) Algebra

b) Probability theory

c) Descriptive statistics
d) Graphs and plots

3. HUMAN FACTORS APPLICATIONS:

a) Describing individual differences, such as the

relative proportion of hits, misses, etc.,

observed in given population groups, or individual

differences in sensitivity versus decision

criteria.

b) Describing systems, such as the relative propor-
tion of hits, misses, etc., observed in operators

"* using two different systems.

c) Designing systems, when a choice must be made

between systems, based on observers' relative

accuracy of discrimination with them.
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d) Evaluating human performance, where it is neces-

sary for observers to meet some criterion or aspi-

ration level which can be described and defined

easily in signal detection theory terms.

'4. USED IN LITERATURE:

a) Blignaut C.J.H. "The Perception of Hazard. Ii.
The Contribution of Signal Detection.to Hazard
Perception", Erqonomics, Vol. 22, No. 11, 1979,
pp. 1 177-1163. --

The ability of mine workers to discriminate
visually between dangerous and safe rock condi-
tions was examined. Responses to stimuli were
analysed in terms of signal detection theory, and
results indicate that experience and skills
training improve performance.

b) Boone, M.P. 'Subjective Visual Differences
between Geometrically Similar High- and
Low-Accident Rural Roadway Curves", Proceedings _
the 23rd Annual Meetinq f the Hui Tators

--A - accident causation model, based on the
theory of signal detection, is developed.
Differences in drivers' visual perception of
curves is used, along with driving experience.

c) Eubanks, J.L., and Killeen P.R. "An Application
of Signal Detection Theory to Air Combat
Training" Human Factors, Vol. 25, No. 4, 1983,
pp. 449-4t6-- .

Signal detection theory was used to study
changes in pilot decision makinq behavior as a
func ion of .raining time. Pilot performance was
separated into distinct and theoretically orthog-
onal measures of sensitivity/accuracy (d') and
response criterion (8)-

d) Pastore, R.E., and Scheirer, C.J. "Signal
Detection Theory: Considerations for General
Application " itPs Nholo_ cal Bulletin, Vol. 81,
No. 12, 1974, pp. =D5B.

The assumptions,, procedures, limitations and
praztical considerations relevant to signal aetec-
tion theory are summarized, and application to
cognitive processes is described.

e) Young 3.1N. The .ffect of Signal Incidence Upon

Detectability. Tr E-5Inc A. -i -i
T T9TnXCZ68-591-U AD-A07 770).

- .An experimental determination or probability of
detection, as a function of signal incidence,
showed that the probability of detection decreases
linearly but remains finite, as signal incidence
is reduced and approaches zero.
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5. REFERENCES AND TEXTS:

a) Sheridan, T.B., and Farrell, WR. Man-M!achine
Systems: Information, Contorl: and beilo
or-a-n- erformanceU. -- i~ffidU7' 919ss.: TF-43T
7.reff-7,T97 1W961.

A complete theoretical treatment of the
subjet with a little information on
appJ.±cat os

b) Welford, A.T. Skilled Perfo)rmance: Perclpta.1 and
motor skills. glffTli ~t 'rem

Clearly uritten, brief discussion of the theory
and its applica on to decision making and
performance.
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IX. SUMMARY

This thesis is intended as a primer for human factors

engineers who wish to understand and make use of applicable

models and techniques used in operations research. Nineteen

of these techniques are listed here. Seven are discussed in

detail, including illustrative examples related to human

factors and to military systems. The other 12 are described

briefly. Possible uses are noted, and sources of further

information provided.

An extensive literature search was conducted as part of

this study. It is interesting that numerous reports and

L other publications had keywords indizating that operations

research and human factors were being combined. In actu-

ality, however, these reports usually involved one or the

other; rarely were both tied together. The logical pairing
of these fields was pointed out in 1970 by DeGreene

[Ref. 471, yet little progress has been made in the inter-

vening years. And what has been done mostly is written by

operations research analysts, and is unreadable by most

(mathematically unsophisticated) human factors engineers.

The most valuable thing obtained from this study is

strong evilence that many operations research techniues

indeed can be useful in modeling human performance. Markov

chains, queueing processes, and simulations all provide L

useful insights, along with linear programming, networks,

ani distribution models. The human factors engineer is

strongly encouraged to consider whether one or more of these

might be useful to him, as he goes about his job of

describing people and systems, designing new systems, and

evaluating performance.
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Perhaps the most useful (and overlooked) technigues,

overall, derive from decision theory. These models are
relatively easy to use. Algebra and some understanding of
logic and sets is useful, but otherwise little mathematical

sophistication is required. Yet the straightforward devel-

opment of payoff matrices and decision trees is a marvelous

way to clarify a set of alternatives, and enable selection

of one that will be satisfactory. It is highly recommended.

U

U
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APPENDIX I

GLOSSARY

Air Combat Maneuvering (ACM): air battles between two or
more fighter aircraft.

Algorithm: ..set oj loqical en4 mathematical op erations
performed in an orderly, specific sequence, usually using
a computer.

Analogy: .viewing a nw problem as if it were an old problemfor which one has insight or a solution, in order to use
available tools.

Analy sis: the sep~ratiQn of a whole into its com poent
arts, usual y in ord er to understand its nature End to

determine its essential features.

Analyst: a person who uses the techniques and tools of anal-
ysis.

Arithmetic operatprs: symbols which indicate a process that
is to be carried out on two or more numbers or other
characters, or a relationship between them, such as , -,
_<, or an integration sign.

Continuous: variables which can take on a continuum of
possible values.

Descriptive model: a model giving a description of a system
or process, usually in mathematical -or other symbolic
terms.

Deterministic: a model or process that give an "exact"
answer that is, one that yields a number or numbers as
its ena product.

Discrete: variables which can take on only a finite or
countable number of values.

Event: any subset of the set of all possible outcomes oroccurrances in an experiment, study, or any other process
being followed.

Exhaustive: enuileration of all possible states or events in
a situation or interest.

Ruman Factqrs LHF) : the study of human capabilities and
limitations in performing work activitiest plus ap plica-
tion of this knowledge to design of equipment, tacili-
ties and environments, and to the enhancement of
capabilities through training.

-* Human Factors Engineering IHFE): a subcategor¥ of human
factors which emphasizes design of equipment, £acilities,
and environments to match the capa iY.ities and limita-
tions of people.

Iterqt .on: thi se uence of operations (usualll in an alo-
ritm) leading o a new ana (hopefully) bett r solution.
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Linear: a ".straight-:line" relationshi among variables, so
that contributions of the variables are proportional to
their values, constant over the possible range of values,
and additive.

Man-machine system: an entity consisting of human and non-
human components which exists to carry out some purpose
which transcends the individual purposes of tese
components.

Mathematical tool- a mathematical procedure which does not,
in and of itself, answer a systems or organization ques-
tion, but which is needed in order to use an opera i ons
research technique.

Measure Of Effectiveness (MOEI: criteria of overall system
performance used to eval uate proposals and designs;
usually measurable, numerical values when possible.

Mechanistic: another term for deterministic.

Model: more or less abstract representation (physical, math-
ematical, and/or verbal) of a system or subsystem, used
to define that system sufficiently well to answer ques-
tions about it using various techniques.

Mutually exclusive: enumeration of a set of states or events
w1Ich do not overlap (are orthogonal).

Operations analysis: analysis of the operation of an
existing system; often u ed interchangeably with systems
analysis.

Operations Eesearch (OR) : Application of the techni ues of
the behavioral sciences and mathematics to modeys, in
order to make tradeoffs in, solve problems of, or make
decisions about complex problems (usually concerning
organizations or systems).

Operations research technique: a procedure that clarifies a
specific question about a system, condition or event, or
that ives a quantitative answer to sucA a question,
througn operations on a model.

Optimum; the most favorable value obtainable, or the best
possible solution to a problem, within given constraints;
one that maximizes some measure of benefit or minimizes
some measure of cost.

Paradigm: a model or analogy which is widely accepted and
recognized within a given field.

Prescriptive model: a model that prescribes a course of
action needed to obtain a desired outcome.

Probabilistic: a model or process that yields probabilities
of occurrance as its end product.

Prorammable method: an orderly, step-se approach to solu-
rion of a problem, laid o a ia logical sequence (not

direcly related to computer programming).

Quantitatiye: the de ree gr level of some qual ty or attri-
bute, including num erical values, probabil ties, and
ordinal comparisons.

Sensitivity analysis: evaluation of how a given optimum
solution would change if input data values were changed;
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used to determine the range within which input values can
vary and still yield a satisfactory solution.

State: the condition or status of an object of interest as
a result of its initial conditions and events which Lave
occurred subseguently.

Stochastic: a time-related probabilistic model or process.

Stoppingtrule; carefully specified conditions, used during
the Iteration process of obtaining better solutions in
order to recognize when the present solution is "good
enough", and iterations should stop.

System- an assemblage of constituents that interact to
zul±ill a common purpose, transcending the individual
purposes of the components.

Systems analysis: the scientific discipline of analysingsystems by examining their component parts and the rela-
tionships among them, in order to solve system problems.

Systems engineering: application of scientific and engi-
neering knowledge to planning, design, evaluation, and
construction of systems.
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