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DETERMINATION OF NECESSARY COMMANDS FOR THE MOTION

OF A ROCKET ON A GIVEN LINEAR TRAJECTORY IN THE ATMOSPHERE

By Alexandru Codoban

Polytechnic Institute of Bucharest

The variation in time of the attack angle of the control surfaces

of a rocket so that it is moving on a given linear trajectory in

the atmosphere is determined in this paper. Variation of aero-

dynamic coefficients with the Mach number is considered as well

as the variation in time (in the fuel combustion stage) of the

moments of inertia and the position of the center of mass of the

rocket. Air density and sound velocity are assumed variable with

the altitude. A numerical calculation example solved with the

- algorithm presented in this paper is 'shown in the end.

1. MAIN NOTATIONS USED

Oxy is the reference system stationary with respect to the Earth,

with the Ox axis along with the linear trajectory required (fig. 1)

- the angle of the linear trajectory in the horizontal
. 6 direction

- the time measured from the moment the fuel combustion
-" begins

v - the velocity of the center of mass of the rocket
dt

g - acceleration of gravity
A - the flight altitude of the rocket
p - the density of the atmosphere at flight altitude
a - sound velocity in atmosphere at flight altitude
f - Mach number for the fliqht
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0111 - reference system stationary with respect to the
body of the rocket and whose axis 0'1coincides
with the axis of symmetry of the rocket (Fig. l).

- mass of the rocket, variable during the fuel com-
bustion stage

j - moment of inertia of the rocket with respect to
the rolling axis (which passes through the center
of mass), variable while the engine is running

- flow of gases in the engine, adimensional
- abscissa of the center of mass of the rocket in the

system O' t,;
- abscissa, in the system 0'I,of the point F with

respect to which the momentary aerodynamic coeffi-
= -C E,; cients are calculated

T - traction force of the engine of the rocket
t. - the time the fuel is burnt (including tr)
f,, - time of transition from active stage witE engine

running to passive stage
- reference surface to which the aerodynamic coeffi-

cients are referred
- the reference length to which the coefficient of
the moment of rolling is referred

- the angle of incidence of the rocket (the angle
between the direction of the velocity and the axis
of'symmetry of the body of the rocket) Fig. 1);

- the angle of attack of the surfaces of command (fig. 1)
q=& - angular rolling velocity of the rocket
g =i - angular rolling acceleration of the rocket

~q
2V - rolling velocity of the rocket, adimensional

L - aerodynamic lift force of the rocket
- aerodynamic drag force of the rocket

L *- aerodynamic rolling moment of the rocket with respect
__, _L to point F

2 PVS - aerodynamic lift coefficient

D
1D - aerodynamic drag coefficient

CD. - aerodynamic drag coefficient at zero incidence
CDd - base pressure drag coefficient of the rocket
kD - constant in the formula of CD

1 pV2I - rolling moment coefficient with respect to point F

2
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d=-_ derivatives of aerodynamic lift and rolling
moment coefficients with respect to the in-
cidence of the rocket

05 z =dO. derivatives of aerodynamic lift and rolling
d- do " moment coefficients with respect to the angle

SdO,. of attack of the command surfaces
- derivative of the rolling moment coefficientdq with respect to the adimensional rolling velocity

(coefficient of rolling reduction)

DERIVATION SIGNS AND INDEXES

(") derivative with respect to time

0 ) value at initial moment to = o

( )f value at final moment tf

2. INTRODUCTION

Solving a problem of the dynamics of the flight of a rocket in

the atmosphere is the scope of this paper, a problem often met in

certain practicalcases like the determination of the variation law

of the attack angle of the command surfaces so that the rocket will

follow a given linear trajectory in the atmosphere which it must

pursue both in the active stage of the flight (with the engine

running) and passive stage (without traction force). The

variation of the aerodynamic coefficients with the Mach number is

being evaluated as well as the variation in time, with respect to

fuel consumption, of the inertial moments and of the position of

the center of mass of the rocket. These are considered as

numerical functions with respect to the Mach number and time,

respectively, being determined either theoretically or experimentally.

The traction force of the rocket is considered constant in

the fuel combustion stage (active stage) and it is assumed that

it is linearly decreasing in time to zero in the short transition

period from active to passive stage.

3



3. THE DIFFERENTIAL EQUATIONS FOR THE MOTION OF THE

ROCKET

It is assumed that the flight distances are short compared

to the radius of the Earth so that the acceleration of gravity is

considered to be constant in magnitude and direction ( = const.)

and that the rocket motion takes place on a linear trajectory tilted

at the angle G from the horizontal direction, situated in the

vertical plane defined by the direction of the initial velocity of

the center of mass of the rocket and the vector of the acceleration

of gravity (fig. 1).

The differential equations of the motion of the rocket in

this plane are:

Tcos a -D -mgsin 6 = m, (l.a)

Tsin & + L - rngcos 0 = 0, (l.b)

1.- V(Los a Dsina)=J . (l.c)

V .

fli

Fig. 1

4fa.
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In these equations the mass of the rocket m has a linear

variation with respect to time in the active stage, being constant

in the passive stage

Jm.(1 -QI) for te [0,t.), (2.a)

m, = const. for . t > ,, (2.b)

where the adimensional flow of burnt gases is constant and given

by:

Q -- m0  t n i-- . coast.(3

The traction force T is considered constant in the active stage,

and in the transition period it decreases continuously in time

to cancellation: To ---- ost. for t E[0,t,- ,],

-T co(t. f = 16 [0,l - .t]

oor 9 > (4)

A linear variation of the traction force in time for the
transition period was considered in the numerical example at the

end of this paper:

T,,(t) = Toi [ t-(t.--,,) (

The aerodynamic forces and moments are given by:

L = -- pV'CL ;CL-= + ,,I V(6.a)
D= - PV2SCD, (6.b)

2 (6 .c)

where the drag coefficient is given by:

CD = JCD, + k+a for 6 [0, t.], (7. a)
CD. + a + On.,@ for > ,( 7. b)



where Cdfd is the base pressure drag coefficient which appears

when the engine ceases to function.

In^(6) the other derivatives of the aerodynamic coefficients

(like Cq ) were assumed negligible. Also, considering a canard

configuration for the rocket, with the command surfaces placed

in the front, the effect of the vortex created by them on the

wings could be neglected.

The aerodynamic coefficients and their derivatives are known

functions with respect to Mach number. Thus, we assume their values

known for (CD(f), k(IMf), Cd,(3,), C(M[), 6I( 4), C (M,), C.(,,), C,(YI) at

different Mach numbers -X, i-1l, 2, 3 ,...,%.}, situated in the range of

velocities of flight.

Also assumed known are the values at different moments t. of1

the distance Z between the center of the mass of the rocket C and

the fixed point F with respect to which the aerodynamic rolling

moment Mm is determined, as well as the values of the moment of

inertia J of the rocket with respect to the rolling axis that

passes through the center of mass, that is (t,) and J(t i ) are known

at different moments ti, ie{,2,3,...,n,}, during the fuel combustion

stage [o, te].

In order to determine the values of the aerodynamic coefficients

and of their derivatives for a Mach number M as well as the values

of the moment of inertia J and the distance t which defines the posi-

tion of the center of mass at a time t, a numerical method of the Sline

type has been used.

Atmosphere density p and sound velocity in the atmosphere are

variable with respect to the altitude of flight h of the rocket and

are given by

h= ho0+z x , (8)

6
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in which h0 is the altitude at take-off.

Substituting in the system of differential equations (1) the

expression of the mass m given by (2.a) and the expressions of the

aerodynamic coefficients given by (6) and (7.a) and those of the

aerodynamic forces and moments, this system becomes:

Tcos --- pV'S(D, + kL c) -m 0( -Qt)g sine = m0 (1 - Qt)x, (9.a)
2

Tsin=±1pVS(=C + B6 ) -m(1 -Qt)geos6 = 0, (9.b)

2&(0Ot + X + A(') - p3181[(ctCL + p&L cos at + (9)
+ ( + L ,a) sin ] = Ji. (9. c)

4. INTEGRATION OF THE DIFFERENTIAL EQUATIONS OF MOTION OF
THE ROCKET

The system of differential equations (9) is a nonlinear system

whose integration is possible only by numerical methods. For this

purpose we obtain the expression of B from (9.c):

OL-I~co [ 0,-OCos a)
1(10)

- +e: + O- (+ in) (10)

Substituting this expression in (9.b) and using the notations

T G M g cos JjTo ; *- p~B";- = 1pVs'S (ii

TpV2S  I r VS
2 2 2

the following equation is obtained:

in a + zCL -' G(. -( --. +o) ± c -

(12)

2V
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which, together with (9.a) is a nonlinear syste, of differential

equations of second order.

Then, introducing the supplementary variables V = x and
(q4.' a....WS /L)0

q = &, the system of differential equations4 of second order becomes
a system of first order

(13.a)
g COX-W.+ )os sin 0] (13.b)

=q,

GO -'T*sin----- ( -)

+(-~ Ccosz + +A-L - . kDz) sin o -I] (13.d)

This nonlinear systen of differential equations of first

order can be, in principle, numerically integrated using an adequate

method such as the Runge-Kutta method. At every step the value of

the attack angle 3 can be determined, by using (10).

It is noted though, that in many cases, the derivative CL

of the drag coefficient with respect to the attack angle B has very

small values, and sometimes people tend to neglect it, which leads

to great errors when using the integration method above mentioned

(C is in the equation (13.d) in the denominator) and even making

it impossible to use the respective method (in the case that CL

is negligible).

For this reason, a procedure which can be applied even for

very small values of the derivatives C S and even for CB : 0 will
be shown here.

This procedure consists of using at the same time the Runge-

Kutta method for the numerical integration of the system of dif-

ferential equations (13.a) and (13.b) and a method with finite

8
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differences in order to integer the differential equation (12)

which is equivalent with (13.c) and (13.d). Regressive differences

of second order are used for this purpose in order to obtain the

derivatives & and Y which appear in equation (12):

=b + b.,
(14.a)

i Clef + C., (14 .b)

in which:
_ 3 1

b,. b = (- 4 ,-I + Mi-2),

2. -it 2.At (15.a)

2 ; 1
=(At)2  

- (At)2  - - ), (15 .b)

and At represents the integration step with respect to time.

For the integration step i = 1, at which only the values of

a marked i - 1 and for the step i = 2 for which only the values

marked i -1 and i - 2 are known, the values of b I, b 2 , cI , c 2 ,

from (14) can be calculated with the following formula *

b_ 3_ b2= 1 [ 7,j At *f- + (A0)Z.. 12 -At 2-At - , 2 (16.a)

2 2
( CXt)' 

A

o,' = -)--[;o - (Ats(,X+ A . _) (16 .b)

It is noted here that the initial conditions a0, &0 'do are

known.

From (12) the next relation can be obtained with which the value

Ci of the corresponding integration step i can be calculated:
(2T Wi a, + Cz,-G') ( . - -L0Leoaa )+

1(17)

-- n(bi + b,) + - (C.. + ko a.) sin 0._____2V I (7
• The equations (16) are obtained by setting ai-), i- 2 as functions

of ci.i, ri I, " i from the formula with regressive a7irferences of-I I- .-A.
second and first order which yield i-l,' 1 respectively by
substituting the result in the equations (l r.

9



In order to determine the unknown value of di from the tran-

scendental equation (17) a method of sucr ssive- approximations is

used. For this purpose the equation (17) is written in the form

f ((18.a)

where

E - Fcos at,- (A - Bu, ),- , sn .P 2.).D(A - B cos (18.b)'

I and

A =T. + _ (19.a)

B T*L, (19.b)

C= kCL, (19.c)

=G*C. -i (Ji~ C~b 2 , (9.A

F--2-"GC6. (19 .f)

It can be shown that for the usual range of incidences (- 120,+

120), that is (- 0.2, + 0.2 rad) and for usual values of aerodynamic,

gemoetrical and inertial values of the rocket, the function f(ci )

defined by (18.b) satisfies the conditions

sup <f(,) = ),, X < 1,

•,,~e(-0 + 0,2). (20)

In these conditions, the application f is a contraction and thus,

according to the Picard - Banach theorem, the fixed point ai of the function

f(ai ) , that is the root of the equation (17) exists and is unique, and

10
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it can be determined using an iteration method with the help of the

series generated by the relation:

E - F eOS,.- + (A-B cos ;..,,CzL.._,)(z.._.-in ,..- ). (21)
D - (A - P, C ,_ -- CZ,"._)

It can be demonstrated that, no matter what a iO is within the

interval (- 0.2 + 0.2) rad, the series (21) is convergent towards

the fixed point ai and the error, which may occur d(ai, ai  ) if1 ,n

instead of the root ai the value ai, n is taken, is given by the

relation

d(i,, ,..) 4 -- d( .,,1  a.9)" (22)

As a starting number ai,0 in the iteration to determine the

angle ai , the value of the incidence at the previous step can be

* used, that is:

.0= Z. _, (23)

It is mentioned that by writing equation (17) under the form

* (18), the iteration procedure used to determine the angle ci becomes

- very rapidly convergent in all the analyzed cases.

With respect to the value ai so determined the attack angle of

.." the command surfaces can be determined at every1 B integration step.

(The values for di = qiand'ai which occur in (10) are given by (14)).

a) ESTABLISHING THE INITIAL CONDITIONS OF THE MOTION

In order to start the numerical integration procedure, the initial

conditions of the motion have to be known, that is, the following

kinematic parameters at launching time: ho, x0 , V0 , a0 ., q0 .

• 11
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Assuming that the launching takes place from a fixed ramp or

from a mobile ramp (i.e, a plane) whose motion is known, then the

initial parameters h0, x0 1 V0 ' q0 = &0, are known as well as the

angular acceleration g0 =' O"

With regards to the initial value a0 and $0, these must be

determined in such a way so that the rocket follows the linear

trajectory from launching. It is mentioned that in the present

paper it is assumed that the rocket moves on a linear trajectory

straight from launching. In a future paper the case when the

rocket first moves on a curved trajectory and then starts a linear

motion will be considered.

To determine a0 the initial conditions of the motion are sub-

stituted in (12). A transcendental equation in a is obtained

which is solved using the same method of successive approximations

as in the case of equation (17). For this purpose the equation is

put under the form

(24.a)

in which

E s.-.P . ( ! wi- z . + ( A s -  B O c s  o C °  ) ( 7 - s i a )  ( 2 4 .b )
Do + (A9 - Bo cos 2. Coi )

and where:

A0  T:C -* + . (25.a)

r = (25.c)

Do = (25.d)

12

'. . . -. ". • .- '..-. " - . - .- . %.-. .°..-. - -. •.... . ... , - .. . . . .,



Eo = Go*C.. - cL J: to 7o. . (2 5. e)

Po = G C,.- (25 .f)

It can be demonstrated that in this case also f0 (a 0 ) is a

contraction so that the Picard - Banach theorem can be used for the

convergent series of successive approximations:

Eq - Fo cos a4,..+(A-B. cog .- +C0 -..-in)(%.--f Z.,-)(

D,0 + (As - cos %...- Co .

The starting value for the iteration to determine a0 is obtained

for n = 1 and a 0 .0 - 0 in (26):

E, - Fo

09 -;. Ao-Bo (27)

The iteration process, which is rapidly convergent, stops at the

number n which yields a0 with the desired accuracy (a0 " e0 .n)

0 Having a0, the initial attack angle a can be calculated with

* (10), in which the initial values a0 , 0 = q0''0 = E0 are sub-

stituted, as well as the initial values of the aerodynamic coeffic-
Pu

ients of other parameters variable in time, such as m0, C, J0,^etc.

b) NUMERICAL INTEGRATION OF THE SYSTEM OF DIFFERENTIAL EQUAT-

IONS OF MOTION

Knowing the initial conditions for the motion: h0 , x0 , V0 , ao' q0,

the system of differential equations (13.a) and (13.b) can be integr-

ated by one of the known numerical methods, i.e the Runge - Lutta -

Gill method of the fourth order, which has the desired accuracy using

a halving method for the integration step for which the calculation

error is reduced to the imposed value.

The angle o5 of (13.b) is determined at every step using the

iteration procedure above mentioned.

13
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During the numerical integration, the aerodynamic coefficients

and their derivatives are considered variable with Mach number being

given by numerical values. Their values corresponding to the Mach

number of the flight at a given moment are calculated using a Spline

type of numerical interpolation method. A similar method can be

used to determine at every integration step the moment of inertia

J of the rocket and the coordinates E of the center of mass which

also are variable with respect to time, being previously calculated

and given by numerical values. They can be calculated also during

the numerical integration at every step, if the relation between the

fuel consumption and its distribution in the rocket body is known.

To calculate the thermodynamic parameters of the atmosphere

(density and sound velocity) which are variable with the altitude

h, a metbod of numerical interpolation can be used starting from their

values in standard conditions or using analytical calculus relations

as is the case in the numerical example -presented at the end of this

paper.

At every stepof numerical integration which corresponds to a

"" certain value of the time t, by the algorithm presented in part 4

*- the values of x, V, a, q, E are determined, with which from (10)

the value 8 of the attack angle is determined.

The succession in time of the values of the attack angle repres-

ents the required command law for the rocket to move on a linear tra-

jectory.

5. THE MOTION OF THE ROCKET IN THE PASSIVE STAGE

(1 >t,),

The rocket has to continue the linear motion4 after engine shut-off.

The differential equations of the motion for this stage are obtained

from the corresponding equations in the active stage in which:

T=O, J= cot.,

n = "P& (1 - Qt.) M cof-m., = = onst.

14
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and the bottom drag coefficient CDfd is added to the drag coeffic-

ient at zero lift CDo.

For the transition period it can be assumed that for the time

ttr = (0.2 - 0.4) seconds the mass of the rocket decreases linearly

in time as in the active stage, and the traction force for the trans-

ition period Ttr also decreases linearly from a value TO to zero

according to (5). In order to find the differential equations of

*the motion for this stage, we substitute T with Ttr in the equations

of the motion for the active stage. The same numerical methods will

be used as for the active stage for integration of the differential

equations of the motion of the rocket corresponding to the last two

stages (transition and passive).

6. NUMERICAL EXAMPLE OF CALCULATION

In order to illustrate the above shown algorithm, the following

numerical example is presented in which these data have been used:

- geometrical and inertial characteristics of the rocket:

S= m, Me f 600 kg,

l 0,7m, m,=400 kg,

S 1,8 m, J= 124,5)3 kg mn,

= 1,86667 m, J, = 100 kg ra'

/= 1,8 M,

- the characteristics of the motor (three successive values

have been considered for the traction force):

To = 25 000 N,

To = 50 000 .N, t,, 0,4 S;

TO= 100 000 ',

15
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- the initial conditions of the motion:

4o = 1000 m, V0 = 200 m1/,
Xo=O, qo = 4o=O ;

- the slope of the linear trajectory

0 = 150;

- the required time for the rocket to maintain a given linear

trajectory

tf = 25 s.

The position Ec of the center of the mass of the rocket and the

moment of inertia J with respect to the-rolling axis have been cal-

culated as numerical functions of time considering a certain fuel

distribution inside the rocket. Their variation in time is shown in

fig. 2 and has been introduced in calculations as numerical form.

The variation of the aerodynamic coefficients and of their

derivatives with respect to the Mach number is indicated, for the

example given, in fig. 3, 4, 5. Their values have been introduced

in calculations in numerical form. kD C7 (1/rad) and CDfd = 0

were considered in this example. Air density, variable with the

altitude h, was calculated by:

= l"e - (28)

where p. is air density at sea level (pp = 1.229 kg/m 30), and kp is

a constant for which different values were taken in 1,000 m ranges,

values calculated with the data derived from standard atmospheric.

values.

16
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In order to calculate the sound velocity in the atmosphere

the following expressions have been used:

a =aj- L h  for h <10"668 m,

(29)

a =296,2656 m/s for h ) 106 WSm,

where ap is sound velocity at sea level (ap = 340.1568 m/s), ks is a

constant (k s = 0.004114286 s - 1 ) and h is measured from sea level.

The results are shown in the diagrams of fig. 6 - 10 in which

the distance x that the rocket cruised, the velocity of the rocket

V, the Mach number of the flight M, the angle of incidence a and

the attack angle a of the conmand surfaces were represented with

respect to time for the three values considered for the traction force.

2 126 E
&124

1 ~ 122"'
1o-- -2o' __

,.it '4J ,e

187- - 114 -

186 112 U 3 -.

185- -- 110

18--- - 108 1

182--- 
104 -1 

3151 * - -1 1022

-- 100

Fig. 2 Fig. 3
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Fig. 10

The variation in time of the attack angle $ of the command

surfaces, shown in fig. 10, is the command law for the rocket to

follow its linear trajectory in the numerical example presented here.
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