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I. INTRODUCTION

PR A P

The forced liquid project is being directed by the Munitions Branch of
CRDC. The present task is to determine the internal reaction of a partially,
liquid-filled shell subjected to large impulsive pressures from burster tube
rupture. The main area of concern is the determination of the end wall and

X side wall pressures due to the sudden application of pressure at one end. A
- final objective is the development of a predictive capability which can be
) used to analyze the internal flow and quantify the internal pressure levels
N based on various liquids, ullages, and initial pressures.

I1. GOVERNING EQUATIONS

The prediction of the fluid motion within a liquid-filled shell after a
burster tube breaks is complicated by such factors as non-uniform geometry
inside the shell, burster fragments, gas-liquid interaction, and release of
pressure from the burster tube which may not remain at a constant level over
the duration of the event. However, much of the basic physics which occurs
inside the shell may be highlighted by examining the following highly simpli-
fied problem,

A cylindrical container of length, H, is filled with a fluid to a height
L. The fluid is characterized hy a density, p, and a bulk modulus, E. The
portion of the container not occupied by fluid, the ullage, is assumed to be
vacuum. Initiation of the event occurs with the application of a pressure
step of magnitude, Po, applied to the lower surface of the fluid (see Figure
1). This pressure step generates a compression wave which propagates up the
fluid slug. The ensuing fluid motion, which is assumed to occur isothermally,
may be predicted by applying the equations of mass and momentum conservation
across the pressure wave. A control volume, such as that shown in Figure 2,
is fixed to move with the pressure wave at the speed of sound, c. Denoting
the properties in front of the wave by the subscript 1 and properties behind
the wave by 2, the mass and momentum equations are written below in terms of
the pressure, P, density, p, fluid velocity, V, and wave speed, c.

Continuity

p1c = palc + V; - V) (1)
Momentum

PL-Pa=c2p - (c+ V) -Vy)20p, (2)

- An equation of state of the fluid is also required for the solution of
- these equations. In this analysis a simple equation of state is used.

aP/3p = E/p (3)




Since the properties in front of the wave are known, one additional
equation is required in order to solve for the four unknowns of interest; the
wave speed, and the fluid pressure, density, and velocity behind the wave.
This additional equation is, in a sense, a boundary condition, and is depend-
ent on the manner in which pressure waves are generated or reflected at the
fluid boundaries.

For a wave generated by a change in pressure at a boundary, the pressure
behind the wave will be equal to the new pressure level. The boundary condi-
tion for a wave reflecting from a surface will depend on whether the surface
is "free" or constrained. The pressure behind a wave reflecting from a free
surface will be equal to the pressure outside the free surface, while the
velocity behind a wave reflecting from a constrained surface (such as the end-
wall) will be zero. The velocity behind a wave generated by the collision of
a free surface with a constrained surface is also zero. These conditions are
expressed below.

For a wave generated by a change in pressure at a boundary, or wave
reflected from a free surface,

P2 = Poounpary . (42)

For a wave reflected from a conscrained surface, or a wave generated by
collision of a free surface with a constrained surface,

VZ =0 B (4b)

In the case of two pressure waves crossing each other, continuity and
momentum equations are applied across each wave and are solved simultaneously
for the conditions between the two waves.

In this analysis, the pressure waves generated are assumed to be weak;
thus the velocity of the fluid is small compared to the speed of sound and the
changes in density of the fluid are small compared with the initial fluid
density. Thus, the wave speed may be expressed as follows;

c=/EJp. (5)

ITT. WAVE MOTION ANALYSIS

Using the equations described above, the motion of the fluid as a func-
tion of time has been determined. In this section a description of the pre-
dicted fluid motion is given.
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Fluid Motion as a Function of Time

The pressure step, which is applied to the lower surface of the fluid,
generates a compression wave which begins to accelerate the fluid toward the
cylinder endwall. After the fluid interface strikes the endwall, an addition-
al pressure wave begins propagating throughout the fluid. Thus, a description
of the fluid motion involves the tracking of these two pressure waves as they
move throughout the fluid slug. It is useful, then, to separate the motion
into two phases; the motion of the fluid before the collision of the free
surface with the endwall, involving a single pressure wave, and the motion

. after the interface impacts on the endwall, involving the motion of two waves.

1. Fluid Motion Before Fluid Interface Hits Endwall

The application of the pressure step to the lower surface of the
fluid generates a compression wave which propagates up the fluid slug at the
speed of sound of the liquid, c. As shown in Figure 3, the fluid is motion-
less and at vacuum in front of pressure wave, while behind the wave the fluid
is at pressure Po and moving upwards with velocity, Vo. (In Figures 3-11,
compression and expansion waves are denoted by filled and unfilled arrows,
respectively. The direction of the propagation of each wave is shown by the
arrow.) The ratio of fluid velocity behind this wave, Vo, to the speed of
sound, determined by application of the above equations, is approximately
equal to the ratio of Po to the liquid bulk modulus.

Vo/c = Po/E

Typically then, Vo will be three to ten percent of the speed of sound for this
problem.

This compression wave will propagate up the fluid slug until it
reaches the upper fluid surface, at which time it will reflect as an expansion
wave traveling down the fluid at the speed of sound (Figure 4). Behind the
expansion wave the fluid is moving upwards at velocity 2Vo and is at cero
pressure. The expansion wave will propagate down the fluid until reaching the
lower pressurized surface, reflecting as a compression wave, behind which the
fluid will be moving upwards at velocity 3Vo (Figure 5). This wave will con-
tinue to propagate up and down the fluid slug with the velocity behind the
wave increasing by Vo each time the pressure wave reflects from the upper or
lower surface of the fluid.

At some time, however, the fluid interface, which begins moving after
the initial arrival of the compression wave, will impact on the cylinder end-
wall, bringing the fluid locally to rest and generating an additional compres-
sion wave. The strength of this compression wave is dependent on the velocity
of the fluid interface as it strikes the endwall, which increases by 2Vo each
time the initial pressure wave reflects from the fluid interface. The velo-
city of the interface as it strikes the endwall will thus depend on the length

) of the cylinder, H, the length of the fluid slug, L, the speed of sound, c,

v the initial pressure, Po, and the bulk modulus, E. This relationship is shown

: nondimensionally in Figure 12 in terms of the fill ratio, which is the ratio
of the length of the fluid slug to the length of the cylinder, and the ratio
of initial pressure to bulk modulus.




Values of fill ratio and initial pressure to bulk modulus ratio which
lie in region I represent cases where the initial pressure wave will reflect
from the fluid interface only once before the interface impacts on the end-
wall. Thus, the velocity of the interface for these cases will be 2Vo.
Values of fill ratio and initial pressure to bulk modulus ratio which lie in
Region II, represent cases where the initial pressure wave will reflect twice
from the fluid interface before the interface impacts on the endwall, yielding
a interface velocity on impact of 4Vo., Points below region Il represent cases
where 3 or more reflections are expected. Typical fill ratios and initial
pressure to bulk modulus ratios for the problem of interest lie in Region I;
thus the examination of the fluid motion after the interface impacts on the
endwall need only focus on the cases where the initial pressure wave reflects
from the interface only once.

2. Fluid Motion After Fluid Interface Hits Endwall

For fill ratios and initial pressure to bulk modulus ratios of
interest, then, the upper surfice of the fluid will impact on the cylinder
endwall after the arrival of t):. initial pressure wave, but before this pres-
sure wave reflects from the lower surface of the fluid and returns. The
collision of the fluid interface with the cylinder endwall will generate a
secondary compression wave which travels down the fluid slug. Behind the
secondary wave the fluid is brought to rest, doubling the pressure. The state
of the fluid motion at this point in time is shown in Figure 6. (The primary
wave is shown as a solid line, while the secondary wave is shown as a dashed
line.) Both pressure waves move down the fluid slug until the primary wave
reaches the pressurized surface and reflects as a compression wave, as shown
in Figure 7. Behind this compression wave the fluid velocity is increased to
3Vo.

The crossing of the primary and secondary pressure waves, shown in
Figure 8, causes the pressure between the two waves to increase to 3Po and the
velocity to decrease to Vo.

The primary wave continues moving up and reflects as a compression
wave after reaching the endwall. Between this compression wave and the end-
wall the pressure is increased to 4Po. The secondary pressure wave moves
toward the pressurized surface and reflects as a expansion wave. The fluid
behind this wave is now moving away from the endwall at velocity Vo. The
fluid is now at the state shown in Figure 9.

The two pressure waves again cross, dropping the pressure between
them to 2Po and causing the fluid between the two waves to move at 2Vo in the
direction away from the endwall. This is shown in Figure 10.

The secondary pressure wave continues moving toward the endwall and
reflects as an expansion wave, dropping the pressure between the endwall and
the wave to vacuum. The primary wave also reaches the pressurized surface and
reflects as an expansion wave, as shown in Figure 11. The pressure waves will
continue to move throughout the fluid until they are damped out by viscous
effects. (In this analysis there is no damping of the waves since viscous
effects are neglected.) At this point the analysis is discontinued, because
the maximum pressure at the endwall (4Po) has been relieved.

10




IV. RESULTS

Results for the pressure as a function of space and time are presented in
nondimensional form. Endwall pressure as a function of time, again nondimen-
sionalized, is examined and compared with an existing theory. Finally, dimen-
sional results are presented for a typical case to provide insight into the
physical problem of interest.

A. Pressure Time-Space Diagram

With the fluid motion defined over the time interval of interest, a plot
of the pressure as a function of time and space can be constructed for a given
fill ratio and initial pressure to bulk modulus ratio. Figures 13-16 show the
pressure time-space diagram for a constant pressure to bulk modulus ratio
(Po/E = .035) and for four different fill ratios of interest, .97, .95, .93,
and .90. Figures 17-20 display the pressure time-space diagram for a single
fill ratio (.95) and varying pressure to bulk modulus ratio, .025, .035, .05,
and .10, Time has been nondimensionalized by the time required for a pressure
wave to travel the length of the fluid slug. The vertical ordinate represents
the axial position from the bottom cylinder nondimensionalized by the cylinder
length. The pressure at a particular instant in time and at a particular
axial position is represented by the shading at the appropriate location on
the graph.

The position of the upper and lower fluid surfaces as a function of time
are shown by the thickened 1lines on the upper and lower portions of the
figures, while the position of the primary and secondary pressure waves are
represented by the thin solid and dashed lines respectively.

These figures may be used to determine the pressure as a function of time
at a particular axial position within the cylinder by drawing a horizontal
line at the appropriate vertical ordinate on the graph. Similarly, the
spacial distribution of pressure at a particular instant in time is represent-
ed by a vertical line at the appropriate horizontal ordinate.

Figure 13 displays the pressure history for what may be a typical case of
interest; .97 fill ratio, Po of 241.0 MPa, and bulk modulus of 6895. MPa
(water subject to a pressure of 689.5 MPa has a similar bulk modulus).! After
the collision of the interface with the endwall, a region of pressure 2Po is
seen to develop. This region extends over a large portion of the cylinder,
from the endwall to the lower 30% of the cylinder. Adjacent to the region of
2P0 are two regions of high pressure of magnitude 3Po and 4Po. The region of
4Po begins at the endwall after the collision of the primary wave with the
endwall, and is seen to occur only in the top 25% of the cylinder. Nearly the
entire length of the cylinder appears to experience a pressure of 3Po over a
small period of time for this case.

The effect of changing the fill ratio is shown in Figures 13-16.
Decreasing the fill ratio is seen to increase the duration and extent of the

1. C. Carmichael, "Kent's Mechanical Engineers' Handbook," Degign and Produc-
tion, Twelfth Edition, Wiley Handbook Series, 1964.
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region of pressure 4Po. At the fill ratio of 90% the region of 4Po extends
over the upper 60% of the cylinder and lasts nearly four times longer than the
adjacent region of 2Po at the endwall. Interestingly, the size of the region
of pressure 3Po seems to increase with decreasing fill ratio until it reaches
a maximum value, and then seems to decrease.

The effect of changing the ratio of Po to the bulk modulus while holding
the fill ratio constant is shown in Figures 17-20. These figures demonstrate
the effect of changing the initial pressure Po and/or changing the bulk
modulus of the fluid.

In the case of changing the initial pressure Po, the duration and extent
of the 4Po region is seen to decrease with increasing initial pressure. Thus,
while the peak pressure on the endwall can be increased by increasing the
initial pressure, the duration of this pressure will decrease somewhat.

Additionally, if the bulk modulus of the fluid is changed, this theory
predicts that the duration of the peak pressure region will decrease as the
bulk modulus is decreased (as the fluid is made more compressible), but the
magnitude of the peak pressure will remain constant.

In Figures 13-20 the degree to which the fluid column is compressed is
seen by comparing the initial length of the fluid column with the length at a
later time. Compression of 10%-40% is seen and is reflective of the very high
pressure levels which the fluid experiences.

B. Pressure on the Cylinder Endwall

The pressure on the endwall of the cylinder as a function of time is an
item of significant interest in this project. These pressures, for the cases
discussed above, have been taken from Figures 13-20 and replotted in Figures
21-28. Also displayed on these figures are the values determined by a previ-
ous theory.2 In that analysis, the motion of the fluid slug was treated as a
rigid body until it collided with the endwall. A pressure wave was then gen-
erated and traveled down the fluid slug. This resulted in a single pressure
jump, to a maximum pressure which remained constant in time.

The endwall pressure, as predicted in the current analysis, is zero until
the fluid interface collides with the endwall, increasing the pressure to 2Po
as the secondary pressure wave is generated. The arrival of the primary wave
at a later time increases the pressure further to 4Po. The endwall pressure
is later relieved to vacuum as the secondary pressure returns.

Figures 21-24 show that decreasing the fill ratio increases the duration
of the peak pressure 4Po substantially, while decreasing the duration of the
2Po pressure level. In contrast to the previously proposed theory which
predicts a single jump in the endwall pressure whose magnitude is a function
of the fill ratio, the current analysis predicts, for the fill ratios of

2. J. L. Watson, B. P, Burng, and J. M. Bender, "An Analysis of a Previously
Unexplained Event (U)," U.S. Army Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland, ARBRL-MR-03227, November 1982 (CLASSIFIED).
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interest, a maximum pressure level (4Po) independent of fill ratio, but the
duration which increases with decreasing fill ratio.

Figures 25-28 demonstrate the effect on the endwall pressure of changing
the initial pressure to bulk modulus ratio. As was seen before, increasing
the bulk modulus increases the duration over which the peak pressure of 4Po
acts. Increasing the initial pressure Po will increase the peak endwall
pressure proportionately, while decreasing the duration somewhat.

PPN e '™

Interestingly, averaging the endwall pressure predicted by the current
theory over the time where the endwall pressure is 2Po to 4Po yields a value
similar to that predicted by the previous theory. This is because the rigid
body assumption of the previous theory treats the motion of the fluid slug in
. glohbal or average sense, while the current theory treats the motion more dis-
- cretely. Correspondingly, these results indicate that the more compressible

the fluid, the greater the difference in the predicted peak pressures between
the two theories.

A e

C. Dimensional Results for a Typical Case

In order to gain a better feeling for the magnitude of the physical vari-
ables of interest, endwall pressure as a function of time is presented for the
following case.

H
E
Po

.67 m
6895 Mpa
241 MPa
P 1000 kg/m3
- Fill ratio = .95

.. Since the ratio of the initial pressure to the liquid bulk modulus is .035 and
the fill ratio is .95, the results for one of the cases obtained previously
(Figure 26) may be applied. The dimensionalized result for endwall pressure
as a function of time for this case is shown in Figure 29. As before, the
pressure first jumps to twice the value (482 MPa) of the initial pressure step
before jumping to the four times (964 MPa) the initial pressure value. The
R time over which the pressures 2Po and 4Po act are .3 and .17 milliseconds,
respectively, and the entire process is completed in about 1. millisecond.

V. CONCLUSIONS

The results of this analysis provide significant insight into the physi-
cal processes which may occur in a liquid-filled shell subject to large
initial pressures, and stress the importance of modeling the compressibility
of the fluid within the shell for the current problem of interest.

LD

The motion of the fluid is driven by two pressure waves, one generated by
- the initial pressure step and another generated by the collision of the fluid
with the endwall. The highest pressure levels occur for a longer duration
near the top of the cylinder. The theory predicts that decreasing the fill
ratio will increase the duration of the peak pressure at the endwall but not

13
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the magnitude for the range of fill ratios and initial pressure to bulk
modulus ratios currently of interest. This peak pressure will be four times
the value of the initial pressure step. The analysis indicates that peak
pressures greater than four times the initial pressure step are possible for
fi1l ratios less than the values currently of interest. Increasing the magni-
tude of the initial pressure step will increase peak pressure proportionately,
but the duration over which this peak pressure acts will be decrease slightly.
Decreasing the bulk modulus of the fluid (i.e. making the fluid more compres-
sible) will cause the duration of peak pressure to increase slightly.

It is acknowledged that this analysis does not model such effects as area
change within the shell, changes in bulk modulus with pressure, and variation
in the pressure at the lower surface of the fluid with time. The modeling of
these effects is probably more suitably handled by numerical techniques. As
this analysis has demonstrated, the numerical technique chosen should model
the compressible nature of the fluid and have the capability to track moving
pressure waves.

14
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r PRESSURE STEP IS APPLIED TO FLUID.

ﬁ PRIMARY PRESSURE NAVE PROPABATES / / / //

UP THE FLUID SLUB. o

V- 0 Vo
v
7
P- 1 Po
Ve | Vo

.

Figure 3. Propagation of Initial Pressure Wave
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PRIMARY PRESSURE WAVE REACHES FLUID

INTERFACE AND RETURNS AS AN

EXPANSION NAVE.
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S

INTERFACE BEBINS TO MOVE TOWARD

N\

ENDNALL . 4

P~ 1 Po
V= | Vo

L

N

Figure 4, Reflection of Initial Pressure Wave from Liquid Interface




PRIMARY PRESSURE NAVE REACHES

PRESSURIZED SURFACE AND REFLECTS

0 Po

?V-Z Vo

AS A COMPRESSION WAVE.
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Figure 5. Reflection of Initial Pressure Wave from Pressurized Surface
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FLUID INTERFACE COLLIDES NITH ENDNALL

AND BENCRATES A SECONDARY COMPRESSION /
k -

NAVE THAT TRAVELS OONN FLUID SLue.

Figure 6. Generation of Secondary Pressure Wave by Collision of
Interface with the Endwall
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EXPANSION NAVE REACHES PRESSURIZED

/
2
SURFACE AND BEBINS MOVING TONARD / V- 0 Vo

ENOWNALL AS A COMPRESSION NAVE.

Figure 7.

Reflection of Primary Pressure Wave from Pressurized Surface
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Figure 8. First Crossing of Primary and Secondary Pressure Waves
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PRIMARY COMPRESSION WAVE RERCHES
ENDNALL AND REFLECTS AS A COMPRESSION
WAVE. MAXIMUM PRESSURE OBTRINED ON
ENDWALL. SECONDARY COMPRESSION WAVE
REACHES PRESSURIZED SURFACE AND

REFLECTS AS AN EXPANSION NAVE.

/ P- L Po
V= -1 Vo

LS

Figure 9. Reflection of Primary and Secondary Wave
from Upper and Lower Surfaces
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Figure 10. Second Crossing of Primary and Secondary Pressure Waves
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PRIMARY NAVE REACHES PRESSURIZED
SURFACE AND RETURNS AS AN EXPANSION.
HIBH PRESSURE ON ENDWALL RELIEVED.
SECONDARY EXPANSION WAVE RERCHES
ENOWALL AND REFLECTS AS AN EXPANSION

NAVE.

Figure 11. Reflection of Primary and Secondary Waves
from Lower and Upper Surfaces
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Figure 13. Pressure Time-Space Diagram, Fill Ratio =
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LIST OF SYMBOLS

c speed of sound in fluid, m/s
E bulk modulus of fluid, N/m2
L length of fluid slug, m

H length of cylinder, m

P local pressure, N/m?

PROUNDARY Pressure at liquid interface, N/m2

Po magnitude of initial pressure step, N/m2

) local velocity, m/s

Vo velocity behind initial compression wave, m/s

X nondimensional distance from bottom of cylinder, m
x' distance from bottom of cylinder, m

[ local fluid density, kg/m3
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