"PROCESSOR-SHARED TIME-SHARING MODELS IN HEAVY TRAFFIC"

by

Donald P. Gaver
Patricia A. Jacobs

March 1985

Approved for public release; distribution unlimited.

Prepared for;
Office of Naval Research
Arlington, Va 22217
Probability models are presented for computer systems with processor-shared (time sliced) service discipline. The response (sojourn) time of an arriving job that requires T units of processing time is shown to be approximately Gaussian/normal under moderately heavy traffic conditions, e.g. when the number of terminals becomes large.
1. Introduction

Processor sharing (PS) is a mathematically tractable approximation to time sharing, a procedure followed in many actual computer systems. In effect, PS assigns to each job of the i, \(i = 1, 2, \ldots \) present for processing \(1/i \)th of the total processing effort; equivalently, a single job with Markovian service rate \(\mu \) completes processing in \((t, t+dt) \) with probability \((\mu/dt + o(dt)) \). One advantage of PS is that short jobs are not trapped behind long jobs, as is possible in a FC-PS discipline.

Various mathematical results have been obtained about certain processor sharing models. An early example was the paper of Coffman et al. (1970). Recently extensive results have been obtained for Markovian systems by D. Mitra (1981), and for non-Markovian single-server Poisson arrival systems by T. Ott (1984) and V. Ramaswami (1984).

This paper is a continuation of work reported in Gaver, Jacobs, and Latouche (1984), henceforth GJL, where emphasis was placed on proposing and evaluating simple approximations to the distribution of delay experienced by a particular "tagged" job approaching a time-shared processor. In that paper it was shown that under heavy traffic conditions, or if the tagged job duration became large, then the distribution of tagged job response time (also called sojourn time by others) approaches the normal or Gaussian distribution.
We first show that the analysis of our system and the problem solution can naturally and conveniently be conducted in work time rather than in ordinary clock time. Subsequently we focus upon heavy-traffic approximations to the distribution of response time, \(R(T) \), given the actual work (computer time) requirement, \(T \). Specific models proposed and examined are (i) for a system of many identical terminals that independently submit jobs or programs according to the same Markovian process, and (ii) for a system having two terminal types, each of which submits jobs in a manner governed by its own Markov process. The methodology extends to general \(k \) terminal types as well, and to other models.

The approximation solutions are evaluated for accuracy by means of Monte Carlo simulations.
2. **The Work-Time Concept**

Imagine that a tagged job requiring T units of processing approaches the computer. Assume that it arrives when the system is in steady state. After that initial moment it undergoes processing, at various rates governed by the amount of its accompaniment, until T units of service or work are accumulated, at which point it departs after a random delay of R(T). In following the tagged job's delay, it turns out to be convenient to measure time in terms of the amount of actual work or processing that has been accomplished on the tagged job. Thus let \(\{X(w), w \geq 0\} \) denote the number of programs or jobs undergoing service at a moment when exactly \(w \) units of processing have been accomplished on the tagged job. The instantaneous rate of accrual of clock or response time at work time \(w \) is clearly \(X(w) \): if \(X(w) = 1 \) then the tagged job is alone and response (clock) time and work time advance at the same rate, while if \(X(w) = 17 \) the tagged job is accompanied by 16 others and 17 units of response time accrue for every single work time unit. It follows that

\[
R(T) = \int_{0}^{T} X(w) \, dw . \tag{2.1}
\]

For the models to be considered, the process \(X(w) \) is a birth-and-death, or simple Markov, process related to \(N(t) \), the number of jobs in the system at clock time \(t \); its transition rates, after adjusting for tagged job entry, are seen to be

\[
\lambda_i^t dt = \lambda(N-i) dt = \lambda(N-i) idw = \lambda_i^w dw
\]

\[
\mu_i^t dt = \mu dt = \mu idw = \mu_i^w dw \tag{2.2}
\]
for $1 \leq i \leq N$ where N is the total number of terminals in the system. The term idw is required to allow the work-time process to advance appropriately in clock time. Henceforth we drop the superscripts, allowing the context to imply the appropriate rate.

The approach taken here invokes the work time concept described above to facilitate calculations, first for a single terminal or job type situation, but later on for a system with more diversified traffic patterns.
3. **Heavy Traffic Analysis of a Single Terminal Type Markovian System**

Suppose that \(N \) terminals have access to a single computer. Each terminal has Markovian demand rate \(\lambda \), and expected service time \(\mu^{-1} \). Service times are assumed to be independently and exponentially distributed. The discipline at the computer is PS. It is clear that if \(N(t) \) is the number of terminals that have submitted jobs that are undergoing service at the computer at (clock) time \(t \), then \(\{N(t), t \geq 0\} \) is a Markov process in continuous time that is identical to the classical single repairman problem; see Feller (1957), p. 416. This is so, since if \(N(t) = i > 0 \), then each individual job or program receives \((dt/i) \) units of processing time in \((t, t+dt) \), and hence departs with probability \(\mu(dt/i) + o(dt) \), but the probability that some job departs is \(i\mu(dt/i) + o(dt) = \mu dt + o(dt) \). It has been shown by Iglehart (1965) and by Burman (1979) that under heavy traffic conditions \(\lim_{N \to \infty} \) one may approximate \(N(t) \) by a suitable Gaussian process, namely the Ornstein-Uhlenbeck process. This fact alone enables one to study the distribution of \(R(T) \), and to deduce approximate normality; see GJL for a first analysis.

3.1 **Diffusion Approximation in Work Time.**

Here is a diffusion process approximation for \(X(w) \). On the basis of intuition write down the stochastic differential equation for \(\tilde{X}(w) \), the approximation to \(X(w) \):

\[
\begin{align*}
\frac{d\tilde{X}(w)}{dw} &= \lambda [N-\tilde{X}(w)]\tilde{X}(w) \, dw - \mu \tilde{X}(w) \, dw \\
&+ \sqrt{\lambda [N-\tilde{X}(w)] \tilde{X}(w) + \mu X(w)} \, dB(w)
\end{align*}
\]

(3.1)
where \([B(w), w \geq 0]\) is standard Brownian motion. The first right-hand-side term represents infinitesimal drift of \(\tilde{X}(w)\), while the second is the diffusion or infinitesimal variance term, the form of which is obtained from the observation that arrival and departure processes compete like independent Poisson processes in short time periods. Now suppose that, as \(N \to \infty\),

\[
\tilde{X}(w) = Nm(w) + \sqrt{N} Z(w)
\]

where \(m(w)\) is a deterministic function of time, and \(\{Z(w), w \geq 0\}\) is a stochastic process, the properties of which must be discovered. Substitute (3.2) into (3.1) to obtain

\[
Nd\dot{m}(w) + \sqrt{N}dZ(w) = \lambda [N-Nm(w)-\sqrt{N}Z(w)] (Nm(w)+\sqrt{N}Z(w)) dw
\]

\[- \mu [Nm(w)+\sqrt{N}Z(w)] dw
\]

\[+ \sqrt{\lambda \lambda} [N-Nm(w)-\sqrt{N}Z(w)] (Nm(w)+\sqrt{N}Z(w)] + \mu [Nm(w)+\sqrt{N}Z(w)] dB(w) .
\]

Next isolate terms of order \(N\) and \(\sqrt{N}\); the result is, after stipulating that \(\lambda' = \lambda N\), a constant as \(N \to \infty\),

\[
O(N): \quad \frac{d m(w)}{dw} = \lambda' [1-m(w)] m(w) - \mu m(w) ,
\]

\[
O(\sqrt{N}): \quad dZ(w) = \{\lambda' [1-2m(w)]-\mu\} Z(w) dw
\]

\[+ \sqrt{\lambda' [1-m(w)] m(w)+\mu m(w)} dB(w) ;
\]

the stochastic differential equation (3.5) is of Ornstein-Uhlenbeck (O-U) form; see Arnold (1974).
Next obtain the approximate long-run mean as the solution of (3.4) with \(\frac{dm}{dw} = 0 \), examining only the heavy-traffic situation in which \(\lambda' > \mu \):

\[
m(\infty) = 1 - \frac{\mu}{\lambda'}, \quad \lambda' > \mu
\]

\[
\equiv 1 - \frac{\mu}{\lambda N}
\]

If the above solution is used to define the stochastic differential equation parameters there results

\[
dZ(w) = (-\lambda' + \mu) Z(w) \, dw + \sqrt{2\mu(1-(\mu/\lambda'))} \, dB(w), \tag{3.7}
\]

which suggests that \(\{Z(w)\} \) can be considered an O-U process with constant coefficients; namely

\[
dZ(w) = -\rho Z(w) \, dw + \sigma dB(w), \tag{3.8}
\]

the solution to which is

\[
Z(w) = Z(0) e^{-\rho w} + \sigma \int_{0}^{w} e^{-\rho u} dB(u). \tag{3.9}
\]

The parameters \(\rho = (\lambda' - \mu) \) and \(\sigma^2 = 2\mu(1-\mu/\lambda'). \)

3.2 Response Time Evaluation

Let

\[
\tilde{R}(T) = \int_{0}^{T} \tilde{X}(w) \, dw \approx \int_{0}^{T} [Nm(w) + \sqrt{N}Z(w)] \, dw \tag{3.10}
\]
approximate the response time; in this approximation $\tilde{R}(T)$ is normally distributed (Gaussian). First,

$$E[R(T)] \approx E[\tilde{R}(T)] = N \int_0^T m(w) \, dw = N(1 - \frac{\mu}{\lambda}) T$$ \hspace{1cm} (3.11)

Second,

$$\text{Var}[R(T)] \approx \text{Var}[\tilde{R}(T)] = \text{var} \left[\sqrt{N} \int_0^T Z(w) \, dw \right]$$ \hspace{1cm} (3.12)

$$= N \left[E \left[\int_0^T Z(w) \, dw \int_0^T Z(u) \, du \right] - (E \left[\int_0^T Z(w) \, dw \right])^2 \right]$$

for ease of writing we have left the initial condition $Z(0)$ implicit. In order to evaluate the above, recall that the tagged job approaches the server when the latter is in equilibrium, i.e., at $t = \infty$. It may be shown that the diffusion approximation for $N(t)$, the number undergoing service at clock time t, is

$$\tilde{N}(t) = Na(t) + \sqrt{N} Y(t)$$ \hspace{1cm} (3.13)

where $a(t)$ is a deterministic function of time and $\{Y(t)\}$ is a particular Ornstein-Uhlenbeck process. A similar analysis to that leading to (3.6) and (3.7) yields

$$a(\infty) = 1 - \frac{\mu}{N\lambda}, \quad N\lambda > \mu,$$ \hspace{1cm} (3.14)

$$= 1 - \frac{\mu}{\lambda}$$

and
and $\mu = 100$, it follows from (3.6) that approximately

$$(10)\left(1 - \frac{100}{250}\right) = 6$$

jobs are being processed along with the
tagged job; thus the traffic is moderate in this case. When

$N = 10$, $\lambda = 15$, $\mu = 100$, then on the average 3.3 are being
processed with the tagged job; a rather light traffic case. When

$N = 25$, $\lambda = 10$, $\mu = 100$, then on the average 15 jobs are being
processed; again a moderate traffic case. The HT mean is
lower than the simulated mean for $N = 10$. For $N = 25$ it
agrees with the simulated mean. As mentioned before, the CLT mean
equals the true mean. The CLT standard deviation approaches
the simulation value as T becomes large, as anticipated. Also
as anticipated, the HT standard deviation is closer to the
simulated one for the moderate traffic cases than for the
light traffic case. In order to assess the degree of normality
of the distribution of $R(T)$, the α-quantiles for each approxi-
mating normal distribution were computed. The relative
frequency of being less than or equal to each α-quantile was
computed using the simulated data. The results appear in
Tables 4-6. For $N = 25$, $\lambda = 10$, $\mu = 100$, the HT approximation
appears to describe the data well for all values of T. For

$N = 10$, the HT approximation does better than the CLT for the
moderate traffic case of $\lambda = 25$. For the light traffic case,

$N = 10$, $\lambda = 15$, both approximations do poorly for small $T = 0.01$,
the mean work request time. The CLT does well for
large $T = 0.10$, which is 10 times the average service time.

Note, however, that all simulations have been carried out
for modest system sizes, N. If N grows to say 50, or 100, the HT
approximations can be expected to improve correspondingly;
they are often not bad even at the level of $N = 25$.
compute than those for the CLT. It is anticipated that the HT approximation should be increasingly accurate as N becomes large when heavy traffic conditions prevail, i.e. $\frac{\lambda}{AN} < 1$. It is inapplicable under other circumstances. We have conducted simulations to assess these anticipations. All simulations were carried out on an IBM 3033 computer at the Naval Postgraduate School using the LLRANDOMII random number generating package (see Lewis and Uribe (1981)).

Conditional response times given the number of jobs being processed at the time of arrival of the tagged job were simulated; the tagged job required T time units of processing. For each initial condition, 500 replications were done. Sample moments and relative frequencies were computed for each initial condition giving conditional response time sample moments, and selected response time relative frequencies, i.e., estimated probabilities of response times in selected ranges. Unconditional sample moments and relative frequencies were then computed by multiplying each conditional moment or relative frequency by the appropriate stationary probability of there being j jobs present at the time of arrival of the tagged job and then summing over all possible j. The stationary probability is of the form $k\lambda \pi(j)$ where k is chosen so that the probabilities sum to 1 (cf. Kelly (1979)). A detailed description of the simulation program can be found in Pornsuriya [1984].

Simulated and approximating means and standard deviations for various values of N, λ, and μ appear in Tables 1-3. Some discussion of specific cases now follows. When $N = 10$, $\lambda = 25$
\[m(c) = 1 + \sum \pi(j)j \]

where \(\pi \) is the stationary distribution of \(\{X(w); w \geq 0\} \) and a formula for evaluating \(\sigma(c) \) is given in Keilson (1979). The CLT normal approximation states that \(R(T) \) has a normal distribution with mean \(m(c)T \) and variance \(\sigma(c)^2T \). The CLT mean is the true mean for \(R(T) \) under steady state (cf. GJL).

The CLT normal approximation should be increasingly accurate as \(T \) becomes large, despite values of other system parameters, including the number of terminals.

The derivation of the heavy traffic (or diffusion) approximation is detailed in Section 3. In summary, the HT approximation is that \(R(T) \) has a normal distribution with mean

\[N(1 - \frac{\mu}{\lambda N})T, \quad \frac{\mu}{\lambda N} < 1 \]

and variance

\[NT \frac{\sigma^2}{\rho^2} \left[1 - \frac{1}{\rho T}(1 - e^{-\rho T}) \right] , \]

where

\[\sigma^2 = 2\mu(1 - \frac{\mu}{N\lambda}) \]

and

\[\rho = N\lambda + \mu . \]

The mean and variance of the HT approximation are easier to
5. Simulation Studies of the Accuracy of the Normal Approximations to the Distribution of Response Time

In this section we use simulation to study the numerical accuracy of normal approximations to the distribution of the response time. Two continuous time Markov chain models were simulated. In one there is a single terminal type; in the second, a two-terminal type system is examined. Two normal approximations were evaluated: one results from a central limit theorem, and the other results from applying the previously derived diffusion approximation to the Markov processes.

5.1 A Single Terminal Type Markovian System.

Let $X(w)$ denote the number of other jobs undergoing service at a moment when exactly w units of processing has been accomplished on the tagged job for the single terminal type Markovian model of Section 3. Since $\{X(w); w > 0\}$ is a Markov process and

$$ R(T) = \int_0^T (X(w) + 1) \, dw, $$

it follows that there are constants $m(c)$ and $\sigma(c)$ such that

$$ \frac{R(T) - m(c)T}{\sigma(c) \sqrt{T}} $$

converges in distribution to a standard normal distribution as $T \to \infty$ (cf. Keilson (1979), p. 121). Call this a central limit theorem (CLT) for such a process. In this case
to the former drift matrix A of (4.21), and consider the system

$$dZ^*(w) = A^*Z^*(w)dw + a^*dB^* \quad (4.23)$$

the solution to which can be formally written out in terms of the appropriate fundamental matrix, and computed in terms of eigenvalues and eigenvectors of the matrix A^*. See e.g. Arnold (1974), Chapter 8 and Coddington and Levinson (1955) for details.

A convenient way of formalizing the calculations is actually by using Laplace transforms. Unfortunately, no truly simple formulas result. Finally, the covariance matrix $C(w)$ of the components of $Z^*(w)$ satisfies the matrix differential equation

$$\frac{dC(w)}{dw} = (A^*)C(w) + C(w)(A^*)' + (a)(a)'$$

where ' denotes transpose; the initial conditions are provided by the long-run distribution in clock time, or in view of (4.18), of the work time process $\{Z\}$ itself. It is the $K+1^{st}$ diagonal element of $C(w)$, evaluated at $w = T$ and multiplied by N that provides the required approximate $\text{Var}[R(T)]$.

18
\[R(T) = \int_0^T \sum_{i=1}^{K} [X_i(w)dw] = \sum_{i=1}^{K} \int_0^T X_i(w)dw \quad (4.19) \]

\[= N \sum_{i=1}^{K} \gamma_i \int_0^T m_i(w)dw + \sqrt{N} \sum_{i=1}^{K} \sqrt{\lambda_i} \int_0^T Z_i(w)dw \]

where it is understood that the initial condition for the
\[Z_i(w) \] integrand in (4.19) is given by the approximate stationary
distribution from the clock time process. In view of (4.18),
this is equivalent to removing the initial condition by the
long-run distribution of the work time process itself.

Since the long-run situation is being discussed it is first
necessary to solve the steady-state version of (4.5)

\[0 = \lambda_i^1 \left(1 - m_i \right) \sum_{k=1}^{K} \gamma_km_k - \mu_im_i, \quad i = 1, 2, \ldots, K. \quad (4.20) \]

Then the solution provides parameters for the long-run version
of (4.6); here written in matrix form

\[dZ(w) = AZ(w)dw + \sigma dB \quad (4.21) \]

Now to find the variance of \(R(T) \), append the row

\[dZ_{k+1}(w) = \sum_{i=1}^{K} \sqrt{\lambda_i} Z_i(w)dw \quad (4.22) \]
\[
dY_i(t) = \lambda_i \left(-Y_i(t) S + \sqrt{Z_i} (1-a_i) \sum_{k=1}^{K} \sqrt{Z_k} Y_k(t) \right) \frac{dt}{S} - \mu_i Y_i(t) \frac{dt}{S} \\
+ \sqrt{2\lambda_i (1-a_i) S} \frac{1}{\sqrt{S}} dB_i(t),
\]

(4.17)

and a direct comparison with the corresponding equation in work time, (4.6), shows that the long-run behaviors of the two processes \{Z_i(w)\} and \{Y_i(t)\} are identical except for a constant time-scale change: for large \(w\) and \(t\),

\[
\{Z_i(w)\} \quad \text{and} \quad \{Y_i(t^{\frac{1}{NS}})\}
\]

(4.18)

have the same probability law; i.e., finite-dimensional distributions and limiting distribution.

4.3 Response Time

We discuss the response time under these conditions: a tagged job approaches the processor when the latter has been operating for some time, so the long-run clock time distribution prevails; after arrival, the job remains present until the total work time accumulated on the job is \(T\), the requested service time, giving
These equations closely resemble those describing the work time approximation; again the semigroup approach is applicable.

If a long-run solution to the $O(N)$ term exists in work time, and consequently $\frac{dm_i}{dw} = 0$ as $w \to \infty$, the result is the system of equations for $m_i(\infty) = m_i$:

$$\rho_i(1-m_i) \sum_{k=1}^{K} \lambda_k m_k - m_i = 0 ,$$

(4.13)

where $\rho_i = \lambda_i' / \mu_i = N \lambda_i / \mu_i$. Now these same equations are satisfied by a presumed long-run solution in clock time, i.e., if $\frac{da_i}{dt} = 0$ in (4.11); for $a_i(\infty) = a_i$:

$$\rho_i(1-a_i) - a_i / \sum_{k=1}^{K} \lambda_k a_k = 0 .$$

(4.14)

Consequently the long-run solutions in work and clock time agree at the $O(N)$ term level; this means that the long-run mean number present in both clock and work time agree:

$$E[N_i(t)] \sim Na_i(\infty) = Nm_i(\infty) \sim E[X_i(t)] .$$

(4.15)

Next substitute these long-run results in the s.d.e. to see that as $t,w \to \infty$, Y_i and Z_i are essentially the same process.

Put $S = \sum_{k=1}^{K} \lambda_k a_k$ to simplify writing. Then

$$dY_i(t) = -\lambda_i Y_i(t) dt - \mu_i Y_i(t) dt + \lambda_i (1-a_i) \sqrt{\frac{\sqrt{\sum_{k=1}^{K} \lambda_k Y_k(t)}}{S}} dt$$

$$+ \sqrt{2\lambda_i (1-a_i)} dB_i ,$$

(4.16)
Now invoke the HTN:

\[N_i(t) = N_i a_i(t) + \sqrt{N_i} Y_i(t), \quad (4.8) \]

and again \(N = \sum_{k=1}^{K} N_k \to \infty \), with

\[N_i/N = \ell_i, \quad 0 < \ell_i < 1, \quad (4.9) \]

but

\[\mu_i/N = \mu_i', \quad 0 < \mu_i' < \infty, \quad \lambda_i > \mu_i'. \quad (4.10) \]

The result of isolating terms is

\[\frac{d a_i(t)}{dt} = \lambda_i (1 - a_i(t)) - \mu_i \frac{a_i(t)}{\sum_{k=1}^{K} \ell_k a_k(t)} \quad (4.11) \]

\[\frac{d Y_i(t)}{dt} = -\lambda_i Y_i(t) dt - \mu_i' \left[\frac{Y_i(t)}{\sum_{k=1}^{K} \ell_k a_k(t)} \right. \]

\[+ \sqrt{\frac{\sum_{k=1}^{K} \ell_k a_k(t)}{\sum_{k=1}^{K} \ell_k a_k(t)^2}} \right] dt \]

\[+ \sqrt{\lambda_i (1 - a_i(t)) + \mu_i' \frac{a_i(t)}{\sum_{k=1}^{K} \ell_k a_k(t)}} dB_i(t). \quad (4.12) \]
\[\frac{dM_i(w)}{dw} = \lambda^i_i (1-m_i(w)) \sum_{k=1}^{K} \frac{1}{K} m_k(w) - \mu_i m_i(w) \quad (4.5) \]

\[O(\sqrt{N}): \quad dZ_i(w) = \lambda^i_i \left\{ -\frac{1}{\sqrt{N}} \sum_{k=1}^{K} \frac{1}{K} m_k(w) \right\} Z_i(w) + \sqrt{2} \left(\frac{1-2m_i(w)}{2} \right) \sum_{k=1}^{K} \frac{1}{K} Z_k(w) \, dw
- \mu_i Z_i(w) \, dw \quad (4.6) \]

\[+ \sqrt{\lambda^i_i (1-m_i(w))} \sum_{k=1}^{K} \frac{1}{K} m_k(w) + \mu_i m_i(w) \, dB_i(w) \]

for \(i = 1, 2, \ldots, K \). Thus \((m_i(w); w \geq 0; i = 1, 2, \ldots, K) \) must be found by solving a system of ordinary first-order, but non-linear differential equations, while (4.6) shows that \(\{Z_i(w); w \geq 0, i = 1, 2, \ldots, K\} \) is a multivariate Ornstein-Uhlenbeck process.

4.2 A Diffusion Model for the Clock Time Process.

In order to provide the initial conditions encountered by the tagged job, it is necessary to study the clock-time process \(N_i(t) \); see (3.13). The corresponding approximation has s.d.e.

\[d\tilde{N}_i(t) = \lambda_i (\tilde{N}_i(t) - \tilde{N}_i(t)) \, dt - \mu_i \frac{\tilde{N}_i(t)}{\sum_{k=1}^{K} \tilde{N}_k(t)} \, dt \]

\[+ \sqrt{\lambda_i (\tilde{N}_i(t)) + \mu_i \sum_{k=1}^{K} \tilde{N}_k(t)} \, dB_i(t) \quad i = 1, 2, \ldots, K. \quad (4.7) \]
or Wiener processes. The work time process is a transformation of the clock time process; in particular, the drift of the \(i \)th component of the clock time process \(\{N_i(t)\} \) is seen to be

\[
\dot{\lambda}_i(N_i - N_i(t))dt - \mu_i \frac{N_i(t)dt}{\sum_{k=1}^K N_k(t)},
\]

where \(\lambda_i = \lambda_i(w) = \rho_i m_i(w) + \sqrt{\rho_i} z_i(w) \), \(i = 1,2,\ldots,K \); (4.2)

which exhibits the processor-sharing effect in the term multiplying \(\mu_i \). Multiplication by the total in service, \(\sum N_i(t) \), converts to the work time transition rates, in analogy with (2.2).

Now once again approximate by writing

\[
\tilde{X}_i(w) = N_i m_i(w) + \sqrt{\rho_i} z_i(w), \quad i = 1,2,\ldots,K;
\]

\(m_i(w) \) and \(\{z_i(w)\} \) are to be determined, subject to the normalization \(N = \sum_{k=1}^K N_k \rightarrow \infty \) but with

\[
N_i/N = \ell_i, \quad 0 \leq \ell_i \leq 1,
\]

and

\[
N \lambda_i = \lambda_i^*, \quad 0 \leq \lambda_i^* < \infty, \quad \lambda_i^* > \mu_i.
\]

Conditions (4.3) and (4.4) are referred to as the heavy traffic normalization (HTN). The result of isolating terms according to order in (4.1) is:

Consider the following natural extension of the previous model. The processor is jointly utilized by K sets of terminals, each generating distinctive job types. There are N_i terminals in the ith set, and arrival rate and service rate are λ_i and μ_i respectively. Again the discipline at the computer is PS. Of course this is not the same as a situation in which all terminals are the same, but Type j jobs occur with probability p_j from each terminal. The latter model can, however, be studied in an analogous heavy-traffic manner, as can other interesting models.

4.1 A Diffusion Model for the Work-Time Process.

Let \{X_i(w), i = 1, \ldots, K\} represent the number of jobs of all types present at the computer at work time w. The present model implies that \{X_i(w)\} is a multivariate or vector-state birth and death Markov process. We choose to study a diffusion approximation \{\tilde{X}_i(w)\} to \{X_i(w)\} that is described by the following system of s.d.e.:

$$
\frac{d\tilde{X}_i(w)}{dw} = \lambda_i(N_i-\tilde{X}_i(w)) \left(\sum_{k=1}^{K} \tilde{X}_k(w) \right) dw - \mu_i \tilde{X}_i(w) dw
$$

$$
+ \sqrt{\lambda_i(N_i-\tilde{X}_i(w)) \left(\sum_{k=1}^{K} \tilde{X}_k(w) + \mu_i \tilde{X}_i(w) \right)} dB_i(w) \tag{4.1}
$$

where \{B_i(w)\} are mutually independent standard Brownian motion
\[I(T) = 2E \left[\int_0^T (Z(0)^2 e^{-2\rho w} + \frac{\sigma^2}{2\rho} (1-e^{-2\rho w} \rho) \frac{1}{\rho} (1-e^{-\rho (T-w)}) \right] \, dw \]

\[= \frac{2}{\rho} E[Z(0)^2] \int_0^T e^{-2\rho w} (1-e^{-\rho (T-w)}) \, dw \]

\[+ \frac{\sigma^2}{\rho^2} \int_0^T (1-e^{-2\rho w}) (1-e^{-\rho (T-w)}) \, dw. \]

Now put \(E[Z(0)^2] = E[Y(\infty)^2] = \mu/\lambda = \sigma^2/2\rho \) to see that

\[I(T) = \frac{\sigma^2}{\rho^2} \int_0^T (1-e^{-\rho (T-w)}) \, dw = \frac{\sigma^2}{\rho^2} \left[T - \frac{1}{\rho} (1-e^{-\rho T}) \right] \]

\[= \frac{\sigma^2 T}{\rho^2} [1 - \frac{1}{\rho T} (1-e^{-\rho T})]. \]

Thus it follows that

\[\text{Var}[R(T)] \approx \text{Var}[\tilde{R}(t)] = NT \frac{\sigma^2}{\rho^2} \left[1 - \frac{1}{\rho T} (1-e^{-\rho T}) \right]. \quad (3.14) \]

To terms of order \(T \) this agrees with (4.10) of GJL; not surprisingly, the additional factor in (3.14) can actually provide numerical results superior to those of GJL.

The form of the heavy traffic approximation, namely the limiting normal form with parameters (3.11) and (3.14), can be more rigorously validated by use of the theory of convergence of suitably normalized sequences of semigroups of transformations; see Burman (1979). Details appear in an appendix to this paper.
see GJL for a derivation; (3.13) provides the initial condition for evaluating moments of \(R(T) \), using (3.10). Identify \(Z(0) \), the initial value of the work time noise process \(Z(w) \), with \(Y(\infty) \). According to (3.9), this implies that \(E[\int_0^T Z(w)dw] = 0 \). In order to compute the \(\text{Var}[R(T)] \) it is next necessary to evaluate the following integral:

\[
I(T) = E\left[\int_0^T Z(w)dw \int_0^T Z(u)du \right]
\]

\[
= E\left[\int_0^T Z(w)dw \int_0^T E[Z(u)|Z(w)] du \right]
\]

\[
= 2E\left[\int_0^T Z(w)dw \int_0^T Z(w) e^{-\rho(u-w)} du \right]
\]
(3.16)

\[
= 2E\left[\int_0^T Z(w)dw Z(0) \frac{1}{\rho}(1 - e^{-\rho(T-w)}) \right]
\]

\[
= 2E\left[\int_0^T E[Z(w)^2|Z(0)] \frac{1}{\rho}(1 - e^{-\rho(T-w)})dw \right].
\]

Square (3.9) and take the expectation to see that, conditionally on \(Z(0) \),

\[
E[Y(\infty)] = 0, \quad \text{Var}[Y(\infty)] = \frac{\mu}{\lambda} \equiv \frac{\mu}{\lambda}\; ; \quad (3.15)
\]
TABLE 1
Simulated Mean and Standard Deviation for R(T)
and Their Approximating Values

\(N = 10, \ \lambda = 15, \ \mu = 100 \)

<table>
<thead>
<tr>
<th>TIME T (T)</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 Simulation</td>
<td>0.0404</td>
<td>0.0172</td>
</tr>
<tr>
<td>CLT</td>
<td>0.0404</td>
<td>0.0323</td>
</tr>
<tr>
<td>HT</td>
<td>0.0333</td>
<td>0.0238</td>
</tr>
<tr>
<td>0.025 Simulation</td>
<td>0.1005</td>
<td>0.0375</td>
</tr>
<tr>
<td>CLT</td>
<td>0.1010</td>
<td>0.0510</td>
</tr>
<tr>
<td>HT</td>
<td>0.0833</td>
<td>0.0535</td>
</tr>
<tr>
<td>0.05 Simulation</td>
<td>0.2016</td>
<td>0.0622</td>
</tr>
<tr>
<td>CLT</td>
<td>0.2019</td>
<td>0.0722</td>
</tr>
<tr>
<td>HT</td>
<td>0.1667</td>
<td>0.0919</td>
</tr>
<tr>
<td>0.10 Simulation</td>
<td>0.4029</td>
<td>0.0940</td>
</tr>
<tr>
<td>CLT</td>
<td>0.4039</td>
<td>0.1020</td>
</tr>
<tr>
<td>HT</td>
<td>0.3333</td>
<td>0.1462</td>
</tr>
</tbody>
</table>

* The standard error of the estimate of the mean
TABLE 2

Simulated Mean and Standard Deviation for R(T) and Their Approximating Values

\[N = 10, \lambda = 25, \mu = 100 \]

<table>
<thead>
<tr>
<th>TIME T</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>Simulation</td>
<td>.0606</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>.0605</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.0600</td>
</tr>
<tr>
<td>0.025</td>
<td>Simulation</td>
<td>.1507</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>.1513</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.1500</td>
</tr>
<tr>
<td>0.05</td>
<td>Simulation</td>
<td>.3021</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>.3027</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.3000</td>
</tr>
<tr>
<td>0.10</td>
<td>Simulation</td>
<td>.6036</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>.6053</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.6000</td>
</tr>
</tbody>
</table>

*Standard Error for the Estimate of the mean
TABLE 3
Simulated Mean and Standard Deviation for R(T)
and Their Approximating Values

N = 25, λ = 10, μ = 100

<table>
<thead>
<tr>
<th>TIME T</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>Simulation</td>
<td>0.1498</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.1500</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.1500</td>
</tr>
<tr>
<td>0.025</td>
<td>Simulation</td>
<td>0.3759</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.3750</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.3750</td>
</tr>
<tr>
<td>0.05</td>
<td>Simulation</td>
<td>0.7506</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.7500</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.7500</td>
</tr>
<tr>
<td>0.0625</td>
<td>Simulation</td>
<td>0.9381</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.9375</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.9375</td>
</tr>
</tbody>
</table>

*The standard error of the estimate of the mean
TABLE 4

Simulated Probability (Relative Frequency) that the Response Time is Less than or Equal to the Approximating α-Quantile

$N = 10, \lambda = 15, \mu = 100$

<table>
<thead>
<tr>
<th>TIME</th>
<th>α:</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
<th>.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>CLT</td>
<td>0.00</td>
<td>.12</td>
<td>.50</td>
<td>.89</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.00</td>
<td>.10</td>
<td>.36</td>
<td>.68</td>
<td>.91</td>
<td>.97</td>
<td>1.0</td>
</tr>
<tr>
<td>0.025</td>
<td>CLT</td>
<td>0.04</td>
<td>.21</td>
<td>.49</td>
<td>.81</td>
<td>.97</td>
<td>.99</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.00</td>
<td>.09</td>
<td>.33</td>
<td>.67</td>
<td>.91</td>
<td>.98</td>
<td>1.0</td>
</tr>
<tr>
<td>0.05</td>
<td>CLT</td>
<td>0.08</td>
<td>.23</td>
<td>.49</td>
<td>.77</td>
<td>.94</td>
<td>.98</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.0</td>
<td>.07</td>
<td>.30</td>
<td>.65</td>
<td>.92</td>
<td>.97</td>
<td>1.0</td>
</tr>
<tr>
<td>0.10</td>
<td>CLT</td>
<td>0.10</td>
<td>.24</td>
<td>.48</td>
<td>.76</td>
<td>.92</td>
<td>.97</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.00</td>
<td>.04</td>
<td>.24</td>
<td>.60</td>
<td>.89</td>
<td>.97</td>
<td>1.0</td>
</tr>
</tbody>
</table>
TABLE 5

Simulated Probability (Relative Frequency) that the Response Time is Less than or Equal to the Approximating α-Quantile

\[N = 10, \ \lambda = 25, \ \mu = 100 \]

<table>
<thead>
<tr>
<th>TIME</th>
<th>α:</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
<th>.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>CLT</td>
<td>.04</td>
<td>.15</td>
<td>.45</td>
<td>.85</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.11</td>
<td>.22</td>
<td>.43</td>
<td>.72</td>
<td>.91</td>
<td>.98</td>
<td>1.0</td>
</tr>
<tr>
<td>0.025</td>
<td>CLT</td>
<td>.08</td>
<td>.19</td>
<td>.45</td>
<td>.80</td>
<td>.98</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.10</td>
<td>.22</td>
<td>.44</td>
<td>.73</td>
<td>.92</td>
<td>.98</td>
<td>1.0</td>
</tr>
<tr>
<td>0.05</td>
<td>CLT</td>
<td>.09</td>
<td>.22</td>
<td>.45</td>
<td>.77</td>
<td>.95</td>
<td>.99</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.11</td>
<td>.22</td>
<td>.44</td>
<td>.71</td>
<td>.91</td>
<td>.97</td>
<td>1.0</td>
</tr>
<tr>
<td>0.10</td>
<td>CLT</td>
<td>.10</td>
<td>.24</td>
<td>.47</td>
<td>.76</td>
<td>.93</td>
<td>.98</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.11</td>
<td>.23</td>
<td>.45</td>
<td>.70</td>
<td>.89</td>
<td>.95</td>
<td>1.0</td>
</tr>
</tbody>
</table>

27
TABLE 6

Simulated Probability (Relative Frequency) that the Response Time is Less than or Equal to the Approximating α-Quantile

$N = 25, \lambda = 10, \mu = 100$

<table>
<thead>
<tr>
<th>TIME</th>
<th>α:</th>
<th>.10</th>
<th>.25</th>
<th>.50</th>
<th>.75</th>
<th>.90</th>
<th>.95</th>
<th>.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>CLT</td>
<td>.03</td>
<td>.15</td>
<td>.46</td>
<td>.86</td>
<td>.99</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.11</td>
<td>.23</td>
<td>.46</td>
<td>.73</td>
<td>.91</td>
<td>.97</td>
<td>1.0</td>
</tr>
<tr>
<td>0.025</td>
<td>CLT</td>
<td>.07</td>
<td>.19</td>
<td>.46</td>
<td>.80</td>
<td>.96</td>
<td>.99</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.11</td>
<td>.23</td>
<td>.46</td>
<td>.73</td>
<td>.91</td>
<td>.97</td>
<td>1.0</td>
</tr>
<tr>
<td>0.05</td>
<td>CLT</td>
<td>.09</td>
<td>.21</td>
<td>.46</td>
<td>.78</td>
<td>.94</td>
<td>.98</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.11</td>
<td>.24</td>
<td>.46</td>
<td>.73</td>
<td>.91</td>
<td>.96</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0625</td>
<td>CLT</td>
<td>.09</td>
<td>.22</td>
<td>.47</td>
<td>.77</td>
<td>.93</td>
<td>.98</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>.11</td>
<td>.24</td>
<td>.47</td>
<td>.73</td>
<td>.90</td>
<td>.96</td>
<td>1.0</td>
</tr>
</tbody>
</table>
5.2 Simulation Results for Markovian Model with Two-Terminal Types.

In this subsection we describe the results of a simulation of the general K-type Markovian model of Section 4, in the case of $K = 2$ sets of terminals. As in Section 4 let $X_i(w)$ represent the number of other jobs of type i being processed when the tagged job has acquired exactly w units of processing. As before the response time for the tagged job requiring T units of work is

$$R(T) = \int_0^T [X_1(w) + X_2(w) + 1] \, dw.$$

The process $\{(X_1(w), X_2(w); w \geq 0)\}$ is Markovian. Hence again $R(T)$ satisfies a central limit theorem as $T \to \infty$. The normal approximation for the distribution of $R(T)$ resulting from the central limit theorem will again be referred to as CLT.

The mean term $(m_1 + m_2)T$ for the heavy traffic approximation was computed by solving the system of equations (4.20) for m_1 and m_2. The variance term for the approximation was computed by solving the system of stochastic differential equations (4.23) as detailed in Arnold [Corollary (8.2.4)]. The fundamental matrix (Arnold [p. 129]) was found by computing Laplace transforms of the system of defining differential equations and then inverting the solution. The approximating variance term was found by computing the variance of the solution of the s.d.e. As in the case of one-terminal type, it is a
linear combination of exponentials and constant terms. Its exact form is uninformative and will not be given here.

Conditional response times, given the number of jobs of each type being processed at the time of arrival of the tagged job, were simulated. The tagged job was always taken to be a Type 1 job. For each initial condition, 300 applications were carried out. Sample moments and probabilities (relative frequencies) were computed for each initial condition giving conditional sample moments and probabilities (relative frequencies). Unconditional sample moments and probabilities were computed in a similar manner to that in the one-terminal type simulation; see Pornsuriya [1984].

Values of the simulated means and standard deviations and their approximating values for R(T) for various cases in which \(N_1 = 5 \) and \(N_2 = 5 \) appear in Tables 7-10. Once again the CLT mean is the true steady state mean for R(T). The means and standard deviations of R(T) for each \(T \) differ surprisingly little for the four cases. This suggests that perhaps the two-type terminal model can often be satisfactorily approximated by a one-type model in which the arrival rate and service rates are the average arrival and service rates in the two-type model. Values of the simulated means and standard deviations and their approximating values for the approximate one-type model with \(N = 10, \lambda = 25 \) and \(\mu = 75 \) appear in Table 11. The values for the approximate one-type model are acceptably close to those for the two-type model. Note that the quality
of the HT approximation is generally quite good, even though the system sizes N_1 and N_2 can hardly be called "large."
TABLE 7

Simulated Means and Standard Deviations for $R(T)$ and Their Approximating Values

$N_1 = 5, N_2 = 5, \lambda_1 = 20, \lambda_2 = 30, \mu_1 = 50, \mu_2 = 100$

<table>
<thead>
<tr>
<th>TIME T</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>Simulation</td>
<td>0.0713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0001)*</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.0707</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.0710</td>
</tr>
<tr>
<td>0.025</td>
<td>Simulation</td>
<td>0.1783</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0003)</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.1766</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.1775</td>
</tr>
<tr>
<td>0.0375</td>
<td>Simulation</td>
<td>0.2664</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0005)</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.2650</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.2663</td>
</tr>
<tr>
<td>0.050</td>
<td>Simulation</td>
<td>0.3570</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0005)</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.3533</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.3550</td>
</tr>
<tr>
<td>0.0625</td>
<td>Simulation</td>
<td>0.4439</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0006)</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.4416</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.4438</td>
</tr>
</tbody>
</table>

*Standard error of the estimate of the mean
TABLE 8
Simulated Means and Standard Deviations for R(T)
and Their Approximating Values

\(N_1 = 5, N_2 = 5, \lambda_1 = 30, \lambda_2 = 20, \mu_1 = 100, \mu_2 = 50\)

<table>
<thead>
<tr>
<th>TIME T</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>Simulation</td>
<td>0.0710</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.0716</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.0710</td>
</tr>
<tr>
<td>0.025</td>
<td>Simulation</td>
<td>0.1777</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.1789</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.1775</td>
</tr>
<tr>
<td>0.0375</td>
<td>Simulation</td>
<td>0.2672</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.2684</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.2663</td>
</tr>
<tr>
<td>0.050</td>
<td>Simulation</td>
<td>0.3567</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.3578</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.3550</td>
</tr>
<tr>
<td>0.0625</td>
<td>Simulation</td>
<td>0.4461</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.4473</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.4438</td>
</tr>
</tbody>
</table>

*Standard error of the estimate of the mean
TABLE 9
Simulated Means and Standard Deviations for $R(T)$ and Their Approximating Values

$N_1 = 5, N_2 = 5, \lambda_1 = 10, \lambda_2 = 40, \mu_1 = 25, \mu_2 = 125$

<table>
<thead>
<tr>
<th>TIME T</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>Simulation</td>
<td>0.0717</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.0717</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.0720</td>
</tr>
<tr>
<td>0.025</td>
<td>Simulation</td>
<td>0.1788</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.1793</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.1799</td>
</tr>
<tr>
<td>0.0375</td>
<td>Simulation</td>
<td>0.2690</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.2684</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.2699</td>
</tr>
<tr>
<td>0.0500</td>
<td>Simulation</td>
<td>0.3588</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.3585</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.3599</td>
</tr>
<tr>
<td>0.0625</td>
<td>Simulation</td>
<td>0.4481</td>
</tr>
<tr>
<td></td>
<td>CLT</td>
<td>0.4481</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.4498</td>
</tr>
</tbody>
</table>

* Standard error of the estimate of the mean
TABLE 10

Simulated Means and Standard Deviations for $R(T)$
and Their Approximating Values

$N_1 = 5, N_2 = 5, \lambda_1 = 40, \lambda_2 = 10, \mu_1 = 125, \mu_2 = 25$

<table>
<thead>
<tr>
<th>TIME T</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>Simulation 0.0725 (0.0001)*</td>
<td>0.0138</td>
</tr>
<tr>
<td></td>
<td>CLT 0.0724</td>
<td>0.0249</td>
</tr>
<tr>
<td></td>
<td>HT 0.0720</td>
<td>0.0133</td>
</tr>
<tr>
<td>0.025</td>
<td>Simulation 0.1816 (0.0004)</td>
<td>0.0290</td>
</tr>
<tr>
<td></td>
<td>CLT 0.1810</td>
<td>0.0394</td>
</tr>
<tr>
<td></td>
<td>HT 0.1799</td>
<td>0.0271</td>
</tr>
<tr>
<td>0.0375</td>
<td>Simulation 0.2717 (0.0005)</td>
<td>0.0389</td>
</tr>
<tr>
<td></td>
<td>CLT 0.2714</td>
<td>0.0482</td>
</tr>
<tr>
<td></td>
<td>HT 0.2699</td>
<td>0.0359</td>
</tr>
<tr>
<td>0.0500</td>
<td>Simulation 0.3622 (0.0006)</td>
<td>0.0472</td>
</tr>
<tr>
<td></td>
<td>CLT 0.3619</td>
<td>0.0557</td>
</tr>
<tr>
<td></td>
<td>HT 0.3599</td>
<td>0.0433</td>
</tr>
<tr>
<td>0.0625</td>
<td>Simulation 0.4522 (0.0008)</td>
<td>0.0557</td>
</tr>
<tr>
<td></td>
<td>CLT 0.4524</td>
<td>0.0623</td>
</tr>
<tr>
<td></td>
<td>HT 0.4498</td>
<td>0.0496</td>
</tr>
</tbody>
</table>

*Standard error of the estimate of the mean
TABLE 11
Simulated Means and Standard Deviations for \(R(T) \) and Their Approximating Values for the One-Type Model

\(N = 10, \lambda = 25, \mu = 75 \)

<table>
<thead>
<tr>
<th>TIME T</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Simulation 0.0701 (0.0002)*</td>
<td>0.0139</td>
</tr>
<tr>
<td></td>
<td>CLT 0.0701</td>
<td>0.0206</td>
</tr>
<tr>
<td></td>
<td>HT 0.0700</td>
<td>0.0135</td>
</tr>
<tr>
<td>0.025</td>
<td>Simulation 0.1766 (0.0005)</td>
<td>0.0263</td>
</tr>
<tr>
<td></td>
<td>CLT 0.1752</td>
<td>0.0325</td>
</tr>
<tr>
<td></td>
<td>HT 0.1750</td>
<td>0.0258</td>
</tr>
<tr>
<td>0.0375</td>
<td>Simulation 0.2620 (0.0008)</td>
<td>0.0361</td>
</tr>
<tr>
<td></td>
<td>CLT 0.2628</td>
<td>0.0398</td>
</tr>
<tr>
<td></td>
<td>HT 0.2625</td>
<td>0.0330</td>
</tr>
<tr>
<td>0.0500</td>
<td>Simulation 0.3501 (0.0009)</td>
<td>0.0430</td>
</tr>
<tr>
<td></td>
<td>CLT 0.3504</td>
<td>0.0460</td>
</tr>
<tr>
<td></td>
<td>HT 0.3500</td>
<td>0.0390</td>
</tr>
<tr>
<td>0.0625</td>
<td>Simulation 0.4388 (0.0011)</td>
<td>0.0478</td>
</tr>
<tr>
<td></td>
<td>CLT 0.4380</td>
<td>0.0514</td>
</tr>
<tr>
<td></td>
<td>HT 0.4375</td>
<td>0.0441</td>
</tr>
</tbody>
</table>

*Standard error of the estimate of the mean
Dr. D. F. Daley
Statistics Dept. (I.A.S)
Australian National University
Canberra A.C.T. 2606
AUSTRALIA

Prof. F. J. Anscombe
Department of Statistics
Yale University, Box 2179
New Haven, CT 06520

Dr. David Brillinger
Statistics Department
University of California
Berkeley, CA 94720

Dr. R. Gnanadesikan
Bell Telephone Lab
Murray Hill, NJ 07733

Prof. Bernard Harris
Dept. of Statistics
University of Wisconsin
610 Walnut Street
Madison, WI 53706

Dr. D. R. Cox
Department of Mathematics
Imperial College
London SW7
ENGLAND

A. J. Lawrance
Dept. of Mathematical Statistics
University of Birmingham
P. O. Box 363
Birmingham B15 2TT
ENGLAND

Professor W. M. Hinich
University of Texas
Austin, TX 78712

Dr. John Copas
Dept. of Mathematical Statistics
University of Birmingham
P. O. Box 363
Birmingham B15 2TT
ENGLAND

49

REFERENCES

Choose the functions m_i so that they satisfy the system of differential equations (4.5). Let $N \to \infty$. Then for f in the above class of functions, the operator A_N converges to yield

$$A_N f(z) = \sum_{i=1}^{K} \frac{f'(z)}{z_i} \left(\lambda_i \sqrt{\lambda_i (1 - m_i(w))} \right) \sum_{j=1}^{K} \sqrt{\lambda_j} z_j - \lambda_i z_i \sum_{j=1}^{K} \lambda_j m_j(w) - \mu_i z_i$$

$$+ \frac{1}{2} \sum_{i=1}^{K} \frac{f''(z)}{z_i} \left(\lambda_i (1 - m_i(w)) \right) \left(\sum_{j=1}^{K} \lambda_j m_j(w) \right) + \mu_i m_i(w)$$

The operator A_∞ is the infinitesimal operator of the diffusion whose stochastic differential equation is (4.6) [cf. Arnold (1974), page 152]. The Trotter-Kato theorem can now be applied to assert that the semigroups converge [cf. Burman (1979)].
\[A_N f(z) = \sum_{i=1}^{K} \left\{ f(z_1, \ldots, z_i, \ldots, z_N) \lambda_i(N) \right\} \]

\[+ f(z_1, \ldots, z_i, \ldots, z_N) \left\{ \frac{1}{\sqrt{x_i}} \frac{1}{\sqrt{N}} \right\} \mu_i(N) \}

\[+ f(z_1, \ldots, z_i, \ldots, z_N) \left[- \sum_{j=1}^{K} (\lambda_j(N) + \mu_j(N)) \right] \]

\[- \sum_{j=1}^{K} f(z_j, \ldots, z_i, \ldots, z_N) \left\{ \frac{\lambda_i(N) - \mu_i(N)}{\sqrt{x_i} \sqrt{N}} \right\}, \text{(A-8)} \]

Note that no specific normalization has been utilized up to this point. Now, however, invoke the HTN of (4.6) and utilize (A-6) and (A-7) specifically; allowing \(N \) to become large,

\[A_N f(z) \sim \sum_{i=1}^{K} \left\{ \frac{f', \lambda_i(N) - \mu_i(N)}{\sqrt{x_i} \sqrt{N}} \right\} + \frac{1}{2} f''(z_i) \left\{ \frac{\lambda_i(N) + \mu_i(N)}{\sqrt{x_i} \sqrt{N}} \right\} \]

\[- \sum_{i=1}^{K} f(z_i, \ldots, z_i, \ldots, z_N) \left\{ \frac{\lambda_i(N) - \mu_i(N)}{\sqrt{x_i} \sqrt{N}} \right\}, \text{(A-9)} \]

\[\sim \sum_{i=1}^{K} f(z_i, \ldots, z_i, \ldots, z_N) \left\{ \frac{\lambda_i(N)}{\sqrt{x_i} \sqrt{N}} \right\} \sum_{j=1}^{K} \frac{\lambda_j \lambda_i m_i(w) - \mu_i \sqrt{x_i} \sqrt{N} m_i(w)}{\sqrt{x_i} \sqrt{N}} \]

\[- \sum_{i=1}^{K} \frac{\lambda_i \lambda_j m_i(w)}{\sqrt{x_i} \sqrt{N}} \sum_{j=1}^{K} \frac{\lambda_j \lambda_i m_i(w)}{\sqrt{x_i} \sqrt{N}} \sum_{j=1}^{K} \frac{\lambda_j \lambda_i m_i(w)}{\sqrt{x_i} \sqrt{N}} \]

\[- \mu_i z_i + O(N^{-1/2}) \} + \frac{1}{2} \sum_{i=1}^{K} f''(z_i) \left\{ \lambda_i(N) - \mu_i(N) \right\} \]

\[\times \sum_{j=1}^{K} \frac{\lambda_j \lambda_i m_i(w) + \mu_i \lambda_i m_i(w) + O(N^{-1/2})}. \]
\[A_N f(z) = \lim_{\Delta \to 0} \sum_{i=1}^{K} \left\{ f(z_1, \ldots, z_i + \frac{1}{\sqrt{\Delta_i \sqrt{N}}} - \sqrt{\frac{\Delta_i \sqrt{N}}{1}} \sqrt{N} m_1^i(w) \Delta, \ldots, z_K) \lambda_i(N) \Delta \right\} + f(z_1, \ldots, z_i) - \frac{1}{\sqrt{\Delta_i \sqrt{N}}} - \sqrt{\frac{\Delta_i \sqrt{N}}{1}} \sqrt{N} m_1^i(w) \Delta, \ldots, z_K) \mu_i(N) \Delta \right\} + f(z_1, \ldots, z_i) - \frac{1}{\sqrt{\Delta_i \sqrt{N}}} - \sqrt{\frac{\Delta_i \sqrt{N}}{1}} \sqrt{N} m_1^i(w) \Delta, \ldots, z_K) \mu_i(N) \Delta \right\} + \frac{1}{\Delta} \right) \]

where for simplicity (and generality) we abbreviate

\[\lambda_i(N) = \lambda_i[N_i - N_i m_i(w) - \sqrt{N_i} z_i] \left(\sum_{j=1}^{K} (N_j m_j(w) + \sqrt{N_j} z_j) \right) \]

\[(\lambda_i(N) [\ell_i (1-m_i(w))] = \frac{\sqrt{\ell_i}}{\sqrt{N}} z_i] (N \sum_{j=1}^{K} (\ell_j m_j(w)) + \frac{\sqrt{\ell_i}}{\sqrt{N}} z_j) \]

and

\[\mu_i(N) = \mu_i(N_i m_i(w) + \sqrt{N} z_i) - \mu_i(N) (\ell_i m_i(w) + \frac{\sqrt{\ell_i}}{\sqrt{N}} z_i) \].

Upon passage to the limit via Taylor series expansion it is seen that
processes \(\{X_i(w); N\} \): if \(A_N f \to A^\infty f \) in sup norm for a suitable class of test functions (e.g. \(f(z) : \mathbb{R}^K \to \mathbb{R} \) \(m \)-times continuously differentiable, \(m \geq 3 \), that vanish identically outside a bounded subset of \(\mathbb{R}^K \) and further such that the functions, \(f \), together with their first and second derivatives do not increase faster than some fixed power of \(z \)) it can be concluded that the semigroups converge, and hence the Markov probability transition functions themselves converge.

We now proceed with the formal calculation of the limiting generator for our normalized process. Invoke (4.4) so

\[
Z^N_i(w) = \frac{X^N_i(w) - N_i m_i(w)}{\sqrt{N_i}} = \frac{X^N_i(w) - N^2_i m_i(w)}{\sqrt{N}}. \tag{A-1}
\]

By definition, for \(z = (z_1, z_2, \ldots, z_K) \) and \(f \) in the above class

\[
A_N f(z) = \lim_{\Delta \to 0} \left\{ E[f(Z^N_i(w+\Delta)) | Z^N_i(w) = z] - f(z) \right\} \frac{1}{\Delta}. \tag{A-2}
\]

Given \(Z^N_i(w) = z_i \) and \(C_i(w, w+\Delta) \) represents the change in \(X^N_i(w) \),

\[
Z^N_i(w+\Delta) = \frac{X^N_i(w) + C_i(w, w+\Delta) - N_i m_i(w+\Delta)}{\sqrt{N_i}}
\]

\[
= \frac{C_i(w)}{\sqrt{N_i}} + z_i - \sqrt{N_i} m_i'(w) \Delta + o(\Delta). \tag{A-3}
\]

Consequently, for \(z \) such that \(z_i > -\sqrt{N_i} m_i(w) \Delta - \frac{1}{\sqrt{N_i}} \)
APPENDIX
HEAVY TRAFFIC APPROXIMATION BY CONVERGENCE-OF-SEMIGROUPS METHODOLOGY

The purpose of this appendix is to outline a mathematical framework upon which the heavy traffic approximations of this paper may be rigorously based. The approach is to use an analytical theory of convergence of semigroups of operators apparently first applied to queueing problems by Burman (1979) in a regrettably unpublished thesis. See also Lehoczky and Gaver (1981) where the technique is used to obtain results concerning a data-voice traffic sharing multichannel system. The theory of semigroups of operators is introduced in Feller (1971), and detailed in Dynkin (1965); the convergence ideas are discussed in Trotter (1974) and Kato (1976). The basic notion is that the state variable of a process, say the work time process of Section 4.1, \(\{X_i(w;N), w \geq 0\} \), is one of a sequence of birth and death Markov processes indexed by system size \(N \). Given such a sequence of Markov processes, \(\langle X_i(w;N) \rangle \), each with its appropriate state space, \(S_N \), it is desired to show that the corresponding sequence of probability transition functions converges to that of some limiting process that has state space \(S_\infty \); in the present case \(S_\infty = TR^K_+ \). The limiting process under the normalization of \(\{X(w;N)\} \) chosen will be a particular diffusion process, namely, in the present heavy traffic situation the multivariate Ornstein-Uhlenbeck.

The Trotter-Kato theory of convergence deals with the convergence of infinitesimal operators \(A_N \) of the normalized
<table>
<thead>
<tr>
<th>TIME T</th>
<th>α: 0.10</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>0.90</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0100</td>
<td>CLT</td>
<td>0.024</td>
<td>0.116</td>
<td>0.445</td>
<td>0.907</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.110</td>
<td>0.228</td>
<td>0.433</td>
<td>0.710</td>
<td>0.905</td>
<td>0.973</td>
</tr>
<tr>
<td>0.0250</td>
<td>CLT</td>
<td>0.054</td>
<td>0.164</td>
<td>0.435</td>
<td>0.820</td>
<td>0.993</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.112</td>
<td>0.219</td>
<td>0.422</td>
<td>0.682</td>
<td>0.901</td>
<td>0.967</td>
</tr>
<tr>
<td>0.0375</td>
<td>CLT</td>
<td>0.070</td>
<td>0.186</td>
<td>0.428</td>
<td>0.795</td>
<td>0.981</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.113</td>
<td>0.224</td>
<td>0.414</td>
<td>0.693</td>
<td>0.899</td>
<td>0.967</td>
</tr>
<tr>
<td>0.050</td>
<td>CLT</td>
<td>0.075</td>
<td>0.182</td>
<td>0.439</td>
<td>0.784</td>
<td>0.972</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.110</td>
<td>0.216</td>
<td>0.422</td>
<td>0.689</td>
<td>0.896</td>
<td>0.969</td>
</tr>
<tr>
<td>0.0625</td>
<td>CLT</td>
<td>0.083</td>
<td>0.200</td>
<td>0.443</td>
<td>0.765</td>
<td>0.959</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.118</td>
<td>0.222</td>
<td>0.427</td>
<td>0.683</td>
<td>0.891</td>
<td>0.958</td>
</tr>
</tbody>
</table>
TABLE 14

Simulated Probability (Relative Frequency) that the Response Time is Less than or Equal to the Approximating α-Quantiles

$N_1 = 5, N_2 = 5, \lambda_1 = 10, \lambda_2 = 40, \mu_1 = 25, \mu_2 = 125$

<table>
<thead>
<tr>
<th>TIME T</th>
<th>α</th>
<th>0.10</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>0.90</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLT</td>
<td>0.027</td>
<td>0.119</td>
<td>0.447</td>
<td>0.906</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.110</td>
<td>0.230</td>
<td>0.458</td>
<td>0.737</td>
<td>0.931</td>
<td>0.982</td>
<td>1.0</td>
</tr>
<tr>
<td>0.010</td>
<td>CLT</td>
<td>0.061</td>
<td>0.178</td>
<td>0.451</td>
<td>0.824</td>
<td>0.991</td>
<td>0.999</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.121</td>
<td>0.236</td>
<td>0.464</td>
<td>0.734</td>
<td>0.930</td>
<td>0.985</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0250</td>
<td>CLT</td>
<td>0.068</td>
<td>0.191</td>
<td>0.441</td>
<td>0.790</td>
<td>0.979</td>
<td>0.999</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.117</td>
<td>0.239</td>
<td>0.451</td>
<td>0.725</td>
<td>0.927</td>
<td>0.983</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0375</td>
<td>CLT</td>
<td>0.081</td>
<td>0.189</td>
<td>0.430</td>
<td>0.776</td>
<td>0.975</td>
<td>0.997</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.117</td>
<td>0.232</td>
<td>0.444</td>
<td>0.729</td>
<td>0.935</td>
<td>0.985</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0500</td>
<td>CLT</td>
<td>0.085</td>
<td>0.199</td>
<td>0.442</td>
<td>0.772</td>
<td>0.960</td>
<td>0.995</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.121</td>
<td>0.237</td>
<td>0.456</td>
<td>0.737</td>
<td>0.923</td>
<td>0.979</td>
<td>1.0</td>
</tr>
</tbody>
</table>

40
<table>
<thead>
<tr>
<th>TIME T</th>
<th>α:</th>
<th>0.10</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>0.90</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0100</td>
<td>CLT</td>
<td>0.049</td>
<td>0.159</td>
<td>0.457</td>
<td>0.869</td>
<td>0.998</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.114</td>
<td>0.229</td>
<td>0.442</td>
<td>0.718</td>
<td>0.919</td>
<td>0.979</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0250</td>
<td>CLT</td>
<td>0.078</td>
<td>0.194</td>
<td>0.462</td>
<td>0.809</td>
<td>0.978</td>
<td>0.997</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.113</td>
<td>0.228</td>
<td>0.442</td>
<td>0.717</td>
<td>0.916</td>
<td>0.973</td>
<td>0.999</td>
</tr>
<tr>
<td>0.0375</td>
<td>CLT</td>
<td>0.088</td>
<td>0.204</td>
<td>0.455</td>
<td>0.787</td>
<td>0.962</td>
<td>0.995</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.111</td>
<td>0.224</td>
<td>0.432</td>
<td>0.702</td>
<td>0.909</td>
<td>0.965</td>
<td>0.999</td>
</tr>
<tr>
<td>0.0500</td>
<td>CLT</td>
<td>0.088</td>
<td>0.212</td>
<td>0.459</td>
<td>0.771</td>
<td>0.955</td>
<td>0.989</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.111</td>
<td>0.226</td>
<td>0.434</td>
<td>0.696</td>
<td>0.898</td>
<td>0.961</td>
<td>0.998</td>
</tr>
<tr>
<td>0.0625</td>
<td>CLT</td>
<td>0.093</td>
<td>0.212</td>
<td>0.465</td>
<td>0.773</td>
<td>0.945</td>
<td>0.986</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.110</td>
<td>0.222</td>
<td>0.432</td>
<td>0.705</td>
<td>0.889</td>
<td>0.954</td>
<td>0.997</td>
</tr>
</tbody>
</table>

TABLE 13
Simulated Probability (Relative Frequency) that the Response Time is Less than or Equal to the Approximating α-Quantiles

\[N_1 = 5, \; N_2 = 5, \; \lambda_1 = 30, \; \lambda_2 = 20, \; \mu_1 = 100, \; \mu_2 = 50 \]
<table>
<thead>
<tr>
<th>TIME T</th>
<th>α:</th>
<th>0.10</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>0.90</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
<td>CLT</td>
<td>0.041</td>
<td>0.137</td>
<td>0.433</td>
<td>0.838</td>
<td>0.998</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.109</td>
<td>0.221</td>
<td>0.443</td>
<td>0.719</td>
<td>0.915</td>
<td>0.977</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0250</td>
<td>CLT</td>
<td>0.062</td>
<td>0.170</td>
<td>0.425</td>
<td>0.765</td>
<td>0.969</td>
<td>0.997</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.103</td>
<td>0.223</td>
<td>0.438</td>
<td>0.708</td>
<td>0.911</td>
<td>0.975</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0375</td>
<td>CLT</td>
<td>0.079</td>
<td>0.191</td>
<td>0.429</td>
<td>0.754</td>
<td>0.952</td>
<td>0.991</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.118</td>
<td>0.229</td>
<td>0.447</td>
<td>0.713</td>
<td>0.905</td>
<td>0.969</td>
<td>0.999</td>
</tr>
<tr>
<td>0.0500</td>
<td>CLT</td>
<td>0.075</td>
<td>0.181</td>
<td>0.417</td>
<td>0.724</td>
<td>0.939</td>
<td>0.986</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.106</td>
<td>0.222</td>
<td>0.431</td>
<td>0.693</td>
<td>0.897</td>
<td>0.965</td>
<td>0.998</td>
</tr>
<tr>
<td>0.0625</td>
<td>CLT</td>
<td>0.081</td>
<td>0.198</td>
<td>0.436</td>
<td>0.745</td>
<td>0.932</td>
<td>0.980</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>0.115</td>
<td>0.238</td>
<td>0.451</td>
<td>0.719</td>
<td>0.898</td>
<td>0.960</td>
<td>0.997</td>
</tr>
</tbody>
</table>

TABLE 12
Simulated Probability (Relative Frequency) that the Response Time is Less than or Equal to the Approximating α-Quantiles

\[N_1 = 5, N_2 = 5, \lambda_1 = 20, \lambda_2 = 30, \mu_1 = 50, \mu_2 = 100 \]
To assess the quality of the normal approximation to the distribution of $R(T)$ for the two-type model, the α-quantiles for each two-type approximating normal distribution were computed. The relative frequency of being less than or equal to each α-quantile was then computed, using the simulated data. The results appear in Tables 12-15. From the heavy traffic approximation to the mean it follows that approximately 7 jobs are being processed with the tagged job. Thus, all the cases considered are really moderate traffic cases. The tables indicated that the HT approximation tends to describe the quantiles better than does the CLT. However, as is expected, the CLT improves with larger T.

Prof. I. R. Savage
Dept. of Statistics
Yale University
New Haven, CT 06520

Paul Shaman
National Science Foundation
Mathematical Sciences Section
1800 G. Street, NW
Washington, DC 20550

Prof. W. R. Schucany
Dept. of Statistics
Southern Methodist University
Dallas, TX 75222

Prof. D. C. Siegmund
Dept. of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305

Prof. H. Solomon
Department of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305

Dr. Ed Wegman
Statistics & Probability Program
Code 411(SP)
Office of Naval Research
Arlington, VA 22217

P. Welch
IBM Research Laboratory
Yorktown Heights, N. Y. 10598

Dr. Marvin Moss
Office of Naval Research
Arlington, VA 22217

Dr. Roy Welsh
Sloan School
M. I. T.
Cambridge, MASS 02139

Pat Welsh
Head, Polar Oceanography Branch
Code 332
Naval Ocean Research & Dev. Activity
NSTL Station, MS 39529
END
FILMED
11-85
DTIC