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Preface

The laser is a device that is used to convert incoherent
energy into coherent energy in and near the visible region of
the electromagnetic spectrum. The resonator performs a
crucial role in the conversion; it is the principal part of
the laser that defines the degree of coherence of the output.
The study of optical resonators conceptually began with the
analysis of waveguides. However, the study is complicated by
the fact that optical resonators are multimode devices that
are unbounded in ‘the transverse directions. Since about
1960, numerous researchers have considered the problem of
modal analysis of resonators and much is known about the
natural modes of optical resonators. However, most analyses
have oversimplified the problem of including the saturable
gain medium. This dissertation is an effort aimed at
treating this problem. We begin by looking at the modes of
an empty resonator in order to establish a baseline for the
study of loaded resonators as well as to examine the utility
of the linear prolate functions as a basis set when solving
for the modes of a one dimensional "strip" resonator with a
kernel expansion. We then include the gain rigorously,
beginning with Maxwell's equations and ending with a new
integral equation that describes the modes of a loaded
resonator. We specialize this equation to the case of a
strip resonator and then model Fhe gain medium with a single
gainsheet at the feedback mirror of a positive branch,
confocal unstable resonator. Although this model is only a

first order model, the results shed new light into the area
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of loaded cavity analysis. The application of this work is
broad, giving better insight into how actual lasers work and
how to model such devices.

I owe a debt of gratitude to many people who contributed
to this research. My advisor, Dr (Lt Col) John H. Erkkila,
spent endless hours with me, discussing everything from
abstract concepts to difficult derivations to detailed
numericai codes. Without his insightg and support, this
research could nqt have been done. The other members of my
advisory committee; Dr Donn Shankland and Dr John Jones, were
alwvays available to answer my questions. Their direction was
very instrumental in the success of this effort. Dr David
Lee was also very helpful. He always made time in his busy
schedule to'consider my questions. His comment that
“"graduate school is supposed to change the way you think" has
stuck in my mind and given me insight into the educational
process I might otherwise have missed. Dr Leno Pedrotti
frequently encouraged me in dry times, helping me keep a
perspective on the research program. The scientists of the
the Air Force Weapons Laboratory Resonator Analysis Group
help keep this research effort directed at realistic
applications. My follow-on assignment with this group has
been highly rewarding. This group included Dr W, P, (Pete)
Latham, Dr Tom Ferguson, Dr Martin Smithers, Dr Alan Paxton,
Dr Tom Gavrielides and Capt Ted Salvi. Of course, I am
deeply indebted to my lovely wife Jan for her support and

encouragement while she ran our household during my four and
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Abstract

The analysis of the modes of optical resonators is
crucial to understanding how actual laser devices operate.
A consistent formulation that treats both the empty and
loaded resonator modes is presented in this report. The
study centers on unstable resonators and, in particular,
strip resonators. The analysis of the bare cavity modes uses
a matrix expansion technique with the linear prolate
functions as a basis set. These functions form an optimal
basis set in that they are related to the Schmidt éxpansion
functions for the integral equation that describes the modes
of the bgre cavity. As a consequence, the matrix eigenvalue
problem is solved using the minimum number of basis
functions. The analysis is implemented in a numerical model
that generates fhe linear prolate functions using a finite
difference algorithm. The model is used to study the
validity of asymptotic technique at low Fresnel numbers. The
results show that the first few lower loss modes predicted by
the asymptotic approach are accurate but that the higher loss
modes are inaccurately represented by that approach. The
linear prolate function expansion is also used to numerically
demonstrate the orthogonality of the resonator modes.

The analysis of the m;dgs of the loaded cavity begins
with Maxwell's equations and ends with a round trip integral
equation for the modes of a loaded strip resonator. The gain

is included in an additive term instead of a multiplicative
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term as frequently assumed in other analyses. This result
suggests that there is.a single loaded cavity mode, as
compared to the spectrum of bare cavity modes. The method of
stationary phase is used to obtain a geometrical optics
approximation to the integral equation, and the results of
the approximation show excellent agreement with past work. A
single gain sheet model of the integral equation is developed
and solved using an iterative technique. Thé model is used
to study the threshold and saturation behavior of the loaded

cavity, and the results are compared to previous studies. A

key result is that the power on the feedback mirror retains
the same fluctuations with equivalent Fresnel number that is
observed for the bare cavity mode eigenvalues in the bare
cavity analysis. Other results are discussed in the text.
An initial study of the mapping of the loaded cavity mode

E onto the bare cavity modes is presented, showing that the

} higher loss modes may be significant in this mapping.

xvi
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I. Introduction

The laser (an acronym for 'light amplification through
stimulated emission of radiation') can conceptually be broken
into three major components: the pump, the gain medium and
the resonator. This dissertation is concerned with the
resonator. The resonator is an optical configuration that
allows for efficient, coherent extraction of the energy
stored in the ggin medium by the pump. However, the
resonator is an oﬁtical analog to the microwave waveguide,
exhibiting a coﬁplex longitudinal and transverse mode
structure., This analysis is aimed at an increased under-
standing of the transverse mode structure of empty and loaded
resonators: The applications of the analysis will be focused
on strip resonators., By strip resonators, one means a
resonator composed of two cylindrical mirrors of infinite .
length, allowing one transverse dimension to be ignored in
the analysis. An empty resonator does not contain any
intervening medium, allowing an understanding of its inherent
modal properties, while a loaded resonator does contain a
gain medium that will alter the actual mode that would be
sustained in the laser.

Physically, the transverse modes of the resonator
(hereafter referred to as thé modes) can be defined as any
field distribution that reproduces itself to within a complex
constant after a round trip through the resonator. A typical
tvo-mirror resonator is shown in Figure 2.1. A round trip in

this resonator consists of a reflection off mirror 1, a

- . AL .-
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propagation to airror 2, reflection off mirror 2 and a return
propagation to mirror 1. If one uses scalar diffraction
theory to analyze this round trip, the modes are found to be
the eigenvalues of a homogeneous Fredholm integral equation
of the second kind, where the kernel characterizes the round
trip. This kernel is more fully discussed in Chapter 2. The
eigenvalue that is associated with each eigenmode accounts
for the outcoupling loss and the phase (and corresponding
frequency) shift of the mode. Several review articles are
available on the general theory of optical resonators. (Ref 1-
4) Also, most textbooks on laser physics discuss the basic
properties of laser resonators, although these texts
frequently .1imit the discussion to stable resonators while
this work will mainly deal with unstable resonators. (Ref
5,6) The difference between the two classes of resonators
will be made clear in Chapter 2.

This report is a summary of the research conducted in
the area of laser resonators. The goal is to develop a
consistent formulation of the modes of optical resonators,
thus increasing the understanding of the properties of
resonators. To accomplish this goal, two areas are
investigated.

The first area is a stu@y of empty strip resonators
using a kernel expansion technique. The strip resonator is a
useful abstraction of the optical resonator that has mirrors
with cylindrical curvature in one dimension and infinite

extent in the other dimension. Since the round trip integral

2
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equation separates in rectangular coordinates, the two
transverse modes can be treated independently, each acting
like a strip resonator in the absence of a saturable gain
medium. The kernel expansion technique is chosen because it
allows the calculation of higher order modes while minimizing
the approximations required to make such calculations,

The effects of including a saturable, distributed gain
medium that depends nonlinearly on the electromagnetic field
in the resonator is the second area to be investigated. The
derivation of theiloaded cavity integral equation is valid
for a three dim;nsional resonator, although the strip
resonator is used for detailed examination of the resultant
integral equation. The integral formulation is chosen to
blend the earlier analysis of the empty resonator into the
analysis of the loaded resonator. A study of the empty and
loaded strip resonator modes will give new understanding of
how laser resonators behave.

This report is divided into four parts. Chapter II is
an analysis of the empty resonator. The chapter begins with
a discussion of the basic geometry and underlying assumptions
for the strip resonator. Then the round trip integral
equation that describes the modes is derived using scalar
diffraction theory. A discussion of several solution
techniques follows this derivation. The kernel expansion
technique is then applied to find the bare cavity modes,
using the linear prolate functions as a basis set. The
analysis is used to (1) examine the validity of the

asymptotic technique at low equivalent Fresnel numbers and

------
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(2) demonstrate the orthogonality of the strip resonator
modes. Chapter III begins the analysis of the loaded
resonators. The analysis begins with Maxwell's equations and
ends with an integral equation that describes the modes of a
general two mirror resonator. The results are specialized to
the strip resonator. The resultant equation suggests that
the loaded cavity mode can be expanded in the modes of an
empty strip resonator. In Chapter IV, we model the loaded
strip resonator'equation with a single gainsheet and examine
the behavior of'the modes for several cases. The idea of the
bare cavity mode expansion is investigated for this special
case. The final chapter of this dissertation summarizes the

main conclgsions and makes recommendations for future work.
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II. Analysis of the Modes of the Empty Strip Resonator

A. Introduction

In this chapter, we discuss an analysis of the modes of
a single-ended, aligned strip resonator that does not contain
a gain medium. The chapter begins with a review of the
geometry of the strip resonator and the assumptions inherent
in this configuration. Then the integral equation that
describes the modes is derived and discussed. A variety of
solution techniqués are available to solve this equation and
they are revieweﬁ briefly. The method that will be used in
this chapter is the kernel expansion. The basis set that is
used is the set of linear prolate functions, which have
several pr;perties that make this set highly suited to
resonator analysis. After discussing this set of functions,
the modes of the strip resonator are found by solving a
matrix eigenvalue problem (MEVP). Several cases are studied
with the technique, and it is used to explore two areas of
interest not yet discussed in the literature. The first is a
check of the validity of the asymptotic analysis of the modes
at low equivalent Fresnel numbers. The second is a numerical
demonstration of the orthogonality of the modes, a property
that will be shown to be true analytically in Appendix 1.
The chapter concludes with a summary of the empty strip
resonator analysis. Some of the work discussed in this

chapter has been published in Applied Optics (Ref 21) and

Laser Digest (Ref 22).
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1. Geometry of Strip Resonators

The general strip resonator is shown in Figure 2.1.

TR

(Many of the introductory comments and definitions in this
- section also apply to resonators with two transverse
dimensions. However, the analysis that follows applies to
strip resonators and it is less confusing to restrict the
" discussion to this class.) The two mirrors have radii of
curvature denot?d by R; . (The subscript 'i' takes on the
values 1 and 2 for the two mirrors.) The mirrors are assumed
in this analysis to be aligned on an optical axis such that
the centers of curvature lie on the same line and the mirrors
extend an equal distance above and below this axis. The half-
width of the mirrors is denoted by a; . The mirrors are
separated by a distance L and frequently the two mirror
resonator is characterized in part by "g parameters" that are

defined by

L
: 9, = 1 - = (2.1)
i
A combination of the g parameters that is also useful is

g = 23'3'- -1 (2.2)

’ If one envisions a ray of light bouncing between the
mirrors, some combinations of g parameters tends to confine
all rays within the mirrors while other combinations allow

the rays to leave the resonator. (One can verify these ideas
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by simply sketching a few resonators with different
curvatures on the mirrors.) Resonators that tend to confine
3 the rays are called "stable" while those that do not confine

the rays are called "unstable". The stable region is defined

by

-1 < 9,9 < 1 (2.3)

. and the unstable regiom is any combination of g parameters

that do not meet this condition. Figure 2.2 shows the stable

s and unstable regions. Stable resonators have many applica-
. tions to lasers with low output power since the outcoupling
o~

% is usually done with partially transmissive mirrors.

Unstable resonators are more appropriate for high energy
lasers since these lasers have a large gain volume which

matches the large mode volume of the unstable resonators and

O N

the energy can be outcoupled around the mirrors in unstable

: resonators, allowing the mirrors to be cooled.

-

j In addition, a useful dimensionless number called the

= Fresnel number is defined for each mirror as

: a\

S F.o = —— (2.4)

'. ‘ AL .
The Fresnel number can be interpreted as the number of plane
wave Fresnel zones on one mirror as seen from the center of
the other mirror. The number is important in diffraction

u

. analysis. At low Fresnel numbers, the effects of diffraction
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strongly affect the beam profile predicted by geometric
optics while the effect is less at higher Fresnel numbers.
This impact is seen on the modes of the resonator. At low
Fresnel numbers, the intensity pr?files of the resonator

modes are very different from the profiles predicted by

"¢ 8 & 8 a8

geometric opti:s, while at high Fresnel numbers, the mode

profiles appear close to the geometric optics profiles except
q for high spatial frequency, low amplitude ripples called
appropriately 'Fresnel ripples'. Other variations of
'Fresnel number;"are defined as needed, but they are all

related to this-basic definition.

2. Basic Assumptions for Strip Resonators

A rigorous analysis of the electromagnetic fields that
are the modes of an open resonator at optical frequencies
should begin with Maxwell's equations. We will use this
approach in the next chapter, but in the bare cavity analysis
that follows, we use a number of assumptions that are
frequently made in the literature. Here we discuss these
f approximations qualitatively. A detailed quantitative
; derivation is shown in Chapter III, where the loaded cavity
g analysis is done. 1In this chapter, we use the following
| discussion to give some background on the well-known Fresnel

: approximation. First, the "bare cavity" is assumed to be

filled with a homogeneous, 1§otropic medium. The medium

effects will be addressed in the next chapter. Second, the

fields are assumed to have an exp(i(wt-kz)) dependence.

Under these assumptions, the spatial variations of the fields

R e 'as 62" s
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are described by the vector Helmholtz equation. In Cartesian
coordinates, the equation separates for each field component.

Since we expect a beam-~like behavior (as characterized by the

dependence chosen above), we further assume the field is
predominantly TEM and linearly polarized in the x
direction. Thus the scalar Helmholtz equation is
appropriate. Now, to further simplify the analysis, we make
the paraxial approximation. If the mirrors are separated by
many wavelengths (as they usually are at optical

frequencies), then this is a good approximation. The

resultant paraxial wave equation is equivalent to the two-
dimensional Fresnel diffraction analysis. In Cartesian
coordinates, this integral analysis of the bare cavity
separates for each transverse coordinate, i.e., the resonator
can be analyzed as two orthogonal strip resonators. 1In
Chapter III, this separation will no longer be valid when a
gain medium is included unless restrictions are placed on the
medium.

While these assumptions seem to be plentiful, they are

the usual string of assumptions made in most optical

'?; analyses. Their validity is usually supported by having good

Ei agreement with experiments, but in the cases of inhomo-

gﬁ geneous, nonlinear or active medium, such agreement is not as

ig; clear. Indeed, for high energy lasers, the agreement between

Ej the bare cavity modes and the actual laser fields has not

Eg% been well established. These issues are more appropriate to

E;E the next chapter. What we want to analyze here is the

;:: natural or normal modes of the open resonator which are
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analogous to the modes of microwave waveguides. Indeed,
Vainstein analyzed the resonator as a highly lossy waveguide,
(Ref 9) A final note: the resonator mode is characterized by
8 longitudinal index that is defined by the number of half
integer wavelengths can be fit into the cavity and a pair of
transverse indices that denote differing transverse structure
on the basic longitudinal mode. (For a strip resonator there
would only be one transverse index.) Frequently one calls
the mode a "lon;itudinal mode" when the transverse structure
is ignored. Here we assume that we are studying the
transverse structure of a single longitudinal mode. The
actual laser might have a lasing transition that covers
several lohgitudinal modes with none of the modes exactly on
the line-center of the lasing transition. Each of these
possibilities complicates the analysis. In Chapter III, we
will assume the existance of one longitudinal mode that liés
at the same frequency as the line-center of the lasing
transition. With all these assumptions in mind, we proceed

with the analysis of the bare cavity modes.

B. Bare Cavity Round Trip Equation

As mentioned in Chapter 1, the transverse modes of the
resonator are frequently defined as the eigenfunctions of a
homogeneous Fredholm integral. equation of the second kind
(FIE II). The associated eigenvalues are related to the

outcoupling and phase shifts of the eigenmodes. The general

form of the homogeneous FIE II is




R L R A

b
goulx) = f K (x,y) uiy) dy . 2.5
(-

(Appendix 1 contains a brief discussion of the properties of
Fredholm integral equations of the second kind that are
required for the discussion of resonator modes in this
chapter and the next chapter.) The exact expression for the
kernel, K{(x,y), depends both on the nature of the resonator
(mirror separatfon. mirror reflectivities, etc) and the
sophistication of the analysis. For the strip resonator, the
kernel is given by
. . )
Ky =, f[ e “‘;‘f‘*”j\ ::, o Tl ten] (2.6)

g
-Q"

This kernel is derived in Appendix &4, which deals with the
derivation of the loaded cavity round trip equation . The:
bare cavity round trip equation is obtained by simply setting
the gain function to zero. The eigenfunction, u(x) , is the
scalar field at mirror 1 as shown in Figure 2.1. The
variables x and y are limited to the range (-a, , a, ).
It is important to bear this restriction in mind when using
this and other kernels related to resonator problems. The
Fresnel or paraxial approximation is made in this derivation.
This is valid as long as qq/("l azd) << 1 . This
approximation is usually good for realistic optical
resonators. For the analysis that follows, the strip
resonator will be assumed to be single-ended. This means

that the half-width of mirror 2 is assumed to be great enough

13




that any transverse mode is essentially zero before the edge

of the mirror. This doesn't violate the Fresnel

approximation since we have restricted the types of field

that we will allow as valid modes and it allows us to let a,
tend to infinity. Then the integral in the kernel can be
evaluated analytically and the resulting kernel is
—irFlaxtay?) —2xy]
Ky ={iF e (2.7)
al
where F = 57— and the transverse coordinates have been
2rLaq,

normalized by a, .

Let us examine the two kernels shown above in more
detail. Eq(2.6) shows the kernel for a double-ended strip
resonator, while Eq(2.7) shows the kernel for a single-ended
strip resonator. Notice that no assumptions have been made
as to whether the resonator is stable or unstable. The |
kernels describe both cases. Note that the kernels are both
complex~-symmetric but not hermitian. This property means
that the eigenvalues, if they exist, are complex. Also, the
eigenfunctions do not form a complete set on the interval of
the integration, namely (-a1 » 8y ). This fact is well
documented in the literature although a recent paper
attempted to show otherwise. (Ref 10,11) The lack of
completeness will affect the analysis of the eigenfunctions
discussed in a later section. Further, the eigenfunctions,

if they exist, obey an "orthogonality" relation different

from the usual "power” relation used for the eigenfunctions
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of hermitian kernels. (This property has been called

"biorthogonality" in some papers. (Ref 55)) Here, the

relation is

%
dx U, (x) u;lx) = 5;5 (2.8)
-0y ¢

(See Appendix 1 for a proof of this relationship. A similar
proof shows the eigenvectors of a complex-symmetric matrix
are also orthogonal in the sense that the inner product
satisfies (u, .us ) = Sq .) The existence of solutions to
the integral eqﬁation that describes the resonator modes has
been fully established in the literature. (Ref 10,12-14)
However, no proof has been shown that an infinite number of
solutions ;xists for unstable resonators, although the modes
of a stable strip resonator can be accurately approximated by
the infinite, complete set of hermite-gaussian polynomials.

The amplitude of the eigenvalue is related to the loss
of the particular mode. The phase of the eigenvalue is
interpreted as a frequency shift for the particular mode from
the input frequency of the kernel. (Ref 5) Thus the
eigenvalues contain a great deal of information about each
mode. Plots of the amplitude of the eigenvalues reveal
trends that are useful in designing resonators. We will use
such plots later in this chapter as the means to verify
numerical models of bare resonators.

This concludes the discussion of the integral equation that

describes the modes of the strip resonator. Many of the

comments made concerning the complex-symmetric kernel apply
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to more general configurations. We next discuss various
techniques that have been used to solve the integral equation
for the modes. This review is necessarily brief. The
transformation of the integral equation to a matrix
eigenvalue problem (MEVP) is used as the common thread

between the various techniques.

C. Methods of finding the Modes of Empty Resonators

A number of ingenious techniques have been employed in
the past to solve the resonator integral equation. These
techniques include the iterative scheme used by Fox and Li
(Ref 15), the various matrix methods (Ref 16-18, 53) and the
asymptotic techniques (Ref 19-21). As Sanderson and Streifer
pointed out (Ref 22), most of the techniques transform the
integral equation that describes the modes into a matrix
eigenvalue problem. It is this formalism that we will use.to
review some of these techniques. (One technique that does not
readily fit this formalism is the waveguide analysis done by
Vainstein (Ref 9) but this approach will not be reviewed
here.)

The general transformation from the integral equation to
a matrix eigenvalue problem is reviewed here. Our treatment
follows that of Sanderson and Streifer. Consider two sets of
complete and orthonormal functions, vn(x) and w_(x) ,

defined on the interval of interest., Here the interval is

(-a,a). (Note that a complete and orthonormal set of

functions can always be constructed from a complete set by




the Gram-Schmidt orthogonalization process.) Then the kernel

of Eq(2.5) is expanded in a convergent infinite series:

K(X,y) = Z KM‘ Vo (W (y) (2.9)

Nnm=0

(Note that the kernel is not assumed to be separable. The

coefficients in the expansion are matrix elements. By

properly choosing the basis functions, one might be able to

make this matrix of coefficients diagonal, thus finding a

basis set in which the kernel is separable.) The

eigenfunction is similarly expanded:

Q(X) = Z b'WP (x) ] (2.10)

p=0

Substituting these equations into Eq(2.5) and then

multiplying both sides by w,(x) and integrating over x -,

one obtains a matrix eigenvalue problem:

Ab, = ™M, b, (2.11)

wvhere

oo Qa

M. = Z ... y dx W, (%) v, (%) (2.12)
m=0 =0

The difficulty lies in evaluating these matrix elements for a

particular basis set. Since the kernel is symmetric in x

and y , some simplification results from choosing w,_ = vg.

x'\"\

Then the coefficient matrix retains the symmetry of the
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4 kernel, namely Kk = K_ . The difficulty now is the
choice of the basis set., If Dirac delta functions are used,

\ one obtains the Fox and Li formulation. Other authors have

3 used the Hermite-gaussian functions (Ref 16), power series

) (Ref 23) and other functions to evaluate the matrix elements.

é‘ The asymptotic method is a method where an incomplete set is
used. This set is generated by applying the method of
stationary phase to a form of the integral equation, Eq(2.5).

: (Ref 19, 24) Even though this set has not been shown to be

. complete, the analysis leads to a polynomial equation for the

eigenvalues and the expansion coefficients. Thus this method

diagonalizes the matrix whose eigenfunctions we seek to find.

A considerable savings in computational time results.

g,

However, use of this basis set may lead to inaccurate higher

E order eigenfunctions and eigenvalues. This will be one area

g investigated in this chapter.

" As Sanderson and Streifer point out, the optimal basis

é set is one that approximates the modes of the resonator as

y closely as possible. (Ref 22) (We require the basis set to

S be a complete, orthonormal set of functions on the finite
interval (-a,a). The modes of the resonator do not meet

- either of these conditions, being neither complete nor

orthogonal in the usual sensg.) Since this requires
knowledge of the modes before they are calculated, the basis
set can be chosen instead to provide the best approximation
to the kernel when the series in Eq(2.9) and Eq(2.10) are

truncated at some value, say N, Streifer has shown (Ref 25)

that the Schmidt expansion functions are this optimal basis
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set. If this basis set is used, the coefficient matrix in
Eq(2.9) becomes diagonal and the truncated series is the best
N-term approximation (in the mean square sense) for a given
value of N . For the strip resonator, this basis set is
related to the linear prolate functions. Since this basis
set leads to integrals in the matrix elements that cannot be
evaluated analytically, it has not yet been used in
evaluating the modes of strip resonators. However, the
linear prolate functions will be used in this investigation
as a basis set to find the strip resonator modes. The
analysis is found to be straightforward and the solutions are
as accurate as other methods,

We now pause to review the linear prolate functions,
their properties, and the numerical method used to calculate
them. Following this discussion, the specific matrix
eigenvalue problem using this basis set will be derived.
After verifying that the implementation is correct by
comparing results with other work, two areas will be studied.
The first area is the study of the validity of the asymptotic
approach at low equivalent Fresnel numbers. The second area
is the demonstration of the orthogonality of the strip

resonator modes as discussed earlier in this chapter. (See

Eq(2.8).)

D. The Linear Prolate Functions

This section is broken into three parts, The first part
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discusses the defining equations for the linear prolate
functions (LPF). The second part covers the properties that
will be used in the modal analysis that follows this section.

The third part is a discussion of how the linear prolate

.;a.l | NS

functions are calculated numerically.
- The linear prolate functions are related to the prolate
spheroidal wave functions that arise when the wave equation
is separated in prolate spheroidal coordinates. However,
there is no advantage to examining this connection and it is
entirely adequate to consider the LPF as a set of special
functions defined by the equations given below. Although the
following discussion is fairly detailed, the interested

reader is referred to the literature where a number of

P APEL

excellent references go into far greater detail. (Ref 26-33)
j The book by Flammer (Ref 26) is an excellent work on the
prolate spheroidal functions. The chapter by Freiden in
Progress in Optics (Ref 27) is very complete summary of the
linear prolate functions and much of what follows is based

upon this reference.

1. Defining Equations
The linear prolate functions can be considered as

solutions to a Sturm-Liouville differential equation,

® w, x,e) " i
(1-x) u"{'i —7x SMa (I —e*x?) Y, (xa) = 0 (2.13)
ax dx L ]

where the boundary conditions are chosen such that the LPF

remain finite at #1, A family of LPF is characterized by the
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parameter ¢ , and each LPF within the family is
characterized by the eigenvalue of the differential equation,
f;.The dependence of each LPF on the parameter ¢ is
implicit in every application of the LPF and the subsequent
notation may not explicitly show this dependence.

The LPF can also be defined as the eigenfunctions of the

finite Fourier transform: (Ref 27,29)

. 1 \
: 2l Y :—.j dy e ¥y (2.14)

“1 *

Here, the LPF are characterized by a second eigenvalue, ¥, .
£ A third equation that could be used to define the LPF is
S the first iterate of Eq(2.14). This equation is found by

multiplying Eq(2.14) by exp(-icxz) and integrating over x :

) \
) — sin C(i-'l\ 2.15
- % \\1 (z) \Yd\/ T (y-7) \‘PA () ¢ )
-\
; The intimate connection between the LPF and the modal analy-

sis of resonators is highlighted by the fact that Eq(2.15) is
the equation for the modes of the stable, confocal resonator.
In this case the LPF actually are the modes of the resonator.
We will later find another class of resonators that have LPF
as exact solutions.

Figure 2.3(a-0) show the first fifteen LPF for the case
. where ¢ = 3.,5903916. Notice that each LPF is characterized

by a large peak on the semi-infinite interval and lower

. amplitude oscillations elsewhere. Also note that this peak
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moves out to larger values of x as the index of the LPF
increases. For some value of the index, the LPF will be
nearly zero in the interval (-1,1) and one expects LPF of
this index or larger to contribute little to the mode of the
resonator., We will find this to be supported by later
results. Finally, note that the LPF are even for even index

and odd for odd index.

2. Properties of the LPF

We now consid;r the properties of the LPF. The
functions are reél—valued functions and the two eigenvalues
associated with them are real, The eigenvalue of the

differential equation increases with increasing index:

0 <, <« <Th < ... (2.16)

Figure 2.4 is a plot of this eigenvalue as a function of
increasing index. The integral equation eigenvalue exhibits
a markedly different behavior, Figure 2.5 shows this

behavior. A good approximation to this sharp cutoff is

1 por n &V\‘
i (2.17)

o) for n >T\e

where n‘=-z;,£ . This steplike behavior is very useful in
many applications of the LPF. Another property that will be

used is the orthogonality of the LPF over the finite

interval,
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|
j‘dx Yot x) = ¥, 3 (2.18)
. =

The LPF also are orthonormal on the infinite interval.

Since the LPF satisfy a Sturm-Liouville problem, they
. are a complete set on the finite interval. (The LPF are
5 square-integrable functions in the space L, with the norm
: shown above.) This completeness shows that the kernel
5 expansion and expansion of the eigenfunction discussed in
? Eq(2.9) and Eq(?.lO) are convergent series (and converge to
| the desired functions) when the LPF are used as a basis set.
Frieden also shows that the LPF are complete on the infinite
interval. '(Ref 27)
a A property that will be very useful in the analysis of
/ the strip resonator modes is the expansion of the kernel of

the finite Fourier transform in LPF:

e.cl‘l :.Z-o 2 S_ZE_:L‘_ \‘/lkX) \h(\/) ] (2.19)

2 This expansion is easily obtained from the defining integral

equation, Eq(2.14), and the orthogonality property, Eq(2.18).

‘rted b

This concludes the review of the properties of the LPF

? b

relevant to the analysis of the strip resonator. We now turn

our attention to how the LPF.are generated numerically,

3. Numerical Generation of the LPF

3 One disadvantage that has plagued the LPF is that they
y 40
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have been difficult to generate numerically. One must
evaluate an infinite series expansion for the eigenvalues as
well as the eigenfunctions in order to obtain highly accurate
values for the LPF. Van Buren has written a code that does
precisely this. (Ref 34) However, if one desires knowledge
of several LPF over a wide range of arguments, such an .
approach requires too much computer time and memory to be
practical., We have developed a method that produces a large
set of LPF on th? interval (-1,1) with good speed and
accuracy. This method should be of use to other researchers
using the LPF, The approach taken is first to use the Van
Buren code to generate the two eigenvalues and two endpoints.
For even LPF, the values at x = 0 and x = 1 were used; for
odd LPF the slope at x = 0 and the value at x = 1 were
used. Then these values were used in a finite difference
code that generated the LPF over the interval (~1,1) by
solving the differential equation, Eq(2.13). A nonuniform
grid was required when generating the LPF because of the
large peak discussed earlier. The requirement for a
nonuniform grid is more clearly seen by considering the
LY
3

differential equation Eq(2.13) when X=X, = . Then a

differential equation for the derivative of the LPF can be

written.

(1-x3) %7(*‘,’) ~2x. Y =0 (2.20)

R

The solution is
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When X,¥1 , the LPF has a steep slope. Thus a nonuniform
grid was required to follow this variation accurately.
Finally, the required number of points in the grid was
determined by requiring accurate representation of the LPF,
The orthogonality relation was used as the accuracy require-
ment. The numer?cally generated LPF were squared and
integrated on the interval (-1,1). The result was compared
to the integral equation eigenvalue., As long as these values
agreed to within one percent for the range of LPF of
interest, the basis set was found to be accurate enough for
the strip resonator modelling.

We now return to the problem of finding the modes of a
strip resonator. The next section deals with the derivatipn
of the matrix eigenvalue problem. Following this section,
the matrix eigenvalue problem is solved and several useful

results are discussed.

E. Derivation of the Matrix Eigenvalue Problem

Consider the application of the kernel expansion using
the LPF as a basis set to solve the round trip equation for
an aligned, single-ended, strip resonator. Recall that this

equation is

' ~inFlalxtey?t) —2xy])
Tuty =TF Joy ™0 | am
=\
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Note that wvhen g = 0 this equation is identical in form to
the defining integral equation for the linear prolate
functions, Eq(2.14). This case occurs when, for a single-
ended resonator, the feedback mirror (mirror 1) is confocal
with its image in the back mirror (mirror 2). This family of
resonators lies on two hyperbolae in the stable region of the
84 ~ 8, stability diagram. (See Figure 2.2) This special
class of resonators which have the LPF as exact solutions has
not been noted pfeviously in the literature.

We now transform Eq(2.22) into the Horwitz standard
form. (Ref 19) The details are contained in Appendix 2. The

resultant integral equation is

/M\ﬁ.(x) =F§Sl"7 o't ky-’.:)‘\“y) (2.23)
-t
where the eigenfunctions are related by
ulx) = hix) (-3";'1~r Py x* (2.24)
and where the effective Fresnel number is defined as
R = ‘—E" (M“‘P\‘) (2.23)
The magnification is defined by
™M = 3+\31_f (2.26)

with T=twM¥ and

/A=:c"4 .
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Note that Eq(2.23) is most applicable to unstable
resonators because of the definition of magnification, and
the discussion that follows assumes the strip resonator is
unstable. However, note that in the stable region, g <1 ,
and the magnification becomes a complex number of magnitude
one and the effective Fresnel number becomes pure imaginary.
The exponential factor in Eq(2.24) is then gaussian, and the
notion of Hermite-gaussian functions for the stable resonator
modes arises naturally. (In Appendix 6, we derive a MEVP
from Eq(2.22) directly. This MEVP is more applicable to
stable strip resonators. In Appendix 7, we derive a MEVP for
a resonator with cylindrical symmetry using the circular
prolate functions (CPF) as a basis set.)

Next, we expand the exponent in Eq(2.23). Defining ¢ =

2t/M  and using the expansions,

1=0

and

() _& _
- v,g“ W, (x) (2.28)

L=0 p)

V(x)

one can obtain a matrix eigenvalue problem (MEVP) for the
strip resonator modes. (Again, the details are contained in
Appendix 2 .) The choice of the particular expansion in

Eq(2.28) causes the resultant MEVP to have the same complex-

symmetric nature that the integral equation had. The MEVP is
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where

m Lol Celie S)x?
B ) =W .\.-!A kx“!'bk \de e-\tL‘ ) )” \y"(x) \Pm (x) . (2.30)
-1

Since the complex-symmetric nature is retained, the
eigenvectors of this matrix exhibit the same orthogonality
property that the eigenfunctions had. The solution of the
MEVP gives the eigenvalues of the bare cavity modes and the
expansion coefficients k%\ . These coefficients are used to

reconstruct the bare cavity modes via this equation:

i By -3 -
Uuix) = e1T “ Z \3“1 q-x“} \\)“(x) . (231
Nnz=0

Clearly we obtain all the modes only in the case where the
MEVP is infinite-dimensional. In practice, the
dimensionality is finite, and restricts the number of bare
cavity modes that are accurately modelled. We now turn our
attention to solving this MEVP and studying a problem of
interest, the accuracy of the higher order modes as calcu-

lated by the asymptotic approach.

F. Solution of the Matrix Eigenvalue Problem
In this section we discuss how the matrix eigenvalue
problem derived in the previous section is solved for several

cases. The goal is to show the validity of the LPF
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expansion, to exhibit its limitations and to obtain a tool to

study the modes of a empty strip resonator. The MEVP was
solved on a Control Data Corporation Cyber series computer
available through the Aeronautical Systems Division at Wright
Patterson AFB, Ohio. All computer codes were written in
FORTRAN IV and the International Mathematics and Scientific
Library (IMSL) subroutines were used whenever possible.

Prior to generating the matrix and finding the
eigenvalues and expansion coefficients, it is necessary to
generate the LPF aé a basis set. This process was described
earlier in Section D, Part 3. The LPF were stored on a disk
file to be accessed by the MEVP code.

The matrix eigenvalue problem was solved in a
straightfor;ard manner. Since the aligned resonator modes
can be separated into even and odd parity modes, the size of
the matrix can be reduced by calculating only the matrix
elements necessary for the parity of interest. In the code
developed for this research, the even modes were found first
and then the odd modes were computed. An additional

advantage to having the symmetric matrix is that only the

2
upper triangle of the matrix needs to be generated. Of the N

elements, only N(N+1)/2 need to be calculated. Once
the matrix is generated, the IMSL routine "EIGCC" was used to
find the eigenvalues and eigenvectors. The eigenvalues are
those for the Horwitz standard form and need to be divided by
the square root of the magnification to obtain the usual
eigenvalues. The eigenvectors were written to a disk file

for use by another program to generate the bare cavity modes
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and obtain intensity and phase plots.

Clearly, the matrix size must be limited to some
. dimension, N. The smaller the value of N, the faster the
MEVP can be solved, but fewer bare cavity modes are
accurately modelled. (If N is too small, none of the modes
E are accuratelyu modelled. See Eq(2.32) below.) Streifer
showed that the linear prolate functions are the basis set
that allows the lowest value of N since these functions are
related to the S;hmidt expansion functions for the bare
cavity kernel, (Ref 25) 1In practice, we found that to
adequately resolve the eigenvalue of the lowest loss mode, N

3 needed to satisfy the relation

N 3 Eﬂi (2.32)
a® '
- In terms of the Fresnel number, F -isjf, this relation is WN 24F,
However, in order to obtain the higher order modes and the
expansion coefficients, N needs to be larger than this. No
specific criterion was apparent in the studies and each case
should be treated separately. By looking at the magnitude of
the expansion coefficients of mode of interest, and insuring
N that the smallest coefficient is at most a ten-thousandth of
. the largest coefficient, one is reasonably sure that the mode
is accurately modelled. Each case studied in the next
section used a value of N that was sufficiently large that
the use of additional LPF did not alter the eigenvalues by

more than 0.01% or visibly alter the intensity profiles of
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the bare cavity modes.

G. Results

In this section we study a number of topics that utilize
the analysis of the previous sections. First, we study the
numerical convergence issues for the particular case of M=12.5
and F;“_ =0.6 . This study exercises the codes and exhibits
their limitations. This particular case was chosen for two
reasons: (1) the-vglue for ¢ is small, so the matrix was
small, allowing maﬁy runs for low cost, and (2) the case has
been cited in thé literature by several authors. (Ref 1, 35,
and 36) Second, we validate the analysis and the codes by
comparing the results obtained with different solution
techniques for several different cases. The techniques used
were the iterative approach where the integral equation is
solved with the method of successive approximations (MOSA),
the asymptotic approaches of Moore and McCarthy (Ref 20) and
Horwitz (Ref 19), and the kernel expansion using the LPF.
The MOSA approach only yields the lowest loss mode and
eigenvalue. Also, for specific cases, comparison could be
made with other published data or data provided by Dr. Alan
Paxton of the Air Force Weapons Laboratory, Kirtland AFB, NM.
Third, we study the behavior of the eigenvalues near a mode
crossing where the two lowest loss eigenvalues have nearly
the same magnitude. The crossing that was analyzed occurred
near M=3 and Fﬂ‘:lj‘l‘lz. Fourth, the kernel expansion

technique, now thoroughly validated, was applied to examining

the validity of the asymptotic approach at low effective
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Fresnel nﬁmbers. This study is significant because of some
of the assumptions made in the asymptotic analysis. The
section concludes with a numerical demonstration of the
orthogonality of the eigenmodes of the strip resonator.
Although this property can be shown analytically (see
Appendix 1), it serves as an additional validation of the
computer codes and is of some use in the study of loaded

cavity modes.

1. Numerical Convergence
We consider the case of M=25 and F;=0.6 . The
issue is how many points and how many LPF are needed to

obtain accurate results. First, note the parameter c can

be calculated using the equation

Ly ™M Fog
M -1 .

C (2.33)
This particular case was chosen because the value of ¢ 1is
low, namely, c¢ = 3.5903914. Also, Rensch and Chester have
studied this case and their work has been cited by other
authors. The cut~-off criteria given in Eq(2.32) indicates
that N should be about 3 in order to accurately give the
lowest loss eigenvalue. In order to validate the results, we
examine the case where N 1is much larger than this value.

An N of 14 was found adequate to resolve the first

several eigenvalues (by comparison to other methods). Also,

one needs to have a suitably fine grid. For this case, we
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find that having 250 points or more in a nonuniform grid
which is finer near %1 provides adequate resolution.
However, as a baseline, we use 723 points to insure good
resolution. Using these parameters, we solve the matrix
eigenvalue problem. Table II-1 shows the eigenvalues
obtained. We choose the usual convention that the
eigenvalues be ordered by magnitude. Higher order
eigenvalues were obtained but are not shown because (1) they
may not be adequately resolved and (2) they are of such a
high loss that they are not of practical interest. Figures
2.6 and 2.7 show.the intensity and phase of the lower loss
modes. In the next subsection, we compare these results to
those obtaiPed from other methods to check the external
consistency of the LPF expansion. Here we focus on internal
consistency. As noted earlier, these modes are constructed
using the linear prolate function expansion. Thus, studying
the behavior of the expansion coefficients tells us if
convergence has been obtained. Table II-2 contains data for
various number of LPF being used in the expansion. The
coefficients listed are the first eight coefficients for the
expansion of the lowest loss mode. The eigenvalues are also
listed. The entries are listed by magnitude and phase. The
number of points used in the nonuniform grid was 547. Two
facts are readily evident from Table II-2, First, the
magnitude of the coefficients &ecreases for higher order LPF.
Second, the addition of more LPF in the expansion does not
alter the coefficients of the lower order LPF, ALso, note

the eigenvalue of the lowest loss mode has converged when
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TABLE II-1.

Magnitude of the Mode Eigenvalues

M= 2,5 Feff = 0.6

mode " . kernel asymptotic iterative
index expansion expansion technique

0 1.19 1.18 1.19

1 0.83 0.81 -

2 . 0.60 0.61 -

3 0‘30 0046 -

6 0009 0.42 -
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four LPF have been included in the expansion. This is in
good agreement with the criteria established in Eq(2.32).
Similar behavior in the coefficients and the eigenvalues are
observed for the higher order modes. Although no precise
criteria was evident as to when enough LPF have been included
for a particular higher order mode (owing to the small number
of cases studied), the coefficients exhibit a sharp decrease
in magnitude after a certain order of LPF. Table II-3 shows
the magnitude of the expansion coefficients of the first
eight modes for the case at hand. The sharp decrease is
evident. This decrease mirrors the behavior of the integral
equation eigenvalue of the LPF and it is the primary reason
to consider. the LPF as an expansion set. The cases studied
to date indicate that the higher order mode has been
adequately modeled when the magnitude of the higher order
coefficient has decreased four orders of magnitude. This
criteria should be treated as a rule of thumb and not a firm
cut-off.

We next turn to examining the number of points required
to obtain convergence. Here, the major source of error is
the numerical generation of the LPF. The errors in the LPF
show up in the calculation of the matrix elements and thus in
the eigenvalues and eigenvectprs. In fact, a very slight
deviation from even or odd parity became evident when the LPF
expansion was used to confirm numerically the orthogonality
relation of the bare cavity modes. This point will be

discussed in greater detail later.) In all the mode
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calculations discussed in this report, the LPF wvere

calculated so that the eigenvalue, X‘ » calculated by
numerical quadrature was within one percent of the value
obtained from the series expansion for the range of LPF of
interest. Table II-3 shows how the expansion coefficients
and eigenvalue of the lowest loss mode varied as more points
wvere taken. From this table, we conclude that 375 points
appears to be adequate for the calculation of both the
eigenvalue and the expansion coefficients. All the
calculations made ko date indicate that the numerical
convergence is well-behaved and that the matrix eigenvalue
problem can be readily solved. However, one is forced to
concede that the criterion given in Eq(2.32) grows rapidly
with increa;ing Fresnel number. Thus, the kernel expansion
is limited inevitably by the size of the matrix required to
adequately model the modes of interest. When the matrix gets
very large, alternate techniques of extracting the dominant
modes and eigenvalues may become more useful. Such
techniques include the Krylov or Prony technique used by
Siegman and Miller. (Ref 17) As an aside, it is noted that

this behavior is not unique to kernel expansion techniques.

2. Validation of Approach

The kernel expansion technique using the linear prolate
functions as a basis set can be validated by comparison to
solutions obtained by other authors or other approaches. We
study here the cases of ( M, FCﬁ ) = ( 10.0 , 0.225 ),
(2.5, 0.6), (3.0, 1,8742), ( 2.0, 2,0),
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( 10.0, 2.7 ), (2.0, 2.5 ), and ( 2.0 , 4.0 ). These

cases are ordered in increasing t , where

(2.34
M’."l . )

P S W

This parameter is used since it is the parameter of the
asymptotic expansion used in the evaluation of Eq(2.23). The

values of t for the cases listed above are, respectively,

1.43, 4.49, 13,2479, 16.8, 17.1, 20.9 and 33.5. Tables II-4

. to II-10 list th; magnitudes of the eigenvalues for these
cases., In each table, results are included from an iterative
calculation (except in the case of a mode crossing), an
. asymptotic calculation, and the LPF expansion. 1In the fourth
and sixth cases, results are included from a paper by
Henderson and Latham (Ref 18) where they calculate the even
5 parity mode eigenvalues only. |

A fev general comments apply to most of these cases,
The eigenvalues are ordered by decreasing magnitude. No
definite pattern existed as to how the parity of the modes
was ordered except that the lowest loss mode is always of
even parity. The LPF expansion and the results from
Henderson and Latham indicate that the eigenvalues will
continue to decrease in magnitude without limit. However,
the asymptotic approach predicts the eigenvalues decrease to

a nonzero limit., This difference seems to be caused by an

{d

4

f inherent approximation in the asymptotic approach. (Ref 17)
= We address this difference in more detail later.
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o
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TABLE II-4.

Comparison of Eigenvalues

M= 10 Foep = 0.225 t = 1.43
1 approach magnitude phase parity
0 L 1.2238 0.3169 even
A 1.3336 0.2874
: P 1.2238 0.3169
; 1 L 0.1189 1.4893 odd
” A 0.1648 1.6052
. 2 L 0.0050 -3.1235 even
; A 0.0834 -2.5736
: 3 L 0.0001 -1.5204 odd
q A 0.0136 -1.7981

- NOTE: L = linear prolate function expansion
- A = asymptotic approach (Ref 19)
- P = power method (Ref 15)

. RIS ]
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Comparison of Eigenvalues

M= 2,5 Feff = 0,600 t = 4.49
: 1 approach magnitude phase parity
0 L 1.1874 -0.1428 even
A 1.1829 -0.1791
< P ) 1-1875 -001428
. 1 L 0.8249 0.1080 odd
: A 0.8059 0.0612
) 2 L 0.6008 1.0130 even
A 0.6120 0.9763
3 L 0.3048 2.4379 odd
A 0.4551 2,2756
g 4 L 0.0887 -2.0817 even
. A 0.2132 * -1.9724 *
* matched by phase
f NOTE: L = linear prolate function expansion

A = asymptotic approach (Ref 19)
P = power method (Ref 15)

YA,
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TABLE II-6.

Comparison of Eigenvalues

M= 3.0 Feff = 1.8742 t = 13.2479
1 approach magnitude phase parity
0 L 0.7762 -0.2472 even
A 0.7691 -0.2654
P _— % - %

1 L 0.7758 0.2066 even
A 0.1648 1.6052

2 L 0.6155 -0.4191 odd
A 0.6206 -0.4408

3 L 0.4981 2.9994 even
A 0.4799 2.9997

4 L 0.4502 1.4978 odd
A 0.4488 1.3443

5 L 0.3451 ~2.8463 odd
A 0.4024 ~2.5378

6 L 0.0867 3.0994 even
A 0.2620 ** 2,9477 **

¥ no convergence with power method at mode crossing

** mode matched by phase

NOTE: L = linear prolate function expansion
A = asymptotic approach (Ref 19)
P = power method (Ref 15)
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TABLE II-7,

Comparison of Eigenvalues

M= 2,0 Feff = 2,0 t = 16,8

1 approach magnitude phase parity

0 L 1.0171 0.1440 even
H&L 1.0166 0.1436
A 1.0166 0.1475
P 1.0169 0.1444

1 L 0.8655 -0.4050 even
H&L 0.8648 -0.4053
A 0.8611 -0.3896

2 L 0.8000 -0.4593 odd

3 L 0.7249 0.6887 odd
A 0.7498 0.6891

4 L 0.6764 -2.0729 odd
A 0.6250 -1.9121

5 L 0.6389 -2.3080 even
H&L 0.6390 -2.3056
A 0.5706 -2.2367

6 L 0.5631 1.4217 even
H&L 0.5676 1.4226
A 0.5815 1.4408

7 L 0.4281 2.3134 odd
A 0.5309 1.9765

8 L 0.2576 -2.7802 even
H&L 0.2765 -2.8085
H&L 0.0865 ~0.8145

* mode matched by phase

NOTE:

H&L

L

A
P
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(Ref 15)

linear prolate function expansion
moment method (Ref 18)
asymptotic approach (Ref 19)
power method
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: TABLE II-8.
: Comparison of Eigenvalues
M =10 Feff = 2,7 t=17.1

? 1 approach magnitude phase parity
' 0 L 0.9867 -0.1490 even
! P 0.9869 -0.1492

X 1 L 0.2863 1.0585 even

A 0.2887 1.0248
- 2 L 0.2620 -0.1299 odd
: 3 L 0.1856 2.6926 odd
. A 0.1853 2.5633
- 4 L 0.0164 -3.0127 even
- A 0.1036 -2.9009
NOTE: L = linear prolate function expansion
A = asymptotic approach (Ref 19)

; P = power method (Ref 15)
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TABLE II-9.
7; Comparison of Eigenvalues
] M = 2.0 Feff bad 2.5 t = 20.9
< 1 approach magnitude phase parity
L 1.0770 -0.0437 even
H&L 1.0762 -0.0434
A 1.0800 -0.0449
- L 0.7966 0.0993 odd
A 0.7925 0.1065
B L 0.7364 0.6257 even
A H&L 0.7448 0.7936
2 L 0.7286 -1.0775 odd
A 0.7062 -1.0752
L 0.6780 -1.0873 even
HE&L 0.6753 -1.0829
L 0.6648 -3.1372 odd
- A 0.6525 -3.1400
: L 0.5858 1.4153 odd
- A 0.6410 1.4488
] L 0.4882 -2.9229 even
. H&L 0.4656 -2.3702
2 A 0.5125 * -2.584 *

* mode matched by phase

NOTE: L = linear prolate function expansion
H&L = moment method (Ref 18)
A = asymptotic approach (Ref 19)
P = power method (Ref 15)
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TABLE II-l10.

Comparison of Eigenvalues

! M=2,0 Feff = 4,0 t = 33.5
! 1 approach magnitude phase parity
‘
0 L 1.0103 0.1395 even
A 1.0041 0.1312
P 1.0080 0.1412
1 L 0.8907 ~-0.2741 even
A 0.8745 -0.2798
2 L 0.8264 -0.3177 odd
A 0.8208 -0.3408
3 L 0.8051 0.5725 odd
. A 0.8012 0.5799
- 4 L 0.6630 1.0926 even
X A
2 5 L 0.6434 -1.5555 even
> A 0.6488 -1.5651
. 6 L 0.6158 2.7015 even -
N A 0.6291 * 2.6988 *
N 7 L 0.6020 -1.4957 odd
A 0.6361 * -1,5411 *
8 L 0.5323 1.7890 odd
: A 0.6023 * 1.7545 *
9 L 0.5318 -3.0623 odd
2 A 0.5788 * -2.8552 *

* mode matched by phase

NOTE: L = linear prolate function expansion
A = asymptotic approach (Ref 19)
P = power method (Ref 15)

S
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We now briefly examine the various cases listed above,

The first case, M=100 and F‘ﬁ =0225 , has 1low values of
both ¢ and t . Thus the size of the matrix required is
small and both the matrix and iterative schemes are in good
agreement. However, the asymptotic code predicts eigenvalues
that generally disagreed with the other approaches. This
confirms that the asymptotic approach is not valid at very
low Fresnel numbers. The intensity profiles from the
iterative code and LPF expansion agreed as well.

The next case, M=2.5 and F,=0.¢ , was the case
studied most closely. As Table II-5 shows, all three methods
gave the same lowest loss eigenvalue to three significant
digits. Even though t = 4.49 , the LPF expansion and the
asymptotic code agreed well for the first two lowest loss
eigenvalues, The intensity and phase plots of the eigenmodes
agreed well for the first three modes. 1In addition,
calculations made by Dr Paxton of the Air Force Weapons
Laboratory for this case predicted the same lowest loss mode
shape. However, the mode shape doesn't agree well with the
same case as calculated by Rensch and Chester. (Ref 35) 1In
Ref 35, an aperture is placed at the back mirror and thus
more spatial structure is introduced in the mode. Note that
the LPF expansion and the asymptotic method give very
different eigenvalues for the higher order modes. In fact,
some of the solutions given by Fhe asymptotic method seem to
be spurious solutions that do not correspond to any mode
predicted by the LPF expansion.

The third case, M=3.0 and F‘ﬂa\.wmz » was chosen
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because this case is very near a mode crossing, where the two
lowest loss mode eigenvalues have the same magnitude. This
case will be discussed separately after this brief review of
the various cases, We restrict our examination here to the
close match between the LPF expension and the asymptotic

H method. Note first that the iterative approach takes an

extremely long time to converge near a mode crossing. Near a

mode crossing, the outcoupling between the two lowest loss
modes is so nearly identical that the code cannot efficiently
discriminate between them. (The same problem arises in the
study of stable resonators using the iterative method.) Now
the LPF expansion and the asymptotic method give good
agreement out to the fourth even eigenvalue, but after this
eigenvalue, ‘the two codes disagree. The eigenvalues
predicted by the LPF expansion continue to decrease toward

zero but the asymptotic approach predicts eigenvalues that

tend to a finite 1imit., Note also that the asymptotic

approach predicted the mode crossing at ﬁa‘ = 1.8675 for M
= 3.0 wvhile the LPF expansion predicted the mode crossing at
Fesg = 1.8742. The difference is most likely due to the low
effective Fresnel number which is near the limits of the

asymptotic approach.

L g AN e ht oy Lk as o e an e

Let us examine the cases of M = 2,0 , R, = 2,0 and
M=2,0, F;_“ = 2.5 at the same time. Here we can use the

results given by Henderson and Latham as an additional

L b aut orh ue o

comparison. (Ref 18) However, note that they only consider

even parity modes. In both cases, good agreement is found

-
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between the four methods for the lowest loss mode. The LPF
expansion and the matrix method used by Henderson and Latham
agree well to the limit of the data available. In the first
case, this is at the tenth eigenvalue while the second case
is limited to the seventh eigenvalue. The asymptotic code
predicted eigenvalues in good agreement with the other two
methods, except at the higher order eigenvalues the
asymptotic code gave many possible eigenvalues that all have

about the same magnitude. In some instances, one could not

even match any values to the eigenvalues predicted by the LPF
expansion. One should observe that the value of t 1is large
enough in both cases that the asymptotic method should be
valid. We conclude that the first few lower loss eigenvalues
predicted by the asymptotic approach are probably accurate,
but advise caution if the higher order eigenvalues (and
eigenmodes) are to be used.

We examine the case of M = 10,0 and EB&' 2.7 because it
allows an examination of eigenvalue behavior at large
magnification. Here, the LPF expansion, the asymptotic
approach and the iterative approach all agreed well for the
lowest loss eigenvalue. The LPF expansion and the asymptotic
approach agreed well through the third eigenvalue but for
higher loss modes, the eigenvalues did not agree. Those
predicted by the asymptotic approach level off and those
predicted by the LPF expansion continue to decrease toward
zero. Again, this behavior is most likely due to the
approximations made in the asymptotic approach, as pointed

out by Horwitz., (Ref 19)
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Finally, we look at the case
This case was at the limit of the
memory limitations imposed by the

from Table II-10, the lowest loss
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of M=2.0, % =4.0 .
LPF expansion code due to
computer system. As seen

eigenvalue is predicted to

be about 1.01 by the three techniques (LPF expansion,
asymptotic approach and iterative approach). Fairly good
agreement was found between the LPF expansion and the
asymptotic approach up to the fifth eigenvalue. After this
value, the asymptgtic code predicts eigenvalues with
magnitude of about 0.6 to 0.55, while the LPF expansion
predicts the eigenvalues continue to decrease.

From the examination of these and other cases, we
conclude that the LPF expansion is a valid technique and that
the numerical codes used to generate and solve the MEVP gave
results that agreed with those given by other methods. Also,
the intensity and phase plots of the lower loss eigenmodes.
agreed between the asymptotic and iterative approaches and
the LPF expansion. The advantage of the LPF expansion is
that the eigenmodes and their eigenvalues can be computed
fairly quickly and with good accuracy. The asymptotic codes
are computationally faster but the higher loss modes may not
be correct. The iterative scheme is limited to predicting
the lowest loss mode only, unless more elaborate techniques
(such as Gram-Schmidt orthogonalization) are used. Other
matrix approaches such as the one used by Henderson and
Latham also give good results for higher order modes. The

value of one basis set versus another is determined by the
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geometry and computer resources available. While the LPF

should give the N-term best expansion, one must still
generate the LPF basis set. This requires only a small
amount of computer time. Also, the LPF are applicable to
rectangular geometries. For cylindrical coordinates, the

appropriate basis set is the circular prolate functions.

3. Studies of eigenvalues near a mode crossing

Let us now return to the case of the mode crossing. 1In
order to find a mode crossing, one can hold the magnification
constant and vary the effective Fresnel number over some
range, The mode crossings are usually said to be near
integer values of effective Fresnel numbers while the maximum
mode separation (in the sense that the two lowest loss
eigenvalues are widely separated) usually is said to occur
near hali-integer Fresnel numbers. (Ref 1) Often one tries
to design the resonator so that it has a half-integer Fresnel
number to avoid possible mode competition during laser
operation. However, the waveguide analysis done by Vainstein
indicated that the mode crossings occur at n + 7/8 and the
maximum mode separations occur at n + 3/8 . (Ref 9)
Numerical studies done with both the asymptotic approach and
the LPF expansion support the results from Vainstein. For n
= 1 , there should be a mode grossing at approximately 1.875
and such a crossing was found at 1.8742 (via the LPF
expansion). The asymptotic code predicted this crossing at
1.8675. This is in good .greement with the LPF expansion

results considering the low Fresnel number.
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In order to establish the mode crossing precisely, a

oof et e e - -

range of effective Fresnel numbers from 1.3 to 2.4 was

examined. Figure 2.8 shows a plot of the four lowest loss

™

eigenvalues in the complex plane. The abscissa is the real
part of the eigenvalue while the ordinate is the imaginary
part of the eigenvalue. The diagram contains a large amount
of information and is fully discussed by Horwitz (Ref 19) and

Sanderson and Streifer (Ref 22)., Our purpose in showing the

diagram is to find the mode crossing but the interested

reader is referred:to these excellent articles for further

+ AP N 4

insight. The mode crossing is indicated by the arrows. Note
that the eigenvalues are nearly complex conjugates. (See

R Table II-6.) Also, note that only the even parity
eigenvalues contribute to the peak near Re(s) = 1 . 1In

' fact, Horwitz's calculations show that for large effective

§ Fresnel numbers, the lowest loss mode splits off in a circie
- about this value and the higher loss modes circle about the

Y origin. The odd modes always circle about the origin with a
radius of less than unity. This splitting off of the lowest
loss mode from the other modes is only observed in the strip
case. Butts and Avizonis (Ref 21) found that the eigenvalues
; interleave for all values of effective Fresnel number in the
case of circular mirrors. Figure 2.9 shows a plot of the
outcoupling versus the effective Fresnel number. The

outcoupling is defined as

! o SV O AR ]

(2.35)
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The outcoupling is thus related to the magnitude of the
eigenvalues and characterizes the loss of a given mode. A
line is drawn on this figure for the geometric outcoupling,

defined as 8 =1 -1/M . (These formulae apply to strip

)
resonators only.) In this figure, the mode crossing is
clearly evident., The point of this discussion has been to
elaborate on how one finds a mode crossing and to illustrate
the behavior of the eigenvalues. The results also serve as
an additional validation of the LPF expansion technique.
4, Study of the asymptotic approach at low Fresnel numbers
We now discuss the validity of the asymptotic approach
at low effective Fresnel numbers. This discussion uses the
results discussed earlier. We found that the first few
eigenvalues and eigenmodes were in good agreement with the
iterative approach and the LPF approach as long as the
asymptotic expansion parameter, t , was greater than &4 .
This is rather remarkable, considering the nature of the
asymptotic expansion. Smith also found good agreement for
the lowest loss mode using the asymptotic technique and
comparing to results obtained by Rensch and Chester. (Ref 35)
However, as Horwitz suggested, the "leveling off" phenomena
observed for the higher loss eigenvalues seems to be due to
the approximations inherent in asymptotic approach. (Ref 19,
p.1533) 1In particular, an approximation is made to get the
expansion in the form of a set of expansion functions.,
Without this approximation, the method would not work, for it

is here that the diagonalization of the matrix eigenvalue
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problem occurs and the reduction of the MEVP to a polynomial
problem results. It is also here that the increased
computational speed is obtained, but this approximation is
the one that causes the higher order modes to be incorrect.
It appears from the results obtained to date that some of the
higher order modes may even be spurious solutions and not
physical modes at all. So we conclude that the asymptotic
approach is extremely useful for finding the lower loss bare
cavity modes for.effective Fresnel numbers larger than 1

and large magnificétions. However, caution is advised if the
higher loss modes are needed. (For example, one would need
these modes if the bare cavity modes are used as a basis

set.) Then, more costly but more accurate matrix techniques

should be used.

5. Demonstration of the orthogonality of the modes.

The final arealin which we apply the LPF expansion is
the demonstration of the orthogonality of the modes of the
empty strip resonator. The orthogonality is shown in Eq(2.8)

and is repeated here:

al
f U ) uy () dx = ..

Y3
-q.

This relation also served as a means of normalizing the bare

cavity modes. We examine the two cases where M=2.,5 and

F = 0.6 and M= 3.0 and F = 1,8742 . Tables II-11

eff e 5
and II-12 show the inner products for these two cases. In
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TABLE II-11.

Demonstration of Orthogonality
M=2.5 Feff = 0,6

i
n m |Iiun(x) um(x) dx |

(=}

1.000 *

1.045E-07
1.004E-04
1.037E-06
2.680E-04
2.946E-06

ooooo ©
UMW =

1.212E-07
1.989E-04
9.246E-08
3.804E-04

Pt ok kb

1.203E-06
3.972E-04
3.419E-06

9.174E-07
1.056E-03

wv wv v e~ Ww WU & W N

& ww NN

2.608E-06
* All inner products with same index are 1.000 .
NOTE: Fourteen LPF were used for generating the

bare cavity modes. The grid had 523 points
between x = -1 and x =1 .
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TABLE II-12.

Demonstration of Orthogonality
M= 300 Feff Lad 1.8742

d n m Ij:hn(x) u (x) dx |

o

1.000 *

5.706E-06
1.125E-03
2.176E-05
1.763E-03
1.714E-05

cococdo o

3.580E-06
1.063E-03
2.528E-06
1.032E-04

)

1.365E-05
1.296E-03
1.075E-05

9.642E-06
8.344E-04

w wvr & (C.I9 V) NEeEWN W& W N

»
L ww NN

7.592E-06

* All inner products with same index are 1.000 .

L,

NOTE: Thirty LPF were used for generating the
bare cavity modes. The grid had 523 points
between x = -1 and x =1 ,
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; each case, the orthogonality was clearly evident. The cases

£ 3k hot v oy

where the integrand was the product of an even and an odd
mode should have given exactly zero but a detailed study

showed that the LPF were not precisely even or odd when they

st a sl €4

vere numerically generated. The value of this calculation is
twvo-fold. First, the demonstration confirms the analytic

A derivation of the orthogonality of the eigenfunctions of a
complex-symmetric kernel. Second, the demonstration further
supports the utility of the linear prolate functions as a

- basis set. It would be interesting to use the modes
generated by the.asymptotic approach to perform the same

e calculation.

H. Summary

"’l"

This chapter has considered the analysis of the modes of

Cay

a strip resonator that does not contain a saturable gain

medium., We have discuss<d the basic geometry of the strip
resonator as well as the underlying approximations. Also, we

discussed the round trip integral equation that describes the

modes. In particular, the fact that the kernel is complex-

symmetric is important in that the modes have a certain

afr' 1 ".'o'

orthogonality property but the modes have not been shown to

..O.I

be a complete set. Even this orthogonality property is
different from that of the hermitian kernels. After

discussing the general kernel expansion approach as well as

Fata®a

highlighting several other approaches to solving the integral
- equation, we discussed the linear prolate functions as an

optimal basis set in the sense that the resulting matrix
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eigenvalue problem was of as small a dimension as possible.
The LPF were used to obtain a matrix eigenvalue probles and

this MEVP was solved numerically. In obtaining this

R

solution, a code was developed that rapidly generated the LPF

A e

over the interval (-1,1). Such a code may have many other
uses., The validity of the numerical model was demonstrated
in many ways. First, internal consistency was shown. Then
agreement with other solution techniques was demonstrated for
many cases of effective Fresnel number and magnification. 1In
this process, we ;xanined the interesting case of a mode

" crossing where éhe two lowest loss modes have the same loss.
Here the LPF expansion model had no difficulty in predicting
the eigenvalues or the eigenfunctions. The eigenvalues of
the two lo;est loss modes were nearly a complex conjugate
pair. We also used the LPF expansion model to examine the
validity of the asymptotic approach at low Fresnel numbers.
This is the most useful application to date. We found that
the asymptotic approach gave good results for the lower loss
- modes even at effective Fresnel numbers near unity. However,

: the higher loss eigenvalues appeared to be incorrect owing to

- a limiting approximation in the asymptotic approach.

- St

Finally, we used the LPF expansion to demonstrate the

orthogonality of the bare cavity modes. This calculation

e -,

serves as a final validation of the LPF expansion as well as

being of general interest. The result will also prove useful

o K A AN 4 2

in the study of loaded cavity modes, a study that begins in

k)

the next chapter.,

Y 8
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III. Modal Analysis of Loaded Resonators
A. Introduction
2 A realistic model of the laser resonator must properly
-y
X account for the presence of a saturable gain medium. This
ot
) analysis is made difficult because the gain depends on the
0 field, making the equations nonlinear. This chapter begins
} with Maxwell's equations and ends with a round trip equation
that describes the modal structure of the loaded strip
resonator. In'obtaining this final equation, all relevant
assumptions and restrictions are discussed. The approach is
rigorous and the intermediate results are applicable to more
general resonators.
> B. Derivation of Active Medium Propagator
v .
N Consider an isotropic, nonmagnetic medium that contains
-
~ no currents or free charges., Further, assume the fields are
time harmonic, with an exp(iwt) dependence. Then Maxwell's
4 equations in differential form and MKS units are
g VX?(?.U) = -1/4.@ \-J(F,w) (3.1)
- UxHEFE,w = tw D(F.w (3.2)
- v' DK?J‘“’) = O (3.3)
-
o
’~ -
V- HF, W= 0 . (3.4)
N 81
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In order to account for the interaction between the medium

and the field, assume that

DEw) = €1 +XE ) E Y (3.5)

where the susceptibility is sllowed to be complex:

XEFEw) = X (Fw) + X' (F,w) (3.6)

Suppressing tgezfrequency dependence for the moment and
considering Cartesian coordinates such as will be used in the
strip resonator, the wave equation for the electric field is
obtained by taking the curl of Eq(3.1) and using Eq(3.2) and
Eq(3.5):"

VXVxE = V(@E)-V'E = mweUX]E (3.7)
Now

V-D = E,[V*E ~+ V'X-E_J (3.8)
= £(VE +Ix.-E +XV-E] | G50

and solving for the divergence of the electric fieid,

T =
V-EF) = TETOR VX -E\(¥) . (3.9)

Assuming the susceptibility varies slowly over one




vavelength, then UYX-E=0 and W'E=O . (Ref 37) Thus

the vave equation becomes

VE +mewtl1+X]E =0 (3.10)
N . .
i
i
) Defining
N 2
= T 2 «w
R = me w0 = = ’ (3.11)
then
-2 — 2 = —

VE+RE =-k"XE . (3.12)
3
- The laser resonator acts to reinforce the field along
' the optic~al axis as discussed in Chapter 2. Thus we look for |
- beam-like solutions to the wave equation. We write the field

.
- as

= itk

‘* EG) = v®e (3.13)

: and then find a differential equation for the complex

amplitude function:

S JEPT  J S T TN

: a1 oz*
P
:, .
. Here, S, refers to derivatives transverse to the optical
L4
- axis (chosen as the z axis in the geometry set up in Chapter
L ‘-
. 2). Also, the term %‘; is neglected in the paraxial
83
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approximation. This spproximation is valid when the
propagation distance is long compared to both the aperture
size (height of the mirrors) and the wavelength. This
implies that the variations in the field in the propagation
direction occur over distances that are much greater than
either the aperture size or the wavelength. For most
resonators, the approximation is valid. Now this equation
hold for each component of the field. We are mainly
concerned with the components transverse to the optical axis
and thus assume the field is polarized in one direction,

defined as the x direction, i.e., Y@E)=uwp 1 « Then

Vi uleyn -2k 2998 o Y e uixym | (3:15)
This is the paraxial wave equation that describes propagation
through an active, inhomogeneous medium. If one neglects the
transverse variations in the field by neglecting the
transverse derivatives in Eq(3.15), one can define an
intensity gain coefficient as related to the imaginary part

of the susceptibility by

3F) = R & X 9) (3.16)

The intensity gain coefficient describes how the intensity
(i.e. the square of the najhitude of the field) changes as
the field propagates throngh-the gain mediun, The

variations in the index of refraction as related to the real

part of the susceptibility by

84
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nFE) = 1+ 3 RXW (3.17)

The changes in the index of refraction cause phase shifts in
the field that can be interpreted as optical path length
differences (OPD).

Now the gain is nonlinearly related to the field since
the medium equations are functions of the intensity, not the
field. Properly, one should write 9,=9,{*.»%) but this
dependence on the electric field will be suppressed in the
notation. Also note that the index of refraction is a
function of both the frequency and the electric field. the
phenomenon of anomalous dispersion arises if the frequency of
the longitudinal resonator mode does not coincide with the
line center of the laser transition. (Ref 6, page 156-8) ;n
most of the analysis that follows, we will assume that the
resonator modes oscillate at the center of the laser
transition. This limitation is made to focus the attention
on the saturable gain effects. The various nonlinear optics
phenomena that also arise from expanding the susceptibility
in a power series of the electric field lie outside the scope
of this effort,

We now formally treat the right hand side of Eq(3.15) as
a known function and use a Green's function to transform the
differential equation into an integral equation. Appendix 3
contains the details of this transformation for the three

dimensional case discussed here as well as the two
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dimensional case to be treated later. The resultant equation

4 is
Ulx,y,z) = U Xy + ulx,yz) (3.18)
where
ik ot - 13 Wx-xitetyy 2]
U, y,z) = 5= ﬁdx'dy" 3 ulxyio) (3.19)
and

i k0% )% (y-y9?]
- S

d\('&y' € @)

RX&iyvi2)w yir?), (3.20)

f ¢ —
§—=s8¢

T
wrr = £ [on
[

This equation can be used to propagate a scalar field through
b an active, inhomogeneous medium. This analysis to this point
closely follows Milonni. (Ref 37) Note that the range of the

transverse variables is the infinite interval. When these

equations are applied to the resonator problem, we will find
that this range is restricted by the mirror apertures.

The term u, in Eq(3.18) represents the diffraction of
the original field in the plane z = 0 ., This is the
familiar Fresnel diffraction integral. However, the term u,

L

in Eq(3.18) represents the contribution to the final field

due to the radiation stimulated as the original field

i propagates through the medium. Clearly, if the susceptibility
l, ~
o is zero, then the equation reduces to the Fresnel propagator

i commonly used in resonator studies.

) We now specialize the analysis for the strip resonator.
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Here we assume ?5::7-.—.0 and that X:X(xw) only. (Although
these assumptions are physically difficult to realize, they
allow an understanding of how the physics works while keeping
the analysis as simple as possible.) Then the wave equation

can be written in a two-dimensional form:

3!
& —2ih3E + W Xxpuxa) =0 . G2D

Here, an appropriate Green's function is

v k-
-Sasr
Glx,z,x\2) = I—‘-;‘: e 27 (3.22)
L Iz_zl ' -

Tﬂis Green's function and the propagator given below are
derived in detail in Appendix 3. As before, an integral
equation that describes the propagation of the field through
an active, inhomogeneous medium is obtained. The same
designations for the fields will be used since throughout the
rest of the analysis, we will only be concerned with two
dimensional fields., Letting the initial plane be at z = 0 ,

the two dimensional propagator is

Ux,2) = U (X2) + u; (x,3) (3.23)
where
e~ imlex)?
W (x,2) = |2 ' T ' 3.24
“ ) X'Az ydx e u(x’,0) ( )
-0
87
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and

2z 0 _iw (x-x)*

xT-eT
ui\x‘I) = -‘Z.Y:-; S‘dz' dx’ 'e—ir—-_—t_?—- kX(X'.i') “(X'ol‘) . (3'25)

(-] -9

This concludes the derivation of a propagator appropriate to

the strip resonator geometry.

C. Round Trip Integral Equation for Loaded Strip Resonator
We now use ;his propagat:r to derive a8 round trip
integral equation for the modes of an aligned, strip
resonator with.nirrors of spherical curvature. In the
paraxial approximation, the round trip is equivalent to
propagatipg through the lens train shown in Figure 3.1. 1In
this figure, the fields W, are calculated in a manner
analogous to the derivation of the round trip equation for -
the bare cavity. This lengthy but straightforward derivation
is contained in Appendix 4, Also, we now restrict the
susceptibility to be pure imaginary. Thus, neither index
variations nor anomalous dispersion will be treated in the
ensuing analysis. Although this limits the analysis to be
applicable only to homogeneous media lasing at line center,
the analysis still gives valuable insight into how gain is
included in resonator mode calculations., Thus the
susceptibility is replaced By the term in Eq(3.16). The

final result can be expressed as the sum of three terms:

U, (x,2L) = Iokx) - I‘(x) + [zkx) (3.26)
88
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wvhere
a, (%.44 . ’
S'. * - OCe ') -2ux’]
T, = —‘;— \de' e =l u, (x’,0) (3.27)
] -a,
and
x’' T
' ‘-":'T)- :Tt::'l_.'_:'
I‘(x) = - J’ f T (1_)(L = 35(\("1')“,(\(‘10) (3.28)

where the shorthand L,(%') means

L (2 = Z‘l‘cl}- - 1 (3.29)

= T

and finally

x (k-x »?
o Pl e'T[’TlL il (3.30)
- \ ’ ' - [ .
T, ) = TE J‘dz de == 9s WY U W 2) |
L -ce

Let us examine the round trip equation, Eq(3.26), to see
what it means. We begin by discussing the terms T, and I, .
We first examine the nonlinear coupling between the gain
function and the field. Then we discuss the possible
behavior of nonlinear equations of this type. Finally, we
present two methods of solution.

Consider first the field terms in I and T, . The gain
function will be discussed in the next paragraph. Eq(3.28)
accounts for the generation by stimulated emission and

subsequent diffraction of fields in the first leg of the
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round trip. Eq(3.30) accounts for the same phenomena in the
second leg of the round trip. Note that the stimulated
emission is due to the total field in the resonator, not just
the original field at the feedback mirror. Now the field in
Eq(3.28) 1is wu,lx,1), not the original field, w,(x,0) , that is
present at the feedback mirror. This complicates the
equation since one needs to solve for u, throughout the
resonator in order to find the final field w, . Of
course, the equation is just reflecting the physics of how
the gain and the field interact throughout the resonator.
The same complication arises in Eq(3.30) for evaluation of
the field, U although this field depends not only on the
original field on the feedback mirror but alsoc the fields
stimulated in the first pass. 1In order to actually solve
these equations either analytically or numerically, a scheme
must be developed that accurately models the distributed
interaction of the gain medium and the field. In the past
this has given rise to the use of gain sheets and we will use
a single gain sheet model in the next chapter,

As mentioned earlier, the gain function g‘x,z) depends
nonlinearly on the field u(x,z) . A frequently used model
for homogeneously broadened gain is

35\\(.1) = 3 (3.31)

1 + ulxDu(x,2)

wvhere q, is the small signal intensity gain coefficient.
(Ref 6) Thus the two terms'x' and '11 are nonlinear

functions of the field since the gain is included in the
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integrand.

In summary, Eq(3.26) can be classified as a nonlinear
integral equation when we look for solutions where w,= YV u,.
Frequently nonlinear equations exhibit bifurcation of
solutions. In other words, for the same parameter ¥ , there
may be several solutions. However, we may argue against
bifurcation here on physical grounds. For a laser to operate
in steady state (as is assumed in the derivation of the round
trip integral equation for the resonator modes), gain must
equal loss. Tgis means acceptable solutions to the loaded
cavity integral equation, Eq(3.26), must have the magnitude
of the parameter 3 equal to unity. The phase of the
parameter is not restricted. The gain and the field
distributtons within the resonator must be such that they are
consistent. One actually is solving a set of coupled
equations, Eq(3.26) and Eq(3.31). The coupling between these
equations is the nonlinear aspect to the problenm.

Bifurcation would imply that different field distributions
could arise from different initial gain distributions.
Physically, this is reasonable. However, as changes to the
gain medium occur over time scales that are long compared to
the time required to establish the mode of the resonator, the
mode that is established is a unique solution for that gain
distribution and a new mode may result as the gain medium
changes,

We now consider a perspective of Eq(3.26) that leads to

two possible solution approaches. Consider the generic
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This integral equation is clearly analogous to Eq(3.26) if
the kernel is taken to be the bare cavity kernel. We discuss
linear integral equations of this form in Appendix 1. They
are called inhomogeneous Fredholm integral equations of the

5 second kind. For all but some special cases, the linear
equations have:a unique solution which can be obtained by an

iterative approach. (See Appendix 1 or Ref 54.) To find

»

solutions to equations such as Eq(3.32), one can parallel the
approach used in solving linear integral equations. One can
formally assume that the functional /3 is known and then

- find a solution for that functional. Then, using this
solution, a new functional is found and the cycle repeated-
until convergence is found. This approach is merely solving
the integral equation with an iterative scheme. Essentially,

By one is solving the two coupled equations

& = x[[s'] (3.33)

and

£ o= ple) (3.34)

This iterative solution technique is one that will be used in

T, 20"

the next chapter to solve the integral equation in the
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approximation of a single gain sheet at the feedback mirror.
An alternative approach proves both interesting and
informative, but has been much more difficult to implement.
We consider expanding the "loaded cavity mode", &«{x) , in
terms of the eigenfunctions of the kernel of Eq(3.32). 1In
our case, these eigenfunctions are the bare cavity modes.
Without considering the question of convergence for the

moment, we use the expansion
- ) ”
(X)) = Eo by 4, (x) (3.35)

wvhere W,(x) are the bare cavity modes. Substituting the
series into Eq(3.32) and using the orthogonality relation for
the eigenfunctions of a complex-symmetric kernel, the

coefficients are given by

b‘ a(l-_

jdx {3[ T u, 00 (3.36)

where G, 1is the bare cavity eigenvalue. Alternatively,

{ |

one can solve for the coefficients in the more usual way:

qI
b = -l—S X (%) u‘(x) dx (3.37)

2 a,
-a,

This technique follows the .generalized Fourier series
methods. One would hope that the expansion coefficients
would be the same from either approach. Note that Eq(3.37)

assumes some knowledge of the solution, obtainable from the

94




LR R SRR st A sy e s pob it il et o i g SRR U e il M art o gAR aas Rtd DM she L8 a |

iterative approach described above. The calculation of the
coefficients via Eq(3.36) does not assume such prior
knowledge of the solution but does assume knowledge of the
dependence of the solution on the functional. This suggests
a different iterative scheme. Here one first guesses a
solution such as the lowest loss bare cavity mode. Then the
functional /3 is found, and the integral with the bare
cavity modes is solved, giving the expansion coefficient.
After a sufficient number of expansion coefficients have been
found, a new giess at a solution can be made and the process
repeated. The process ssumes that the bare cavity modes are
known. A procedure for finding these modes was developed in
the previous chapter. Other techniques would also suffice.
However, this procedure is more difficult since it does
require an adequate number of bare cavity modes, with
"adequate” not clearly defined. Indeed, as discussed in
Chapter 2, the modes are not a complete set and thus the
expansion in Eq(3.35) may not be valid.

One result that is desired from an analysis of the loaded
cavity is how the bare cavity modes compete for the gain,
Either the iterative solution with subsequent projection onto
the bare cavity modes or the iterative scheme discussed above
may give this information. Either approach suggest that
there is only one field distribution for a given gain
distribution. An interesti&g difference between the
approaches is seen when the gain goes to zero, i.e., in the

limit when the loaded cavity equation becomes the bare cavity

equation., The iterative approach continues to be valid and
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becomes the "power method" used by Fox and Li. However, in

the "bare cavity mode expansion" method, the integrand in

Eq(3.36) goes to zero. This seems to imply that the

coefficients (and hence the loaded cavity mode) go to zero.
However, as the gain is decreases below threshold, the
parameter 0 is no longer constrained to have unit
magnitude and now tends toward the lowest loss eigenvalue.
(Recall that when the gain is above threshold, the
oscillation condition is such that the increase in the energy
stored in the ;1e1d is matched exactly by a decrease in the
energy stored in the gain medium. Thus the loaded cavity
eigenvalue always has unit magnitude for conditions above
threshold.) Thus the denominator in Eq(3.36) also goes to
zero. The limiting case would thus be the lowest loss bare

cavity smode.

D. Summary

This chapter began with Maxwell's equations and ends
with an equation that allowed a field to be propagated
through an active, inhomogeneous medium. This propagator is

applicable to problems where scalar, beam-like fields are

sppropriate., The results were specialized to two dimensions.
A round trip equat;on wvas obtained for the strip resonator,
namely Eq(3.26)-E(3.30). The nature of this equation was
discussed in some detail, highlighting how the equations
showved the nonlinear coupling between the gain and the field.

Two solution techniques were discussed: an iterative scheme
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\ analogous to the "power method” used for bare cavity modes
: and a bare cavity mode expansion. In the next chapter, ve
develop a single gain sheet model for the round trip strip

resonator equation and apply these solution techniques to

this model.
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IV, Modelling of Loaded Resonators

A. Introduction

The goal of this chapter is to discuss how the loaded
resonator can be modelled using the results of the previous
chapter. We begin by reviewing the most relevant past work
in the analysis of loaded resonators. Then a geometric
approximation to the loaded cavity round trip equation is
developed, by means of an approximation to Eq(3.26). The
results agree ;ith a comparable analysis done by Moore and
McCarthy. (Ref.38) The majority of the chapter involves the
diffractive model that was developed from the equations of
Chapter 3. Here, we model the gain as a single gain sheet
located at the feedback mirror in order to simplify the
numerical model. A parallel derivation based on the more
usual, heuristic inclusion of gain is also implemented. The
results of these two models are discussed in detail. The
chapter ends with a look at the limitations of the single

gain sheet model and a summary.

B. Review of Past Work in Loaded Resonator Modelling

In this section, we review the most relevant past work
in the modelling of loaded laser resonators. The purpose of
this review is to provide the background necessary to
evaluate the models developed later in the chapter. The
majority of the past work is based on Beer's Law. The papers
that are reviewed includes the work of Rigrod (Ref 39,40),

Fox and Li (Ref 41), Rensch and Chester (Ref 35), Rensch (Ref

- e, ey




42), Siegman and Sziklas (Ref 43,44), Moore and McCarthy (Ref
20,38) and Smith (Ref 36). The analyses span the range of
geometric models of Rigrod through Smith's self-consistent
model that is based on asymptotic approximations.

Before we begin the review, we need briefly to define
vhat is meant by a gain sheet, As we found in Chapter 3, the
proper analysis of the loaded cavity leads to integrals over
z ,the longitudinal dimension of the resonator axis, and
over x , the transverse dimension. Thus the analysis allows
for gain media ;ith variations in both dimensions. The
distributed gain complicates the numerical analysis since the
gain depends on the fields that are propagating in both
directions in the resonator and the fields depend on the
gain. A'frequently used approach is to lump the gain into a
single transverse plane, and then propagate the fields
between these planes using a free space propagator (e.g.
Fresnel diffraction integral). This plane is called a gain
sheet. Thus, the distributed gain media is treated as if it
exists in discrete sheets. In order for this approach to be
accurate, transverse field variations such as caused by
diffraction, must be negligible (Ref 35). We will make use
of this approximation in the numerical model to be developed
in section D. 1In this section we will address the validity
of the gain sheet models in more detail, examining how many
gain sheets are needed to model accurately a given resonator.

The Rigrod analysis has become & classical work in this

area because it provides an excellent first cut at how gain
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affects the resonator analysis. Two key results are the
establishment of the cavity threshold and the definition of
extraction efficiency. The analysis ignores all transverse
field variations but allows for longitudinal variations in
the field. This approximation made the analysis one
dimensional. It was used by Rigrod for flat-flat resonators
and others have extended this model to unstable resonators
and additional loss mechanisms such as unsaturable losses
(Ref 45). (An unsaturable loss is any loss mechanism that is
not a function of the field, for example, scattering.

Absorption is an example of a saturable loss.)

The Rigrod model assumes the field is a uniform plane
wave that propagates in accordance with geometric optics.
The mirrors are simply modeled with a reflectivity and, when
the gain is assumed to have no 2z dependence (as in a gain
sheet), the gain is included with an exponential term:

3 s(z)A!

Tixz+42) = & Tx,2) | (4.1)

(Rigrod also analyzed distributed gain (Ref 40).) The gain
is assumed to be homogeneously broadened, thus the gain

function is

o

1+ I("‘)/Isqt ¢

9s ) = (4.2)

The parameters 9, and ];ﬁ'characterize the gain medium. The
analysis is done by propagating a round trip in the cavity

with these mirror and gain functions applied when
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appropriate. Then one requires the field to reproduce in
amplitude and phase in order to obtain the steady state
results. By setting the length of the gain region to be
equal to the length of the resonator, and letting the
reflectivity of one mirror be unity and that of the other
mirror be r (so that the outcoupling is by the transmission
through this second mirror), the threshold gain is found to
be

-. L
9. = 2a(¥) /20 (4.3)

(Note this is a power gain coefficient.) Following this
analysis further, Rigrod allows a simple calculation of the
extraction efficiency, defined as the ratio of the output

power to the maximum power extractable from gain medium in

the resonator. At steady state, gain equals loss and the
operating gain for a homogeneously broadened medium is at the
threshold level. Thus the extraction efficiency is just

1 - %‘:‘ (4.4)

r‘ut =

vhere g  is the small signal gain.

All of these formulae change slightly for unstable
resonators and for systems-uith more elements. However, the
basic analysis put forth by Rigrod laid the foundationm for

the one dimensional analysis of laser resonators. His work

also has been extended to include nonsaturable losses and

W
W
e

Rigrod has examined optimum output coupling and compared his

DA

101

S LT,

ROF O A e T T e e e e o et At T e T A A T e R AN T T e N e T e -
ot T N N A NS T NN o LR AT > SRS ~‘.\_.‘{_‘.\__\ N




BN OO i e i it/ i i Al G o A el " S

analysis to the internal cavity power in inhomogeneously
broadened helium-neon lasers. Good agreement was found
between the theory and experiment. We will use the Rigrod
results to assess the validity of the gain model that will be
developed in this chapter.

The first attempts at including gain in a physical
optics calculation were done by Statz and Tang (Ref 46) and
Fox and Li (Ref 41). This work extended the calculation to
two dimensions by including one transverse dimension. The
work done by Statz and Tang was for a strip resonator with
plane-parallel mirrors. Since the work done by Fox and Li is
more extensive and since the approach used in both efforts is
similar, we will review the Fox and Li paper. Their model
was based on plane-plane and confocal resonators with
circular mirrors containing a uniformly pumped saturable gain
medium. The medium was assumed to be homogeneously
broadened. They assumed the laser was operating at line-
center so that anomalous dispersion would be ignored. They
approach the problem by propagating the field between the
mirrors using & Fresnel diffraction integral and applying
gain at each end of the cavity using a multiplicative term
which is the first two terms in a power series expansion of
the exponential gain shown in Eq(4.1). We will see that the
Fox-Li model is a special case of the analysis presented in
Chapter 3. The method of successive approximations was used

in the same manner as Fox and Li has used it in the analysis

of bare cavity modes. The field gains energy from the gain

R a2 4




% o Mo T L% _wm o ® M e e o w m & Ty M y o
R I T B A N A R TR R R SR e WY AR Jah e o £l I i A AR i S ol Btk N Sk Y Ml S Ak el e 2|
..... AL it

medium via stimulated emission and loses energy due to
outcoupling. After many passes, a steady state solution was
reached. Their conclusions were that "the distribution of
field amplitude over the mirror, the diffraction loss, and
the phase shift per transit are all essentially unchanged in
the presence of saturation” (Ref 41, p. 782). We will see
that the model they used is most appropriate for small gain
and thus their conclusion is not surprising.

When Fox and Li examined the confocal case, they found
that the intensity profile of the loaded cavity mode depended
on the Fresnel number of the system. They also found that
the solution was a superposition of the two lowest loss bare
cavity modes. They conclude that the "presence of the
saturable. medium has imposed additional constraints which
greatly limit the number of modes. While linear passive
resonators may have an infinite number of quasi-modes, it
appears that the nonlinear active resonator may have only one
mode (or perhaps a few modes)...[The] field resembles the
superposition of two modes of a linear passive resonator,
However, the fact that they must be simultaneously present
with the correct amplitudes suggests that it is more accurate
to consider this combination as a single mode of the system"

(Ref 41, p.783). This conclusion, that the loaded cavity

mode is different from the bare cavity modes, is based on the
numerical studies done by Fo; and Li. It agrees with the
conclusions made at the end of Chapter III that were based on

a theoretical analysis.

While the Fox and Li analysis was done for the case of
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circular mirrors, the analysis of Rensch and Chester was done
for strip, confocal, unstable resonators (Ref 35). Thus
their results are most applicable to this study. (This
motivated the extensive use of their results in the bare
cavity analysis of Chapter 2.) They studied the effects of
uniform saturable gain (i.e. constant small signal gain and
saturation intensity) and mirror misalignment. We will only
discuss the work done on the loaded cavity. They used the
same iterative procedure as Fox and Li, but included the gain
by multiplying the field by an exponential factor as in
Eq(4.1). As noted in Chapter 2, they let the back mirror be
finite and approximated the distributed gain medium as a gain
sheet at this plane. Their goal was not primarily to predict
the mode shape or power extraction, but to find if a single
mode would exist in the presence of a saturable gaih medium.
In all cases that they studied, the field distribution
converged, and they concluded there was no mode competition.
The change that was observed was a general broadening and
flattening of the intensity distribution while the phase
remained fairly unchanged. Since the effect of gain on the
near field phase is negligible, little effect in the far
field pattern was observed. They concluded that the single
gain sheet approximation gave good results for magnifications
of three or less. Even at values where the bare cavity modes
showed an eigenvalue degeneracy, Rensch and Chester obtained
8 single stable mode. These results were obtained at values

far above threshold. Their results are of value to this
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research in three ways. First, they used a single gain sheet
as we will do later in this chapter. Second, they observed
that the gain only tended to fill in the intensity pattern,
making it more like the geometric beam. This result does not
agree with the results we will obtain later, primarily
because Rensch and Chester include the gain as a
multiplicative term while the analysis of Chapter III
indicates that it should be included as an additive term.
Third, they did not have any convergence problems as a result
of including the gain medium. However, they studied cases
where the gain was far above threshold. We will examine the
same areas in the model developed in the next sections.
Rensch did subsequent work where he used an explicit
finite difference algorithm to solve the wave equation in the
presence of an active medium (Ref 42). This method allows
the study of distributed effects arising from an active,
flowing medium that may have index of refraction variations.
The algorithm is supposed to be more efficient and more
accurate at high Fresnel numbers. He also cogpared his
results to experimental results for a gas dynamic carbon
dioxide laser. His model still used a segmented gain medium
that is equivalent to gain sheets. He let the index of
refraction be complex to include the gain. Such a
formulation leads to a multiplication of the field by the
gain, unlike the addition of a gain term that we obtained in
the analysis of Chapter 3. Rensch's model used up to thirty
segments. The gain was calculated at each segment as the

field arrived and then applied to the field. He found that
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the field had converged after six or seven round trips, even

for Fresnel numbers up to 78 (equivalent Fresnel number of
9.05). His calculated output power compared well with
experimental res:lts. His analysis is highly specific to the
gas dynamic laser and thus no quantitative comparison betwveen

his work and our model will be made. However, his work is

important in that it permitted realistic effects such as
medium inhomogeneities and mirror distortions to be modelled.

Another analysis that examined a more realistic medium
was the analysis done by Siegman and Sziklas (Ref 43,44).
They modelled the gain medium with gain sheets placed
throughout the medium. In ;he first reference, the
propagation between gain sheets was accomplished by expanding
the cavity field in hermite-gaussian functions. Ip the
second article, a fast Fourier transform (FFT) was qsed to
propagate the field between the gain sheets by using a plane
wave expansion of the field. The approach was first to
propagate a field through the entire resonator, applying a
complex gain function which was an exponential function.
However, in their model, the function allowed for index of
refraction variations as well as a nonuniform, transversely
flowing, gain medium. After making a round trip, the field
was used to update the complex gain functions at each
gainsheet., Their study was highly specialized to carbon
dioxide gas dynamic lasers, but it is an excellent reference
on the use of the FFT. They also introduced an expanding

coordinate system that permits efficient application of the
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FFT for more general geometries. The key point we note in
this work is that the gain model is an exponential function
that multiplies the field at several gain sheets.,

The next analysis of loaded cavities that we discuss is
the use of the asymptotic method discussed in Chapter 2 to
model saturable gain. Moore and McCarthy laid the foundation
with their analysis of unsaturable gain (i.e. the gain is
independent of the intensity) in the laser cavity in the
geometric optics limit (Ref 38) and in the case of very high
Fresnel numbers (Ref 20). Smith extended their work to
saturable gain (where the gain does depend on the intensity).
(Ref 36) The theory of Moore and McCarthy is similar to that
of Horwitz (Ref 19). Moore and McCarthy postulate that the
output field is made up from source fields originating from
successive images of the edges of the feedback mirror in the
back mirror. The resultant field is expressed as the series
sum of plane and cylindrical waves. In their geometric
optics study of the resonator modes, they included the gain
vith a first order differential equation that ignored
diffraction. This equation is equivalent to the loaded
paraxial wave equation derived in Chapter 3 with the second
order derivatives of the transverse coordinates set to zero.
Although their method is complicated, they essentially use an
exponential form that contains an integral over the gain in
the exponent., This exponential function is included in the
series sum of image sources. Smith extended the work to
include an iterative scheme whereby the field is used to

saturate the gain function, the new gain function used to
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obtain a new field and the process repeated until

convergence. The advantages of the asymptotic approach are
the application to higher Fresnel numbers and the increased
computational speed inherent in the asymptotic approach. In
Smith's study, as in the previous studies, convergence was
obtained rapidly. Smith uses the case of M = 2,5 and F =
0.64 studied by Rensch and Chester as a baseline for his
approach., He comments that "saturable gain seems to produce
an effect not unlike that of mirrors with rounded edges or
tapered reflectivity, which reduce the influence of
diffraction on mode properties" (Ref 36, p. 1619). Smith
also goes on to examine the case of mode degeneracy and shows
that the presence of gain splits the degeneracy. This result
suggests that the possibility of multimode operati?n in
actual lasers is lessened by the presence of a saturable
medium,.

This review of the key past work in the inclusion of a
saturable gain medium in the analysis of cavity modes has
highlighted the methods used by others to model this
difficult problem. Most of the analyses used a
multiplicative factor for the gain that usually was an
exponential function similar to the function used by Rigrod.
No one observed any evidence of multimode operation as
evidenced by a failure to obtain convergence. Most of the
results indicate that the presence of gain tended to smooth
out the mode, making the intensity profile look more like the

geometric mode while leaving the phase relatively
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undisturbed. We will return to these points as we develop
models for loaded cavities based on the theory of Chapter 3.
First, ve examine a geometric optics model in the next
section. Then, in the sections.that follow, we develop a

numerical model based on physical optics.

C. Geometric Optics Analysis of Loaded Strip Resonators

The analysis presented in this section was primarily
developed by Erkkila (Ref 47). We begin with the final strip
resonator round trip equation that included distributed gain,
namely, Eq(3.26) and the detailed parts of that equation in
Eqs(3.27) - (3.30). The right hand side of this equation has
three parts, After specializing the equation to the case of
a confocal resonator, we apply the method of stationary phase

to each of the three parts. The confocal conditions are just

_M+1 _ M+l . _ M+l
9="2— 5 === 37 7m . 43

We make this restriction for two reasons. Hany other studies
have been done using confocal resonators since these
resonators have collimated outputs. Also, the analysis is

somevhat simplified.

The method of stationary phase is an approximation that

can be applied to physical optics formulae (such as Fresnel

- propsgators) to obtain geometric optics results in the limit
E as the wvavelength goes to zero. (This technique was used by
2

3 Moore and McCarthy (Ref 20), Horwitz (Ref 19) and Smith (Ref
g 36).) Born and Wolf have a general discussion of this

]
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technique (Ref 48, p 752)., We present the relevant result:

--,'—’ -.t,u
qlx’) \S *-r"('” . (4.6)

where p(x) and q(x) are slowiy varying functions of x ,

b
-t
S’dx e el ¢ (x)
a

t 1is a very large parameter, and the stationary point, x' ,

is the value of x at which the first derivative of p(x)
is equal to zero. This formula neglects terms of order 1/t
and higher. When this formula is applied, one must insure
that q(x) 1is a slowly varying function.

In the case of Eq(3.26), the field is specified at the
plane of the feedback mirror and thus it has a rapidly
varying term due to the lens factor. One can obtain a slowly
varying tera by the transformation,

‘ T g,
U X)) = uix) e

. (4.7)
By finding the stationary phase points for each term
separately and applying the formula of Eq(4.6), one finds the
geometric optics approximation to Eq(3.26). The details of
this derivation are contained in Appendix 8. The results are

presented here:

u:(x,ll-.) = T, +~ 7T, + Ly (4.8)

where the first term of Eq(3.26) became

'

1 -= - us (;- ,0) (4.9)
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and the second term of Eq(3.26) became

[
I, = -7':-5‘41 a, (X, 2) ustx,,2) Si};\{i (4.10)

where

Xy = . X ) (4.11)

and the third term of Eq(3.26) became

L
1
'_[3 = = da 3s(x,'z) U (x,z) . (4.12)
|

(The "c" superscript denotes a collimated field.)

Some comments can be made about this result. °‘First, we
see that in the absence of gain, the field after a round trip
is expanded and diminished in amplitude by the square root of
the magnification. (For three dimensional resonators, the
factor would be 1/Hz ) The second two terms act to make up
for the decrease in amplitude by an increase from stimulated
emission. The second term shows the weighting in the
integrand that accounts for the expanding leg of the confocal
resonator. The third term does not have this term, since
that leg is collimated.

We now examine this equation under the special case of a
single gain sheet at the feedback mirror and set x = 0 to
look only at the value on-axis. This special case will serve

as a limiting value for the diffractive model that will be
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developed in the next sections. Thia special case alsao

serves as a case that can be checked against the work of
other authors,

The single gain sheet approximation is made by setting
z =0 in Eq(4.9) - (4.12), replacing Sdz by L (we assume
that the gain completely fills the resonator). The on-axis
case is obtained by setting x = 0 , Thus Eq(4.8) with the

detailed terms substituted in becomes
(3 -\ < | <
uiloz) = g ui o) + 3 g0 UL +
(4.13)

+ 'lf q4(0,0) uy(0,0)

(At steady state, the field reproduces itself without any

amplitude loss so u:(o,o) =q:(o,o) ) Also, for x =0 ,
' ¢
U, 0,0) = U (0,0) = u, (o0,0) . _ (4.14)

Thus the gain function can be found to be

2 fin -1

39(0,0)= v -ﬁ_:_i— . (4.15)

We assume here as we do throughout this work that the gain is

represented by a homogeneously broadened model:

Yslo0) = de_ (4.16)

1 + 2{ul(o,0l? :




(All fields are normalized by §I~¢ «) Then we can find the

on-axis intensity,

Justoal’ = I,‘ = %tg:i ] - -‘z— (4.17)

and by multiplying by 2e, , we find the powver on the

feedback mirror:

w +
Po= 2aTo= 2PEIEI - o G

The power on the mirror will be a parameter that the
diffractive model calculates, and Eq(4.18) will serve as a
limiting value for this code since as the Fresnel number
increases, the power on the mirror should approach this
value. Also, these results are in excellent agreement with
Moore and McCarthy's results in the case of distributed gain
and they are in excellent agreement with results obtained by
Rinaldi for the single gainsheet model. (Ref 49) Thus the
rigorous derivation of the loaded cavity solution in Chapter
3 is supported by past work in the area of loaded resonator
calculations by this asymptotic analysis.

This special case concludes the discussion of the
geometric optics approximation to the loaded cavity round
trip integral equation. In the next section we develop the
equations for a diffractive model of a strip resonator with a

single gain sheet at the feedback mirror.
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D. Single Gain Sheet Diffractive Model

In this section, we derive the analytic model of a strip
resonator with a single gain sheet at the feedback mirror
based on the analysis of Chapteg 3. The single gain sheet
approximation is chosen because 1¥ is the simplest model to
build numerically, thus making it a logical starting
point.

We begin by rederiving the loaded cavity round trip
equation. The intent of the rederivation is to eliminate the
effects of diffraction in the gain term of the two term
propagator, while keeping the diffractive effects in the
Fresnel propagation term. This is the next step beyond the
geometric optics model discussed in the previous section. 1In
a more sophisticated model, diffraction would be left in all
the terms and the round trip equation, Eq(3.26), would be
used. However, we want to introduce complications in an
orderly manner, so the effects of these complications can be
observed. Furthermore, the full diffraction model is
computationally very difficult.

We also restrict the model to the case of a positive
branch, confocal, unstable resonator (PBCUR). As mentioned
in the preceding section, this case is of general interest
because of the collimated output beam, and it further
simplifies the model. A round trip in the PBCUR consists of
an expanding leg and a collimated leg. (See Figure 4.1.)

The method of stationary phase, introduced in the last
section, will be applied to each leg. In the leg where the

field is expanding, the curvature of the field is modified
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in order that the function, q(x) , is slowly varying, as
required by the method of stationary phase. Physically, the
use of the method of stationary phase means that the
radiation that is stimulated on the particular leg of the
round trip is propagated geometrically through that leg.

The derivation begins with the two-term propagator for
the strip resonator, Eq(3.23) - Eq(3.25). The method of
stationary phase will be applied only to the term containing
gain. Appendix 5 gives the details of this approximation for
both the collimated and expanding legs of a PBCUR, The
resulting two term propagators are given below. First, we

present the collimated leg propagator.

1%

- *® \ _“;(x-x) ,
ulx,z2) = xﬁ dx' e u(x,0) =+
-

(4.19)
I '
+ '{f av’ 33Lx,2') uix,z’)
-]
The expanding leg propagator is more complicated:
‘ -: Kx_xn)l V
wix, 2y = ‘s*i S&x’e x"{ uix’,o) «+
-0y
(et lt%z')('e-t')] (4.20)
et e AE) (3+2 ) I
+—' A ! ———— X * . X fl' ]
zgf VE W) 9,0 ).
[ -+

We now use these propagators with the mirror factor given

earlier, L ( 2
_t ;‘1)X
e ™ ’ , \xl &a

A = (4.21)




to obtain a loaded cavity round trip integral equation
similar to Eq(3.26). The derivation parallels Appendix 4 and

will not be presented here. The resultant equation is

uq(x,Z\.) = T )+ T, + T, , \xlca, (4.22)

! where the first term is
3 a _ i P4+ x'2) — 2 xx']
: 1w =§21 Sd P U.(x', 0) | (4.23)

-Q,

the second term is

_“ I (g x"-2xx’ +(29,-1)x'?]

| o8
T,00 = 555 fov fax' T :

f+v
(4.24)
{wli-2)n'?® s §ep '
Y T3] +2' r T+
e * u.kx';— v) Qs ', 20 ,
! and the third term is
b
g "“’( '-|)X
- |
;.:- Ij&x) = 5 e. j’d‘i 35Lx,1)u (x,2') . (4.25)
Now the first term is just the bare cavity integral equation

if gain were not present. The second term is the diffraction
through the second (collimated) leg of the stimulated
emission generated on the first (expanding) leg. The third
term is just the geometric optics propagation of the

stimulated emission generated on the second leg. The final




field is again written for a plane halfway through the

feedback mirror in order to preserve symmetry in the first
term and to make this analysis parallel the bare cavity
analysis of Chapter 2, _

The integral equation, Eq(4.22), still contains
distributed gain (i.e. gain that is distributed throughout
the cavity). One difficulty with distributed gain in a
resonator is that the gain depends on the two-way fields.
The usual approximation is to segment the gain into multiple
segments and lump the gain in each segment into a single
plane, propagating between segments as if the field were in
free space. (This approach was used in several of the papers
reviewed in section B,) We want to pause for a moment in our
derivation to examine the criteria for the gainsheet
approximation and how many gainsheets age required }o
adequately model a given resonator. The discussion that
follows is a summary of a paper by P.W. Milonni. (Ref 37)
(We note here that Milonni studied the accuraéy of a
propagation, not a round trip in a resonator;)

Milonni begins by deriving the loaded cavity paraxial
wave equation as we did in Chapter III. He then uses the
Green's function method to obtain a propagator that has two
terms. The first is the usual Fresnel diffraction integral.
The second contains the contribution due to the stimulated
fields. Milonni then expands the gain term in a Taylor
series about the observation point. He finds two conditions
that, when satisfied, allow for accurate modeling using gain

sheets. These two conditions are
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and
2
J‘d%"’u‘-v.t‘)ELﬂ.v.t’) = 2 XGwy,0 Ey,0)  (4.27)
Q

The first of the conditions, Eq(4.26), essentially states
that the transverse variations of the field must change
little over the propagation distance. This can be expressed
as a Fresnel number argument for the strip case:

F>» 2 0.07946 (4.28)

e
This expression gives conditions so that the effecgs of
diffraction are negligible over the gain segment. The second
condition, Eq(4.27), restricts the amount of variation in the
susceptibility (or the gain)., That is, the gain must be
fairly uniform across the gain segment that:tHe gain sheet is
modelling. The number of gain sheets required to model
accurately a given propagation through an active medium is
set by these two restrictions.

The results obtained by Milonni parallel the results
obtained by others. Fox and Li used gain sheets if (1) the
gain per pass was small ( g, L << 1 ) and (2) the transverse
field distribution does not change substantially along the

axial direction (Ref 41). Siegman and Sziklas state that the




gain sheet model is valid if "neither the accumulated

differential phase shift nor the fractional gain in a single
segment" is large (Ref 43,44). Rensch states the same
restriction that Siegman and Sziklas used and added that the
segment size 2z (where the numbe} of segments is
approximated by L/z ) should be less than the transverse
field variations (Ref 42), Clearly, these authors are all
stating the same general rules for the use of gain sheets.

With this brief discussion of the gain sheet
approximation, we would like to next turn to the numerical
model that was developed to implement Eq (4.22). However,
before we discuss this model, we want to derive a parallel
model based on a more conventional inclusion of gain. This
model, termed the "multiplicative model" for convenience,
assumes a single gainsheet at the feedback mirror and
implements this gain as a multiplicative factor:

ﬁlgi\_

V) xX) = e (%) (4.29)

abter before

This gain term is essentially a Beer's Law gain model. Using
the same lens factors and the Fresnel propagator as used in
Appendix 4, one can readily find a round trip equation for
the loaded cavity mode., The resulting integral equation has

a radically different form from Eq(4.22):

L ° s" ) +9 g""' )] .
Q -1 L SN '
: ! — A [ (xtew't) ~2xn')
u,(x,20) = S_—z,:xu gdx' e e T u,(x) (4.30)

Here, the equation is a homogeneous integral equation,
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although the kernel is nonlinearly related to the field
through the gain term. Note also that the gain term depends
on both coordinates, x and x'- . We show this equation
and later implement a numerical model of it to compare with

the model of Eq(4.22). We now turn our attention to the

development of the numerical models.

E. Numerical Implementation of Loaded Cavity Models

In this section, we describe how the analytic model
developed earlier in this chapter is implemented in a
computer model. In the next section, we will discuss the
results obtained with the model. The numerical model solves
the loaded cavity round trip equation using the iterative
technique. The equation that will be solved is Eq(4.22) with
the detailed parts in Eqs(4.23)-(4.25). In Eq(4.22), we

replace u, with 3 u, , in order to form the mode

equation, A similar model is developed for Eq(4.30) in order
to observe the differences between the two approaches.

As mentioned earlier, only a single gain;heet will be
used in the numerical model. We choose to place this

gainsheet at the feedback mirror. This is accomplished by

- ~ v v w -y ~— e -
| RCRENENANRARAN | R e

replacing Sdz by L , setting z to zero in Eq(4.24)
and z to 2L in Eq(4.25). However, Eq(4.24) and Eq(4.25)

contain the fields u, and u These fields can be

\ 3 °

related to the field u, at the feedback mirror plane by the

“\W

‘ following relations:
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u.bt) o , \xV > a, (4.31)

S P PN - o

1::9[-%%.-1)“‘] W, (x) , Ix\£a,

Ul = exp LT ta-1) x] w0 ¥x | (4.32)

Now the gain function is modelle& with a simple homogeneously

broadened gain model:

) = 1+ |u.m?’:+ Tuztoft . (4.33)
When Eq(4.31) and Eq(4.32) are used, this gain model will be
saturated by two fields for values of x on the mirror, and
only by one field off the mirror.
y Using the relations in Eqs(4.31)~(4.33), a numerical
model was constructed to solve the integral equation using an

iterative technique. First, a trial solution for ‘u was

(-]
constructed. Then the right-hand side of Eq(4.22) was
solved, generating a new trial solution for u, .+ By
comparing the last trial solution to the current one, the
loaded cavity eigenvalue, »», can be estimated, This process

is repeated until the eigenvalue estimate does not change

significantly (less than one percent) between iterations. (A

[ M

similar model was developed by Fox and Li (Ref 15) and a bare

* )

cavity numerical model was developed in Chapter 2 to serve as

a baseline for the kernel expansion.) In the bare cavity
case, only the lowest loss mode was found. In the loaded

cavity case, the form of the equations suggest that there may

wa

only be one solution, although a proof of this is not offered

4 & A B

due to the nonlinear form of the second and third term on the
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right-hand side of Eq(4.22).)

Several comments can be made about the loaded cavity
eigenvalue, First, when the gain is set above the cavity
threshold, we expect to find steady state operation, i.e. the
equations should show that the gain in the field due to
stinmulated emission equals the loss in the field due to
outcoupling. Then the magnitude of the eigenvalue should be
unity. Second, the phase of the eigenvalue will still
indicate a frequency offset just as the phase of the bare
cavity eigenvalues did. Thus if the model is working

correctly, we should find this behavior predicted by the

code.

The functions were evaluated on a uniform grid. An odd
number of points was used in order to use Simpson'{ rule
integration. Due to the integral over x in Eq(4.24), the
grid needs to extend at least out to the geometric shadow
boundary defined by x = Ma, . Taking the grid over a
smaller region gives incorrect answers for the mode on the
mirror. |

The output of the model includes the loaded cavity
eigenvalue discussed above, intensity and phase plots of the
mode, and three power calculations., The first is an estimate
of the powver based on a Rigrod calculation., The equation

used is Eq(4.18), repeated here:

Pa= 2321

(4.34)
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Also, the pover on the mirror and the total power across the
outcoupling plane (as limited by the extent of the transverse
grid, xmax ) are calculated, and the values listed. These
values are used to calculate an ;utcoupling fraction, defined
by
S tusay iy
S =1 - =& ] (4.35)

est gm-\u Lo\t dx
~XMAx

This value is also listed. These outputs allow one to study
the eigenvalue behavior, the changes in intensity and phase
and the power on the mirror as the gain is increased. Also

the outcoupling should increase as the gain is increased, but

v

v some saturation effects should also be apparent, as
illustrated by the fractional outcoupling.

The model was written using FORTRAN IV, It wvas first

PN ATATI A

implemented on the Aeronautical Systems Division (ASD)
Control Data Corporation Cyber series computer, and then
transferred to the Air Force Weapons Laboratofy (AFWL) CRAY-1
supercomputer. The results that are shown in this chapter
were obtained with the CRAY.

The initial baseline for the code was to compare it
: against a bare cavity calculation obtained from any of *the
methods discussed in Chapter 2. The code predicted identical
eigenvalues, intensity and phase plots for all cases
examined., The verification of the loaded cavity calculations
is more difficult since no past work included a saturabdle
medium in the same manner. This is one reason that the
multiplicative model of the loaded cavity was derived at the
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end of the last section. Eq(4.30) was also solved in an

iterative manner that paralleled the procedure used to solve

Eq(4.22). The same gain model was used to allow direct
comparison of the results. The outputs that will be compared
include the saturation characteristics, the eigenvalue
behavior, the intensity and phase of the mode, and the
behavior of the power on the mirror. The iterative model
based on the analysis of Chapter 3 was also checked for
internal consistency, i.e., did it predict behavior that
agreed with qualitatively observed laser behavior? Also, a
wide range of cases were studied in an attempt to see if the
bifurcation of solutions could be observed. {(No such
behavior was observed. Near the mode crossing points
predicted by the bare cavity theory, both models showed
difficulty in converging as indicated by the number of
iterations needed to obtain a converged solution, but the
multiplicative model behaved much worse than the model
developed here and actually did not converge even after many

iterations for some cases.)

F. Results of the Numerical Model of the Loaded Cavity

In this section, we examine the major results obtained
from the numerical model of the strip resonator. Recall that
the numerical model uses the analysis of Chapter III with the
method of stationary phase applied to the integral that
contains the gain. Then the gain is further approximated by

a single gain sheet at the feedback mirror. This numerical
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model will be used in this section to analyze the modes of
the loaded cavity. Since the gain is being included in an
additive manner rather than a multiplicative fashion, there
are limited published results against which the model can be
compared.

The results that will be discussed include (1)
restrictions on transverse grid size, (2) convergence test of
the model by varying the number of points in the grid, (3)
convergence test by examining the number of iterations needed
for a converged mode, (4) examination of the power on the
feedback mirror, amplitude of the loaded cavity eigenvalue
and phase of the loaded cavity eigenvalue as a function of
the small signal gain, (5) examination of intensity/phase
as a function of small signal gain for the additive and
multiplicative models, (6) examination of a mode crossing
where the amplitude of two lowest loss bare cavity
eigenvalues are equal, (7) examination of the phase of the
loaded cavity eigenvalue and the power on the mirror as a
function of the equivalent Fresnel number, and.(8) a
preliminary examination of how the loaded cavity mode maps
onto the bare cavity modes. These results comprise a broad
range of phenomena that will illustrate the similarities and
differences between the additive model developed in Chapter
III and the multiplicative model frequently encountered in

the literature,

1. Transverse Grid Extent

The approach to solving the loaded cavity integral
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equation, Eqs (4.22)-(4.25), will be an iterative technique
as described above., Of concern here is the extent of the
transverse grid necessary to yield an accurate ansver. The x
integral in Eq(4.24) is the most restrictive term in the grid
determination. This integral is over the back mirror and the
grid must extend over at least the width of this mirror.
Picking the upper limit on the grid to be greater than or
equal to Ma gave intensity and phase plots that were in
good agreement while picking the upper limit to be less than
Ma gave mode plots that varied radically as the upper limit
changed. The conclusion is to always set the grid limits to
be at least as large as the back mirror size. Here the back

mirror size is set by the geometric beam size.

2. Convergence as a Function of Number of Points

We now vary the number of points and look for changes in
the loaded cavity mode solution., The purpose.of this test is
to verify the numerical stability of the results. Table IV-
4 summarizes the effect of varying the number.of points by
examining the effect on the loaded cavity eigenvalue., The

gain is set to be initially three times the geometric

threshold value, Note that the amplitude of the eigenvalue
is unity even for a small number of points (N=25), However,

the phase of the eigenvalue changes as the number of points

[

P changes until at least 99 points have been used. Plots of

o the intensity and phase of the converged solution for the

N loaded cavity mode show similar results, As long as at least

4

[
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TABLE 1IV-1.

Convergence History As Number of Points is Varied

M =10 Feff = 0.225 8, * 3.0 8¢h Xpax = 3.0 a;
eigenvalue eigenvalue

N magnitude phase power on mirror

25 0.9999 0.257 0.014225

49 1.0003 0.024 0.01345

75 1.0001 0.037 0.0117
99 1.0001 0.043 0.01166

125 1.0001 0.044 0.011645

149 1.0001 0.045 0.011638

175 1.0001 0.046 0.01165 ,

199 1.0001 0.046 0.01165
NOTE: ;. Data shown is for the fifteénth iteration.

Power on mirror is in normalized units.
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99 points are used for this particular case, a converged
solution is obtained that accurately represents the loaded
cavity mode as modeled by this approach.

This study was not intended to set definitive require-
ments on the number of points required for a particular case
(as specified by the magnification and equivalent Fresnel
number of the resonator). Rather, each case should be
considered separately by varying the number of points until
the converged solution no longer varies. (Sziklas and
Siegman developed a criterion for the number of points
required to resolve the mode in their FFT model (Ref
44:1878). However, their work involved guardbands for the
FFT., If we set a guardﬁand of about 0.5 and allow only 0.001
of the energy to be aliased from higher spatial frequencies
into lower ones, then their criterion (Eq(19) of Ref 44)

gives a required number of points similar to that obtained’

here.) This study did show that the same loaded cavity mode
was obtained as the number of points was increased beyond
some minimum. This study is necessary as an internal

verification of the numerical model.

3. Convergence as Function of Number of Iterations

We now examine another internal check on the numerical

model. The loaded cavity mode is obtained aiter a number of
iterations and we examine here the number of iterations
required to produce a converged solution. The final solution
did not depend on the initial field.

Figures 4.2 and 4.3 show the magnitude and phase,
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respectively, of the loaded cavity eigenvalue. This

eigenvalue is the parameter that is used in the model to
assess convergence, The figures show two cases of equivalent
Fresnel number, 0.74 and 1.3 ,.for the same magnification
and small signal gain. The first case is near a mode
crossing where the two lowest loss bare cavity eigenvalues
have nearly the same eigenvalue. This case usually exhibits
difficulty in convergence when the method of successive
approximation is used (Ref 15). (We will examine a mode
crossing in more detail in Section 6.) The second case is a
case where the two lowest loss bare cavity eigenvalues are
widely separated. The figures show that convergence was
obtained rapidly in both cases, For the particular cases
studied, convergence was obtained in about ten iterations.
Similar results were obtained for all the other cases studied
with this model.

This study showed that the numerical mode} was stable
and that convergence was obtained for a reasonable number of
iterations. This study also showed that thellbaded cavity
eigenvalue was a useful parameter for assessing convergence.
The number of iterations required for convergence increases
as the equivalent Fresnel number. In the cases that were
studied, the convergence was checked manually. When the
eigenvalue did not change by more than about one percent for
several iterations, convergence was said to have been
obtained. When this criterion was satisfied, the intensity

and phase did not vary with more iterations.
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4, Variations in Loaded Cavity Mode Parameters as Function
of Small Signal Gain

In this section, we apply the model to study the trends
in the loaded cavity mode as the small signal gain is varied.
The parameters that are studied are the amplitude and phase
of the loaded cavity eigenvalue and the power on the feedback
mirror,

The case presented here is the same one that will be
presented for the majority of this chapter: M = 2,5 and Feﬂ
= 1,2 ., Other cases were studied and this case was chosen
as representative. The equivalent Fresnel number is low
enough that convergence is rapidly obtained. Therefore many
computer runs can be made to explore the parameter space.

We examine first the amplitude of the loaded cavity
eigenvalue as a function of small signal gain. Figure 4.3
shows the behavior. In this figure, the results from both'
the additive model (denoted by the "x's") and the
multiplicative model (denoted by the dots) are displayed.

The two models give very similar results for this parameter.
Two principal conclusions are apparent from these plots.
First, the threshold predicted by the two models is below the
geometric threshold. (The abscissa is scaled by the
geometric threshold.) This behavior is physically meaningful
because diffraction tends to peak the intensity towards the
center of the resonator for equivalent Fresnel numbers near
n+ 0,375 (n any integer), thus allowing the gain to be
more rapidly saturated in the central "core" region of the

resonator. Second, both models predict that the loaded
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cavity eigenvalue has a magnitude of unity for small signal
gains above threshold. The numerical models did not contain
any algorithm that forced this result. Rather, the gain from
the stimulated radiation acted to balance the losses due to
diffraction. The behavior of the numerical models thus shows
the "gain equal loss" behavior expected from laser theory for
the above threshold case, A final conclusion is that the
magnitude of the loaded cavity eigenvalue is not a good
discriminator between the two models,

A better discriminator is the phase of the loaded cavity
eigenvalue. Figure 4.5 shows this parameter as a function of
the small signal gain, again scaled by the threshold gain
value. The top plot shows the results of the multiplicative
model while the bottom plot shows the behavior for the
additive model. For gains below threshold, the phase doesa't
depart significantly from the phase of the bare cavity
eigenvalue for the multiplicative model but it does change
for the additive model. This is more significant when we
recall that the phase of the eigenvalue is ass;ciated with
the frequency of the mode that exists in the resonator (Ref
6:179)., Thus the additive model predicts the frequency of
the loaded cavity mode shifts as the small signal gain is
increased toward threshold. This result is more physically
realistic than the lack of a frequency shift predicted by the
multiplicative model as the presence of the gain medium
begins to affect the mode. Both models predict that the

frequency shifts as the gain is increased above threshold.
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The amount of frequency shift eventually becomes constant for
gains far above threshold. Different oacillation frequencies
are predicted by the two models. The direction of the
frequency shifts varied for the different Fresnel numbers
studied. In a subsequent section we will examine the
variation of the eigenvalue phase as a function of the
equivalent Fresnel number. Here we only note that the two
models yield different behavior for the frequency of the
loaded cavity mode but both show the frequency shift becomes
fixed for gains far above threshold.

The last result that is discussed in this section is the
variation of the power on the feedback mirror as a function
of the small signal gain. Figure 4.6 shows this variation as
predicted by both models. Also shown on this plot is the
geometrical optics prediction derived earlier in the chapter.
The line labeled P,, is obtained from Eq(4.18). The first
point to be made about these plots is that there is
essentially no power on the feedback mirror until the gain is
increased above threshold. Both models predicF about the
same threshold. Note that Eq(4.18) also gives a threshold

that is slightly below the geometric threshold developed by
Rigrod:

L (M
Y = AN ) . (4.36)

The results of the multiplicative model deviates farther from

the geometrical optics prediction than those of the additive

model in this case and all the other cases studied. While
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this doesn't prove that the additive model is more correct
than the other model, it does suggest that the additive model
is in closer agreement with the geometrical optics prediction
than the multiplicative model. A-final statement about
Figure 4.6 is that the power on the feedback mirror increases
linearly with increasing gain. Figure 4.7 shows the
outcoupled fraction of the power as a function of small
signal gain., (See Eq(4.35)) Again, a threshold behavior is
exhibited by both models. In this case, the only reference
that can be used is the geometric outcoupling fraction shown
by the horizontal dashed line. (Whether the curves predicted
by the diffractive models will lie above or below the
geometric outcoupling fraction depends on the Fresnei number.
The behavior will be discussed in Section 7.) Herq. the
outcoupling shows saturation as the gain is increased. Th;s
saturation occurs as the gain in the region off the feedback
mirror is saturated. The gain on the feedback mirror
saturates faster than the gain off the mirror since the gain
on the mirror is saturated by two way flux. The results in
Figure 4.7 agree well with the basic understanding of laser

physics, i.e., both models predict the correct trends.

5. Intensity/Phase Plots for Small Signal Gain Variations

In this section we will examine the variations in the

intensity and phase of the loaded cavity mode as the small

signal gain is increased from zero to far above threshold.

-
; Both the additive and multiplicative models are used to
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generate these plots so that a further comparison can be made

~ p

between the two models., Again, the case that is presented is

the case of a positive branch confocal resonator with a

L

magnification of 2.5 and equivalent Fresnel number of 1.2 .

3

All of the plots represent numerical calculations that
Q converged in the sense that the loaded cavity eigenvalues did
not vary for several iterations by more than one percent. An
adequate number of points was taken on a grid that extended

g at least from -Ma, to Ma‘ , based on the discussions of

1
convergence given above,

* Figures 4.8 to 4.13 show the intensity of the loaded

cavity mode in the plane just before the feedback mirror.

oy, Y

The gain varied from zero (Figure 4.8) to five times the

.

- geometric threshold (Figure 4.13). The intensity is

normalized such that the peak value is set to unitys The

PR R VR N

abscissa is scaled by the halfwidth of the feedback mirror so
that -1 and +1 represent the edges of the mirror. In
these figures, the plots labeled with A represent the
results of the additive model and the plots lapeled with M
represent the results of the multiplicative model. We will

now discuss each intensity profile separately.

O hraueg

Figure 4.8 is the intensity of the lowest loss bare
cavity mode. This plot agrees well with the results of
Chapter II where the matrix approach was used to obtain the
bare cavity modes. This profile is shown as the baseline
against which the other intensity profiles can be compared.

’ Figure 4.9 is the intensity profile for the case where

K the small signal gain is 0.4 times the geometric threshold.
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Here the results of the two models are already showing slight
differences, although the plots are in good agreement, The
additive model shows the mode fi}ling in faster on the mirror
as well as increasing more rapidly off the mirror. The
general profile has not changed significantly from the bare
cavity mode. The peaks and valleys have not shifted in
location, and the profile is still dominated by a central
peak.

The next figure, Figure 4.10, has the small signal gain
set at 0.8 times the geometric threshold. Again the additive

model shows significantly more filling in of the mode on the

feedback mirror. What had been a mild shoulder at the edge

of the mirror has become another peak. This is the only

significant change in the general profile. In fact, when the

results of the multiplicative model for this gain level are

overlaid on the bare cavity mode, only a slight increase in
the intensity is noticed. Recall that the phase of the
eigenvalue, Figure 4.5, and the outcoupling, Figure 4.7, did
not change significantly from the bare cavitﬁ value for the
multiplicative model. This correlates well with the

intensity profile,

Figure 4.11 is the intensity of the loaded cavity mode

when the small signal gain is equal to the geometric
threshold. The trends discussed above continue, with the new
peak at the edges of the feedback mirror becoming more
pronounced for the additive model. The intensity predicted

by the multiplicative model differs from the bare cavity plot
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only in that the intensity is increased across the mode.
Neither the location of the peaks and valleys nor the
relative heights of the peaks have changed.

When the small signal gain is set to twice the geometric
threshold, a sharp jump at the edée of the feedback mirror is
apparent in both plots. (See Figure 4.12) This is due to the
gain model, which sharply changes the saturation of the gain
from two way flux to one way flux. The intensity profile
predicted by the additive model shows the intensity on the
feedback mirror has continued to fill in. One expects the
mode to fill in on the feedback mirror since the gain is less
strongly saturated where the intensity is lower and thus the
field should increase more rapidly here. This behavior is
shown in the region off the mirror, where the gain is only
saturated by one way flux. The intensity on the feedback
mirror that is predicted by the multiplicative model still:
resembles the bare cavity mode. Some filling in of the
intensity is apparent when this plot is compared to the bare
cavity mode.

The last intensity profile, Figure 4.13, shows the
results when the small signal gain is five times the
geometric threshold. (This case is more representative of an
actual laser system. Only by having the small signal gain
significantly higher than the geometric threshold of the
resonator can significant amounts of power be extracted from
the medium.) Here the additive model shows the central peak
to be lower than peaks located off the mirror while the

multiplicative model still shows the central peak to
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dominate. The new peaks near the edges of the feedback
mirror that were predicted by the additive model were never
predicted by the multiplicative model. These peaks are a
result of the more complicated additive term that includes
the diffraction of the radiation stimulated on the first pass
as this radiation propagates out of the resonator. If more
gain sheets had been used or if the full diffraction terms
given in Chapter III were used, these peaks may have been
different. But the significant point is that the profile
differs from the bare cavity mode. The multiplicative model
does not show these changes. As the gain is increased
further in both models, the mode on the mirror does not
change much since the gain is now nearly saturated. For very
high gains, even the gain off the mirror exhibits saturation

in that the intensity profile does not increase significantly

as the gain 1is increased.

The phase of the loaded cavity mode does not change
appreciably as the gain is increased from zero. Figure 4.14
shows the phase predicted by both models for shall signal

gain set at five times the threshold value. The bare cavity

phase is also shown for reference purposes. Since the phase

does not change significantly, we expect the far field beam

;

quality will be unchanged from the beam quality of the lowest

; loss bare cavity mode. This is important since the lowest

; loss bare cavity mode calculations can be used for beam

3 quality calculations. This conclusion is limited to the

? simplified model of simple saturable gain. More realistic

,i.
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kinetics might introduce asymmetries and phase shifts that

‘> O af

wvould change the beam quality of the loaded cavity mode as
\ compared to the bare cavity mode.

The final figure of this section, Figure 4.15, shows the
gain profile from the additive model for the case where the
small signal gain is set at five times the geometric

threshold. The first observation is that the actual

ENONCNDL 4

threshold is lower than the geometrically estimated value.
. Even using the geometrical optics analysis of Section C, the

- threshold is given by

- v _ 2 iIn -1
: W = TlFE=1) . (431

For this case (M=2.,5), Eq(4.37) gives a threshold of 0.306

" instead of the geometric threshold of 0.312 predicted by

9’ Eq(4.36). Examining Figure 4,15, we find that the
diffractive model still gives a lower threshold of about
0.22. This lower threshold was also shown in earlier plots
of the amplitude and phase of the loaded cavity eigenvalue.
Figure 4.15 also shows the distinct jumps at the edges of the
mirror that are an artifact of the single gain sheet model
used in the models. This gain profile is typical of the

5, profiles obtained with either model for various gains.
Because of the single gain sheet model, the gain profile
tends to look like an inverted plot of the intensity profile.
This appearance can be understood by realizing that the gain
begins at the small signal gain level and then the intensity

decreases this gain by an amount that is proportional to the
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intensity. Thus where there is higher intensity, there will

be lower gain. (Note also that the function 1/(l+x) can be
approximated to first order by 1l-x . This can be applied
to the simple saturable gain model, Eq(4.2).)

This discussion of the 1nten§ity and phase profiles of
the loaded cavity mode as the small signal gain is increased
has four main points that are briefly restated here. First,
the multiplicative model tends to underestimate the power
output of the resonator as compared to the additive model.
This may be due to the behavior of the exponential function
for the field off the feedback mirror. Second, the additive
model shows that the profile may change from the bare cavity
mode due to the diffraction of the stimulated radiation and
its coherent addition with the stimulating field in the
resonator. This combination might introduce new structure in
the mode. Third, the phase of the loaded cavity mode does’
not significantly differ from the bare cavity mode,
indicating that the beam quality from the two modes should be
about the same. Finally, the threshold predicted by the
diffractive models is less than the threshold predicted by
the one dimensional models. This is probably due to the
peaking of the intensity near the axis. There are some
Fresnel numbers where a minimum occurs on axis and these
cases might show different threshold behavior. We now
consider a case of a different Fresnel number, namely the

case of a mode crossing.

---------------
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6. Loaded Cavity Mode Near a Mode Crossing

A mode crossing occurs for a magnification of 3 and
equivalent Fresnel number of 1.8742 . This case was studied
in Chapter II in depth and the matrix technique showed the
two lowest loss even modes had the same loss as measured by
the magnitude of the eigenvalue. The iterative approach
could not be applied to the bare cavity mode crossing case
since convergence is extremely slow. In this section, this
case is examined with the loaded cavity models to see if
convergence can be obtained and what the mode characteristics
would be.

Figures 4.16 and 4.17 show the convergence history as
measured by the magnitude of the loaded cavity eigenvalue.
The first figure is for the case where the small signal gain
is equal to the geometric threshold. The multiplicative
model did not converge in the twenty iterations shown while
the additive model showed good convergence in about fourteen
iterations. However, the magnitude of the loaded cavity
eigenvalue was less than one, showing that threshold had not
been reached. The important point is that the additive model
did converge and the multiplicative model did not. This
supports the supposition at the end of Chapter III that the
additive model may have a unique solution since it is an
inhomogenous integral equation while the multiplicative model
may not have a unique solution since it is a homogeneous
integral equation. In fact, a linear homogeneous Fredholm
integral equation of the, second kind usually has a spectrum

of eigenfunctions as was seen in the bare cavity analysis of
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Chapter II.

In Figure 4.17, the gain has been increased to three
times the threshold value. Here, both models did converge to
an answer where the loaded cavigy eigenvalue had a magnitude
of one. However, the additive mo&el gave more rapid
convergence, converging in about ten iterations versus
thirteen for the other model, Also, the magnitude of the
variations was more pronounced for the multiplicative model.
The fact that this latter model did converge for this case
indicates that the gain now dominates the kernel of the
integral equation and the degeneracy observed for the bare
cavity mode is no longer apparent for this case. At some
point where the gain is far above threshold, the gain becomes
the dominant term in both models and the bare cavity terms
are the perturbations.

We next examine the power on the mirror as the small
signal gain is increased from zero to above threshold.

Figure 4.18 shows the behavior. As discussed'earlier. the
additive model gives results that agree more closely with the
geometrical optics prediction given by Eq(4.18) and plotted
as the uppermost line. Note also that because of convergence
problems, the multiplicative model was only used to
calculations well above threshold. The resonator designer
intentionally tries to avoid mode crossings in the design of
high energy laser resonator in order to obtain good "mode

control™ and so the utility of either model at a mode

crossing is of more academic than practical interest. The
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results indicate that the additive model is a more stable

model of the loaded cavity.

7. Trends in Loaded Cavity Eigen;alues and Power on Mirror
With Variations in Fresnel Number

In this section we return to examining the phase of the
loaded cavity eigenvalue and the power on the feedback mirror
as the equivalent Fresnel number is varied. In the bare
cavity case, we observed a periodic fluctuation in the
magnitude of the eigenvalue with variations in the equivalent
Fresnel number. (See Figure 2.9) The fluctuations had
maxima at equivalent Fresnel numbers of about n+0.375 and
minima (mode crossings) at equivalent Fresnel numbers of
about n+0.875 where n 1is any positive integer. .In the
loaded cavity case, the magnitude of the eigenvalue is fixed
at unity for gains at or above threshold. However, we will
observe a similar fluctuation in other parameters.

The first parameter we examine is the power on the
feedback mirror after convergence is obtained. Figure 4.19
shows the results obtained with the additive model. Here the
small signal gain is set at three times the geometric
threshold value. The oscillations are evident and the
location of the maxima and minima are about the same as those
observed in the bare cavity case., However, the amplitude of
the oscillations appears to damp out with increasing Fresnel

number. In fact, the results appear to be damping out to a

value that is in good agreement with the geometrical optics
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prediction given by Eq(4.18). A limited number of
calculations were made at higher equivalent Fresnel numbers
and the agreement with the geometrical optics prediction was
even better. As a function of fresnel number, the
diffractive model rapidly approaches the geometrical optics
limit, One other series of calculations was made with the
small signal gain set at the threshold gain and similar
behavior was observed. The expense involved with such
calculations has prohibited a more in-depth study. The main
observation is that the location of the maxima/minima are the
same as those observed for the bare cavity case. The power
on the mirror is similar to the magnitude of the eigenvalue
as a measurement of the amount of feedback in the resonator,
In fact, some large resonator codes such as the System
Optical Quality (SOQ) code used at the Air Force Weapons
Laboratory use power calculations for convergence criteria’
instead of field points, as in this model.

The second parameter we examine is the phase of the
loaded cavity eigenvalue., Figure 4.20 shows the results
obtained from the same series of calculations that produced
the power on the mirror results discussed above. Again the
oscillatory behavior is evident but here the locations of the
maxima and minima do not correspond to the previous results.
The maxima occur at about integer equivalent Fresnel numbers
and the minima occur at equivalent Fresnel numbers of about
n+.7, where n represents a positive integer. However, a
close examination of the results shows that near the values

n+.375 and n+.875 the phase of the eigenvalue passes
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through zero. In these cases the eigenvalue is purely a real

number. One other observation is that the oscillations damp
out with increasing Fresnel number over the limited range
studied here. The limiting value would appear to be zero for
the phase., This is in good agreement with the geometrical
optics predictions, since there is zero phase in the
geometrical optics model. Thus the frequency shift would be
zero, but this shift is applied to the infinite frequency (or
zero wavelength) case. As was stated earlier, the primary
conclusion to be drawn from these results is that the
oscillatory behavior observed in the bare cavity eigenvalue
as a function of Fresnel number can also be seen in the
loaded cavity. The practical application of this result is
that the conventional resonator design criteria of choosing
the physical parameters to avoid a mode crossing ié still a
good design criteria for the loaded cavity. Maximizing the
power on the feedback mirror would give the best gain
saturation in the "core" of the resonator and.thus the most

efficient energy extraction from the gain médtum.

8. Mapping the Loaded Cavity Mode onto the Bare Cavity Modes
At the end of Chapter III, the expansion of the loaded
cavity modes in terms of the bare cavity modes was discussed,
The intent of this expansion is to observe how well the bare
cavity modes model the loaded cavity as well as to find out
how the bare cavity modes combine to make the loaded cavity

mode. In this section, some preliminary results are
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presented showing how the loaded cavity mode calculated with
the additive model can be projected onto the bare cavity
odes. The results are very interesting, but the limitations
on the resolution of the higher order bare cavity modes as
well as some numerical code difficulties restrict the amount
of data to be presented and limit the conclusions that can be
drawn from the results.

The methodology of obtaining the expansion coefficients

is described here. The additive model is used to obtain the
loaded cavity mode through the iterative method. Then this
mode is projected onto the bare cavity modes (BCM) as
described at the end of Chapter III. The bare cavity modes
are obtained with the kernel expansion method described in
Chapter II using the linear prolate functions as a basis set.
Any method of generating the bare cavity modes would be
useable for this expansion. The results are expansion
coefficients that can be used to reconstruct an estimate of
the loaded cavity mode using the bare cavity modes. The
numerical model for this projection was compliFated by the
fact that (1) the bare cavity modes exist only on the
feedback mirror while the additive model must use a grid that
extends out to the shadow boundary, and (2) the bare cavity
modes were calculated on a nonuniform grid due to the
requirements for generating the linear prolate functions and
the additive model uses a uniform grid. The first difficulty
was resolved by integrating only over the feedback mirror as
the integral in Eq(3.37) required. The second difficulty was

more challenging. The BCM were interpolated onto the uniform
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grid of the additive model and a numerical quadrature routine
(trapezoidal rule) was employed in the integration. The bare
cavity modes were normalized by the orthogonality
relationship after they were interpolated. Then these
functions were used as a basis set and the expansion
coefficients were calculated.

The first case that is examined here is the case that
was discussed extensively in Chapter II. The magnification
is 2.5 and the equivalent Fresnel number is 0,6. Table IV-2
shows the expansion coefficients for the BCM that were used
in the approximation of the loaded cavity mode. Note that
the lovest loss mode has the largest coefficient by a factor
of 30. Also, the odd parity BCM have very small
coefficients. However, the higher order even modes do not
show a large difference in their coefficients. No clear cut-
off that would indicate how many BCM are required is evident,
although the lowest loss BCM is always the most significant
function in the expansion. When these coefficients are used
in a finite series to see how closely this series reproduces
the loaded cavity mode (LCM), we find that the approximate
LCM varies greatly. Figure 4.21 shows the reconstructions.
The LCM is plotted against the normalized intensity scale on
the ordinate. The approximate LCM intensities were
intentionally shifted down to allow them to be displayed on
the same plot. Thus one should mainly consider the shape of
the approximate LCM and how they compare to the LCM produced
by the additive model. The curve marked "1 BCM" uses only

the lowest loss BCM; the curve marked "2 BCM" uses the two
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TABLE IV-2.

Bare Cavity Mode Expansion Coefficients

= 2.5 F £ "™ 0.600

ef

coefficient
BCM magnitude

8o ™ 3.0 8y

coefficient

phase

“% 'l .

uo(x) 0.904

u,(x) 2.88E-02
ua(X) 5.15E-02
u6(x) 3.39E-02
u, (x) 2.52E-06
ua(x) 7.79E-06
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lowest loss even parity modes; the curve marked "3 BCM" uses
the three lowest loss even parity BCM; the curve marked "5
BCM" uses the four lowest loss even parity BCM and the lowest
loss odd parity BCM. In the last case, the inclusion of the
odd parity mode made no difference from a plot that only used
the four lowest loss even modes. The best approximation
appears to be either of the first two plots marked "1 BCM"
and "2 BCM". The other plots differ significantly from the
iterative solution. It is most likely that a combination of
inaccuracies in the generation of the original and
interpolated BCM produce the deviations. However, one cannot
predict from the expansion coefficients the behavior that is
observed in Figure 4.21. Rather than pursue this case in
more depth, let us consider another case to see if Fhe same
behavior is observed.

This case is the case that has been considered at length
in the preceding sections. The magnification is 2.5 and the
equivalent Fresnel number is 1.2 . Table IVf3 shows the
expansion coefficients for this case. Again; the lowest loss
BCM dominates the next mode by a large amount (a factor of
11). Again, no clear cut-off is evident in the even parity
modes. The odd parity modes have much smaller expansion
coefficients as before. Figure 4.22 shows LCM calculated by
the additive model as well as three approximate LCM that are
labeled in the same manner as those shown in Figure 4.21.
Here the best match is the last approximate LCM, using the

location of the small peaks as the deciding factor. However,
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TABLE IV-3.

Bare Cavity Mode Expansion Coefficients

M= 2,5 Feff = 1,200 8o = 3.0 8¢h
coefficient coefficient
BCM magnitude phase
uo(x) 0.846 0.301
uz(x) 7.50E-02 1.601
ua(x) 3.16E-02 1.458
u6(x) 5.07E-02 2.845
nl(x) 3.57E-06 -2.294
u3(x) 2.15E-05 -2.513
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when the fourth lowest loss even parity BCM is included the
intensity of the approximate LCM differs radically from the :
iterative solution. It seems that the inaccuracies in the
higher order modes is the most likely source of the
difficulty, although the results studied to date represent
only a preliminary study of the expansion of the loaded
cavity mode in a series of the bare cavity modes. Several
other cases were studied and similar behavior was found.,
Recall that the bare cavity modes are not power
orthogonal and so when the series approximation to the LCM is
used to obtain an intensity, the cross terms do not vanish
but remain as products of the BCM. This can be made more
clear by considering the intensity of the approximate LCM

when the three lowest loss BCM are used:

'y
%N\ = \bou, ) + \:,_u,_(x) + b, u*Lx)\l

= 1) Iyl b ™ Lu Gg\® + b1 tu oyt
) SR L \“"'x‘ + (4.38)

+ s[",b: Ulduy ) + B, 5% u,lx) uly (x) +
+ b‘b: uztxm: )] + Complex conjugat e of L-‘}

The cross terms may interact in an unpredictable manner. It
is through these terms that the higher order modes can

interact to give the correct LCM, Further study is required
to fully explore this bare cavity mode expansion. It is left

as a recommendation for future work.
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G. Summary

In this chapter, we have developed a numerical model
that implemented the analysis of the loaded cavity that had
been developed in Chapter III. ‘The model had two major
restrictions in it. First, the method of stationary phase
was applied to the the term in the propagator that contained
the gain. This meant that the stimulated radiation was
propagated in a geometric manner, neglecting diffraction.
Second, the gain was approximated by a single gain sheet
located at the feedback mirror., These approximations are
justified. The use of tre method of stationary phase is
justified by the application of the method of stationary
phase to the entire integral equation that was discussed in
Section C of this chapter., The results of that section were
in excellent agreement with previous results published by
Moore and McCarthy. The second approximation is justified by
the analysis done by Milonni that showed that the single gain
sheet is a good approximation even for low Fresnel number
propagations. The gain model was a simple saturable gain
model that used homogeneously broadened gain..

This model was then implemented as was another model
that included the gain as a multiplicative factor in the
integral equation. A wide variety of phenomena was examined
with both codes. Convergence studies were done to validate
the internal consistency of the models. Then the behavior of
parameters such as the magnitude and phase of the eigenvalue
was studied. The magnitude of the eigenvalue was unity when

the small signal gain was above threshold. The phase changed
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as the gain was increased showing that the oscillation
frequency of the loaded cavity mode would be different from
the lovest loss bare cavity mode. The power on the feedback
?* mirror was also studied and the results showed that the
additive model was in better agrebnent with geometrical
optics predictions than was the multiplicative model. Both
models predicted a threshold small signal gain that was lower
than the geometrical optics threshold gain. Plots of the
intensity of the loaded cavity mode as the gain was increased
shovwed significant differences between the two models. The
additive model gave results that had slightly different
maxima and minima from both the lowést loss bare cavity mode
and the multiplicative model. The phases of the modes from
the twvo models and the lowest loss bare cavity mode were in
- excellent agreement for all the values of small signal gain
that were studied. Thus, for this simplified gain model, the
beam quality of the loaded cavity mode should be about the
same as that of the lovest loss bare cavity mode. Another
study was done of the phase of the eigenvalue and the power
on the mirror as a function of the equivalent Fresnel number.
An oscillation in these parameters was found to agree well
with the oscillatory behavior reported in the literature for
the magnitude of the bare cavity eigenvalues. One
B peculiariti was that the phase of the loaded cavity
eigenvalues was zero vhen a extrema was observed in the power
on the feedback mirror. The case of a mode crossing was

examined and the additive model was found to give much better
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convergence than the multiplicative model. Finally, a

preliminary study was made of projecting the loaded cavity
mode onto the bare cavity modes of the resonator. The bare
cavity modes vere generated with the methodology developed in
Chapter II. Although a fairly good approximation to the
loaded cavity mode could be found, no clear criteria wvere
found to indicate which higher loss bare cavity modes vere
required in the expansion in order to accurately model the
loaded cavity mode.

The general conclusion of this chapter is that the
numerical model gave results that agreed well with previous
models of the laser. The loaded cavity eigenvalue showed
that gain equal loss by converging to a value thit had a
magnitude of one. The model exhibited a threshold behavior,
below which the magnitude of the loaded cavity eigenvalue
was less than one and the power on the feedback mir}or was’
negligible, This thresYold was in fairly good agreement with
the one dimensional predictions. The model p{edicted the
variations of the power on the feedback mirror and the phase
of the eigenvalue with the Fresnel number théf wvere well
correlated with the variations in outcoupling with Fresnel
number discussed in Chapter II1. The expansion of the loaded

cavity mode in terms of the bare cavity modes was a new

application of these modes.
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V. Conclusions and Recommendations

A. Introduction

In this chapter, we summarize the work that has been
detailed in Chapters II, III and . IV. We will review each
chapter separately, highlighting key conclusions and
commenting on recommendations for future work in the topic
covered by each chapter. This summary is not intended to be
a detailed review of the work, but rather is aimed at showing
the most significant results obtained in this research
effort.

The goal of this work was to increase the understanding
of laser resonators by developing a consistent formulation of
the modes of empty and loaded resonators. The majority of
the study dealt with the modes of bare and loaded strip
resonators. The strip resonator was further restricted to be
a single-ended, unstable resonator. The approach broke
naturally into three parts. Chapter II presented an analysis
of the bare strip resonator modes. This prqvided the
fundamental description of the natural properiies of the
resonator; in addition, it developed the use of a new basis
set, the linear prolate functions, in the calculation of the
bare cavity modes. Chapter III developed the theory of
‘ the modes of resonators that contain a saturable gain medium.

The analysis began with Maxwell's equations and ended with an
integral equation for the modes of a loaded resonator. This
X analysis led into Chapter IV, in which the numerical

implementation of a simplified model of the loaded strip
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resonator based on the theoretical analysis was accomplished.
Here, in Chapter V, we review each of the earlier chapters,

beginning with the bare cavity analysis.

B. Bare Cavity Mode Analysis and Modelling

The analysis of the resonator that does not contain a
gain medium lays the foundation for the analysis of
resonators that do contain a gain medium, Thus, we began
with an analysis of the bare strip resonator. Although the
basic properties of such resonators are well known, the
results presented in Chapter II introduce three important
issues: the use of the linear prolate functions as a basis
set for the bare cavity modes (BCM), the study of the
validity of the asymptotic approach at low Fresnel numbers,

and the demonstration of the orthogonality of the BCM.

The analysis of the BCM was done using the kernel expansion
technique. This approach transforms the homogeneous Fredholnm
integral equation of the second kind (FIE(II)i that describes
a round trip in the bare cavity into a matrfx-eigenvalue
problem that is readily solved on a computer provided a
"good" basis set is chosen. The analysis is complicated by
the fact that the kernel of the FIE(II) is complex symmetric,
Thus the eigenvalues and eigenfunctions are complex, and the
eigenfunctions obey an orthogonality relation that is
different from the more frequently encountered relationship
for the eigenfunctions of hermitian kernels, Streifer had

shown that the use of the linear prolate functions (LPF)
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would be an optimum basis set in the sense that they would

provide the best N-term series representation of the BCM (Ref
25). However, the basis set had not previously been used in
a numerical model of the resonator. (The linear prolate
functions have been approxinate& as the hermite gaussian
functions, and in this foram, the; have been used in numerical
models of the resonator modes.) This implementation was the
first significant result. Two conclusions can be made about
this implementation. First, a nonuniform grid was required
to allow an accurate calculation of the linear prolate
functions with the finite difference algorithm. Second, the
matrix that was used in the matrix eigenvalue problem needed
to retain the complex symmetric nature of the kernel in order
to obtain the best N-term series representation that Streifer
discussed. The proper choice of coefficients in the series
guaranteed this property for the matrix.

The asymptotic approach to finding the bare cavity modes
has been quite useful for large Fresnel numbers. However,
even at these Fresnel numbers, the behavior of‘the higher
loss modes seemed unphysical in that the magﬁitudes of the
eigenvalues tended to a nonzero limit., By using the linear
prolate function (LPF) expansion technique, we explored both
the behavior of the higher order modes as well as the
validity of the asymptotic method at low Fresnel numbers.

The first conclusion is that the higher order modes given by
the asymptotic method do not agree with those generated by
the LPF expansion., The use of the asymptotic approach to

obtain the high loss modes of the bare resonator is not
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recommended. For example, one might need these higher order
modes as an expansion set for the loaded cavity modes. The
second conclusion is that the asymptotic method gives good
lover loss bare cavity modes for equivalent Fresnel numbers
down as low as one. This technique is very fast and thus
knowing it is accurate at low Fresnel numbers would allow it
to be used for the calculation of the lower loss modes.,
These modes are frequently used to characterize the resonator
for mirror loadings, misalignment sensitivities and beam
quality calculations. Thus the LPF expansion technique has
been useful in learning more about the validity of the
asymptotic method.

The third significant result from the bare cavity
analysis is the numerical demonstration of the orthogonality
of the BCM. The analytic demonstration was shown in Appendix
l, and the numerical demonstration proved useful for two |
reasons. First, it can be used as a check on numerical
calculations of the bare cavity modes. Also, it is useful
when the bare cavity modes are used as an expgnsion set, as
discussed in Chapter III.

Some further work can be recommended based on the
analysis and modelling of the bare cavity modes. First, a
numerical implementation of the matrix eigenvalue problem for
BCM of the stable resonator (derived in Appendix 6) would be
of interest to study the modes of these resonators. Stable
resonators might be used in free electron lasers (FEL) since

FEL have a gain volume that has a small transverse extent.
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B Stable resonators have a narrov mode volume that can closely
match the FEL gain volume. The implementation of the matrix

eigenvalue problem for the resonator with cylindrical

ER e R

symmetry (derived in Appendix 7) is also of interest as an
alternative method of finding the bare cavity modes of these

. resonators. This effort would require the development of a

a2

numerical model for the circular prolate functions.

PP L R

The analysis and modelling of the empty strip resonator
provided the foundation needed for the analysis of the loaded

cavity modes. The results also provided some new results

R

& that should be useful in future resonator research.

C. Loaded Cavity Analysis

The analysis of the modes of resonators that contain a
: saturable gain medium began with Maxwell's equations. The
. effect of a gain medium was included through a susceptibility
d term, The principal result of this analysis was the
> derivation of an integral propagator for an optical field in
a gain medium. The result was used to obtain a round trip
3 integral equation for the loaded cavity modes: The integral
equation showed that the gain medium is included in terms
that are added to the bare cavity integral equation.
Previous studies usually included the gain as a
multiplicative term. This additive model of the loaded
cavity modes is a significant, new result, for two reasons.
First, the loaded cavity integral equation is similar in form
to an inhomogeneous Fredholm integral equation of the second

kind. These equations are characterized by a unique

KRV R RV A i
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solution, if they have a solution at all, Howvever, due to
the nonlinear dependence of the gain on the field, this
property cannot be ascribed to the loaded cavity equation in
a rigorous manner. The uniquenéss of the loaded cavity mode
is suggested by this result and by past analyses that showed
no evidence of multimode behavior. Thus, this derivation

gives increased insight into the loaded cavity mode. The

second useful result is that the additive model suggests two
new solution techniques. The first method is the usual
iterative approach that has been used in the past. The
second method uses the bare cavity modes as a basis set to
obtain the loaded cavity mode. The orthogonality of the BCM
is used in this method, thus connecting the analysis of
Chapter II. Thus, the primary result of this analysis is
that a fairly rigorous derivation of the loaded cavity showvs
the gain should be included in terms that are added to thé
bare cavity mode integral equation.

Some additional work is recommended for further analysis
of the loaded cavity modes. The analysis included a complex
susceptibility but the final results were res;ricted to the
case where the real part of the susceptibility was set to
zero. This restricted the results to the case where the
longitudinal mode of the resonator coincided with the center
of the lasing transition. The result could be extended to

examine cases where there was a frequency difference between

the cavity mode and the center of the lasing transition.

i J
.

Also, further mathematical study of the properties of
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nonlinear integral equations could provide a proof that, if
there are any solutions to the loaded cavity integral
equation, then they are unique.

Although this analysis was a general treatment of the
loaded cavity, the numerical 1mpiementation of the results

was much more restricted. Chapter IV discussed this

f modelling.
3 D. Loaded Cavity Modelling
i The numerical models developed in Chapter IV were

restricted to a single gain sheet located at the feedback

mirror. A review of the past work showed that such a model

was a fairly good approximation for low Fresnel numbers. But

AN

A

most of the previous work included the gain as a
multiplicative term. Both an additive model based.-on the
analysis of Chapter III and a multiplicative model based on
Beer's Law were developed for the strip resonator. Th2
.. models used a simple saturable gain model for a homogeneously
. broadened medium. Both models used an iterat}ve technique to
find the loaded cavity mode. Also, a geometrical optics
- approximation was made to the additive model developed in
Chapter III that gave good agreement with past work. This
agreement gives support to the validity of the analysis of
N the loaded cavity as well as provides useful limiting values
- for the diffractive models. A number of parameters were
studied with the diffractive models as the small signal gain
lk and the equivalent Fresnel ﬁumher were varied. Also a

2 preliminary study was made of mapping the loaded cavity mode
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onto the bare cavity modes. The study of these parameter
variations gave six important results.

The first conc¢lusion is that the phase of the loaded
cavity eigenvalue was not equal to that of the lowest loss
mode of the bare cavity, indicating that the loaded cavity
mode will have a different oscillation frequency. Second,
the threshold of the oscillation (where gain equals loss) was
slightly lower than that predicted by geometrical optics or
an even more simplistic argument. (This threshold behavior
was only examined for a iimited number of cases and the trend
with variations in Fresnel number has not been studied.)
Third, the additive model predicted higher sutcoupling than
the multiplicative model, indicating that this latter model
would underestimate the output power of a loaded resonator,
Fourth, the power on the mirror showed fluctuations with
equivalent Fresnel number that were in good agreement with
the fluctuations in the lowest loss bare cavity mode
eigenvalue as far as the location of the maxima and minima.
Studying the phase of the loaded cavity eigenvglue showed
that the phase was zero at both the maxima and minima. This
behavior is a new result., Fifth, the phase profile of the
loaded cavity modes did not vary significantly from the
lowest loss bare cavity mode when either model was used.
This indicates that the beam quality of the loaded cavity
mode would be about the same as the beam quality of the
lowest loss BCM, at least within the simple saturable gain

model that was used. Sixth, the intensity profiles of
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the loaded cavity eigenfunctions differed significantly

between the two models., The additive model showed more
filling in of the "peaks and valleys" of the intensity
profile as the small signal gaié was increased than did the
multiplicative model. Also, the location and number of peaks
and valleys remained unaltered with the multiplicative model
but the additive model showed noticable changes to the
intensity profile as the small signal gain increased. These
results show that even a simplified model such as the
additive model described here pruvides useful, physically
meaningful information. However, a more definitive
description of the differences between the additive and
multiplicative models would require analysis invoiving more
gain sheets or a distributed gain model.

The preliminary study of the mapping of the loaded
cavity mode (LCM) onto the bare cavity modes (BCM) showed °
that the LCM was a combination of the first few lower 1loss
even parity BCM. The symmetry of the gain model did not
allow the odd parity BCM to contribute. The main difficulty
was that no clear cut-off was evident to show how many BCM
were needed to give a good approximation to the LCM.

A number of recommendations can be made for future
modelling of the loaded cavity. First, the problem of how to
include a distributed gain in a code without using gainsheets
needs to be further addressed. The variations with 2 could
give significantly different results from the gain sheet

models. Such a model would most likely consume large amounts

of computer time since a closely spaced three dimensional




LYY

A SOShANNNDEM] MOy raunk | ) Chn
b

<
L4
o

gr Ao NN oW MY N T g W

. LR R P mh L IR S Al Tl Sl il el Bl ol el

' grid would be required but it would be useful in verifying

how many gain sheets are required to give accurate results.

A second recommendation would be to include the behavior off
the line center by allowing the susceptibility to be complex.
This extension would allow index of refraction variations to
be studied even though it would still be a single frequency
model. Third, a more realistic gain model could be included
even into the loaded strip resonator model. A model that
included a flowing medium or simpified rate equations for the
medium could be substituted for the simple saturable gain
model that was used here. Finally, a full three dimensional
model could be developed based on the integral equation
derived in Chapter III. Such a model would permit the
modelling of physically realizable laser resonators. A final
recommendation is to continue the study of expanding the
loaded cavity mode in terms of the bare cavity modes. This
exploits the known characteristics of the bare cavity modes
in the design of laser resonators., However, more cases need to be
studied and different numerical models that avoid some of the
interpolation errors need to be developed. .

The principal result is that the additive model that was
derived in Chapter III can be implemented in a simple single
gain sheet model that provides results that make physical
sense. One new result is that the phase of the loaded cavity
eigenvalue exhibited zero crossings when the power on the

feedback mirror had a maximum or a minimum.
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E. Summary

The research described here covers a wide range of
topics. The common thread is the study of the modes of a
strip resonator. First, we considered the bare cavity modes
vhich are the natural modes of the strip resonator. Then we
included the effect of a gain medium on the modes of a
general three dimensional resonator, specializing to the
strip resonator at the end of Chapter III. The effort
concluded with the numerical modelling of the strip resonator
with a single gain sheet approximation for the gain medium.
Significant results that were learned include (1) the first

implementation of the linear prolate functions as a basis set,
(2) the derivation of the loaded cavity round trip integral
equation where the.gain was included as an additive term to
the bare cavity round trip equation and (3) the numerical
model of the loaded cavity round trip equation which showed,
among other results, that the phase of the loaded cavity
eigenvalue was zero when the power on the feedback mirror was
at an extremum.

In this study, we developed a formulation of the modes
of optical resonators that consistently included both the
empty and loaded resonator. The development of Chapter III
laid the foundation while Chapter II examined the empty
resonator case and Chapter IV modeled the loaded resonator.
The structure of the round trip integral equation that was
developed in Chapter III is what gives the increased
understanding of the resonator modes. We again make the

analogy to an inhomogeneous Fredholm integral equation of the

186




second kind (which was discussed in Appendix 1). The kernel
r of the equation gives insight into the natural or normal mode

structure of the resonator, which are the bare cavity modes.

P

Any changes to the resonator itself, such as changes in
mirror reflectivity profiles, mirror curvatures or

aberrations, and aperture sizes, would alter the kernel of

PREPA AP Y o

the round trip integral equation. However, the impact of an
active medium does not modify the kernel but rather appears
as an inhomogeneous term. In linear integral equations, this

: would mean that a unique solution would exist (subject to the

e

conditions discussed in Appendix 1). Even in the case where

the inhomogeneous term depends on the solution, as it does

N PN

for the case of saturable gain, a solution is obtained that

is consistent with the gain function. If the gain function

changes, then the loaded cavity mode would change. Thus, this
formulation gives new understanding of the modes of loaded
optical resonators. Further insight will be gained as the
theory of nonlinear integral equations of the type derived in

= Chapter III is developed.
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b Appendix 1. Orthogonality of the Eigenfunctions of Complex
Symametric Kernels

We begin this appendix with a brief discussion of a part
of integral equation theory. This review is intended to
N provide some needed background for the discussions in
A chapters 2 and 3. The general form of the inhomogeneous

Fredholm integral equation of the second kind is

b
. Adx) = g(x) +j‘K(x,y)<b(y)c\\/ , X€la,b) | (Al.1)

The function f£(x) 1is a known function, K(x,y) is called

the kernel, A is a parameter, the limits a and b are

S SN M0

constants, and ¢(x) is the unknown function that is the
solution to the integral equation. The homogeneous form of
the equation is obtained by setting the function f£(x) to

zero:

1
; Yo U, (X) =S K (x.y) U, (\/)Jy , Xelab)  (A1.2)

Here W, (x) 1s an eigenfunction of the kernel and Y, 1is

an eigenvalue associated with the eigenfunction. The

o ALY, Y,

eigenfunctions and eigenvalues characterize the kernel. The
eigenvalues form the spectrum of the kernel.

We will briefly state some of the basic properties of
this class of equations., We assume that the kernels are

continuous and linear. (We will later assume the kernel is

Cal
-
o
gy
o

complex-symmetric but this property is not required at this
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time.) We now state a principle without proof, noting that

the proof is covered in numerous textbooks on integral

p equations. (Ref 54)

. This principle is the Alternative Principle. There are
tvo classes of solutions for Eq(Al.l1). The two classes
depend on whether the parameter N\ is in the spectrum of

A the kernel. If A is not in the spectrum of K(x,y) ,

| Eq(Al.1) has a unique, continuous solution for each

5 continuous f(i)=. The solution is
i | ]
$x) = fuo +y SO,y Fiyddy ,  (AL.3)
a
wvhere S(x.y;).)-is the resolvent kernel given by

Sty2) = Y A K, Lx.y)

# ) (A1.4)
- L=0 ‘ '

vhere the iterated kernels, K‘(x.y) , are defined by

K

A+]

®
ky) = j:KLx.u)Kltu,y)du , (A1.5)

wvith K(x,y) = K (x,y) . The kernel is restricted to be (i)
any continuous function on a® x,yeb and (ii) 8 linear
function. If A 4is in the spectrum, then no solution exists
unless f(x) is such that it is orthogonal to eigenfunctions
of the transposed kernel, ff(y.x) « Then no unique solution

exists. The solutions are

. ]
) Q(x) = WYix) + ?.:.o diu;tx) (A1.6)
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wvhere WY(x) is a particular solution and the eigenfunctions,
W (x) , are associated with the eigenvalue at hand.

(The loaded cavity analysis of Chapter III draws an
analogy to Eq(Al.l). .We ?xpect that the loaded cavity
eigenvalue is not in the spectrum of the bare cavity kernel
since it must have an exact magnitude of unity for above
threshold conditions. Thus the first solution would be the
analogous solution and suggests the loaded cavity integral
equation may have a unique solution.)

We now show that the eigenfunctions of complex symmetric
kernels obey an orthogonality relationship. This relation
has been called "biorthogonality" in past articles on laser
resonators, (Ref 55) A kernel is called complex symmetric
if K(x,y) = K(y,x) for complex valued kernels. (if. for
complex valued kernels, K(x,y) = K*(y,x). then the kernel is
called hermitian and a different orthogonality relationship
is obeyed by the eigenfunctions. This relatiénship will be
discussed later.) We begin by obtaining the Yfirst iterate"
by multiplying Eq(Al.2) on both sides by K(z,x) and
integrating over x from a to b and using Eq(Al.5) to

define the iterated kernel:
2 b
AL u(2) = Xd\/ K, (z.y) U (y) , (A1.7)

We consider the inner product defined by
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]
(Un,u.) = S dx U, (x) u_(x) . (A1.8)
a

Then, using Eq(Al1.2) to replace the eigenfunctions, ve obtain

LI \d o®
(a0 = ydx ['7; jK b,y) Ry Jy][‘v_j Ky w, (y) dy'] (A1.9)
a ry a

Now switch the order of the integration so that the kernels
are isolated under an integral over x and use the

assumption that the kernel is complex symmetric:

b b o
(ua,u) = 7—'—,—; jd, u,ty)JAy' u.,&\,')jax Ky Kxy)  (A1.10)
a a a

The integral over x 1is just the iterated kernel used in
Eq(A1,7) and then the integral over y is replaced by

Y: um(\/) » using Eq(Al1.9). Then we have
¥ o
(ua,u.) = -;‘-"i S‘&y UL YD) Uy - (A1.11)
[- N

or, noting that the integral is the inner product defined in
Eq(Al1.8), |

(1~ —%‘:) \Maua) =0 (A1.12)

Thus, if the eigenvalues are nondegenerate ( ¥..# ¥, ), then

the eigenfunctions are orthogonal (also called biorthogonal

by Siegman in Ref 55) in the sense that
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b
(Ua,u) = de w oy u) = §

a

o (A1.13)
assuming the eigenfunctions are'suitably normalized. (In
fact, by setting n = m , one c#n use Eq(Al1.13) to normalize
the eigenfunctions of complex symmetric kernels.)

We now digress to discnss the orthogonality property
that the eigenfunctions of hermitian kernels obey. The
hermitian kernels are more well-behaved in that the
eigenvalues are real and the eigenfunctions can be shown to
form a complete set. Recall that a kernel is hermitian if
K(x,y) = K*(y.x) . We define the inner product for this

class of kernels as
o *
(“n.u.‘) = jéx U, (x) 4, (x) " (A1.14)
[- §

Again, using Eq(Al1.2) to replace the eigenfunctions, and

conjugating as necessary, we obtain

(\A,“‘Am) =
. o v (A1.15)
b [ e panlise [etoon weinn]
a a "a

Regrouping the terms and using the hermitian property of the

kernel, the conjugate of the first iterated kernel is:
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© b
‘ ¢ * ’
(uy,u.) = W e \S&, U\,‘(\/)\ydy' sy Kilyy?) (A1.16)
a

Using the conjugate of Eq(Al.7), we find

X v
(u“,um) = S’ A\I u,\(\/) u,:(y) (A1.17)

Ii*

o
3

The integral is just the inner product we started with, so

the orthogonality property is

- v
: (Ua,u) = j‘ d\/ u"L\/) \.A: y) = 8,\”‘ (A1.18)
a

Again, we have assumed the eigenfunctions are suitably
normalized. This result, Eq(Al1.18), is the orthogonality
property that is more frequently encountered, since many
physical problems can be described by integral equations that
have hermitian kernels. The bare cavity modes of the optical
resonator is one case that cannot be so described and thus a
: different orthogonality relationship is appliFable. This
relationship is given in Eq(Al.13).

------
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Appendix 2. Derivation of Matrix Eigenvalue Problem for
Strip Resonator

This appendix includes the derivation of the Horwitz
standard form of the integral equation for the modes of a
single-ended, strip resonator and the derivation of the
matrix eigenvalue problem for the bare cavity modes using the
linear prolate functions as a basis set. We begin with the
integral equation that describes the modes of an aligned,
strip resonator that does not contain gain. This equation
can be obtained from the analysis of the loaded cavity
contained in Appendix 4 if the gain term is set to zero.
Also, this equation has appeared frequently in the

literature, The equation is

g ulx) = S'{E“E\, o iMFLaleieyD-2u] uty) (A2.1)
Let

Uix) = hix) e - (A2.2)
where

F, = -f?:- (M- ) (A2.3)
and

M = 9 +{g°-1 L (A2.4)

----------
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Substituting Eq(2.1) into Eq(A2.2) and collecting terms in

the exponential functions, one obtains

~iw(E ~Fq) v (Fi+F,)y" -2Fxy]
o-\n(x)e w3 ::.SiF fdye ~l : Y Y h(ﬂ . (A2.5)
-1

By using Eq(A2.3) and Eq(A2.4), one can show that

= - F - - -~ F
F.”-F-, = /M and F;“ Fa /M . Using
these relationships and completing the square in the

exponential function, Eq(A2.5) becomes
| . X \&
—itly-5)

chi = {iF ydye T"Fhyy . (A2.6)

If we define + =1qrMF and /qza'w , then Eq(A2.6)
becomes the Horwitz standard form of the single-ended,

aligned strip resonator:

\ . x\?
/u\r\Lx) = E\Yd\/ e_‘tw N \'\\y\ ' . (A2.7)
-1

The next derivation that will be done in this appendix
is the derivation of the matrix eigenvalue problem using the
linear prolate functions as a basis set. First, we transform
the eigenfunction of Eq(A2.7). Let

2

hix) = " v (%) (A2.8)

Then the integral equation is

-v';"ﬂv




N T L R P R R R S T Ry . g L P A

| StQege e 0, iGRd
: Avix)=e tle e @dee yv(\/) (A2.9)
; -1

Now define cz% and expand the kernel and the

eigenfunction in terms of the the linear prolate functions,

i.e.,
texy _ — 2 (2
| e —1§o L ,‘E-&—;‘- \FAL\Q\V&(Y) (A2.10)
; and
(-} -' -%
vix) = z b, i ?xx Y, (x) . (A2.11)
2=0

(Refer to Chapter 2 for a discussion of the linear prolate

4 functions.) Both of these series are convergent. Using these
) series, the integral equation becomes
-9
-4 -}

/“g-ob:‘ y R =
N | (A2.12)
. -‘*("_L‘)“‘- , .8 - | .

e ™ Z %‘? b, i *y}‘ i ,!:—:—; ‘{'_(x\j’és/ ‘{'“(yl Y. y)

[ X 3V} %
Now
i [}
; I‘dy Ly =¥, S, (A2.13)

This result is used in the right hand side of Eq(A2.12). We
novw multiply Eq(A2.12) by ‘V,_(x) and integrate over x .
Using Eq(A2.13) again, one obtains
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pb =) (W a""u“x_)‘j'age e m]b, | (A2.14)
nz0 -\

This is the matrix eigenvalue prbblen for the bare cavity

modes of an aligned, single-ended strip resonator where the

linear prolate functions are used as a basis set. Formally,

the problem is stated as

pb, =) B, b, (A2.15)

nzso

wvhere the matrix elements are
At+m _l { R [] 2
B =lmir ) gdx i Y LX) (A2.16)
newn .
-1

Note that this matrix has retained the complex-symmetric _
nature of the original kernel in Eq(A2.1). The solution of
the matrix eigenvalue problem gives the eigenvalues and the
expansion coefficients. The modes are reconstructed using

the relation

. k]
U = e ™™ i b ¥ ¥ ¥_(x) (A2.18)
n=O
Note finally that this equation expresses the mode at
fictitious plane halfway through the feedback mirror. To
find the field just prior to the mirror, one multiplies the
field by the conjugate of the mirror factor, i.e.,

M) = € (A2.19)




Appendix 3, Derivation of Green's Function for Paraxial Wave
Equation (2-D)

We seek a solution to the equation

2 :
aa:‘ —-Z_lk—?—‘.“{ = =kEX u . (A3.1)

We construct an auxiliary equation for a Green's function

where translational invariance has been assumed:

%t;. Gx-x,z-2)—2ik %i G(x-%,2-2") = -4 S(x~x,2-2")_(A3.2)

If the coordinates are interchanged, then Eq(A3.2) becomes

T
31 Glx=x,2'-2) + 2ik 2= Gx'—x,2~2) = -4 §ctx,t%2 ) (A3.3)
ox ot e

Now, suppressing the coordinate dependence for a moment and

letting u' = u(x',z') , the differential equation can be

transformed into an integral equation by multiplying Eq(A3.1l)

by G and Eq(A3.3) by u and subtracting the two equations:

ghb'z (@ u,~uG.) - Zihjdxd‘! E%G—) + de«hG R*Xu = 4w’ (A3.4)

Integrating by parts, the first term becomes

S‘AXJZ (Gue-uG,,) = S\Axéz ;—; (Gu,-uG,) . (A3.5)

The boundary conditions are chosen such that both u and G
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vanish on the surface. Note that this is analogous to the

Kirchhoff radiation condition. Therefore, the first ters in
Eq(A3.4) is zero. Also, we chose the case vhere z' >z .

Thus, the integral equation that is equivalent to the

differential equation is

ulx',z) = i fdx G &=x,2') u(x,0) +

X
(A3.6)
2 oo
J ‘ot
+ o ydzjdx G(xx2-2) R X (%2) w(x,2) |
° -e
We now find an appropriate Green's function.
Consider the Fourier transform
(A3.7)

GG = i‘-‘-‘ deva e.“wt‘w" 9 (w,v)

.

where §=x'-x and n=2'-2 , and substitute this into the

differential equation
h G(g,n)-2ik 5—6(% ) = =41 8(% ‘)
3% E,n 3n nml = :."( . (A3.8)

Recall the integral form for the delta function:

of — t{(wS+vn)
S(s,q) = kz\ﬂ)‘ STJwtlv e ¢ " . (A3.9)
Then we find that
g lw,v) = 2 (A3.10)

w® + Z2hkv ’

i




S

‘o

-l (w8 +vn)

I
GE.M) == f dwidy (A3.11)
Rewrite this equation as
P .
{ -iwS -tV
G(E.n) - m dwe dv ‘s'—:!" (A3.12)
—eo ~eo MR TY )

We move the singularity to the origin by replacing v with
*

W
Y- iw « Then

{ o -t(wf— ) ""PI
G(E,n) = P Sawe = j dy . (A3.13)

- a9
The integral over y can be readily evaluated. Let

-Cv]y

T -..-.j'dy e

(A3.14)

We let y= “"‘ wgt YV to shift the pole slightly off-axis.
Then, with Y =Y..‘.v ’

-\"y
T=bn, e ydy . (A3.15)

\, +cv

The residue is e ' » 80, choosing a contour on the lower

half plane, we find

T = ~2wi16() (A3.16)

R T G G 2 N N A U

clelend
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vhere ©O(n) 1s the step function.
Substituting this into the Green's function, Eq(A3.13),

we have

: 2
-iOtn) S" il -1E)
——“—- dwe

=00

GE.n) = (A3.17)

If ve assume n=)T,1-i» , then this integral can be

evaluated (see Eq(A4.10) for the general form), and the

Green's function is obtained:

_in¥?
—iw_ ' Ty

in

G (g l"l) - }“;:O’\

We choose wn»0 , and taking the limit, then the Green's

function can be written

- izt ‘ |
GKE.q)=E‘e e A(3.19)

Thus, the two-dimensional propagator can be written as

Uulx,2) = U x,2) +u (x,2) (A3.20)
vhere
—_ _‘mér-x')‘
U, x,z) = Sf; ydx'c u(x’,0) (A3.21)
-0
and

- i)t

3
U(x,3) = ﬂ"ffg“' y:x' EW kX (X F)ulx,2) . (A3.22)
@ -t
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If we restrict the study to the case where the longitudinal
mode is coincident with the line-center of the gain profile,
then the susceptibility is purely imaginary, and, using the

gain function, gs&x,t) =h 'X"(x,‘i.) » ve have

u ) = 3 Vj'azj‘a

This concludes the derivation of the two-dimensional

_ tW(““ )

%) Ul ). (A3.23)

propagator for the loaded strip resonator,




Appendix 4,

Round Trip Equation for Loaded Strip Resonator

This appendix contains the derivation of the round trip
integral equation using the prop;gator. Eq(A3.20), derived in
Appendix 3., The resonator is -od;led by an equivalent lens
train which is shown in Figure A4.,1. The various u; shown
on this figure are fields in the resonator that will be

calculated. Each lens shown in the figure is modeled as a

phase sheet.
curvature is
phase factor

phase effect

In the paraxial approximation, the spherical

approximated by a parabola. (Ref 50) The
for the lenses (which represent half of the

of the mirror) is then

iwla.-1)x?
A, e A

where the amplitude factor, /\itx) » 18 used to both aperture
the lens and include any transmission profiles (equivalent to
the mirror reflectivity profile) that may be on the lens.
Here, we assume the lenses are perfectly transmitting (i.e.
the mirrors are perfectly reflecting) across their width,

?.q.‘ » and they are totally obscured outside this region.
Thus

1, \x) &q

)

(A4.1)

A X) =

0 i Ixl>a

Let us now proceed with deriving the round trip equation.
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We assume the field u,(x,0) 1is known. Then the field

just after the first half lens is

_inlg,-i)X'
u g, =Ae ** u,lx,0 . (A6.2)

Now, using Eq(A3.20) as a propagator, we find W (x,L.) :
a W ' 2
r. v ST (xP- e +g X )
ut{*o\‘) - ;T de'e -xz u.(“’no) +

)t (A4.3)

Xty
o= W ue),

We multiply wu (x,L) by the mirror factor twice to account
for the two lenses that are equivalent to the full reflection
off the back mirror. Thus

L2 (1 t.1) ‘1

uy o) =LA, e UL L (Ak.4)

We hold off substituting for W for the moment to avoid

unnecessarily complicating the development. The propagation

from the back mirror up to the feedback mirror is

%M T 2w e (21)x" ]
U e = :R’-L- dx” e i w0y +
(A4.S5)

_imlex)®

Sod \
g I Y& T L]
-.'— " " e w " " "
*E .X.."‘ j;‘ T 2w,

The final lens is included by

vt
(XY .L'Z"‘l"




Ml

QRN

1.1\’&%3"2 x*

u,(x,2L) = Ax) e Uy (x,2L) (A&.6)

Now we substitute the expression for uskxﬂ$) into Eq(A4.6)
and then substitute the expression for wu,(x\) into this

result, The equation for Uy is then

m:.kx ten't)

U, (x,2L) = A Lx)\,u_ ydx AL w0 T tex) +

‘l

g i) U L) L e )+ (A4.T)

+ --Frgh Sh’ e
- _& -} x‘-\-%?-.:r]
+ r‘,_-g de'J:Li' e ,[“r

—ee L

(X’,z.) WU (x'l%')
e R

where

t‘“’
iE [29,1% - 2nixeny] :
(x x') -j‘d ? " (A4.8)

and

T (x,x,2) = qu exp{- 5T [(29-tnt -2xn + ‘ﬁ%""—'ﬂ]} (A4.9)
-a,
These last two integrals are singled out since neither the
gain function nor the fields appear in them. These equations
as written apply to double-ended strip resonators. However,
resonators are usually designed so that the back mirror is
large enough that all of the resonator mode is reflected off

the mirror. In this case, we can let Q,—» % . Then these
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two integrals can be evaluated analytically. In this
evaluation, we use the integral relation

b‘l

oot £ o)
SA (o & e .—_E’.J‘ (46.10)

which is valid for complex a and b as long as the real
part of a 1is positive. (Ref 51) Using this relation, we

can immediately evaluate Eq(A4.8):

e 2 . '
X Y 'D*Sskx + 2w’ +x'?)

(A4.11)

I° (x,x')

A similar but somewhat more lengthly evaluation of Eq(A4.9)

yields
"2
i x _I('é'*\:l')
VL -sen LA A L@ .
I'(x,x,l): e M m) e o't (A4.12)
wvhere
\
L @) = —3—— ~+ (A4.13)

L-2

If these last two equations are substituted into Eq(A4.7), we
obtain the final round trip integral equation for the loaded
cavity modes of a single-ended strip resonator. If we define
a Fresnel number with F = G\',"/(‘I.XLQ‘) » then this equation

can be written as
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«%a

: a, an'[ (x*+x'?) - axw' )
W, (x,2L) = A, &r{— S\Ax' ? U, 0) +
.“l

,‘_x_‘ b k:‘t‘-'i')
?[L*ut weod
i j'

°

PRI K
zi:: X » L't)(\. = 3skx AU ) +

(A4.14)

L gy

[ J
\ ¢
" 75;:}“" e Frera

gs (X, 2') Uy L, 2’)} )

This concludes the derivation of the round trip equation for
the loaded strip resonator. We note that the integral
equation for the bare cavity modes of the strip resonator is
obtained by setting the gain function, 35(1.1) , tOo zero.
Then, if we scale the coordinates by the half width of the

feedback mirror, we obtain
—itnFlglxtex't) ~2xx] '
U, (x,20) = R y&x enfly u,(x,0) . (A4.15)

This integral equation is discussed in Chapter 2 and used in

Appendix 2.
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to order t:% . Here the stationary phase point, x, , is
determined by the condition p'(x) = 0 . This
approximation assumes that the function q(x) is slowly
varying as compared to the variations in the exponential
term. The result in Eq(A5.2) becomes more accurate for large
t and this result does not show the endpoint contributions
which are of higher order in t . For further reading in
the MOSP, the reader is referred to Appendix III of Ref 48.
Before we can apply Eq(A5.2) to the second term of
Eq(A5.1), we must insure that q(x) 1is not rapidly varying.
Since we have assumed a positive branch confocal unstable
resonator (PBCUR), one leg is expanding and the other leg is
collimated. For the collimated leg, the field u(x) has a
slowly varying phase and Eq(A5.2) can be applied directly.
However, the field in the expanding leg has a spherical
curvature that must be moved into the exponential term
before Eq(A5.2) can be applied. We deal with each case

separately.

Collimated Leg Propagator

We consider the second term of Eq(AS5.1):

< L] i "\t

IR roll IFTURN MU TR

PO o by =/ glxiz)uix’z’) = (45.3)
° —e

Here, g}x',z') u(x',z') 1is slowly varying compared to the

exponential., The stationary phase point is x' = x . Using

Eq(A5.2), Eq(A5.3) is approximated by

-

Pl it e b 4
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Appendix 5. Method of Stationary Phase Applied to Two
Dimensional Propagator

In this appendix, we will use the method of stationary

phase (MOSP) on the two dimensfonal propagator, Eq(3.23),

wvhich is reproduced here:

L
< X% 3
: -xg (x-x')
ulx,z) = g%l 5Jx' e o uix’, o) +

(AS5.1)
¢ ‘_ l’z
CAE J\: : X w
— "zl “ ’ ’

The susceptibility that had been in Eq(3.23) has been
replaced with the gain functions. This restriction is
discussed at the beginning of Section C of Chapter III.

The goal of this appendix is to use MOSP on the second
integral in Eq(AS5.1). This approximation is equivalent to
ignoring diffraction of the stimulated radiation over the
propagation length. The purpose is to include the stimulated
radiation in a successively more complicated manner. The
approximation also simplifies the numerical modelling of the
loaded strip resonator.

According to the MOSP, a general integral can be

approximated by

dx e qx) = e © qlx)e T (A5.2)
2 P (%)
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T

W x.z2) = a—;_- ydz' 9,2 ux,3) (A5.4)
[

and the collimated leg propagator is written as

.- .

-‘“ (k-*',t [] !

wix,2) =§;_‘;gax'e T o) + -z-ya-g' gyx 2V Ul T) | (AS.5)

. -0 -]
To show the utility of this approximation, we will obtain

! Beer's Law from this analysis. Note that the MOSP can be
applied to the first term as well to obtain a geometric

propagator for the collimated leg:
. \ 2
: Uk, = uleo) + g jdrgadue) L (s.6)
' °

If we now assume that the gain is small over the gain length,
: L , and replace the integral in the second term with a gain

sheet as discussed in Chapter III, then we obtain
~ L '
ulx, L) = [1+ z 53“'0)] Uu(x,0) . : (A5.7)

Now for small gain, the first term on the right hand side of
Eq(A5.7) can be replaced by an exponential:

a!(x,o)L

- Uuix,Ly = e uix, o) (A5.8)

This is Beer's Law which arises naturally from the theory
developed in Chapter III. One sees the number of

restrictions that need to be invoked to obtain this simple

o
o
-
o4
-
-
.
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but useful relationship.

Expanding Leg Propagator

To model the expanding leg, we first remove the

spherical curvature on the field, In the paraxial
approximation, this curvature is represented by a quadratic

phase term:

irex”
wx,z) = e 7 vix,2) . (A5.9)

Then the second term of the two dimensional propagator is
: SRS )
u. (X 2) = —F S‘__‘ J ' Q-2 ¥ V(x"z') S’Lx',z’)' (A5.10)

Here, q(x) = v(x) g(x" and

N = [ nt T¥E T 3
P) =(x~x)" + X (_’*1,) (A5.11)

By setting the first derivative to zero, the stationary point

may be found:

' X
X, = i , (A5.12)
S+’
and thus
7.-2')
plxy = x? Gew (A5.13)

1+G%)

Applying Eq(A5.2), we obtain
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v) , ;
Uilx,2) = ,‘l.S‘ T'}' \1‘. ’1)§SLT+§{;‘;?‘,’1)' (A5.14)
-]

After some straightforward algebra, the final expression for

the expanding leg propagator is

o Gt
uix,2) = rSd - U(x',0)

. , (A5.15)
& %"‘t{f'(it":‘;' ($+2') ($+2)
R 3+ - +e-' x $+ x{#+1
j’az s © wWras ,1) l ,z)

These two propagators will be used to derive a round trip
integral equation for the loaded strip resonator that will be

used for a numerical model.

----------------------------- .
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Appendix 6. Matrix Eigenvalue Problem for Stable Strip
Resonator

In this appendix, we derive a matrix eigenvalue problem
(MEVP) for the case of the stable resonator, that is, for the

case vhere 0 < g <1 . The derivation parallels Appendix 2.

5 We begin with the integral equation for a empty strip
" resonator:
X | .
% - nFlaxt+y?)-2xy]
o'u(x) =§;F ydye 2 u(\/) . (A6.1)
-1
E This formulation is directly applicable to the stable
A resonator. The transformations in Appendix 2 introduce the
I‘-
- magnification and the equivalent Fresnel number, which are

quantities that are most applicable to the unstable
resonator. If we examine Eq(A2.3) and Eq(A2.4) for the case
where 0 < g <1 , the magnification becomes a com}lex nunﬁer
of unit magnitude and the equivalent Fresnel number becomes

a pure imaginary number. The quantities F and g remain’
more meaningful for the stable region.

Let ¢c =2wF and make the transformation

b
k. . 2
> h(y): e-"""‘:.:y Uty) . (A6.2)
Then Eq(A6.1) becomes
-icaxt ' texn
ahix) = iF 9 fdye ’\«\(7) . (A6.3)
-\
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We nov expand the kernel and the eigenfunction in linear

prolate functions:

P EE w ¢ (A6.4)
’.o IC" A x y ]
putsd - _3
hoo = Y B VR Wi . (A6.5)

ms0

Substituting these expressions into Eq(A6.3), and using the

orthogonality property of the linear prolate functions,

1
= S A6.6
{ax LACE AT I , (46.6)
we obtain the MEVP
- .
qbk = Z:o =LY (46.7)
where
-* g;-! ' —icax’®
=\"E'(ykxl) L \dee : ‘-\i(x)‘{’k(x) i (A6.8)
-1

We consider two special cases. The first case is when
8, "8, = 0 which is the stable, confocal resonator. For
this case, g = -1 . In this case, the modes are known to
be proportional to the linear prolate functions. (Ref 52)
The eigenvalues should be real, according to Boyd and Gordon.

In this special case, the matrix becomes
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L N

- R LS L s B2 T Mot

) '+~ ] . [y
- -’q o ten
BM=L (‘l.,*&) Lt |dx e t}"(x)wk(x) . (A6.9)
-t

The result does not show that éhe eigenfunctions are the
linear prolate functions nor do§; it shov the eigenvalues are
real., In fact, they are not. The difference is a subtle one
but worth noting. The resonator model developed here is for
a single-ended resonator, while the case atudied by Boyd and
Gordon was a double-ended resonator.

The second special case is the case where g = 0 . This
case is for the stable resonators where g, g, = 0.5 . Then

the matrix becomes a diagonal matrix,

ke

B, =1t i'Jy &, (A6.10)

and the eigenvalues are

R .
G\a — s;yh H (A6.11)
and the eigenfunctions are

B
Ug &x) = ¢ T xj‘ % ) (A6.12)

A geometric analysis of this special case shows that the
feedback mirror is confocal with its image in the back
mirror. Thus, it is this case that more closely parallels

the study done by Boyd and Gordon.
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The parallel derivation of the MEVP for stable, strip
resonators is presented for completeness., A numerical model
could be readily developed from the unstable resonator model
developed in Chapter II. A final note: the eigenfunctions
of the stable resonator are only the Hermite-gaussian
functions in the asymptotic limit where the feedback mirror
becomes large. (Ref 25) Thus, for small feedback mirrors
and for stable resonators, the derivation presented in this

appendix would be an appropriate method.
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Appendix 7. Matrix Eigenvalue Problem for Resonators with
Circular Mirrors

In this appendix, we derive a matrix eigenvalue probleam
for empty resonators that have circular mirrors. This

derivation parallels the develoﬁhent for strip resonators.

. Ve begin by including some key results for the circular
prolate functions, which are similar to the linear prolate
functions discussed in detail in Chapter II. The reader is
referred to the article by Frieden. (Ref 27)

The circular prolate functions are defined by an

integral equation:

Yo " J '
ya, P TN 0 =) () x:: §N“(‘—”i£°—) _(a1.1)
A )

. Letting r, = 1 , so the space-bandwidth product, c , is
’

- defined by ¢ = , and, letting w = ‘-:- , the integral

equation becomes

(—l)"g__g;_ I“.-(w) = X‘Jr v TNLcwr)§Ner-.) . (A7.2)

The circular prolate functions also obey an orthogonality

relation:

\
S:‘f v Il,n&') -§‘..‘(f) = xl,nsmn . (A7.3)

Now the modes of a resonator that has circular (or

cylindrical) symmetry can be decomposed into radial and

.
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azimuthal modes, just like the resonator with rectangular

] synmetry has modes that can be decomposed into the strip
' modes studied in Chapter II. Following Butts and Avizonis,
we write the round trip integral equation for the radial

nodes: (Ref 21)
41 ! 2¢ e '~+-’5:]
o"-&kx):i Zts‘dyy:&(-,;xy)e LA 84“”' (A7.4)
o
Bach radial mode has an exp(:4% ) dependence. The variable

t is TMF where M 41is the magnification and F 1is the

Fresnel number used in Chapter II. We make the

transformation
Y
f o _-itx?
N 3‘.(X) = € ¥‘_(X) 3 (A705)
3 and then expand g(x) 4in circular prolate functiohs:
;
. - .
. 9,00 = 2 a, F, 03, (A7.6)
: nzo ' .
Then the integral equation becomes .
(- -
. _ A SR+ EIC T o a0
Q’.z Q, §,',‘0‘) =t 2te = T a. 4...(“) (A7.7)
n=o mego
vhere
? - M
4 = = ‘rdy y Slexy) & () . (A7.8)
° ’
Using Eq(A7.1), Eq(A7.8) can be rewritten as
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&:(x) = (—1)"———-[:""‘ E"m(x) ) (A7.9)

Then Eq(A7.7) becomes

[d
gL a, g =

ns=0

el Yt © ) Ve A7.10
it S ) a' (-1) Li— E,t,mb‘)' ( )

mro

Ll*' Z‘t

By multiplying by a circular prolate function of arbitrary
index and integrating from O to 1 , we obtain a matrix

eigenvalue problem,
] - L 1
ga, =2 B_ a., . (ran
msd

where the matrix 1is

J Yllm

Y m

.14+l -
B! = g1+ 2t (-1)

N

(A7.12)

' .
'Y"x x e"t(“-‘;')x $ 00§ 0y
A ‘P ‘,ﬂ

The derivation used here does not lead to a complex-symmetric

matrix. Different expansion coefficients like those used in

—per—yy
DM e ek rashen

Appendix 2 Eq(A2.11), or Appendix 6, Eq(A6.5), would be needed

DAENEREN

in order to obtain a complex-symmetric matrix. Recall that
the complex-symmetric matrix is necessary to retain the

properties of the round trip integral equation.

224




This formulation is most applicable to unstable
resonators. At present, a numerical code does not exist that
solves this geometry, but the development of such a code
would parallel the strip resonator code development discussed
in Chapter II. The use of the circular prolate functions
would have the same advantages that the linear prolate
functions have, i.e., they should give the N-term best
representation for the modes of the circular mirror

resonator.
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Appendix 8. Geometrical Optics Approximation to the Losded
Cavity Round Trip Integral Equation

In this appendix, the loaded cavity round trip integral
equation is approximated using asymptotic methods. The
equation we will approximate is Eq(3.26) which describes the
loaded strip resonator. By letting the wavelength go to
zero, a geometrical optics approximation to this equation

will be obtained. We begin by reproducing Eq(3.26):

w,(x2v)y = T + T, + I, (A8.1)
wvhere
.,
-t (x*+y*) - -J
I.-= SIP y‘v Yo ly,0) & L3t -y ’ (48.2)
-q.
(T Ut gomuyen il gy-Bedd]
I.= Z Ac JYJ‘ (\. -2, € ’(A +3)
-0
and
= (a-1)x" Lbey)® ty,2)
= l J‘JVJ' ‘I’ t‘t[u.--g .l Qs BI U4y, 2) (AB.4)
h _ 2a.-1 !
vhere Le = J\':_ + T3 .

We restrict the approximation to the confocal resonator

by using the following relations:
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Then

and

L _ Mu-w) (A8.6)

Le  (Me)L -2 .

The asymptotic approximation that is used is the method of
stationary phase (MOSP), described in Appendix 5. Recall
Eq(A5.2):

v . i g .
~itpty) ~7 ~ttply)
a

e ( ‘
e 3y q Yo € reTW

We apply this equation to the term in Eq(A8.2), which is

rewritten for the confocal resonator:

q' . M"" :
X-_—_' iwM ) yY) - 2xy )
iM -lkz;ﬂ) M
Il = My fd\/ Uly,0) e . (A8.8)
-a,

Now the field has a curvature on it due to the mirror. 1In
order to accurately apply the MOSP, this curvature must be

explicitly included in the exponential term. Thus

AN (g 1) x*®
1, (x,0) = 'zf' (x,0) e K‘{ ’ )

A8.9
w, (x,0) = u(x,0) e . ( ‘
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The superscript "c" denotes a collimated field. Then, after

some straightforward algebra, the first term becomes

. - M‘ \ a N L 3 . -
c Y "51':7 (‘11:!)-7.0&—:\) X© p% ¢ -’Sg(';ﬁy ’%‘371)
I,(x,o): prarreral dy U, (y,o)e . (A8.10)

-a

Applying the method of stationary phase to the integral, we

find

If(x,o): —f‘,‘:"'- u:k%,o) ) (A8.11)

We now evaluate the second term. First we apply the
confocal resonator constraints and transform the field to

a collimated field. The result is

[ 0
: Ly ) ULy, a)
T8 = 3 5—*— J\dz iy = .
2 ZV\2 A -.:’ ‘ML-==;:-!

: - " M (L-e) 2 (A8.12)
TS St Yyt - oo (T ) ]
L] e .

Now the field u (x,z) contains an expanding spherical wave

for the confocal resonator. This is modelled as
m’z‘- a-w(n-v)¥‘
U, ly2) = us ly.2)e i =ulty,p)e ALLs 03 (A8.13)

where

'S' = = (A8.14)

...........
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and

weM- 2 (A8.15)

8—-&-‘1 = Tl .

Using Eq(A8.13)and doing some algebra on the exponents, the y

n Eq(A8.12) {s rewritten as

jntegral i
L}
‘. 'l LY 7.!‘“.'
3 = Xa\, 9y ty.2) o} (y,l)e =l oy =t (A8.16)
-y *
We collect terms and rewrite Eq(A8.16) as
[A t-Bxryl
& = jdy 9s' 12 2) u, ly,2) e Y (A8.17)
-0
vhere
A _ M‘L L'l- . .
(MzeL-z)(MLrL-2) (A8.18)
and
2L .
- ——————————————
B= Tz . (A8.19)
We apply the MOSP on Bq(A8.17) and, after some lengthy

algebra, obtain the final result for the second term:

MieL-2 -
x,u)us (Bt gy (AR (A8.20)

" (8
= ‘ii“ 35("’??"

The approximation of the third term is much simpler
since the field vy (x,z) is slready collimated. We remove
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