RD-A159 218 THE IIITERRCTIVE GEIERHTION OF RLPHHNUIERICS AND
S MBOLOGY WITH DESIGNS ON THE FUTURECU) RIR FORCE INST
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI..
UNCLASSIFIED K A ADAMS JUN 85 AFIT/GCS/MA/85J-2

B
|
il
|
LG
|
il

T ad

o
"

o

)

L e

N

= N ¢

!."‘

LIS LR KPS

W BTN o

KSR .o T e

' t‘:'.'!' L‘.M\Lmr

—— e —— s,

#
.

N
tn

- —————— 1

3

R
_——
[]

FEREER P

EEEE

¢ e cor——————_

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1983~ A

R R R wf*}w***c"’
hlﬂ‘"v AR INVEE iR A A ARA b A ADARY

¥ L b Po e ot B p 1 e D N e Rode & 40 e B8 oA WAl B L a0y b e Rt b Syl iy S B W -

RFPRODIICED AT GOVERNMENT F XPFNSE

4
\ /

00

F

KN

(2]

L

F
j i
.

THE INTERACTIVE GENERAIIUN Ut
ALPHANUMERICS AND SYMBOLOGY WITH
DESIGNS ON THE FUTURE
- THESIS
AFIT/GCS/MA/85J-2 karyl A. Adams
o DTIC
. 8 = g
i ‘ This documo;\t has b;cn ofo"’:t?"d .
i nd s 3
= etbution s unlimited SEP 1 8 1985
A v
: & DEPARTMENT OF THE AIR FORCE S A
: e ‘ AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY
g
W
N
Wright-Patterson Air Force Base, Ohio

A A A Y S I N R e A A i e N e

EV .

§

. AFIT/GCS/MA/85J- 2

¢ B

.

N

& A DISPLAY ENVIRONMENT SUPPORTING

: THE INTERACTIVE GENERATION OF

: ALPHANUMERICS AND SYMBOLOGY WITH

- DESIGNS ON THE FUTURE

THESIS
AFIT/GCS/MA/85J-2 Karyl A. Adams
DTIC
ELFT "< 2
SEP 1 8 965
A

:

<+

v

Approved for public release; distribution unlimited
‘\Q-

X

<

<

2 Platog, ‘;;ntaing Ceclow

iong gy br1c repr.a,-
Thitee 11 de 4, blaci an",{t-

-

?,",-_, '.‘é"'.’,, y ,_'., .'-,,, Ty Y wiv 5}\} \-.:‘ ‘\-'...- " .‘-’-\-...\ RSN .‘-“.' ~'.1'.’- AN ..v...!“..v;\-:\-'._f_‘-:\q*. o s

AFIT/GCS/MA/85J-2

A DISPLAY ENVIRONMENT SUPPOR;}NG THE INTERACTIVE GENERATION
. ALPHANUHERIC? AND SYMBOLOGY
‘ WITH
¥ DESIGNS ON THE FUTURE

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
(W5 in Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Aoco:s{on For
NTIS GRARI
]

J—

Availability Co‘des.

‘Avall and/or
Dist | Speeial

A June 1985 /) /', }l

DTIC TAB
Unannounced 0O
Justification _ _ ___}
: Karyl A, Adams, BSEE
2 By
j | Distribution/

-,
) (?9 Approved for public release; distribution unlimited oric
. Gomy
X Nerecres
. [

A . . g A B AT T Ve T e Cagwm I e - . . e
2 R L e A BT T e g L S e e S T e

P o LY ST 10 % PPN S0

»
T 0 O A R S G LR L L S R L TS S R o SN S SR

Acknowledgments

This thesis effort has evolved from several sources.
The most significant driver for the work was the many long,
frustrating hours spent developing HUD symbology for Flight
Dynamics Laboratofy simulation programs. Typical software
development to support the simulations required much
hand-coding, normally adding, deleting, or modifying existing
modules. The existing software structure at the time was
poorly designed from the standpoint of re-useability. The
majority of time was indeed spent doing trivial, almost

mindless work.

A colleague of mine, Mr. Terry Christian, who had
worked extensively with the available graphics system, and 1
discussed ways to improve our plight. Out of those
discussions, the first germ of an 1idea to structure the

software modules for true re-useability was born.

A second critical event that started my thinking toward
ever more challenging goals was the time I spent in the
compiler sequence with Major (then Capt) Roie Black working
with implementing a subset of an Ada compiler. Major Black
is an ardent advocate for making computers actually ‘work!®
for you. His thoughts and ideas on the subject of automating

massive software systems was, to say the least, inspiring and

iit

LAY

.
")

o

TN e B 0w A R R T W g T IO SR e e, O hAN e DTN N A at O R 3 S, S

-’

thought provoking.

Because of my interest, and heavy involvment, in
graphics development in my full-time job and my growing
attraction to automated tools, the idea for DESIGNS was
formulated. Major Black continued his support by becoming
the advisor for my thesis effort. Throughout the time he was
at AFIT, he continually provided me with challenging ideas

and recommendations for the concept.

As a part-time student completing a master's degree
program, the thesis often posed an interesting conflict with
my day to day work. The development effort has been quite
prolonged, and as a result has changed significantly over the
two and a half year period. It has been an interesting
maturation period, both for the concept of the thesis and
myself. The final thesis product, while far from a complete
automatic environment, I feel is a stronger design and set of

tools than it would have been otherwise.

During this period of time there have been many
individuals who, by their continuing encouragement and
support, have helped me to stick with and complete my thesis.
I wish to thank HMajor Roie Black for the inspiration of his
fdeas and his steady encouragement to FINISH. Special thanks
also to Mr. Terry Christian and his willing ear to listen to

my ideas, and help me to see when they did, and didn't,

address the needs of our facility.

SIS N ARy TN 1 . L A W AL Y T A A A XL o LR W N W W W T L e T TR e TS

I would also like to thank the readers on my committee.
Qé: Dr. Matthew Kabrisky and Mr. Paul E. Blatt gave of their
time to provide {information and comments on the thesis
development. Mr. Blatt, as the branch chief of the Control
Synthesis Branch, also served as the official sponsor for the

effort.

There is a group of people to whom I owe a great deal in
actually completing my master's program. The first is Mr.
David Lair. Dave was my supervisor in the lab and supported
my educational endeavors whole-heartedly. Without his
support, it would have been impossible to have scheduled

< classes and thesis around the demands of the facility.

The second special thanks goes to Mr, Chuck Richard.

(ﬁ' He was inftially a reader on my committee, and willingly
stepped in as advisor when Major Black was reassigned. This

required much more of his time and efforts to get caught up

to speed on a development effort that was over a year old. 1

deeply appreciate his patience and understanding as he has

guided me to completing the thesis.

Another source of strong support came from my friend and

colleague, Capt Patricia Lawlis. She has encouraged when I

. was ready to quit, pushed when I was being lazy, and of equal

importance, left me alone when I was too fed up to listen.

Without her encouragement, this effort may never have been
finished.

e ARG G A NN ACAS

PR IAIE P WS W B B W G Sl I et B MR R G Ban a0 N LA T 8RR Nl Dt A PR L ey T Sy WS R Sea PR 2

3 s 8- A 83

~ of SOkt Ll

PP

v NN H

My final sincere thanks go to my family, particularly my

-

.‘\}\

w? mother and sister. They have provided constant emotional
support throughout the effort. Their kind thoughts and
prayers have meant much.

Without each of these people, I may never have finished
what was a prolonged task. In completing the effort, I think
of each of you and thank you for your support.

Karyl A. Adams

VY

N

vi

Y Wt e R T € R R NSt (i A e i gt ol e e g B S i s AN SN T

0 Contents

v
Page
Acknowledgments . . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o 1ii
List of Figures [) [] L] L] L] [] . L] - * * L] * L [] L] L] L] [] x
List of Tables . . . & ¢ o ¢ o ¢ o o o o o o o o« o o o xii
LISt Oof ACrONYmS . & & ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o« o« xiff
ADSEract . . ¢ ¢ ¢ ¢ ¢ o o o o 2 o 2 o 6 o o 6 o s o o XV
I. Introduction . . & ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o 1
Historical Background ¢« ¢« ¢« ¢« ¢« ¢« « « 6
K Scope of the Thesis . . D A
: Overview of Technical Issues e
. I1. Graphics in R & D Simulation 21
2 The Potential for Cockpit Integration 26
Cockpit Display Evaluation . . . « ¢« ¢« ¢« ¢« ¢« « 29
Graphics Support Environments 31
ITT. Problem Definition ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢« &« « « 34
The Software Development Cycle « . . 34
A case StUdy * L] L] [] L J L] ® L] * e [] L] [] * - L] L] 35
The Operational Envirvronment « . « 45
Statement of the Problem ¢« ¢« ¢« ¢« « . 47
Constraints of the Problem « ¢« « « &9
IV. DESIGNS Requirements . . ¢« ¢« ¢ ¢« ¢ ¢« ¢ ¢« ¢« ¢« « « 54
Synopsis of Requirements 54
The DESIGNS User Interface . . ¢« ¢« « ¢« ¢« « « « 56
The DESIGNS ToolboX <« ¢ ¢ ¢ ¢ ¢ ¢ « o« ¢« o« o« o 59
The DESIGNS Interpreter« ¢« ¢ « « « « 64
The DESIGNS Facllity * [] L] L] [] L] L] [) * * L] L] L] 70
Summary of Functional Requirements « 73
A
N7 vii

Sl N St it Sl Sl Ml A "t Nl et B g il A il Sl gt e S it WV b, et Ay St B e St it b

V. The DESIGNS Implementation . . . « ¢« ¢« « ¢« &

Facility Description
The Software Development Cycle .
i The DESIGNS System Specification
The DESIGNS User Interface . . .
The DESIGNS Toolbox . . . « « .
Critical Tools Implemented ., . .

The Graphics Executive Program
The VG Database Definition . .
The PACER/VG ‘'Auto-Build' System . .

VI. Testing the DESIGNS Concept . . . ¢« « ¢ ¢« &

VII. Conclusions and Recommendations
Conclusions . ¢ ¢ ¢« ¢ o ¢ o o « o o o =
Recommendations . . ¢ ¢« ¢« ¢« ¢ o o o o o
Future Directions for DESIGNS

Bibliography * . * [] * [] [] L] L] * - L L] L d . [] -* L J

Appendix A - Simulation Topics . . ¢« =« ¢ ¢ « &

HUD Symbology . « ¢ ¢ ¢ ¢ ¢ ¢ o o o o o
HDD Symbology « o« ¢ « ¢ o o o o o o o =

Appendix B - Human Factors Issues . . « « « o &«

Guidelines for User Interface Design
User or Designer Goals - An Avoidable Conflict
User/Machine Dialogue Characteristics
Selection of the Dialogue Type .« « ¢« ¢ ¢ ¢ « &

Appendix C - Hardware/Software Integration Issues
Overview of Critical Hardware Issues . .
Typical Workstation Capabilities . .
Target Device Interfaces « .
Selection of Host Computers
Overview of Critical Software Issues . .

Graphical Data Structures . . « « «
Graphics Standards . « ¢« ¢« ¢ ¢ o &

Software Techniques to Handle Dlalogues

viii

78

79
80
83
84
91
96

98
101
109
112
115
115
118
122
123
129

131
132

138
140
142
145
150
155
156
157
160
162
163
165

169
173

The Impact of Fourth Generation Languages . 177
Algorithms for Graphical Tools 178

:§? Appendix D - SADT Diagrams . « « « « ¢« o o « « « « o o 180
Appendix E - DESIGNS Pseudocode . . . ¢« ¢« ¢ « « « «» o 186
Appendix F -~ DESIGNS User Guide . . ¢« ¢« ¢ ¢« ¢ ¢ « « o 197
Appendix G -~ Requirements for GRAFEXEC 201
Appendix H - Formal GRAFEXEC Documentation 203

vita L] * * L] L] L] L] L d L] L L] L) L L] L] L d L] L] L] e L] L L] L] L] 216

s ataA
P
D

. - LT . o T T T W T R NI IR I I T SRt e L ST AR TS et ettt
a7 'u.\-‘.‘v ’~ "‘-\""-‘ " 4" ‘-.\. " '~'!'..-.’\ '-". ety s e e e .“- ~ -;r‘-\‘.‘\‘) o

» "AA'x'-‘;'-'-t~(LA B BRI i gl mg pos sk g

List of Figures

Figure Page

1. Futuristic All-Electronic Transport Flight Deck . 3
2. Advanced Fighter Display Concepts « . « . 4
3. Representative Displays in Service Today 8

4, Graphic Replacements for Dedicated Control Heads -
An Evolutionary Process « « « ¢ ¢« o« o ¢ o « « o 10

5. Conceptual Model of DESIGNS . . ¢« &« ¢ ¢« &« o o« « » 14
6. Crew System Design Process « « ¢« ¢ ¢ ¢« ¢ o o« o « o 22
7. Strategic Bomber Capabilities - Circa 1990 24
8. Advanced Concept Fighter Mission « « . 25
9. TSD in Monochromatic Stroke . . . « ¢« ¢« ¢« ¢« ¢« &« « 37
10. Stores Display in Monochromatic Stroke 38
11. Procedural Display in Monochromatic Stroke 38
12. TSD in Color Stroke . . & ¢ ¢ ¢ ¢ ¢ o ¢ o o o o « 39
13. Stores Display in Color Stroke . . « « ¢« ¢« ¢« « « « 40
14. Procedural Display in Color Stroke 41
15. TSD in Color Raster . . . « ¢« ¢ ¢« ¢ ¢ o ¢ « o« « » 42
16. Stores Display in Color Raster . . « ¢« ¢« ¢« ¢« « . « 43
17. Procedural Display in Color Raster« . . . 44

18. Typical Cockpit Display Configuration 72

19. The Generic DESIGNS Menu fFormat « « « « 87
20. A Typical DESIGNS Symbolic Menu 88

21.
22.
23.
24,
25,
26.
27.
28.
29.
30.

The DESIGNS Main Menu ¢« ¢« ¢ ¢ o o &
Excerpt from VG Module, Illustrating Pointer
Sample Code for a Static VG Module
TF/TA HUD Symbology .« ¢ ¢ ¢ o « « ¢ o o o «
CIG Symbology « ¢ « ¢ ¢« ¢ o o o « o o o o
ASP Ring Data Structure Implementation . . .
Entry Level of DESIGNS - System Startup . .
DESIGNS Menu Option Processing . . . « . . .
DESIGNS Option Selection Processing
DESIGNS Interpreter Activities

xi

89
103
106
130
134
168
181
182
183
184

Table

I1.
I11.

Iv.
v.

V1.
VII.

‘; VIII.

3

NN AN I

List of Tables

Page

Functional Capabilities of the DESIGNS 6Graphics
Editor L J L] L) ® L] L] L] L J L] L] ® L J L] L] * L] L] L] [) 60

Assignment of Static and Dynamic Attributes . . 619

Functional Capabilities of the DESIGNS Symbol
lerarian [) L] ® L] [] [] ® *® L] L L] ® L] L] L] L] L] L] 62

Integration and Support Areas . . . « ¢« « ¢« « «» 63

Functional Capabilities of the DESIGNS Interpreter

L J L] L] L] L] [] L] L] L] L] L] L [] L] e L] L] L J * L] L] [] [4 65

Effects of Display Encoding Techniques 151
Menu DOriven vs Command Language Based Dialogues 153

Semantics Permitted in Early Picture Building
Systems L L J ® L] ® [] * * L] L] L] * L] L L] L] L L] L] 170

xii

Waa oo &

¥ a0 &4 8

...'._"....."q: .-, .

ACM
AFTI
AFWAL
AMRL
ANIP
ANSI
APSE
ASCII

ASP
CAD
CADET

CAM

CIG
CRTs
Dol
DESIGNS

EADI
EAI
EHSD
GKS

T T WL R L
. .'.'-} '\-

R e T
".- °

S L R SV e S NP R e

List of Acronyms

Association for Computing Machinery, Inc.

Advanced Fighter Technology Integrator

Air Force Wright Aeronautical Laboratories

Aerospace Medical Research Laboratory
Army/Navy Instrumentation Program
American National Standards Institute
Ada Programming Support Environment

American Standard Code for Information
Interchange

Associative Structure Package
Computer Aided Design

Computer Aided Design and Evaluation
Techniques

Computer Aided Manufacturing

Computer Image Generation

Cathode Ray Tubes

Digital to Digital Interface

Display Environment Supporting the
Interactive Generation of
alphaNumerics and Symbology

Electronic Attitude Direction Indicator

Electronic Associates Incorporated

Electronic Horizontal Situation Display

Graphical Kernel System

xifi

*¥‘.\ ‘e e

TS ,-..,-. PR PN .\-._».'._';. r\‘. .‘\:. LIRS ‘,‘...‘\‘,. '. o> ;

P NPT 4l i SR RS R L R I e N N Y S e WA W L ¥ AL faa. 11 NI R 7T S Ry Ay b, o e e > .8
I :

- HDDs Heads Down Displays

?E,’:-'
HOL Higher Order Language
HUDs Heads Up Displays
1/0 Input/Output
IS0 International Standards Organization
LEDs Light Emitting Diodes
NALPS North American Presentation Level
Protocol Syntax
PITS Pathway in the Sky
R&D Research and Development
SADT Structured Analysis and Design Technique
SDS Symbology Development System
SEL Systems Electronic Laboratories
SIGGRAPH Special Interest Group in Graphics
(33 TAACE Tanker Avionics and Aircrew Complement Evaluation
H TAWS Total Aircrew Workload Study
TDD Three Dimensional Drawing
TF/TA Terrain Following/Terrain Avoidance
THREAD Three Dimensional Editing and Drawing
TSDs Tactical Situation Displays
VDI Virtual Device Interface
V6 Vector General
: 4GLS Fourth Generation Languages
:
. xiv
oo

TS SIS, TR A AN A A G Sy DA IR RS B LA S IR SR SO VN R 2%

b a1 BN 0 5 AN S P s PRI, LT,) R N D R N NS CE el el gl] R WIS g B =

TS Abstract
£
> /-/?Sv.s
~ This deveTopment —®ffort- investigated the available

methods for {mplementing human-computer interfaces using
sophisticated graphics systems, with the goal of designing
and fmplementing an advanced graphics development
environment. Such a developmental laboratory is necessary to
support current and futuristic crew station design for
display-oriented cockpits. The result of this effort was
the development system - DESIGNS.

The DESIGNS software system was tailored specifically

for real-time, pilot-in-the-loop, research and development

G simulation. Critical features of such a system include fast
turn-around time, and the capability to expand as enhanced

tools are developed.

2 The resulting system supports interactive development of
: heads-up and heads-down display symbology. It generates
correct display formatting information for multiple target
graphics devices. Future enhancements include rehosting to a
more powerful workstation, preferably in Ada, and continued

addition of graphics development tools supporting simulation

needs. Mpz/ // s . SCal T,

/{/,«,....Th 4f%oén¢_ i gvas ,;5¢?ET76*~'§‘ /’;;b
',":m”.‘. §?-4 v/ ﬂ,\OLjA Yy Je,hm Y/ %0‘7

WJ»’W{ :

/ 9 =~
/WVlfnﬁ« WU A /L— (XV)

bk «TJ’EJ) C

~p ,.‘,

A S e ~ e Ty .‘ .".v_-._:";.-.;...;. X '.:

TETY YT

RV N VW

PR Y
05

A Display Environment Supportl:g the Interactive Generation
o

alphaNumeric: :nd Symbology
wit
DESIGNS on the Future

I. Introduction

Powerful computers and software techniques have
made most computer users dream of ‘pleasant' working
environments in which the computer does much of the work.
Such environments are designed with ‘intelligence' in the
sense that they automate many of the overhead tasks involved
in the preparation of software packages. Users developing
graphics software are certainly no different. They also
envision computer supported environments, tailored to their
tasks, which provide interactive tools for the development,
modification, and testing of display formats.

Software capabilities have matured to such a point that
sophisticated environments, supporting all phases of
graphical development, can be postulated and then implemented
on existing computer systems. The maturity of the technology
ifs such that graphical development work can be raised to a
higher level than that of direct programming and
reprogramming of graphics hardware. Picture format
definition, how the final version of the picture looks and

moves on a display monitor, can be accomplished at a more

et "'\"\".':s':v.‘-.'"\‘-'.;"-;"{" -l\:.,~ O q.;_. -:.“’-; > \ SNTNE .. eve 1'_ _q.’;. N J‘\'-"'.‘\."'.‘\-‘: RO -)

R BNCE o ST SNt Y LA AR R WAL Pag tre B A S Bl WG R Bl e o €k 0ok v e B e Fa et b S AR TR IOY TY T

abstract design level with the appropriate support tools.
(ES With graphics support tools available, the designer can, and
in most cases should, be removed from the numerous mundane
tasks of final software coding. Then attention can be
focused on the critical issues of defining those elements to
be 1included within the picture format and testing the
resultant graphical displays for adherence to the original

: specifications [Dudley, 1982 : 54].
Rapidly maturing graphics capabilities offer many
attractive alternatives for traditional problem solutions.
One area in which graphics is having a serious impact, is

that of cockpit design for military aircraft. The military,

? in particular the Air Force, is evaluating the feasibility,
. economy, and effectiveness of wusing extensive cockpit
‘ (j? graphics [Mulley, 1980 : 14-15; Vokits and Waruszewski, 1980
X : 4-810

Future Air Force cockpit designs will 1include cathode
ray tubes (CRTs), flat panel, light emitting diode (LED), and
other advancing technologies. The all-electronic cockpit of
the future is being tested today. Figures 1 and 2 illustrate
futuristic transport and fighter flight deck configurations,
and depict the potential dominance of graphical displays

within the aircraft environment [Wilson and Bateman, 1979 :
10].

TR
oty
.7

AL AN B

POy ¥,

%990 Y6714 340dsuedl ITUOULDB[I-[IV O13STuning - | 3IYA9I4

2

Displays can replace much of the current instrument

panel and increase system reliability and maintainability.
The inherent flexibility of displays provides a mechanism for
increasing aircraft subsystem integration, thus decreasing
the pilot workload and improving mission performance
[Aviation Week Staff, 9 Nov 1981 : 181-188, 191-193; Bateman,
1978 : 4-10; Hare, 1978 : 17-19; Washburn and Tibor, 1979;
Whitaker, 1981 : 505-510].

With the new graphics oriented technology come the
inevitable questions. The hardware installed in military
weapon systems and the software systems driving them require
careful design to maximize their potential in the cockpit.
Human use and perception of the data encoded in the display
become critical [Mulley, 1980 : 15-18; Tucker, 1981 : 59-62].
Studies to determine how the hardware/software systems should
interact with crew members are being conducted in simulation.

Simulation facilities are therefore expanding
capabilities to include sophisticated graphics systems with
which to evaluate these issues. These systems can generate
complex threat, sensor, and navigation displays which are so
critical to milftary activities. Tools to support the
expanding graphics facilltleé and the intense software
development are needed and are, in many cases, rudimentary.
Intelligent graphics support environments, tailored for Air

Force simulation needs, provide the capability to improve

graphic development in several areas ([Mysing and Gravely,

1980 : 37-38; Riesenfeld, 1978 : 115-122; Wall and others,

L.-&

APEVPRO AT WY <R YDA LRIJEARNE Ay 20 B S RO IR P W i A -

1980 : 19-1201].

This thesis defines a complete graphics support
environment developed for use in real-time flight simulation.
A subset of the defined tools, focusing on the actual
preparation of software for Heads-Up Displays (HUDs), {is
implemented. The completed product provides a highly
integrated, interactive environment in which the wuser has
access to an extensive toolset, tailored for simulation
needs. From the toolset the user selects those capabilities
necessary to accomplish any phase of the graphics development
task at hand. The capabilities and tools discussed here are
an outgrowth of the phenomenal accomplishments {in graphics

and computer languages over the past two decades.

Historical Background

With the advent of Ivan Sutherland's doctoral
dissertation, “Sketchpad", in 1963, a new avenue for
human/computer communication was opened. Sutherland
perceived that the added dimension of a graphics display
could provide significant benefits for the user. The
Sketchpad design explored, defined, and expanded this new
communications device. Its use marked the beginnings of
serious graphics development [Sutherland, 1963 : 2-19].

From the relatively simple line drawing techniques and

cumbersome display hardware {introduced with Sketchpad,

advances in both software and hardware have provided

am a s ox o

S N I

increasingly powerful graphics tools. Today, graphics use
extends into numerous areas of endeavor, {including games,
business use, and technical support.

In the past few years graphic displays have made their
way into the aircraft cockpit. Improving technology, with
greater system speed and larger, faster memory, makes
in-cockpit graphics a practical and economic way to display
flight related information. Diversity of formats, which can
be tailored to the mission activity and aircraft need, opens
new horizons for data display. No longer must dedicated
pieces of hardware, performing a single function, be wused
[Jauer and Quinn, 1982 : 1-61].

Applications of display technology in the civil aircraft
sector have been extensive. Notable efforts include the
Boeing 757/767 series aircraft with a complete complement of
graphics units for instruments, weather radar, navigation,
and system monitoring; and Britain's Royal Afrcraft
Establishment BAC1-11 research aircraft which is a flying
testbed for high vresolution, full-color, multi-function
display systems. Many commercially available display units
from Rockwell-Collins, Sperry Flight Systems, Bendix, Smiths
Industries, and others are flying in both American and
foreign airlines [Royal Aircraft Establishment, 1981 : 1-12;
Smiths, 1980 : 27-33]. The Electronic Horizontal Situation
Display and Electronic Attitude Direction Indicator
(EHSD/EADI) symbology shown in Figure 3 is typical of color
displays available and in use [FIGD, 1982].

A P W W W Eu Y, L ke A T R T T T I Sy N T N Ty e e e TN T T T P YR A i, S e S T Y - A e on)

ELCCTRONIC ATTITUDE DIRECTOR INDICATOR (F ADI)

ELECTRONIC HORIZONTAL SITUATION INDICATOR (FHS1)
FIGURE 3 - Representative Displays in Service Today

...

N e A Paan

The military ventures to date have been more cautious
[Vokits and Waruszewski, 1980 : 4], However, as tactical
missions grow in complexity, the use of computer based
cockpits with graphics has increased. Both the F/A-18 and
the F-16 are using some form of displays for system
management information. The formats for these displays have
evolved more cautfously, often strongly resembling the
dedicated equipment which they replace. Indicative of this
evolutionary process are the different ‘'displays®' wused in
three fighter aircraft for weapons control that are shown in
Figure 4 [Jauer and Quinn, 1982 : 1-2; AFTI, 1980 : 1-5].
The displays within the cockpit have successfully replaced
older, existing equipment. The enhanced capabilities have
been well received by crewmembers. Cockpits for future
military aircraft are therefore being designed with computer
graphics included as standard equipment.

Escalating costs of flight test programs require that
preliminary research, design, and testing of display formats
be done in ground-based simulation facilities prior to use in
the actual flight environment. Displays must be evaluated to
determine both their effectiveness in transferring data to
flight crews and their practicality for the cockpit. Such

design and testing efforts require extensive graphics support

[Jauer and Quinn, 1982 : 118-119; Lizza and others, 1983 :
1-5].

F-15

o —
1 eres = 9 = -~
Nl |
oo o e iy 2
: '/E:J [Tk
°B E b
.= 0=0=0 |
i?i"”ggégqéglf};'..ﬁ F-16
":‘—“—'pﬁ " G:;::on °"®
@ seecranr) 3
R Y XX COCOoQ
~r L B o VoaTnsa T B F-18
] .- ':E} J — 10N _ D{ “ s 6 Do g
2o o R o
= img® © © Oyt ' -
; . :J‘ 14 " ; LD
' Pl =
e) . FTT
'Eziumnut FD=4
o\ o)
Q)

FIGURE 4
Graphic Replacements for Dedicated Control Heads -
An Evolutionary Process

The key for effective development of graphics during the

simulation testing cycle depends on having graphics support
tools available. The challenge of developing these tools is
of major import to the simulation community if it 1is to

provide timely support for in-cockpit graphics research at

lower cost.

FLTOUE T T T O i kS N w0 Wil Rin ATV} T T RN e LY A n b e 4 i WK ph . W ! - ok oy - N g ip g

S Scope of the Thesis
W

One of the most important goals of the thesis effort was
to provide a more powerful, and more useable graphics
environment for the personnel working the graphics area of
real-time, pilot-in-the-loop, research simulation. Key to
this effort has been the definition of an executive structure
which serves to integrate available graphics tools, and the
definition of DESIGNS - Display Environment Supporting the
Interactive Generation of alphaNumerics and Symbology.

The executive provides a super-structure which loosely
integrates all available graphics tools within the facility.
DESIGNS {is the most complex, and significant of these tools
as it provides the potential for a revolutionary new way of
¥ developing real-time simulation graphics in the future.

The function of the DESIGNS environment is to assist

with the development of picture formats required for

aa e, A,

real-time, ground-based flight simulation. To do this
f successfully, DESIGNS must provide tools which augment,
'E automate, or eliminate some of the time consuming tasks that
e currently must be accomplished by hand.
The typical scenario for developing and testing graphics
displays in simulation involves six major phases:
(1) determine initial requirements for cockpit
display(s), that is what scenes are to be put on
the display screen(s) in the cockpit,

(2) program the selected graphics system(s) to generate
and update the desired display(s),

(3) have test crews fly, using the display(s) in

‘. ‘-
,ld e
l. .

1"

i o re AP PN |

o'

T

typical, simulated scenarios,

(4) modify the display(s) based on crew suggestions,
(5) retest the new display(s),

(6) repeat steps 4 and 5 until the desired level of
crew acceptance and performance has been met.

The bulk of the work lies in step 6, 'tweaking' the
display format until it 1{s deemed acceptable. The initial
display design and software development often is a
modification of existing cockpit symbology, thus not a major
development. There tend to be accepted sets of symbols to
accomplish specified tasks. Variations on these sets, rather
than dramatically new symbology sets, evolve with new
testing.

This scenario, replayed for multiple simulations, soon
leads to tremendous replication of effort. Much of the work
is repetitive or purely computer related, requiring either
little innovation or no graphics design work. Significant
amounts of time can be required to modify program code and
process it to run with slight variations from the preceeding
configuration.

The purpose of a tool such as DESIGNS {is to automate
those tasks which can be, provide tools to assist in the
design and eventual modification of displays, and provide a
consistent interface to the variety of tools and devices the
designer may have available. Thus the tools can reduce

development time and permit the designer to focus on design

fssues rather than the mechanics of the computer and graphics

e T APV G 0 VNS NP 1/ it e T B I M AT . PRy e A ORI A ngl e AAEDS ARy Yl 1 2o ‘T Ay IR o i A B A), 0 Ve Ry S g0 N L R A &

. i hardware.

The initial thrust of the DESIGNS effort is to provide

‘('o"l
2,2

an alternative to the manual creation of display software for
; simulation efforts of <the type currently being undertaken.
This can be accomplished by providing automated tools which
perform the repetitive tasks, and support basic graphics
drawing primitives. Futuristic capabilities in the cockpit
lead to more complex graphics requirements, including
pictorial displays - the concept of ‘'painting a picture'.
The definition of DESIGNS supports this extension in theory,
but did not address it in detajil during development.
Conceptually, DESIGNS is modeled as depicted in Figure
5. The wuser 1is presented with a view of the DESIGNS
capabilities (tools) through the user interface. This

i,
i

interface provides the only window the user has into the
toolbox. Through the structure of the user interface, tools
may be discerned and then accessed. No attempt is made to
fully define the tools, except in terms of their behavior, to
the user. Therefore the only 'tool' the user must learn to
use i{s the 1interface itself. By wusing the tool set
avajlable, the user can design, modify, and test displays
more easily and quickly.

Even further removed from the user are the actual
graphics devices that may be available through <the DESIGNS
system. Again the wuser knows these devices in terms of
information available through the user interface. DESIGNS

0y provides the device dependent software (interpreter) that

13

RN -.-:~J'~(""sl"..';. v" ..' - ..- ""kv (RN ‘ N

GRS Sy O IR M e 6 b G A L N PR o Bl F R 0 R T KU S B P P Ge B R g WS SR e, e

f

USER INTERFACE INTO DESIGNS *

User Workstation Executive DESIGNS Dialogue

DESIGNS TOOLBOX

* * l-_-:

Graphics Support Symbol .o : 7?7 1

Editor Tools Library X :

L

l
4
o
: DESIGNS INTERPRETER *

; e;i FOR

PRODUCTION OF TARGET SOURCE

* — ="
Device Device 'Device ! Device
_ 1 2 e n

: L —ed

FIGURE 5
Conceptual Model of DESIGNS
translates the user's graphfics design specifications 1{into a
format that a specific device can use. This portion of the
DESIGNS environment may not be directly accessed by the user,

as evidenced in the figure.

/0.
L]
LA

14

-.
'.
¢
?
v
4

o v.:~'.:. ‘,:- (:- P "-_. "‘-. '\. -}'“ -.(-.)ﬂ- \;,'q '....-.'.r-. -,"'\;.\}-,, "y .{.._-(._-.._-‘\-. ._\ \:‘\ . ae T

oA

As fndicated by the figure and briefly discussed here,

the DESIGNS environment provides the user with a set of user
support tools. It provides a single, defined method for
using the tools, and requires no detailed knowledge of the
hardware or software systems in order to work with the tools.
The only portion of DESIGNS visible to a wuser is this
user/environment interface.

The set of tools provided to the user supports the many
phases of graphics work. As a minimum these tools provide
aids for designing and modifying picture formats, with
support to save and retrieve work that has been accomplished.
The concept provides a mechanism by which other tools can be
added to the toolbox as they are developed in the future.

The development and testing phases of DESIGNS served as
the proof of concept. Since the DESIGNS environment was too
extensive to develop in its entirety, a portion, identified
as critical to the design concept, was implemented and
tested. A thread through the system, which directly supports
software development for HUDs, was selected as the candidate
for implementation. This effort included issues of the user
interface, a baseline set of graphics tools, and an
interpretive mechanism for a single target device. Areas
which were developed as part of the research effort are
indicated in Figure 5 with an asterisk (*). This 1indicates
the path through the system which was determined to be

critical for success.

15

.
nnnnnn

e N Gs ¥ T Bl Tl e sl SR U L0 e i PN T L i A N g S s W Ol i Sk W o ® - W e . guade @o% W &t AR

430 Overview of Technical Issues

Solutions which may potentially satisfy the graphics
development needs will not be found by considering only those
techniques available within isolated technical disciplines.
Developing the DESIGNS environment definition involved f{ssues
traditionally identified with several distinct technical
areas. A satisfactory solution for the design problem mast
be defined from an interdisciplinary perspective addressing
; four distinct areas.

% This report 1{is structured to discuss each of these

technical 1issues in detail as well as to provide the

g necessary supporting fnformation. The second chapter
E . explains the importance of graphics to Air Force research and

‘Eﬁ development simulation. Trends in the use of graphics in the
E cockpit are discussed to provide a better perspective on the
. problem.

The third and fourth chapters discuss problem definition
and requirements. Chapter three provides the details of the
problem definition and scopes the effort proposed. Chapter
four defines the functional system requirements.

The actual implementation of a system having the

; functional capabilities specified, places a complex task in
the hands of the system designer. To accomplish such a task,
several technical areas, such as real-time simulation, human

E factors engineering, and computer systems engineering, must

be carefully analyzed. If any facet of the effort is

16

0 00 20 5e 2t 50 iy, oA i oty A L L, U R (g O Bt X O S R P e e Y

¥

VR A
.

n
ASASASE

short-changed, the resulting tool will not be accepted by the

potential users. The DESIGNS system was developed based on
techniques and methodologies available within each of these
disciplines. The fifth and sixth chapters describe the
DESIGNS environment implementation and the testing of the
subset of DESIGNS tools.

The seventh, and final, chapter of the thesis presents
the author's conclusions regarding the effort to date and
critiques the effort with respect to the original goals. The
overall success and feasibility of extending DESIGNS is
discussed. Recommendations for future activities and
extensions to the DESIGNS environment capabilities are made.

Additional information, which supports the project
design, is presented in the appendices. This information
expands on the issues raised by the system requirements and
provides the basis of knowledge from which the preliminary
design was defined. Such knowledge 1improves the reader's
ability to understand the various design decisions, but is
not critical to system use.

Issues specific to the simulation needs that impact this
project are defined in Appendix A. Simulation questions
require insight and understanding of both real-time aircraft
simulation demands and cockpit design. Specific facility
needs and resources strongly tailor parts of the design.
These needs gquide the definition of requirements and
capabilities. The available assets dictate what physical

devices must be supported.

17

A critical area that must be considered is the human
factors design of the system. The importance of the user
interface is discussed in Appendix B of the thesis. A
complete, technically correct set of graphics tools packaged
with a poor user interface is of minimal use. The needs and
capabilities of the 1intended end user must be identified.
Once identified, these points determine the user {interface
definition. Careful attention will be given to the efforts
in the area of fourth generation languages and the impacts
they have on both software and user interfaces.

The hardware and software fssues pertinent to the design
definition of any system are often closely coupled. It is
frequently difficult to discuss one without referencing the
influence of the other. This is certainly true in discussing
the hardware and software technical issues which have helped
to mold the DESIGNS system definition. DESIGNS {is a major
software design and implementation effort and as such has
been influenced by existing, proven techniques in the
graphics area. However, since the primary goal is to provide
development support for a plethora of dissimilar target
devices, the DESIGNS definition is heavily dependent on a
thorough understanding of the hardware capabilities. Both
current hardware capabilities and future growth potentials
must be understood.

It is necessary to look at each area in turn critically,
and then to discuss the integration of these closely related

issues. Appendix C discusses pertinent hardware capabilities

18

[1o 3 8 RS

iy

’r
)
"_"

“w

R R 4y 00 a P e TALE 0 W WA SR R R 8RR YLD S S R S " b ey R oA pig st Vo4 0.

and software techniques that affected the DESIGNS definition.
Key fssues concerning the hardware/software integration are
identified and their relevance to the effort detailed.

The methodology of Structured Analysis and Design
Technique (SADT) developed by Softech was wused during the
design phase of the project. The resultant SADT diagrams
describing the detailed DESIGNS definition are contained in
Appendix D. This set of charts defines the entire postulated
environment. There 1is more detail contained within those
charts defining the implemented subset of DESIGNS than in
those defining future capabilities.

Pseudocode was wused to develop the design of the
software modules. This serves both as a design tool and as
documentation for the system. Appendix E contains the
pseudocode that was developed for the tools actually
implemented.

A user's guide for the DESIGNS system is also provided.
This guide, which is included as Appendix F, provides a step
by step description of how to use the software. It documents
those tools which have been developed and tested to date.

As discussed previously, one of the important outgrowths
of the thesis was the definition and development of a high
level executive program which serves to integrate all the
graphics tools available within the host facility. While
this executive is nnt the focal point of the thesis, tt is an
important outgrowth of {t. To provide more complete

references, Appendices G and H contain information specific

19

. LR
......

T N N Y sy T N I Iy T TP Ly rvr=—y

ey to the graphics executive that was developed in parallel with
DESIGNS.

(j

20

e e s e e Lt e N N e e N T N A

CHPR TR SR T T U SRS C P N R Y

- - cw -
e R S R SR LG TR

g
R R R
.

RN S

MDA SN St AN S S N N S I N LI i N Ao T Ao DM A gt R i i et aa sl cufll il Sed byt auliul fad uall talb Nl Aab sl Rell ap n § St B

IT. Graphics in R & D Simulation

To understand the need for the DESIGNS system, it |is
necessary to understand the role of graphics development and
testing in simulation. Real-time, man-in-the-loop simulation
is a useful tool for aircraft development and evaluation.
Simulation activities are supported by, and based on the
design and evaluation efforts that precede them.

The activities that precede simulation have been
carefully defined and refined over the last several years.
The accepted procedure, in government and industry alike, 1is
an fterative one consisting of analysis, design, and
evaluation phases. Low-cost, mock-ups study static display
formats in an attempt to lower costs of real-time simulation.

\, The design process used 1in developing a crew system
design is illustrated in Figqure 6. Not all steps of this
process are executed for every program, but the philosophy of
analysis, design, and testing are critical. There is a very
real need to provide good graphical tools to support the
various phases of this design process.

The 1increased need for graphic related software in
simulation can be seen from the nature of the design process.
The use of graphical representations within the aircraft
cockpit fs not new. The historic use of graphics in the
cockpit, coupled with a brief description of the potentially
demanding roles graphics may support in the near future,

develops an appreciation for the DESIGNS concept.

21

FIGURE 6 - Crew System Design Process

SS3004Hd NOISIA WALSAS M3HO

NOLLVAITYA 1S3l 1HOMd
S .

“\U\.

NOLVOINIA , =
1dIONOID DidID3dS @ =~ A
NOUVAIOUYYY H3SN @y | .

 NOIVanvA/NOLvmIvAS ¥ \\\ P e
NOLVINWIS = .,
. pr ¢ =)
- o Q NOLIYYVd3Ud OIHVYNIOS @
a /./ NOLIYAY3SEO LHON4NI @

= SISKvNv NOiSS B

NOISSIW ¥IANVL $T1-09 1dwy,

ONIN33HOS 3TVOS 30HV1 @
NOLIVJIOILHYd H3SN @

NOUVITIVAS "HAS] 4POOW Nouvnimaiaa NOLLONN4 @ STUNA300Hd/LSIINOIHO @

p 1NOAV AV1dSIA/ TOHINOD @
v N\ = NOIS3Q AHVNINN3Ed &

22

Pl WP ST AP N

- w e ——
N N L N W Y N W v vy

Work in cockpit displays began in the early 1950's with
the Army/Navy Instrumentation Program (ANIP). The ANIP goal
of integrating the fighter cockpit was never realized
primarily due to the rudimentary technology available at the
time. The display system performance was notably inferior to
pilot expectations and was not accepted. Strong prejudice
among pilots involved in the project seriously hindered
future attempts to introduce graphics as an integral portion
of cockpit instrumentation {Quinn, 1982 : 1, 62].

Since the original trial efforts, much has changed with
available technology and military needs. Today's airplanes
have greatly improved performance capabilities with seemingly
unlimited potential. They are tasked with increasingly
demanding mission roles. As mission scenarios become more

(; demanding and the aircraft more complicated to operate, the
amount of data to be properly evaluated by the crew members
increases accordingly.

Typical mission scenarios for large aircraft (bombers
and transports) and high performance fighters are grueling.
They demand periods of intense mental activity on the part of
crewmembers to accomplish critical tasks. Bomber missions
can require long flight hours, involve numerous rendezvous
points with other aircraft, with various weapons launches as
illustrated in Figure 7. The fighter mission, as depicted in
Figure 8, can involve high-speed terrain following/terrain
avoidance (TF/TA), threat avoidance, plus aquisition and

fdent1fication of enemy targets.

I) L I N P S S S e v ® e T ettt e e e e e s LU L
., . . PICIR I f e At LT e e T T T N N T A L T St
L S I T R PR P S P S i e L
T A T R ST ST P o TP e N S

CONDITIONS

AUYTONOMOUS/COORDINATED

OPERATIONS
* OPTIMIZE TRAJECTORY

mrEnsiva ¢’
MANAGEMENT

(MUCLEAR) 3a

x
Q
z
]
<
-
-
2
]
H
|
§
H
»
-

AN

NN A \\ \

Ll I g S R A Danpan Dig Sas Ty o

Ll e

FIGURE 8 - Advanced Concept Fighter Mission

g o c o - o

..//

g

= INIOJAVM

TN
. $$34¥O3
N

’

139yv1~/

SH3IANINVIN .
NOILVYNOIS3a

X/

TR
N\

NN

“_ /~SHIANINYIN _—
_ AH3AN3Q

7’/2\

|

CH1vd Q31NdNOD

OIYVN30S

Il/l

Q31933713S34d - -

H1lvd 1034id

SHIANINVW JAISVAI
ONIATS A3TTIVA

[]

..........

ANIOdAVM

SN

WO SR

In order to accomplish these missions, tactical and
flight related data must be recognized, comprehended, and
responded to by the crew. Mission success and safety depend
on the timely, and proper, execution of each critical mission
phase.

During times of high workload this data can be poorly,
or incorrectly, interpreted thus compromising the mission,
with the potential for loss of 1ife and property. Methods to
improve the tranfer of data to the crew are essential. Once
again, graphical displays are being considered as a tool to
provide cockpit integration [(Mulley, 1980 ¢ 14-15;
Ropelewski, 1982 : 39-46].

The Potential for Cockpit Integration

Providing useful, integrated data to a flight crew
requires a thorough understanding of the tasks to be
accomplished in a given mission scenario. Determining
limitations of crews and equipment is a major concern for the
Air Force. One way to evaluate the limits within an entire
aircraft system is to fly typical mission profiles in
simulated combat or emergency conditions. Research studies
using simulation have determined the percentage of time the
individual crew members spend on specific tasks and pertinent
mission phases such as take-off, communications, navigation,
radar tracking, etc. These studies identified factors that

assist and hinder the crew as they work on tasks. B8y using

26

R e S N

P/
a1

wa s 2 8 2D

simulation, controlled experimental mission profiles with

intense workload situations (such as high communications
load, bad weather, and aircraft system failures) have been
flown and evaluated to determine the limits of performance of
the entire aircraft system [Lizza and others, 1983 : 4-5;
Moss and Barbato, 1980 : 2-5; Moss, 1980; Sexton and others,
1976a; Sexton and others, 1976c]l.

These workload study results indicate that the limiting
factor in the cockpit may be the pilot and the inability to
deal with overwhelming streams of data. The volume of data
which must be recognized and processed in the tactical
environment can be too extensive to be properly and
consistently evaluated over the course of a demanding
mission. Much of the data available requires a significant
amount of human processing time to be f{interpreted. In a
worst case scenario with high workload, much data is lost due
to a lack of this processing time [Boeing, 1983; Sexton and
others, 1976b].

An obvious conclusion {s to provide some sort of
assistance to the crew by preprocessing at least some of the
data. By reasonably integrating the many data elements, the
crew will need to process less. Traditional cockpit design
does not support this integration well. Often there fis
little regard for an efficient and effective cockpit
interface to the crew even though proper cockpit design {is

critical if the pilot is to properly use the data available.

27

e e S A B Ay T NI AT I D

v

-~ %

-f...' S

“»

" S o Py T oMM A B D 00 T X H L AL WLt v ns Ol PRSI B AR Gl £ PAN)* Sl bR 2R 0 S I R W * g™ i)

§

SEUS QAL Y

Current trends promote the concept of an integrated
cockpit. No longer are aircraft subsystems such as the
flight control, weapons control, and trajectory control
completely segregated. Issues of combining technologies are
recefving critical attention. Integrated cockpit design
concepts provide essential guidelines for the proper
management of the modern cockpit. In an integrated cockpit
environment the crew would no longer have to look at several
instruments to synthesize a mental picture of what is
occurring within and surrounding the aircraft. The cockpit
instrumentation would be designed to provide the ‘'big
picture' of the aircraft's situation with a minimum of
separate displays.

Electronic graphics display technology offers great
promise for integrating cockpit functions. Maturing
technology provides an unprecedented potential and
flexibility for designing sophisticated aircraft systems
based around graphics displays. This inherent flexibility
and extensibility of graphics displays provides an almost
obvious mechanism for increasing cockpit 1{integration. By
capitalizing on the flexibility, display formats can be
optimally designed for each phase within a specified mission
profile, as well as for many of differing military missions.

Optimization and system integration are not penalty free
products, however. The designer of formats faces two rather
formidable tasks. The first ifs the development of

‘optimized' formats. Unfortunately there is no quantifiable

28

L e TR i e e e e e e

RN ..-'\-'\c. .‘-'\-'~

ORI AL

0
| PR\

measure of optimal. The second task is equally difficult and
involves the validation of the format's information content
and the proper transferral of that information to the crew
member. It is one thing to build an electronic cockpit. It
fs quite another for that result to work effectively in a
mission role. All of these areas require careful study and
analysis [AFWAL/Flight Dynamics Laboratory, 1982 : 22-31,
59-69; Curry and Wiener, 1980 : 22-26].

Cockpit Display Evaluation

Government and contractor support organizations are
interested in researching and directing the impact that
display technology has on future cockpit design. The most
notable participants are the major airframe manufacturers
(Boeing, Lockheed), key government facilities (NASA Langley,
NASA Ames, Air Force Wright Aeronautical Laboratories), and
the avionics vendors (Rockwell-Collins, Sperry, Smiths
Industries, Ferranti).

The research efforts at the Boeing, Lockheed, and
government facilities address three major graphics areds.
The areas of interest are the

(1) evaluation of display devices, formats, and
physical cockpit arrangements,

(2) evaluation of the limits of automation which can be
programmed into cockpit designs and still retain
the pilot as an effective system manager,

(3) in-depth study of the advanced display techniques
and technologies for both software and hardware
portions of the graphics system [AFWAL/Flight

29

- N Dynamics Laboratory, 1982 : 59-69; Boeing, 1983;
A Lizza and others, 1983 : 1-5; Moss, 1984; Sexton,
) 1983-4; Vokits and Waruszewski, 1980 : 4-8].

The evaluation tool for significant portions of the
research is ground-based flight simulation. Real-time,
man-in-the-loop simulation is wused to investigate the
critical areas of interest and to validate the findings.
Prior to full simulation, however, extensive design, testing
and redesign of display formats must be accomplished.
Preliminary evaluations of proposed displays and cockpit
designs often take place in graphics support facilities and
simulation mock-ups. Results from these experiments feed
directly into the full simulation design. This research and

development approach dictates that extensive graphics

capabilities be available and supported in the various

\s simulation facilities [Holt and others, 1980 : II-1 to II-28,
Lizza and others, 1983 : 1-5; Moss, 19841].
Thus graphics development within the R & D community is
increasing, with a growing emphasis on real-time graphics for
: the synthesis and analysis of intelligent in-cockpit
2 displays. These current cockpit integration efforts are
certainly a culmination of those efforts which began in the
50's. Today's activities, supported by a much more
sophisticated technology base, are more likely destined to
succeed. The immaturity of the early technology that plagued
the ANIP project will not hamper current work. Vastly
improved hardware and software provide a rich set of building
. blocks to avoid the problems of yesterday.
- 30
:;r.'r..r\-..v.. TR . B R N B e e R T T

.
P . o 0 S » . PP AT LSRR

W W L T T e e ey PR i

“a Graphics Support Environments

Software support for in-cockpit display development has
evolved slowly since the early attempts at generating
pictures for pilots. The design of support environments for
graphics display development 1is less complete than the
hardware support efforts. This reflects the traditional
» development cycle in which software sophistication typically
lags behind hardware advances. Cockpit display support tools
are less mature than state of the art support systems for

Computer Aided Design/Computer Aided Manufacturing (CAD/CAM)

¥

types of applications even though much of the technology is
similar. This state of affairs 1{is slowly changing as
8 interest and support for the introduction and use of graphics
C;" in the cockpit increases.

There are several efforts whose goal 1is to provide
- better design environments with coordination among the
various participants. A combined simulation development
effort with NASA, Lockheed Georgia, the Triangle Research
- Institute, and North Carolina State University has encouraged
the parallel development of facilities at NASA and Lockheed
with the same equipment. This permits a greater exchange of
compatible software, thus reducing development time. A
coordination activity among Boeing, Lockheed, ... , and the
Afr Force MWright Aeronautical Laboratories has been working
to identify appropriate graphics equipment for use in

simulation with the fssue of hardware and software

31

.I ... "‘ *

o SIS e

¥

(L e Sl W N

commonality of major concern [Holt and others, 1980 : 11-29
to I11-42; Lockheed, 1982, 1984; Wall and others, 1980 :
55-59].

The Air Force Aerospace Medical Research Laboratory
(AMRL) 1is researching the area to support cockpit design in
general. They currently have a multi-million dollar
development program to define a computer-based system which
can assist in cockpit design. The Flight Dynamics Laboratory
is currently working on a project for Computer Aided Design
and Evaluation Techniques (CADET). The facility for display
format design would be one of several automated tools within
the CADET framework of software support [Bashore, 1983].

The CADET graphics requirements are in turn loosely
based on the Panel Layout Automated Interactive Design
(PLAID) concept which NASA has used since 1979 at Johnson
Space Center to support the space shuttle cockpit panel
design. PLAID supports vector only display design by
permitting the user to design both primitive and composite
objects. These objects are then manipulated by the display
processor to effect sizing, rotational, and projection
changes in the resulting picture [Rothe Development, 1979 :
1-81.

Another significant effort in the area of cockpit
graphics support is an in-house development system, the
Symbology Development System (SDS), designed by Kaiser
Electronics. This system provides assistance for developing

display formats from eristing symbology. It 1is capable of

32

T N T T S e R T

targeting the final display to the F-18 Heads-Up Display
(HUD) hardware. The basic concept of this system is similar
to the underlying DESIGNS concept. The actual use of the
system has proven to be quite satisfactory and it has grown
into a useful tool for that particular application (Kaiser,
1983 : 1-170; Kaiser, 1984a : 1-7; Kaiser, 1984b : 1-8].
There is a rich history surrounding the use of graphical
displays for cockpit design. From the earliest programs to
the concepts of today, the potential for graphical displays
has been recognized. The problems to be addressed now
concern how best to realize this potential. Appropriate
methodologies and software support systems must be developed

to support all phases of the graphics development life cycle.

II11. Problem Definition

The 1life cycle for graphics software development in
support of simulation has been discussed earlier in the first
chapter. The iterative cycle used while refining graphical
designs can be quite time consuming. This is certainly
typical of any large scale software development effort. In
addition, graphics software development is a very resource
intensive activity. Severe demands can be placed on both
people and hardware facilities. Actual case histories
indicate this resource commitment is both demanding and
necessary to accomplish the development. It is intended that
software support systems, such as DESIGNS, should address
this problem area and provide assistance which would reduce

the workload.

The Software Development Cycle

0f critical concern within the life cycle is the level
of resource commitment required to support graphics software
development and maintenance. Significant graphics software
must be designed, coded, and tested to support research
simulations. Typically the development of software for
display generation requires an extended period of time with
the resulting product being generally difficult to maintain
and modify.

34

e = BT F T SRR N a e At g Ny I Al vy I

.....

In addition, a developed software package can be highly

machine dependent. As formats are redesigned, much of any
previous programming effort must be reaccomplished. New
graphics requirements may necessitate the use of a new
graphics system. Recoding of entire formats for dissimilar
graphics generators can be a monumental task, with the
complexity of such an exercise dependent on how different the
systems are. The differences in hardware capabilities and
software support packages must be accounted for 1in the
recoding.

Efforts are underway to address these needs 1in the
software development cycle. The sheer economics involved in
software development is driving both industry and government
to develop ways to streamline program costs. The entire area
of software design, development, and maintenance is receiving

considerable attention.

A Case Study

A contractual effort recently completed by the Boeing
Corporation for the Flight Dynamics Laboratory (AFWAL/FIGR)
is typical of the resources expended for a graphics intensive
project. Boeing was tasked with developing and testing a
software package for a set of formats which had been designed
in a previous effort.

The format suite contained various tactical situation

displays (TSDs), weapon/stores displays, and system/emergency

35

- Z . - «? VAT B Bt ofg” AN Al o gte gl g JOU N % S g TR M N N Bl i e

procedures displays. The proposed suite of formats had been
developed earlier by the McDonnell Douglas Corporation. The
scope of the effort was to evaluate the formats when they
were displayed with differing characteristics. Formats were
displayed with color versus black and white presentations,
raster versus stroke versus hybrid techniques, and some
special graphics presentations such as video disks. These
formats were then test flown in simulation using civilian and
military pilots. Examples of each type of display developed
are shown in Figures 9 through 17 [Jauer and Quinn, 1982 :
22-1171].

The facility used by Boeing to produce these displays
contained a variety of graphics hardware. The complement of
equipment included Sanders, Megatek, Ikonas (now Adage), and
Lexidata hardware. Most of this equipment was used in one
capacity or another in the completion of the effort.

The manpower for completing the graphics software
development involved 3 to 4 senior graphics software people,
working in excess of 4 months. Nearly 1 1/2 manyears had to
be expended to produce working software for a set of formats
that had previously been designed and optimized! Significant
project time must be committed to the software development
phase independent of the design and modification phases which

must accompany every effort.

36

A ARAREE YA

CALIBRATED
AIRSPEED ——__| _—— ALTITUDE (AGL)
L —— VELOCITY
Sa VECTOR
ENVELOPE
SURFACE —]
SAM h | AN . .
(’:_‘.,; TYPE \.SAz s SA23i.
|_—— WAYPOINT
3 \\\\
FLIGHT
i, CHANNEL
GP0O1-0870-110

FIGURE 9
TSD in Monochromatic Stroke

W LW L H, M e LW e e wa e e o a e e &% 4® % & 2 M o m e cmte o MR M e e N et Rm e e
--

FIGURE 10
Stores Display in Monochromatic Stroke

////// A 7 /// 4
7 7 2
BN- ! ==
. ox o
. Z F]

Y\
N\EN

\i\\' N

T

[

7

FIGURE 11
Procedural Display in Monochromatic Stroke

38

L it AR g Y el)

FIGURE 12
TSD in Color Stroke

FIGURE 13
Stores Display in Color Stroke

e ot ALt SN B e R Y

FIGURE 14
Procedural Display in Color Stroke

a1

v e 8 *

LY

1‘*:

-

b

| PP e Jo SR\ i Ay SRS e : 2R AR Y WGy At Bup £l ey io WAL PN PALGERL el e ol ol - - =

FIGURE 15
TSD in C6lor Raster

42

., "t

B T S
N A NN A AR LA NN N I AN

.

Tt o ': R _-‘_-...- R T S A S S
e N N Y N e AR ,‘-r,,

............
...............

FIGURE 16
stores Display in Color Raster

FIGURE 17
Procedural Display in Color Raster

Y L e an o o e e o

In light of these significant manning requirements it is

justifiable to question whether or not the resulting graphics
oriented cockpit is desirable. In results from piloted
studies, unequivocally, crew responses to graphics displays
in simulation have been favorable. Pilots feel that displays
provide a natural focal point for integration in the high
technology cockpit. Measures of crew performance indicate
that there is significant improvement in the overall cockpit
management of complex systems and missions. Therefore, it
appears that resources expended in this area are well spent
[(Boeing, 1983; Lockheed, 1984; Moss and Barbato, 1980].

The question then becomes not one of whether or not to
develop such design tools, but rather one of identifying
critical needs. What kind of tools and capabilities must be
provided? Will they adequately and effectively support all
phases of graphics work for cockpit displays? To answer
this, one must know the actual environment in which the tools
are to function. Defining the desired capabilities and
operational environment defines the overall problem and

identifies the required tools.

The Operational Environment

The Boeing simulation facility typifies the operational
environment toward which this thesis effort 1is targeted.

These research organizations have been built up with a

variety of graphics equipment to take advantage of the

systems available and to provide a broad spectrum of
capabilities. This creates a rich but somewhat 1imposing
environment in which to design and modify graphics software.
Compounding the difficulty of equipment variety within a
single facility is the ever-present time requirement to
develop and test experimental systems as quickly as practical
and to support a variety of complex, highly dynamic test
programs [AF Flight Dynamics Laboratory, 1981 : 14-29;
Becker, 1982-3; Boeing, 1983].

With these research and support oriented facilities, the
principal product is system evaluation by means of
simulation. The personnel in such a facility are often not
the original designers of the display formats. In many cases
they have an adequate, but not extensive, understanding of
the graphics hardware and software available to them. If the
format designer s a part of the development team, this
individual is probably even less versed in the technical
details of the graphics resources.

The typical facility will have multiple graphics systems
of varying types and options. Both raster and calligraphic
generators will probably be available. System options are
not standardized and often vary with respect to color versus
black and white, advanced hardware options such as two and
three dimensional transformations, differing display
resolutions, and the availability of support software

packages.

e There 1is no doubt that the specific characteristics of

the environments can be dramatically different from one

facility to another. However, there are some key elements

each has in common. First, the variety of equipment which

may be replaced, modified, or discarded creates a dynamic

situation to handle. Second, there will be multiple graphics

support packages available as each graphics generator

normally has some unique, vendor-supplied package. Third, it

is wunlikely that personnel will be expert with all the

hardware and software available to them. Finally, the time

requirements for the typical programs conducted in these

facilities demand that complex software development be done

quickly. Many of the desired capabilities 1{in a support

environment are dictated by these facility considerations

[AFWAL/Flight Dynamics Laboratory, 1982 : 12-21, 31-69;

Becker, 1982-3; Sexton, 1982-4].

Statement of the Problem

The life cycle issues for software development present a

complex set of problems with which the system designer must

deal. The 1issues of concern during this research effort

focus on the specific area of support for graphics

development in the real-time simulation environment. The
many facets of this activity - from the basic issues of
format design; the intensive, iterative process of refining

display designs; to managing the complex nature of the

...

* . . -

o

[l

(N S AR

facilities available - have been presented to define
adequately the problem domain considered. Each of these
components contributes to the overall complexity of the
problem and certainly molds the definition of potential
solutions.

It has been the intent of this research development to
provide at least a partial solution which can reduce the
amount of time required to develop the actual graphics
software required for simulation support. While all the
problem areas referenced impact the nature of the solution,
the critical question addressed in this effort 1involved
improving the available development tools. The high cost,
resource critical, iterative development cycle desperately
needs support features to decrease its tremendous impact on
overall system costs.

The key problem becomes one of identifying those
features, methodologies, and functional capabilities that can
positively affect the software development and maintenance
cycle. Once identified, actual tools can be developed which
improve the wusers' abilities to accomplish tasks. The goal
of the DESIGNS development is to augment the users!'
capabilities, to provide an alternative, and hopefully
improved, environment in which to develop simulation graphics
displays.

In order to accomplish this goal, this thesis effort
defines the underlying software structure for a set ~f

graphics tools. The resulting software system addresses the

48

.....
..........

e

» TR LWL

R A S A R A N i e B Al Sl Al e Al udl 290 Sl tuh Rat A d Al e

problem defined here by means of an environment/operating
system whose function is to support basic display creation
and modification. The system centers around an interactive
graphics terminal through which the user 'converses' with the
DESIGNS software system in the activity of designing or
updating a display format. While being tailored to the
problematic needs of <the Control Sythesis Branch flight
simulation facility (AFWAL/FIGD), the definition of DESIGNS
does address the general issues required for graphics

support.

Constraints of the Problem

A complete solution to the graphics design problem
discussed was too extensive to design, implement, and test as
a single thesis effort. The objective of this effort has
been to address key issues involved in the overall design for
the package. In so doing, an appropriate set of tools was
identified for development. These tools provided a
reasonable subset of the completed system capability, but
more importantly provided a stand-alone tool useful for
graphics development immediately.

Thus, it was necessary to determine a valid proof of
concept approach for the project. This addressed the total
system design and implementation issues. In developing the
project to prove the feasibility of the concept, a subset of

the overall effort was implemented. To this end, constraints

49

- "

e el ey e e At e e e
NIRRT, SRR £ MG, SO AN

e L 'e L™

P A Pedt ot bl Sadh Nt Sl g b~ S i o S e al S o A T v bl

%)

. "
o

were imposed on the effort in an attempt to limit the project
to a manageable size. The resulting effort still yielded a
product whose capabilities provided an adequate test of the
feasibility and utility of the original design concept.

‘s
$ The primary goal of this thesis effort was to
r demonstrate that the graphics environment designed for some

. arbitrary host machine can be used to create and edit display

formats, and generate correct source code for a specified

target graphics generator. It was necessary to demonstrate

this thread through the system to prove the overall utility

of the system. Completion of this portion of the design

ifllustrated that it can decrease both the software

development time and the re-hosting complexities for graphics
U software.

One key element in the DESIGNS definition is the symbol
librarian. This particular function serves as the link
between the editor functions and the system support
functions. The complete development of the 1librarian
capability defines the complete thread through the system
discussed earlier. Plus it also is a powerful, independent
tool. Many formats are based on previously developed symbol
sets. A mechanism to manipulate, modify, and selectively use

individual symbol definitions in the preparation of different

displays provides an excellent basis for the initial DESIGNS
effort.

ANl b ol tak, t L on I als T ge R SCIAC AL IR AT A KA S A ir S A I DI RN A G SRR S

553 Therefore, this effort concentrated on the design and
implementation of the symbol librarian capability. 1In so
doing all the critical areas were addressed, at least from a
design point of view, with the exception of image graphics.
Complex image generation, such as would be required to depict
realistic models for the out the window view, is well beyond
the scope of this thesis effort and was not developed
further.

To further simplify the system, a single target graphics
generator was identified and used for the proof of concept.
After demonstrating the concept for one device, additional
modules defining other graphics devices can be added to the
environment to include any device available as a target. The

{} internal definition of a device driver module will differ for
various target systems, since the individual definitions must
be tailored to the hardware and software capabilities
specific to the given device.

The contention in the development and testing phase of
DESIGNS is that the proof of concept can be demonstrated with
a single target device. At a later time device driver
interfaces can be installed for other systems. To
demonstrate that the single target is not being handled as a
special case, stubs for other potential targets will be
included. However, for the initial thesis effort, these
stubs had minimal functionality other than to demonstrate

that the design accounts for multiple target devices.

51

This effort did not address the issues involved in
designing the dynamic test capability into the environment,.
A dynamic testing function built into the DESIGNS environment
would provide a method to check out symbol dynamics prior to
actually interfacing with a simulation. However, the
critical need within the simulation facilities is to create
the original format designs, many times evaluating a series
of them in static, mock-up conditions. While dynamic testing
1s a valuable extension to the project, it is not necessary
to prove concept utility. This enhancement would, at some
future date, improve the overall usefulness and power of the
system.

In part, the driver for selecting the set of
restrictions for the effort came from a consideration of the
potential end-users of the thesis product. The thesis
development effort, as defined with its limited scope, can
serve as a solid starting point for many of the graphics
efforts involved in aircraft simulation. By consciously
designing for the anticipated system enhancements and
extensions, the software package can evolve into the complex
environment described earlier.

Selection of this baseline set of capabilities was based
on the apparent short-term needs of a specific simulation
facility. The AFWAL/FIGD and FIGR facilities have an
immediate desire to use such a support tool. Their initial
needs are 1in the area of heads-up and head-down displays

which use alphanumeric and simple symbology in the formats.

52

..........
..................
.............

R o

Continued discussion and involvement with these organizations
helped to narrow the focus of the project. With this
guidance, a more appropriate system was designed to meet the
critical needs of today. By considering future requirements
in the definition phase, the DESIGNS system can continue to
expand to meet future application needs.

Thus the scope of this thesis has been delimited to
demonstrate a complete path from the format design and
editing in the host system, to the display generation in the
target graphics system. The core of requirements 1includes
the design and 1implementation of a symbol librarian for
storing and manipulating symbol definitions, with design
considerations for the editing of these symbols/icons, the
definition of the interfaces to the host's operating system
and the target device, and the assignment of dynamic

attributes to elements within the display format.

53

‘-_'- 'h.. .&*:ﬁg’-g‘- 5\P'

Sramta o Bt b)

IV. DESIGNS Requirements

It becomes apparent that there is a need for graphics
design tools which provide a working environment powerful
enough to support the designer's requirements for display
format design. Such a support environment should provide the
display designer with a ‘'user friendly' interface to the
available graphics design tools. It should provide a
straight-forward mechanism for both the initial design and
the subsequent software maintenance and modification. In
addition, it 1is desirable for this system to have the
capability to target the final display to any of several
target graphics generators. These capabilities greatly
decrease the time it takes to design or modify cockpit
display formats. Such a design environment does not require
that the designer of the formats be knowledgable about either
the graphics software or hardware. Thus the human factors
designer can be designing the format and the software to

display it at the same time.

Synopsis of Requirements

The highest level requirement levied on <the DESIGNS
definition is that it carefully consider the environment for
which it {s 1intended. It is NOT strictly a graphics
endeavor. Major portions of the system requirements

specifically address specifications for the user interface.

54

A aid

Ty TERTY Y

<

Remembering that the key goal of the effort is to simplify

the software development and decrease development time, the
nature of the user interface is critical for success.

Certainly of equivalent importance is the set of tools
that can be provided within the DESIGNS toolbox. These tools
provide features which can assist in graphics design,
modification, and maintenance. The third major portion of
the system is the link to available hardware devices. Not
only must the target graphics systems be considered, but also
the DESIGNS host, and the user workstation.

Graphical requirements are certainly an ({important
element in the overall effort. Throughout the various
subsystems, graphical 1issues are addressed. The graphical
capabilities that are required are implemented with reference
to existing standards and graphics techniques.

It is necessary that the system software that results
from this work be a consistent, maintainable package. To
help accomplish this, it has been required that structured
design methodologies and the accepted practices of top-down,
structured programming be used during the development of
DESIGNS.

Referring again to Figure 5 in the first chapter, it is
apparent that these three areas - user interface, toolbox,
and interpreter - define the infrastructure for the DESIGNS

environment. The graphics requirements are interwoven within

each subsystem and certainly direct design decisions.

The complete, 1{integrated environment must provide
extensive supporting tools to use the results of the
graphical data manipulation in an operational simulation.
This family of tools makes it possible to transition the
developed graphics technology into the exact configuration
required by a simulation - whether that be as an integral
part of the simulation displays, an off-line analysis tool,
or a stand-alone design tool. The DESIGNS definition
postulates tools to integrate and support the various
available graphics processors, the user interface, the
dynamic test facilities, and the necessary host processor
capabilities. The following sections discuss the functional
requirements of DESIGNS within the context of these

subsystems.

The DESIGNS User Interface

The wuser interface for DESIGNS is the focal point for
the effort. The underlying package of tools must be designed
for use by the non-expert in graphics as well as the expert
programmer, Thus, the interface between the user and the
package must be carefully planned to permit users with a
variety of backgrounds and 1levels of expertise to use the
system with equal effectiveness. The system should provide a
‘pleasant’ environment for the user, one that 1is relatively

straightforward to use. At the same time, the DESIGNS tools

must be extensive enough to provide an ample user 1interface

)

...............

to all of the system's capabilities.

The typical user of the proposed DESIGNS package will be
an engineer or human factors psychologist. There will be no
dedicated operator for the system, thus all users are in a
sense ‘casual’. There 1s no required minimal level of
competancy in computer science. The user should only need to
know how to initially start the system. Thus it is important
to provide a system which is easy to understand. Any user
should be able to engage in a dialogue with the system to
create, save, or modify display formats. No formal
understanding of any graphics drivers or hardware 1is
necessary. All the interfaces to actual physical devices are
invisible to the user, thus imposing no in-depth knowledge
requirements.

With this definition for the system user, it becomes
apparent that the techniques used to define the
'conversation' between user and computer must support ease of
operation. Interactions with the system must be clearly
defined from within the dialogue itself, so that the user {s
dealing with an autonomous system.

The importance of the definition of the user/machine
dialogue in the DESIGNS development can not be overstated.
The dialogue design and implementation bias each user either
favorably or not toward the final systenm. The dialogue
provides the mechanism to access the tools defined for
DESIGNS. Therefore, the level to which the dialogue can be

user and application tailored will determine the success of

57

Q. .I. .(‘.‘ "‘:’

f .'_ LIS S S AR 4

the overall package.

Emphasis is placed on designing an autonomous system,
relatively simple for even the uninitiated or infrequent user
to operate. The system should provide a mechanism for
expansion and adaptability to support the research
environment for which it 1is intended. The needs and
capabilities of the DESIGNS facility and users provided the
impetus for the design process. The resulting dialogue
reflects those needs and thus, in all probability, will be
inappropriate for other classes of users or operating
environments.

It is required that a menu driven approach for the
dialogue be used based on the definition of the DESIGNS user.
For the environment in which DESIGNS is to be used, the major
concern is to make it available and usable to a variety of
infrequent users. The ease of use criterion is very
important.

Thus the relative ease with which a menu driven system
can be used offsets the potential shortcomings. The menu
driven dialogue implemented for DESIGNS does consider ways to
avoid some of the pitfalls of the classic menu driven systems
by using some command language features. This somewhat
‘hybrid' approach enhances reliability and user acceptance.
Appendix B, which discusses the human factors techniques

involved in user/machine interactions, presents the pros and

cons of the various dialogue methods available,

[R LR S

\ SERENE AEAENEN

u‘i’l‘t’l‘l"l

.
e,
\..
.
.

v e W
AR

The DESIGNS Toolbox

The system toolbox must provide an adequate set of
graphics tools to accomplish the tasks of development and
modification of simulation related displays. The toolbox
must also support the overall 1life cycle of the graphics
development by means of facilities to interact with available
host tools, dynamic testing functions, and documentation
support.

A critical function of this set of tools is that of
editing display formats. The user must be able to create and
modify graphical files in a manner analogous to the familiar
editing of text files for other areas of software
development. The graphics editor supports the initial design
and subsequent changing of alphanumeric and symbolic
displays.

A fully implemented editor supports the more complex
area of 1image design. Images are graphical representations
of actual scenes, such as a synthetic terrain display.
Development and modification of such displays requires more
extensive tools in the area of modeling, shading, hidden line
removal, textural features, and other advanced graphics
techniques. Table 1 defines in more detail the desirable
features an editor must have to meet these functional
capabilities [Pavlidis, 1982 : 17-19].

In addition to editing graphics symbology, the DESIGNS

environment must provide a mechanism to describe the

59

w

TR N RS RS

. ata¥atatataa ol

TABLE 1

Functional Capabilities of the DESIGNS Graphics Editor

TASK CAPABILITIES

Text Editor Text entry

Text deletion

Text replacement
Text repositioning

Symbol Editor Symbol entry or selection
(predefined icons) Symbol deletion

Symbol placement

Symbol repositioning

Symbol Editor Symbol drawing/design
(undefined icons) Symbol modification

Symbol entry into library for
system expansion

Image Editor Extend drawing techniques
(pictorials) Support arbitrary format design
Painting capability

characteristics of the symbology. Complete symbology
definition includes both the physical appearance - such as
shape or size of the icon, and other describing
characteristics - such as location, color, intensity, etc.
An object is not completely defined until the characteristics
are specified. An object's characteristics can be modified
over a period of time. Therefore, it is also necessary to
define the possible dynamic transformations a given symbol

may undergo. Table II details the functions which must be

60

. te Ty e Ay L P, W, e R A L R e e e ate it L% L% e e e e % Tt ' L% ™ NC e ™ % e e
-°y .. .-‘:f".h e .n'.-" X 'q"\-‘ q&:-', -} :'.‘.'.\ « vb. .J' ", -a‘\ * R A 'J'.‘ ..'_?‘ ‘-‘, o IR .-“ ".b o ‘.‘ o, 1..‘ X

R AN

PR W R A)

R *

Y

9 St

.

Caln Yotk B S A ar it Br e e o wa

%5 for the

b5

supported
attributes.

complete definition of a symbol's

TABLE 11

Assignment of Static and Dynamic Attributes

TASK

CAPABILITIES

Define fixed attributes

Define position (x, y, z)
Define object size
Specify color/intensity
Define orientation

Define transformations

Dynamic translation/rotation in
2 or 3 dimensions

Alphanumeric updates

Variable color/intensity

Variable perspective

Identify the dynamic
elements

Tag dynamic alphanumeric fields

Identify dynamic symbols

Identify those transformations
permitted on an element

Once defined, the various building blocks of

format need to be mainta

Is

development lies in the use

symbology. The

function which manages the database of graphics symbols.
librarian must provide the interface into the

the user to manipulate the graphical definitions contained

therein.

previously discussed,

DESIGNS

Table III defines the tasks for which the

a display
ined for future use and modification.
much of the effort in graphics

and modifications of existing
system proposes a symbol librarian
The

database for

symbol

61

TR v A N |

[el Il Tkt Rl Al

librarian is responsible. The tasks of the symbol librarian

parallel those of an operating system file manager. Details
concerning the types of display formats to be supported by

the librarian will be discussed under the simulation topics

chapter.

TABLE III
Functional Capabilities of the DESIGNS Symbol Librarian

TASK CAPABILITES

Addition/deletion of the | Access database definition for
definition for symbols the library to add/delete any
specified symbol

Updating existing symbol Interface with the graphics

definitions editor (predefined icons)
Store multiple versions Provide audit trail of changes
if desired made to designed symbols

Automatic linking of the Retrieve specified symbols
source code modules to Link the various modules for a

create formats defined complete file for the static
from previously tested display
symbology Create the dynamic update file

based on selected attributes

In addition to these tools supporting graphical
functions, there are several general support facilities that
a sophisticated environment should offer, These extend
beyond the graphical issues of format design and consider
areas which impact the overall life cycle considerations for

the software being generated. Table IV 1lists the type of

62

.

—TvTY

P B am i op g5

support features required in the complete system.

TABLE IV

Integration and Support Areas

SUPPORT AREAS FUNCTIONS
Host computer operating Access to the system tools,
system interface functions, and storage media

System error checking

Dynamic Test Facility Dynamic format demonstration
Format evaluation and debugging
0ffload eventual target device

Documentation Facility Document display requirements
Document new symbology
Audit trail of display mods

An important part of the toolbox support is the
provision for an interface to the host computer's operating
system. This interface provides the necessary system
functions to support the graphics design process, but does
not require the user to understand the detailed working of
the operating system. The DESIGNS system should be able to
exploit the useful features of the operating system that are
available.

Another support function required within the DESIGNS
toolbox is the dynamic testing facility. A sophisticated
system should provide some method for dynamically testing the

formats which have been developed. This permits the user to

63

RN Mt ot S e St it S i i Shall b e P A e R

T

j demonstrate the dynamic behavior throughout the range of

" operation so that any anomalous behavior can be detected.

Undesirable effects can be corrected in the design system

prior to generating code for the target system. Such a

X dynamic demonstration provides the final test assuring a
complete and correct implementation of the original design
specifications.

One final support tool required in a complete system is
some form of on-line documentation. It is important that the
user be able to describe and track the work that has been
accomplished with DESIGNS. Having the documentation
available within the graphics development environment
improves the definition of the symbols and formats defined.
It also provides a more cohesive development tool since all

(j: phases of the development work can be accomplished using a

single support package - namely DESIGNS.

The DESIGNS Interpreter

The use of the term interpreter is somewhat misleading
in the DESIGNS conceptual model. This block within the model
represents not only the mechanism which interprets DESIGNS
directives to produce target source, but also the definitions

2 of the target hardware and software, along with all the
interfaces required for DESIGNS. Much of the DESIGNS

interpreter software must be developed to provide adequate

F f bl R 6

definition of <the available hardware so that the full

64

- v ey N N T T ey
S T N TN YV TRUTUTCRTL At M W T N WL W W Lt S0 oS AR i R e it e J Jian et Al i s gl

potential of DESIGNS can be realized. Thus it is imperative
that the complete system requirements and final design
consider the desired synergy of the software and hardware
components. Table V lists the functional capabilities of the

interpreter subsystem.

TABLE V
Functional Capabilities of the DESIGNS Interpreter

TASK CAPABILITIES
Define target hardware Description of the available
and software support hardware options; definition

of software call structures

. Generate source code for Describe 'rules' governing the
e static display software structure required
on a given graphics target

Support source code for Provide template for dynamic
run time modifications updates

Provide means to modify the
effect of symbol dynamics
by altering drive equations

Define user workstation Describe the workstation
capabilities

Define standard interface to
the capabilities

The fimportant requirement for all of the interpreter
capabilities is that all interfaces between the graphics

design environment and ANY physical device can, and must be,

defined in terms of the data exchanged between them. In
65
T s Oy U TP e U A U S S T L A

DESIGNS, this interface specifies the format for the

communication between the modules. The final step of the
interpreter subsystem is then a device driver of some sort
which 1is specific to the device and accomplishes the
interpretive phase of the system. Thus any device driver,
while its internal structure 1is highly device dependent,
simply conforms to the pre-established communication format
in order to exchange display data. Thus if the interface
definition is complete, any target definition can be added to
the system. Proving the concept requires thorough testing of
this interface definition to check its adequacy.

This concept of device independence - whether it is for
the target systems or the user workstation, is important for
several reasons. It permits extension of the DESIGNS
capabilities to new target devices. This extension can be
provided in wuniform manner using device dependent routines
only at the lowest software level. It also provides for
better portability by isolating the device dependent modules.

Since the benefits are several, the DESIGNS interpreter
subsystem must be defined with the 1issues of extensibility
and device independence in mind. The graphics tools and the
environment which they provide must be versatile enough to
permit targeting to any of several available graphics
systems. At the same time, it must be extensible to permit
additions to or modifications of the existing interface
package in the event that the graphics capabilities change.
This extensibility must include changes to both the graphics

66

A

e B AN s

o

hardware and their software support packages. To accomplish
this adaptability, the DESIGNS environment must define the
target machines. Such a definition should be in terms of the
graphics software packages which are available on the target
device, reflecting those hardware functions which may be
accessed on any given device. Such a system definition
supports the generation of source code appropriate for a
specified target environment. Thus source programs for any
number of dissimilar target graphics systems can be generated
from the generic format descriptions defined within the
design package.

The DESIGNS environment should embed the device
dependent structures in internal modules, the structure and
existence of which the user need not know. From the user
viewpoint there is only a single structure to manipulate and
that is the DESIGNS database which is accessed through the
user interface. External target machines can be selected by
the user, but require no further user definition.

It is imperative for the successful implementation of
the DESIGNS concept that a standard definition for an
interface to multiple targets be developed. Without some
standardization in <the target definition, both the hardware
and support software differences for varying targets become
major problem areas for DESIGNS. The aquisition of new
target devices or the upgrading of old ones would require
tremendous modification to the DESIGNS system 1{if large

portions of the software package were constrained to being

67

.............................

e

-’

T8 LTe BT Ny e
\.:'.f:.'if_..-'.".';‘ Wi

D
RN BTN W

target specific.

The issues of concern in this area of interface
definition cut across the boundaries of both software and
hardware and demand a thorough appreciation of each. 1In
order to effect the design of such an interface, individual
target machines must be known as part of the DESIGNS
environment by means of common system descriptors. This
system definition includes information specifying the
hardware and software parameters of the specific system.
Each target then has its own definition module internal to
the DESIGNS package. The important implication here 1is the
complete development of adequate abstract data types for the
target machine definitions.

The actual target definition must include data which
completely defines both the hardware available and the
software which supports it. Much of the hardware definition
can be wused to assist the user in selecting an appropriate
final display source if such a decision has not already been
made. The hardware definition must include such data as the
number of output channels available on the system, whether it
is raster or stroke, color or monochromatic, how many colors
or intensity levels are supported, whether it has hardware or
software supported transformations, has multiple processors,
or software overlay capability. Using this information, the
user can intelligently select the target machine best suited

for the application at hand.

68

PN St el oAt A st 5 0 el i "Rl iy 4 . PAMIREAL R L e ey I A I Salag i, SR ta Y

A The definition of the target support software should be

ey

completely invisible to the user. This information hiding is
consistent with the policy of not requiring the casual user
to be more knowledgable about the technical aspects of the
system than necessary. This internal definition defines the
available software library callable subroutines, procedures,
and functions which support the target options.

The 1issue of commonality among the target descriptions
also 1impacts the future extensibility of the DESIGNS
environment. Common definitions imply that multiple targets
can be available during any given format designing session,
thus providing the wuser with a variety of potential target
devices. Targets can be added or removed from the DESIGNS
database by creating or deleting the definition structures.
In this fashion the DESIGNS software can be upgraded to
reflect the current facility capabilities without massive
changes to the underlying package. The DESIGNS software
remains unmodified, only the target definition package
requires changing.

Once a standard structure for the target device hardware
and software definitions is defined, all systems can and must
be specified in the same fashion, requiring no specialized
software tailored to the individual target system. The user
is at liberty to use raster or calligraphic target machines
interchangeably, needing only to be aware of the aesthetic

differences in the resulting displays.

69

N P .
YRS LT S I I P Vg

IR R A G 2k £k 3k YR ATl PR LT G e S Pl Py by Y g ey 1y O ke g <l NS 5V MR ok WA Bl p e Y ot S e b D Ui D g e oA e

Just as new targets can be added by creating an initial

Ve
LR I
e

hardware/software specification, SO also can these
specifications be modified. Upgrades or changes to any
existing graphics processor require that the database
Q defining the machine be modified to reflect the new
Y functions. This update assures continued compatibility with
- the target configuration. The capability to interactively
update these definitions has previously been mentioned under

the support areas of DESIGNS.

The DESIGNS Facility

W el I R sk K

It is required that the design and software developed
from this effort be compatible with the thesis sponsor's
facility. The Flight Control Development Laboratory 1in the

:

Air Force MWright Aeronautical Laboratories (AFWAL/FIGD) is
typical of the military research facilities and is to be the
end user of this research product. Historically this
facility has been tasked to support HUD and in-cockpit
displays for several fighter aircraft such as the F-15, F-16,
e and the AFTI-F16.
i Experimental displays for non-conventional aircraft such
j as the Forward Swept Wing airplane have been supported.
: Design work for display algorithms to support Terrain
Following/Terrain Avoidance (TF/TA) missions is a major

activity. In addition, support for a variety of navigational

AR R RS

heads-down displays with moving maps and flight planning data

70

have been supported. The symbology for all of the displays
has been designed and displayed on a monochromatic,
calligraphic display. To date this is the only graphics
capability in-house.

Currently an advanced color, raster system is being
integrated into the existing simulation computer facility.
With the completion of that installation, more complex
display generation can be supported. With the advanced
hardware in place, heavier emphasis will be placed on
pictorial formats. Facility planning calls for the supported
growth of the graphics power by further additions of
equipment in the following years [AFWAL/Flight Dynamics
Laboratory, 1982 : 35-53]. This serves to increase the need
for a standardized design environment which can support the
different pieces of graphics equipment.

Based on the current in-house graphics capability and
the projected efforts to be supported, the critical graphics
task is the development of calligraphic heads-up displays for
Air Force fighter aircraft and fairly simple heads-down
displays. No sophisticated pictorials or color symbology can
be supported at this time. However, these have been
considered as extensions to the environment during the design
phase.

For the short term, the facility requires design support
to develop displays for the type of cockpit configuration
depicted in Figure 18 [General Dynamics, 1983 : 8-21.

71

T
&'

b

r——'—-nlﬁ
[.

]

— o r—

P ey ted

"‘d'f.—l 1
——d

(&

203 A8 ONS L8

ofl !

(l

t

]

&)

2O] i =

e

AV14S1Q NOILONNZS 1LTINW

e
aly

N
e

n..om”m D

wi- QO

AV14S1Q dN-QV3H

!

i

=
-
{

Ci

—
b

I

i
o

H n, ..a'-.

i

H

o

Bl

19
=

FIGURE 18

-t

o oy
e

CICIC;

cq=

_C

t)

i)

)

><Jum-0 NOLLONNS 1LTNW

o_®

Typical Cockpit Display Configuration

72

--,A.'_-'

T e T e T e e e e Ty
R ORI -

.e -
L ARSI
o * e o’

RS,

e o
ORI,

.
3.

A NN

Ve
L&’

TR T T T R TR

A The design environment must provide the interface to a

single target graphics device as it 1is the only one
fmmediately available for simulation support. The long term

needs dictate that multiple devices of differing capability

Pl i i e

and type must be defined and integrated as targets.

\ Furthermore, the complexity of display formats will increase,

" requiring the expanded editor capabilities discussed in the

last section. It would be beneficial to implement the

dynamic testing facility as support for any long range
activities.

The discussion of the long term growth in the simulation
facility indicates the importance of the extensibility of the
effort. If a truly useful tool is to evolve, it must be

e developed with change and growth anticipated. Identifying
future needs, and defining them to whatever degree possible
during the initial project development, strengthens the
possibility of expansion.

Summary of Functional Requirements

In summary there are six major functional areas in which
a complete, rigorously developed environment must provide
functional capabilities. These provide all the services
required by the wuser to fully develop, debug, and maintain
graphics software. They must include the capability to

LAl N Y

(1) perform editing of static graphics formats,

(2) assign static and dynamic attributes to specified
"o, display elements,

LN NCNCNNEN L

73

H

.
P4
',.’

1X 2 22

AT RL L ..:.‘. ..

(3)
(4)

(5)

(6)

provide access to existing libraries of symbology,

provide the interfaces required for the user
workstation,

support the interface to the target systems, via
the target definition packages, and

provide access to host computer utilities, support
dynamic testing and documentation.

To support these features, the DESIGNS host system,

consisting of a user workstation and host computer, must have

the following capabilities. The workstation must have

(1)

(2)
(3)

(4)

(5)

(6)

a full alphanumeric keyboard, preferably with
programmable, function keys available,

a joystick or mouse with some picking capability,

the potential to add a datatablet in the future to
digitize pictorial formats,

a single display screen with a minimum of 2047 x
2047 addressability,

a support software package that can be accessed
from a Higher Order Language (HOL) that supports
the generation of graphics primitives such as
lines, characters, and conics, with some form of
display list segmentation permitted,

the ability to display multiple intensity levels as
a minimum, with color preferred for the long term,

Preferably, the workstation would be a raster system.

For the longer term concerns, a raster workstation permits

the

design of both calligrabhic and raster formats better

than a stroke only system would support raster targets.

However,

the basic DESIGNS concept does not require that the

workstation be raster capable.

be described. Based on the functional requirements

The host processor for the DESIGNS system likewise can

74

...............

AR A plln* the "Rty "Dl rie Wity A/t S ol e AL % AN LVl e (G P PN - N DAL AL/ i S e i en i i e iete e e fupes o iiat g S Saflc dhtacingl St Jndh Shd f

RO discussed, the host computer must have

(1) an HOL available, preferably Ada although the
structure provided by Pascal would support the
development well; FORTRAN is acceptable, but does
not have the overall power and structure of the
other languages,

: (2) appropriate compilers for the HOL,

(3) an editor, file manager, and link/load capability
as a minimum; the Ada Programming Support

N Environment (APSE) would provide a much more

3 powerful and complete development environment,

(4) access to hard disk mass storage, the size of which
is only limited by the number of different formats
one wishes to design (reasonably, 10-20 MByte
maximum should be required),

;1 (5) access to magnetic tape storage to provide a backup
i capability for the system,

" (6) access to an adequate amount of physical memory
» (estimated at 128K words), supported by the
-, capability to program with overlay structures, or
(;a task activation, so that unused portions of the
environment need not always be resident in memory,
and
E (7) access to physical interfaces with all the target
. devices (preferably this interface is a direct
- one).
There is nothing specific to the DESIGNS requirements
N that mandate that the host be a mainframe system. Mini- and
micro- systems designed as workstations are certainly
adecnate if they provide the access to the required devices.
There is also no requirement that the system be multi-user,
although the design does not preclude this.
In order to develop software to satisfy the functional
requirements of DESIGNS, certain software engineering
standards had to be met. The techniques of structured

S programming were used throughout the development effort. The

oA

75

A4

1
g

.« = - e W e - » L - » LIRS T b Te " w At . . M - * 8" @ & B @~ mE » @ " - e & n . n e W A
P T S G o S SR T S G e i W 91, Y, T T YRy SO 0

Podl Iaut gl S AR O KO0 Yol 0 A0, S XN (O L YA SE A IR i S i gl SN ok g gy -0 e ek pul DA guar e 208 iy sam-ufia B g i ~ e SN

SN use of pseudocode, or a Program Design Language (PDL), in the
actual development of code was wused. This supports good
. design practice and serves as adequate in-line documentation

for the system software produced.

& Additional tools from the theory of structured analysis
’ and structured design have been employed during the analysis
E and design of the effort. The SADT methodology has been used
~§ in concert with pseudocode 1in the design and development
- process of the system [Rutledge, 1982; Softech, 1978: 1-1
: thru 1-21.

S A derivative of the SADT methodology developed by
. Softech in the wearly 1970's was wused to accomplish the
: functional analysis and basic system design. The SADT method
: s was selected for use even though it is more complex than
X ‘. other analysis tools available such as structure charts. The
a SADT was selected since 1it, and its derivative, have been

: used as a tool 1in the laboratories in the past. This
5 derivative was developed a few years ago as the design tool
of choice within the sponsoring organization [Softech, 1979:
4-1 thru 4-23].

These design descriptions serve also as tehnical
documentation for the DESIGNS effort. They should define the
system well enough to support future modications and
extensions.

The testing of DESIGHS has also been based on proven
techniques. Due to the overall size of the project,

R exhaustive testing was impossible, so boundary checks,

76

AR A R O IR S AR A My i i DRt M S A Nty e Vi S R A A AR I D D e A v Y A NGB I, A . - e B § W - LAl AN g e S L
.

special case testing, and functional module testing have been
important testing tools ([Rutledge, 1981; Weinberg, 1979:
171-176]. The tools developed have been tested as modules to
assure compliance with design goals, and then integrated with
other tools to produce a larger, integrated system.

The following chapter presents the design and
implementation of the DESIGNS environment. Special emphasis
is placed on those data structures and tools that have been

implemented to date. An overview of the complete system is

w S N

also included.

Pt e e

s s 4-4 &

.....................

e v e e e b memg A b e s e e e et e e et e e e o
R A P 0, N N N 8 3 S T Y e SN RN e L K»SAM—‘ PSR A Ay “.."'.“‘:“'i

V. The DESIGNS Implementation

The preceeding chapters and the appendices have provided

a great deal of information which is supportive of the

DESIGNS development process. The characteristics of the

DESIGNS environment have grown out of the ideas and

" techniques presented in these chapters. While the supporting

technical information has been somewhat 1lengthy, it was

which DESIGNS has been built.

i necessary to provide the understanding of the groundwork on
b
f The DESIGNS concept is that of a robust, ever-growing

environment whose sole task and reason for being is to

support the graphics development work that is accomplished in

the Flight Dynamics Laboratory's simulation facility. Its
- initial 1identity is one of a set of loosely related tools
\s which have helped to automate the task of graphics software
; development. This initial set of tools is primarily aimed at
' supporting the development of HUDs from libraries of existing
symbol sets.

It is a developer's aid, a support facility whose
ultimate realization will be a completely integrated
environment providing <the necessary features for advanced
graphics generation across a broad range of equipment and
capabilities. The laborious attention to detail 1in the

technical discussions has been critical to identifying and

defining the capabilities that will be needed to actually

realize the complete DESIGNS potential.

\,

The entire DESIGNS implementation is specific to the
operational environment and users for which it was created.
The repeated attention to device independence and system
expansion draws a focus to the critical fact that the DESIGNS
support system is functioning within a highly dynamic
environment. Its functional requirements have been
specified, and its growth capabilities postulated, to provide
reasonable means to grow and adapt within the dynamics of the
facility.

This chapter discusses the 1important features of the
actual facility in which the DESIGNS system functions. It
relates the necessary details of the development practices
which were in use prior to the advent of some of the DESIGNS
capabilities. Most importantly it defines how the DESIGNS
system has been developed to meet the requirements which were
levied on the system. The chapter focuses on those portions
of the DESIGNS environment which have been implemented,
tested, and are currently in wuse within the simulation

facility.

Facility Description

The facility in which DESIGNS resides is the simulation
facility within AFWAL/FIGD. This facility has been discussed
in general terms in Chapter 4. As was described there, this
organization is actively involved in real-time,

man-in-the-loop simulation.

79

> .‘;.11

lo

M
— . At

.........

The heart of this facility is a pair of Systems
Electronic Laboratories (SEL) 32/77 mainframe computers tied
together via a shared memory interface with a SEL 32/2750
mainframe. The SEL 2750 is the host processor for a proposed
suite of graphics processors. It currently supports two
Megatek 7000 series calligraphics systems whose primary
function is special purpose heads-down displays. A third
calligraphic system, a Vector General System 3 (VG), is also
available within the facility. This wunit, hosted by an
Electronic Associates, Incorporated (EAI) PACER 700
minicomputer, is the facility workhorse for the HUD
development. The PACER 700 is interfaced to one of the SEL
77's through 1 dedicated digital to digital interface (DDI).

The SEL machines are supported by the MPX operating
system. It is a multi-user, multi-tasking, real-time system
which supports FORTRAN 77+ as its only high order development
language. The PACER computer runs a proprietary hard disk
operating system supporting a single user, writing FORTRAN 1V

based software.

The Software Development Cycle

The normal procedure for developing graphics software
within the facility depends on whether the Megatek or the VG
hardware is to be used. If the Megatek is to be wused, the
software is created, modified, and maintained directly on the

host processor, the SEL 2750. All the wediting tools,

80

............................
........................

...........
.....

. AD-A159 218 THE INTERACTIVE GENERATION OF ALPHANUMERI

S AND
SVHBOLOGV HITH DESIGNS ON THE FUTURE(U) RIR FORCE INST
OF TECH MRIGHT-PATTERSON AFB OH SCHOOL OF ENGI..
UNCLASSIFIED K R ADANS JUN 85 AFIT/GCS/MA/85J-2 F/6 972

== 1 1
A Ell

NN

HENNEN.
B -
TR
I O R -
NN
NN
N O R -
NN
- N :
T T B
HENNNN.
HEENNEN

P L F a1 e P A " G “Ra d aa - .
b AT INA RN B o
) okl T TRIT 0L AT AT RN P WA B e gng St et b oL a s -
. - o 4 S AT E Rl AL AL KL L -y - mg

e . M = B O s WA B St Re® T R Amt W

(Rt "t o 2

[
]

1.0 B 28§25
o it
w BS e
o g2o §
Ll E
——— 1.8 :
L i

“ 1.25 (i1,

=
=
E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 — A

I St e e e s

B e T e

LA N LSl el Pk e 1 Ky 200 5300 ket PR LA A ANNGIRE N oo T IRV L 1 K S el w0 T PP R S~ PG o S oy o P JRVE R ae_ it ik il ik i fult Al g

compiler and cataloging modules, and storage facilities are

v': ‘.:)

PR

, available directly on the SEL. Typically each format, or
graphics application, is developed independently. There is

minimal coordination among the efforts and very little, if

s e "N 4

any, standardization.

The procedure for developing on the VG is more
complicated. The host machine for the VG is strictly
dedicated to running the compiled software and is not a
development system. A second PACER 700 machine must be used
to compile and link software modules in preparation for both
testing and simulation use. The PACER systems, primarily due
p to their age, do not support a reasonable editor or any
' sophisticated development tools. Therefore, source software

for the VG system is created in the SEL 77 machine, using its
g ‘i; more powerful editor. This software is then transferred to
the development PACER through the DDI for compilation and
linking. The executable module is then tranferred by moving
the removable disk to the PACER hosting the VG.

This process is extremely time consuming, especially
when there are errors in the software. To correct the
errors, the disk must be moved from the VG host back to the
development system, corrections made in the SEL editor file,
the corrected source {is re-transferred to the PACER,
re-compiled and 1linked, and the newly created executable
module on the disk taken from the development PACER to the VG
host PACER. The wuser literally runs in circles as the

software is being initially developed.

TS
.

81

- e P ot ia e Ry P e s U A I N) . U= - - T TN LR T . t Ve Ta . Ve

k . As with the Megatek software, traditionally each HUD
B development was an autonomous effort. Even though basic
symbology was duplicated from one simulation to the next, the
software was pretty much written from scratch. This
situation was an outgrowth of the way the VG software
packages were written to handle display list pointers for
dynamic updating. With the traditional way of handling the
pointers, a great deal of manual labor was required to make
changes to the display list itself. These changes were not
3 only tedious, but extremely prone to error. Coupled with the
circuitous route necessary to create new software,
development time for VG software could be quite prolonged.

Development time in excess of several weeks was not unusual.
In keeping with the initially stated goal of this thesis
v effort, the implementation of the DESIGNS capabilities has
focused on improving the productivity within the existing
organization. DESIGNS 1is the key element to achieving that
improvement. As an outgrowth of the DESIGNS considerations,
a high level executive, which provides loose integration and
a focal point for all end-users of the graphics tools, has
been developed. It provides the framework for not only

DESIGNS, but all current and future tools in the facility.

DESIGNS itself is a much more potent tool. While it
must function within the hardware and software systems that

exist in the facility, it offers the potential for much more

[S R A AR RN

in the future. The emphasis has been to improve the

development and user environment, to minimize some of the

82

- o \-.i‘.*-.','y > 4"-1._.‘-‘.:.. . '¢:"."-.\ e T e

« %o ®

LA ans . an s

-
ERNY

tedium involved with the PACER development, and to provide a

single focal point for the facility graphics development. To
this end the overall DESIGNS system has been postulated, and
a functional subset of tools, with particular emphasis on the

critical PACER/VG problem, has been implemented.

The DESIGNS System Specification

It can't be emphasized enough that the DESIGNS system is
quite specific for the development of simulation software.
The formats developed using any subset of the DESIGNS system
are not merely developed and modified within the DESIGNS
environment. The display list information generated MUST be
tranferred to the selected target. This resultant display
definition MUST then be accessible to a running simulation.
The display formats are dynamically updated based on the
responses of the afrcraft system in reaction to pilot inputs.
It is this issue that differentiates the DESIGNS system from
other graphics development environments. DESIGNS is not an
end in itself, it is merely the means to achieve an end. The
‘end' in this case is a fully functional display, running on
the desired graphics device, which can be dynamically
modified from a simulation, running in a different computer
system.

The design specification of the DESIGNS system will be

discussed referring once again to the familiar Figure 5 from

Chapter ¢, This figure provides the point of reference to

[N S L B MY

R .
A O A T e

PRRCBACI ICa A APl - b Yo FRARANR A RN A bty A Ry vl ol N h . A - d Gl Sl b A Dl St S Gl Taafir it - i ary

focus the discussion. The description of the design
progresses from the user interaction with the system, through
the editing tools and the interpreter, to the actual target
devices. Thus the user's perception of the system activities
during a development session is preserved.

This is certainly not to imply that DESIGNS was
developed in this order. In actuality, several of the lower
level tools were designed, tested, and used as stand-alone
entities, 1long before the actual user interface was designed

and implemented.

The DESIGNS User Interface

The selection of the hardware portion of the DESIGNS
user interface, the host computer and the user workstation,
was made from the equipment available at the FIGD facility.
The two systems considered were the SEL 32/2750 with the
Megatek units and the PACER/VG system. Based on the
requirements of the preceeding chapter, the SEL/Megatek
combination was selected. The PACER/VG system was discounted
for several reasons including,

(1) the older FORTRAN IV language support, and, in
general, poor software development tools,

(2) the lack of adequate memory, the PACER supports
only 32K words, and minimal disk storage
capability,

(3) the VG has NO available input devices, it is
strictly oufput only,

(4) the age of the system (over 15 years) does not make
it an attractive choice for a potentially

84

AT VL,

] o A AT At o e Ca iV T aln " Ta v, Ve ol e n e POt A SR S A A S e - g ek R s i N U SR g R G SPNL phes i vt g P -l A"

W long-lived development effort, and finally though
X not as important,

(5) the system is heavily committed to actual
simulation support, thus has only a small amount of
3 time available for development.

The SEL/Megatek system meets, or exceeds, all
requirements. Its only major drawback 1is that it has no
direct interface to the VG, which 1is an important target
device. It can access it indirectly through the SEL 77
system, which is acceptable, though not optimum.

The Megatek , in its current configuration, does not
support color, but has 16 levels of intensity. It has a
fairly robust software support package providing for multiple
line types, various character sizes, hardware transformations
capability, and segmentation of the display list into a

(;' maximum of 32 separate pictures. The package, though dated

by today‘'s standards, was one of the earliest to be based on

: the principles of <the CORE Standard. In addition to the

software support, the Megatek has joystick, datatablet,

- function keys, and special interrupt (picking) devices as

X well as a full ASCII keyboard. Thus it provides a fully
: acceptable system to serve as the user workstation.

The SEL 32/2750 computer system serves as a very capable

host. 1t supports all the required development tools.

X Although the language support currently on the system does

y not include Ada or Pascal, the FORTRAN 77+ that is available

: is more powerful than any FORTRAN implementation that this

author has used. The SEL language implementation provides

ALY excellent structuring features including,
| (1) Do While and Do Until structures,
(2) Select Case capability, and
(3) a Datapool structure, which is a vastly improved
common structure that is not dependent upon the
declared order of the variables, as is the case in
the more familiar FORTRAN common. The Datapool
usage is dependent upon the spelling of the
variable name.
In addition, the SEL machine has access to over 300 MBytes of
hard disk storage, two 9-track tape drives, and 256K, 32-bit
words of memory. The 1/0 capabilities of the system more
than meet the requirements for DESIGNS.
; The DESIGNS system embraces the philosophy that a
i helpful, computer initiated conversation is the most
supportive for its users. In keeping with that philosophy,
(:‘ the DESIGNS dialogue is completely menu-driven. Both
alphanumeric and graphical menus have been used. The use of
N graphic symbology, where appropriate, has been used to
. provide stronger support to the user. For most applications,
intelligent users prefer a graphics representation of the
information. With a graphical format, data is presented at
about the speed at which the user can absorb it [James, 1981:
389].
Within the DESIGNS environment, each menu level
available is presented in the same manner. This consistency
is maintained to afd the user. At all times the wuser has

available certain key information which defines the state of

the system. This information includes,

. 86

(1)
(2)
(3)

(4)

(5)
(6)

the actual menu from which selections are made,
access to HELP information relevant to that menu,

an area in which the current format can be created
or modified,

a status area, indicating what menu is currently
active,

a standard option to exit the current menu, and
a scratchpad area in which the user may type

commands and answers to prompts, or the DESIGNS
system may write prompts and HELP messages.

STATUS AREA
D
R
M A
E W
I
] N
G
L A
I R
E
T A
A
R SCRATCHPAD AREA
A
FIGURE 19

Figure 19 {llustrates the

presented

items listed.

strings or actual

The Generic DESIGNS Menu Format

generic form of the menus

to the DESIGNS user showing the locations of the

The individual menu items may consist of alpha

graphical symbols. Symbols have been

87

a s st a0y

oA employed at the menu levels in which a symbolic

representation is more descriptive than a word or phrase.

Figure 20 illustrates one such symbolic menu.

SYMBOL MENU

e SELECT °

- 19 ey 4O
o € ——— s
€ e — 0
[Y 2
0ec .0

FIGURE 20
A Typical DESIGNS Symbolic Menu
Menus wusing word descriptors are short, usually two or
three words. They describe the activity which will be
initiated upon selection. Each entry consists of a verb
describing the action, and the object on which the activity
will be performed. Figure 21 shows the Main Menu options
within the system, and 1is typical of the style wused in

descriptive menus.

88

A S S S S S R . " » AT R ST 8 O A AR A E R

L]

.

ST LAl

Y PATMCR Y/ RASCE s Dy Pilg” pipitn, Sty Bty A, Sl i Skl tit ERMAETA TR AT, APt SO PN e PO WS DSt e/ R i iy

oS

>

MAIN MENU

Create Format
Modify Format
Store Format
Document
Attributes
Select Target
Test Dynamics
Quit

SELECT °

FIGURE 21
The DESIGNS Main Menu

The selection process for all menu items is identical.
The Megatek joystick is used to position a cursor on the
desired item. Once properly positioned, the interrupt
(*picking') button on the joystick is pressed to signal the
actual selection. Assuming the cursor is positioned within a
valid area, the selection 1is made, and the activity
initiated.

A short circuit to this menu selection activity is
provided. The user may also select menu items by typing an
appropriate command into the scratchpad area. The form of
the command to select menu items is an alpha string. The

system recognizes the shortest string which differentiates

89

e -'P'c. -‘,....- ..‘ ;-n‘-.- -f.-‘y\-‘- .q‘,\-' SAGEC A ".n‘; S e --‘:

between the possible selections on a given menu. Longer

strings, specifying the complete command are also
syntactically correct.

Referring to the Main Menu, the following short example
explains the use of the short circuit. To select the 'Create
Format' option, the shortest, syntactically correct, command
is the letter 'C' by itself. This uniquely identifies the
desired command. 1f ‘CREATE' is typed in its entirety, that
also is correct. Compare this to selecting the 'Store
Format' option. To differentiate this item from the ‘'Select
Target' option, at least the 'ST' must be typed. An 'S' by
itself does not uniquely identify any available menu item.
The key to using the short <circuit successfully is
recognizing that any substring of the option, that uniquely
identifies that option, will properly select Iit. In
addition, the full string will also select the option.

The short circuit is also provided for the symbolic
menus for those wusers who prefer to make all their eatries
from the keyboard and not use the joystick at all. Here the
name of the symbol, or the identifiable substring, may be
typed into the scratchpad. This short circuit is provided to
improve system response time. This is especially important
to those users who have become familiar with the system and
find the joystick selection method too cumbersome. The
user's gquide 1in Appendix F defines the acceptable commands
within the system and provides sample session activities to

fllustrate how DESIGNS can be used.

(P8

The DESIGNS Toolbox

Within the structure of the DESIGNS toolbox, there can
be a great many functions. It was beyond the scope of this
thesis to provide the design for all such possibilities.
Several key functions were designed and developed in detail.
Others have been considered in such a fashion to facilitate
their addition at a later time.

The graphics editor, coupled with the symbol library
functions are key to the initial development of DESIGNS. The
design for the graphics editor focused on the first two task
areas defined in Tauwle I, editing text and predefined
symbols. For each of these editing types, the ability to
enter information at a designated place on the screen, delete
that data, and move it within the drawing space is supported.

Once an editing function has been selected, a
positioning cursor appears within the drawing area. This
cursor is moved vertically, horizontally, and diagonally
within the space by means of the joystick. The user moves
the cursor to the desired location of either text or symbol.
In the case of text entry, the user would start to type at
this point. In the case of a symbol entry, the symbol type
is first selected via the symbol menu selection precess, then
'deposited' at the selected location by again pressing the
joystick button.

In the deletion mode, the alpha string or symbol |is

selected. Once selected it is removed from the display being

91

built. Selection varies depending on whether it is text or
symbol deletion. For text, the joystick 1is moved to the
beginning of the text to be removed and the button depressed.
This identifies one corner of the area to be blanked. Then
the cursor is moved to the opposite/diagonal corner and again
the button depressed. The wuser is asked to confirm the
deletion. Upon positive confirmation, the text bounded by
the window created is blanked out.

For a symbol deletion, the symbol is picked by means of
the menu selection process. When the delete symbol option is
selected, a secondary menu appears which lists only those
symbols currently a part of the format. The wuser then
selects from that 1list the item to be deleted. As with the
short cut provided to intially add symbols to the picture,
the user can also type the delete command followed by the
desired symbol name and that symbol will be deleted.

Repositioning of text and symbology follows the same
precedural form as deletion. The text area or symbol is
specified as in the deletion process. Once selected, it is
physically moved by moving the cursor to the desired new
position and pressing the joystick button.

The same process of selection is used to select alpha
fields or symbols when specifying the attributes of each.
Once selected, the wuser 1is presented with a series of
questions from DESIGNS. These questions lead the user
through the definition process for the selected object. For

the specification of x,y coordinates for the objects, the

92

MAr gLl A-e e}

Y
el
AP

DESIGNS system provides two methods. For HUD specifications
the user may define positions in milliradians of displacement
from the HUD boresight. This is the typical way HUD data

specifications are made. For heads-down displays and HUDs in

ol il e i

which positional data is not defined in milliradians, the
user may specify relative positions in normalized
coordinates. Once specified, the display being defined is
updated to reflect the positional data just defined.
As the display 1is being created, a data structure
internal to DESIGNS is created which defines the format.
This description of the format can be stored as it is for
later use, or further processed by the interpreter section of
the system. The actual data structure is quite simple. The
(;; basic structure contains item descriptors with the associated
X,y location. The descriptor in the case of a symbol is the
name of the symbol, and in the case of an alpha field is the
string itself. Additional data defining the attributes of
; the items is stored also. The attributes which are currently
: handled include,
(1) scale facter,
(2) intensity or color of item,
(3) rotation angles, and

(4) an indicator specifying that the item can be
dynamically modified.

If the 1item has dynamic characteristics, the following
functions are supported,

.. (1) alteration of x,y, position and/or angles of
2 rotation,

(’.c"
o

93

LR et ot M b

R B S A gt s i gt %"\ Pl Yo R Ah Soi Agi ot Sun ot T 4l i i o i L il - g A b SRRE g SRR PN

(2) turning item on/off,

(3) modifying the intensity/color,

(4) blinking the item, and

(5) changing the value in an alpha type field.
To support dynamic updates, a secondary data structure
consisting of a set of logical flags is maintained on each
ftem which can be modified.

The functions within the symbol librarian and part of
the interaction with the host processor tools are not
directly accessible to the wuser, but are used internal to
DESIGNS. The librarian functions are accessed at the time
that the target device is specified. Based on the definition
for the format that has just been defined and the definition
of the specific target, the librarian converts the format
definition into the series of commands that will create the
display on the target device. The host processor interface
is important during this phase as it provides the mechanism
for storage and retrieval of display lists.

The portion of the symbol librarian designed for this
effort deals with the definition for the VG target system.
The specific context is that of HUD development. Within the
library there 1is a specification for each defined symbol on
the VG system. For each additional target there must be a
similar specification for the device. The details of the VG

specification are given in the next section.

94

NN

Once a HUD format has been designed, the wuser normally

would specify the target graphics system. The generic
display list definition defined previously becomes the input
to the 1interpretive portion of DESIGNS. The namelist of
symbols 1is traversed and the corresponding definition
specific to the VG is retrieved from the library. For this
initial specification of DESIGNS, the symbol library for the
PACER/VG system has been defined as a set of FORTRAN IV
source modules - one for each defined symbol on the PACER
system, The details of the data structures are presented in
the next section.

As the namelist is traversed, the proper module for
static generation of that symbol 1is retrieved from the
library. All these modules are combined to produce a single,
compilable program for the PACER/VG target. In addition the
dynamic routines necessary for each symbol are also
generated. Thus the result of this activity is a complete,
correct program to be compiled on the PACER for the VG
target. The only manual programming activity required is to
transfer the software to the PACER, compile it, and create
the dynamic module which communicates with the simulation.

During this activity there 1{is a great deal of
interaction with some tools already developed on the SEL
system. A previous design effort within the facility
produced a package which permits a very compact storage of
source programs on the SEL disk. This tool, Source Library

(SOURCLIB), has been used as the storage mechanism for the

95

L A e N A Sy TA T DA N I I T N T N

DESIGNS symbol libraries. Some tuning of the package to make

it better suited for the DESIGNS system were effected. These
changes deleted the interactive portion of the basic SOURCLIB
package and made it directly accessible to DESIGNS [Luhrs,
1983]. Many of the I/0 functions of the SEL support system
are also used to store and retrieve information.

Two other tools within the DESIGNS toolbox have been
discussed in previous sections. While neither the dynamic
test capability nor the documentation facility were designed
to any level of detail, some discussion of them is important.
The documentation facility is to be built around some of the
existing capabilities in DESIGNS. The capability to enter
textual data can be extended +to support documentation. A
detailed plan of how such documentation should be wused will
dictate the type of query capability, and database structure
that is necessary to adequately support it.

The dynamic testing 1issue was not addressed in any
detail during this effort. The data structures specifying
those attributes which can be modified already exist within
the systen. The tools must be added which can access those
structures and modify the appearance of the format being

manipulated.

Critical Tools Implemented

As with any major effort, not all of the pieces

envisioned were finally implemented and tested. Since the

96

Pt)

focus of the effort was to lay out a roadmap for a fairly
robust system, while focusing on the more immediate problems
faced in the simulation facility, a subset of tools was
fdentified early on which expedite development of HUD
symbology. More specifically, the critical area identified
was the development of software supporting HUD development
for the VG system.

Another critical area identified was the need for better
standardization and commonality of the software modules
developed within the facility. The need for some level of
integration for the various existing graphics programs was
quite apparent. Based on this, four specific tools were
identified, designed, coded, and tested as a direct result of
this thesis activity. Additional tools are being researched
at this time for inclusion into the project and will be
discussed in the concluding chapter.

The four capabilities developed were,

(1) the preliminary buildup of the formalized DESIGNS
user interface,

(2) a 'global' executive program which integrates all
graphics related software within the facility, and
provides the initial portion of the DESIGNS user
interface,

(3) a complete definition and implementation for a
standard data structure in all display software
pertinent to VG hosted symbology, and

(4) an 'auto-build' tool which automatically generates
syntactically correct source code for the PACER/VG
system from pre-existing symbols.

97

The description of the DESIGNS user interface, both the
Vs hardware components and the dialogue structure, has been
given in the preceeding sections. What follows is a complete

description of the other items.

The Graphics Executive Program

The graphics executive program functions as the top
level of the DESIGNS wuser interface. In addition, it
provides the framework from which ALL graphics related
software packages are accessed by the facility users. This
package 1is hosted on the SEL 32/2750, is completely menu
driven, and provides the user with a single program from
which all other graphics programs can be accessed.

When the graphics executive {is 1invoked from a SEL

we

terminal, the main menu presents the user with the graphics
hardware options directly accessible to the SEL. Currently
two devices are fully implemented (the two Megateks), and a
stub is provided for the Gaertner raster system that is to
become part of the system in mid-85. The menu can be
extended to include other devices as they are added. The VG
is not included at this level, since the SEL has no direct
access to it.

The user selects the device which is to be used for the
application. The executive software first queries the device
to determine its status. If the device is busy, the user |{is

presented with a set of alternatives. The user may elect to

abort the task currently running on the device, designate an
RN alternate device for use, or quit the process entirely.

If the device is available, a second menu is displayed
which lists the various graphics programs which are currently
implemented for the specified device. Only those programs
which can be executed on the selected device are listed so
that the user can not inadvertantly select an incompatible
program, This menu 1is presented in a paging structure so
that the user may scroll through as many options as are
available. The paging permits addition of new graphics
programs in the future.

Once an application is selected and activated, the user
quits the software option menu and 1{is returned to the

3 initial, hardware selection, menu. From here another device

Lo

and application can be selected in the same fashion, or the

Fi
o)

user may elect to exit from the graphics executive. Any or

all of the activiated applications can then be used.
This package is used both to initiate the execution of
i graphics applications and to terminate them. Each menu has
- been structured to permit easy addition of new packages.
3 Throughout the selection process, errors are tested, and
English-type phrases defining them are presented to the user,
Appendix G contains detailed requirements for the executive.
Appendix H contains formal documentation for the system,

including the process by which new applications are added.

A ADIY

99

RN

Lt AN T AL e s N TR T ET AT RTRS

DESIGNS 1itself is viewed as an application program for
graphics. Thus it is also accessed through the graphics
executive.

Associated with the executive structure resident on the
SEL machine, there is a data structure which defines how the
simulation programs communicate with the common applications.
Several of the Megatek applications are variations on a
single display format. Parameter displays can be displayed
as,

(1) a 40 parameter display, with two columns of
aircraft data plus graphical control buttons for

aircraft modes,

(2) a 24 parameter display, with a moving map display,
and

(3) a 24 parameter display, with a tracking pipper
display.

To promote better commonality among related displays, a
single data structure has been defined for passing data
through shared memory between the SEL 2750 and the SEL 77's
which have the simulation software. This array of data
includes control data governing the update of information on
the display, all the data describing the function Kkeys,
status data, and parameter names and data values. The
appropriate subset of this array is used for those parameter
displays which contain only 24 entries.

The definition of this data structure was accomplished
based on the philosophies which have grown out of this thesis
effort. It provides a single structure for those displays

that are logically related, which minimizes the integration

100

B et A ettt ¥ Py 1o divan D RAg Tyig g ot by ..~ . LY i VA - ol tauf L S 8 At Nl bt SN e R W W W e s _wyryroe T

that is required on the simulation end.

The VG Database Definition

The definition of a standard structure for the display
list pointers maintained by the VG support package has been a
key issue in the DESIGNS project. The VG system functions by
repeated, rapid execution of a display list which contains
coded information specifying the graphics primitives which
are to be executed. Wwithin the display 1list, special
pointers may be established so that dynamic updates may be
accomplished rapidly, without the necessity for redrawing the
entire picture.
These pointers into the display list are 'marked' as the
U list is being initially built. It is important to understand
how the VG display functions to understand the overall
importance, and usefulness of the new structure that has been
developed for the VG.
» The display list itself is an array. As each graphics
y subroutine call 1{is executed, a command, with all necessary
: argument values, is placed into that array. As the array is
being built, the VG software package tracks the length of the

array. All calls to the VG support software require two

[N N NN

pointer arguments - an 1input pointer which specifies the
current 1length of the display list (and thus indicates where
in the array the current command will be written), and an

output pointer which specifies the length of the array after

101

L N NS W N

.............

the command and its arguments have been added. To maintain
the proper integrity of the display list, the output pointer
from a graphics routine MUST be the input pointer to the NEXT
graphics routine.

If any given command is to be updated in the dynamic
loop of the package, the pointer to it within the display
list (the input pointer to its subroutine call) must have a
unique name. Then it can be individually referenced later in
the program. The most straightforward way to preserve these
unique pointers is in a FORTRAN array, rather than use many
unique variable names. Traditionally, for VG development a
dimensioned array, KPNT (400), has been maintained as the
pointer array for dynamic updates. This array was contained
in a global common so that it could be accessed by all static
and dynamic routines.

For clarification of this point, the following excerpt
from a VG program 1{is included in Figure 22. This small
segment draws a series of lines on the screen, and sets up
the system for subsequent translations of the lines. The
first pointer argument within any call is an input to the
graphics primitive being called and indicates the current
position in the display list where new primitives can be
drawn, The second pointer argument is an output from the
graphics primitive containing the new position in the display

list where subsequent primitives will be drawn.

102

call trans (0, O, O, KPNT (1), KOUT)
call disvec (IX%, 1YY, 1Z1, KOUT, KOUT, IX2, 1Y2, I72)
call disvec (IX3, 1Y3, 123, YOUT, KOUT, IX4, 1Y4, 1Z4)
call disvec (IX5, 1Y5, 1Z5, KOUT, KOUT, IXe6, I1Y6, I16)
call trans (0, 0, 0, KOUT, KPNT (2))

call 22222 (vevevneve., KPNT (2), KPNT (3))
call 22272 (wovonvonor KPNT (3), KOUT)

FIGURE 22
Excerpt from VG Module, Illustrating Pointer Use

Notice that the initial translate call has a unique
input pointer name and the output pointer from that routine,
KOUT, is passed to the next routine as 1its input pointer.
This maintains the integrity of the display list. The same
name is used for both fnput and output pointers in these
calls. This is normal and syntactically correct. The called
modules use the first argument as the starting point to write
in the display 1list, and return the end value in the last
one.

In the past, large display packages have been written
which used the globally declared KPNT array. These
applications contained numerous symbols and could require in
excess of 250 of these unique pointers into the display list.
Quite often the static generation of all these symbols was
written in one 1long routine or in a series of loosely

organized modules with a global common interface so that the

pointers could be easily passed from one graphics call to

%

another.

The problem with this use of the global pointer occurs
when the software must be modified. Referring to our very
simple example in the figure, suppose the user wishes now to
rotate the lines first, followed by the translation. To
maintain a wunique input pointer for the rotation, there are
two options. One would be to use a new variable name such
as: call rotate (0.0, 0.0, 0.0, IROTATE, KPNT(1)). If the
input pointers are all to be in the global KPNT array then
the rotation call becomes: call rotate (0.0, 0.0, 0.0, KPNT
(1), KPNT (2)).

With the latter case, which was most often used to keep
the pointers in KPNT. all subsequent KPNT entries must be
modified since a new KPNT value has been added!! In the
example this 1is not a tremendous amount of work - KPNT (2)
becomes KPNT (3), KPNT (3) becomes KPNT (4), etc. In large
applications this becomes a significant workload, which is
dreadfully prone to errors.

A database structure for maintaining the display 1list
pointers, as well as a standard form for each symbol module
was developed to improve VG software development. Under the
new methodology, each individual HUD symbol is statically
generated within its own module. The wunique pointer names
are maintained within each module. This permits
modifications to any symbol module without updating all
successive pointers. The continuity of the display list is

maintained by keeping a master array of all the unique

104

&4,

s 8 & a.n B

pointers in the global KPNT array. However in the new
structure individual routines DO NOT modify KPNT, they modify
their own internal pointers. By knowing how many unique
pointers each symbol requires, the internal pointers are
equivalenced into the proper place in the master array.

A sample symbol module 1is illustrated in Figure 23.
Every module has an input and an output pointer. At the main
program level these are passed from one module to the
successive module. Looking at this code segment several

points can be made.

(1) all modules are identified with a three letter
prefix which should indicate what the modules
function is (static routines end in 'STC', while
the dynamic routine for a symbol ends in 'DYN'),

(2) the same prefix is used for the unique pointers in
the module (xxxPNT) as well as the non-unique
pointers used to pass in cases where no later
updates are required (xxx0UT),

(3) the number of unique symbols required by a given
routine is indicated in the dimension statement for
XXXPNT,

(4) the first unique pointer for any given symbol is
equivalenced into the KPNT array, this equivalence
must appear in both the static and dynamic routines
for a symbol, and

(5) all the dynamic transformations that could be made
to the symbol are accounted for within the original
static module (the dynamic module can then change
whatever ones are appropriate).

Using this structure isolates almost all modifications
to a symbol within the confines of its own static and dynamic
routines., It also permits the symbol module to be wused for

many simulations even though individual simulations may want

105

HUD LIBRARY : FIXED AIMING RETICLE - STATIC

* k %k k * *x % %k SUBROUTINEAIMSTC*********

* *
* k K k k Kk k Kk * Kk Kk Kk Kk Kk % % *k Kk k * k Kk *k *k * & &

c
c
c
c

SUBROUTINE AIMSTC (AIMIN, AIMOUT)

3 COMMON / CNTRL / CON (25)
COMMON / POINTR / KPNT (400)

DIMENSION AIMPNT (2)

INTEGER AIMIN, AIMOUT, AIMPNT

INTEGER KPNT

INTEGER MEDIUM, SOLID, INNER, OUTER

REAL HUDSCA, RADIN, RADIUS

EQUIVALENCE (KPNT (xxx) , AIMPNT (1))

EQUIVALENCE (CON (1) , HUDSCA)

EQUIVALENCE (CON (9) ., MEDIUM)

EQUIVALENCE (CON (10) , SOLID)

DATA IXc1, I1xC2, IYC1, /0, 0, 0, 0/
(: DATA RADIUS, RADIN / 25.0, 1.0 /

4

OUTER = RADIUS * HUDSCA

INNER = RADIN * HUDSCA

AIMPNT (1) = AIMIN

CALL TRANS (O, 0, O, AIMPNT(1), AIMPNT(2))

CALL INTEN (MEDIUM, AIMPNT(2), AIMOUT)

CALL CIRCLE (soLID, IXCt, IYC1, AIMOUT, AIMOUT)

CALL CIRCLE (soLID, IxC2, IYC2, INNER, AIMOUT, AIMOUT)

CALL INTEN (MEDIUM, AIMOUT, AIMOUT)

CALL TRANS (0, O, O, AIMOUT, AIMOUT)

RETURN

END

FIGURE 23
Sample Code for a Static VG Symbol

to dynamically drive it differently. One additional

change

may be required outside the symbol modules. If the number of

106

...
DR

unique pointers for a symbol changes, then the equivalence

.. N
\.’ -

statements for that routine and any subsequent routines must
be altered to reflect that change. This change, even if done

manually, requires the modification of perhaps a couple dozen

lines of code as opposed to potentially a couple hundred.

There are several valid arguments that can be raised
regarding the use of the undefined equivalence statement in
the modules. There are certainly other ways of implementing
this to achieve the same result for the static generation of
symbols . The equivalence of KNPT (xxx) with the internal
pointer xxxPNT (1) tracks the current 'top' of the display
list. The actual value of xxx is determined at the time the
modules are linked together into a single source module.
This same capability can be achieved by passing the value of
the curent display list pointer 'top' as a variable ‘.tu the
module and have the module return the next value. In
actuality the xxxIN and xxxOUT pointers do just that in order
to properly link modules together.

The equivalence is employed in order to support the
eventual dynamic modification of the symbol attributes
without having to make all the local pointers common and
without having to compute the input pointer when a dynamic
change is required. The equivalencing technique provides
absolute pointers into the display 1list array, which s
faster than computing the pointer value. Particularly with
the PACER/VG system, which {s an aging, slow system, the

speed 1issue is a major one when HUDs must run in less than a

B 3
-,

100 millisecond cycle time.

The equivalencing technique has been employed, not
because it 1is the best tool 1in terms of structuring the
software, but as a result of considering the FORTRAN 1V
language issues and the real-time requirements imposed by the
antiquated PACER/VG system. In addition the automated
modification of the source module by the DESIGNS system is a
precusor to more advanced capabilities in which the entire
software module will be created and/or modified by the
DESIGNS environment. The dynamics of the module can be
linked to appropriate simulation variables, which will DEMAND
that such source code modification is supported.

This particular issue touches on one of the most
controversial areas of the thesis development - that of
automatic generation of software. There are strong arguments
both for and against having a software system generate
another software system. It is the contention of this thesis
that it {is practical, and necessary for the future of
simulation graphics, if such development is to be made with
any kind of revolutionary improvements.

The main line program for the VG software has also been
standardized so that it contains only the static generation
list, the dynamic loop, and the appropriate equivalencing of
pointers. From the main line all static modules are called
in the form : call xxxSTC (xxxIN, xxxOUT). Again remembering
the need to maintain the display list integrity, the output

pointer of a routine becomes the input pointer to its

108

S FI R S, Y g Y W Pt Ik Wi Py A A R 0 g e o Syl I X N S . s N S SR U i SRS M D A 1B A T o+ - OO bl daadib s Mt Sviv i Suregbubc Sat s gogrs

successor., Thus if call yyySTC (yyyIN, yyyOUT) follows the
call to xxxSTC there is an equivalence statement for xxxOUT
to yyyIN.

This attention to standardization across all the modules
was two-fold. First of all, it definitely supported better
modularity in the VG software. The structure 1is therefore
easier to modify by a user. In addition, if the structure
can be sufficiently defined and implemented in a standard
fashion, then automatic tools for modifying it can be

designed.

The PACER/VG 'Auto-Build' System

The ultimate goal in developing the data structures for
\s the VG software packages was to provide a consistent system
so that an automatic tool could be developed to make required
changes when new symbols were linked together to form a HUD.
The changes discussed above are very repetitive, and
quantifiable. When symbol modules are linked together there

are three steps required,

(1) create the mainline equivalences, with the static
and dynamic calls,

(2) based on the number of pointers used in each
module, compute the proper equivlence point into
. the KPNT array, and modify the equivalence
4 statement in both static and dynamic routines, and

(3) assemble all the routines into a single file for
compilation.

109

‘e
*
*
LT RN

Yoy Al SR b P R i g MO NI S M O A S Vi S S S~ Il Al i e Pt R e T S e e
Pe I Py =¥ Pla i alldng Stes Rm Sl Sovet it f e - PN A - N e .

- Such a tool was developed as part of the DESIGNS effort.
- This tool, while initially developed as a stand-alone module,
is actually part of the VG definition module within the
DESIGNS interpreter. This tool accepts a list of names for
the symbols needed in a new display. These names are encoded
as the same three letter prefix used in the individual
modules. A master table containing the prefixes and the
number of unique pointers used by that symbol is maintained.
As the user specified namelist is processed, the master

table data is referenced. The files (static and dynamic) for
a symbol are retrieved, the equivalence value calculated, and
the files linked into a single file. The first symbol
specified always has its first unique pointer equivalenced to
KPNT (1). Subsequent symbol equivalences are computed. The
value is the sum of the current KPNT index plus the number of
pointers used in the current module. For example if three
symbols were requested, ‘xxx', ‘'yyy', and ‘'zzz' and module
'xxx' required 4 pointers, module ‘yyy' required 7, and
module 'zzz' required 2, the following equivalences would be
generated -

(1) module 'xxx' - equivalence (xxxPNT , KPNT (1))

(2) module ‘yyy' - equivalence (yyyPNT , KPNT (5))

(3) module 'zzz' - equivalence (zzzPNT , KPNT (12))

As a stand-alone +tool, the namelist is provided by

creating a file containing the three letter prefixes. The
master table is maintained as a separate file. Each of these

.. files can be created and modified using the standard editor

110

capabilities on the SEL system. The namelist will be

automatically generated from within DESIGNS in the fully

integrated system.

Dl R R R I

w e

1

w
3
A
»
»

a \.:..f..d".f.-f

VI. Testing the DESIGNS Concept

The majority of the DESIGNS testing has been
accomplished on individual modules. The graphics executive
and the PACER/VG data structure have been used as tools
within the facility for some time. Various users have had
occasfon to use them. Both of these tools are principally
data structures. There are no sophisticated algorithms which
had to be tested for correctness.

The graphics executive software was tested by using the
system. A complete walkthrough of all the menus and
functions was performed to verify that the system operated
according to specifications. Detailed testing was
accomplished to prove that the device status could be
properly determined. The stub for an additional graphics
device was added to verify that new devices could be added to
the menu system without encountering major difficulties. The
method for accomplishing that was verified and documented.

The PACER/VG data structure has been tested by
converting existing VG software to the new structure, and
verifying that the resulting HUDs function correctly. New
software wusing this structure has been developed by several
users. This use has indicated that development time {is
greatly 1improved when the superstructure for every added
module already exists. Modification to existing modules has
been minimal since the conversion effort. This indicates

that, fndeed, the design has accounted for the appropriate

112

T RS W

A DAY e YO0 Y- AW a W e Ca W o oMW W o W m i T R T N oW, s e v

symbol dynamics.

ot In each of these cases the testing has been qualitative.
There is no quantitative measure to assess all of the effects
these two tools have had. In each case the design has proven
to be robust enough to accept changes. Users have been
receptive to DESIGNS, with very few negative comments. All
of the current simulations within the facility are using both

of these new structures successfully.
The auto-build capability for the PACER/VG software has
been tested more rigorously. The key areas that were tested

X include,

(1) verifying that all symbol modules specified are
actually retrieved from the symbol library (the
special cases for no modules and a single module
were tested in addition to an arbitrarily large
number of modules),

ij; (2) validating manually that the equivalence values are
computed correctly for arbitrarily specified
symbols, and

(3) testing the final linked source code file by
compiling it and running it on the VG system (each
individual module is compiled to test correctness
before it is added to the symbol library).

In each case the system performance was determined to be
correct. The final test has been to interface an auto-built
HUD to a running simulation. This has been successfully
S accomplished on several occasions.

. The most positive aspect of the testing of the
auto-build feature has been that it is significantly faster
(and certainly more accurate) than building the file by hand.

Static displays that can take a couple of hours to create

113

AT AN AN L IR T A

"o "y

manually can be created in a matter of minutes using DESIGNS.

The features of the user interface and editor have been,
and continue to be tested, in a piecemeal fashion.
Preliminary work on the text editor facility was actually
done on a micro system. This work served to test some of the
menu concepts and the editor specific mechanizations in order
to identify the most appropriate method to wuse in the
inteqrated DESIGNS environment. The micro system was used as
all other systems were unavailable at the time. The menu
concepts have been transported to the SEL host in a more
refined form based on the results of this testing.

Again much of this testing has been qualitative. As has
been discussed before, there are no accepted, quantitative
measures of the goodness or correctness of a user 1interface.
The menu techniques seem to be acceptable. Some refinements
have been made to tune them better for the facility and
users. Special attention has been paid particularly to the
interfaces between modules of DESIGNS to guarantee the data
is passed properly. Typically this has been accomplished by
testing and validating the output from a given module, then
validating the results the following module produces from
that input. Where possible these tests have been performed
in such a fashion that the results can be compared with

existing graphics software that has been generated in a more

traditional way.

114

. . . - . " ————
AR A A e S AL A ANy N L W T T a T T T TR Aal® e e e e e PO Ll

Pl S

~ e

»

\s

YA

Ol
..................

.....................

VII. Conclusions and Recommendations

Overall the DESIGNS effort has been successful,
Certainly the initial plan for the full graphics development
environment has not been realized with operational software.
However the tools that have been developed have improved
productivity, have provided a definitive structure in which
to develop software, and have produced an infrastructure
under which future software can be integrated. These results

are certainly those intended for the development effort.

Conclusions

The major difficulty with the DESIGNS activity has been
in scoping the project. As with most theses, the original
project definition was entirely too broad to be considered as
a single thesis effort. The single most critical failure of
the activity has been that the effort was never adequately
focused on a specific subject area reasonable for thesis
development.

Coupled with the problem of proper scope, was the
difficulty of completing the thesis as a part-time student.
The demands of other work projects often must take precedence
over any thesis activities. This has both prolonged the
thesis effort and has made the product less definitive in a
sense, With the extended period of time involved, and the
work not being performed in a continuous block of time, the

focus of the project tended to drift. Many new ideas and

115

techniques were eventually included that were not part of the
original design concept. While this is a very real problem,
many of the thoughts that developed over time produced a more
in-depth understanding of the task at hand.

As a consequence, both the research and the overall
design efforts stretched out and proceeded to cover many
areas related to the broad concerns of DESIGNS, its
environment, and other closely related issues, but did not
necessarily define a manageable thesis topic. Thus, these
many sources of information served to keep the scope of the
thesis entirely too broad to permit its complete development.

While this sounds particularly negative, the overall
effect has been to produce a far better basis of knowlege for
the environment definition and for more futuristic
(; extensions. It has made it possible to describe the entire
environment design from the standpoint of functional
requirements. In the process it has required a great deal of
time and yielded but a small set of operational tools.

However, these tools have already had a profound effect
on the development capabilities within the sponsoring
facility. Each of the capabilities selected for
implementation and testing, has indeed proven itself equal to
the challenge. They have served to accomplish an original
thesis goal - that of enhanced productivity Fhrough a set of
software developer's aids. It is because of the acceptance
and success of this initial tool set, that DESIGNS can be

considered a successful project, even though the full DESIGNS

116

......

.................

NONChOREEY

L Y
Ty
L]

W

environment has not been completed.

It is apparent from the above discussion that the order
selected for the development of the tools has not been
optimum from the standpoint of demonstrating the overall
system design. However, with facility needs as a primary
driver, the order selected has been more immediately
responsive to facility demands. The improved development
capabilities on the PACER/VG system have made it possible to
take two engineers totally untrained in the area of graphics,
and have them producing useful software for the system within
two weeks. The framework of the top-level graphics executive
has reduced the confusion users had when wusing the system.
Before the advent of the executive, users had to remember all
the individual file names in order to run programs. Now the
single piogram name is all that is necessary to know. The
software is very easy to use, requiring no assistance beyond
instructing all wusers as to the name of the executive
program.

It is critical at this point that the DESIGNS effort be
continued. Based on the initial success of the somewhat
isolated tools, it seems reasonable to conclude that
productivity can be further improved with a fully functional
DESIGNS environment. Interest in the concept proposed with
DESIGNS has been growing tremendously. The ideas and
techniques developed with DESIGNS have been accepted as the
way to progress into the future of cockpit display design.

Even more sophisticated capabilities have been proposed.

117

\»

Recommendations

In order to provide timely support and information to
the organization, the DESIGNS technology should be
continually refined and additional capabilities developed for
it. The area which should be pursued initially is the
completion of the user interface. The full dialogue should
be <completed to support all of the options from the menus as
well as the short-cuts. This effort offers the immediate
payback of linking together all of the tools developed to
date. Also it is fairly well completed and would require
only a small amount of effort to finish it.

In completing the dialogue, the options which are
stubbed out, can be expanded. The principal option, that
must be expanded, 1is the graphics editor. At the present
time, the graphics editor manipulates libraries of existing
symbology. That 1is a major improvement in the way to do
business, but falls far short of what DESIGNS should be able
to support. The editor needs to be expanded to support
creation of original formats by ‘drawing' 1lines, arcs,
conics, alphanumerics, and other graphic primitives. This
task should be the precursor to adding the capability to
'paint a picture’ with the editor. With the addition of the
expanded editor functions more complex, pictorial displays
can be supported.

Subsequent to the <completion of the full VG system

support and editor functions, there are several activities

118

that could reasonably be pursued. These include,

(1) addition of other target devices, particularly the
Gaertner system when it becomes part of the
facility,

(2) transitioning all of the text editor capabilities
onto the SEL host,

(3) filling out the stubs within the environment to
support on-line documentation and dynamic testing,

(4) reconsidering how the symbol libraries for the
various systems are actually handled, and

(5) identifying new tools which can continue to support
the growing graphics needs, such as the
implementation of an image editor.

The symbol library issue mentioned in item 4 is really a
key issue. The methodology adapted for this preliminary
effort hinged on the fact that the facility had fairly
extensive libraries of symbols that are common to a large
number of HUD displays. Based on the need to <create tools
which could off-load some of the workload encountered when
creating and modifying HUDs, the structure for the VG
software and the auto-build feature were developed. These
made use of the existing library of symbols.

However, that library of symbols is specific to the VG.
There 1is also a parallel library that was developed for the
Megatek. For future activities it 1{is not reasonable to
assume this library will be replicated for each new graphics
system that becomes part of the facility. An extension of
the internal generic display 1list to contain a macro
description of oft-used symbols offers a better potential

solution. The same macro could then be interpreted for each

119

..

available target.
It was reasonable at the time to try to use the existing
tools within the facility and build on them. However, some
consideration should be given to the development of a more

generic structure which could require only one library.
There are some significant issues to be considered when doing
that. These 1issues revolve around the questions raised

earlier concerning the automatic generation of software.
Issues such as readability, maintainability, and reliability

have been very important with conventional software systems.
Ultimately, these will not be issues in the traditional
sense. DESIGNS, or some extension of it, aspires to be a
revolutionary new approach to graphics software design and
_ support. In its most sophisticated form it would be capable
\o of far more than has been postulated in this thesis.
Y Ideally, it would not only produce code for displays on any
graphics target, but could automatically establish the

required dynamic 'hooks' with the simulation software.

In the future if the entire system is so automated, one
2 may not have concerns about issues of readability, because
users will never need to 1look at source code. The term
g 'source code' as it is used today would be a misnomer. It
would not be source in the sense that it is produced today,
but WOULD be a type of input source for graphics devices.
This type of source software would be maintained and tested
within the DESIGNS environment, thus addressing those issues

at an entirely different level.

...

............

......................

..

''

The future of DESIGNS and systems like it are based on
accomplishing computing tasks in a fashion unlike those known
today. The initial steps taken in DESIGNS have in some ways
been constrained 1in the present due to the facilities which
it must support and which are available to support it. The
definition of DESIGNS looks toward those future enhancements,
and the current interest in DESIGNS-like environments will
push for revolutionary new ways to support graphics design.

A serious consideration for future activities with
DESIGNS 1is the choice of language in which the software is
written. FORTRAN, even with the nice structures and
extensions provided in the 77+ version, is still FORTRAN -
with all its woeful shortcomings. Pascal, although more
structured than FORTRAN with better support for data
structures, falls short in the critical areas of 1/0
capability and direct interfacing with hardware.

The complexities of the graphics design environment,
with its many data structures and interfaces, demand a
language rich in data structures and powerful enough to
support reliable, maintainable, though intricate interfaces.
The best candidate language 1is Ada. Ada can provide the
software facilities which encourage the desired
‘revolutionary' approach in the software implementation.
When examined, it can be readily seen that the entire DESIGNS
definition closely parallels the conceptual design of the Ada
Programming Support Environment. The parallelism between the

APSE and DESIGNS provides an excellent source of 1information

121

L4

\o

for refining the DESIGNS structural definition.

of equal importance is the nature of the user
workstation. All the DESIGNS work was accomplished on a
stroke writing system. This is not adequate for the complex
work planned in the future with raster and/or CIG systems. A
much more powerful CAD type of raster workstation is required

to meet future needs.

Future Directions for DESIGNS

Based on the results seen to date, the future of the
DESIGNS package seems to be bright. It needs to remain in
development, preferably in such a way that the intermediate
tools can be wused just as the 1initial tools have been
functional during expanding development. It is the intention
of the sponsoring facility and the author to continue with
the development well after the conclusion of this preliminary
thesis effort.

With the assumption that the DESIGNS system is indeed
the concept of the future for cockpit design work, it is
highly important that the system be reworked in Ada in order
to provide the best possible language environment. It would
seriously diminish the power of the environment to burden it

with a language not capable of serving DESIGNS' lofty goals.

122

L e W, e
. .

LN N SR

PR St bt i S i Sl 00 ek - e i e) N e I e —i "R SRR

Bibliography

1. ACM SIGGRAPH. Status Report of The Graphics Standards
Planning Committee. Vo? 13 #3 TRugust T1979).

2. ACM SIGGRAPH. Computer Graphics - Special GKS Issue.
(February 19847,

3. Air Force Flight Dynamics Laboratory. Research and Technolo
Plan. RCS:SYS-DLX(A)-7402. Wright Patterson AFB, Uhio:
KFFDL, August 1981.

4, Air Force Wright Aeronautical Laboratories. Plan for

Improvement of Engineering Flight Simulation Capability.
: KFBKE?FB[Five-Year an, preliminary draft. Wright
‘ Patterson AFB, Ohio: AFFDL, February 1982.

> 5. Auld, R., K. Lang and T. Lang. "“University Computers Users:
. Characteristics and Behaviour” in Computing Skills and the

. User Interface, edited by M. J. Coombs and J. L. Alty.
-, New York: Academic Press, 1981%.

" 6. Aviation Week Staff. "Advanced Simulation Techniques in Use",
(o Aviation Week and Space Technology, Vol 116 (Issue 4): 81-83
- (January 25, 1982),

- 7. Aviation Week Staff. "Digital Avioninc Unaffected by
: Downtown", Aviation Week and Space Technology, Vol 115 (Issue
45): 181-18% (November 9, 1987y.

8. Aviation Week Staff. "European Avionics Systems Advance",
Aviation Week and Space Technology, Vol 115 (Issue 45):
197-193 (November U, 198T7.

9. Aviation Week Staff. “Full-Color Cockpit Display Tested by
Royal Air Force", Aviation Week and Space Technology, Vol 115
(Issue 45): 185-188 (November 9, 198T).

10. Basehore, Daniel D., Human Factors Engineer. Personal
interview on the CADET system design. Air Force Wright
Aeronautical Laboratories, Crew Systems Development Branch,
Wright-Patterson AFB, Ohio, 15 April, 1983.

11. Bateman, L. F. "An Evolutionary Approach to the Design of
Flight Decks for Future Civil Transport Aircraft", Aircraft
Engineering, Vol 50 (Issue 593): 4-10 (July 1978).

L R I Sep

12. Becker, Rick. On-going exchange of technical data. 1982-83.

-

[123

DR 13. Boeing. Final Report on Pictorial Format Development to the
: Gov't, 1 March 1983.

14. Booch, Grady. Software Engineering with Ada. Menlo Park:
. Benjamin/Cummings Publishing Company, Inc., 1983.

15. Butler, Thomas W. "“Computer Response Time & User
! Performance", 58-62 (December 1983).

16. Curry, Renwick E. and Earl L. Wiener. “Some Human Factors
Aspects of Cockpit Automation", The Human-Machine Interface

in Airborne Systems. 22-26. IEEE/AESS Symposium, Dayton
Ohio, December 71980. ’

17. Damodaran, L. and K. D. Eason. "Design Procedures for
User Involvement and User Support" in Computing Skills and
the User Interface, edited by M. J. oombs and J. L.
KIty. New York: Academic Press, 1981.

18. Dudley, Timothy K. "Computers and Graphics: A Technology
Comes of Age", Part II, Interactive Computer Graphics
o K: Petrocelli

Systems, edited by William C. House. HNew York:
Books, Inc., 1982.

19. Eason, K. D. and L. Damodaran. “The Needs of the
Commercial User" in Computing Skills and the User Interface,

- edited by M. J. Coombs and J. L. AIty. New York:
\» Academic Press, 1981,

20. Ewing, D. K. and D. W. Tedd. "A Display System for
Processing Engineering Drawings - *THREAD' - Three
Dimensional Editing and Drawing“, Advanced Computer Graphics:
Economics, Techniques and A lic;tions. edited by R. .
Parslow ;nd R. E%Iiot'ﬁ?een. 285-7259., New York: Plenum
Press 1971.

il St W g Y

21. Foley, J. D. and A. Van Dam. Fundamentals of Interactive

| Computer Graghics. Reading, Mass.: Addison-Wesley Publishing
< Company, . '

: 22. General Dynamics. Display Control Document for the AFTI/F-16
N Multipurpose Display Set. 20PP022A, 7 July 1980.

b

23. General Dynamics. Technical System Description. 16PR2337,
pg 8-2. 30 April 1983,

24. Gordon, Mark. “NAPLPS not just for Videotext", Electronic
Products, 61-66 (August 15, 1983).

25. Grimes and Ramsey, "How to Design User-Computer Interfaces"”.
;uto:ia; notes. SIGGRAPH '82 Conference, Boston, Mass., July
7, 1982.

124

S R e L G ARG A AN

'’

26.

27.

28,

30,

31.

32.

33.

34,

35.

36.

37.

38.

D Yice gt D, Fasoler ho 4y T R WL TRV Sl A 4 Ve < YaLe R L VO g vy e —"

Hare, E., W. “COMED - The Cockpit Display of the Future",
Aircraft Engineering, Vol 50 (Issue 593): 17-19 (July 1978).

Holt, A. P., D. 0. Noneaker and L. Walthour, "A Survey of
New Technology for Cockpit Applications to 1990's Transport
Aircraft Simulators”. NASA Contractor Report 159330,
Contract NAS1-15546, December 1980.

Hubbold, R. J. "TDD: An Interactive Three Dimensional
Drawing Program for Graphical Display and Lightpen", Advanced

Computer Graphics: Economics, Techniques and ApplicatTons,
edited by R. D. Parslow and R. ot Green. 1035-1047.
New York: Plenum Press 1971.

Jacob, Robert J. K. "Execatable Specifications for a Human

Computer Interface", Human Factors in Computing Systems.
Special Issue of SIGCHT BulTefin: 28-3 ecember 1983)

James, E. B. "The User Interface: How May We Compute?" in
Computing Skills and the User Interface, edited by M. J.
Coombs and J. L. Alty. New York: Academic Press, 1981.

Jauer, J. A. and T. J. Quinn. McDonnel Aircraft Company
Final Report. Pictorial Formats, Volume I fFormat

Development. AFWAL-TR-81-37156, Volume I.” Wright Patterson
AFB, UEio: AFWAL, February 1981%.

Kaiser Electronics, Inc. Technical Manuzl Describing SDS
Operation. 1-170. 1983. Internal Tech. Memos defining .
command structure. 1984a, 1984b.

Kupka, I. and N. Wilsing. Conversational Languages. New
York: Wiley-Interscience PublTcation, John Wiley & Son Ltd.,
1980.

Lewis, James L. "Operator Station Design System: A Computer
Aided Design Approach to Work Station Layout", Proceedings of
%g; Human Factors Society - 23rd Annual Meeting. b55-58.

9. -

Lieberman, David. "“Graphics Standards Bridge Hardware
Differences ", Electronic Products, 49-53 (August 15, 1983).

Lizza, Gretchen D., Brian Howard and Carole Islam. "MAGIC -
Riding the Crest of Technology or Do You Believe in Magic?".
Report documenting the MAGIC simulation capability. Flight
Dynamics Lab and the BDM Corporation, Dayton, Ohio. 1983.

Lockheed, Status report to government regarding Transport
Cockpit Design. 1984,

125

39. Luhrs, Richard A, SOURCLIB: An Interactive Program for

h Source Code Librar Keeaing Under WPX 1.7,

y - AFWAL-TH-83-T85-FTGD. right Patterson AFB, Ohio: AFWAL,

h August 1983.

X 40, Martin, James. Design of Man-Computer Dialogues. Englewood
\ Cliffs, N. J.: Prefgce:HaIl, Inc., 1973. -

! 41, Moss, Richard W., Human Factors Engineering. Series of

S interviews and briefings on advanced cockpit design. Air
Force Wright Aeronautical Laboratories, Crew Systems

) Devilopment Branch, Wright Patterson AFB, Ohio. Jan-Aug

o 1984,

42, Mulley, William G. “Future Military Systems", The
Human-Machine Interface in Airborne Systems. 17-18.
ymposium, Dayton, Ohio, December 1980.

43, Mysing, John 0. and Michael L. Gravely. "The Role of
Digital Technology in Future Cockpit Systems", The
: Human Machine Interface in Airborne Systems. 37-76.
v TEEE/AESS Symposium, Dayton, Ohio, December 1930.

44, Newman, William M. and Robert F. Sproull. Principles of

. Interactive Graphics (Second Edition. New York: McGraw-Hill
- Book Company, 1879.

45, Norman, Donald A. "Design Principles for Human-Computer

Interface”, Human Factors in Computing Systems. Special
Issue of SIGCHT BulTetin: T-1 ecember 1983)

.f 46, Pavlidis, Theo. §%¥orithms for Graphics and Imaging
’ Processing. RockvilTe, Md.: Computer Science Press, 1982.

47. PLAID: Panel Layout Automated Interactive Design, An

Overview, Goals, jectives, and txtensions. ontractor
Report. Houston, Tx.: Rothe Development, Inc., 1979.

C.;'v

48. Quinn, T. J. McDonnell Aircraft Company Final Report.
Pictorial Formats Literature Review. AFWAL-TR-81-3156,
Volume III. Wright Patterson AFB, Ohio: AFWAL, March 1982.

49, Reed, "Device-Independent Graphics Software". Tutorial

?otgs. SIGGRAPH '82 Conference, Boston, Mass., July 27,
982,

50. Riesenfeld, Richard F. "Current Trends in Computer

?ragggcs“, Computers and Graphics, Vol 3 (Issue 4): 115-122
19 .

N 51. Robson, David. "Object-Oriented Software Systems", Byte, Vol
P 6 (8):74-86 (August 1981).

‘ 126

52.

53.
54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

64.

65.

Ropelewski, Robert R. "F-15 Fighter Abilities Evaluated®,
Aviation Week and Space Technology, Vol 116 (Issue 17): 39-46
(April 26, 1987)°

Rothe Development. PLAID System Description. 1-8. 1979.

Royal Aircraft Establishment. Civil Avionics Research.
System description. Dd8294894 Pro. To6587 UK Department on
Industry and the Central O0ffice of Information, Her Majesty's
Stationary Office by Alpine Press, England, 1981.

Schaefer, L. J. "Design of Software and Formats for
Interactive Graphics Support", Advanced Computer Graphics:

Economics, Techniques and Applications, edited by R. D.
ParsTow and R, Eiliot Green. B03-829. New York: Plenum
Press 1971.

Sexton, George. Series of phone calls defining cockpit
displays for transport aircraft. 1982-84.

Sexton, George, Richard Moss and Gregory Barbato. Final
Regort from the TAWS Simulation. Vol I-III. 1976a, 1976b,
1976¢.

Sheridan, Susan. "Business Wakes Up to Color Graphics",
Optical Spectra: 44-46 (July 1981).

Smith, Wayne D. "Beyond the 757-767", The Human-Machine

Interface in Afrborne Systems. 27-33. "TEEE/AESS Symposium,
Dayton, Ohio, December ‘980.

Smiths Industries, product description, 27-33. 1980.

So;tech. Technical Memo Describing SADT. 9022-78. 4:1-23.
1979.

Sutherland, Ivan E. "Sketchpad: A Man_Machine Graphical
Communication System", (orig. Published 1963), Tutorial and
Selected Readings in Interactive Computer GraphiCs, edited by
Herbert Freeman.” TEEE Computer Society's Sprﬁng COMPCON 80,
25-28. February 1980.

Tharp, Alan L. "The Impact of Forth Generation Programming
Langgages", SIGCSE Bulletin, Vol 16 (No. 2): 37-47 (June
1984),

Thomas, R. C. "The Design of an Adaptable Terminal" in
Computing Skills and the User Interface, edited by M. J.
Coombs and J. L. Klfy. "Wew York: Academic Press, 1981,

Tucker, Ted W. "How to Organize Process Information for CRT
Display”, Instrumentation Technology, Vol 28 (Issue tt):
59-62 (November T198TYJ.

127

66.
67.

68.
69.
70.

71.

72.

& 73.
s

74.

L

Tufts. Seminar notes on Fourth Generation Languages. 1984.

Wall, R. L., J. L. Tate and M. J. Moss. "Advanced
Flight Deck/Crew System Simulator Functional Requirements".
NASA Contractor Report 159331, Contract NAS1-15546, December
1980.

Warner, James R. and Nicholaus J. Kiefhaber. *“Implementing
Standard Device-Independent Graphics", Mini-Micro Systems, XV
(7): 201-208 (July 1982).

Hashburn, John and Robert Tibor. "Advanced Cockpit
Technology", Technical briefing to government and contractors
concerning new cockpit systems. Rockwell International,
Collins Divisions, Cedar Rapids, Iowa, June 26, 1979.

Weinberg, Victor. Structured Analysis. New York: Yourdan
Press, 1979.

Whitaker, Richard. “Ferranti Mission Manager's", Flight
International: 505-510 (August 15, 1981).

Wilson, J. W. and L. F. Bateman. “Human Factors and the
Advanced Flight Deck", paper presented at the 32nd
International Air Safety Seminar. London, England. October
1979.

Wilson, J. W. and R. E. Hillman. "The Advanced Flight
Deck”, paper presented at the Royal Aeronautical Society
Spring Convention. London, England. 16 & 17 May 1979.

Vokits, Ronald S. and Harry L. Waruszewski. "“Air Force
Needs", The Human-Machine Interface in Airborne Systems.
4-8, Dayton, Ohio: IEEE/AESS Symposium, December 1980,

128

.................
.........................

LRI ANt e i it g et B SR SRl A

Appendix A. Simulation Topics

Simulation efforts use both heads-up and/or heads-down
displays (HUDs or HDDs) in the cockpit. Heads-up formats
make heavy use of symbology to encode data for the pilot.
The symbols wused can be very simple, such as a moving line
representing the horizon line reference of the aircraft.
They can be extremely complex, such as the pathway in the sky
symbol (PITS) which symbolically shows the pilot how to fly a
safe profile during the course of an agressive terrain
following/terrain avoidance (TF/TA) mission.

This particular type of complex symbol contains many
individual pieces of data regarding aircraft attitude,
waypoint information, turns, climbs, descents, etc. The HUD
in Figure 24 is currently being tested for TF/TA types of
maneuvers and illustrates typical HUD symbology.

A certain frame of reference for the consideration of
these technical points is necessary to understand how they
impact the DESIGNS system. Of paramount importance 1is the
fact that this effort is concerned with research and
development (R&D) simulation and its relationship and
potential impact on the flying sector of the military. The

issues developed here are couched within this framework.

129

.

Lair afar otk g

FICURE 24 - TF/TA HUD Synmbology

.c . .-.n.-.'

They reflect the military needs, which in many aspects
differ significantly from civilian sector needs. The R&D
concerns are of primary importance as opposed to those
development needs of the training simulation sector. Again
these needs vary from R&D to training installations. All of
the following discussions use this frame of reference as the

point of departure.

HUD Symbology

HUD symbology is essentially skeletal 1in nature. It
portrays the situation using the bare essentials by providing
its data in a symbolic format. HUD symbology willingly
trades realism to provide maximum pilot cuing with a stylized
symbol set [Boeing, 1983; Lockheed, 1984; Jauer and Quinn,
1982 : 4-13]. Being able to maintain visual contact with the
world outside the <cockpit, while 1looking through the HUD
symbology, dictates that the display be relatively
uncluttered. This 1leads to the use of symbols to represent
important pilot cues. Any alphanumerics used are for digita!
readouts associated with some symbol. Thus the typical HUD
does not wuse a lot of alphanumeric displays, since the
individual pieces of data are encoded within symbolic
formatting.

The heads-up display has other common attributes which
define it. Because a HUD has been traditionally wused in

fighter applications or 1in highly dynamic situations, the

131

. e s

\s

symbology is subject to extensive dynamic transformations at
high speeds. This inherent speed requirement has
traditionally been met by using calligraphic devices for HUD
symbol generation. A second feature is that HUD formats are
usually displayed in monochrome only. This is a by-product
of using calligraphic systems, since they are primarily
monochromatic devices.

It is also important with a HUD to maintain visual
contact and proper orientation with the real world.
Simultaneously, the pilot must assimilate the HUD data being
superimposed over the forward field of view. Therefore, HUD
dislays have used the line drawing type of systems which do
not block the pilot's forward vision. Symbology composed of
lines does not occlude the outside world picture. Raster
techniques, while they can provide a more detailed, solid
display, can block the view with solid, colored figures and
are difficult to registrate with the real world scene. Thus
stroke systems have been heavily used for HUDs to the virtual
exclusion of the detailed symbology available from raster

systems.

HDD Symbology

Contact symbology, which provides an artificial
recreation of the out-the-cockpit world, is common across the
broad range of heads-down display formats. It provides

appropriate cues to enable the crew to satisfactorily fly in

132

.
»

\.’ .

visual contact flight. These displays are an abstraction of

the real world, as with HUD symbology, and can be highly
stylized. The true contact display has come to be termed a
pictorial display, as it provides a picture of the situation
of interest.

The complexity of some representative heads-down
aircraft displays varies from purely alphanumeric to complex
pictorial displays. The purely alphanumeric display 1is the
most elementary format with which to deal. Alpha characters
and/or numeric data are defined for specified 1locations on
the display. The resulting dynamic operations are limited to
updating the contents of the written data. No dynamic
transformations such as rotation, translation, or scaling are
generally performed. Fiqgure 18, in the requirements chapter,
illustrates a typical heads-down configuration for the
AFTI-F16 cockpit.

On the other extreme of complexity are the pictorial
displays, or image generation. Pictorial formats present
data to the crew members in the form of a descriptive
picture. The more complex the pictures become, the more
computing power and algorithm complexity is required. The
furthest extreme of a pictorial format for simulation could
present the entire view of the outside world to the pilot.
This kind of display would require a large, expensive
Computer Image Generation (CIG) system dedicated to
performing that function. The extreme detail of an advanced

CIG system is shown in Figure 25.

133

-1
- Yy,

e L Kk
; N

While CIG considerations are beyond the scope of this

thesis, the pictorial display, in its less complex form, is a
likely candidate for DESIGNS support. The intent of the
highly stylized pictorials is to produce a 'picture! of the
situation of interest. This approach in displays provides a
highly integrated description of the data. With well
designed formats, the time spent in interpreting and reacting
to a given situation can be significantly reduced. This type
of format represents the most complex and experimental of the
display techniques being 1investigated for in-cockpit use.
This type of pictorial is well illustrated in the series of
formats included earlier in Figures 9 through 17.

Somewhere between the all-alphanumeric format and the
pictorial design are those requiring some combination of
character and symbolic data. These displays typically have
provided the mechanism to replace the electromechanical
instruments in the cockpit. They are often used to display
attitude and situation data. Generating and updating such a
display involves the same issues as those for a HUD with
symbolic and alpha characters in the format. The Electronic
Horizontal Situation Indicator/Electronic Attitude Direction
Indicator (EHSI/EADI) combination shown earlier in Figure 3
are typical electronic replacements for older cockpit
instruments. They combine alpha data with a picture format,
and are actually an electronic copy of the electro-mechanical

device they replaced.

135

P

Color raster systems are being used more and more for

heads- down display generation. Color provides a mechanism
to encode data for crew use and to emphasize cautionary or
critical conditions. Combined with the color, the raster
display provides a powerful tool for the pictorial types of
format. The complex symbology can be more easily
accomplished using raster techniques. The resulting
symbology is more readily recognizable than an equivalent
'open' (stick figure) calligraphic symbology. This reduces
the ambiguities and uncertainties within the display. Since
the raster representation can closely resemble the actual
appearance, these displays are easy to learn and use. The
capabilities afforded by color and raster appear at this time
to have the best payback in the heads- down display area.
Thus, entirely new possibilities are now available for
cockpit integration.

Each of the display types described thus far can be used
as a part of a simulation project. The heads-up displays,
the all alphanumeric, and the symbolic heads-down displays
are commonly used. Pictorial formats are in a developmental
phase. Their use is increasing in research areas
particularly. Research will determine what formats are
acceptable for cockpit use. Some contrived pictorials may be
of questionable value. More likely a combination of display
types and formats will prove to be optimum. Pilot preference
and mission requirements will shape the <combination of

displays that will be acceptable. Simulated scenarios are

136

L RN T N N T -'."‘. YAt At .
AN AR AL S I T I AN AT NI

e A e T R N e TR N N L W L S T,

being flown using the simple pictorials to determine the
feasibility and utility of such formats. For any given
effort, the specific project needs dictate the types of
display formats to be used. These needs are then constrained
or redirected by the capabilities of the facility performing
the tests [Boeing, 1983; Jauer and Quinn , 1982:; Sexton and
others, 1976b; Moss and Barbato, 1980].

137

LR S et Mgy

LR T Y

Appendix B. Human Factors Topics

Human factors, as related to computer engineering, has
been defined as how we humans interact with computer
equipment. There are associated areas concerning how we see
things, perceptual psychology, and how we learn things,
cognitive psychology. The growing body of knowledge in these
areas provides a wealth of information that should heavily
impact the designs of interfaces between computer systems and
the 'world' they service. Traditionally, however, human
factors techniques have not been a concern in the formal
study of computer systems. [Foley and Van Dam, 1982 :
218-219]

Emphasis within the computer related disciplines has
previously been placed on physical computer devices and the
software techniques to support them. As computer systems
provide more complex services and become available to more
groups and individuals, many of whom are not trained in the
rigors of computer science, the need for acceptable user
interfaces becomes critical. Technical people involved in
computer system development are beginning to focus on this
problem, both to define it and to provide solutions to it.

The interface of concern in the context of this
discussion is one which supports interaction between the
computer system hardware and the computer user. Interactive
environments should provide support to the system user and

make computer wusage more simple. Hell-defined, powerful

138

environments should greatly enhance the user's abjlities to
exploit the machine's facilities.

In discussing the criteria for interactive environments,
one {important issue has traditionally been the question of
system response provided within some tolerable time span.
The subjective definition of a good interactive support
environment requires that the facilities needed by the user

must be implemented and that the environment must not incur

delays which exceed the user's patience level. Inadequacies

! in these two areas break down the dialogue between the user

and the system which the interactive system should encourage
and exploit _Schaefer, 1971 : 804].

Few people will deny the importance and potential power
of a ‘good, user-friendly' human/machine interface for a
computer based system. The problem with designing and
evaluating such interfaces is that there 1is no definitive
measure of ‘good' or ‘'user-friendly'! What is fine for one
group or individual may be woefully inadequate or
inappropriate for another [Auld and others, 1981 : 78-92;
Eason and Damodaran, 1981 : 115-122; Damadaran and Eason,
1981 : 373-387]). These differences among users can be caused
for any number of reasons and create a difficult situation
for the designer of an interface to a computer system. Human
factors techniques often appear to be an art form rather than

fully defined theory.

139

ROTRANAA AP AT AC A oSk U W VLN N R RO RNTRIRTY 3 ool wolt o e i Bl A S Bl Sl YA Ay B D i i R e s

Is this to imply that individual interfaces must always

L}

be custom built, tailored to each user's personal tastes? Or
that there 1{is no foundation of knowledge on which to start

adequate interface designs?

Guidelines for User Interface Design

Fortunately this is not the implication. There exists a
solid set of principles and guidelines which can assist the
interface designer, Research has provided insight into
useful strategies for effective interface definitions.
Desired qualities for the dialogue between the user and the
computer have been enumerated. Methodologies for profiling
the intended user and adequately defining user needs have
been proposed. Potential problem areas 1in the interface
development exercise have been identified. System developers
i can use these guidelines to direct activities 1in the
user/machine interface area.

The quality of the interface plays a major role in the
eventual acceptability of any interactive environment. An
important measure of this quality is the user's perception of
the adequacy of the system interactions. The critical issue
is efficiency - and NOT the machine's efficiency, but the
user's. An accaptable interactive system must improve the
effectiveness of its users and support their activities. It
must be a useful tool for accomplishing the wuser's tasks.

Four areas have been identified as critical to the interface

140

LS TRV COA RS LT TR
'.-., .'4. .‘-\\ W)

DYCNEAENEY

o &

{'/.’-’.‘

e R N N W s e e e W T T, y E S Tl S B - A et

design. They address areas of system
(1) reliability,
(2) adaptability,
(3) self-sufficiency, and
(4) ease of use.

System reliability refers to the system degradation when
dealing with invalid user inputs. Carefully designed
software 1{interfaces will tolerate improper input formats and
provide informative feedback to aid the struggling user.
Adaptable systems provide multiple layers of support to
present acceptable interfaces for a variety of wuser skill
levels. For example, as a user becomes more proficient in
the system use, the level of detail in the interactive
messages would decrease. This feature provides an abundance
of information to the novice, but doesn't inundate the
skilled user with trivia. Self-sufficient systems stand
alone in the sense that on-line help is available for users.
At any point during the user/machine dialogue, the user may
request and receive explanatory information regarding how the
system works, what data is expected, or other beneficial
items. [James, 1982 : 340, 343-346; Eason and Damodaran,
1981 : 115-118, 120-122)

The ease of use criterion is more difficult to quantify.
As discussed earlier, user perception and acceptance of a
system varies widely based on the wuser's background and
capabilities. Regardless of the skill levels of the intended

user audience, as interactive system should provide the

144

. .---'.'Aq‘_"n 'I - - g -
4 » ‘.'.". A .d._'- A-‘ “e \'- "- '-l

...........

R 4

AT T TR e

following capabilities to improve its ease of use :

(1) Small amounts of data, with one major idea per
display, should be shown on the screen. There is
no justifiable reason for filling a display screen
just because it's there.

The displayed formats should be clearly and cleanly
designed, with instructions readily discernible.

The design should avoid using difficult words or
characters and should provide similarity among the
various displays and/or operations.

Required user responses should be kept short and
consistant. On-line help should be available and
readily accessible.

A mechanism permitting the user to easily backtrack
and 'undo' previous operations should exist.

System functions must be clear to the users as well
as designers, and must be readily invoked.

Finally, the computer should ALWAYS respond to the
user. If a time-consuming function is to be
performed, some form of feedback indicating that

normal progress is being made is comforting.
[Foley and VanDam, 1982 : 218, 222-239]

User or Designer Goals - An Avoidable Conflict

Adherence to the above guidelines does not necessarily
guarantee the resulting system design will be acceptable.
The inherent difficulty 1lies 1in the great disparity that
often exists between the system designers and the system
users. The problems and interests of the system programmer

have often been confused with those of the eventual end-user.

Developers many times consider themselves as typical users,

thus making their own system design objectives the focus of

attention. The requirements of the final application use

&

<

.

o e

. ~'.'h.:".. \-'

have been relegated to an inferior position, or ignored,
which potentially compromises the design. This approach will
surely design a system that is a programmer's delight, but
likely a user's nightmare. This failure to recognize that
program designers are, in general, NOT typical users, results
in software packages that may have been very clean to design
and implement. They may exploit the physical machine's
capability to the limit. But they 1likely provide a weak,
awkward interface for the ultimate user. (Foley and Van Dam,
1982 : 217-8; Grimes and Ramsey, 1982 : 2-3 to 2-4, 3-4 to
3-7; Jdames, 1982 : 345-46]

Therefore, it is 1important that <the system designer
consider seriously the end-user needs and capabilities. The
design focus shifts radically when it is truly based on the
end user requirements. Much more time is devoted to
tailoring the system for the end user. User tailoring places
the focus in the proper perspective - with the attention
directed toward the abilities and needs of the user.

By and large the profile of users of computer based
facilities can be characterized as [Martin, 1973: 19-23]:

(1) intelligent,

(2) too busy for in-depth training,
(3) highly impatient,

(4) non-rugged, and

(5) demanding of worth while results.

143

A N M S S c"-'"'-".".,","_".-:»1‘.'..'.‘.'.'.»' L, e e T e RN “ T
e iy T I O S S S T A AN, O R I WTEE W I SRR A I S A I

(Y .
~~~~~~

---------




In considering ourselves as users, most items above can
be readily accepted as reasonable attributes for a computer
user. We certainly like to consider ourselves as
intelligent. As such, we do demand results which are timely
and worthy of our consideration. For the most part we do not
intend to devote vast amounts of tim~ to learn any given
system in detail, just well enough to get our job done.

Combinations of these traits cause the user to be
described as non-rugged. Non-rugged in the sense that as a
reasoning being, a user has certain expectations of a system.
Such a wuser will not willingly tolerate system behavior
significantly inferior to those expectations. System
response time, how quickly can it accomplish a task, is a
critical point of user evaluation. A sluggish system is
intolerable to most users. Ironically, the same user is
equally unaccepting of a system whose response time 1is too
rapid. This can intimidate particularly the casual user who
may feel pushed to respond much faster than seems
comfortable. People need to break work into sections to
attain a feeling of closure on one activity before proceeding
to another. System response which is so fast as to preclude
such breaks 1is stressful and wultimately unacceptable. An
elusive balance must be established between the user
expectancy of a smooth response time and the user's need to
perform work in segments with some break between them. Time
estimates for how quickly a system should respond and how

long breaks should be vary considerably with different wusers

144




X R B 4 J bR e M g o e # e i St Wi 1 s el RN e AR R Bt N Wa AL R - L aficagiauiare i e

e and applications [Grimes and Ramsey, 1982 : 3-2 to 3-7;
Martin, 1973 : 10-13, 19-23] .

- The discussion above presents several assertions that

1 are accepted as common knowledge regarding the effects of

response time on human performance. Interestingly, there is

very little empirical data to either support or refute these

theories quantitatively. One recent study refutes the theory

that inappropriate response time impairs performance [Butler,

; 1983 : 58-62]. Butler finds poor statistical correlation

; between response time and performance in a variety of tasks.

However, Butler's experiments do not consider the user's

acceptance of the system's performance. He merely quantifies

the number of typing errors made during a session and

(:‘ determines that the error rate is not statistically effected
as the response of the system degrades.

Other studies [Foley and Van Dam, 1982 : 217-218,

239-242; Grimes and Ramsey, 1982 : 3-4 to 3-6, B-5, C-4],

which include subjective comments, conclude that the user

acceptance is affected by the response time of the system

under question. Ultimately, the user's perception of the

system is a c¢ritical factor in satisfactorily performing

tasks over a long period of time. Therefore, the issue of

response time constraints will be carefully considered in

order to assure user satisfaction.

2 User/Machine Dialogue Characteristics

145




Traditionally, two distinct techniques have been used to
establish a dialogue between the user and a computer system.
Systems can be classified according to the mechanization of
the dialogue as either menu driven or command language based.
The choice of dialogue type must be made with a clear
understanding of both the system requirements and the
technical merits of the menu and command language
implementations.

Before discussing the technical points of either
dialogue type, it is necessary to define what is implied by
each alternative. A menu driven system is one in which all
valid selection options are displayed to the user in some
form of menu. Only those options currently displayed by the
menu may be activated from that particular menu. Selections
can lead to other menus or to the performance of an activity.
Thus to access other options, other menus must be selected
first. Selections from the menu are made by pointing, in
some fashion, to a menu item or by typing a short command
indicated by the menu. In either <case the method for
selection is available on the display screen.

A command language system presents no such visual aids
to the user. The system options are selected by typing the
command for the desired action in the syntax required by the
operating system. All of the valid options in the entire
system are available at all times for activation. The user
is required to know the required syntax for actual

invocation.

146




s

These definitions are necessarily restrictive in nature

as they make no attempt to address dialogue types that
embrace concepts from each of these techniques. HNor do they
address some of the differing techniques that have been
attempted to provide different dialogue forms. These two
techniques are both popular and successful, and will be used
as the basis for the following discussion. This does not
preclude the consideration of other related techniques if
indeed they can be better suited to the DESIGNS effort.

In addition to the command and menu driven techniques,
there are numerous other dialogue implementations. Many of
these are the result of combining the styles from command
language systems with those of menu-driven systems. Each has
its own distinct set of shortcomings to accompany its
strengths.

This section contains information for other techniques
with which a human/machine dialogue can be implemented
[Grimes and Ramsey, 1982 : 7-2 to 7-4; Martin, 1973 : 12-13].
This shoulf provide the reader with a more complete picture
of the dialogue types available. Keep in mind that each of
these to a certain extent 1is merely a permutation or
extension of the command or menu-driven techniques.

Dialogues can be <classified in terms of the type of
conversation that is being handled. There are two types -
that which the operator/user initiates and that which the

computer initiates. Those <conversations which the user

initiates may seem to be more under the user's control, but




...............

\o

also require the user to be more knowledgable. Computer
initiated conversations can be intimidating and confusing if
the informational content is too high, or if presented to
quickly.

The following techniques are typical wuser initiated
conversations. The list is ordered from simple to complex.
In each case the user types in a command as in a traditional
command lanqguage system. As the complexity increases, the
form of the command is more involved, and multiple actions
can be simultaneously initiated. In the most complex
commands, a series of actions are commanded from the
keyboard. The user initiated conversations include:

(1) simple query, which is a single, simple command,
(2) mnemonic techniques, which provide a shorthand,
encoded form of a command convenient for frequent

users, but cryptic in actual form,

(3) English language techniques, which provide a more
natural mode of communication,

(4) programming statements, which resemble computer
language statements and may initiate complex
activities with a single command,

(5) action code statements, encoding desired system
actions into recognizable commands,

(6) and multiple action code systems, which initiate
multiple activities with a single command.

The computer initiated conversations can assist the
user, Many of these techniques are based loosely on the

menu-driven system characteristics discussed in the body of

this paper. The more complex implementations can present a
high workload situation to the unfamiliar user. The
148




, : .}'

. ~ following list presents some of the more common approaches to
computer initiated conversations. As with the first list,
these are listed in order from most simple to most complex.
Examples of computer initiated dialogues include:

(1) instructions to the operator/user, which request
user input, describe legal actions, and require
some user response,

(2) menu selections, which may include simple menus or
multiscreen, nested menus, or menus requiring
multiple answers,

. (3) encoding information in formats, which presents

X more of a picture to the user,

(4) variable length and multiple format entries, which
permit the user to select default options on
parameters when acceptable,

(5) form-filling,

(S; (6) text editing techniques,

(7) overwriting, which permits the system to overwrite
information within a selection and can be extremely
confusing,

(8) and, as a kind of catch-all, hybrid dialogues,
which provides the designer which great latitude in
the dialogue development to pick and choose those
techniques which may be most beneficial. The only
problem with this approach is that consistency can
often be lost.

When considering the computer initiated conversations,
one must also consider the way in which information can be

i encoded for presentation to the user. One way to assist the

| user, to offset the more limited bandwidth capacity of the
user as compared to the computer system, is to use displays
of some type. The use of displays also aids the cognitive

i process and supports the user's short term memory limitations
v B
" T

by not requiring memorization of lengthy commands.

149

hJ
-
o



T The following table illustrates the value of various
drawing techniques. Of particular importance is the very
positive effect of wusing recognizable, geometric shapes.

: This technique plays an important role in the DESIGNS menu

system. It was selected because of the benefit to the user.

Selection of the Dialogue Type

The differences between menu and command dialoques tend
to make each of them appropriate for distinctly different
audiences. Menu driven dialogues, with the ever-present
selection aids on the screen, tend to be well suited for

. casual and infrequent wusers. Since there is no requirement
(;; to memorize long command sequences, such a user can work
through the entire system using the menus fairly easily.
There is an accompanying penalty with this system in that the
menus take a longer period of processor time to draw on the
E screen, but casual wusers seem not to adversely suffer from
: the somewhat decreased response time. The additional help
available more than offsets the writing time required for the

menus.

The highly trained user finds the menus to be a
hindrance. The design philosophy being one of providing help
whether the user wants it or not, precludes instant selection

g- of all system options. Typically the expert user does not
: - want, or need, all this help. This type of user much prefers

N e the flexibility and speed of the command language system to

150




TABLE VI
Effects of Display Encoding Techniques

RECOMMENDED MAX

RECOMMENDED MAX

ENCODING NUMBER OF FOR RAPID/ERROR
METHOD ITEMS FREE REACTION COMMENTS

Mumerals, Unlimited Unlimited Highly versatile, little

and letters aid to memory. Location
time can be long.

Geometric approx. 15 approx. 10 Very effective, high

shapes mnemonic value. Supports
the cognitive process.

Angle of Line 16 8 Good in some cases

Line Length 4 3 Fair, clutters displays

Line llidth 3 2 Good

Solid Lines 9 5 Good

Object Size 5 3 Fair, requires space and
longer location time
than for shape or color

Brightness 4 2 Poor, especially if the
screen contrast is poor

Flashing 4 2 Poor, confusing. But can

Synbol attract attention easily.

Color 11 6 Expensive, valuable. No

extra space required.
Location time short. Can
relieve clutter.

151




the abundance of information available with menus. The user
expert in a system knows the command structure well enough to
select desired options and often knows shortcuts to
accomplish tasks. Menus only serve to bog down the efforts
of such a wuser by strictly structuring how all tasks are
accomplished.

There are other differences that impact the user beyond
the differing physical apperances and the selection methods
of the two dialogues. The selection mechanism wused in the

command language implementation is somewhat impervious to

undetectable user errors. If the command syntax is
incorrect, the system will simply reject it. Improper
actions are, in general, immediately apparent. In a menu

\s driven system, errors can be committed in more subtle ways.
Since all the displayed options are valid for the system, an
invalid selection cannot be made. However, while a selection
is perhaps valid, it is not necessarily the correct one for
: the users intentions. Particularly if the selection leads to
deeper levels of menus which are common to, or similar to,
ones for several options, the user can quickly and easily
become buried doing an unintended activity. As menus levels
are traversed it becomes more difficult to undo the steps
that have been accomplished.

Serious errors of commission can occur in either system
by careless operation. The severity of the errors in a menu
driven system can be greatly reduced by competent dialogue

design. But these are some of the major points concerning

........................
-------------------------
L) ~

]
et
. AN

" ".‘_n'.a'j




the dialogues.

Van Dam, 1982

Table VI contrasts the more of the
and negative aspects of the two dialogue designs.

1983 : 2-6, 9]

+ 218-219;: Norman

TABLE VII

positive
[(Foley and

Menu Driven vs Command Language Based Dialogues

ATTRIBUTE

MENU DRIVEN

COMMAND LANGUAGE

Speed of use

Slow, especially when
menus are large or
there is a hierarchy

Fast, for experts;
Operation specified
exactly, regardless

lead to inappropriate
actions that are both
difficult to detect
and correct

of menus of system state
Prior knowledge Self-explanatory; Significant knowledge
required minimal previous about actions and
information is command syntax is
necessary necessary
Ease of Quite straightforward; Difficult; User must
learning Requires recognition memorize syntax of
memory which is much language which if
easier than recall; extensive requires
Easy to explore system much time; No easy
and locate available way to find an
options option not known
Errors Specification errors Specification error

usually leads to
illegal commands;
These are easy to
detect/correct (if
syntax is known)

Target User

Beginner or infrequent

Expert or frequent

........
.........

153

From the discussion and the comparison data presented in

R0 R R aie -l B e i Sl R S 4




A

Table VII, it can be seen that each dialogue technique has

its positive as well as its negative aspects. Consequently,

there is no universally best system for an actual
i implementation. There are only tradeoff issues to be

evaluated in light of the system requirements.

ol
« 48




.........

o

Appendix C. Hardware/Software Integration Topics

The DESIGNS concept is heavily dependent on a thorough
understanding of both sofivare principles and graphics
hardware capabilities. The defined environment is somewhat
hardware intensive since the key -element involves the
targeting of software to multiple graphics devices. In order
to manage effectively this targeting of software to a family
of dissimilar graphics systems, it is important to understand
the kind of capabilities and support that can typically be
found in the graphics systems.

Hith the understanding of the hardware functions and the
software techniques available to model the system
definitions, an 1integrated environment can be designed.
Thus, the nature of the DESIGNS concept requires an
integrated look at the hardware and software 1issues because
of their close inter-dependency.

There are certainly topics within the hardware and
software areas that can be discussed as separate issues.
Several of these individual issues have been identified as
critical and their importance to the DESIGNS definition or
implementation recognized. These issues form the basis for
the DESIGNS concept and involve many areas from both software
development and hardware interfacing. In addition, there are
those topics that bridge the traditional gap between pure
hardware and software issues. These areas are primarily of

concern with the issues of interfacing the DESIGNS functions




to the various target devices. It 1is this topic, whose
successful completion is c¢ritical to the success of the
DESIGNS concept, that must be considered from the system
integration point of view.

The software required to support the DESIGNS concepts is
heavily involved with database definition and implementation,
abstract data type definitions, dialogue support, and
algorithm development. Hardware specific considerations
impact the definition of <critical system interfaces and
seriously affect the software which must support these

interfaces.

Overview of Critical Hardware Issues

The choice, availability, and capability of the hardware
devices used have far-reaching consequences on the overall
DESIGHS effort. Hhile it is desirable to maintain
portability in the DESIGNS package to facilitate rehosting if
necessary or desired, it must be recognized that at some
level the idiosyncrasies of the host hardware as well as the
target system hardware must be addressed. It is important to
identify areas in which these hardware issues 1impact the
DESIGHS package, so that hardware specific software can be
{ isolated from the remainder of the package and provide a
better mechanism for device independence.

The following sections discuss the features that are

potentially available within the DESIGNS hardware systems.

156




PO A il = o SN S A SRR i e i

Typical capabilities of today's workstation equipment and
graphics devices are described. Tradeoff issues, along with

supporting data from previous research, are discussed.

Typical Workstation Capabilities

A user workstation can provide support input/output
(I/0) functions ranging from simple, austere capabilities to
very elaborate support facilities. While discussing
workstation issues, areas that must be considered are system
input/output functions, display screen capabilities, special
features to support graphics, and general issues such as
error handling, system security, reliability, portability,
maintainability, and flexibility. [LACM SIGGRAPH, 1984 :
38-39; ACM SIGGRAPH, 1979 : V-2 to V-7; Foley and Van Danm,
1982 : 18-27, 95-135, 183-197; Martin, 1973 : 19-23; Newman
and Sproull, 1979 : 3-8].

Most of the workstation issues are important by virtue
of the impact +they have on the user interface. The
workstation 1is the only physical interface that a user has
with the DESIGNS environment. User critical areas have been
discussed at some length under the human factors topic.

There are many input devices that are fairly standard
equipment for a broad range of modern graphics systems. More
systems are being designed for the explicit purpose of being
stand-alone workstations. These stand-alone systems usually

support multiple input and output devices that are useful for

157

- gtat nAl sieir oA oSl iy nde




b I It BB Sl gt Sed Al Atk it Al e sl Sad ol Sofh e

a variety of graphics related tasks. The majority of the

systems can support such devices as joysticks, mouse devices,

data tablet, 1light pen, control knobs, valuators, and a

variety of other technologies. There are more sophisticated

devices also available. These are not really necessary to
accomplish the functions required for DESIGNS.

The DESIGNS capabilities discussed in earlier chapters
can be accomplished with relatively simple devices. For
example, the designation of symbols can be accomplished by
such things as 1light pens, or any device which can move a
cursor (such as trackball, mouse, joystick) and activate a
selection (event button). The drawing of new symbology
likewise can be supported by a device such as a digitizing
table.

\» There are detailed display screen issues to be
considered. A determination of the amount of symbology that
must be displayed at any one time during a DESIGNS session is
necessary so that the physical display capacity can be
specified. For raster type displays this implies a
definition of the raster size, or resolution, necessary. For
stroke, or <calligraphics systems, the number of vectors
supported is necessary. Drawing speed, update rate, and
refresh rate can be critical parameters for various
applications. A very basic issue to address involves the use
of a raster versus a stroke generated display. There are
significant tradeoffs between the two as discussed earlier in

this paper wunder the cockpit designs topic. The choice of

158




‘ "‘l

LI AT PN DU R Al P T © L T A A a MU N L e P 04 - T 5 SR NIRRT MY o Ty ¥ W W) e Tl -

.

the workstation display reflects these considerations and
effects the use of the display screen.

In addition to the 1[/0 1issues, Martin and Van Dam
caution that there are other issues, 1less 1likely to be
considered, that may have a serious impact on the choice of
system hardware and on later implementation. One must
consider early in the design phase the necessity for the
workstation to support special graphic functions. The major
issues here concern the need for special capabilities such as
surface filling and shading, special high-speed options for
transformations, any advanced algorithms, color options, and
many other of the available graphics options. Associated
with selecting these capabilities or not, is the concern as
to whether or not some of them can be supported by software
algorithms, or if they require dedicated hardware to provide
faster speeds.

In another area, system security concerns may have long
term impacts especially in a military environment such as is
postulated for the DESIGNS system. Certainly some level of
security must exist in order to maintain the integrity of the
DESIGNS database th t supports the project. Likewise, there
are long term ramifications 1in the areas of reliability,
maintainability, and flexibility. Ease of servicing and
upgrading the workstation may be important considerations of
the unit is to be used as a tool for an extended period of

time.

159




- v
e e .

\o

The workstation is a physical plant, and as such has the

same concerns as any other physical installation. Many of
the issues may seem to border on the consideration of
minutiae, but they are valid concerns over the lifetime of
the equipment. It may be important, or mandated, that the
system meet specified noise levels, or size constraints, or
particular compatibility with existing pieces of hardware.
The details of these areas discussed 1in rather broad
terms can not be ignored. At least one must make the
conscious decision that the impact in some area is mininal

and thus is not an important concern.

Target Device Interfaces

Even in a fairly restricted operational environment, it
is likely that multiple graphics processors will be available
for use. In all likelihood, these devices will be dissimilar
both in their hardware characteristics and system software
support. The intent with DESIGNS is to provide for target
device independence, at least from the wuser's perspective.
[ACH SIGGRAPH, 1984 : 201-207; Reed, 1982 : 281-289].

The necessary knowledge for delineating such a generic
definition lies in two areas. First, an understanding of
what hardware options are available, and thus must be made
accountable/accessable through the definition, is necessary.
Second, an appreciation for the software data abstraction

nethodologies is paramount to the successful implementation

160




R

P et

o

of the standardized definition.

The 1importance of device independence and graphics
standards is widely recognized within the graphics community.
Substantial effort has been taken to define +the functional
capabilities supporting device independence [ACH SIGGRAPH,
1979; ACM SIGGRAPH 1984]. Such standardization supports
quicker, easier, less costly graphics development, while also
providing for portability of both software packages and
personnel.

Both the CORE Standard and the Graphical Kernel System
(GKS) define requirements for predefined capabilities within
the basic software package. There is also some attempt to
define the requirements for a virtual device interface (VDI)
which provides for standardization of hardware. This is the
weakest point in both CORE and GKS specification, with only a
very generalized statement regarding the VDI. HMNeverthless,
the initial steps have been taken in an effort to define and
promote graphics standards. These standards have been
enbraced by the American Mational Standards Institute (AMSI)
and the graphics industry. Continued development of
standards, with full implementations of them, 1is being
actively pursued by both groups [Lieberman, 1983: 49-51].

These efforts provide a precedent for the DESIGHS
effort. Concepts from the standards provide a basis for the

definition of the environment capabilities and

characteristics.




AN L e AL w e e - P A s B Sty IS ARSI i S A S A S S L A e A Rt i A i A A |

Selection of Host Computers

The selection of a host computer can have far-reaching
consequences on the overall DESIGNS effort, but possibly none
are as critical as the effect the host could have on the
actual development effort. The intent for the DESIGHNS
environment is that it could be used in several host machines
if so desired. The system design is not necessarily tied to
any given type of host hardware as 1long as the features
specified for graphics support and data storage are
available,

Thus the critical impact of the original host machine is
its capability and availability to support the development
effort for the thesis. Strong development support is

\e necessary for the successful completion of the implementation
phase of DESIGHS. The availability of support tools such as
programming languages, editor support, and file management
resources is imperative. A consideration of the available
tools within the host operating system and supporting
subsystems is important when considering a potential host.

Equally important 1is the host availability. If
potential host machine resources are already heavily
committed, then the development time for a major effort such
as DESIGHNS becomnes prolonged. It may be more effective to
select a host with lesser, but adequate, capabilities which

has better availability.

162




There are no unique features required for the DESIGHNS
development effort. The host selection need only consider
the availability of the host, 1its resources for the
development of the software, and the utility of its support
functions. The important characteristic of the host, since
most computers today offer the kinds of features required, is

that the features be reasonably simple to use.

Overview of Critical Software Issues

Many of the software issues have been alluded to in the
simulation, human factors, and hardware topic discussions.
The actual software implementation must, of course, reflect
the needs and constraints in each of these areas. Ideally,
it is this software package that integrates all of +the
desired functions, but in such a manner as to minimize any of
the potential shortcomings. Earlier technical discussions
serve to identify key areas for software development.

The DESIGHS implementation is heavily dependent on
database design and data abstraction techniques for the
storage of symbol definitions, generic display list
constructions, and target machine descriptions. Several
research efforts have proposed data structures which can be
manipulated by graphics tools. The work of the Graphics
Standards Planning Conmittee of ACHl produced the CORE
Standard package late 1in the 1970's. This was an involved

effort to produce a true standard for graphics, particularly

163




graphics software. The GKS proposed standard, which evolved
later, addresses the area of data structures which should
define a graphics environment. Other de facto standards,
such as the North American Presentation Level Protocol Syntax
(MAPLPS), are finding acceptance within the graphics design
conmunity.

Each of these standards provides a basis for definition
of various critical data structures or communication paths
which must be embedded within the DESIGNS environment [ACM
SIGGRAPH 19795 ACHM SIGGRAPH 1984; VLieberman, 1983: 49-53;
Gordon, 1983: 61,641]. Unfortunately, there is no clear-cut
standard at the moment in the commercial market, even though
the GKS has been adopted by AMSI as a standard. Graphics
vendors, both hardware and software, are hesitant to commit
one way or the other at this point due to the tremendous cost
of an incorrect choice.

Another area of software development involves the
DESIGMNS dialogue. HMHuch attention has been devoted to the
definition and description of characteristics of various
dialogue types. The implications of these discussions on the
actual software implementation are many. Humerous studies
have been conducted to provide <clearer guidelines for
dialogue implementations to assure that proper software
techniques are enployed. Parsing techniques provide the

necessary capabiity to interpret dialogue activity.

164




A tremendous amount of discussion is on-going within the
computer community today regarding the meanings, benefits,
and applications of fourth generation languages. How do
these ‘'‘new' language capabilities impact the DESIGNS effort,
if they do at all? Some concepts from the fourth generation
language proponents bear interesting relationships to the
proposed DESIGMS concepts. Thus the 1issues surrounding
fourth generation languages become, in some sense, part of
the software issues of DESIGNS.

All of these software issues ultimately revolve around
the final design of the algorithms necessary to accomplish
the DESIGHS objectives. The DESIGNS development has been
predicated on the available technology base and theoretical
techniques. To fully understand the detailed definition of
the DESIGHS concept, one necessarily must have the relavant
background information. The following sections expand on the
topic areas enumerated here and set the stage for the actual

system design description in the next chapter.

Graphical Data Structures

The need for data structures to define graphical objects
has been understood from the early works of Sutherland with
the SketchPad dissertation. As experience with graphics and
computers broadened, the refinement of those data structures
used for graphics began. However, many of the

characteristics of the data structures in conmmon wuse today

165




o

are very similar to the first definition implemented by Ivan

Sutherland in the early 1960's.

The Sutherland database dealt not only with the
symbology itself, but also with those constraints necessary
to fully define it. His database mechanism recognized that
in drawing symbology there were constraints that must be
satisfied. These constraints were the basic relationships
that made lines straight, or vertical , or parallel, etc.
There exist both geometric constraints and user imposed
constraints.

The geometric constraints are more easily quantifiable
as they represent some definition for drawing a given symbol.
For example, a square can be drawn in one of several ways -
by specifying the four corners, by specifying one corner with
the length of the side, etc. Each of the definitions for
drawing a square is complete in and of itself, but contains a
differing set of constraints.

Sutherland based the generation of symbols on a
definition copying scheme. Within the SketchPad systenm
existed definitions of different ways to mechanize a symbol.
From that definition, new symbols were instantiated by
‘copying' the definition with the proper points, lengths,
etc. supplied. This technique 1is still used today, in a
refined form within the Smalltalk environment. This
environment, developed as a research tool for defining
advanced, graphically oriented systems, is an object oriented

system which operates by using definitions which describe how

166




“-'4"’.'..-’4

something is to be accomplished.

Sutherland's data structure implemented rings of
information. In this scheme the general information is
separated from the specific by collecting all things of a
given type under a generic heading. Thus the unverse of
symbols can be defined in terms of variables, constraints,
~opologies, and holders (which are attributes of multi-symbol
segments) [Sutherland, 1963: 25-28].

Outgrowths of +the SketchPad system include two systems
used for engineering related graphics. Each of these also is
based on the ring data structure. The first, a Three
Dimensional Editing and Drawing package, THREAD, uses what it
terms an Associative Structure Package, ASP. Within the ASP,
individual objects are defined by linking rings of data which
are associated by types. Figure 26 illustrates this data
structure for some generic object [Parslow and Green, 1971:
245-2591.

The second system, another Three Dimensional Drawing
systemn called TDD, is an interactive graphics system. This
system uses a more comnplex data structure composed of rings
and beads, a bead being a block of data containing both
problem data and pointers to other related parts of the
overall graphics data structure. In TDD all information Iis
stored in linked tree structures by defining object edges and
vertices. The edge information is related together in a
linked ring. This particular data structure becomes very

large, and 1is difficult to modify rapidly as the pointers

167




AR RS ANE AN v - N Sl ‘Wt . LR ' K R QT e T T R W g T Y e Ta o™ v W
RS - -

O0BJECT
;; o ____ Surface Ring, containing transformations
F ______ _ _ Display List Ring
. [ l
: line line
AB BC
point point point
A B C
\»
FIGURE 26
ASP Ring Data Structure Implementation
must be traversed. However, it 1is excellent for an
; interactive environment. Hith the dynamic data allocation
‘ supported by the addition of pointers, this data structure
lends itself very well +to activities encountered in the
j interactive systems.

As work has progressed into the 70's and 80's, the data
structuring problem has been recognized as acute in graphics

applications. 1In order to facilitate more efficient, smaller

data space requirements, relational databases have been




.....

Co

s e LT

studied. Internal tables of data defining graphical
attributes have been wused 1in various picture building
systems. The relations are then interpreted by a relations
editor and symbology is generated.

Accompanying this move to relational database structures
is the deeper understanding that for graphical data to
possess any meaning it must have both syntactic as well as
semantic meaning. The mechanism of how the data 1is stored
and accessed, its syntax, is only part of the story. How the
data is to be used, its semantics, must also be understood.

Traditionally, the semantic information is not stored
and can not be operated on. Thus programs and data were
inseparable as the semantics are buried within the program
calls. Newer graphical data base methodologies are
advocating the inclusion of graphical semantics. Table VII
below is an excerpt showing the type of semantics defined for

an early system using this approach.

Graphics Standards

Serious efforts in the late 1970's and 1980's have been
undertaken to standardize graphics software. The CORE
Standard evolved as practicing graphics developer's
recognized the need for a defined, standardized methodology.
The singular driver for the development of the standard was
the issue of portability, both of software and the people who

develop and use it. The CORE definitions focus on specifying

169




........

TABLE VIII

Semantics Permitted in Early Picture Building Systems

OPERATTION SEMANTIC MEANTING

<X, Ry, Rz Rotation around specified axis

Scale Scale equally in x, y, and z

Scale x, vy, z Scale in the specified axis

Shift x, y, z Shift (translate) in the

specified axis

WLLX, WLLY, WURX, HWURY Corners for a window -

lower,left x and y
upper,right x and y

VLLX, VLLY, VURX, VURY Corners for a viewport
Line Draw line to x, y, 2z
HMove Move to X, ¥y, Z

Rectangle, Rectangle3 2 and 3 dimensional rectangle

functional capabilities required for a system to be CORE

conpatible., Levels of capability are specified so that even

the 1low performance graphics systems can achieve a level of

CORE compatibility. The CORE definition is detailed in its

specification of the functions a CORE compatible system must

support. However, it falls far short 1in defining the

interface to physical devices and in discussing data base

issues.

170




Even with its inevitable shortcomings, the CORE Standard
has had a tremendous impact on graphics design and
development. It was the first serious attempt to consolidate
techniques and ideas related to graphic design in such a
fashion that it could be used as a standard to gquide future
designs.

The more recent GKS proposed standard addresses the
issue of physical hardware more completely. It provides at
least some data structures support by defining the kind of
data that must be stored regarding workstations, error
conditions, and metafiles. This standard also falls short of
tackling the problem of how to adequately define the software
for the physical hardware interfaces.

The interface area 1is at once the most difficult, and
possibly the most necessary of all the technical areas to be
solved. Because software developers tend not to develop
hardware and vice versa, there is a natural gulf between the
two due to physical separation. This leads to poor
interfacing, or large volumns of specilized software for each
software/hardware configuration.

Two very recent efforts offer some hope for the future.
One 1is the definition of the virtual device interface (VDI).
This concept works very similarly to the p-system under
Pascal. In such a system, a theoretical machine is
postulated. All software can be designed to function with
the virtual machine that has been defined. Only a small

portion must then make the final conversion to the real

171




device. The second concept has become a kind of standard due

to its success. The NAPLPS system, which grew out of the
videotext arena, shows promise for standardizing the
communications with graphics hardware.

The NAPLPS system 1is a communication protocol and was
originally used to transmit videotext information across
telephone lines. The system is not terribly complex, and has
embedded within it +the capability to define not only text,
but symbology as well. All data transmitted is 1in standard
ASCII format.

The beauty of NAPLPS is that it is a concise, hardware
independent, expandable system. It is quite efficient from
the communications standpoint which makes it attractive for
transmitting graphical data at high rates. With proper
encoders and decoders, ANY I/0 device can use the standard.
This format is being considered by the national standards
committees in both the USA and Canada. It is also becoming
more widely accepted by the practitioners in the field. Most
notable proponents are business firms with much to gain in
the graphics area but little to gain from videotext. Thus it
may become a standard by virtue of its effectivness [Gordon,
1983: 61-66].

The HAPLPS system uses the ASCII <character set with
International Standards Organization (ISO) code-extensions.
This technique expands the 128 ASCII character set so that
numerous Sets of commands and symbols are available and can

be moved 1into and out of an ‘'in use' table. This

172

......

...........................




N
-
~

£74 4 1 £ 3

e

PEAY IV e R

code-extension technique also permits the addition of user
defined sets. Thus the HAPLPS system can be expanded and yet
remain completely consistent with its baseline definition.
This protocol appears to have many of the features
necessary to support true device independence. Systems using
NAPLPS need to have the proper communication links. With
that and the protocol, graphics output devices would truly be
interchangeable. Time will tell if NAPLPS becomes a major
force in the graphics world. As with anything else, vendors
are somewhat hesitant to commit hardware and software
development +to it wuntil the final, approved version is
available. But, the promise 1is there. Hith proper
development, it may fill the gaps in the CORE and GKS
standards and help produce a complete system for graphics

standards.

Seftware Techniques to Handle Dialogues

Extensive comments have been made regarding the needs
for the ‘'human' side of the human/machine interface.
Appendix B discussed the human factors topics at great
length. Within this discussion were identified critical
areas to be addressed in the implementation of the DESIGHNS
dialogue.

The software for the dialogue is based on, and considers
the following areas,

(1) the 'natural language' analogy,

173




(3) the
(4) the

(5) the
and

(6) the

conversation

interchange

conversation.

exchanges t

spoken langua

certainly n

issue of nat

exchange afte

is actually

(2) the communication of information via the
user/machine interface,

definition of the dialogue as a language,

techniques available for 'conversation’,

protection from errors during a 'conversation',

tools available to support the dialogue design.

Throughout this
will be

between

It

hat drives

ge.

ot readily

ural languages.

r interpersonal

defined

us

is

conversations to pattern

used

discussion

er and machine

somewhat

the terms dialogue

this analogy with

designers of

after the famil

interchangeably.

stems from the underlying language analogy that likens

human to h
human to mac

iar form of

and
This
the

to an interpersonal

uman
hine

the

It is presumed that this form of exchange

It is reasonable to

sone extensibility [Van Dam,

on

is more readily understood to the

user.

understandable

However, it

to the machi

Artificial intelligence systems deal more heavily with

true natural language exchanges are not practical.

pattern certain features of
communications. It s
and vocabulary for

necessary to maintain simple rules

multiple

174

levels.

1982: 218-219].

The user w

through the provided 'language' to gain a view of the

is
nell

this

Hith conventional technology,

the
then
the

exchanges, use concepts familiar to the user, and provide for

The actual communication between the user and the systen

orks

data




stored within the systen. The language is the window into
capabilities and information contained within the system.
But the overall communication is not at all symmetrical due
to the vast differences between the methodologies wused by
human and machine to process information [Martin, 1973: 3-8].

The language is specified in terms of semantic,
syntactic, and lexical characteristics. The semantics of the
dialogue form used describe the functional capabilities of
the system. It specifies what information is necessary to
accomplish the function, and what the result is. In
addition, it determines which functions are in the perview of
the human, and which are those of the machine.

The syntax of the dialogue form characterize the actual
exchange between user and system. It defines the ‘rules' of
the language, specifying legal input and output sequences.
This is just as the syntax of any language, spoken or
written, defines those constructs which can be correctly and
properly used which the language.

The lexical, or procedural, portion of a language
definition, specifies how input/output primitives are formed.
It conprises the procedural capabilities necessary to
actually accomplish an operation [Martin, 1973: 309, Van Dam,
1982: 210-2251.

It is important that the inteqrity of the conversation
be maintained as it is developing. !hen individuals speak,
they are capable of filtering out erroneocus or unrelated

infornation. At  least to some extent, the dialogue between




............ W W TRTRTEUTRUTRLTL

user and computer must be likewise protected from incorrect
data. This is @a complicated task and requires some of the
most sophisticated processing techniques available.

E. B. James discusses this issue in terms of
‘protective' ware. He describes a layer of software that
logically resides between the user and the actual
communication channel, and filters out undesirable portions
of the conversation. This 'protects' the integrity of the
dialogue and assures that only valid conversation commands
are carried out [James, 1981: 349-350].

'Protective' ware, or bullet proofing of the system
software, 1is largely a function of the dialogue structure
selected. In general, conputer initiated conversations are
easier to nrotect against errors. When designing the
dialogue structure, error detection and/or correction can be
taken into account. By considering

(1) the psychology of the dialocue format, the
liklihood of errors can be minimized;

(2) the structure of the dialogue, methods of
recognizing and trapping errors can be developed
within the dialogue framework and the structure can
then aid in error correction;

(3) the extent of error propagation, the dialogue must
bridge the gap between the real-time conversation
and any resultant actions or created files [James,
1931: 450-462].

A dialogue develnped around these principles provides for a
more graceful deqgracdation should ¢ failure occur.
Looking at the time sequence of events in an interactive

system's structure is important. State transition diagrams

176




AD-A159 218 THE INTERRCTIVE .ENERRTIO“ OF RLPHRNUHERICS lll
SYNBOLOGY MITH DESIGNS ON THE FUTURE(U) RIR FORCE INST
OF TECH MRIGHT-PATTERSON AFB OH SCHOOL OF ENG

UNCLASSIFIED K A ADAMS JUN 85 AFIT/GCS/MA/85J-2 F/G 9/2

Fuueo




-

J”J«!- £ HcL

R e N e e

- e e e e - -

32
EEEE

Nmununuﬂ.m

ol

I
=

PE STk & SRS : T x T Ty -

MICROCOPY RESOLUTION TEST CHART

L XL & .

NATIONAL BUREAU OF STANDANDS - 1863~ A

D T e R o

3




, 2 e g g ’ i T
LA RO IR PP B R AR L N DL I T P bl “-Te T PR e Y ] £ D L ek s N WaTm L e S e Fadiey h . 24 B plag 1

explicitly specify the temporal relationships that exist
within the structure [Jacob, 1983: 28-34; Kieras and Polson,
- 1983: 103-1061. Such tools, which are relatively simnle to
. use, can readily define acceptable system states and identify

problems within the dialogue structure.

f The Impact of Fourth Generation Languages

A discussion of fourth generation languages (4GLs) is
relevant to this thesis, because DESIGNS can be considered as
- a 4GL. The key criterion 1in defining a 4GL is that the

language supports and improves user productivity. The use of
the term 'language' is actually a bit of a misnomer, as 4GL
.~ systems are not languages in the classical sense [Tufts,
1984; Tharp, 1984: 37]. Indeed, they are support

environments for some set of users.
The 4GL systems have evolved from the more traditional
y languages. They tend to be 1less procedural than third
generation languages such as Pascal or FORTRAN. Individual
- statements within the 'language' cause more activities to be
initiated than in traditional languages. Thus the
specification for an activity is more concise and, hopefuly,

more natural in form.

The 4GL systems tend to be 'friendly', flexible, and
robust. They make efficient use of the user's time, but not
necessarily the computer's time. They are almost exclusively

on-line, interactive systems [Tufts, 1984]. The development

177

,.}\‘-‘.‘\'- - ‘.}\'.': '.';".' » -..-.&.. B LS ITe e e e -._..'._'.. “u .\'.ﬁ.~\., ‘) LIPS TV T .‘- oY . -(: - .._.\'..- - ." ..J.“ Y ‘a ‘-, R




R S Sl R AN

.
’
‘e’
3

’

o

of such systems has normally been undertaken to solve a
specific problem, and to provide a tool for the user.
Examples of such systems include various query systems,
database systems, report generators, and various graphics
output languages.

Within the context of this definition, DESIGNS can be
considered as a 4GL. It meets the criterion, and its primary
goal is to reduce production time required for cockpit
symbology. There are no rigid definitions of a 4GL which
preclude identifying the DESIGNS system as an example of

fourth generation techniques.

Algorithms for Graphical Tools

Textbooks filled with algorithms for graphical
manipulations are commonplace [Foley and Van Dam, 1982;
Newman and Sproull, 1979; Pavlidis, 1982]. It is not the
focus of this thesis effort either to investigate or develop
new algorithmic techniques.

The DESIGNS subset that has been selected for
implementation and testing is more functionally oriented. It
is a set of tools to manipulate existing symbology to create
display formats. Additional capabilities for the DESIGNS
environment, that are only postulated at this point, will be
more algorith intensive.

Tools which will support the drawing of new symbols from

primitives, or support the complex image generation require

178




A YVOR W

- graphics algorithms. In places where special graphics

algorithms are required, available techniques will be used.

‘-‘:ﬂ
\_i." ““‘ YW 30 \\ S \.- \:f‘.-":t-‘- ".l":-\:h.'. \‘\.‘. ~"-'.\"-"':" -‘;o.‘ .--‘:;'..v.'-.-.':-.‘:-.‘:-.’ .-".-\‘--'...‘.."-..".“..‘::"..'-.."..'- . -.:" .:'-




iy G NENS SPN SN AT S, Sl N Ot S 4R i Pl Sl Sl S O il S AL il M ali i o) i LA A ds A etk vl Wl senh ndh oun §  swd cmlt was el -

Appendix D. DESIGNS Top-Level SADT Diagrams

The SADT diagrams contained in this appendix i{llustrate
the top-level definition of the DESIGNS system. They follow
from the description of functional requirements contained in
the fourth chapter of this thesis. Coupled with the
pseudocode in the following appendix, they provide the reader
with a solid understanding of the project definition.

The SADT diagrams prepared for the DESIGNS definition
phase focused on the functional aspect of the system, and

; looked critically at the activities within that system. The

- SADT diagrams for the DESIGNS development reflect that point
of view.

\i As a quick review, the following description tells how
the SADT diagram 1is used. The box itself represents the
activity of interest. Arrows approaching the box from the

- left represent input data, arrows approaching from the top

represent controlling data, and arrows departing to the right

represent output data. The basic concept 1is that the box

[l .

activity tranforms the 1input data to the output data,
governed by the control information that constrains the
system.

The following SADTs define the important executive
levels of the DESIGNS systenm.

AR

A

180

*.-:..' PO A A AT S I T e T e e A T T AN NS N e "




SUO|IduNnd |8A87 UIBK SNSIS3Q I'v
NN 300N
Q.
=
ey
S
i =
$92.n0Sa 1z
asee(3y suoydo Jayi0 m
u_ ®¥suoiido 5
uigw ~
1inb s39(8s J3asN $5890.d T
T} suoido 5o >
pafie|dsip nuesw fe . oo
uojyoejas| SO0 lujew fieidsig «
J9sn 0 —_
UO|}BISHJIOM o
Q
azienu| pgnyuiels -
4980 o
e
&
31Qe(10AB
UDI}RISHJIOM




R T T ST X

e R d ta i@ i e E i e

LA P vy e

RN R S R W

RSN RRR

- .
o

Sae .‘..‘.

su0})dp ulll $$8304d el'v
3L 00N

LR -.- -

2 CTRTUT
Myaloy €278

uo13do | uoiydo

paja8|as

$$3204d
-

182

nduy Jasn
apodeqQ

FIGURE 28
DESIGNS Menu Option Processing

fuyue
ydushor

uojydo
ptieauv]

I'g
nduy 1nduy 49s8n

$8111A1}08 4980 3Ad 1Y
J0 uo11d14283Q fRajus -

154 pacoghay
uo1338195 PIISA 4

J0}J8|88
821Aap 1ndu| o

—— e o« o e o - o g . .. [ AL A %, % e e e 970 » e el &I -g -y~ r s 8. 5.8 % ci'i



uo13dp pe128|a8s $8304d

£CI'Y

Il

300N

zN

8{1} 82.4n0s
18040 L

4818.4d483u}
186403

$5820.d

,
uo|1oe|es yabus

mmu;_uuo uojydo

UOLIULIOD pajoa|es und
ebupy — w0 48d

CIRY T 0uWa0)

P31}1POKW CTEY payJ8|as

passaddy 199

WY | M uo()do
uo1}2888| louLiod $88204d
pLIGA
sl
91qQe[I0AY 1S} uondo piieA

820)491U| 1SOH

uol)do
vauum_mJ

1511 18648y 81qe|10AY

FIGURE 29
DESIGNS Option Selection Processing
183

7

‘$"h

»

S

34

e

PR,

¥y



=

4

Jajaudaaju| 19biey ssedoud

veeil'v
Il 300N

s)ooy Jweufip
Jo uonuijeq

weJboud
so1ydosb
I
0 moowm.. £Ereel
— a|npow
uisw ppy
4 a|npow 481860
adJno sa|npow
pajull Nul
— ]
a|npow
joquifis
$juBWaJInbaJ ainpow 19041X3 1S4
aiemyjos 18bue) 834nost fieidsip
Jo uchjiuyjaq J148ud9

s81404q| |oqufig

Al A A Ao - s .

FIGURE 30
DESIGNS Interpreter Activities

184

e
\"\',\"

“a
o0 ..-‘-‘-

. "8 Te “a=m
\..'-.--‘-.

‘-q"~¢° \.

et
NG 0

o . " a

. \.‘\'.'.:.'_:. SR

AN
»

.- .q;'.

\'- 8




Increasing levels of detsil exist under each of these
SADT charts. This detail has not been included for two main
reasons. The first is that some of the details, as discussed
in the body of the thesis, have not yet been defined. The
second is that the most important information can be desribed

without including the more mundane levels of detail.

185




Appendix E. DESIGNS Pseudocode

This appendix contains pseudocode for the upper-most,
functional level of the DESIGNS environment definitéon.
befinitions for every module developed as a part of the
thesis efrort are not included here in order to present the
nost informative data in a concise manner. Where
appropriate, families of related modules are defined in
qgeneral terms. This permits the reader to visualize DESIGNS
as a complete system, without pondering module specific
details.

The software developed for DESIGNS falls into six
general categories, which are the:

(1) executive functions of the environment, which
'manage' the entire system and are the routines of
primary interest in the pseudococe development,

(2) menu structure and help information, which provide
the portion of the user interface which the user
actually ‘sees',

(3) librarian features which provide all access to the
underlying file structures used by the system,

(4) support modules which provide the basic graphics
primitives, interface through the host operating
system, and other supportive functions,

(5) hardware specific modules which provide the
interface both to the system workstation, and the
various available graphics devices, and

(6) defined symbol sets that have been developed, and
are commonly used within the hosting facility.

The pseudocode contained in this section emphasizes the

first three areas. An understanding of the DESIGHNS




structure, with 1its important wuser interface concepts and

(]
’ .a',

librarian features, is necessary. The major functions of the
hardware, support, and symbol sets are enumerated. Since the
pseudocode for individual modules in these areas tend to be
either somewhat repetitive, 1in the case of symbol sets, or

very machine dependent, in the case of hardware and support

modules, it is not included here.

. The mainline module for DESIGHS performs all of the
i setup work for the package, invokes the actual DESIGHS

executive module, i°d ‘cleans up' after the wuser has

RAMANAR A )
PR

completed the desired job.

The associated data structures for the DESIGMNS package
are defined in a single block data structure. The
- description of these structures is contained in the following

\»
block of pseudocode.




N R S R o s R R e s, N fafh cai it st ol ik gl B N A e i tal i A Al ead e i an b e iy |

* PURPOSE of subroutine THESIS

khkdkhkkkkkhkikhkkkhkhkkhkkhkkkkhkkhkkkkhhkhkhikhkhhkkhkkkhkhkkkhkkkkkkkhkhkkkkk

HAIMline program for DESIGHS development environment.

- esign ! DESIGHS has been developed in

- nvironment ! support of the thesis effort

- upporting the ! required by the Air Force
nteractive I Institute of Technology (AFIT)

- eneration of ! to satisfy all the reguirements

- alplunerics & ! for an MS in Computer Systems

- ymbology ! Engineering. ( 1982-1935 )

NIZO—WNMO
]

k% % o % % N % o ¥ 3k
% % ok 3% ok o ok O X% %

kkhkkkhkkkhkhkikkkhkhkkkhkkkhkhhkkihkhkhkhkhkhhkkhkkhkkhkkkkhkkhkhkkhkkkkkkhkkkkkkkkkkk

* REQUIRED DATA for subroutine THESIS

hhkkhkkkkhkhkkkkhkhkkhkhhhkhkkhkkhkkkkhhkhkkkhXkhkkkhhhhkhkkkhkhkhrkkhkkkkhkhkkkkkx

* *
* - definition for the different picture segments *
* within the DESIGHMHS systen *
* : common block - Station Pictures *
* - *
* - definition of basic workstation parameters such *
* as intensity levels, character sizing, character *
* rotation *
* common block - Control Information *
* - *
khkhkhkkhhkhkkhkhkhkkhhkhkhkkhhkkhhkdkkhkhkhkhkhkhkkhkkhkhkhkkhkkrhhkhhkhkhhdkhkhkkhkhkdxkhkkx
* PSEUDOCODE for subroutine THESIS
hhkhkkkkhkkkhkkhhkkhkhkkkkhkkkkkhkkhkhkhkkhkkkkkkhkkkhkkkkkrhrthkhkhkhkhkhkkhkhkkktkkhkikhhkx
* *
* Initialize the workstation hardware *
* *
*  Draw each required DESIGMS help screen *
*  Draw the DESIGNS working area - borders, drawing area*
*  Draw each required DESIGHS menu screen *
* *
* loop until the user wishes to stop using DESIGHS *
* process the DESIGMNS options *
* end loop *
* *
* Release the workstation hardware for the next job *
* *
*

Khkkhkhkkkhkkhkhkhkkxdkhkkhkhkkhrhhkkhkhkhkhhkhkkkhkhkhkhhkkrhhkkhhkkhkkhhhkik




- e

.-
P
‘A-n

S R TRK LN oy

* PURPOSE of code block BLOCK DATA

e e Je e e ke K e Je ek K de e de de K de kg Fe de do J K de de ke de de do ke de e e e d Jo Je e ke K Kok ke ok ke e Kk ke ok kK ke ke k

of the display being created

* *
* these common blocks are required for the DESIGNS *
* system and are initialized in block data :
*

* Device_Control - specifies workstation options *
* as unit, copy control, on/off,*
* and echoing. *
* ’ *
* Station_Pictures - defines picture numbers for ¥
* each of the separate pictures *
* within DESIGNS *
* *
* Control_Information - control data for workstation *
* attributes such as intensity, *
* character sizes and rotations,*
* line types, etc. *
* *
* VG_Definition - defines the VG graphics *
* characteristics *
* *
* Symbol Table - contains generic definition *
* - *
* *
*

%%k de kK % kK kg A de ok kK v de e g e e do de e v g e ok e ok e e e ek e e A ke Kk e ke e ek ke ek e e ek

* PSEUDOCODE for code block BLOCK DATA
khkkkhkhkkdhkhhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkkhhhkkhkhkhkhhkhkkhhkkkkdkkkhkkhkdkkihkk
* *
* declare ALL variable types *
* initialize ALL data values :
*x

hhkkkkkhkhkkhkhkhhkkhkhhkhkhkhkkhkhkhhkkhkhkhkhhkhkkhhkhkhkhkkthkkhkhkhkhikhkhhhhk

189

LA AN S NG i A o7 N e P R BT W DN LR AR { i  PEa Rl g T ok o MR Pt g s pm B at Sasel b s Cul s ol seg Sab Bl




[l it g Mg

>
o
i

A)

G

The executive module manages all of the DESIGNS

activities. It interprets the selected options and provides
the appropriates response. All error handling and interfaces

to the host operating system are through this main executive

module. Parallel module exist for the various menu levels.

* PURPOSE of subroutine MAIN_SELECTIONS

dhkkhkhkhkhkhkhkhkkhkhkhkhkhkhhkdkhkhkhkkkhkhkhkhhkhkhhhkhhhkkhkhkhhkkrdhhkdkhkhkkdhkkdd

* *
* subroutine MAIN SELECTIONS - executive control for *
* - all user interaction with the *
* MAIN menu *
* *
* *

dhkkkhkkdkhkhkkdhkkhkkhkkhkhkkkhkkkkkkkhkhkkkhkkkkhkhkkhkhkhkkdhkkkkhhkkkkkkkkx

* REQUIRED DATA for subroutine MAIN_ SELECTIONS

ke J e de K de de K de e K ke do K g g g ke ke do Kk Fe e dede K g de ke ek ke gk K de ke ke ke ke ke ke ke ke ke do ke dede ke ke ke ok

user selection to stop DESIGNS : Quit_Designs

workstation definition :
common block Device_Control

* *
* *
* *
* %*
* *
* *
* definition of the available picture segments : *
: common block Station_Pictures *

*
* attribute information for the workstation : *
* common block Control_Information *
* *
*x *
b *
* *
* *

the generic DESIGNS display list information :
common block Symbol_Table

*hkkhkhkhkhhkhkhhkkhhkhkkhkhkkhkhkkhhkhkhkhkkkhkhkhkikhkhkhkhkhkkhkkkhkhkkkkkkkkkk

* PSEUDOCODE for subroutine MAIN_SELECTIONS

e J ke Je K de e Je e de K de e Jo K dode K ek do ok de e de ke g de Ko g K de de de de g de e de do de K d de de kK K de k de K de K dede ek

initialize all control variables
turn on required pictures to display the MAIN menu
turn off all unnecessary picture segments

* %k % % ok % ¥
* % % % % % *

loop until user decides to quit the DESIGNS system

190

-4 Tk A @ T T AT TV W TR N T W LY




* read the keyboard/joystick inputs *
5?n : determine which menu option has been selected *
K *

* for the case that the option selected {s: *

* *

* create a display - *

* initialize generic display list *

* create the new display *

* *

* modify an existing display -~ *

* determine which format to be modified *

* display that format on the workstation *

* modify the display *

* *

* store the current display - *

* determine the name for the display *

* store the display list *

* *

* document work - *

* determine which format to be documented*

* document the work *

¥ *

* assign attributes - *

* determine which symbol(s)/alpha(s) *

* to have dynamic hooks *

* establish dynamic hooks in display list*

: according to the user instructions :
\5 * select a target device - *

* determine which device the user wishes *

* to use *

* interpret generic display list for the *

* specified target *

* *

* dynamic testing - *

* test the current display with *

: representative inputs signals *

*

* help - *

* provide helpful information specific *

: to the current DESIGNS situation *

*

* quit - *

* stop the DESIGNS system *

*

* any invalid option - *

* notify that selection is invalid, try *

* again *

* *

* endcase *

* endloop *

* *

hhkkkhkhhkhkhkhkkkhkhkhkkhkhkhkhhkhkhhhkhkkkkkhkkhkhkkhkhkhkkkkhkkhkhkhkhkhhhkhkhkkhithikk

. ~ ‘:"

191 \

'."‘ ';. "‘-":“‘a"t“‘*"‘:"‘.\ ‘.%;.E'::.:::.:l N




s

Ty

* PURPOSE of subroutine SYMBOL_SELECTIONS

% Je % de ke Je e do e de kK de gk ke de sk ke ke do g ek e de e g e ek e ek kg e gk d de de de g e gk de e do K g ke de ke ke ke

*

* subroutine SYMBOL SELECTIONS - executive control for
* - all user interaction
* with SYMBOLIC menus

*
*

khkhkhkhkhkhkhhkhkhkhhhdhkdhkdhhkhkhhhhkdkhkhkhkhkhdhkhkhkkhkkdkhkhkhkdkhkhkhkkkdkhkdkhkd

* % % % *

* REQUIRED DATA for subroutine SYMBOL_SELECTIONS

e e e he e e e de de o e ke ek Fe de g g K de e de e e de e de ke d de de g e K K e de de T ke ke g de e de e e o g dede dede ke ke

* *
* user selection to stop SYMBOLIC operations *
* Quit Symbol *
* attribute information for the workstation : *
: common block Control_Information :
* *
* *
* *
* *

the generic DESIGNS display list information :
common block Symbol Table

dekkkdhkhkkhkhkkhkhkhhkkhkhhkhhhkhkhkhhkhkhkhkkhkhkkhkhkhhkhkhkhkkhhkhkhhkhkkhkkkhkkkkkk

* PSEUDOCODE for subroutine SYMBOL_SELECTIONS

dkhkdkhkkdkkkkkhkkdkhkhkhhkhkkhkhkhhhhkhkhkhkhkhhkkhkhhkhkhhkhkkkhkhkhkhkhkkhkhkkhkhkhkhkkk

initialize all control variables

turn on required pictures to display SYMBOLIC menus
turn off all unnecessary picture segments

loop until the user quits the SYMBOL operations

read the keyboard/joystick inputs
determine which menu option has been selected

for the case that the option selected is:

any valid symbol -
establish default scaling for display list

symbol
draw the symbol in workstation field of
view
update generic display list to include new
symbol
help -

provide information specific to current
DESIGNS situation

¥ ok % % % % % % Ok % % dk & % % ¥ ok ¥ Ok * F * X
% % % % % o % % % OF % % % % % O % % ¥ % % % ¥




R S

quit -
stop the DESIGNS system

any invalid option -

endcase

endloop

%* *
* *
* *
* *
%* *
: notify user selection is invalid, try again:
* *
* *
* *
* *
* *

Jed do K K do e ke do Je e do g e dc e e de do e g de ok de g Jo K ok gk de de ok e de e e e e e vde de e de e de de e de dekede de ke k

Each unique graphics target has its own interpretive
section within DESIGNS. While each of these interpreters is
specific to the hardware and software that make wupthat
system, the PACER/VG interpreter is ‘'typical' of the
construcion of such a module.

* PURPOSE of subroutine PACER_VG_INTERPRETER

dkdehkdehhkhkdkhkhdkkhkhkhkddkhkhhhhkhkhkhhkhkdhkkhhkhhkhkkkkkkkkhkkhkhkkkkkk

* *
*  subroutine PACER_VG_INTERPRETER - mainline module of *
* interpretive package for the *
: PACER/VG graphics system. :
* *

kkkhkhkhkkkhkdkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkkrkkhhkhkkhkhkhhhkkhhhkhkhkhhhkhhhik

* REQUIRED DATA for subroutine PACER_VG_INTERPRETER
khkhkkhkhkhkkhkhkhkkhkdhhkhhhkhkihkhkhkkkkhhkhkhkhkkhkkkhkhkdhhkhhkhhkkkhkhkhkhkhkhkkkkk
%* *
* definition of the VG graphics system : common block *
* VG_Definition *
* - *
* definition of generic display list created during a *
* DESIGNS session : common block Symbol_Table :
*
hhkhkhkhkhkhkkkhkhhkkhkkdkhkhhkhhkhkhhkkkkhkhkhkhkhkhkhkhkhkkhkhhkkhkkhkkhkkkkkkkkkkhkk
* PSEUDOCODE for subroutine PACER_VG_INTERPRETER
Khhkhkhkhkhkkhhkhhkhkhkhkhhhkhhhkkhkhkhkhkhkhkdkhkhkkhkhkhrhhkkhkhhkkhkhkhkkhkhkkkkkkk
* *
: loop for the number of modules to be retreived :
* set VG symbol prefix, based on generic DESIGNS *
* *

display list contents

193




endloop

generate complete name list for resultant VG source

open the required VG symbol libraries
get necessary static/dynamic modules from libraries

close all libraries

b % ok %k ok % ¥ F % ¥ * %

*
*
*
%
*
*
*
*
*
%*
*
T Je K de de K de Je de e de J e e de de ke e de K e de e de de e do de ke de de e de g de de dede de K de g Kk dede de Kk de ke K dek ke ok

The library support features include the following
capabilities:

(1) error handling,

(2) opening and closing of the necessary library files,
(3) reading and writing files,

(4) searching for files,

(5) modifying files to create the required dynamic
links, and

G

(6) managing the namelist of required symbols
associated with the library.
The general support functions include:

(1) basic graphics primitives such as drawing circle,
arcs, and short vectors,

(2) error handling through the host interface, and
(3) any general support tool required, such as menu
generation.

The hardware support functions referenced here primarily
support the DESIGNS workstation. Other hardware specific
modules are considered part of the target interfaces. The
functions supported in the workstation to date are:

(1) station initialization,

194

o, €, -"

ﬁﬁxﬁu& Vhr’



common to

R

KL AL SR . gt

*

*
*
*
*
*
*
*

(2)
(3)

(4)
(5)
(6)

The

(1)
(2)
(3)
(4)
(5)
(5)
(6)
(7)

Typical of the structural definftion of a symbol is the
following definition of the pitch ladder symbology.

PURPOSE of subroutine PITCH_LADDER

% & e d e J ok de K de e de g de ke de K Fe K de Ik Fe e de ke Fe T K de & de K Jo & de de e de Kk ek K e ek Kde K dedkk ok ke okkkk

subroutine PITCH_LADDER - part of workstation symbol

*
*
*
Draws standard symbolic representation of aircraft *
pitch ladder. :

*

Khkhhkhkhkhkrrhhkdhrrhhkhrrhrhhrhdhhrkhbhkhbrhhhhhrrhrhkhrhhrhhkhhrdhdk

picture segment initialization,

joystick, keyboard, and digitizing tablet
interface,

selective turing on/off of pictures,
'picking' of picture segments, and

de-allocation of the workstation and its resources.

basic symbol set on which DESIGNS was based is
a wide variety of HUD applications. It included:
pitch ladder,

fixed reticle and aiming reticle with range bar,
flight path marker,

Instrument Landing System (ILS) bars,

horizon line, and water line markers,

roll indicators,

various forms of scales, and

various commanded path and target information.

set

195




L I R

42

* REQUIRED DATA for subroutine PITCH_LADDER

Je de e Je b de de e ke de g ke de K de K de K de e de et de ke de e dede ke g de e de ke dedede e de ke dode ke de ke dek ke dede kkkkk ok
* *
* x,y coordinates for the symbol center : X Center, *
* Y_Center *
*  width of the ladder symbol : Ladder_Width *
* height of the ladder symbol : Ladder Heigh *
*  symbol attributes : IntensTty, *
* Scaling *
* *
khkhkkkkdhhkhkkkkkkkihkkhkkhkkhkhdkhkhkhkkkhkhkhkkkkhkkdhkhkhkhkkkhkhkkkkkdkkkk

* PSEUDOCODE for subroutine PITCH_LADDER

s e de A e K e d Kk de ok ke ke de g e dede ke e g ek e de ke dede kX de Fe ke ke ke e de e e de ke ket de ke ke e e de ke ok ke kok ok

* *
: set the default values for the symbol attributes *

*
: map X,y coordinates into workstation viewing space *

*
: draw the symbol as illustrated: *

*
* 10 10 *
* *
* *
* *
* 5 5 *
* *
* *
* *
* 0 0 *
* *
* *
* *
* _5 _5 *
x - smsTmsmsssmsms=s- *
* *
%* *
* -10 -10 *
« - -=-===-=-=-"=-—=-=-"=—=-=—-=-= *
khkkhkhkhkkhkkdkhkhkhhkkhkhkhkkhhkhkhkhkkhkhkhkkhkkhkhkkhkrhkkhkhhkhkhkhkhkhkkhkkhkkkhkkik

196




a
]
-

.- - - -....'-N'.'..-
b .',“ .' .

Appendix F. DESIGNS User Guide

This user's quide is meant to assist the beginning user
of the DESIGNS environment. It is not, as of this printing,
complete since the facility itself is not yet completed. It
does, however, document those capabilities that currently
function.

The DESIGNS package resides in the Flight Dynamics
Laboratory's simulation facility that is housed within the
Control Synthesis Branch in Building 145, Area B, HWHright
Patterson AFB, Ohio. It is hosted on the SEL 32/2750
computer that has been designated as the graphics front-end
processor.

In order to use the DESIGNS system, the user must first
log onto the SEL computer. This is accomplished by logging
in under the username ‘'graphics'. There is no key associated
with the name, so enter a carriage return when a key is
requested.

The logon procedure automatically places the user in the
correct directory to access all available graphics tools,
including DESIGNS. To activate the desired tool, in this
case DESIGNS, enter 'displays' (without the single quotes and
fn either upper or lower case) when the standard operating
system prompt is visible.

The prompt line will look like this TSM°displays

197

R A N B A S

......

......




- R T e W e N a VW a e TRY LW W e e ety ey

Starting this macro invokes the actual graphics

‘l’ '-
e
'."«r

executive program. The executive displays a menu of
available graphics systems. To use DESIGNS, select the
Megatek B option, which is option 2. The next menu level
that appears contains the list of available software packages
for that particular piece of hardware. This menu level is
set up as a series of pages. As of this time, DESIGNS is
listed on the second page. Therefore to select it, the user
nmust first go to the next page by selecting 'N' for Next.
The next page of programs is listed and DESIGNS appears as
number 6. Select 6, and DESIGNS will be automatically
started.

It is normal practice at this point to stop the graphics
3 executive program unless other programs are to be started on
# (;' other graphics machines. Therefore select quit from this
; nenu level which returns the user to the initial hardware

. list menu. From here option 0 stops the graphics executive.

This option is taken 1in order to release the computer
terminal for other use. Since all dialogue between the user
and the DESIGNS system occurs via the Megatek unit itself,
the computer terminal 1{is not used therefore should be
released.

DESIGNS starts by displaying a general 'help' screen in
order to orient the user to the basic forms of communicating
with the system. Once the wuser has read this, press the
carriage return key on the !legatek keyboard to continue. A

short perind of time will elapse while the DESIGNS data

198




structures are initialized. When this is complete, the main
menu will appear on the screen.

The main DESIGNS menu, which has been illustrated in
Figure 21, contains all of the top-level functions for
manipulating the generic display list. Selections are made
from this, or any other, menu by one of two methods. The
first method involves typing in the command from the
keyboard. On the main menu, the command takes the form of
the first word 1in the nmnenu option. For example, select
'Create Format' by typing in 'create' followed by a carriage
return.

The second method for selecting an option is to position

i the ~cursor by using the Megatek joystick near the option to
é be selected. (nce the cursor is positioned, push the button
i (;‘ on top of the : vstick to select the option.

In either case, if the typed command is incorrect or the

joystick button is pushed while not near an option, an error

message will be displayed asking the user to re-select. Once
a valid command is selected, the function to be performed is
initiated.

Throuchout the DESIGMS system, on-line help can be
accessed by typing a question mark. Information is provided
relevant to the current state of the system. Once the user
has completed using the help information, typing a carriage
return restarts the DESIGIHS system at the point at which help

was requested.




.« -
P A
IRV
et

Co V0 0 < e L IO N 0 RS AT I PR ¢ ------ -‘
o S s S R 5 0y A R TR SN s ~

To exit any menu, and return to the menu immediately
preceeding it, the user need only type 'quit'. This always
returns to the calling menu. To stop the DESIGNS system
entirely, the user types 'quit! from the main menu level. At
the conclusion of a session the user-created files are all

saved for use during a later session.

200

I N - el et ettty ettt
v e, ety R RN et AT Ta et e ctata .-

-

oA ‘LL_A_Q.AJA'J‘A'AJ.AAJ.AAA_A_S\

.-'-hlgl




........

Appendix G. Requirements for GRAFEXEC
I. Introduction

A. MNumerous independent graphics packages currently hosted on
the SEL 32/2750

B. SEL 2750 to be the host for future graphics devices

C. Preliminary software testing for an executive exists -
MEGOPTSX

! D. Addresses training needs by minimizing req's for detailed
- graphics knowledge by most users

[ E. Another step in the development of an integrated graphics
f environment

II. Purpose of Executive

A. Provide a consistent interface to the various available

packages
B. Provide extensibility as new packages/hardware are added
tg, to the SEL systen
' 4

C. Reduce training requirements for end users

III.Functional Requirements of the Graphics Executive

A. Must appear to the user as a single through which other
available options are selected

B. flust be capable of selecting options and initiating their
execution in some fashion, as well as terminating their
execution in some fashion

C. Must be able to allocate the target device to be used for
the display

D. Hust recognize if the designated target is currently
allocated and require confirmation to terminate the previous
graphics package and reallocate the device

E. liust release whatever resources it uses for its physical
nresentation of the user interface when finished, so that
they are free for other tasks




....................................

F. Must initialize the target device (clear the screen) and
deallocate devices when a graphics task is terminated

G. Should provide its own error handling, and not confront
the user with the potential of falling into unclear system
error messages

IV. Functionai Requirements of the Support Graphics Packages

A. Define a common interface with the executive for control,
data passing, etc.

\ B. Should not provide an internal mechanism for terminating
3 its own execution is this prevents the executive from
g knowledge that the task is gone and thus devices deallocated

b

! C. Should conform to the standard data structure established
for sinmulation data passing if it is to be driven by a
simulation

D. Should not assume any of the specified executive roles

- V. Implementation Requirements for the Software Developed

- A. Must be compatible with the SEL 32/2750 host

o B. Design and implementation should permit unlimited

\s addition of new capabilities (application programs)
within the existing framework of the executive design.
Additional applications can be made available as options
without regard to memory constraints although there will
be some real limit, both memory and time, as to how many
can execute simultaneously.

C. llust be compatible with shared memory configuration if it
is to comnunicate with other mainframe software.




LN e AL A D T e T LI L AT P A I S SRR A ARG B S SER wil o> g I SO Tt S Bk

57

GRAFHTCE BEXECUTIVE DOCUMENTATION
1.0 lntroogucison ~ Gois doocument describes the greophices
erecutive which intertaces graphics software packaygss on the
SEL ZZ/27 to tarpet hardware devices. The edecutive enables
a user to ectivate anv task on any device through & single
program. It also provides the capability to abort tasks i+

the desired device has previously been allocated o the user

wishes to chenge the tasks which are running.
2.0 Display Routine Structure -—
HARDWARE
MENUA
GRAFEXEC MAINSUR MENUE
| \
,.A‘ \\ t
s . MENUG
N
N MEMUX
The purpose of GRAFEXEC, the main program, is to call
MGINEUE, the highest level subroutine.
2.1 Gobrowitines — This section describes the function of
each of the GRAFEXED subroutines.
Zalel  Frocedure - MAINSUB - This procedure calls the menw
display subroutines and accepts the user s 1nput for
Bottwar &, Nerdwsr e, and mena control. It then uses theat
indfoarwateen Lo gotyvete the chozsen teslh, or to chenge the
paCkr b Uheer ol Lo ber dipl aved, I elen reads o a tai
vitbvioh comtaringe cwrrent rtrdoraati oo abowl the actilve tasis,
-
l" '\ . .
ey oot mvenon hael the devace chosen 18 unavarlable. due Lo

oL ol lecabaoane o gmdiwrmation 1 provided o Dies

203

~ Ty

1o - LT SR FO L M S S T R U S AL N I N Sy S Ml Sy A ST N LM A RN
YT R N I T PR I I R o T P P DR A I A A N A A A AT

"“ .\-'-'f




b«

r P R A

UL RN

€ 3
s, L0

K - ¥ Th i i - o, g ~ 1 > - - g (PR X7 o 7 v M N . P o wa
e Bl e B e AN L AL P ki 2 LI N A e L i Y e Thb~ Vi R g Y oo Vs Wh pig e

BER S dnpwbe o LHUIL: - Lees seleciions
Selalol Dutipuls - &an integer specifving which page

ai bthe sofiwsre mene to display. It is get to one before 1t
1w passed to Lhe mena subroutines.

software options for MEGATEK A. It also provides options to
controal which page ot the menu to display. At present,
there are five pages and & capability for twenty options.
Z.1.2.1 Inputs — FAGENDO - an integer specifying which page

of the menu to displavy.

2.1.2.2 QOutputs - None

Z.1.27 Frocedure — MENUB - Same as above for MEGATEK B
Z.1.73.2  QOutputs -~ Same as above

Z2-1.4 Frocedure — MENUG ~ Same as above for GAERTNER. At
present, however, no options exist.

10401 JInputs ~ Same as above

Zeled. Outputs ~ Same as above

- MENUX ~ fAdditional menus of the same
format es MENUA, etc., mav be incorporated to accomodate the

adailLiron i new hardesre gevices,

PP I Inputs - as necded
SotL Ul Dobpre - sn gwweded
vedem  brooscera o RebDWARE - This procz=dure displeve the

araplinos harcear s optons, it then accepts the user

Clos e s et Lemot - Lo allocete the device, 4 thies attenpl

Vo gk, S W e 0 T i gl e aptaone to abort o the tast

204

B vy g - C et e e e TP TG T e mea® g LR S T TR S O S L I SN
Bt G L o, g A s 6 A A D T (S TR e AT oy




T T WITFTE VAT @R

&

O T A Lok 1 B E= SN E I S U Wi Y AT T B N T T nsresear v, acQiuitiled
Frold €5 oy bews S0 L T mame faehionr an MM,
Zan o Brpension - Thre section deals with the steps netessary
to erpand erther the haroware or sofitware menus.,

| .1 Existing bpttwsre Menus — Adding additional options or

‘ pages. All ot the software menus have the same format,

) therefore these instructions apply to each of them.

E Z.1.1 Modificetiorns to MAINSUE — When a page is added to &

; meriw, thern the indes of the array ENTRIES(X) should bte

" incremented by 5. The index should be equal to the maximum

- number of options in any menu, plus four for the page

5 contral entries. For example, i+t MENUA had 5 pages, and

t.f MENUE had & pages, then ENTIIES(X) wﬁuld riot have to be
expandad 1+ enother page were added to MENUA, because the

arv ey 15 ealready large encugh to satisefy & pages. if,

FiowsEver , & seventh page were added to either menu, then the

8 arvay would have 1o be svpanded. Alsoc, the data for ENTRIES
i shouwid be modified to include the numbers of the new

opl oL one.,

- The antegee orray NUMBOFTIS(X) showuld be expanded to

E prcluge the new numier of opticrne.  KNUMBOFTS (1) corresponds

Lo MEGATER &, o 21 stonld be sel egual to the total number
; coA wsesd oL o L PRI, Even though Z4 options toilal are
f Aoy b ke, L woriien G optitos actuelly veed mey range

troun L- L, Vs NPl B o s uweeid, 11 1w 1ndesed by DEVICE.

L e,

: e oo et ke by i 0 o yedotdonship between DEVICE and
4

f Thies Pt O e e e seclrone Dbl

205

g oy - -y oy - PO -y vy v, PRI L ., e O : ol o, . g . Cu '-‘-'.—'. "
R R T B R T B I T 01 L R A TN A S 55 ST 15 050 gy 2505 0 Sy LAY S8




,' LR
Sy

L RIS A AN RS N

YN Wy

Grgr v o o ! ezt
CELEDY Levial 1

P cLEVICE DD 1) THEN
NesPiE = ThADHAG
ELSEIF (DEVICE.EG.Z) THEN
NAME="TRASHER "
ENDLF
ACTIVE (DEVICE ) =NAME
WRITE (7,20 ERR=60,I0STAT=ISTATW) (ACTIVE(I) ,I=1,5)
CALL M:ACTIV(INAME, IERRSTAT ,$30)
CaLlL HARDWARE(DEVICE,ACTIVE)

END SELELT

NOTE: MAME is a CHAR*E variable, INAME an INT*8,the two are
eguivalant. The M:ACTIV call reqgquires an integer

doubleword so INAME is used.

The new option(s) should be added to the SELECT CARSE 1.
Ttiee rumber of lhe Ltese will be equal to the number ot the
cotion plus four, for pace control. For example., option
"1 would e TCALE 167, eto.  The integer variable “NaMES
efoulo be st enwsl to the program name: NAME = " TERTXX .
T M EY cead o wir sl o remann Lhe same, as will the statement
FETVINVE CDEVICE = RAak T 2o the WRITE statement. 1f. however ,

Lhe o o woe b U p e o e than one device then en

206

L PR W R AN TNy Y P PR I T T T I R
y ) . " o L)
A * p " ¥ 'i' 2

s (' i
L Pa e B A ARSI W1

. \ "~ -'_ﬁ-:;,{-. ~ v ‘-» " _-."- 2 \:‘,:~ \\-‘\f‘."_‘




¢

SE ST T WL sl tement ot the form shown o must be 1ncluaded
N L T T Y S 1N S UPCRIPC I & PR G the relationzhip LGelween 1o
3
X calues or LeviDD and the devices will be discussed in Lhe
L]
; FGE D INE sen b a .

The value o LASITHABE (X)) must be set equeal to the number
X of the last page number for that particular menu,
LASTPAGE (1) corresponds to MENUA, LASTPAGE(2) to MENUR, etc.

Whern the array is used, it is indexed by DEVICE. For an

KL AN

esplanation of the values of DEVICE, see section 3I.1.3
» 2.1.2 Modidficetions to MENU(X) -~ Any additional peges
shiculd be created with the same format as those already

eiisting. The new options should be added next to the

#

appropriate option rnumber, to coincide with the SELECT CASE
chaeme st un PealEUR (option X7 to CRBE TX+4 7).,

The array MESS (X.21) must be edspanded so that X eguals

AR ol ")

the numpber of pages in the menuw. Alsco, the added data

j statemaent for MESES should be of the form DATA (MESE (pageno.
N Jy . J=1,21) 4ollowed by the paoge format.

B < DLl Mepdificetions 1o HORDWARE - No changes need to be

i made to HANMDWASRE 1 order to change the software mend.
: Howsver , some 1t ormallion showld be provided as to the role
X
oo RCTINE DEVIOFY . DEVICE is an integer varilable whose
é v oG Tl Enpoidls Wl e optilons in Lhe haerdware mena. B or
: G EVTEN T & o i o reesrets o MEGATEER &y "2 to MEGSTLE B,
- b, FLTIV L 1 et arrey wiaCh contains the namesot aclive
=~
:E o oociir ane . AL TTVE O conteinge the neme of the proaren
.ﬁ ot Ty e P e b fy LT INIZ OO thie mesie of the progranr on
2 RS RNTIE R ! Y
: 207



- . s .t . : . B [X] T
Be 0 0 Ve thideg 1 g Sbe By ke it inTiia ‘RAGTR i Pia g ity ke PN e SO g0 P PRI L AL S0 BV Rt i IR Ay A H .

N
f‘v,‘

Ao mdaymeg ot b e Flenug — Sodlware menus stioald be adoed

Lo corresnond with new harcdaare deviowes,
Sadel o Moditicetiong to MAINSUR - The initial software menu

U NS

call must be moditied to 1nclude the new menu.

Example:

. _-ndid it g

IF (DEVICE.EQ.1) THEN ! MEBATEE A
CALL MENUA (FAGENO)

ELSEIF (DEVICE.EG®.Z) THEN ! MEGATEK B
CALL MENUB (FAGEND)

ELSELIF cpevICELEC.S THEN ' NEW DEVICE
Calt MENUX (FAGENG)  'NEW MENU

ENDIF
, The array LABTHAGE must be expanded to include thelast
page numzer of MENUX.
I+ the e izsting software can run on the new hardware,
or new sottware can run on existing devices, then the
IF-THEN-TLSE code 1n the SELECT CASE stetement should be

mocy tied.

208

by :v":{‘:,' ";“‘ y ';'."" ,.’5(\'~ .!' “"'5"" ‘a "l"~".". ) ‘ ' W VP! '-"\V."" .'."'.' ""‘ \ s P PR S TN )a.'.'\ n’-"ﬁ
[N i A . B B » % 4 .7



5ot I g Y g T % 4 R T Ty m il g v S i e

‘ﬁ@
NS
Loooseifiy ) d fo (=4

T CDEVICE. LG,

NEME =

FORTY

11

2

THEN

THEN

THEN

! MEGATER A

! MEGARTEW

K

! NEW DEVICE

! VERSION OF FORTY FOR NEW DEVICE

'NEW SOFTWARE FOR MEGATEK A

THEN

ELSEIF (DEVICE.EC.2)
5 NAME = FORTYE'
) ELSEIF (DEVICE.EQ.S)
N&ME = FORTYX
END IF
Evample for new case:
: CASE X
E IF (DEVICE.EG.1) THEN
RV NAME = " TASKA®
ELSE1F (DEVICE.EQ.S)

=
I
4
m
[}

‘i'.'a %) '—'.‘v'r ‘o "\’ “\-\'\- Gt

g ¥

¥

CTASEY

te -~

Teom

moo Fraalhliel

N
Sedilll lmputs -
. TLEG102 Output
] I.2.2 Modifice
almost exactly
(]
bree Lhe name., andd
Dozale o dnputls
Se e e Rty
L
\ eor,
AN
"

- CHOICE,

MNe& e

L

those e

Wty

uvser input

isting.

verd Lies

209

o}\.‘t"'- '--‘“.'o '\"h \“ A% $ \.*

LI

‘;"-\\\\‘

LASTPAGE value for new menu.

The only chanoes would

avallable options.

.‘.‘- o "'._'-_! < ,_.'_'.;_‘ c ’-'*"\‘.n'.';.'.‘-




A S TR R R D LS I LWL, v L e Y T o S e P day - g R, i Wl il i v A e P A L ST S U SR e A A e e 320 i A fiAy B
SN

o203 Meodificetions to Hardware — These will be discussed

under the hesding of Adding New Hardware Options., The user

should keep 10 mind, however, the correspondence between the

s e a8 & 8

value of DEVICE and the device chosen, as this is used in

IF-THEN-ELSE statements throughout procedure MAINSUR,

devices are added to the system, they and their associated
software may be incorporated into the executive.
Z.3.1 Modifications to MAINSUE — The initial call to the
software menu and the SELECT CASE statement should be

(;‘ modified as discussed in section 3.2.1 under Adding Software
Menus.
If mutiple pages are added to the HARDWARE menu then

array ACTIVE should be expanded to include the new cptions.
T.3.1.1 loputs — CHOICE - user selections
Z.3.1.2 Dutputs — FAGENO - page of menu to be displaved

e )

I.2.2 Medificstions to MENUX - None, except for the
addition of & menu to correspond with the new device.
2.7.2.1 Inputs - FAGEND value

T.3.2.2 Outputs - None

2.3.3 Modaificetions to HARDWARE - Add new cption to

Mardwar e menu.

"Ado new option tou SELECT CASBE statement. The only

b

5

change will be the device rnumber in the OFEN statement.

210

‘v ~';-'\'.‘ .-.:~ PR ALEACEN ‘.‘é‘ ' vy \,‘-;.\ =y | N ‘_5"‘-.".‘- ‘e ’-'.‘- 'c'f-' “» ,'o..'~‘.'- '-)\.\“-}n.'.
+ Ly 1. 3 A A% ) A4 ) At




Ecample:
OFEN (IINLIT=%, DEVICE=device number, I0STAT=I&TAT,
+ WAIT=.FALBE., ERR=9%9)
If the status of the device (available or unavailable)
cannot be determined with an OFEN statement then another
method must be implemented.

Implement a method to clear the device’'s screen.

Example:

IF (DEVICE.EG.1) THEN ! CLEARS MEGATEK A
CALL M:ACTIV('CLRMEGA’, ERRSTAT, $30)

ELSEIF (DEVICE.EG@.Z2) THEN ! CLEARS MEG B
CALL M:ACTIV('CLRMEGB', ERRSTAT, $30)

ELSEIF (DEVICE.ED.Z) THEN ! CLEAR NEW DEVICE
CALL M:ACTIV ('CLRNEW', ERRSTAT, %30

ENDIF

If new pages are added to the menu then arrays ACTIVE,

TEMFACTIVE, and INAME must be expanded.

- = =

Se3elal

et

nputs — ACTIVE - array which contains names of
active programs.
DEVICE - index for ACTIVE, corresponds with device numbers

in menu.
Je3.0T.2 Ouiputs — DEVICE -~ integer, used in MAINSUER to
activate programs on correct device.

4.0 Variables — This section describes the purpose of each

varilable in the esecutive.

211




'-4"-l"-

i

e-’p - .-.“_‘..-- .

4.1 Procedure - MAINSUE

LOGICAL NOTFOUND - Controls the DO WHILE (NOVHOUND)
loop. It is set to .TRUE. initially. When a proper choice
is made from the software menus 1t 1s set to .FALSE. and
program execution continues.

INTEGER*1 FAGENO — Represents the page of the chosen
software menu to display. It is initiélized to ‘1’ when the
program is first activated, then it is controlled by user
selections from the software menus (NEXT FPAGE, FREVIOUS
PAGE, BEGINNING) .

INTEGER*1 LASTFAGE(S) — This array contains the numbers
of the last pages of each menu. It is used to provide a
‘wrap-around’ capability for menu control. For example, if
FPAGENO=1 and PREVIOUS PAGE is selected, then the menu ‘wraps
around’ to the last page.

INTEGER%*1 NUMBOPTS(S) — This array contains the number
of options in each menu. [t is used in the DO WHILE
(NOTFOUND) loop which determines if a user selection is
invalid.

INTEGER#1 DEVICE - Passed in from HARDWARE. It is used
to index arrays. Each value corresponds with a hardware
device - ‘1’ for MEGATEK A, "2’ for MEGATEE B,etc.

INTEGER*EG INAME — Used in M:RCTIV call, which requires
an integer doublewnrd. Eauwivalernced to UHASRACTER*Y NeME,
wnich represeﬁts the task name 1h oﬁher CaASes.

CHARACTER®2 CHOICE - Reprecsents the user s choice from

the scftware menus.

212

- - - -
9 ® I R N A e T e P A I G T N S T A
Ha -~ ey I..{'n’ .'.'d‘.'f.,- " ....‘ aly i -r. NSy ALV G > _ NN L R



o L " 7 - o T > . W St e i nds A0 oAl st AL g
TR Wom N P SO R ENE RS PN et e R S Pk S st ol

CHARATTRER*E ENTRIES(Z24) — An array containing all
poessible inputs for (CHOLICE.
CHARGUTER®E NAME - Represents the name of the file to

be activated. Equivelenced to INTEGER#8 INAME.

i CHARACTER*8 ACTIVE(&6) - An array which contains the
a
) names of the active tasks.
CHARACTER*24& ENTER - Types the message ENTER
SELECTION:: to prompt the user.
4.2 Frocedure — MENUA
- INTEGER*1 FABGENO - Represents the page number of the
: menu to display.
. CHARACTER*60O MESS(5,21) - Contains the format for the
(}? menu. Each page is 21 lines long and 60 characters wide.
4.2 FBrocedure -~ MENUE
; INTEGEFR*1 FAGEND - Same as above.
3 CHARACTER®LD MESS(5,21) —- Same as above.
: 4.4 FProcedure - MENUG |
% INTEGER%*1 FAGEND - Same as above.
: DHARACTER*@O MESS(5,21) ~ Same as above.
! 4.5 Frocedure — HARDWARE
i CHARACTER*#70 OFT1S(2Z) — Contains the tormat tor the
" hardware meruw. The pege is 23 lines long and 70 characters
ﬁ wide.
"
% CHARGLCTER® 70 BUSYOPTS - Contains the format for the
- mernd ‘whetn & device is busy. It is 18 lines long and 70
7:;: Characler = wide.
LHEFGCTER» GUCTIVE(s) - An array which contains the
Names of the oty e Loste,
. 213
R O S A A S A I RN R L, RO gt A N




‘ .. . - . e e Ye e ‘e . " L L) W e . . .o . ST O N P " T '.._‘..... -.“...- RS AS
NP e N N A R A A P S P P B T S R A BN A K

(;é

PRt e Sona uin a6 0 Are. Al i v AN 2P N M i

CHARAL TER*8 TEMFAITIVE (6) ~ Has the same contents ass
AUTIVE (&) . It 1is used because i1nput parameters (ACTIVE) to
& subroutine camnmot be equivalenced.

INTEGER+1 DEVICE ~ Represents the user ‘s hardware
sslection. It is used throughout the program as an array
indeyx.

INTEGER*8 INAME (&) — Represents the task names. It is
used to abort the active tasks.

CHARACTER#*26 ENTER - Types the message ENTER
SELECTION:> to prompt the user.

LOGICAL OF — Used in DO WHILE (OK) loop. It is set to

- TRUE. before entering, and then to .FALSE. when a valid

user selection is made.

.0 Source {for Executive - Listed below are the names of

the libraries and compilation macros which are used in
conjunction with the GRAFEXEC. They are located in
directory EXEC.

.1 GRAFEXEC - Source code is in library EXEC. 7To compile
use macro COMFEXEC.

T.0 FORIYX ~ The source code is identical for FORTYA and
FORTYE and is conteined in library FPARM. To compile use
gither COMFAMEDG or COMFBMEG. For an euplanation of these
see section 5,7,

S0 TREACHEIN: - The source code is adentical for TRACK 1RA
snd TR4L INE and 19 contained 1n library TRAK. T compile
uee el ther COMPAMEs or COMFBMEG. For an explanation of
these see ecctaon D.7.,

- " .

Do TR e - e soarce code 18 1dentical for TERRAINA

214

. IR T AR A S I

= St ) 'r'}‘




e

i d

p)
&.l
~.
’
.
J
o
..I
\
'u
N.
«
'r
?I
p. .
~ [}
b
g
a'r'
y)
"l
} I
'
7,
h
b,
.
r.l

and TERRaIME ancl e contained in library TERE. 1o comolle
use el ther LOHFAME ., o LORFREED, For en explanetion of
these see section S.7.

e 1 ETATAL ~ The souwrce for DATATAR is contained in
library TLIE. 1o compile use COMFPDTABE.

.46 MFD - The source for MFD is contained in library MFD.
To compile use COMFMFD.

5.7 COMFAMEG and COMFEMEG - To compile any of the pearameter

displays +or MEBATEE A use COMFAMEG with the following
format:

COMFAMEG taskname library
For example, to compile FORTYA enter from THEM:

COMFAMEG FORTYA FPARM

To compile any of the parameter displavs for MEGATEK R
use COMFBMEG with the same format. For example, to compile
TRACKINE enter from TEM:

COMFEMEG TRACEINE TRAFK

215

TR
‘-'_P\L'L.A\!\-!\.’\—i~‘\ .\.._’ .l.\.L

-----

-L:\x°\4




Dl r‘r_v_"_v;'—.' i

G

"s. Karyl A. Adams was born 8 January 1952 in Urbana,

Ohio. She was graduated as the salutatorian of the class of
1970 from Urbana Hich School. She recieved the degree of
Bachelor of Science 1in Electrical Engineering from Ohio
Horthern University in May 1975. Following graduation, Ms.
Adams was selected as an Olin Fellow at Vashington University
in St. Louis, Hissouri and was enrolled in the graduate
biomedical engineering program. She became a civil service
employee in January 1976 with the Air Force Flight Dynamics
Laboratory at Yright Patterson AFB, Ohio. While with the
laboratory, she has been responsible for numerous software
development efforts in support of research simulation
programs. She has been project leader for the Total Aircrew
llorkload Study (TAUS), the KC-135 Tanker Avionics and Aircrew
Complement Evaluation (TAACE), and the X-29 demonstrator
program. In her current position, Ms. Adams is team leader
for a group of engineers designing and implementing graphics
software in support of the entire simulation facility. She
completed the master's program as a part-time student at AFIT
while continuing her work within the laboratory.

Ms. Adams was selected to the national women's
scholastic honorary, Mortarboard, in 1975. She was selected
as the outstanding Scientist and Engineer within the Flight

Dynamics Laboratory in 1978. She is listed in Outstanding

216




T R T R I O i ¥ i~ aNavEvT X E WY

Young Women of America, the premier edition of Who's Who in

VP 2
4 Frontier Science and Engineering, 1984/85, and the

International Who's Who in Engineering, 1985.

Permanent Address: 7578 Mt Hood
Huber Heights, Ohio 45424

-
-
LR}

217

R R L N R, TR N R R M R R R R R R N I RIS JrE e " RIS TSP I I e PRI e . L
TS L L A SO S, L DR R TR (DG N, X Y oL gt At AL LG T AR GO SO X A




AN O A TR UPR VAR PSS S0 i o GAR . 1o

UNCLASSIFIED
TCURITY CLASSIFICATION OF THIS PAGE
el REPORT DOCUMENTATION PAGE
s REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIFD
79. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORY
Approved for public release:
p. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited
. 1. PEAFORMING ORGANIZATION REPORT NUMBER(S) 8. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GCS/MA/85J-2

5a. NAME OF PERFORMING ORGANIZATION [h. OFFICE SYMBOL 78. NAME OF MONITORING ORGANIZATION
N

z School of Engineering AFTETENC

6c. ADORESS (City. State ond ZIP Code) 7b. ADORESS (City, Stase and ZiP Code/

i
Air Force Institute of Technology
Wright Patterson AFB, Ohio 45433

a8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicabdle)
Control Synthesis Branch| AFWAL/FIGD
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Air Force Wright Aeronautical Labs vl PROCT Thox WORK UNIT

Wright Patterson AFB, Ohio 45433
th TITLE (Include Securty Classification)

spp Box 19
“a” 12. PERSONAL AUTHOR(S)

is:u Ao eron: 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Dey) 5 P OUNT
MS Thesis FROM 1o 198% fune VAV,

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD | GROUP SuS. GR, Graphics, Support Environments, Automated Software
Graphics Design Environment, Real-time Simulation

19. ABSTRACT (Continue on reverse if necesssry and identify by biock number)

Title: A DISPLAY ENVIRONMENT SUPPORTING THE INTERACTIVE GENERATION

OF
ALPHANUMERICS AND SYMBOLOGY
WITH
DESIGNS ON THE FUTURE
ved for gpulitic hlease: IAW AFR 190-Y,
Thesis Chairman: Charles Richard %ﬂ‘;ﬁ;omfaﬂhﬂ r 4% 85
tor Reseaich and Professtonal Developmelh
Alr Force Institute of Technology (ATQ)
Wright-Patterson AFB OH €54%
420 OISTAIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
A
" funcrassiriep/unLimiTeD XX samE as apr O oTic usens O UNCLASSIFIED
22e. NAME OF RESPONSIBLE INDIVIOUAL 220 TELEPHONE NUMBER 22c OFF 'CE SYMBOL
tInclude Areg e )
Chanles Richard, Associate Professor | 43.5657 3008 AFIT/ENC
20 FORM 1473, 83 APR £0ITION OF 1 JAN 73 18 OSSOLETE.

SECUMTY CLASSIFICATION OF TH! PAGE

--------------




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Abstract

This development effort investigated the available
methods for implementing human-computer interfaces wusing
sophisticated graphics systems, with the goal of designing
and implementing an advanced graphics development
environment. Such a developmental laboratory is necessary to
support current and futuristic crew station design for
display-oriented cockpits. The result of theis effort was
the development system - DESIGNS.

The DESIGNS software system was tailored specifically
for real-time, pilot-in-the-loop, research and development
simulation. Critical features of such a system include fast
turn-around time, and the capability to expand as enhanced

tools are developed.

The resulting system supports interactive development of
heads-up and heads-down display symbology. It generates
correct display formatting information for multiple target
graphics devices. Future enhancements include rehosting to a
more powerful workstation, preferably in Ada, and continued

addition of graphics aevelopment tools supporting simulation

needs.

SECURITY CLASSIFICATION OF THIS PAGE

O A e T S O L LT LG B O S SN S N S A Tt o AL AN S S ST R W W Y Pk




R R R A ARt TR B e A e s E v LT ey Tk et AR e e S e 4k K a Bk R e S - e+ d el WA P N & B W

SR R e AR PR AT T2

o . S

A S

AR S iy

Gy v Dy PR

WP NG R NS W

S om P

&

[l ISP 4

&t et S

T et

Pe




