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/ A theory of L -valued product stochastic measures of non-identically

distributed L -independently scattered measures is developed using concepts

of symmetric tensor product Hilbert spaces. Applying the theory of vector

valued measures we construct multiple stochastic integrals with respect to

the product stochastic measures. A clear relationship between the theories

of vector valued measures and multiple stochastic integrals is established.

This work is related to the work by D. D. Engel (1982) who gives a different

approach to the construction of product stochastic measures. The two ap-

proaches are compared.

The second part of the work deals with multiple Wiener integrals and

nonlinear functionals of a f'-valued Wiener process Wt, where' is the

dual of a Countably Hilbert Nuclear Space. We obtain the Wiener decompo-

sition of the space of *'-valued nonlinear functionals as an inductive lim-

it of appropriate Hilbert spaces. It is shown that every 0'-valued non-

linear functional admits an expansion in terms of multiple Wiener integrals

in one of these Hilbert spaces and can be represented as an operator valued

stochastic integral of the It8 type.
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CHAPTER I

INTRODUCTION

Beginning With the works by Wiener (1938) and Ito (1951), the notion

of multiple stochastic integrals (m.s.i.) has been a useful tool in ap-

plied and theoretical areas of Probability and Statistics, and several

efforts have been made to build a general theory.

mU The purpose of the first part of this thesis (Chapters 2 and 3) is

to define the symmetric tensor product measure (s.t.p.m.) and use this

concept systematically to construct multiple stochastic integrals. The

latter will be obtained as integrals w~r~t. appropriate product stochas-

tic measures (p.s.m.). The concept of symmetric tensor product measures

is central to the construction of product stochastic measures.

In Chapter II of this work we develop the theory of tensor and sym-

metric tensor products of orthogonally scattered measures. It turns out

that the different powers (in the symmetric tensor product sense) of the

s.t.p.m.'s are orthogonal and take values in a common, appropriately de-

fined (exponential) Hilbert space. Then we construct multiple integrals

with respect to the s.t.p. measure using the theory of integration w.r.t.

vector valued measures as developed, for example, in the book by Dunford

and Schwartz (1958).

In Chapter III we apply the results of the previous chapter to study

symmetric tensor product stochastic measures and multiple stochastic inte-

grals of dependent, non-identically distributed L -valued independently

scattered measures. We identify the appropriate exponential Hilbert space

-%p
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which is the common range for the s.t.p. stochastic measures and m.s.i. of

different orders. We investigate the Gaussian and Poisson situations sep-

arately since a more general treatment is possible for these cases. We

show that the symmetric tensor product measure approach includes the usual

multiple Wiener and Poisson integrals defined by It6 (1951) and Ogura

(1972) respectively, as well as the multiple Wiener integrals with depen-

dent integrators of Fox and Taqqu (1984). This establishes a clear rela-

tionship between the theory of multiple stochastic integrals and the theory

of vector valued measures. We conclude Chapter III with a comparison of

our results with previous attempts to define product stochastic measures

including the one by Engel (1982) on the L2-theory of products of indepen-

dently scattered measures.

The second part of this work (Chapters 3 and 4) dealt with stochastic

processes taking values in infinite dimensional spaces. Realistic models

for the investigation of many important problems in Physics, Statistical

Mechanics, Geophysics and certain areas of Biology, lead to stochastic pro-

cesses of this kind. A convenient choice of infinite dimensional spaces

is the class of nuclear spaces (more precisely, duals of nuclear spaces).

Nuclear space valued stochastic processes have been considered in the

works of K. It6 (1978a, 1978b, 1983) and the papers, among others, of

Dawson and Salehi (1980), Shiga and Shimizu (1980), Mitoma (1981a, 1981b)

and Miyahara (1981). In most of the above papers, the nuclear space con-

sidered is S(IR d ) , whose dual S(IRd ) is the space of tempered distributions.

However, in several practical problems, e.g. those occurring in neurophysi-

ology, it is not possible to fix in advance the space in which the stochas-

tic processes take their values (see Kallianpur and Wolpert (1984)).

We begin Chapter IV by defining the nuclear space 0 we are going to

P-.' . -, -. ...'..'.-.,'.,'.'. ".............................-...-.......,,.-.,........,.-."..-......-..--.......-......-.
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consider in the remainder of this work. Then we define $'-valued Wiener

processes with continuous positive definite bilinear form Q on x 0, and

study some related concepts that are used later in this work. We conclude

Chapter IV by presenting stochastic integrals with respect to a 0'-valued

Wiener process.

The main object of the second part of this work is to develop tech-

niques for the study of nonlinear functionals of Wt. In this direction

we co' struct in Chapter V multiple Wiener integrals (m.W.i.) with respect

to a 0'-valued Wiener process Wt. This construction leads to real valued,

finite dimensional multiple stochastic integrals w.r.t. dependent non-iden-

ktically distributed independently scattered measures of the kind considered

in the first part of this work. In addition we obtain the Wiener decompo-

sition of the space of 0'-valued nonlinear functionals of Wt as an induc-

tive limit of appropriate Hilbert spaces. Multiple stochastic integral

expansions and stochastic integral representations for nonlinear function-

als of Wt are also obtained in Chapter V. It turns out that the stochastic

integrals constructed in Chapter IV are the ones useful in representing

nonlinear functionals and ('-valued square integrable martingales.

.°

*°o.



CHAPTER II

TENSOR PRODUCT AND MULTIPLE INTEGRALS OF

ORTHOGONALLY SCATTERED MEASURES

We begin this chapter by presenting results on tensor products of

orthogonally scattered measures. We include the infinite tensor product

case (Theorem 2.1.4) which seems to be considered for the first time and

appears as a natural generalization of Theorem 2.1.3. In Section 2.2 we

obtain the symmetric tensor product measure of different orthogonally

scattered measures which are mutually orthogonal over disjoint sets, and

present some of its properties. Finally, in Section 2.3 we apply the the-

ory of integration with respect to vector valued measures to define multi-

ple integrals for the symmetric tensor product measure.

2.1 Tensor and infinite tensor product of orthogonally scattered measures.

The theory of orthogonally scattered measures with values in a Hilbert

space has been presented by Masani (1968) among others. We begin this sec-

tion by presenting a definition and a theorem which are given in the above

named work.

Definition 2.1.1. Let H be a ieal separable Hilbert space with inner pro-

duct <-,>H and norm I111H, and let (TAli) be a measure space where p is

a non-negative, countably additive, u-finite measure. Let A denote the

ring

A {AEA ii (A) <o}

...............................................

• ' • .
' ' ' ' * '

-
° , '
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The H-valued set function X is said to be an orthogonally scattered measure

(o.s.m.) on (TA) with values in H and control measure p. if the next two

conditions hold:

i) For each sequence {A n)wi of disjoint elements in A such that

U A n A, )i X(A n) converges in H to X( U A)n when m--
n=l n=I n=l

ii) For A, B cA

(2.1.1) <X(A), X(B)>H = (AnB).

It follows from (2.1.1) that

(2.1.2) 11 (A) = I I X(A)I112 A oEA
Hp

and that if A, B e A, AnB =$then X(A) and X(B) are orthogonal elements

in H.

The linear space of H

(2.1.3) HX = spI[XCA): AE A

is called the subspace of X. Condition (2.1.2) enables us to define a

well-known isometry between Hx and L(T,A,V~) as follows:

For n -simple function f (t) I% c Vr, CE

For an A~~ Li 1 cilAt) AiA c£

i=l,...,r define

I X(f) =f f(t)dX(t) c i cX(A.i)
T i=l1 1

2and for f L (T,A,ii) define

=x(f f f(t)dX(t) =lim f f n(t)dX(t)
T n1

where {f Iis a sequence of A -simple functions converging to f in
n n2:l
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L2 (TA,i). The following result is known as the isomorphism theorem.
A.

Theorem 2.1.1 (Masani (1968)). Let X be as in Definition 2.1.1. Then

(2.1.4) I: f - f f(t)dX(t)
,: T

is an isometry on L 2(T,A,p) onto HX c H such that for A e A , X(A)= I X (IA).

Then every o.s.m. X carries with it two Hilbert spaces HX and L 2(T,Ap)

which are isomorphic under the isometric integral IX .

Similar to the classical theory of real valued product measures

(Halmos (1950)), it is possible to develop a theory of tensor products of

orthogonally scattered measures. In this direction we give a proof of the

next theorem which is established in Chevet (1981). Before doing this

we first introduce some notation: For two Hilbert spaces H1 and H2 , H1 H

denotes their Hilbert space tensor product (Reed and Simon (1980)) with

inner product <.,-> OH and hIa h2 denotes the tensor product of the

1 2
elements h E Hi, h e H Given two real valued measures V and v , pe v

h1  H1  2  2*
denotes their product measure.

Theorem 2.1.2 (Chevet (1981)). For each i=l,...,n, let (TiAi, ) be a

--finite measure space, H. a real separable Hilbert space and X. an o.s.m.
1 1

on (Ti•A i) with values in H. and control measure pi. Then there exists a
n

unique orthogonally scattered measure 0 X. on (TlX.. .xT Ax ... A )
i' 1 n 1" n

with values in H1a®.. H and control measure p1
®.. "Op such that

1: " n "

n
(2.1.5) ® X.(Al x...xA = 1l(A1)®...OXn(An)

i=l1
n

for A. c A i {AEA.: p(A)< }. The o.s.m. e X. is called the tensor
1 1i=1 1

product o.s.m. of X ,...,X n .

Proof It is enough to show it for n= 2. Let

................. . . . . . . .
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R {A 1x A 2A i A. i=1,2).

For A. E A i=1,2 define the H 1*0H 2-valued set function

2
o X (A xA) X X(A 1  X X(A 2)

i=l 12 11 22

Next let C()= F 0(R) be the field generated by R, i.e. the collection

of all disjoint unions of elements in R. For C c E 2 withPI 2()

i.e.
r

C U (A jxB.)
j=l

where p 1(A i) < 2, 1(B .)< - and A x B., j=l,...,r are disjoint elements

in R, define

2 r 2 r
* X (C)df 0 X X(AjXB) X X(A )Oe (B)

Thus
2 2 r r

11 0 X (C)II ~ I I <X (A ),X (A >< B), B'
i=l 1 2 j=l k=l 1> < 2  2

But (A ixB.n) AxBk = c0 j 0k, then

<X I(A J),X l(Ak)>H 1<X 2(B ). X 2(B k)> H 2= 0 jo k

and therefore

2 2 r
11 a X.(C)IIH GH 7 1J Ii(Ai)PJ2 (B P a ~ 1 P2 (c)<
i=1 1 2 j=l

Since p ol 2 is a a-finite measure on A Ix A 2 9 the result follows

from the Hahn extension theorem for o.s.m. given in Masani (1968).

Q.E.D.

For convenience of later reference we present the following theorem

which is a special case of Theorem 2.1.2. We shall use it frequently on

the remainder of the chapter. In this result we require the o.s.m. X. 's
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to take values in the same Hilbert space H and the control measures i

to be finite.

Theorem 2.1.3 Let Xi  i=l,...,n be orthogonally scattered measures on

(Ti,Ai) with values in a common Hilbert space H and corresponding finite

control measures pi i=l,...,n. Then there exists a unique nth tensor
n

product orthogonally scattered measure e X. on (Tn,An) with values in-':'i=l I

H n = n H and finite control measure P. = v I ''' Vn such that for
i=l i=l1 n

A. e A. i=l, ...,n1 1

n
, (2.1.6) : Xi (A1 x.. .xA) = XI (AI)e.. .OX(A)

and

n2n n
(2.1.7) * X.(A) 2 o = ' pi(A) A An

Si=l H" i--I1

where Tn T x . xT and An  Ax .xA is the n-fold product a-field.

n 1" n

We now consider the extension of Theorem 2.1.3 to infinitely many

dimensions. Suppose that (T,Ai,.i) i >l is a sequence of probability

spaces and that for each i=1,2,... X is an o.s.m. on (Ti,Ai) with values
i1

in a common Hilbert space H and control measure pi. An example of this

situation is given at the end of Section 4.1.2 in Chapter 4 of this work.

We use the following notation (as close as possible to Halmos (1950)):

0 00C00n n
T T., A x Ai. T(n) = x T., T= x T., An = x A.i= 1 i= 1 i=n+l i=1 i=l

and p = p..

For notation, definitions and basic results concerning infinite tensor

products of Hilbert spaces, see Appendix A. Let u = (u.). where ui f Xi(Ti)

be the sequence of unit vectors in H from which we construct the infinite

.. . ............ .. . .. ............. . . .



9

tensor product Hilbert space 0 H whose inner product is denoted by
i=l n

For each n ?1, the nt tensor product o.s.m 0 X.i of Theorem 2.1.3
n i=1 01

takes values in H I. This space may be seen as a subspace of O-H
i~l i~ 1

through the injection

he o . h -h I G.eh * X.(T.
i=n+l

h. E H i=l,. .. ,n.
1n

Let C be the field of cylindrical sets in A7 For AE C, A=B xTn

B E Ansome n al, define the 0 H-valued set function XO as

n c

Lemma 2.1.1 The o H-valued set funtion X is well defined and finitely
i= 1

additive on C. Moreover,

11IX(A) I IGO (A) A c C.

Proof Suppose A E C, A Bx Tn) BEn and A = x CTm) Cc Am m <n.

Then B C x T+ 1 X ... XT andm n

n m
0 X.(B) =OX(C) aOX (T )0o oX (T)

ili ~ m+l m+l n n

Thenn00mC

X X(B) * X.(T. * X.(C) X e .(T.i)
i=l 1 i=n+l i=1 i =m+1

and hence X is unambiguously defined for A E C.

Next, if Al C, A 1 , then for some n 1, AB xT

(n)
A=B xT and B nBec2 2 1 B2 = ec

n 0

1 Au 2) = X(BluB2) 0 * Xi(T.
i=1 i=n~l
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n n 0
= {* 1() XB 2) *X(. (by Theorem 2.1.3)
il i=l i j:f+l 1

nl 00 nfG

X SX(B. *s X.(T.)+ e X.(BX( GoC
1 in+1 1 i i=.l1 B 2)e*n X1(T)X

0 A1  
0 ( 2)

i.e., X COis additive on C.
(n) nFinally, if Ac~C, A =Bx T ,B c A some n > 1

fX X(A)11. 12 9 X .(B) 21 P .. oi In (B) 1 i00(A).

Q.E.D.

In fact we now prove that X has a a-additive extension to A7. The

following result appears to be new and due to the finiteness of p its proof

does not need the Hahn extension theorem for o.s.m. of ?4asani (1968).

Theorem 2.1.4 There exists a unique 0 H-valued orthogonally scattered

00 00 i=l C
measure X on (TA) with control measure pi (a probability measure), such

that for every A c C A= Bx T~n B An

n G
(2.1.8) X (A) X *X(B) e* X.(T.)

i=l 1 i=n+l11

and for every A c A0

00 A)

Proof Step.l: X is aY-additive on C.

Let A. c C i=1,2,... A. (null set). We need to show that

IX0(A )112 0 as i 4 . But this follows since from Lemma 2.1.1

00 .. ' 00

jj X (A )11 V =i
0 (A.) and v (A.)- 0 as i -~~for wi is a probability

i1 1

measure on A70.

Step 2: Extension to A

Let A c A0 =a(C), then there exists a sequence of sets {A I in Cn n~l



such that P00(A) - 0 as n--~ and {XO (A )) is a Cauchy sequence in
00Un n n2-1

*H:

Go 2
IX(A-X (A )11.0~ (AM +Am 0 n~

Then define XO(A) liur X-(A n which has the required properties.

Q.E.D.

Corollary 2.1.1 Let E. E A. iL 1, A= x E.. Then

X'(A) X e X(E .)

Proof It is known (Halmos (1950)) that A c A7~ and

This last expression implies that

and

Then conditions (1) and (2) of Proposition A.1 in Appendix A are satisfied

and hence *X.(E.) is a decomposable vector. The result follows by taking
il (n)

A n E 1X.. XEn x T n 1 in the final part of the proof of the last theorem.

Q.E.D.

Corollary 2.1.2

X (T) X.(T.

and

IX(T)1- .2 (T) =
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- 2.2 The symmetric tensor product measure

In this section we obtain results regarding symmetric tensor products

of different orthogonally scattered measures with values in the same Hilbert

space. We have restricted ourselves to the case where each o.s.m. is bound-

ed (finite control measure) and defined on a a-field. The reason for these

requirements is that we are primarily interested in using the well estab-

lished theory of vector valued measures in order to construct product sto-

chastic measures and their corresponding integrals, and in this theory these

requirements are needed. This limitation may not be very restrictive since

one could always study the limit behavior of the product measure or the in-

tegral when the control measure goes to infinite, as indeed we do in Chap-

ter S. Moreover, bounded orthogonally scattered measures have recently be-

come of interest (see Niemi (1984)).

Assumption 2.2.1 Throughout this section, unless otherwise stated, we will

make the following assumptions: Let (T,A) be an arbitrary measurable space,

H a separable real Hilbert space with inner product <*-,>H and norm 11_11H'

and n a fixed but arbitrary natural number. Let X. i=l,...,n be o.s.m.'s
oi

on A, taking values in H and with corresponding finite control measures

9 i i=l,...,n. Assume there exist real valued set functions ii.. such that

for A.,B E A

(2.2.1) 1 ij (AnB) f <Xi(A),X (B)> H  i,j=l,...,n.

Applying Cauchy-Schwartz inequality it follows that for each i,j=l,...,n,

ij is a signed measure of bounded variation, where Vi. = 1 ,...,n.

At times we shall use the facts that if V is a a-finite non-negative mea-

sure on (T,A) such that Vi << 1o i=l,...,n, then i.j « )o i,j<<. .. ,n

.- - . **• ., ° •,.. • . . . . . -. .,*o . * **. * *. . o . o . . . - o .*- ..- ° . • -. o-. -** ~ **. . - ft *° .

,. . . . * . o ° . . . * .. . * . . . " -•.. . ° • oO - . . .- .- . ° . . . . °o - . - . . .. °* .. . *- '.".'

"." '.". -" " ." . ." ." .: ' ." "." . °.'.'.-. T .. " -. '. . " -. ' . -' -. ' -. ' -... . ., ' -. '. ' -. '-.' .- . - . ' ..
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and i f

(2.2.2)r M(t

then R(t) =(r. (t)) is an nxn non-negative definite matrix a.e. di'0.

Symmetric tensor products In order to set up notation we now present some

facts about symmetric tensor products of Hilbert spaces (see Guichardet

(1972)). As in Section 2.1 let HO denote the nfodtnrpouc ofH

For h1 0... OSh en h. c H i=l,,. . .,n define

n I
(2.2.3) 1 (h o ... .oh (h = -.

n n. 1

where RI (HI n..f is a permutation of (1,2,...,n). The n-fold symmetric
1 nn

tensor product Hilbert space H~ is the closed subspace of H~ generated by

elements of the form

m n k kc ca(h 1... Ghn)

kl

where c 4E IR, h. kE H k=l,...,m, i=l,...,n.
k 1

nThe operator a 8 can be extended to an orthogonal projection operator

on Ho whose range is Hen. We write

n
o h =h 10...eh
i=l i

where

(2.2.4) h *. . .. h a (h 0. ...Sh ) h. H i=l,.. .,n1 n *ln 1

and notice that for gi c H il,. .. ,

n n1
(2.2.5) < e h., a g.> <h 9 11 >H <h

i=l Ii=l IH on Ti 1 H- n991n

en
Thus in particular, if h On e h, h e H, then



-7 R T g. -. -' -. 'I -
n
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. (2.2.6) <h n , = (<f,g>11) g E H., H n

and

e1"n (I ) hI n.
h (11 hl

H

For h. e H i=1,...,n, h e...ahn can be represented as a linear com-

bination of elements of the form hon h e H:

(2.2.7) h. ... eh =
1 n

I n-i en
I n--- I ( (1)h +...+ C (n)hn)
.X " -= NEP N N

where P is the set of subsets of {1,...,nl with X elements.

Symmetric tensor product measure The first result of this section gives

the symmetric tensor product measure of Xl,...,Xn , which is a Hilbert space
enP

(H n-valued) measure. Although it can be proved for any o.s.m.'s not neces-

sarily bounded, we assume them as in the beginning of this section.

Theorem 2.2.1 Let X, ...,Xn be orthogonally scattered measures as inn
en

Assumption 2.2.1. Then there exists a unique HS -valued measure a X. onilI
n )i=l1

(Tn,An) such that for A. E A i=l,...,n

n
(2.2.8) X i(A x ...xA ) XI(AI)a ' ' 'exn (A n ) "

i=1

n
Proof Let S X. be the H n-valued o.s.m. on (T n,A) given by Theorem 2.1.3.

i=l 1
For A c An define

n n
(2.2.9) e X (A) = n ( * Xi(A))"i=l1 i i=I1

an.e

where a. is the projection operator on H with range H defined in (2.2.3).

A~n
Then for A e

V.

o~~~~~~~ ~ ~~.. ... ............. . -.....- ,"...-..-.."......... . . . . , ,--""

i
: I

-"2~. .. . . . ... ". ..''" -i".-' - ."i"."."
-
"". "-i ..- . ." ..... .,.....-' ... ' ' ," ",. ..... -." - : " ",.-
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n n
(2.2.10) II X .(A)I ,Oe! Xi(A) n

ni=l en i=l He

and a X. is a finitely additive Hon-valued measure on An . Next since
n i=l1

e X I. is a-additive on An - thus contiuous by above at the empty set - it
i=l1 n
follows from (2.2.10) that a X. is continuous by above at the empty set

'2 An.i=li

and then a-additive on A n n)
Finally, by Theorem 2.1.3, ® X. is the unique o.s.m. on (Tn,An) with~i=1 1

values in Ho
n such that

n
SX X ( A l x . . . x A  = Xi (A1 )e . . . OXn(An)i'- i=l

for Ai E A, i=l,...,n, from which (2.2.8) follows.

Q.E.D.

Corollary 2.2.1 Under the assumptions of the last theorem, for A c An

n n
(2.2.11) a X(A) II 2  : ® (A)on"

H li=l

The proof follows using (2.2.10) above and (2.1.7) in Theorem 2.1.3.

n
The above corollary gives an upper bound for the norm of ® X (A),

ibl 1"- An,
A e An. We shall obtain an exact expression for this norm (Corollary 2.2.2)

which uses the signed measures ij defined in (2.2.1). We first present

77 a more general result.

,-" An
Lemma 2.2.1 For A, BE A

* n n
(2.2.12) < a X. (A), a X. (B) >

i=l 1 i=l H

1 o (n. n (BnA
)

n ! 1 1 nl n 11 1 n

where for A c An and H1 = (Nl,...,fIn) a permutation of (1,...,n) A is

1.

n.. . . . . . ' . .- . .. - - . . - , - . - -".IL . - ... o " . - . - °" ".- . . . . . o - ° o . ° ° ° , a* . " . - '% . *
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defined by

(2.2.13) A" (ts ...* stn) T n~ (t 1 1 .. t 1 1 E A}

Proof Step 1 Assume that A,BEAn, A A1 x ..xA, B B Bx... *XB

Ai. B. i A i=l,. ..,n. Then from (2.2.1), (2.2.5) and Theorem 2.2.1

n n

< :1X.(A), a :X(B)>~ <x <(A )e... OSX (A ),X (B )e...eSX(B )>n

11 X<x (A1) x1 (B 1)>. *<Xn(An) 1  B 1 >
nl 1 (1 nB1  1  H** (An n) I n>

n 1 1 n ni

1 V,0 .. el (A x..xA n (B~x X..XB)

i 0 .. noi (AnB )

Step 2 Assume A, BE An are of the form

1 nm 2  1 n
A= U (A. x .. ), B = U (B k x .. .xBk)

j=1 k=1

1 n 1 i
where A x. .. xA B x.....XB j1.k1l,...,m 2are as in Step l and

j j' k k ., 1
1x n n 1 n 1 n

(A~x . .. n (A x. .. .xA) =*ijj and (B... .xB ) n (Bkx... .XBk = jfk.
1 1 3 3

Then since a X is additive on An, from Step 1 we have that

n n m 1m2nn
Ti~~ ni1 2

<= 1 1A) HiB) X.(A.x... xA.) X (Blx...xB )
jikli1 en 3 i k k rn

1 m Im 2  1 n 1 ni
=~~ ~ ~~ n.. oi'fl* @1 l ((A~x .xA) n (Bkx... XB)
It j=l k=1 1 k

rn1 PIT OP 1 Tf
I1 j=1 1n

-- vil0.. p (n

Til
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Step 3 Assume A,Be An Then there exist sequences {A } { 21 B m I of

sets in An as in Step 2 such that

n n

aPVICLA mAA) -)- 0, 0 ij,(BmAB) - 0

and

n n n n
< a X.(A), a X (B)> lrn < a XJ(A) 0e B)
i=1 i=1 m-. i=1 1mi=i

Then it is enough to show that

0 .P (A nB) + ... Oi*0~nl (AnB~ ~'ii~'nl m m~ol 1n

Using the fact that for all 11and A, Be n

n n
NO11 1 l (AAB )I p(A)I (B)

1nf j=l i=l

we have that

-T IT .

niIT 1 T1 n n nil m

Tn ITn

II 1 61n(AnB \(A nB)

IT 110 ..oi (A nB \(AnB)IBn! ill 11  nJI

1. oil* (AnB nA5

(An 11 n( 1

ill nl (ABnB)I i
II 1 n

P 01il~ il (A nBT n ( 1 )

II 1 n m m

I"



18

+2 ~ G* 0jj] (An B IT n(Bc)
H 1I m

H 111 m
1! n

OP 1 n B1 cj
n! n

... S O.(A}I{ (AB \B)}mn

n1 n

which goes\ to zer asm( ~sne e .( A) -(0 nd \ B B -*0

i=l 1 m i=l1 m

(22.4 MI \ . A)I P 1 (A BAT\B)I)
i=l H fi

n nI
Symitri oets Ao zrase Am Asincaeep(A -0ad a symti set ifA AB o0llpr

n
mutolatinyIo 2.2. n wher A is deie in(.21). Tee-iedo

nnS

for now AcnsidAefr pcal Haes fotaih the follo results whihiya

nn

Comrolar 2.2.3 Th eto meaur A is anle H syvalued orthA A oonallypr

genealiatin t thecas ofsevracotooal tee measures of givnrb

ollary~... .to Thoe 1 on Ch...........

* . . . .. . . . . . . . . . . . . . . . . . .n
. . . .. . . . . . . . . . ~ . . . . . . . . . . . . . . . .
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and

(X (A)I 2 an(A

Antisymmetric sets Let II denote the identity permutation of (1,2,.. .n). *A

set Ae An is called an antisymmetric set if AnA =~for all permutation 11

of (1,.. .,n) distinct from R For this kind of set Corollary 2.2.2 simpli-

fies as follows:

Corollary 2.2.4 If A. An is an antisymmuetric set, then

n 2 1 n
(2.2.16) II X X(A) 2 0 1(A

i=l H n! i=l 1

The next result is an application of the last corollary to the case when

T is an interval of the real line and the measures 11 , 1 are non-atomic.

This will be a useful result in the next section.

Corollary 2.2.5 Let T c IR be an interval of the real line, A= B(T) and

suppose that ~~1 *,~~are finite non-atomic measures on (T,A). For each

permutation nI (n1,. '1 n f(,. n) let

(2..17 {(t '.. nt <.. <T1
n I' n 1 1 ] n

Then for each H 14- is an antisymmetric set of An and for each AE A

I.. The aY-field

(2.2.18) A~ n AnT n

is called the ar-field Of antisymmetric subsets of T"n corresponding to HT.
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Proof First note that if 11 and I[* arc two distinct permutations of (1, ... ,n)

then Tn nl T Let Sn = T!where the union is taken over all permuta-
11 11* 11T1

tions nI of (1,...,n). Then

(Sn)c f (t 1.-1 n.)E Tfl: t=t. for some i~j}

and since the measures '~nare non-atomic

n
0 jj i((S n c) 0.

i=l1
n n n n

Hence 0 Pi A) = 0 4J (AnT n) Ae A
i=l IIi=l 1 I

But for each permutation RI, T~ is an antisynmmetric set; then using Corollary

2.2.4

nn n n
XI (X1An 2J1 1-~ *it(An7',jj) Ac An

~= 1 H il 1

and hence

(.A)= n! 0:i X (AnT'I 2 c An
i~~l OnIi~

Q.E.D.

We now take into consideration a concept that plays an important role

in the theory of integration with respect to vector valued measures.

n
Semivariation of * X. We first review the definition of semivariation of

i=l 1

a bounded vector valued measure and related concepts. We follow Kussmaul

(1977).

Let M be a bounded vector valued measure on a field A of a set S with
0

values in a Banach space (E,1I1*11). The semivariation of M is the extended

nonnegative function sv(M;*) whose value on a set AE A is given by
0

sv(M;A) =sup o tjM(A5)I
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where the supremum is taken over all finite partitions (A.) of Aointo dis-

joint sets Ac C A 0and all finite collections (as) of scalars a. satisfying

Ia 1 < 1. The set function sv(M;°) is extended to the family of all subsets

B of S by defining

sv(M;B) = inf{sv(M;A): BcA, Ac Ao }

A subset Bc S is called an M-null set if sv(M;B) = 0. The exceptional

sets for M-almost everywhere convergence are these M-null sets. For two

scalar valued functions f and g on S we define

d(f,g) = inf{a+ sv(M;If-gI> a))

1>t0

Convergence with respect to the topology generated by the pseudometric d

is called convergence in M-measure.

The following result (Diestel and Uhl (1977) page 14) is known in the

theory of vector value.1 measures as the Bartle-Dunford-Schwartz Theorem.

It will play a key role in Section 2.3. We write it here adapted to the

on_ n
Hn-valued bounded measure * X. of Theorem 2.2.1.i=l 1

An
Lemma 2.2.2 There exists a finite nonnegative measure V on A such that

n
a) v(A) !5 sv( elX.;A) A E An

i=l1
and

n
b) lim sv( 0 X.;A) = 0.

v(A)-1-0 i=l 1

We are not able to compute exact expressions for the semivariation
n

of 0 X. nor for the measure V of Lemma 2.2.2. However, we will find very
i=I 1 n

useful upper and lower bounds for sv( * X.;A).
i=1

Lemma 2.2.3 Let X1 ,...,Xn be o.s.m.'s and pl,..., V be measures as in

-.

. .• . . . . .

::..-.--..-.,...,.. . .-.-. ,, .-. -. .,..., -a-.--.'- .... --.. ,., ..,. ..-.-. : .-. -. ..... -,-,..... , -x-.,.,,...---? ,, .,
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Assumption 2.2.1. Then

n
(2.2.19) sv( 0i X.i;A) !5 0i .. oi ()

Proof. Let (ao)71 be real numbers such that Ia. 1I 1land let Al. .. A

be disjoint elements in A n such that U A. = A for m2:1. Then from (2.2.9)
j=1 3

and Theorem 2.1.3

( A ae. 1 X .( A e
j=l ji=l Hf j.l Ji=l 1I e

m n m mnlf
I joX.(A.)11 2  km m A ( )a. * = X ak<0 X.A) * X Hok> nj He" j=k=1i a= 1 H

m 2m
= a~ lie ... OP (A.) :5 1 1s.. Opj (A. Pn-P A
j=l j=l nj I 1 ~l A

and hence (2.2.19) follows.
Q.E.D.

n
To obtain a lower bound for the semivariation of 0 X. we have to

i=l 1

assume an additional condition on the measurable space (T,A) and on the

control measures n

Lemma 2.2.4 Let T c IR be an interval of the real line, A= B(T) and

Xi,. ..,X be o.s.m. '5 as in Assumption 2.2.1 with finite non-atomic control

measures pJ,...,IJ n Then for AEA n

1 n n n
(2.2.20) 0 P* i(A)} < SV( 0 X ;A) S { p* A)

n =lilil

Proof By Corollary 2.2.5, if A c A n

n n2
0 (A) n!I Q *X (AnT II
i=l II i=l Hn

where for each permutation RI of (1,.. .,n) Tn_ is defined in (2.2.17).
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Next from Proposition 11 of Diestel and Uhl (1977), giving a lower

bound for the semivariation of a vector valued measure,

n n
sup{l * Xi(B) 1O n : A D B E An } - sv( o Xi;A).i=l i=l

n n 2 n 2

Then n!. L Xi ( A n T R)l 5 n' I {sv( X. ;A)}
I i=l HM il 1

2 n 2
(n!) {sv( 0 X.;A)}

j=l 1

and therefore

1 n n
n- <_ sv( o X. ;A).

.i~l i=l 1

The upper bound in (2.2.20) follows from the last lemma.

Q.E.D.

The next two results are consequences of the above lemma. They char-
n

acterize convergence in * X.-measure in terms of the control measures. - . i=l 1

Corollary 2.2.6 Under the asuumptions of Lemma 2.2.4, for a sequence
n n n

{Am I  in An , sv( * X. ;Am) 0 if and only if e i. (Am) 0.m=l 1 m i nr

Corollary 2.2.7 Under the assumptions of Lemma 2.2.4, a sequence of real
n

An-measurable functions (fm m:l converges in * X. -measure to real valued
i=l 1 n

nfunction f on T if and only if f converges to f in 0 .-measure.m i=l 1

Orthogonality We now study a special property of symmetric tensor product

measures. We assume that for each n 1 we have XI ...,Xn orthogonally scat-

tered measures as in Assumption 2.2.1, all taking values in the same Hilbert

space H.

The Hilbert Exponential space of H (Guichardet (1972)) is the Hilbert

space

"-'- '- '~~~~.'.'.-.."... ................................ ........."........'-................ -. ,....-....-..... !
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(2.2.21) EXP(H) - H H-n  (H*OE IP
n2!O

that is, the set of all sequences x = (xn) xnc Hen  n2O

such that I x n o< -, with inner product

n=0 H

(2.2.22) <-' <e o y >
n=OH

Since for each n - 0 Hon may be seen as a subspace of EXP(H)

((0 ,...,x,...) x oHn), then for each n ' 1n n

n
e X.: An I EXP(H)il1
i=l

is a vector valued measure with values in EXP(H). Therefore symmetric

tensor product measures of different orders may be realized as taking

values in the same Hilbert space, viz, EXP(H) and we have the following

result.

n1 n 2  n

Lemma 2.2.5 If n ln then for all AlEA and A2EA a x.(A is

n 2 i=l

orthogonal to i Xi(A 2) with respect to the inner product <-,.>e in EXP(H).
i=li2

n n onl On2
The proof follows since o1x. and 02X. are H and H valued resnec-

onI j=l 1 i=l 1 1tively and H is orthogonal to H in EXP(H) if n l n2.

th
The n symmetric tensor product measure of an o.s.m. with itself To con-

clude this section we turn to the special case of symmetric tensor product

measures of an orthogonally scattered measure with itself. We show how nre-

vious results are simplified and other new results can be obtained. We take

X to be an o.s.m. defined on an arbitrary measurable space (T,A), with values

in a real separable Hilbert space H and finite control measure p (which is

not assumed to be nonatomic). We may take H to be Hx, the linear subspace

. .-- ".-. .. .--.. . . ..."-. - -- - . ' . -. .. - :.-". . . -. . . . .. : : . ? . .. .-
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be th
generated by X as in (2.1.3). For n_>l let X be the n symmetric tensor

product measure on An with values in EXP(Hx) (or H ") given by Theorem 2.2.1,

an
and let Un denote the n-fold product measure of p with itself. The main

properties of X are summarized in the next result in which some possible

simplifications of earlier results are shown.

Proposition 2.2.1 a) For AI,...,A E A n-> 1.

xn(Ax... xA) = XI(AI)...Xn(A).n  
1n

b) If A E and B.Am

<Xn (A),Xm (B)> 6 <xn (A) xn(B)>e nm H On

A 6nm n! nm n!

i ) Ixen'(A)II 1 II O

C) = (A) 2 (AA') < i (A) A e A n> 1.

x

On end) The vector measure Xn is an H n valued orthogonally scattered measure

on (,A n ) with control measure pon.

e) If A E An is an antisymmetric set

Xn(A)II 2 1 On

(A).

H x

The proof of (a) follows from Theorem 2.2.1. Lemmas 2.2.1 and 2.2.5 imply

(b) and Corollaries 2.2.2, 2.2.3 and 2.2.4 imply (c), (d) and (e) respec-

tively.

In particular, Lemma 2.2.4 applies to X n. However, in that lemma we

have assumed that T is an interval of the real line and the control measure

is nonatomic. In the case of X it is possible to improve Lemma 2.2.4 and

.. ..
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compute an exact expression for the semivariation of X on without assuming

that T c R or p. is nonatomic.

Lemma 2.2.6 Let X be an o.s.m. on an arbitrary measurable space (T,A) with

values in H Xand finite control measure p (not necessarily nonatomic). Then
n

for A c A

(2.2.23) sv(X~A = 1 n~A 1  
-~ (A) an

Proof From (c) in the last proposition and the definition of sv(Xn;A)

(2.2.24) 1 Up (AnA) = lx'(A) 112 : sv(XnA
n! HFX

On the other hand if Jict.I 1 i=l,...,m are real numbers and A,.,

are disjoint sets in AU A. A, then for each permutation 11 of (1,... ,n)
i=l1

11=m
A ... ,A are disjoint sets in A and A =U A.. Thus, using (b) in the1'.. m 1

on n~last proposition and the fact that V is a positive measure on An we obtain

onm m m Ino
a I X i (Ai)In a .a.j <X (A.i), X (A.i)> o

H~ HX i=ll~l 1 J

on ml m
ilj 1 1 11n i=l j=l Hl 1

1 j: p(AnA1) = IIX'nA 112
n! 1  Onx

Therefore

sv(XOn ;A) 2  pl a n (AnA T)

and the lemma follows by using (2.2.24).
Q.E.D

As one may expect Corollaries 2.2.6 and 2.2.7 can be improved for X O
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Corollary 2.2.8 Under the hypotheses of Lemma 2.2.6 for A c An

(2.2.25) {1 p OnCA)} <- svcxn;A) < {in(A)}

and for a sequence (Am)Mm! in An sv(XOn;Am) - 0 if and only if

1'n (A) 0.

• An

Proof Since On is a positive measure on A
n then for each A c An

on(A) < 5 Pon (AnAI f) < n!ion(A)

and hence (2.2.25) follows from (2.2.23). The second part of the corollary

follows from (2.2.25).
Q.E.D.

Corollary 2.2.9 Under the hypothesis of Lemma 2.2.6 a sequence of real

i" valued An-measurable functions {f 1 m>l on Tn converges to a real valued
in mi.n

function f on Tn in X n-measure if and only if f converges to f inm

an
p -measure.

The proof follows by the above corollary and the definikion of conver-

gence in M-measure for a vector valued measure M, given before Lemma 2.2.2.

2.3 Integrals with respect to the symmetric tensor product measure

We now apply the theory of integration with respect to vector valued

measures (Dunford and Schwartz (1958)) to define a multiple integral

n
f f f(tl,"' tn)dX1 (t 1)...dXn(t) = f f(t)d l x i ( -

n
whe re f is a real valued function and a X is the H -valued measure of

i=l
Theorem 2.2.1. We assume, unless otherwise stated, that H, X1 ... PXn' ij

i,j=l,...,n and (T,A) are as in Assumption 2.2.1 of the beginning of Sec-

tion 2.2.

~~~~~~~~~~.... J.. ... . d. .J L.'. . ............. .. .... .... ........... , . .,. . . ...
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We begin by presenting a definition and a proposition from the theory

of integration with respect to bounded vector valued measures. They are

given, for example, in the book by Kussmaul (1977) (Definition 10.3 and Pro-

position 10.4). We shall write them here using the notation for the vector
n

valued measure 0 X..
i=l 1

Definition 2.3.1 Let f(t) be an Anmeasurable simple function on Tn , that is

k(2.3.1) 1t a 1. aA.(W_ t = (tl,...,tn)

j=l 

where a. E R j=l,...,k and AI...,Ak are disjoint elements in An The in-

n n
tegral of f with respect to * X. denoted by f f(s) de X i), is the.- i=l 1'Ti=l1

element of 
HOn given 

by

n k n
(2.3.2) f f(t)d i X(t) - a. 0 X. (A.).

'" iz 1 j=l J i=l 1 J

n
A real valued function f on Tn is said to be * x. integrable if there ex-

i=l n n
ists a sequence (fm- l of An-measurable simple functions on such that

n
(2.3.3) f converges to f in 0 X. -measure andm i=l 1

n
(2.3.4) sv( lim fT(lfm)Dd 0 Xi(t ) = 0

* X. ;A)+0 i=l
i=l

uniformly in m= 1,2,..., i.e.: for each c> 0 there exists 6> 0 (independent
of m) such that for every set A for which sv(i X i ;A) < 6 we have

n
Ifn IAfm(t)d a X. ()I < c for m=l,2,...

n n
We denote by LI( a Xi) the class of all a X. -integrable functions.

i=l i=l 1

n n
Proposition 2.3.1 Let f(t) tE Tn be a a X.-integrable function and

i= l 
1

{fm be a sequence of A n-simple functions satisfying (2.3.3) and (2.3.4).

m t
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n
Then for every A e A (Af)(t) is e Xi-integrable and the sequence

i=l

n

{fTn(lAfm) (t)d a Xi (t)1}m
T i=l

On n "

converges to an element in H n uniformly in A E An. The element

n n
(2.3.5) f (1 Af)(t)d a X(t) = lir fn( 1 Af m )(t)d 0 X.(t)

1i=l 1 i=l

n

is called the integral of f with respect to 1 X. over the set A.i;l 1

Sometimes we will use the following notation

n
I n ( ; X ... ,Xn) = fnf(D_ d 0 X.i(t

T i=l

and
n n

f f(t)dia X.(t) = (1 (Af)(t)d ® Xi(t)
A i T- i=l "

n
We now obtain a sufficient condition for the * X. -integrability of a

i=l 1
function f in terms of the control measures V

n n
Theorem 2.3.1 If fE L2 (Tn ,An, then f is * X.-integrable.

i=l i=l 1

2 n n
Proof Since fE L (T ,An , ® Pi), there exists a sequence {f m} of An -

i=1 n
measurable simple functions such that If M-< Ifl a.e. e p. for me 1 and fm i=l 1m

2 n  n n
converges to f in L(Tn4,An, 0 1i). Then f converges to f in e ji -measure

n I
and by Lemma 2.2.3 f converges to f in e X.-measure. Thus condition

mi=1

(2.3.3) in Definition 2.3.1 is satisfied.

Next, for Ac An  1A(t)(f (t)- fk(t)) is a simple function for all

m, k> 1, i.e.

1A(t)f (fmt)- fk()) = ct a C.t)
A- i -k j A -

for some a c R and A1 ,...,A£ disjoint elements in A
n. Then by definition

°7...... ........... .
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n
of * X. (Theorem 2.2.1)

1

n 2 n
IIfn(lA(f m -f k))(t)d .iX n e I a. - X.(A.)II
T H j=l ji=l 1

nn2 n' 2
(A (ala X (A )A

- II~ i. e I IOn s e. e " x(A.)I2
1 il1j il 1 Hen

and using Theorem 2.1.3

n2 £ £ n n
aJi IX.(A) = a. a. < e X. ) X (A )>

j=l Hen Ji =l 2=1 j2 i 1 ) i=l 1 2 Ho

2a .iIl (Aj) = I tnlA( f) - k(t_ 2d 1 i(t)

. ~j=l j  =- i=l -

which goes to zero as m,k-*- for AE A because {f is a Cauchy sequence
m m~tl

in L2 (TnAn,  n Therefore for each AE An lira m(t) d n X.ff * X(t)
M4K i=l i-

exists.

Next, since for each A E An and m_> 1 IAf is a simple function, i.e.

there exist a. j=l,...,£ and disjoint elements A A,...,A of An such that

1 Afm (t) = Z aT 1A (t)
• j=lJ j

n
then from (2.3.2) and the definition of sv( e Xi;A)

i

n 2 ni,": II~~1f A / mr(t-- di* X. (t) II Hen = II j~l a'm' i* ® Xi (A)II He
11fm() i() Ona 0Xi() O

P£ a. n n

= 1mK I ---- OO()I !5 fm~ ,sv( (A)X. ;A)
j=l II fmloo i=l H n i=l

where

II fraiK sup II fm(DII = max(amla,...,ll).
tE.• t T 

n

n n
Hence we have that for each m> 1, (.)fm(t)d a X (t) is sv( a Xi, • )-contin-

Si=l 1- i=l1

uous. Then by the Vitali-Hahn-Saks Theorem (Dunford and Schwartz (1958))

and Lemma 2.2.2 we have that

- .,.•. . ...............................•.-...•..-•.-..-..........-.......•.......-.........•...........-..



31

n n
fI flf) (t)d o X. (t) ~I +0 as sv( ex ;A) 0

T j=1 H i=l1

uniformly in m--l,2,... .. Then condition (2.3.4) in Definition 2.3.1 is
n

satisfied and hence f is a X.i -integrable.
i=l 1Q.E.D.

Under additional conditions on (T,A) and the control measures l).

we are able to give a converse of Theorem 2.3.1.

Theorem 2.3.2 Let T c IR be an interval of the real line, A= 8(T) and

suppose that n are finite non-atomic measures on (T,A). Then a real

n n 2 n nn
valued function f on T is a X.-integrable if and only if f4EL (T PA,

i~l 1i~l2

n
Proof Sufficiency follows from Theorem 2.3.1. So assume that f is s X. -

integrable, i.e. there exists a sequence {f m}MP. of An-measurable simple

functions that satisfies conditions (2.3.3) and (2.3.4) of Definition 2.3.1.

Next, since for each k,m fm-f is a simple function, fm(t)-fk(t) = 19,l a IAMt

say where ct. i J R j=l,. . . ,. and Al.-'.A 91are disjoint elements in An,

then for each A E A n using Lemma 2.2.1 we have that

n2
(2.3.6) 11 fn1A(f -f )( d d% X()I 2

?A k i=l i HO

n n
1 ( f )die@ X.(D) flI (f -f )td eX.W>e

2. 2.n n
a c. at. < 0 X.(A. nA), e X.i(A. nA)> a

jI~ j 2= 1l 32  i=l1 JI i=l 1 2  Hn

1 9. 2.
n!j1=1 j2= 1 )1 2 1 ll 1 nT n j2

I f I=1 j ja IL 1A nAC) 1 (A. nA)ll(!.)dIlI OP ~nn (t)
11 I T = j2=l 1 ~2 11j n

. . ... .. . . . ..
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I f ln AnAR(tC)C (f f) (t)(fm -f k) 11 di lC6 It).
TI T m kn T()d~1..

Next, using the notation of Corollary 2.2.5, for each permutation H1, 91
11

defined in (2.2.17) is an antisymmetric set, i.e. 1  n n (T- for each
IT 1

permutation 11* distinct from the identity permutation UI. Then for each It

k the above expression (2.3.6) simplifies as

11f1 (f -f) dt) 2
n T n m k i=l H o

IT

T T1

But from Proposition 2.3.1, if m,k -

nII f fk)(t)d 0X.t)a 2
1 nlm Onl

nn

f1 Sn(D (f (t)-fk (t)) d *0as m,k -

and since the measures pi." ... n are non-atomic
nn
nc

P i'((S ))=0

which implies that

2n
fnIfm(t!>f (t)12 d 0 i.(t) -~0 as m,k -

n
Thus {f m I is a Cauchy sequence in L2(Tn,A, p.) and since by Corol-

n iln
lary 2.2.7 f -f in e p. -meaure, then f belongs to L (TJn,An 'a Im

Q.E.D.
-n n

Properties of fn f (1) d e Xi (t) Since the integral fn f(t)d oX. Mt
T i~l Ti1'
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* has been constructed using the theory of integration w.r.t. vector valued

measures, then this integral inherits the properties from that theory. For

the sake of completeness we present here some of these properties. They are

Propositions 2.3.2-2.3.5 whose proofs are given in Kussmaul (1977). We

write them here using our notation even though they hold for every bounded

vector valued measure.

On the other hand we are able to prove another kind of properties for

fnf (t)d e X'(91 which use the special structure of symmetric tensor product

of o X. and Assumption 2.2.1. They do not necessarily hold for every vec-
i=l1

tor valued measure. They are presented in Theorem 2.3.3, Lemmas 2.3.1-2.3.2

and Corollaries 2.3.1-2.3.3.

n n
Proposition 2.3.2 Let f be a ® X. -integrable function on T , i.e.

n i=l
f E L1 ( 0 Xi). Then

i=l
n

a) If gE Ll( l xi) and a,bE IR, for each AEAn we have
i= 1

n n n
f(af(t)+bg(t))d 0 X. (t) = a f f(t)d 0 X_+ b f g(t)d 0 X (t)
A i=l i A i=l A i=l i

n
b) f f(_d a X (t) is a countable additive bounded measure on (Tn,An)

.) i=li

with values in H n such that

n n
sv( f f(t)d e Xi(t);A) - 0 as sv( e Xi;A) - 0.((.) -- i=l 1-i=l1

Proof See Kussmaul (1977) Proposition 10.4.

n
Proposition 2.3.3 Let S be the vector space of real A -measurable simple

functions. Define for fe S

n

(2.3.7) 11f 11 = sv( f f(Dd Xi(t);Tn)

: • , . : . . . . .• ° - . . . . . . I * ... :.. J ., .'v .-.-.-; ' ..' . " ''. . . . , .. : : . :., . ." .'.. .". ...... " . " . .
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* Then

a) Ifi is anorm on S.

b) Let v be the nonnegative measure on An given by Lemma 2.2.2. Then

every 11 l1-Cauchy sequence {f } 1 21Of elements in S converges in
n nk

X. x-measure (and hence in v-measure) to an An-measurable function

f on Tn.
n n

c) The space L1 (e X ) of e X.-integrable functions can be identified

with the completion of S with respect to the norm 11-11 given by

(2.3.7).
n On

d) The linear operator I(; X 9...,X L H eindb

I n(f;X Xj .. 3 n) =fnf(t) d e xi~ is continuous with norm
n 1*** n T i=l

Proof See Kussmaul (1977) Theorem 10.8.

Proposition 2.3.4 a) Let f E L1 ( X1  Then the element

n

is uniquely determined by

n n
<fnf(tDd a X. (D)F> f = fnf (t)d< a Xi.F> (t)

T ilH T i=l

onn
for all Fe He' where < a X. F>(. is the signed meaure on An given by

i=l

n nn
0 <* Xi.,F>(A) < <e X.i(A),F> A~ An

i=l 1i=l 1 H"
n

b) An A~ -measurable function on a~ is * integrable if and only if
n i

in 1 ~

n Hen
{fnf(t)d< * XiPF>Q): 11 F11 on 5 1 F e

Ti-l H
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is weakly sequentially compact.

Proof See Kussmaul (1977) Corollaries 1 and 2, page 107.

Proposition 2.3.5 (Lebesgue Dominated Convergence Theorem).
n

Let {fm } M be a sequence of e Xi -integrable functions which convergesn i=l n

to a function f in x.- measure and If mI g mi 1 where g is a a X.-
i= 1 n i=l1

integrable function. Then f is e Xi - integrable, f converges to f in
n i--

the LI( e Xi) -norm of Proposition 2.3.3 and
i=1

n n
f f(t)d 9 Xi (t) = lir fn fm(t)d * Xi(t).

T- ~l r~ M i-l

Proof See Kussmaul (1977) Corollary 3, page 108.

In all the above properties (Propositions 2.3.2-2.3.5) we have only
n

used the fact that a X. is a bounded vector valued measure. Now we shall
i=l I n

use the special structure of symmetric tensor product of a X. and the hypo-
i=l1

theses in AsSumption 2.2.1 to show additional properties of the integral

n
fn f(t)d a X.(t).
T i=1

Our first result gives an .expression for the inner product of two in-

tegrals and consequently for their norm. We first introduce some new nota-

tion: Let Vo be a c-finite non-negative measure on (T,A) such that . <<11
n

i,j=l,...,n (po = P. for example) and R(s) = (r. (s)) be the non-nega-i= 11

tive definite matrix a.e. dpo given by (2.2.2), that is

r. (s) = o2 (s) a.e. di o

For each t = (ti,....tn) E n, let

(2.3.8) R n ( t ) R(t )e...OR(tn )

nY

IV
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where &denotes the Kronecker product for matrices, i.e. if A =(a.. is an
13

I(mxn) matrix and B =(b kt is a pxq matrix, then ASAB is the (mpxnq) matrix

a B a B .. a B
11 12 " in

AO^B a 21 B 22B .. a2n B

a mlB a M2 B... amnB -

Then Rn(j) defined in (2.3.8) is an ( n xn n non-negative definite matrix

a.e. do

Let (e) lbetecnncl ass iR .For each permutation

11 (I 1I'.-V~ln of l,.n)let

(2.3.9) e" e *..e
an -I -i

1 n) n_
and for a given real valued function f on T define the (P valued

K functions onT

(2.3.10) f 11(t) f f1,) I

and

(2.3.11) f n(t)= ~~ fn (t).

We shall denote by f n(t)' the transpose of f C)
an an-

Using the above notation we now establish the next result.

Theorem 2.3.3 a) If fig E L (Tn ,A

n n
(2.3.12) <frf(t~d aX.(t), J ng(t)d 0 X i(t)> en-

izi T i=l H

ff Cnt)' R~ (t)gqn()dJ'(t).
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n

11Ifftd 0X~ t) f f (t)Ren (t)f (t)dVT  t
Tj( ilH Ten -en 0n

Proof First we will show that for fE L2 (T A d

(2.3.13) f f (t)IRen(t)f (j)dlvn(D <

(Bin n

Since fny~t)'Ren' (d 0t) is a semi-inner product in the space
T0

of A n-measurable (lR n)envalued functions on Tit follows by the triangle

inequality that

(2.3.14) 0 &% fe(t) Rn(t) fn(t) diln0(t)

f 1 11 On 1 I n
= n~ f f(In)eon) IR fJ)~ F)en) d1io0(t)
T it

HI o~n( ~ 1 n ~2
1 {n(f(h.)een)R (f( ) o)dut

Next using (2.3.8), (2.3.10), the transformation theorem and the fact that

dji.
r. Cis) 1j s a.e. d 0 , we have that for each permutation H d II,

T 11 o

f f (h)~.~ i,, ((srd(t (s
n 0

2 n~fs d2 jn.(s)
T dU1

...............
.f n .fs~ 2.. . .. . .d.e.
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n
-. ~~Then from (2.3.14) we obtain that if f e L2 TIA,*~

(2.3.15) ~ f f(t)'R o (t)fn(.t)dIpn(t) !5

n

which proves (2.3.13) and the inequality in (b).

Thus applying Cauchy-Schwarz inequality we have that if f,g e

2 n
L 2CTnA n * .) then

on n

Now we shall show that (2.3.12) holds if f and g are An-measurable

real simple functions, that is

m

g (t) =)bkl i.

k=l k

nn

using the definition of the integral fnf(t)d e X.(t) for simple functions

and Lemma 2.2.1

n n
< f f(t~)d e X.() f (t) de X1(D)>

T i=l T i=l H

m m n n
=X Xa.bk < a X (A.) x X(A)>n

j=l k=l 3 i=1 1 i i H) e

m

=1k=l bn

ni n. P fnf(t)g(td 1 1 S.ep C)
11 T 1n

I f f ftg 11 (t) r,,, (t) .r (t,)dpn(t)
nI T n n

*.. ... ... ... *n
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f=nf I On~." (D)gen(t) dun (t)
T

where fe(-) =ffl CtL) for It the identity permutation.

Next for each permutation H1, applying the transformation theorem we

obtain

f fnjel~ R~ L e u

The (23.2 hod forj.DrH l .. -sml fuctos usin (2.3.1 )

2n n

mmen (21' ) hold o An-srale siefuncti sng suc2 tat.11).fan

2 n nn
Now sups in a L ~ g (L ,, , e P. an by Theore 2.3eeis.1qene

il'l

n

gm ginL f(nfm( G )an by There 2C.3.1~t
T~ l m~ l

and
n n

f g m(t)d a e ( f g(t)d e X.i(t).

Then it is enough to show that

o.* f.~n on 0

*d W...
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2 n2 nfl
Denote L a v i.) =L (Te,A 0 P .~) Then using (2.3.15)

=1I i=l

F 11en m on 0

?%n -f(t) Ro ) gRn(t) (I) I ~ ~ i(~

:5 1f (() (D) - %f() R'( g)S ( q t ~

Tnn

+ Ifn f an(DIRf on()(gm)en(t) - gnDd q)
T

11 f-fI I IIn 1 g"-gI + II f-fI 11 n II gil n
L 2 0 P) L 2 * i) L 2 e ji) L 2 * vi.

+1 Ifil 2 1 I-gmlI 2 n0 as m-)

2 2

because fm 4. f and gm g in L ol.)

(b) follows from (a) taking f = g.

Q.E.D.

Corollary 2.3.1 If A is an antisymmetric set in An then for all

2 nn
f L L(Tn,A~,*j.

2~ 1 ft1

A i=l Hn 7 A i=l"'

Proof Since An A =*for all HT distinct from the identity permutation II ,

then using (b) in the last theorem

2nI1 f f(t)d a X (t) 11 2 R f t)'R(t)f (t) d,.j (t)
A iul H- A-
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n!I nAIT A rl 111 "n

1~ I f(t)I 2 dple ... dpna(t).
n!A

Q.E.D.

Corollary 2.3.2 If 11 i..=P ij, 1...,n and f -E L 2CT, ,An,i P), then

llf f(t)d X (*t) o2 n f fn If~Idpon(t)
TF -j1 H T

where n-!. f

Proof Taking 110= ji, then r. (t) = 1 all ij, 1 ,...,n and from Theorem
1J

2.3.3 (b)

f~~d X.t)12 *nt= nn en
-i j=11d H T t f f (t) ,Re(f (t) d~

4 ~f(t)f11(t)dpn~ n fI(t) 1 2 dp an( M
" tTT Q.E.D.

Corollary 2.3.3 If I1 ij=lj ,...,n and f is a symmetric function

2 nn
in L (T ,A 1I1i) then

n 2 on
lfnf(t)d e X.C t),1 2  =ffCId. Ct

T ~ H T

The proof follows from the last corollary since f=f.

The next lemma may be seen as a Fubini's type theorem for multiple sto-

chastic integrals. We write

n

I n(f; X1 ,...x Xn) f f(t)d X i(t).

2
Lemma 2.3.1 Let f(t1,.. *it) f f(t). *fn(tn where f. E L (TA 5Ij)

n
i=l,...,n. Then f is is X.-integrable and

In (f; X I .. X n) I 1x (f 1 "'X Cfn)
1 n

.......................... .............. .. ................
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where for each i=l,...,n, I. is the isometry between L 2(T,A,i ) and H
X.1 X.

I I
given by Theorem 2.1.1.

Proof By Fubini's Theorem f(t)- fl(tl)...fn(tn) belongs to L2(T ,An  ® *i)
n i=

and hence by Theorem 2.3.1 f is 0 X.-integrable.~i=l

First assume that each f. is a simple function on (TA), i.e.

k.
f. i(s) -- ai lA  (S)

" j=l ij

where aij E P j=1,...,k, and Ail,...,Aik are disjoint sets in A i=l,...,n.
i

Then

f(t) - 1..n al...a 1 Ct)
.--- Jll nlnn ll nn

and by Definition 2.3.1 and Theorem 2.2.1

k k n... i (f; Xls., .,n)  I .. n al l .a n A j . .A

jl=1 j =1i=1i

k k
= "'"i alJl...a . X .(A I )...OXnA .)

JllJ U n~i i 1  n n

k

a X (A ))e ...( In a X(A
ll i n=l1 n n

1 n=IXl (fl)e'" "®I~n cfn

Next since each f. L2(T,A,pi), there exist sequences (fa) i=l,...,n
1 1 im24

of simple functions on (T,A) such that f' f in L2(T,A,Iji) for each

i=l,...,n. Define

?m(t) = fCt )...f Ct)

2 nn n
then f? f in L (T ,A P . i)  Next since In ( ;Xl ' ' ''xn) is a bounded

n"'-"...

. . . . .- . - " ' . % " . - ''.% ' " ,." -".. ." "- " .
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linear operator, to prove the lemma it is enough to show that

Let on be the projection operator defined in (2.2.3), then

I' (f'). M - f) I~ (f e.. *01X (f 112
1 nn 1 1 X n H a

- (I (fM_)G... 61x (fin) I I(fi)e ... 1 (f l 2e

n n H

II~ ~ 9 If)*..I(fm) -x 1 (f )e .. 1x (fn)I2e

IX~~.6 If X) 1n oI n I~f *fl H1

-2I (f")e ... 0I (fm)l 2 H
X 1 Xy n ef + 11X( 0..1>( 12o

n 2

2 < L~ I fM)0..G f) (fin)e 61 f)>
-21 1 X n X n H a

f m) 12 .. ,Ifm , 2 ,)) 1, ) 1 ...2 1= 1i T ( f 2
1 IX 1 1 H 'ii 2f Ii' H 'X n H

2<I f- Lf i) ... L f) (ft

2 1m

TheH nex reul give the rtonai of mulipl irl ofdffr

ent order. We use the notation of Lemma 2.2.S.

n ~ n2
Lemma 2.3.2 (Orthogonalty) If n 1  n n2 and f c L"e1 g L I1 QX)

then I n1(f; X 1 .. X n is orthogonal to I n2(g;is.. n 2wt epc

to the inner product <-,->e in EXP(H).

e
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On1
Proof From Definition 2.3.1 1I (f; X $..X n takes values in H and

2'** 1
I (f; X ,...'X) in H .Then the lemma follows since for n 1  n n2 H and

2 n

H are orthogonal in EXP(H).
Q.E.D.

The case of only one o.s.m. X To conclude this section we consider the

special case of only one measure X, i.e. X is an orthogonally scattered mea-

sure on a measurable space (T,A) with values in H Xand control measure Ui. We

use the hypotheses and notation of Proposition 2.2.1 and Lemma 2.2.6. For

f an Xon-integrable function we will write

(2.3.16) 1 (f) f = ~ dntno fn(nXC)=I(f;X)

Additional properties to those given above are now presented for the

integral I (f). They are similar to those for the multiple Wiener inte-
no

gral with respect to a Gaussian random measure presented in ItB (1951).

For a real valued function f on Tn we denote by f the symmetrization

of f defined as

The exponential space EXP(H X is defined in (2.2.21) with inner product

<0,0> given by (2.2.22) with corresponding norm
e e

Proposition_2.3.6 Let f ,g E L (ji*') L L2(J, An,.'an) . Then

a) I n(b~= (f)M

b) < (f), I (g>on 2 ~g=<f,g>2  ,
no no LU2 (,o) L2o)

H L UL (W

d) I'nomfII e I no~ o2n 2 Ii~ 5 II2 On)
nO H L U') LU )

x
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Proof a) Let f be an elementary function of the form

(2.3.17) f(t) a f ij 1 .x... xA. t

n 1n

where a. .IE IR and A1 .. .,A pare disjoint sets in A. Then

(a. .1 (~t
n! i1... =l fl 11iA ..

and from Definition 2.3.1

P

InaOf a. 1 ** X(A.i )9 ... OX(A. )

and

p

I noi i =1 fl -1 ... 1-1

n ~ (1)(n)

But for all H= (HI (1) )., permutation of (1,...,n)

X(A. )0. ..OX(A. X(A. )0. .. .OX(A.
~1 n 1H- 1 -

~(l) 1 (n)

Then I no(f) =I n(?) if f is an elementary function as in (2.3.17).

2 n n on
If f c L (T ,A pj~ ) a limit argument applies, since elementary functions

form a dense linear manifold in L 2(T n,A ,,O

b) It follows from Theorem 2.3.3 as in Corollary 2.3.2 that

H 11Tx

Tf - an -

and the second equality of (b) follows from (a). The proof of (c) and (d)

follows from (b and Lemma 2.3.2
Q.E.D.
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"2 o)2 nf nWe denote by L (pi~ the subspace of L (T ,Ai)consisting of all

synietric functions (f(.111) f(t) for all TI).

Proposition 2.3.7 (Orthogonal expansions). Let cp EXP(H x) Then

I I (fl) e- I convergence)

*~ whr 2 on
whrefnE L (i n 1. Moreover

002 On
i~~~e.1 the syte of mulipl ine l (I Cf):1 ( j ) is2 coplte n ^ 2no n n

in EXCP(HX)

Proof For h e H let
X

exp 0(h) =(l,h, L h 9, 1 h m3....

It is known (Guichardet (1972)) that {exp 0(h): hE H X generates the space

EXP(H X) and therefore if 1PE EXP(11 X)

(2.3.18) Ep H p ' n 1 p=constant.
n n X

Next, let h.i E H X i=l,...,n. Then by Theorem 2.1.1 h = I X(g.) g. E

2
L (TAl.) i=l,...,n and by Lemma 2.3.1 and Proposition 2.3.6 (b)

h 1 .. .Qh n I X(gl )a . gn=n1 0 (g l**g)=I

where f = .. But from Proposition 2.3.6 (b) there is an isometryn 1**n'
^2 on on "2 on

between L (i~)and a closed subspace R of H where R = {I (f:E L (1')I
n X n no

anThen since elements of the form h..... .@hn generate H , it follows by con-

on "2 antinuity of I no that if %E H X ,then' 1 no (f n where f ncL (j ).Then

the proposition follows from (2.3.18). QED

. .. . . ......

. . . . . . . . . . . . . .



CHAPTER III

PRODUCT. STOCHASTIC MEASURES AND MULTIPLE STOCHASTIC

INTEGRALS OF L 2-INDEPENDENTLY SCATrERED MEASURES

Let (T,A) be a measurable space and (2,F,P) be a complete probability

space. The real valued set function X on (T,A) is said to be an indepen-

dently scattered measure (i.s.m.) on (T,A) if for each sequence of pair-

wise disjoint sets 1Akl in A, {X(Ak)}ktl is a sequence of independent

random variables on (0,F,P) and

X( U Ak) = I X(Ak) a.s.
k=l k=l

We say that X is an L2 ()-valued i.s.m if X(A) belongs to L2 (0,F,P) for

2
each Ac A and the above series converges in L (Q). Zero mean (E(X(A)) = 0

2
V A E A) L (0)-valued independently scattered measures are special

cases of orthogonally scattered measures.

In this chapter we apply the results obtained in the last one to

study L2 -valued product stochastic measures and multiple stochastic in-

2
tegrals of non-identically distributed L -independently scattered measures.

We include the Gaussian (Section 3.1), Poisson (Section 3.2) and general

2
L -independent increments process (Section 3.3) cases. Although the last

situation includes the first two, we gain generality in the measurable

space (T,A) by studying them separately, apart from the fact that results

presented in the first two sections are later used in Section 3.3. In

each case we present the identification of the exponential space and the

symmetric tensor products of the common Hilbert space where the indepen-

• o ~~~~~~~~~~~~~~~.. . . . - .. . . . . . . . .o . ... . . ....- o , -oO° . .. . . . . - o °, ° . - , • ° -. .

',° , . -•, , o '. °. • % • • . ° • , . ° . . °• • -... . . . . . . . . ..-. . . ..-. .,° . • °• .•°. o . - , . o ff

,........... ..- % . .= -. -... -. . . ......... .. . -.-... - . , .- ., ... ° . ....-- .- , , .. . .- . '.- , ... :,. .. .,.. .
" " ".''o "-5'' v "' ,'' . ".' - % ° " ' ' ' ° " ' ' 

"
" - ' . , ° " " " " - - , -" ° ' '•
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dently scattered measures take values. We conclude the chapter with Sec-

tion 3.4 where we make comparisons with recent works in the literature

including the one by Engel (1982) on the L 2-theory of products of differ-

ent stochastic measures.

3.1 Gaussian random measures

In this section we consider non-identically distributed Gaussian

random measures and their symmetric tensor products. We use the well-

known identification of the exponential space of a Gaussian process (Neveu

(1968), Kallianpur (1970)) and our results of Section 2.2 to obtain an

2_L -valued product stochastic measure. Further, applying the theory of

Section 2.3, we construct multiple integrals, obtaining as special cases

the multiple Wiener integral of Ito (1951) and the multiple stochastic

integral with dependent integrators of Fox and Taqqu (1984).

Let (S,F,P) be a complete probability space, T c R d (d 1) a mea-

surable subset, A= 8(T) its Borel subsets and A its relatively compact
C

subsets. Let W(A) = (W (A),...,W (A)) A E A be a zero mean n-dimension-
1n c

al Gaussian random field on (I,F,P), such that W(A) and W(B) are indepen-

dent if AnB = ¢, A,B c A . Then for each i=l,...,n W. is a Gaussianc. 2

random measure and therefore an L (S FWP)-valued orthogonally scattered

measure, where FW = o(W(A); A E Ac). Further, W. and W. are independent

(and hence orthogonal) over disjoint sets for i,j=l,...,n. Define

(-3.1.1) 1i(A) = E[Wi(A)]2  A A E i=l,...,n

(3.1.2) iCAnB) = E(Wi(A)W (B)) A, B E A i,j=l,...,n

11i c j l . .,

and let

(3.1.3) H f sp {a'W(A): aeIR n, AeA )

............... ..
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be the Gaussian space, closed subspace of L 2(11,F ,P) generated by W.

Then each W.i is an H-valued orthogonally scattered measure on (T,A) with

control measure pi#, which we assume finite for i=l,. ..,n. (If W is a

Wiener process this finiteness assumption means T has to be a bounded

set, since p~i is Lebesgue measure.)

It is known (Proposition 7.3 of Neveu (1968)) that

(3.1.4) EXP(H) L 2(Q,FW,P)

where for all hE H

(..)i(exp e (h)) exp (h - E (h2))

exp O(h) = l henE EXP(H)
n O

2 Wand that {(exp O (h)): h.E 1 generates L (I, F, ,P).

2
In our first result of this chapter we obtain an L -valued product

stochastic measure of the Gaussian random measures W1 * .. W1W

Proposition 3.1.1 Let W.i i=l,...,n be Gaussian random measures on (T,A)

satisfying the above conditions. Then there exists a unique L 2 (QFW,P)-
n

valued measure * W. on CT ,A )such that for A. E A i=l, .. .n

n
(3.1.6) W W.(A .x... xA W 1= A) ..O An

and for A E A

n
E( SW (A)) =0

n IT

*i=l i n T..el~
n

Proof Existence and uniqueness of the H an-valued measure 0 W. follow

S -- -. -. .'. . .. . . . - -.. . . . . . . . . . . . . . . . . . . . . . . . . .



so

n

from Theorem 2.2.1. By (3.1.4) a W. is seen as an L2 (1, F , P) -valued
1=1 1
nS

measure. Since for each n2 1, a W. is H -valued and H is orthogonali=l

so n.
to H*0  R, then E( a W.(A)) = 0 for A A. The expression for the var-

i=l

iance follows from (2.2.14) in Corollary 2.2.2.

Q.E.D.
n

The H -valued measure 0 Wi is an example of the symmetric tensor
i=l1

product measure constructed in Section 2.2. Then all results of that sec-

2n
tion may be applied to this L (2)-valued product stochastic measure 0 W..

n i=l1
In order to compute the symmetric tensor product measure a W. for somei=l1

sets A e A we shall use the identification of the Exponential space of a

general Gaussian space studied by Neveu (1968) and Kallianpur (1970). The

next well known result is Proposition 7.5 in the work of the first named

author. We present it here for the sake of completeness and later reference.

Proposition 3.1.2 (Neveu (1968)). If H is a Gaussian space and hl,...hk

are orthogonal elements in H, then

en ,n k
(3.1.7) h i. @h k -l Tr n f 21

k

where a. (h.), n = n. and h (x;a 2) are Hermite polynomials defined
j=l 3  m

by

hm(x;a 2) = (-a 2)n ex21 c2a2 dn e x 2 (2a2  a2>0, m>0.
dx

Using the above proposition and the notation in (2.2.7) we obtain the

following.

Proposition 3.1.3 Let H be a Gaussian space and h. £ H i=l,...,n. Then
)1

(3.1.8) hi®... hn =

..-"



~*~':~ ~ - - - -. r. - -

32 .n-l z n 2(n * I (_l NeP h n 1 c (i)hiJ9E( 1 1 c (i)h. ).
9.=O Z 1=1 N j=1 N 1

The proof follows from (2.2.7) and (3.1.7).

The first few expressions given by (3.1.8) are

(3.1.9) h. a h2  (21 {hh h - E(h h)

(3.1.10) h1 eah 2 e&h 3 = (3 1 1fh 1h 2h 3 - h IE(h 2h 3  h h2E(h 1h 3  h h3E(h Ih 2)1

(3.1.11) h Oh eh eh=(4!1 fh h h h4  hh (h )-hh hh
1 3 4z1 34-1 2  3h4) h1h3E 2h4)

h h2h4E(hlh 3) - h 2h 3E(h 1 h 4)- h1h 4E(h 2h 3) - h 3h 4E(h 1h 2)

+ E(h 1h 2)E(h 3h 4) + E(h 1h 3)E(h 2h 4) .. E(h 1h 4)E(h 2h 3)

where h1 ,...,h 4 c H. They are called Multivariate Hermite polynomials

(Fox and Taqqu (1984)).

Using the last two propositions we are now able to compute the symme-

n
tric tensor product measure for some sets in A

Corollary 3.1.1 Let W i=l,...,n be Gaussian random measures as in Prop-i

osition 3.1.1. Then if A1 .,...,A are disjoint sets in A

nn

(o112 W (A x .. xA )=(ni A).W(
1~ 1 n n~ n1 A).W()

Proof By (3.1.6) in Proposition 3.1.1

n

*W(A1x.. xA W 1nA1.. W( n)

Since A11***iA n are disjoint sets in A, then by (3.1.2) WI( ,.I An

are orthogonal elements in H where the latter is defined in (3.1.3). Then

(3.1.12) follows using Proposition 3.1.2 with ko n, n~ 1, hi=Wi(A)

%.
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25

i=l,...,n, and since h(x;ca2)x.
Q.E.D.

Corollary 3.1.2 Let Wl'., be Gaussian random measures as in Proposi-

tion 3.1.1. Then if A. c A i=l,...,n

n
(3.1.13) W W(A x...xA)
(3..1)1 1 n

-3/2 n-i 2n n 2

2=O Ne P- i=l N(iWA)E 1=1 N

The proof follows by (3.1.6) in Proposition 3.1.1 and Proposition 3.1.3.

In the next corollary we consider the special case in which W W 1

W nand p j i,j=l,...,n. We use the notation of Proposition 2.2.1.

Corollary 3.1.3 If A e A

W on(Ax. . .xA) [W E(A) on (n! )1 hn(w(A) ;v~(A)).

2
The proof follows from Proposition 3.1.2 since u~(A) =E(W(A)) and

=(n!) h n(h,E(h 2 )).

n
Multiple integrals Let Wi....,Wn and SW. be as in Proposition 3.1.1.

n ~
Using the notation of Section 2.3 we have that if fe L 1( W1 ), i.e. f is
n isi

9W.-integrable (see Definition 2.3.1), then
i=l 3.

n

(3.1.14) 1 (f;W1, **.,Wn =ff(t)dS0W.(t)

is an element of H (and by (3.1.4) an element of L2 (SI,FW,P)) which sat-

isfies all properties of the integral w.r.t. the symmetric tensor product

measure constructed in Section 2.3. Moreover, we have the next result, in

which we use the notation of Theorem 2.3.3.

.. . . . . . . . . .
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n
Lema 3. 1.1 Let W 1 "',Wn and * W. be as in Proposition 3.1.1. Then

jul1

n
a) If f eLCSW), ECI = fW'. Wn 0.

2 nAnn m
b) If f c L CT ,A 9*i. and g c L2CPIIAm,

i=1 l

n
where = V io R'(t) is defined in (2.3.8) for v .. i,j=l,...,n as in

(3.1.1) and (3.1.2), and £ C(t) is given by (2.3.11).

Proof a) Since I (f;W1 ,...,W n is H -valued and H~ is orthogonal to

H I then E(I (fN W **W)=o.

b) It follows from Theorem 2.3.3 and (3.1.4).

Q.E.D.

Two speci~l cases of the multiple stochastic integral I n f;Wl'...'Wn)
n

fn f(t)d s W.i(t) are now considered. First assume the situation studied
T l

by Fox and Taqqu (1984): Let pi .(A) = s. p(A) A E A, i,jzl...n, where
13 13

pi is a (a-finite)-measure on (T,A) and S = (s..) in an nxn non-negative
13

definite matrix, i.e. WV .. ,W nare Gaussian random measures such that

for ij=l,...,n

(3.1.15) E(W .(A) W .(B)) s .41j(AnB) A,B c A.

6 Fox and Taqqu following 0t (1951), define the multiple stochastic inte-

gral with dependent integrators J n f;W ,..W n) in the following manner:

ILet f be a special elementary function on T , i.e.

(3.1.16) f~t) a 1A M, xA ~
In 11 1

n n
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where A .. is a collection of disjoint sets in A and ci IR are
1n

zero unless i1 ...,9i nare all distinct. Denote by S n the class of all

special elementary functions. If v. satisfies the continuity property

(i.e. Y E > 0 and Ac A, j(A)< -, there exist some disjoint B E A, p.(B )< C

j=l,. ..,m and A = U B. then S is a dense linear manifold in L (TnnI
j=1

(Ito (1951)). For f E S definen

P
(3.1.17) J n(f;W 1 1 ... W)n = 1X a. . i.(A. )... W(A. )

n

Then J can be extended to a bounded linear operator from L 2 (Tn ,A n, ,p1) to
n

2 W
L (2,F ,P) (Fox and Taqqu (1984)).

On the other hand, using Definition 2.3.1 and Corollary 3.1.1 we have

that for f e S
K n

(3.1.18) I n(f;Wjl...SW) n a. W I(A. )...OW n(A. )
1-n n1 n

W) a* i 1 (A l 1 (

1 n

Therefore from (3.1.17) and (3.1.18)

(3.1.19) 1 n(f;Wii. ..,W n (ni) J n (f;W,....,W n if f CSn in

I n (f;W1 j .. W n Wn) Jn (f;W 1 o ... INW)

- 2The proof follows since I and (n!) J are L (Q)-valued continuous bounded
4.n n

2 n n on
operators on L (T ,A ,p)which agree (see (3.1.19)) on the dense linear

manifold Sn



L. .

Hence the multiple stochastic integral with dependent integrators

of Fox and Taqqu (1984) is a special case of our integral I n(f;W 1,... ,W n)

of (3.1.14). Moreover, we do not need to assume the continuity property

on V to construct this integral, although we require V to be finite (see

beginning of Section 2.1).

Next assume the situation considered by ItS (1951): W=W1 ...,W is
n

a Gaussian random measure on (T,A) and p satisfies the continuity property.

Ito's multiple Wiener integral Jn (f;W) is constructed as in the Fox and

Taqqu case above and it is a bounded linear operator from L2 (Tn ,An,,1 n)

to L2 (1,FW,P). As in Proposition 3.1.4 we have that for fe L
2 (Tn,An,P )

I (f;W) = (n!) J (f,W) where I is as in Proposition 2.3.6.
The next two propositions were obtained by It* (1951). They relate

multiple Wiener integrals with Hermite polynomials. We prove them here

using the symmetric tensor product set up. We remark that since in the

construction of In®(f;W) in Section 2.3 it was not required that p satis-

fies the continuity property (as it is required in Itfi's case) this will

not be assumed in the next result.

Proposition 3.1.5 Let ((t),. t) be an orthogonal system of real

valued functions in L 2(T,A,p) and h be the Hermite polynomial of degree

k given in Proposition 3.1.2. Define

f (t ) l (t l)  . .0 ( ,) 2 d ... 0 t P m (t j+ .. + m 1

... (t )
m pl+.. +

Pm
Then if n f pl+...+pm

Ie(f) (ni) (I (Inofi Pi

• ..--.-.-. .,... . . ..-. ."...... .-:. . .-'.-..".i "-.- -"-"-*-,'-"--' ,-,-',.-'.."....',..,-... ,.. -"..°...-,-.. ...-...-
. ' - -- - ' ; ' -;L. .= ' x : "-' '.n L- .'. " . _,',T , .'.'''_.:' ' ,"."-' '. ,'-,' ,-.',-*-'','
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where Ii(g)= Jg(s)dW(s) is the isometric integral w.r.t. W given in Theorem
T

2.1.1.

Proof From Lemma 2.3.1 f is W-integrable and

I n (f;W) = l(lF) 'e... ll( M)  p m

Next since for i~j E(Ii($j)Ii(4j)) = f *i(s)$ (s)du(s) = 0 then by Propo-
T

sition 3.1.2

I($) 1 m m 2II(¢~eal... SIl(¢m) p = (n!) n h (I(j) E(I(1)2

Q.E.D.

Proposition 3.1.6 Let T = [0,1] and p be non-atomic. Then if

= {(t1 . ,t n)Tn: Ot < ...< t n i

-3 /2
In(l n;W) = n)/hn(W(T);ffT))

That is formally

-3/2

(3.1.20) f f dW(t)...dW(t(n !) h=(W(Tf;I(T)).
O:5t <...<t -<1

1 n

Proof By Definition 2.3.1 1 n(1 ;W) = We (T ). Then the result follows

by Corollary 3.1.3, since W is finitely additive, V is non-atomic and Prop-

osition 2.2.1 (c).

Q.E.D.

A different proof of (3.1.20) above is given in Theorem 6.S of Engel

(1982).

3.2 Poisson randon measure

Let (0,F,P) be a complete probability space and (T,A) be any measurable

space such that all singleton sets are measurable, i.e. {t} A V te T.

e ..- o....................................... .9-..
"

-. .' ---- o" - A% 2 " '. ' . -", '*.%.. .%h ' .79. "*b l ".o "-
I
°

-° * '-." '".%... .. . . . . . . . . . . . . ..-. ..'. . .**.o '* "" 
-

"" .''- 
"

"" " -"
%

'" -""- A'% 
%
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°
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"
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Let M(T) be the set of all a-finite measures on (T,A). We assume that N

is a Poisson random measure on (T,A) with intensity p4 M(T), i.e. N(A)

Ac A is an integer-valued random measure such that the following two condi-

tions hold:

(i) for each Ae A, p(A) < , N(A) is a Poisson random variable with

mean p(A) ,

(ii) if A,..., Ak are disjoint sets in A then N(A1 ),...,N(A k) are inde-

pendent random variables on (fS,F,P).

The signed random measure q(A) = N(A) - p(A) Ac A, p(A) < is called a

centered Poisson random measure. Since for A,Bc A with i(A) < -, v (B) <

E(q(A)q(B)) =1i(AnB), then q is an orthogonally scattered measure on (TA)

with control measure V. We assume V is a non-atomic measure.

In this section we consider symmetric tensor product measures of the

centered Poisson random measure q with itself for all n> 1. That is, using

en
the notation of Proposition 2.2.1 we construct q for n2 1 and multiple

Sn

integrals w.r.t. q 
.

Let Fq  a(N(A): AEA, p(A)<co), I q(f) be the isometric integral of f

w.r.t. q (Theorem 2.1.1) for fe L2 (T,A,p), and H be the subspace of
q

22

L2(Ql, F',P) generated by q (see (2.1.3)), i.e.

H = {I (f): fE L (TA,1)
Kq q

The exponential space EXP(H q) associated with a Poisson random mea-

sure has been studied by Neveu (1968) and Surgailis (1984) for the cases

when the control measure M is finite and a-finite respectively. We do not

follow the identification of EXP(H ) given by the second named author since
* q

he uses multiple Poisson integrals to obtain this identification and we

want to proceed in the opposite way: first identify EXP(Hq), then obtain
q

... . .. ... :o.. .........-........ ... •...,.... ...-....... ,.......... ...... .. .
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en
the symmetric tensor product stochastic measure q and finally construct

en
multiple integrals w.r.t. q , as we did in the last section for the Gaus-

sian random measure. Although for the purpose of this section the identi-

fication of EXP(H q) given by Neveu (1968) (V finite) is sufficient, in

the next theorem we extend Neveu's result to the case when V is a-finite.

This result will be used in Section 3.3 where we study the general L2-inde-

pendent increments processes case.

Theorem 3.2.1 Let (2,FP) be a probability space in which there is de-

fined a centered Poisson random measure q on a measurable space (T,A)

with a-finite non-atomic control measure V. Then

EXP(Hq) L
q

2
where for f c L (T,A,p)

00 N(T) -fT fdp

(3.2.1) O(exp *(Iq(f))= H (1+f(Z ))e

where

(i) T iz-1 are disjoint sets in A, O< p(T.) < and U T. =T,
1 i=l 1

(ii) for each i=1,2,... and j=l,2,..., Z(i)is a T.-valued random,. J 1

element with distribution given by the measure p(T) u(-), and

for each i=1,2,... N(T) follows a Poisson distribution with para-

meter p(T.)

(iii) Z ,)N(Ti) i=1,2, j=l,2,... are mutually independent.

Moreover,
E(C(exp e(Iq (M) exp(ECIq~f)) 2 exp~fT fdv) <.

In order to prove the theorem we first prove the following technical

result.

-. o ' . * - - 'd.t,, . ,, ,% .. a ' L'a,., '..,% .,, .,- .-. .
-

..- " .7 ,. " " , * " ?' _' ' - ' " '., .. . ... -.. "-
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NM

Lemma 3.2.1 Let p and Ti$N(Ti) Z?'j j=1,2,..., i=1,2,... be as in

(i)-(iii) in the above theorem. If gE L (TiAnTi,p) for some i l then

N(Ti)g ) fT (g -l)dp
E g(11)  -ei

j=l

Proof Since N(Ti) follows the Poisson distribution with parameter p(Ti) < O

and for each j=1,2,... Zi) has distribution W(Ti  (-), then using

the independence of N(Ti) Z(i) Z i)

E'j- 1 n- T' -- ~ 2! f I ~j Id(.

rN(0) 1 n n
IT g~CZ')J f j T g(t) RI dp(t.

j 1nO ! nj=I j=l
j~l n=OT.

-jp(T fT.gdp fT (g-l)dp

-e e =e
Q.E.D.

Proof of Theorem 3.2.1 For any Hilbert space K {exp e(k): ke K} generates

EXP(K) (Guichardet (1972)), where

exp ®(k) = (l,k,(2!) "  k® 2,...)

and <klk 2 >K

<exp e(kI), exp ®(k2)>EXP(K)= e kk K.

I
2 q

Then since L (T,A,p) H in order to prove the theorem we have
Dq

to show the following three conditions:

2 2 q
a) for each fE L (TA,p) O(exp 0(1 (f))) E L (I,F ,P).

q

b) for fl,f 2 E L
2 (T,A,pl) E($(exp e(I q(fl))O(exp (I q(f2)))

fTfl f2d
= <exp (I (f , exp (I (f2 e

q

2 2 q
c) ({(exp *(I q(f))): f L (T,A,p)1 generates L2(n, FP).

:Jq
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Since pi is a a-finite measure on (T,A), there exists a sequence of

sets {T } in A such that O< p(T.i)<o- and U T.=T. The existence of
ii~l 1i=l

the random elements Z i) j=l32A..., i=1,2,... satisfying (ii) and (iii)

follows from the construction of a Poisson random measure N with control

measure p. (Theorem 8.1 in Ikeda and Watanabe (1981)).

Let fE L2 (TApte for each i2:1 f belongs to L2 CTi.AnT,p) and

1lT.nij) hnb taking g= (1+f) in Lemma 3.2.1 we obtain

E(IT (+fCZ i)e 1 i=,..

N(T.i) M f.fdp

Then using (iii) G. = H (l+f(Z. ))e is a sequence of inde-
1j=l

pendent random variables with E(G. I i;l and therefore
1

n
D = HI G.
n j = 1

is a martingale. Next, using Lemma 3.2.1 with g= (1+if) 2and the indepen-

dence of ZM, N(T) j=1,2,..., i=1,2,...

ED (T) iTdl

2 ))e
n . j

2 2

n. -2~ .. * fdp. Then) ii)L) d;1en 2fTifd'1fT (l+f)-1)dJ .

mea sqa e o ITex e(Z nf)) Threor
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E 11 H1 (1+fCZi)))e * E D 1
i=l j=l n

and -fT fd 12
M(. Ci 2

Et 11 11 (lf(C k))e = lim ED
iml j1 l 4 n

= lir exp( fn f 2 di) = exp(f f2d) <
L.n -Ko T

UTT.
i=l

which shows (a).

Let 1,E2 E L 2(T,A,l.),then applying Lemma 3.3.1 to g= (l+f1)(l+f 2)

one shows in a similar way as above that

n N (f 2.f1)d i

E(exp 0(I (f) exp (Iq(f)))lim I' E (l+f?(l~f(Z 9 ))e Jq- n- i=1 tjul

"n fT. 1 2
dI fTf1f2d

flim 1 e 1

n-Ko i=l

proving (b).

22

p,." Finally, to prove (c) let G E L2CSI, Fq,P) and suppose that

E(exp CIq (f))G) = 0 for all fe L2 (T,A,p).
°q

We want to show that G= O a.e. dP , where

F q = OC(I q(: f e L 2(T,A, i))

2
Using (3.2.1) we have that for all fe L (T,A,li)

( 1N(ti) ) "Tfd}
Etil n (l+f(Z ))e I GI 0

2Next let i a 1 be fixed and for g e L (T. AnTi.) define f: T IR by

f (t) =g(t) teT. and zero if tdT.. Then fcL (TA.p) and

* 5 . .- i
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N(T.) (+g(Z. )))e 1 G] 0 all g c L (TiAnT,,PO.

j =1

Hence by Proposition 7.13 in Neveu (1968) (Lema 3.3.2 below)

2E(GIFI) = 0 a.s. where F'1 = a(I (g) : ge L (Ti.,AT.,U)) , and Fqc cF

all i :l.

Hence for all w:1 E(GI V F'q) o a.s. since F '1.. ,F are indepen-
1=1 '** n

dent a-fields.
n 2o

Next let F = v F'1 and F. =v F c F'1. Then since E(G < -~ by the
n j=l n=ln

martingale convergence theorem G= 0 a.s. dP ~.Thus is remains to show

that F'1c F~.

2
Let fE L (T, A, i) , then

f(t) = f(t)lT (t)
i=1 1

and

M(f I U- a.s.
q q~ q

Thus I q(f) is Fm-measurable all fe L2 (TA) since for each i~tl I q(ftl T

is F'i measurable. That is, Fq and G= 0 a. e. dP q

Q.E.D.

We are now going to apply our results of Chapter 2 to the construc-

tion of the product stochastic measure q en Therefore in the remainder

of this section we will assume that the control measure p is finite and

the following version (Proposition 7.13 in Neveu (1968)) of the last the-

orem will be enough for our purpose.

Lemma 3.2.2 (Neveu (1968)). Let q be a centered Poisson random measure

as in Theorem 3.2.1 with finite control measure p. Then

q I2

.X ( q L (SI F . . . .
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where for fe L 2(T,A, i)
N(T) -fTfdp

(3.2.2) n(exp *(Iq(f))= I1 (1+f(Z ))e
j=l

where {Zj1j> is a sequence of independent random elements, independent

of N(T), each Z. taking values in T and having distribution {p(T)}- 1(.).

Using the identification of EXP(H q) given by the above lemma, in

our next result we obtain an L -valued product stochastic measure of the

Poisson random measure q.

Proposition 3.2.1 Let q be a centered Poisson random measure on (T,A)

with finite non-atomic control measure U. Then for each nkl there exists

a unique L2 (0,Fq,P)-valued measure qen on (T ,An) such that if A1 ,...,A

belong to A

(3.2.3) q n(A1x...xAn) = q(A1 )... q(A )

and for A E An

E(q' (A)) 0

VAR(q " '(A) .- fn(AnAH)"

Moreover, Proposition 2.2.1 (b)-(d), Lemma 2.2.6 and Corollaries 2.2.8-

an2.2.9 hold for qPan

Proof For each n2l, existence and uniqueness of the H en-valued measure
q

q n follow from Proposition 2.2.1 (a). It is seen as an L2(Q,Fq,P)-valued

element by Lemma (3.2.2). The expressions for the mean and the variance

follow similar to Proposition 3.1.1.
Q.E.D.

We now compute special cases of (3.2.3). If Ac A then q(A)= I (1q A

and from (3.2.2) we have that

r

.....-.-....... .... ....... '-'..-.... -.-...... ".. .,...-........- ... '-...-....'....,'
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q (A) on ( exp aSC ()

dz nz=O

(n) (1() (l+zACZ i)) eT
dz z=O i=l

=(n!) (.A) (+z)N(A) e-zV (A)
x---~dz z=O

But (l+z) xe'~ Z> -1 is the generating function of the Poisson-Charlier

polynomials (Chihara (1978)) with parameter X>O0, denoted by e n (x;X), i.e.
CO n

(3.2.4) e -(l+z)X = C (x;X) X>O0.

Then for A e A

(3.2.5) q~ (A) =n a- A)uA)

We now obtain a similar result to Proposition 3.1.2 for symmetric

tensor products of Poisson random measures.

Proposition 3.2.2 Let q be a centered Poisson random measure as in Prop-

osition 3.2.1 and Al. ...,A k disjoint sets in A. Then

(3.n6 1 k)ln -;, k
(..)q(A) *... q() = (n!) TI r- (N(A i); viA)

k
where n =n. and c. (x;X) are Poisson-Charlier polynomials with parameter X

j=1
defined in (3.2.4).

Proof Since Al....,A k are disjoint sets in A, then q(A 1),...,q(A)n are

mutually orthogonal in H q L 2 (1,F q,p) and therefore the family

{q(A 1) *...taq(A k) n 1 !#...n20 is orthogonal in EXP(H q. Next

for zl,,...S, ZkE c I

exp *(zlq(AQ)+.. zqA)) = (nI) (zlq(A,)+. ..zq(Ak,))
n=O

% ~x x* K.........
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n 0 1  Zk 1 k..nn

((n n 1 . ...n+n); 1 n kOnak

n .. ((nl," 1 ...)z k q(A) l...(Ak)k

On the other hand from (3.2.2)

n~exp e(zlq(A1 )+.. .+zk q(A k))

N(CT) -(Z 1 .(A 1)+...+z ku(A k))
H1 (l+zl1i1A (Z i)+.. .+z k1 A(Z i) e

Then the assertion of the proposition follows from the last two

expressions since
n +,,,+n

k. ~ .I .1 (1+z0il e

1 k), ,Z)

Q.E.D.

Expression (3.2.6) is related to the multivariate Poisson-Charlier

polynomials (Ogura (1972), Chihara (1978)) defined by

* ~~~~~K~ ((x)n 1 * -..(xk)~~~ ~~
1k 1 k

k x.i -Xiz.

L~~ azk ~ H I(l+z ) 1e 11

k
where n I n., (x.)ni X Ci 1...,xi) andA >0 i-,.k

i~l 1 1 %,
nime
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2~ The first few expressions are

K (x;X) =1, K (x;X) = e(x;).) = -

K2 (xl,x 2 ;XlX 2 ) =xl(x 2 -6l 2 ) - x1 X 1 - x2 X 2+ 1 2

K (VI 2 x3 XlqX2- X3 = X I(x 2-6 12)(x3-6 13-6 23)

1 [x( 2 - 1 2)XlX 2 + x2 (x 3 -62 3)X2 X3 + 3(x1- 13)X1 3]

+ X1X 1 + X 2 + 3X3- X lX2 X3

where 6.= 1 if i-j, and 0 otherwise.

Corollary 3.2.1 If Ali***An are disjoint sets in A

q(A )..."(An) (n!) q(Al) ... q(A n.

Proof Taking k=n, n.1l i=l,...,n in Proposition 3.2.2 since

q(Alp--.vqAn)are orthogonal

1- n)

Then the corollary follows since c (N(A); ii(A)) =N(A) - 1.(A) = q(A) for

all Ae A.

Q.E.D.

Multiple Poisson integrals Using the notation of Section 2.3., if

fE L (q n l then

I *f;q) = T~~qnt

is an element of H o ad ec o MFqP by (3.2.1)). This integral

satisfies all properties of the integral w.r.t. the symmetric tensor prod-

uct measure of Section 2.3, and in particular Propositions 2.3.6 and 2.3.7
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now written in the following manner.

[on

Lemma 3.2.3 a) If fe L (q ), E(In®(f;q)) = 0.

b) If fe L2 (TAn, i~n) and gc L 2Cm, oem)

E(In (f;q) Im(g;q)) = 6nim 2

c) {In(f;q): fe L2 (Tn,An,pa n ) n:01 constitutes a complete orthogonal

system in L 2(Q,Fq,P), where I 00H 1.

Proof a) follows from Proposition 3.2.1, (b) from Proposition 2.3.6

and (c) by (3.2.1) and Proposition 2.3.7.

Q.E.D.

Multiple Poisson Wiener integrals were introduced by Ito (1956) and

studied later by Ogura (1972) and Surgailis (1984). H. Ogura uses multi-

variate Poisson-Charlier polynomials to define a multiple stochastic in-

tegral with respect to q (when Tc R), which we denote by J (f). if f
n

is an elementary function defined in (2.3.17)

p P

jn(f) f a. . K (N(A.),...,N(A. );ji(A. ),...,(A n ))
nn = 1 3L 1 n

where Kn is multivariate Poisson-Charlier polynomial. Then Jn extends to* n

a bounded linear operator from L2 (T nA nP n ) to L2 (9,Fq,P) (Ogura (1972)).

On the other hand, using Proposition 3.2.2, if f is an elementary

function

P
I (f;q) = i q(Ai )...eq(A)n°CO = 1 =I * nl"

n
L

(n! 2  a K (N(A. ) ,N(Ai );(Al),(Ail...i n.3l " n n n
1 n

Thus In(f;q) and (ni n(f) agree on a dense linear manifold of

• ., . ... * . . •°. *. • * •- 5 .'*.. . " **.* .. .. .* * , * h .-. ",• . "9
%

, . •o. * ' % .. ' . . .- - . .••• . ..

,~ ~ ~ ~ ~~~~Tu I n-o (fq and (n1T" Jn, ' •.....,,, ,.- , 0, ., .- ,-, . ,, -, .,.- .,. .-.
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2 n1 n on
L (Tn,Anp ) and therefore the following result is obtained.

Proposition 3.2.3 If f L 2(T n,An
n)

Io(f;q) = (n1) JnM

Proposition 3.2.4 Let T = [0,1] and p be non-atomic. Then if

TI= {(tl,...,tn) 0T:5t <...<t n <)
1 n

" -3/2
Ino(l ;q) = (n1) anCN(T); C(T))

That is, formally

(3.2.7) f...f dq-tl...dq~t )= (nt)3/2Cn(N(T) i(T)
0!;t 1< " ...<tn!51"n

where cn is the Poisson-Charlier polynomial of degree n defined in (3.2.4).

Onn

Proof By definition I (1Tn;q) = q n(T 1 ). The rest of the proof followsn~

similar to Proposition 3.1.6 using Corollary 3.2.1

The expression (3.2.7) above is Theorem 6.9 in Engel (1982), who gives

a different proof.

23.3 Nonidentically distributed L -independently scattered measures

2In this section we study L -valued product stochastic measures and

multiple stochastic integrals of nonidentically distributed L 2-independent-

ly scattered measures that are mutually independent over disjoint sets. The

identification of the exponential space of H, the common Hilbert space where

the i.s.m.'s take values, is obtained using results given in the last two

sections. The parameter set T considered in this section is an interval

of the real line. This is an important assumption throughout the section

since we use martingale theory to identify symmetric tensor products of H.

j

-", .J-,- -.. .. , .. - ". - ,, - - -. ' . .. ' '-%" ' -,X-L . . .. ". " . " "" " *. 9 --. "9 -
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We conclude this section by giving characterizations in terms of multiple

stochastic integrals of Poisson and Gaussian processes with independent

increments.

Our first result of this section is a general one, in the sense that

it identifies the exponential space of any Hilbert space H which is a direct

sum of an arbitrary Gaussian space HW and an arbitrary Poisson space Hq,

where HW and Hq are stochastically independent.

Theorem 3.3.1 Let (,F,P) be a complete probability space and q be a

centered Poisson random measure on a measurable space (E,E) defined on

(11,F,P), with a-finite non-atomic control measure V and generating the

Poisson space

Hi = {Iq(f)f: f L2 (EE,v) }

where Iq is the isometric integral of f w.r.t. q. Let HW be a Gaussian

space on (S,F,P) stochastically independent of the system of random vari-

ables H . Define the a-fields F a(H.), Fq = a(H ) and the Hilbert
q qi

space

Iti H HW q

Then

(3.3.1) EXP(H) O (n ,ffi ff Lll (,FWvF1,P)
n2>0

where for h-EH, h=hw+h h h cHq Yq q
y: EXP(H) - L W(,F'vFqP)

is defined by

(3.3.2) y(exp e(h)) = i(exp *(hW)) (exp (h q))

and ,@ are the isometrics given in (3.1.4) and Theorem 3.2.1 respectively.
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Proof We first prove that for all he H, y(exp O(h)) is an element of

L2C(S,FWvFq,P) and that

2 2(3.3.3) E(y(exp e(h))) = exp(Eh2).

By Theorem 3.2.1 for all h q Hq q

2 2
E( (exp 9(h q))) = exp(Eh ) <

and by Proposition 7.3 in Neveu (1968) for all hWE HW

E (p(exp 6(h.)) )2 = exp(Eh 2) <

Then if h= hW+ hq y(exp 0(h)) = ip(exp e(hW))(exp (h q)) belongs to

2 e, FWvFq,P) since hW and h are independent. Moreover, from the above
IR q

expressions we have that

E(y(exp NCh))) 2 = exp(Ehi+ Eh2) = exp(Eh2).

Next we shall prove that {y(exp e(h)): he HI generates L2R

which will imply (3.3.1) since for any Hilbert space K {exp O(k) :ke K) gen-

erates the Hilbert space EXP(K) (Guichardet (1972)).

Let ZE L 2 (I, FWvFc,P) and suppose that

E(Zy(exp 0(h))) = 0 for each he H.

Then for all h. H and h q HSq q

E(Z4(exp O(hw)) (exp 9(hq))) = 0.

q

But from Proposition 7.3 in Neveu (1968) and Theorem 3.2.1 in this

thesis {W(exp *(hW)): hWe HW } and {O(exp (h q)): h q H q generate

L 2 (, FW, P) and L2 (I, Fqp) respectively. Then for all A1 FW and A2e Fq

R.2

[,~~~~~~~~~~~~~~~~~.. ..-.- -.-.... .... ..... ... ,, . ,,.. ,... .... .. .. ,-,... -... , .... ,,,-
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f Z dP= 0.
iA AnA2

But it is known (Dellacherie and Meyer (1978)) that if two a-fields F1 and

F 2 are independent, then F1 v F2 is generated by the field C of all finite

disjoint unions of sets A1 n A2 A E F1, A 2 F2 .

Thus since Z is P-integrable

C = {AE F: f ZdP = 0}
A

is a monotone class, and by the monotone class theorem

f ZdP= 0 V Ac FWVF q

A

since C cC. That is, Z= 0 a.e. dP

Then

{y(exp O(h): he H

generates the space L (,1FvF qP).
Q.E.D.

Assumption 3.3.1 Throughout the remainder of this section we will make

the following assumptions and notations: Let (P.,F,P) be a complete proba-

bility space, T= [0,To] T >O, A=S(T), IR = - and 8o n = (n 0) for

0 0n n -n n

nal. Suppose that

(3.3.4) Yt = (X(t)'''"Xn(t)) tE T, Yo=O

is an n-dimensional stochastically continuous, right continuous, zero mean,

2
L -stochastic process with independent increments defined on (Q,F,P), with

characteristic function given by

II C_) exp- 'c~ta+ Ceia'x -- ia'x)v~t,dx) }:!,(3.35 ) 0t -(a -xlhaata ~

- n

.. . - - . ..... . . . . . . . . .
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and Levy-ItS representation (Gikhman-Skorokhod (1969))

t
(3.3.6) Yt = Wt + f f_ xq(ds,dx) all t E T

n
where

(3.3.7) Wt is an n-dimensional Gaussian process with independent

increments, W0 = 0 and positive definite diffusion matrix

0(t);

0(3.3.8) q(B,r) = N(B,r) - v(B,r) r E Bn, BeA

is a centered Poisson random measure on (Tx]Rn , AxB
0 )

n n
with a-finite control measure v, and independent of

{W t } t E T;

(3.3.9) N(B,r) = 1Bxr(S,AYs )  AYs Ys- Ys-

(3.3.10) v(B,T) = E(N(B,r)),

t
f Ix2 AlI V(ds,dx) < t e T

n

and v (r) = v([o,t],r) is increasing and continuous.
t

From (3.3.5) we have that for i,j=l,...,n and tET

(3.3.11) 1 Jij (t) EXiMX ( t ) =ij (t) + ij (t) <

where

M (t) -'f]R xix v(tdx) x x.. ,)
j n

Define

n n
(3.3.12) 1J0(t) =aii(t) + l ii(t)

and denote by pij, a ij ij and 1o the corresponding finite (signed) mea-

sures on (TA) generated by V.. (t), a..(t), X. (t) and p t) respectively.
.j. J i 0
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Then for each i,j=l,...,n A ij <<opa ij <<o PO ij <<P ° and

1 0

(3.3.13) R1(t) dpo (t) a.e. dp o (t)J ij,=l

(3.3.14) R2 (t) = M) a.e. d(t ,

are non-negative definite matrices a.e. d 0o(t) and so is the matrixn0

R(t) = (r j(t))nj=i , where for i,j=l,...,n

d.U. do.. dX..
(3.3.15) r i(t) =dp (t)= d- (t) +- -d u

o  (t) a.e. dp 0t)
0 0t 0

Finally if A(t) is an nxn non-negative definite matrix a.e. duo(t), we denote

2
by LA(o) the linear space of functions

(3.3.16) LA = {f:T lRn: ff(t)'A(t)f(t)du t) < -}.
T 0

In the next two results we use Theorem 3.3.1 to identify some func-

tionals of the process Yt as elements of an appropriate Hilbert space Hy

and its exponential space EXP(Hy). Having this and using the framework

of Chapter II, we will be able to study symmetric tensor product measures

and multiple stochastic integrals of the independently scattered measures

Xi's where X.([O,t]) = Xi(t) i=l,...,n and the latter are given in (3.3.4).

Proposition 3.3.1 Let Yt, tE T be a stochastic process as in Assumption

3.3.1. Let Hw be the Gaussian space generated by Wt, i.e.

HW = "p'(aIWt; aE IRn' t4 T}

and H the "Poisson" snace generated by q, i.e.q

(3.3.17) H {I (g): g L2 (Tx R n , Ax Bo,v)}.
q qn n

. ". -.. ...... . .. . ... . j ,".... . . .. "."...-.- ."., ,," " • '. . "...-.'.". " -...-. ...
"- . ..'-" . . . . . . . . . . . .."."-.... ...-. . . ..". . . .."". .-. .,''" , ""'. ."•" . -"-, ." .L ,'"", ,''",, '"". ,"''""•"-" ,, .","
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Def ine

HY=w* H q

2
Let R (t) be as in (3.3.15). Then if fE LR(11o), f (t)= (f 1 (t)i***'fn(t)).

the random variable

n
(3.3.18) ff-dY I I W. f.) + I q(f'x)

T i=1 iq

is an element of Hy, where (f'x)(t,x) =f(t)'x tE T, xE IR and IX

is the isometric integral (Theorem 2.1.1) of 0 w.r.t. the orthogonally

scattered mesure X. Moreover,

2 0 1 o
f(t)x E L (T x ]R,A xB ,v) nL (Tx R 0, A xgo,v) .n n n n

Proo To rovethatf fodY 4E HYit is enough to show that f. 2 TAo.

i=l,...,n and f'x EL, (T x IRO, A , Bv), since I (f ) cHW i=l,...,n

and I (f'X)E H
q - q

2 2 2
Since f E L RC%) then from (3.3.15) f c L R (110 n L R (C%0 where R1

and R2are given in (3.3.13) and (3.3.14) respectively. Then

n n d.
I f fi(tMda. i(t I f fi(t) dp - (t)f. (t)dp 0
i=l T 1 1 i=l T o

i.e. f. E 1,2 (T,A,o.. i=l,...,n.

on the other hand, using (3.3.12)

T Ri=l j=l T IR0 ' ~ 1n n
n n

I ffj(t)f (t)d. .(t) =ffct)'R (t)fct)dp (t) <
i=l j=l T - i T 20

1 o o
Finally, to prove that f (t) 'x E L (T x~ R ,A x B ,v) it is enough to show that

.. . . .. . . . . . . . . . . . . . . . . . . . . . .



75

f.(t)x. L (Tx oAx 8,v) i=l,...,n since f(t)'x f(t)xi. By (3.3.19)

for each i=l,...,n

b2

f CF(t)dXt) <
': T

Then since each X. is a finite measure on (T,A)

:.flf i t) IdX i~t) <
T

and therefore using (3.3.12)

f f 0f. (t)x.dvCt,x) = f fi(t)dXit) <

TIRn T Q.E.D.

For the process Yt, Theorem 3.3.1 is written in the following manner.

Proposition 3.3.2 Under the assumptions of Proposition 3.3.1

Y
(3.3.20) EXP(Hy) 7 L2 6(,FYP)

where y is given by (3,3.2) in Theorem 3.3.1 and

FY = a(Yt:te T) v {P-null sets of }.

Proof From the construction of the Levy-lt8 decomposition (3.3.6) of Y

(Gikhman and Skorokhod (1969)) Wt and q are F measurables. on the other

hand, by (3.3.6) and Proposition 3.3.1, Yt is FWv Fq-measurable all te T,

where FW= a(HW) and Fq= O(H ). Then the result follows using Theorem 3.3.1
q

and the fact that HW and Hq are independent.
.- Q.E.D.

For purposes of later reference, the main properties of the integral

f f.dY defined in Proposition 3.3.1 are summarized in the next result.
T

2
Lemma 3.3.1 Under the assumptions of Proposition 3.3.1, for fe L R(00)

define

• . , .. . . .. ~. . . . -. .. .. , ,. . , . . .. . . -. . .. . .. . . - . .. .. . -. - -. , , --.. , .. -. -. . ,.a, , -
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(3.3.21) Ft = f f-dY = f lot](s)f(s).dY tET
[Ot] T S

where right hand side is defined in (3.3.18). Then (Ft)tET is a zero mean

L 2-stochastic process with independent increments and (F tF ) is an L -right
ti t

continuous martingale such that

a) Ft c H t E T

t
b) <F>t = f f(s)'R(s)f(s)dp0 (s) < V tE T

0

where <F> denotes the predictable quadratic variation of F.

c) If g c L 2 (P

t
<F,;>t =f f(s)'R(s)g(s)do(s) = E(Ft Gt) te Til.to

d) The characteristic function of Ft is given by

e{-Ia <Fc>t+ f I0 (eiaf(s)
--l -iaf'(s)x)dv(sx)

t 0OIR
where

t
(3.3.22) <FC>t= ff (s) R (s)f(s)dpo(s) tE T

0 1 0

Proof Since the process Y t is right continuous, then (F ) tE T is a right

continuous filtration. From Proposition 3.3.2 FY c Y a(%) v (H) all

tcT and by (3.3.18)

n
Ft IW(l r0  f + f fo f'(s)x 1[0 ,t] (s)dq(sx) y

i=li l'J T IR' n

2
It is known (Galthouck (1976)) that if f. EL (TAa)i i  i=l,...,n and

n
(3.3.23) F 1 1 [l f f(t)f (f (t) .... f(t))

then (F F¥ T is an L -continuous martingale with <Fc>t given by (3.3.22).t t tCT

Also it is known that if

.~~~. .S . . .
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(3.3.24) Fd f(s)'x 1 (s)dq(s,x)
t T IR [0]

n
Fd -Y,2

then ( t Ft is an L-right continuous martingale with

<Fd> = , 2
t f o (f(s) x) dv(sx) tE T.

0 Rn

But from (3.3.19) and the last expression

d t(3.3.25) <Fd>t = f f(s)'R 2 (s)f(s)dpjo (s) t c T.

0

Thus (Ft,Fr) is an L2-right continuous martingale and since F EHW

and F c Hq, then E(Ft) = 0 tET and

<F>t=E(Ft) = E(F) 2+E(Fd)2 = <FC> + <Fd>
tt t t t

t

= f (s)'R(s)f(s)djjo(S) < tET
0

The proof of (c) follows from (b) and the polarization identity

<F1G>tT {<F+G,F+G> <F-G,F-G>} te T
4Ft t

C d c dFinally (d) follows since Ft = F t + F ,Fc
t C HW , Ft EH q , ,-L and H q are inde-

pendent and using (3.3.5).
Q.E.D.

Now we shall apply Propositions 3.3.1 and 3.3.2 and our results in

Chapter 2 to construct an L2 (0)-valued product stochastic measure of X1 ,

The next theorem gives an L2(f2)-valued product stochastic measure

of non-identically distributed independently scattered measures. It is

the main result of this section.

Theorem 3.3.2 Let {X1 ,...,Xnl be a system of nl L 2-independently

. ° -"° o 0 ., ° - - o - . - -. . . -° .. . . S * o.* . * . . . . . .- . . . . . . - . . . . .

i . ° ° .°° °° .'° . 0 ,', ~' -. ,- .... °. . .. ° .°o • . .°... . " . . . '°. . . .

.. .. ..- .., .-,. ... -." .... ,-, .-. - .- ,.. ,-, ,-. -. .-, - -, , -. .... , , -.' -.' -,' .," -." -.- -.. ', - -'., ' ...' .,° .. .. .. . . ,;
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scattered measures on (T,A) such that Yt= (X (t)L***sXn(t)) t ET, is

an n-dimensional stochastic process with independent increments as in

Assumption 3.3.1, where X.(t) = X.([O,t]). Then there exists a unique

2 nYL (SI,F' ,P)-valued measure * X. on (T",A) such that for A.E A i=l,...,n
1 1

n
(3.3.26)0X.(A x... xA X (A)a.. OX (A
(3.326)i=1 I. 1 n ~ n

nn O
and for A EA * X.(A)c

n
(3.3.27) E( e X.i(A)) =0

and

(3.3.28) VAR( 8 X .(A)) =il 1111 e nlln (AnA 1

where

(3.3.29) 1i.(CnB) =EX.i(C)X.(B) C,BE A i,j=l,...,n.

Proof Let fe.)n be the canonical basis in PR and define
-i i=1n

f (t) 1A A(t)e i t E T A cA i=1,...,n.

Then for each i=l,. ..,n iELR2(0J) since

f f (t)'R (t)fA (t)di 0 (t) fr i(dp0t) fd i)

=j 1(A) < ~

Next, by Proposition 3.3.1 for each AE A

X.(A) =ff1dYEH
1 T

where Hy HI.OH. Thus each independently scattered measure X. is anq1

orthogonally scattered measure on (T,A) with values in the common Hilbert

spcae Hy~ and control measure V'. Therefore existence and uniqueness of
n1

the On-valued measure 0 X. follow by Theorem 2.2.1. On the other hand
Hil
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2 Y
by Proposition 3.3.2 we can see e X. as an L (,F ,P)-valued measure.

i=1

Finally, the equalities (3.3.27) and (3.3.28) follow in the same way as

n
for a W . in Proposition 3.1.1.

i=l 1Q.E.D

n

In order to compute the symmetric tensor product measure a X. (A)
i=l 1

for AE An , we have to find concrete expressions for general symmetric ten-

sor products of elements in Hy where Y is an n-dimensional stochastic pro-

cess with independent increments as in (3.3.4). This last problem was

studied by Kailath and Segall (1976) for the case of a one-dimensional sto-

chastic process with stationary and independent increments. Although the

main ideas behind the next two results originated from the above named work,

we were not able to find them in the literature in the generality that they

are presented and proven here.

The next result is a generalization of Propositions 3.1.2 and 3.2.2.

We remark that for this theorem to hold it is required that T is an inter-

val of the real line.

Theorem 3.3.3 Let (Yt) tE T = [O,To] and H be as in Proposition 3.3.1.

fi L2 I
For each i=l,... ,n let f LR(lo) and

(3.3.30) Fi(t) = f f' dY, Fi = f f .dY
[O,t] T

where the fi's are not necessarily all different. Then

(3.3.31) Fl0...F OF (n!) P, (Fi,.. .F)

• - pn
where Pn(F1 , ...,Fn)are multivariate functionals of the process Y (Kailath

and Segall (1976), Meyer (1976)) defined by

(3.3.32) P (N = 1 te T

.. "....................."....."...... ...... ... ..........-..... "........
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(3.3.33) P (F.) =F.(t) t4E Tn

r fl [Ot-- ,,,, "r-l'Fr+l"' .,F n)dF r (s) t E T.

The proof of this theorem is based on the following lemma.

2
Lemma 3.3.2 Let Yt t T and Hy~ be as in Theorem 3.3.3, feL N)

F(t) = f[Ot f -dY and F F FT 0= fTf-dY. Then

F (n!) P T (F)

where Pn (F) n~l are univariate functionals of the process Y (Kailath and

Segall (1976), Meyer (1976)) defined by

(3.3.3S) P~ 0. 1 V t 4 T

1
(3.3.36) = F F(t)

n p-(3.3.37) Pt(F) =f PnlF)dF~s).
S [0,t] s

Proof We first show that the functionals (3.3.35)-(3.3.37) belong to

L2 (, ,P) and that they are square integrable F -martingales: each P' (F)
t t

is Ftadapted all nal te T and by Lemma 3.3.1 (P1 C F),Y) is an L .martin-

gale. Next using Lemma 3.3.1 (b) we have that

E( f EC (F)2  IRq>s~fs s

nf 2( (F) f(s)'R(s)f(s)dii (s)

[ [0t]

Hence, using induction, if E(P (F))2 <c then
0
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2

T S- s

which shows that P n (F) = f t] n-l(dFs is a square integrable F~ -martin-

gale.

2
Next from Lemma 3.3.1 amd Theorem 3.3.1, if fe L RN 0)

and TO T 0  FT0  H Hq fTh IR 0f (U) dv,x

(3.3.38) y(exp *F)exp(FT 1 E (FT ) 2II (l+f'(s)AY )e n
0 o s:5T

2 o 1 0since f'(s)x e L (Tx 1R0,Axo ,v)n L (Tx R ,AxB ,V) by Proposition 3.3.1.
no no n n

But under this last condition

F d 1 (ff(s), ) =f fof'(s)xdN(s,.j) -f f f'(s)xdv(s,x).
T q T IR T IR0

n0

Then using (3.3.9)

d 's)Y f f(s) xdv(s, x)
0 s:5T T IR0 n

I AF - f f 0 f (s) xdv (so x)
n

and therefore from the last expression and (3.3.38)

Y~x ()=exp(Fc +Fd H T {(l+AF )e sl Exp(F)

0

where Exp(F) is the exponential semimartingale of F (Doleans-Dade (1970)).

Then the lemma follows using Proposition 3.3.2, since from Section 3 in

Doleans-Dade (1970), for any EC

(3.3.39) Exp($F) = 8P() a. s. V tec T
n=O

and on the other hand

exp *(OF) = (n I) F"
n=0 Q.E.D.
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Proof of Theorem 3.3.3 Using the notation in (2.2.7) and by Lemma 3.3.2

Next, using induction on n one shows that for all t

n- k n
= L I(-I) (i)F.)

n=0 MEn! t cC I

EP i=l M
".9.

from which the theorem follows.
Q.E.D.

We now obtain an extension of Proposition 3.1.2.

1-1k

Lemma 3.3.3 Let Y teT and be as in Theorem 3.3.3. Let f ...,f
t

be elements in LR(Io) with disjoint support,

Fi(t) = f f1.dY and F. = F.(T) = f f dY.
1-[0,t] T

Then
ODn 1 ®n k  ~ k n.

(3.3.40) F ...eFk = (n) H P (ni l

i=l 0

""n. k

where P I are defined in (3.3.35)-(3.3.37) and n = k n.
i=l 1

Proof Since f f. k have disjoint support, then by Lemma 3.3.1 (c),

F1,...,Fk are mutually orthogonal elements in Hyand therefore the family

{F1  ®... OFk  n a 0,. .. ,nk2! 01

Y L

is orthogonal in EXP(Hy) L(,FYP).

Next, for Bl,.. 8kE IR

k k
(3.3.41) exp 0( k iFi) = 0 (O

il n--O

00n, nk  onn.1 o k nI  kk
"= nij 8r1- ___ F1 ® .®(n ~ ~ nl n•..e.. ~

n=O n,+.. •+nk-n 1k ! "

- - "-" -,'- ' '"-. -.. . ".......... ." " "- " -.. .... " - "- .. . •--.... ' ."....-.. .'.'. ".- . 4-. -":'..".. '. "-4 S -" 4-'-2" -.-. "., :,' -. ." .- .- "., ..4.." . .., -". -" ." :,'.".
-:*;.' ' .,.'::.,''.£: .", ''.-=- . ...-. '-,-- , ," "'..'-.''..'" "'..',."-.. v,.-..'.,'v..'. :.,.......< ..=....,....'.,"..-..4--,,..-.,-,,4-.
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((nl +nk) 
k  1  kn 81 -- k  F 1  -. ®k

1 nl " " k  n 1 ...nk !

On the other hand since for i j f and fJ have disjoint support,

then if [ , ] denotes the optional quadratic variation, using Lemma
t

3.3.1 (b) we obtain

iC c

[8iFi,8jFjIt = 8i8. <FC Fj>t +8i8 j s AF.(s)AF.(s)sJ 1 tt 1 J

= 0i8 j  I fi(s)'AY(s)fJ(s)AY(s) 0.

1" sgt

Then

k
(3.3.42) EXp(81Fl+...+BkFk)t =11 Exp( iF )t a.s. V teT.

i=l

Hence the assertion of the lemma follows from (3.3.39), since

F n1 a nk  n n, +nk k
F1 ®'''.Fk (n!) n Exp (8iFi)
"" Ifn1  .k i=l T

8=(Bl,9 ...,80k).!8 -

Q.E.D

With the above lemma we are able to compute the symmetric tensor prod-
n

uct measure S X. (A), for special sets Ac An. The following result will
i=l 1

be used in Section 3.4.

Corollary 3.3.1 Let {XI,...,Xn} be a system of independently scattered

measures as in Theorem 3.3.2. Let A1 ,...,Ak be disjoint sets in A for

k>0. Then if il.ik E {l,...,n}

-
(3.3.43) Xi (A1)... Xi (Ak) = (kl) Xi (A)...Xi (Ak).

1 k '1 k

The proof follows by Lemma 3.3.3 since P1 (F = F.(TO) and by taking

.-.

"tT

" . • .... ." ..". .', v -. , ' . . .' . . , . - ' - " , . . . ' .. ' ' .' ." . . '
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fi t) = MA(t)e., where {ei1ni is the canonical basis in R

m 1
The main properties of the functionals Pn(Z1,...,Zn) and Pn(Z)

defined in (3.3.32)-(3.3.34) and (3.3.35)-(3.3.37) respectively, are

given in Kailath and Segall (1976) and Meyer (1976), including recursive

expressions to compute them. In particular, the univariate functionals

P (Z) are Hermite polynomials in the case when Z is a Gaussian martingale.

The first few expressions for P (z1,...,Z n) are:

P01 (.) = 1 Z.) = Z.(t) V E T

2t 11

(3.3.44) P (Z,Z.) = 2zi(t)z (t) - [Zi,Z.] }

-t13.Z(). 1 j

(3.3.45) (Z i , Z = 1 (t) z
S6 Zi~t)Z k(t)

- Zi (t) [Zj,Zk]t -Z (t) [Zi,Zk]t

Zk + 2 .AZi(s)Z(s)AZk(S W

s t

where Z1 , ... Zn are semimartingales not necessarily all distinct.

Multiple stochastic integrals As in the Gaussian and Poisson cases
n

(Sections 3.1 and 3.2 respectively), integrals with respect to a Xi
i=l1

can be constructed using the theory of Section 2.3. Under Assumption

3.1.1 T is an interval of the real line and the measures vi 's are non-
n

atomic. Then by Theorem 2.3.2 a function f is a X.-integrable if and
i=l1

2 n n n2 n
only if fE L (T ,A" , 0ji )  i.e. L (i IX.) = L2 (Tn ,An ®e i )i=l1 i=l

n
Thus from Proposition 3.3.2 we have that if fe L2 (Tn,An, P )

n
I n(f;X 1 ,...,X n) = Tf(t)d l X(t)

,'..' .' .','..-." .',--. ."."....."... . . . .... . "". -.. "" .. "" .r. , ."..*.*_ .,,*. .... . . .-.. . . . . . . . .J W m ,I m m,
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2

is an element of L (,FY,P) with all the properties of the integral of

Section 2.3. In the next result we summarize some of these properties.

We use the notation of Theorem 2.3.3.

n
Proposition 3.3.3 Let XI,...,X n and * X. be as in Theorem 3.3.2. Then

P1 n
isn 2 Tn, n

function f is ® X.-integrable if and only if fE L2(Tn,An , p l.i) in
i=l 1 i=l

which case

22
a) Inf;Xi,...,Xn) L (g, F,P),

.b) E(I (f;Xl,...,Xn)) = 0.
n n )

m

°'- F.Inf;X I (g;X1 , n~

r" ,= ~nm f~n fen(S-)'Ren~t-) gan 0-)~n e )

The proof follows analogous to the proof of Lemma 3.1.1.

One dimensional case We now consider the case when X = X = ... = X

1 n

i.e. Yt =X t is a one dimensional stochastic process with independent in-

crements as in Assumption 3.1.1 with n=l. Then X is an H -valued ortho-x
gonally scattered measure and by (3.3.11) it has control measure

(3.3.46) p(A) = al(A) + f fO x2 dvt,x) AcA
A I

Then in this case o = ji and r(t)= 1 all t e T. If we identify functions

2
which are equal a.e. duo(t), the space of functions LR (o) can be taken

2
to be the Hilbert space LR( o), that in this situation is equal to

L2 (T,A,p). Then is this case

Ix(f ) =f f.dYT

. .......... .....

• t.'-'. -" .,¢ " -: -" .. .." . '- " .-...-'.-... .. "-. ."." ". .-.. .".". ." .".. ..".-". .". .. .. ... ." " ." " .. '" ...." "...". ."'." ." , -" .
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where the last integral is defined in (3.3.18) for n=l.

Following the notation of Propositions 2.2.1 and 2.3.6, by Proposition

3.3.2 we obtain that for n>l the symmetric tensor product stochastic mea-

nn nsure X-7 on (Tn,A ) and the multiple stochastic integral I (f;X),
nO

fc L2 (Tn,An, ®n), are L2 (S,FX,P)-valued elements. They satisfy the

properties of Proposition 2.2.1 and Proposition 2.3.5 respectively.

The next two results are extensions of Theorem 3.1 in Ito (1951)

(Propositions 3.1.5 and 3.1.6 in our work) to the case of a general L -

independent increments process.

Proposition 3.3.4 Let X be a one dimensional stochastic process with in-

dependent increments as above. Let P k.) be the functionals defined in

(3.3.35)-(3.3.37). Assume that f 1 (t),.. .fm(t) is a system of real valued

functions in L 2(T,A,p) with disjoint support. Define

f(t) = fl(tl)..fl(tk )f 2 (tk +..f 2 (tk +k f (t f (t k
1 1 1 2 1 m 1 m

Then if n= kl ... +k

_ m k.
In (f;X) = (n!) 11 PT'(Fi) (ki)

i=l 0

where F. = ff.dX x(fi
T =

Proof By Lemma 2.3.1 f is X -integrable and

®k i®k

In®(f;X ) -- I(fl ®..Ix(f)
n X 1  f m

Next using Lemma 3.3.1 (c)

E(F F) = f (s)f.(s)dp(s) = 0

l.,.-...-:. -.- ".- -- -.- -.. .-,-,,.-.'-,'.-,..-.....-..,-.... . ..-.-... ..'.--- .. "..... .-i ... . .. . . . . i. .-. .- ';.". .;. .'..: /: , :;.T
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since fi, f. have disjoint support. Then by Lemma 3.3.313

4k9 - m k.
I..I m = n) IPT(Fi)(ki[)(f 1 S..ol (fM (!Tj=l To

Q.E.D.

Corollary 3.3.2 Let T [0,1]. Then if

T1 {(tI, ...,tn  <

In(1 ;X) = (n!) M
nM TP

That is, formally

f...f dX(tI)...dX(t n) = (n!) -J Pn(X) .
05t 1 < ... <t n :1n

1O n

Proof By Definition 2.3.1, In(1 n;X) = X (TI). Then the result follows
"- T1

from the last proposition since X is finitely additive, v is continuous

and Proposition 2.2.1 (c).

Q.E.D.

Finally, in this section we discuss the completeness of the multiple

stochastic integrals Ine(f;X) nO in L2 (Q,F P), obtaining a characteriza-

tion of the Gaussian and certain Poisson random measures on (T,A).

L2

Proposition 3.3.5 Let X be an L2-stochastic process with independent in-

crements as in Proposition 3.3.4. Then the system

L2  n n on

(3.3.47) {Ino(fn:X): fnL (T nAI ) n->l}

'.' . .. . . . . . . . . . . • , - • • ° • ."
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generates L (Q,F ,P) if and only if

a) v(t,A) = 0 V AE 80 , tE T (Gaussian situation) or

b) o1(t) = 0 and v(t,.) is concentrated in one point xo # 0.

Proof Assume (a) holds. Then P(A) = a(A) AE A, Xt = Wt t E T, Ix(f)

= I w(f) fE L2 (T,A,) and HX=HW. Thus from Proposition 2.3.7 the system

(3.3.47) generates the space EXP(HW ) and by (3.1.4) EXP(H W) is identified

with L2 (Q,FW,P). Then the system (3.3.47)'generates L2 (f2,FWP).

Now assume (b) holds, then p(A) = x2v(A;xo) AE A for x $ 0, q(A) =

q(A;x 0 ) is a Poisson random measure on (T,A), Xt = q([O ,t]), Ix=Iq(f)

fE L2 (i,A,a) and Hx =H . Then as above, from Proposition 2.3.7 the system
" q

(3.3.47) generates the space EXP(H ) and by Lemma 3.2.2, EXP(H ) is identi-q q

fied with L2 (SF',P). Then the system (3.3.47) generates L2(Q,Fq,P).

Next assume that the system (3.3.47) generates the space L2 (S,F ,P)

which is identified with EXP(H) by Proposition 3.3.2, where H= NO H ' Then• q

by Proposition 2.3.7 the system (3.3.47) generates EXP(Hx). Therefore,

EXP(Hx) = EXP(H) which implies HX= 1-. Then for each glE L2 (T,A,Ol) and
2 02oL2

2 g2L (Tx IR ,Ax B ,v) there exists fE L (T,A,p) such that

I' Iw(gl) +I q( 2 )  = Ix(f ) •

But from (3.3.18) in Proposition 3.3.1

(f) = (f) + I (fx)

X W q

Therefore

I IW(gl)- IW(f ) = 0 a.e.

and

I q(g2) - Iq(fX) = 0 a.e.

which implies
d.

.................................................
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(3.3.48) 9- f a.e. do1

and

(3.3.49) g2(t,x) = f(t)x a.e. dv

Suppose there exists t1 E T and Ac B° such that

(3.3.50) 0 < V([0,t 1 1 xA) <

Then 0 <v(t,A) <- t>t I since v(t,A) = v([0,t]xA) is a non-decreasing

function. Let gl(t)=al [Ot1](t) for an arbitrary a 0 and g2 (t,x)

1 (t,x). Then glc L2(T,A,ol) and g2 E L (Tx IR°,AxB ,V) and by the
[0,t ]xA 2 o 92

1 2
above argument there exists fe L (T,A,p) such that

(3.3.51) f(t) = al [O,](t) a.e. do1

(3.3.52) f(t) = 1 [o,tl]XA (t,x) a.e. dv

Let te [0,tl] and xl,x 2 E A. Then (t,xl) E [D,tl]xA and (tx 2)E [0,tl]xA

and by (3.3.52) f(t)x 1 = f(t)x 2 = 1 i.e. f(t) 0 and f(t)= 1/x 1 = 1/x2

which implies xl= x2 and therefore v(t,A) is concentrated in one point

-1
xo , say, and f(t)= 1/x tE [0tl]. Then by (3.3.51) if x $A - , ol(t)= 0

te [0,tl] and since a is arbitrary, then o(t)= 0 all tE [0,tl]. Then

since v(t,A) is non-decreasing the above argument holds for all t> 0, i.e.

v(t,A) is concentrated in one point and o(t)= 0 all t> 0. Hence condition

(b) holds.

On the other hand, if there do not exist tI E T and AE 80 such that

0(3.3.50) is satisfied, then v(t,A)= 0 all tE T and Ae B since v is a

a-finite measure on (Tx IR°,Ax B°). Then condition (a) holds.

Q.E.D.

3.4 Comparisons with earlier results

Engel (1982) and Rosinski and Szulga (1982) have recently studied

p ° . • , . . . •• • . . •• • . - . • ° . •. . s • . - - . .• . - o - , . . - . • . - . • , o - . , o % • % ° % • . - %
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L 2-valued product stochastic measures. In all these works the usual prod-

uct of independently scattered measures has always been considered and in

none of them has the symmetric tensor product been used. In this section

we point out the main differences between the two approaches and the advan-

tages of the symmetric tensor product measure.

Engel and Kakutani (Engel (1982)) have considered the construction of

an L2 (Q)-valued product stochastic measure from a system of n1 stochastic

processes {XI(t),...,Xn(t)), t. T = [0,To0, on a probability space (S,F,P),

satisfying the following four conditions (R1-R4 in Engel's notation (1982)):

(3.4.1) The funtion mk(t) = EXk(t) is a continuous function of

bounded variation on T, for each k=l,...,n.

2.
(3.4.2) The function 1k(t) = E(Xk(t)-mk(t)) is a continuous mono-

tonely increasing function on T, for each k=l,...,n.

(3.4.3) If {I1 ,.. .I q } is any set of disjoint intervals contained

in T and {i, ,i is any set of integers where 1<_k5n,
l' q

k=l,...,q, thei {Xi (I ),...,X i (Iq )I forms an independent
1 q

system of random variables, where for T= (s,t], X(I)=

x i(t) - x i(s).

(3.4.4) If IcT is any interval and l<j 1 <...< Jk5n is any sequence

of integers between 1 and n, then

EIX I (I)Xj2 (I) ... X. ( 1) 12  <"

and

E(IX. (1)...X. (1)1) 2 0 as 1I1 0.

Let An (Fn in Engel's notation) be the field of elementary subsets
0 0

of Tn of the form

"-" " "" '., "" ""'" "." ,., , . ... ... . . ... . ... ."... ..- . .. .- ".',. , ."",'i. " .. ,.. - -. :.'-
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q
(3.4.5) B = U l .. x .. xI."il...i =I 1in'

n

where {I ,...,I q is a partition of T into disjoint intervals (depending1 q

on B) for which I k <Ik 1 (i.e. if s C Ik and s2C Ik+ 1 then sl<S 2 ) k=l,

...,q-1 and c. .i is either zero, indicating that I. x...xI. is not1 1

1 n 1n

included in the union, or is one indicating that it is included. Engel

2 (n)
(1982) defines the finitely additive L (0)-valued product measure Y on

An as

(3.4.6) Y(n)(B) i X. XI(Ii ) Xn(Ii) BE Ao

n.n nand proves the following theorem which extends the measure Y to An = a(An).

Theorem 3.4.1 (Theorem 4.5 Engel (1982)). Let {Xl(t),...,X (t)}, te T=

[O,T ] be a system of nl stochastic processes satisfying the regularity

conditions (3.4.1)-(3.4.4). Then the L () -valued measure y defined
n2

by (3.4.6) on Ao can be extended to a countably L2(R)-valued measure (also

denoted by Y (n)) on the Borel a-field A
n = a (An).

b0

The idea of the proof of this theorem is to partition the set pn into

2
disjoint pieces on which an appropriate countably L (2)-valued measure can

be defined and then show that the sum of all these measures is the required

measure. This procedure uses a complicated double induction and involves

prior knowledge of what the measure Y(n) should look like, even when the

mean function of each process is assumed to be zero. On the other hand
n

the construction of the symmetric tensor product measure 0 Xi follows the
i=1

more natural ideas from the theory of product real valued measures. More-

over, the assumption that T is a subset of the real line is essential in

the construction of Engel's product measure Y(n) and therefore more general

* . . .. . . .

S. . **. .h* * *

. . . . . .." . . . . . . . . . . .

.-.

° . " ° . . . • . ° . . • " ° - - ° . . . - • ° ° , " ° ° % - % - % , % , % . . • , • • • • • ' . , - ° . . . -. • • . • - . .° . -. ° .;. ., %
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parameter sets T, as those considered in Sections 3.1 and 3.2 of this chap-

s ter, cannot be contemplated in Engel's framework.

Assumptions (3.4.2) and (3.4.3) imply that

Yt = (Xl(t),...,Xn(t)) tcT

is an n-dimensional L 2-stochastic process with independent increments. Then

if we assume EX.(t)= 0 V tE T i=l,...,n, we are able to construct the
1

2 n
L (f2,FY,P)-valued product stochastic measure * X. as in Section 3.3. This

i=l 1
"zero mean" condition is satisfied in many interesting cases and allows us

n
to use Hilbert space techniques in the construction of * X.. On the other

i=l 1

hand, although the "zero mean" condition simplifies the proof of some of

Engel's results (e.g. Theorem 4.1 Engel (1982)) it does not make easier the

proof of his Theorem 4.5 using his method. In the zero mean case Engel's

problem (the construction of an L2(Q)-valued product stochastic measure) is

more easily solved using Section 3.3, although the product stochastic mea-

sure obtained is not the same, as we shall see later. Multiple Wiener in-

tegrals have been applied to obtain expansions and stochastic integral rep-

resentations of L -functionals of Yt (Ito (1951), Kallianpur (1980)). Since
the a-fields generated by the processes (Xl(t), (t)) and (X,(t)-m,(t),

...,Xk(t)-mk(t)) are the same, from the point of view of this application

the zero mean assumption is unimportant. Moreover, this assumption enables

us to use the techniques of Chapter II to construct integrals with respect
n n

to * Xi and identify the class of a X.-integrals that in this case isi=l1 i=l1

2 n nn
equal to L (Tn,A n , P i). Engel (1982) does not consider stochastic inte-

' =l 1

gration w.r.t. his product stochastic measure Y(n)

Assumption (3.4.4) is used in Engel's work to assure that Y(n) as de-

fined in (3.4.5), is an L2 (Q)-valued measure, i.e. Hilbert space valued.

•. ..... '.'"•?- .. "..".."..........."-"..-.---..-'".' .'-.........."-.-... -'-..- '-.
v . .....-.. -..., '. '--. .-''.---".'. ..'. '.... ....'...''.-.....- .. . ' .".".".. .. . ."-".". . .. .. --.... . --. -'..> ;'.-
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In our framework, this additional moment condition is not necessary to obtain
n n

a (Hilbert space) H -.-valued measure e X., where H is given in Proposition
. i~l1 i=li=l n n

3.3.1. Furthermore, for n1  n2 the measures n and 02X. take values in
2i=l i=l

the same Hilbert space EXP(H) and they are orthogonal w.r.t. the inner prod-

uct in EXP(H). Moreover, the identification of symmetric tensor products

of H provides more insight into the structure of {X1(t),...,X n(t). Such

identification is known for important cases (Neveu (1968), Kallianpur (1970)),

and we have obtained in Sections 3.2 and 3.3 identifications for other im-

portant situations.

As well as differences in the assumptions and in the techniques used,

there are also important differences between the resulting product stochastic

(n) n
measures Y and a X..' We now study some of these differences.

i=l .

If Enn is as in (3.4.5), then
0

(3.4.7) Y (n)(E) = x (I ).. x(I )

in -
1n 1

(3.4.9) i=l X (I -xl n (Il)a'''exn(IThus if I<.<I.,u in Crlay3.1wobn

b •](nI5 X 1 .( , x n (I in (n!j y(n), 1 x...I )1i

y"n n
," which suggests that (n!5 n and e X. agree on antisymmetric sets (see

nn
i"-1Al j

'", Corollary 2.2.4), as it is shown by the following result.

-a.,' Proposition 3.4.1 For each permutation = (Jl'. .. ,'1 n) of (1,... .,n) let

4 ,-. -. -. . . . . . . . .. . . . .. . . . . .
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andn

-- Q(tip .. "t tn < ... t<"< tll

-= n .

Then
n

(3.4.10) e X.(A) = (n!)5 Y (A) A A

J

Proof A is the a-field generated by the field of all elementary subsets

of T n of the form

B U I. x .. xI.

1:i <.. < I ..1* 1 1

where Il<... <I is a partition of intervals of T and l Is are as in
1 q ""- n

(3.4.5). By (3.4.9) and the additivity property of the measures y(n) and

n
* X.i=1 I

n L n
a X.(B) = (n! (B)
i=l 1

Therefore from Theorem 3.3.2, since B is an antisymmetric set
, n

(n!) E(y(n)(B))2 = E( * X.(B))2  I
ni=l 1! l" n ()"

n
Then an approximation argument shows (3.4.10) for all Bc A.

Q.E.D.

If A is not an antisymmetric set then (3.4.10) does not hold. Consider

2
for example the case n=2, then from (3.4.7) and (3.4.8) if Bc A is given

by (3.4.5)

y(2 )(B) =X (IlX2

and using Theorem 3.3.3 and (3.3.44)

.- . .I.o . .. ..- . ' . , " . . - . . ., - . : ••, % . . . ° . -

,.,. :''.'. :'.''.-..'" , ",",'.',,.'""':...."., .:..., '.. ", .'--;'-' q-... :. .',.'..:b .'..'..'..'.'.'.'"
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9s

2q
0 Xi(B) = . i XX(Ii )OX2(1 ii=l ii 2=l 11 2 1 i2

= (2!) - 1 ci i {XI(I. )X2(1 - [XlX 2](i n I )1}
ii=112 1 2 1 12

"12

=(2) { i2 1 2 (  ii[X11X2](Ii
i1i2=1 12 1 2 i 1=l li1i

= (2) {yC2I(B) - f IB(s,s)d[X1,X2 ]s}
T

i.e.

(3.4.11) Y 2)(B) (2)1 X.(B)+f IB(s,s)d[XX 2 ]s  BEA
i=l T o

Then it follows from the above expression that even in the "zero mean"

case we have that

E(Y(2 ) (B)) = f 1B(s,s)du] 2 Cs) = p12 (B)
T

2
since.E( 0 X.(B)) = 0 by Theorem 3.3.2 and

i=l 1

(B) = E(X (B)X2 (B)) = E([[X 1,X2 ](B)).

Therefore Engel's product stochastic measure Y(n) is an uncentered mea-
n

sure which gives rise to an uncentered stochastic integral, while 0 X. is
,'."i=l1

centered.

2
Let T= [0,11, A = B(T) and X be a single zero mean L -independently

scattered measure on (T,A) with control measure p. Rosinski and Szulga

(1982) have considered the random product measure of X with itself in such

a way that

(3.4.12) X(2)(AxA 2) = X(A1 ) X (A2) AIA 2 EA

can be extended to an L (fl)-valued vector measure on (T x T, A x A). Under

tfL 4 ()llthe additional assumption of X(A)c Q all AEc A, they have shown that 2X
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can be extended to an L 2(fl)-valued vector measure on (T x T, A x A). This

last case corresponds to the Engel's situation n=2 and X= X1 = X2. They do

not go beyond the case n=2. One of the complications that will appear is

that for n=3, if X(A) E L2 (1) Ae A; then

X(3)(AlxA 2xA3) = X(A1)X(A2)X(A3 ) Ai €A i=1,2,3

1
is not necessarily an element of L (Q). This means more moment conditions

about X are required and that product random measures of different orders

take values in distinct spaces. Rosinski and Szulga (1982) use the theory

of integration with respect to vector valued measures to construct integrals

with respect to X characterizing the class of X -integrable functions.

For purposes of comparison some results of Rosinski and Szulga (1982) are

summarized in the next two propositions.

Proposition 3.4.2 (Rosinski and Szulga (1982)). Let (T,A,p) be as above

2and X be a zero mean L -independently scattered measure on (T,A) with control
measure V. For A A define (AA 2) = X(A1)X(A2 ). Then

(2 2.1Ax2)-XA
a) X as a vector measure in L (fl), has a countably additive exten-

2 2sion to (T ).

b) For a real valued measurable function f on T2 define

N(f) = fif(t,t)Idp(t) +{ f fIlf(s.,) 2dp(s)du(t) 1
T2\A

where A = {(st)e s=t}. If N(f)<- then f is X(2)-integrable

with L (Q)-valued integral denoted by

f 2 f(s,t)dX (2)(s,t).
T

c) If N(f) < then

• "~~ ~ ~ ~~~~~~~~~~~...... .. .... -'... ...,..,.-. .. -... ,-..... ...... .-....... ".,'-......; o.-.....-.I , - ..'-
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(3.4.13) f2 f (s, t) dX (2)(s,t)= f f(t,t)dV 1 (t) + f2 f(s,t)dV 2 (s,t) a.s.

T T T

where V1(t M (XXI t is the optional quadratic variation process of

X(t)= X([O,t]) and V 2(A) = X 2 (A\A) A cA.

Moreover, the first integral on the RHS of (3.4.13) belongs to L (P~)

while the second belongs to L 2(12).

d) Let X be a Gaussian random measure. Then f is X (2)_integrable if

and only if N(f) <

Proposition 3.4.3 (Rosinski and Szulga (1982)). Let X be an independently

scattered measure as in Proposition 3.4.2 and asuume that E(X(A)) ) < for

all AE A. For A1 ,A 2 EA define X 2 (A 1 xA2) =X(A)X(A 2) . Then

(2) 22

sion to CT 2,SA 2).

b) A real valued function on T 2is X()inegrable i n nyi h

next three conditions are satisfied.

T
(ii) f ~f~t~s)2 vtdjs <
T \A

(iii) f If~~t~l2 Gdt <

T

where IGI is the variation of the signed measure

G(A) =E(X(A)) 4_ 3(E(X(A)) 2) AE A.

Denote by

f2 f(s,t)dX 2 (s,t)
T

2(2
the L (1)-valued integral of f w.r.t.X

%.............................
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c) If f is X 2)-integrable

E(f 2 fdX(2)) 2 = f f(tt)dli(t))2 + f f2 f 2 (st)d(s)dji(t)
T T T

2+ f fj2 f(s,t)f(t,s)dli(s)dl(t)+ f If(t,t)I G(dt).
T T

d) If X is Gaussian then G= 0 and the random integrals with respect to

" ( 2 ) in the sense of L1 and L2 coincide.

On the other hand, following the notation of Proposition 2.2.1, let

@2 2 X
X be the L (11,F P)-valued symmetric tensor product stochastic measure

on (T 2,A 2) -constructed at the end of Section 3.3 (n=2) under the only mo-

ment assumption of X being L2-valued. From Theorem 3.3.3 and (3.3.44)

if AA A

1 22
X2 (A1xA2 ) = X(A1) e X(A2 ) = c(X(A1)X(A2 - [XX](A 1 n A2))

where c= (2) - , and therefore by (3.4.12)

(3.4.14) Xe 2 (AIXA2) = c(X( 2) (AIxA2 ) - [X,X] (AI n A2 ))

Hence since E(X 2(A 1 xA2 )) = 0

E(X(2) (AIxA2 )) = E([X,X] (A, n A2 )) = i(A1 n A2)

i.e. X is not necessarily a centered product random measure and gives

%% rise to an uncentered integral as it is shown in (3.4.13) of Proposition

3.4.2. Moreover, from (3.4.14) and (3.4.13) we obtain that

c V2 (A) = e 2 (A) Ae A2

-. 2 2, 2, then f is e2-nerbeand the converse holds

02
if p is non-atomic. The integral with respect to X is centered (Proposi-

-:.............-...--..... . . . . . . . . . . . .

.- '.. -.=.. . ...o. .
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tion 3.3.3 taking n=2 and X= Xl= X2).

Then the advantages of the symmetric tensor product measure approach

are that it does not need additional higher moment conditions to construct

an L2 ()-valued random product measure and it gives rise to centered multi-

ple stochastic integrals. Moreover, this approach can be used (as it was

done in Sections 3.1, 3.2 and 3.3) to construct product stochastic measures

of order n: 1, all taking values in the same space L2 (,FX,P), without need-

ing extra higher moment conditions.

Concluding remarks We have seen in this chapter that the symmetric tensor

product approach is an appropriate t-ol .. obtain product stochastic mea-

sures and to construct multiple stochastic integrals w.r.t. them. A clear

relationship between the theory of multiple stochastic integrals and the

theory of vector valued measures has been established. Moreover, Theorem

2.1.4 suggests that this approach could be used to construct infinite prod-

uct stochastic measures, which we have not done since we have not been suc-

cesful in defining the concept of infinite symmetric tensor product. This

last notion was not found in the literature.

I-

p , /



CHAPTER IV

NUCLEAR SPACE VALUED WIENER PROCESS

AND STOCHASTIC INTEGRALS

In this chapter we bring together several notions and results about

nuclear space valued Wiener processes that will be used in the next chap-

ter. We begin by presenting the Countably Hilbert Nuclear Space 4D that

we are going to consider in the remaining part of this work (Assumption

4.1.1). Then we define a $'I-valued Wiener process (W )t?0! with a contin-
t

uous positive definite bilinear form Q on Ox $ and study some of its prop-

ertie~s such as the corresponding Rigged Hilbert Space associated with it;

the Wiener integral and its associated Gaussian space; and an infinite

system of independently scattered measures that are non-identically dis-

tributed and mutually independent on disjoint sets. At the end of Section

4.1 we present some examples of 0'-valued Wiener processes that show how

our framework includes many cases already considered in the literature.

In Section 4.2 we discuss real valued and 0'-valued stochastic integrals

with respect to W tin a manner that they can be used in Chapter V in rep-

tt

4.1 Nuclear space valued Wiener process

th a
4.1.1 The Countably Hilbert Nuclear Space 0 and its n tensor product (

Suppose E is a real linear space whose topology is determined by a

countable family of Hilbertian semi-norms '*n <>n; n O. For each n

.- 1 n

. . . . . . . . . . . . .
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let En be the Hilbert space completion of E with respect to I ° {* For

n<m suppose we have I cPln IIn50m 0EE. Then

EcE cE cE'
m n

E' being the topological dual space of E. Furthermore, let E = fl E andn>0 n

suppose that for every n there is an m>_n such that the injection of E into
m

E is a Hilbert-Schmidt map. Then E is said to be a Countably Hilbert Nu-
n

clear Space (CHNS).

Among important properties of a CHNS E we have that (Gelfand and Vilen-

kin (1964)) E is a complete metrizable locally convex space (Frechet space)

which is separable and every bounded closed set in E is compact. A useful

result that we will use several times in this work is the following lemma.

Although it can be proved for any linear topological space of the second

category (see Xia (1972) page 386), we shall establish and prove it in the

case when E is a CHNS. A result of this type, involving a Baire category

argument, was first used in the study of E'-valued stochastic processes in

Mitoma (1981a, 1981b).

Lemma 4.1.1 Let E be a CHNS and let V(O) be a non-negative, lower semi-

continuous functional on E (i.e. 0n 4 0 in E implies that V(O)< lim V(% )),

satisfying the following conditions:

a) For any 0, ipe E V(+IP) < V() + V( ).

b) For any *, E and ac IR V(aO) = Ia V(O).

c) V(0) <- for any 0 E.

Then V(O) is continuous on E and there exist a positive real number e and

a positive integer r such that

V r V OE E.

.. . . . . . .......................................................... . .
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Proof Let

D = {0 cE: V() )n I

Since V is a lower semicontinuous function on E then for each n2l Dn is a

closed set of E (see Reed and Simon (1980)). Condition (c) implies that

E= U D n

n=l n

Then by the Baire category theorem, since E is a complete metric space, it

is never the union of a countable number of nowhere dense sets. Therefore

there exists n o such that D is not a nowhere dense set, i.e. there existn
o

.Oo E, 61 > 0 and a positive integer r such that

U:=:foe E: I $-0olr< 61 c D

Then for any OEE Oj 0 if 6<61

':" C r o U and -U-T. 0 +0 9 00

and hence they belong to D i.e.• no,

V( + 10T < no and V(Oo- :5 n o

But using (b) with a= -1 V( V 00) = o  I no •

Then by (a)

V(2T ) < V( + o + V( - 0)< 2n0

and hence using (b), if 6= no/6

V 5() < I011 r V €i E.

Then the continuity of V follows since using (a) we obtain

. . ' .o , . ° . . . , , , , - . % % " , , o , , ' , , ,, . " , , °, , , " . , , -• , ... . . . . . . .. . . . . . ." .. .. -. .,.. ... .... . . . .-.. . .... .•
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:. vc 3 - v(,)l, _(- !5 -1 r- l

Q.E.D.

As examples of CHNS we have S(IR d ) the Schwartz space of all rapidly

decreasing functions on IR d d2 1 and S(Zd) the space of all rapidly de-

creasing sequences on Zd' the d-dimensional lattice space. Stochastic pro-

cesses taking values in duals of these spaces have been considered in the

recent works of K. It8 (1978a, 1978b, 1983), Dawson and Salehi (1980) and

Shiga and Shimizu (1980) among others. However, in several practical prob-

lems, like those occurring in neurophysiology, it is not possible to fix in

advance the space in which the stochastic processes take their values (see

Kallianpur and Wolpert (1984)). The next example is taken from the work

of the last named authors (see also Daletskii (1967)).

Example 4.1.1 (Kallianpur and Wolpert (1984)). Suppose a strongly con-

tinuous semigroup (Tt)t>0 given on a Hilbert space H (that can be taken as
t 0

2Ho = L (X,dr)for some a-finite measure space (X,rr)). The semigroup (Tt)
o t t 0

usually describes the evolutionary phenomenon being studied, such as the

behavior of the voltage potential of a neuron (Kallianpur and Wolpert (1984)).

Suppose that the strongly continuous and self adjoint semigroup (Ttdto

satisfies the following two conditions:

(4.1.1) The resolvent R= f e Tt dt is compact for each a> 0.
0~r

(4.1.2) For some r1 > 0 (R ) is a Hilbert-Schmidt operator.

By the Hille-Yosida theorem (Tt) has a negative definite infinitesimal

generator -L. Then by Corollaries 4.4.1 and 4.4.2 in Balakrisnan (1981),

H admits a complete orthonormal set {O } of eigenvectors of L with

. 0 -. = . . . .

-. . . .. ..... ... ..-.. .......... ... . % .'.....--o-........'.... °
* .a. * °.. -*aa . .. . ...... . ..... .°..-.°.-

"
.. --. ° .. .a. . . .o. . ° .

., 5, ° . . . .. . * . ,. . . . . ° .. .. .... °.. .-. . .... q• . . °o . .:e e ' ""- .' '" ,- , .. ',-.' ',"" .. ,."." "• -'. , -'; ,"a'. -. ... . ,.. .", .. . e . ."- -.. ","-"-•



104
I

eigenvalues 0:5 A !9 x : ... satisfying
1 2

(4.1.3) -r < 0 (r, > O)
j=1

Set
G o. . - 2 r I 1

(4.1.4) 1 =E1.A ( -+2
j=l

Denote by <o,">o the inner product in H and let

(4.1.5) 0= {E Ho:= <,.>2 (l+X)2r < -for all rEIR}.
0J=l 0

For each r4 IR define an inner product <. > and norm 11"1H r on

P by

;+ (4.1.6) <OIIP>r =  <"'J>o<4)'03>o(I + X ) 2

j=l 0 0

(4.1.7) ll0ll
al~ ~ ar etH

and let H be the Hilbert space completion of 4 in the inner product <,, >r•

Then $ with the Frechet topology determined by the family f"r 1 rJR of

Hilbertian norms is a Countably Hilbert Nuclear Space. Let 0 1= U H with
r r

the inductive limit topology. Then 0' is identified with the dual space

(in the weak topology) to 0. The following properties hold (see Kallianpur

and Wolpert (1984)):

(4.1.8) H and H are in duality under the pairing;::-r r

:" r,] = E <4>- CH ,-
j=l -r -r r

(4.1.9) 4cH cH c 4 if r<s and the injection of H into Hs r s r

is a Hilbert-Schmidt map if s > r+ r I .

(4.1.10) Finite linear combinations of {$.1 are dense in 0 and in

every Hr; moreover, {* } is an orthogonal system in

.............. .......... *.-....*.o.. ,°...... . . -. .. . ..
,..+ . . . . . . .......... ."...... .'..-... . + .. '-....- . . . ....- " " ... '......-."......'+

.............................- ..-....-':-'"- -'" "'" " .. : . .-......-.......-..

. . . . . . . . . . . . . . . . .. . . . . . . . . . . . .l.... . .. .
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each H , and then{(l+X.)-r i is a CONS for H

Assumption 4.1.1 From now on, unless explicitly stated otherwise, we will
assume that 0 is the CHNS of (4.1.5) and that L, {X.}j I  {0 }j> ,l rl,8I ' Hr

-o,<r< , and ' are as in the last example.

We will see in Examples 4.1.2 and 4.1.3 how the CHN spaces S(IR d ) and

dS(z ) may be obtained within this framework.

The tensor product nuclear space , Under the notation and the hypothe-

ses of Example 4.1.1, for each re JR let H n be the n-fold tensor product
r

Hilbert space of Hr with inner product <-,> n and norm i on
r r

Define the linear space

0en  n enalr }

= {'PCH n:4H all rC IR0 r

with the topology determined by the family of norms {6 I nrER
r

Proposition 4.1.1 For each n_ 1 ( nll' 11 en rc 1R) is a Countably
r

Hilbert Nuclear Space. It is called the n-fold tensor product nuclear

space of 0. If r<s then

D an H e n onc Hc Hnc (n)',

s r

where (f n), is the inductive limit of Hen re RI, identified with the
r

dual to en in the weak topology.

Proof Since for r<s H cH and I jI then for each n l:.s r r s

H n c H n and n. Thens rS
r s

(4.1.11) on = H on

k=O k

.* * ** . "° * "€°" # t"*"' -. r., . .. . . ...... .. °.%,... ..
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and therefore n is a complete metric space.

Thus we only have to prove that if s>r+ rl, the injection from Ha
Sinto Ha1 n is a Hilbert-Schmidt map. Let {e = (l+X)-so.). be a CONS for

r j j Jjal
s, then fe. *...ei }. is a CONS for H n  and using (4.1.10)1 J 3 l'"' 3Jn 1  

s"

and (4.1.6)

.I.e .... en, In = 1 1e 2 e 2il ... in=' rl n ... Jl''' l  ejl r"" in r

j..j= Cl1 lr)2s.. Cl+X. I 12_ll0 2
J, i"" 1n= 0 "" r" i r

1nGo n n no

2s(li ( ,.S) . 2r 0 2(s-r) n < CO.. jl .. n=l i=l a i i 1 i j=fi

on onThus the injection from H into H is a Hilbert-Schmidt map.s r i ibr-cmd a

Q.E.D.

The next proposition will be useful in studying multiple Wiener inte-

grals. It gives the n tensor quadratic form of a continuous positive def-

inite bilinear (c.p.d.b.) form on 4 x¢.

Proposition 4.1.2 Let Q(o,.) be a continuous positive definite bilinear

form one x . Define

(4.1.12) Q(iOnl "® n' fl®'n)=QCWl'r1l)"Q(Pn'ln) I E

Then Q can be extended to a continuous positive definite bilinear formn an exene

on x . Moreover, there exist 62 > 0 and r2 >0 such that

on n 2 en(4.1.13) Q(n,n) e II ne
i" r2

,. Proof The first part follows as in the construction of a tensor product

inner product (see Proposition 1, page 49 of Reed and Simon (1980)). To

~~......... ....... ... ~ ........ i~i'' ' ' : " " -" :", ,... ,. , .. '.."
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prove (4.1.13), since Q is a c.p.d.b. form on Oxt, by the nuclear theorem

there exist 62> 0 and r2 > 0 such that

2 2 1,2O

2

Then using (4.1.12), for Vic 0 i=l,...,n

ann 2
Q: q(V8.* Vl"'e .. G '""n) !5 ()2 I1l"-.11i -n,

r 2

and (4.1.13) follows from the extension of Q

Q.E.D.

We finish this section by showing how the nuclear spaces S(IRd) and

S(Azd) may be obtained in the framework of Example 4.1.1.

Example 4.1.2 (S(IRd (Ito (1978a)). Let Ho= L2(IR,m), m Lebesgue mea-

sure in IR, -L= d 2/dx 2  x 2/4 be the harmonic oscillator (Reed and Simon

(1980)), Lon= non  n= 1,2,... where {0n}nJ are Hermite functions, n = n--1
n"nnnn~ nl

| k~l(X)=((x)) hk( 2 - x)(2kk!(T) )b- k_>O

g k2" -- -2

22
-~x (21f) e and hk are Hermite polynomials defined by

-k/2 kx 2  k(ex 2

hk(x) (= e d k ... .

k ~dxk

Then (see It0 (1978a)) r1 = 1, 61 = 1/2 and 0 as defined in Example 4.1.1

is the space S(IR) of rapidly decreasing functions on IR, with the topology

defined by the family of Hilbertian norms

II~I2 ~ L 2 P < >2

p = n+) <O' ,n>o P <(x)O (x)dx

In a similar fashion Ito (1978a) constructs the space S(IR d) d 1

which can be seen as the d-fold tensor product nuclear space (S()

a,.. . . . ..:.5%... . . .



108

Example 4.1.3 S(ld)). Let H= 2be the Hilbert space of all real se-

quences x= (xn) such that X21 <0, Lx= nx"1. Then Xs-n and On=e nk1,

where {e ninI is the canonical basis in £2" Thus r l = 1, = n/6 and the

space , defined by

S{x cc: E (n+1)2Px <G all P2O}
nl n

and topologized by the family of Hilbertian norms

ixiI2 = n+ l)x p >o

n=l n

is the space S() of all rapidly decreasing sequences. The space S(Id) may

be constructed as the d-fold tensor product nuclear space of S(Z).

4.1.2 0'-valued Wiener process

Throughout this section we assume the hypotheses and notation of

Example 4.1.1. Let (f2,F,P) be a fixed but arbitrary complete probability

space. All 4V-valued random elements and 0'-valued stochastic processes

considered in this section are defined on this probability space. We de-

note by B(O') the a-field on c1' generated by the sets

E ,a = { Ec': ()<a) ae )R, OE 4

which is the a-field generated by the open sets in the weak topology. Mea-

sures on $', * '-valued random elements and $ '-valued stochastic processes

are defined with respect to the a-field B($'). Thus a mapping

-.5 X" Xt (°) : [0',°) X 0 0 € '

is a '-valued stochastic process if and only if Xt(.)[O] is a real valued

stochastic process for all *eO.

r .: . ,.5.'..,'- V................ .-.-.....-. "-
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A 0'-valued stochastic process (Xt) t 0 is called an Hr -valued

process if for every taO Xt is an Hr -valued element.

From now on we will write ]R = [0,-) and A= B( +) will denote its

Borel sets.

Definition 4.1.1 A sample continuous ('-valued stochastic process

W = (W t)tcR defined on (Q,F,P) is called a (centered) 0'-valued Wiener

process with covariance Q(-,.) if

a) W 0:

b) Wt has independent increments.

tt
c) For each c 0 and t">O0

E(e ) = exp(-t/2 Q(','))

where Q(*,.) is a continuous positive definite bilinear (c.p.d.b.) form

on 0x¢.

From the above definition we see that the system

.{Wt[] O'E'D t_ -a 0

is a Gaussian system of random variables and that if *, @,, the real

valued processes Wt [0] and Wt[P] are independent on non-overlapping in-

crements. Moreover, for each $, cp@and s, t c R

E(W ['1fWt [ip]) = min(s,t) Q('. p).

If Q'') = <*'>o, following Ito (1978a), Wt may be called a standard $'-

valued Wiener _rocess. If Q(r,) = <., > for some re IR, then {j Ijl

the system of eigenvectors of the generator L, diagonalize Q (see (4.1.10)).

-.*'. In general we will not assume that Q is diagonalized by the system {*.}
-L A-

* k... . . .. . . . . . . .

• . .• •. '°. °° . . . .. ".. °, " °°". ". .i "-' .. . .... . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . ..,. .. '. ,. - % 0 , .. ° . ° . °
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Several examples of 0'-valued Wiener processes with different covariances

Q are presented in Section 4.1.3.

The existence of a 0'-valued Wiener process with an H continuous ver-

sion is now established.

Theorem 4.1.1 Let {Y(t,O):OE 0, te R,+} be a centered Gaussian system of

random variables such that

E(Y(tO)Y(sW)) = min(s,t)Q0,4) , 0 , s, tc IR

where Q is a c.p.d.b. form on Ox t. Then there exists a 0'-valued Wiener

process (W ) te R with c.p.d.b. form Q such that Y(t,O)z Wt[0] a.s. for

all *4E 0, tE JR+ and W has an H -valued continuous version for some+ t -q
q->r l + r2, where r2 is such that for some 0 >0

q 1  22

(4.1.14) Q(,0 E)< 112V r e0
2

Proof Using the bilinearity of Q, for t 20 fixed and cl,c2 E JR,

0 1,02 € E we obtain that
%2

E(Y(t,c1$1+c2 2 ) -Y(t,cl 1 ) -Y(t,c 202)) = 0

By the Kernel theorem for CHNS's (Gelfand and Vilenkin (1964)), there exist

e2 >0 and an integer r2 >0 such that (4.1.14) is satisfied. Therefore

,°°"'"(4.1.15) EIY(t, ) 2 etllrz O .

2

Fix t throughout the argument. Then Yt: 0-.Y(t,O) is a bounded linear oper-

2 2ator from the pre-Hilbert space (4',11I-1 ) into L = L (,F,P) and hence
r22o2

extends uniquely to a bounded linear operator from H r2 into L , denoted

also by Yt"

Let (l+X be a CONS for Hr . Write *.=(I.X. r

j j l r1  r 2 '

L.- .-..., .-......,...-, ..-. ...,.. .. ,. .. ..-....... .......-... . . ... .-......... ,...,...,,,.... ..... .....
. . . . . . ..o.*. ° °°. ..* °..°. .o9 °* , o*.... .. . .. o° ..*°% .° ° . o .. %.- -

.. . . . . ... .
°, • I . b
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j and let {fj 1 be a CONS for H_(rI+r2) dual to { , i.e.

<f kj>-(rl+r2) = kj. Set X= Y(t,). Then from (4.1.15)

Oi 00 
- 2r

E(I X 2 t I g 2 0t I (l+X.) 
1- 6 t>O.

j=I 2 j=l O r2  j=l = 12

Next let fl = {w 
fE: t (X (w))2 <o}, then P(I ) = 1 . Define

Ij=l

Wt(w) = 1 X(w)f. wfq4l

Then for each t>-O Wt (W)E H' H a.s. for q->r l +r 2 and

: EllW til -q= E( I (X) 2 1  2 12 t .

j=l

Next for E H

SxjCw)f .[41Jq,
(4.1.16) Wt[4] j~l m L

and for 0 <s < t

wt[*l -Ws[c] = I (X -Xj) <m, >

S2 j=l -2(rl+r 2)

But E(Xj - XJ)2 = (t-s)Q($.,¢j) = (t-s)(l+X)
t S J

-2(r +r)2 -2rI
" < (t-s) (l+ =) 2 r 2  s

" r

Then

Ellw  - qW s 1 = E SUP lwt[O] _ws[0 ] 12" q II oil q51

00 GO C O 2

2 ; < ,$ 2 ! E S (xj -j 2)( >2)
r. II*I p; jfi >q) 11 tI qj 1l

P!10 5 j 1ij~

Go CO -2r
" E( X (X - Xj) 2) e2(t-s) (l+X) 1 (t-s) <

,.jr
1  i=l

. . . . . . . . . .. . . . o° •

., .",".1

h",.,,''. .""" . .% , ', ' .." , , % "-*..,' .""',,'' ,' '..% ,. e , ' ,.,,...,',-.-'j .-.. . .. .. , , ,"- " , , - % ,, ,".." d
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Thus

(4.1.17) EIW t-Wsil 2 q l 21t-sltS-q eo2 ts

and applying Kolmogorov continuity theorem we have that there exists an

H -valued continuous version of (W ) t c JR for q r + r2.-q t +

Q.E.D.

Corollary 4.1.1 If (W ) t c IR is a standard '-valued Wiener process,
t +

then it has an H -valued continuous version, where rI is as in (4.1.4).-r1

Proof Since for a standard 0'-valued Wiener process Q(-,-)= <-,->o,

then we have equality in (4.1.14) with 02 = 1 and r2 = 0.

Q.E.D.

If (Wt) t>0 is a 0'-valued Wiener process with c.p.d.b. form Q on

Ox 0, then W(t,) = Wt[0] is a centered Gaussian system and therefore by

the last theorem Wt has an H -valued continuous version, also denoted by-q

Wt. for q-r 1 + r 2.

Assumption 4.1.2 From now on we will assume that (Wt) tE JR+ is a '-

valued Wiener process with c.p.d.b. form Q on Ox 4 and an H continuous
-q

version for q>r 1 + r2, given by Theorem 4.1.1, where r2 and 62 are as in

W=
(4.1.4). Moreover, assume that for each t0 Ft=a(Ws [f:Osst, *E$

with F containing all P-null sets of F.
0

Lemma 4.1.2 Let q>r 1 +r 2. Then for each OEHq (Wt[I,FtW) is a contin-

uous martingale with quadratic variation process

'(4.1.18) <W[O] t  = tQ {(M ) t >_o .

Moreover, the cross predictable quadratic variation of Wt [] and Wt [1] for

*, )EH isq

, . . . . . ...... . . . ......... . ... .. .... ... . ... .... , . .. . . .. ..,- ....,:,, .,,-,-.. ..,
b.. " " -' ' ' -'.-''.. . . . . . . . . . . . . . . . .."-".". . . . . . . ... -. '- . . -. ' -. - - " -. . .... "t " '. "
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(4.1.19) <W[MIW[M]>t t tQ (010 t 0.

Proof The martingale property follows since (W )n is a 0'-valued

process with independent increments and for 4E H and t a 0 E(Wt[01) = 0.
q

Next since for each t2: 0

<W1OlW['p>t I= <M W -WO+M

t t

then we only have to prove (4.1.18). But from (4.1.16) since Q has a

continuous extension to H qx H qfor q > r I + r 2 (see Proposition 4.1.3) if

Oc Ji then

j=l k=1 qlq t

j= k=1 3 > q 'k>q Q(jlk = tQ (00

. qq

Co ory 4.. Lt +(N ( M ) eaa alednWienru proes o with e a ro

t t-q

c.p.d.b. form Q on 4 xl)* Then if q r1 +r

E(W tM4W 5 W min(s,t)Q(, ) H

where Q(,, , c H is a c.p.d.b. form on H x H that extends the c.p.d.b.
q q q

form Q on (Dx $*.

Proof It follows from the proof of the last lemma by observing that if

s < t
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E(Wt [M]W 1) = E(W [fl]E(W [M IF*)) = E(W [IW [MN1)
5 t s s S

- .1 {E(W [+*])2 2 E(W [])2 _ E(W [N) 2}.
2

Q.E.D.

We now consider several concepts associated with a $'-valued Wiener

process (Wt) t>_O with a c.p.d.b. form Q on 4)x D and an H continuous ver-
t -q

sion for qr l + r2r

Rigged Hilbert space associated with a 0'-valued Wiener process Let

(Wt) t 0 be a '-valued Wiener process with a c.p.d.b. form Q on 0x P.

Then Q is an inner product on Px P. Denote by HQ the completion of 4€ with

respect to Q and by <,.,> or Q(.,-) (H' H Q) the corresponding inner prod-

uct (norm) on H . Then

(4.1.20) c H c H- H4 c H c V s>r4 s  -s 2

The system (4.1.20) is called the Rigged Hilbert Space (see Gelfand and

Vilenkin (1964)) associated with the V'-valued Wiener process (W ) t_0

with c.p.d.b. form Q on Ox D.

Proposition 4.1.3 a) For s r2 and c H
2 s

(4.1.21) Q(0,2) ' 02 S4f

and therefore (4.1.20) makes sense, and Q has a continuous extension to

H xH.

b) For s r 1 + r2 the injection of H into H is a Hilbert-Schmidt map.
o2 Q

Proof a) From the Kernel theorem (see (4.1.14))

( e2 110l 2  $
2

. . ... . . . .

.. :,.. .. °..., ., . ... .. .:.:. .. . . .. . :.:: .. .. . :. .: .. . .. ...-. . :.-.. .. .::*. : . .. . . ...
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Next if 4'c H since 0 is dense in Hs there exists a sequence {*n in $

such that ip - in Hs . Then QC% -4 n i -u n ) 5 2 1-%1 2 - 0 which im-. n 1'nMS

plies that Q(4'n,4in) Q(*,4') n- and then (4.1.21) follows.

b) Let { J= s be a CONS for H s, then

I Q(O _0 I a 2s 2Q(Ojo ) +X 2  . 2

j= l j  j=l J 2jil j- 2

- ( )-2(s-r 2)= 82 = 1 1+ ) 861 < 00

j=l 2

and then the injection of H into H is a Hilbert-Schmidt map for s-> r + r2 .

Q.E.D.

In a similar way, for each n 2 1 the Rigged Hilbert Space

On* c~ cH on (Hon), c.n)
s Q Q

may be constructed where

en~ n 1 1 2 Hen

Qon(,) < 2H n n s s r 2
s

and the injection from Hs into H is a Hilbert-Schmidt map for s r1 + r2.
s Q 1 2

Wiener integral and the Gaussian space H of Wt  Let C= C([O,c)-+*) be the

linear manifold of all measurable step functions on R + with values in ¢,

i.e. fE C iff there exists a finite collection of positive real numbers

0=to <t 1 <t 2 <... < tk and aic E i=l,...,k such that

k(4.1.22) f(t) =1~ i lt-' (t ) "

For fe C define the Wiener integral

k
(4.1.23) 11(f) = (W Wt )[a.l .

° * ....... °. .. •°.... .
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Then I1(e) has the following properties.

Lemma 4.1.3 Let f, g- C. Then

a) 11 (cf) = cli(f) cc IR

b) II(f+g) = IM(f) + Ii(g).

c) E(II(f)) = 0.

d) E(II(f)II(g)) = f Q(f(t),g(t))dt
IR+

e) E(I (f))2  f Ilf(t) II dt

Proof (a) and (b) are proved as in the real valued case using the fact

that for each t>_O W e '. The proof of (c) follows since E(Wt[]) = 0

V €e 0 and taO. To prove (d) write A =(t ilt i  and WCA i) - w t i- Wtl

Then if

k
f(t) - a 1 A t)

i=l i
and

k
g(t) =" 1A t)

il i

for 05t o <t l <... < tk, ai, 8. 0 i=l,...,k, by definition of 1

k
II(f) = XW(Ai) [ i

i=l1

k

S1 (g) = [ W(B)[a.]
Si=l

Them if m() denotes the Lebesgue measure on CR,8(IR ))

k k

E(Ii(f)II(g)) = Z E(W(A.) [a ilW(A.) [.i])
i=1 j=l

k k k kI I m(A. nA.)Mai,B) a X I f1AinA MtQ(aia )dt

i=l j=l 1 1 i=i jul R + A

-." ~~ f.. .~ ... . --. .* -, ft'.''-- ' -: ' . . . ,.. . -. . -- ,' ' .' ''''-.. ..-.. . ".". .'-. .f .-"t f-. .''.- t-. . t --f--. . . . ... -. -'.-. i. -" .- f.- ."- -" - .- ."-.. •"

,-" "-.. , :.') -;: . ... '.b' .'-,f.'..'..... f.'. . - f .' '.-.. i.. 'f.'..... .'.] ... ft '-" :- -".'.'. .-.-.---.--- -".'
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k k
= fQ( I ailA (t), I B.lAj(t))dt = f Q(f(t),g(t))dt
R + i= 1  i =1 j

which proves (d) and (e). Q.E.D.

To extend I1 to L2 (IR+- HQ) we first prove the following result, where

LC2(R - H Q) is the Hilbert space of H Q-valued measurable functions f on

IR (identifying those which are equal a.e. dt) such that

f If [ ( t ) 112 dt <

:I Q2I

Lemma 4.1.4 C is a dense linear manifold in L R- HQ).

+ 
Q

Proof Let fe L 2(]R+- H Q), then for each c > 0 there exists an H Q-valued

step function f6, i.e.

k
f Ct) = i Al (t)

ul la i

a" HQ, A (t.1,t i=1,...,k i]t <t I <.. < tk k> 1, such that

(4.1.24) f lf(t)-fc(t) 12 dt < E:/2.IR Q"

Since * is dense in HQ, there exist i. ( P i=l,...,k such that

'- II aiai  I kt i1 i=1,...,k.Q 1kt

Define

k
g (t) = i 1 aA. (t)

i=1 1

then g C C and

• - f I I f Em -gE(t) I2 dt < E/2,
"R

Then from the last expression and (4.1.24)

m"a%"(t 2dr<•~~ .-"[ I(t)-g (t) IIQ

4.

... ~.'.".'.'.''*.-,...-......, ......... ........ . . . .
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i.e. C is a dense linear manifold in L2 O HQ) Z L2(IR )SHQ

Q.E.D.

The Gaussian space (linear space) associated with the 0'-valued

Wiener process Wt is defined as

.(. 4.1.25) H= LlCM)=sp{Wt[fl: 0b , t>O} 0

where the closure is taken with respect to L2 (,FN,P), where FW= Fj. From

Proposition 7.3. in Neveu (1968)

(4.1.26) L2(1, ,iP) = 
n

nkO
where

2
.nl(exp e(h)) = exp(h-E(h hE H and

exp 0Ch) = (1,h, 1 he2 _, - h .. )

TT A

as it was shown in Chapter III (see also Kallianpur (1980) Chapter VI).

Then for all n> 0 on may be seen as a closed subspace of L2 (,FWP).

This fact will be used in Sections 5.1 and 5.2 together with the next

definition.

Definition 4.1.2 Lemma 4.1.3 shows that II is an isometry from the linear

space C of 0'-valued step functions into H. Hence from Lemma 4.1.4 this iso-

2 H
metry can be extended uniquely to an isometry from L (R onto H, also

denoted by II and called the Wiener integral. It has the properties (a)-(e)

of Lemma 4.1.3.

"'-valued Gaussian random measure Let T= R and A= B(IR A *D-valued

set function W(.) on (T,A) is said to be a 0'-valued Gaussian random mea-

sure if for each O 0, W(.)[] is a real valued Gaussian random measure on

2
(T,A). For re IR we denote by L (Q- Hr) the Hilbert space (identifying

o- . -.. . . .... O°O • ... . . . .. •. . . . .... . . . ,. o. . . ..- ,-. . . o . - . o -,
.'* . '. "-"- . . '.. 'o'- . " '. . .- . °e '.... .'. 

"
... . . .".',' ' ' " ° ".'. °'.% % ° • ° " ; .
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elements which are equal a.e. dP) of H r-valued random elements G such

that ElIGII 2 < 00
r

Proposition 4.1.4 Let (W ) t 0 be a 01-valued Wiener process as in

Assumption 4.1.2. Define for A= (s,t] O<s< t

W(A) = W-

Then W(-) can be extended to a V'-valued Gaussian random measure on
2

(TA), which is an orthogonally scattered measure in L (11- H -q), for

q r1 + r2  and control measure ll(*)- 6 m(-) where m denotes the Lebesgue
1 2' q

measure on (TA) and

o ~Q~~j 2q < C
q j-l 1 3

Moreover, if A EAm(A)<- and *-H q W(A) fe H, and if BE m(B) <C

then for all , iE H

(4.1.27) E(W(A) [flW(B) [ip]) =m(AnB) Q (0

Proof From Theorem 4.1.1 (W t) tThas an H -q-valued continuous version

for q!r 1 + r 2 ' Let {(l+X)i 0 Ija be a CONS for H -q Then if A= (s,t],

W(A)=W t- W

Ell W(A)f 21 E( I U+Xj) 2  <W(A),4> 2 )
-q j=l 3-

I (1+,\.) - qE(W(A)[ .I)2= (l+X.) m(A) Q (O.,31

*Let 8 0 (l+X NO2 V4 then
q jzl j

CO (+.) 2  -2 (q-r) e
j=l 2 821 621

and hence El W(A) II q 6 eqm(A) =jA
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Thus W(-) can be extended to an orthogonally scattered measure on (T,A)

with values in the Hilbert space L 2(Q- H_ and control measure l.(') 0 m(-).
-q q

Next if Ac A m(A) < and {An}n> 1 is a sequence of disjoint sets in

A with m(An) <' all n2!1 and A=OUA ,then for all e Hnn=1 n q

n 2 2 n2
E(W(A) [ ]- w(A.)[01) 2< l II2 EliW(A)- [ W(A ) 11 -'0 as m-+-

j=l J q j=l n -q

i.e., W(.)[0] is a real valued Gaussian random measure with values in H.

Let {4,.= (I+Xj)- q 4j} be a CONS for H . Taking Ae A, m(A)< -, W(A)[0

and using a similar argument to the one used in the proof of Theorem 4.1.1

one shows that W is a 0'-valued Gaussian random measure. Finally, (4.1.27)

follows by applying the approximation theorem to A, Be A, re(A)< -o, m(B) (<

and using Corollary 4.1.2.

Q.E.D.

Now let T= [0,T >1 T >0 and A= B(T). For qar1 + r2  let {e k }k l

be a CONS for H . Then from the above proposition we are able to obtain
q

% an infinite system of independently scattered Gaussian random measures

{W(.)[ek}k> 1 on (T,A) with values in H, that are mutually independent

over disjoint sets, each one with control measure k(O) = m(-)Q (ekek)

and such that for all k,j > I and A, Be A.

(4.1.28) E(W(A) [ek]W(B) [e.])= m(AnB) Q (ej,e) .
3 jk

Then for each set of index kl,...,k in {1,2,...) we may construct
.1' n

the symmetric tensor product measure of W(.)[e ],...,W(.)fe 1, denoted
1 n

n
by * W[ek ], as in Sections 2.2 and 3.1 of this work, and construct multi-

i=l i
ple integrals with respect to it. In the next result we summarize the

n
main properties of * W e and their integrals. It will be used in

l k

.. .... . : .. -.. . . .i ? ii:: i
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Propositions 5.1.3 and 5.1.4.

Lemma 4.1.5 Let T= [0,T ], To> 0, A= B(T) and "I, be the Gaussian space

defined in (4.1.25). For q2r 1 +r 2 let {e I be a CONS in Hq. For a

finite collection of index kl,...,k n in {1,2,...l denote by e V[ek i

the symmetric tensor product measure of W(.)[ek 1,...,W(o)[ek given
1. n

by Theorem 2.2.1. Then

n
a) a W[ek] is an Hln-valued measure on (TnAn).

i=1 k

n
b) E( ® W[ek ](A)) = 0 for each AE An .

i=l i
n

c) A function f: Tn+ IR is a W[ek. ]-integrable (see Definition 2.3.1)
i=l i

n
if and only if fE L (Tn,An,m"n). Denote by f f(t)d a W[ek ] (t) this

integral.

d) Let fE L2(Tn,An,men) and gE L 2(T,A ,me.

Then for each collection of index jl'...,jn, kl,...,kX in {1,2,...)

nkP~~~~~(f f(t)dT, -- i0 W[eji (t) Tfg (_) di a= W [e '  )(t))

T il ~ -T i-1 ki

an n (e. ...e. e G... ek) f f(t)g(t)dt
Q Jn k1 n T n

where f(t) = .
nI

Proof Since for each k> 1 W(.) [ek] is a zero mean H-valued indepen-

dently scattered measure then (a) follows by using Theorem 2.2.1. The

an -2 .
proof of (b) follows since H is orthogonal to sp{l} in L (Q,F-,P) and by

using (a). Next since pk( .) = m(')Q (ek9ek) where m is the Lebesgue mea-

sure on (T,A), the proof of (c) follows by Theorem 2.3.2.

Finally, the proof of (d) is similar to the proof of Theorem 2.3.3,

i i i i. . -- " .
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*! first using An-simple functions and then using approximation arguments.

Q.E.D.

If To= I and Q(ek, ek) = 1, all k> 1, {W(-) [ek]lk> I is a sequence of

orthogonally scattered measures in H of the kind considered in Theorem

2.1.4. Then we can construct the infinite tensor product measure * W[ek]
k=l=0u

on (T,A ,m") with values in i-H, u= (W(T)[ek] k2:1) (see Theorem 2.1.4).
i=1

However, the construction of the infinite symmetric tensor product mea-

sure is a problem that remains open.

4.1.3 Examples

We now consider some examples of V'-valued Wiener processes.

Example 4.1.4 (Kallianpur and Wolpert (1984)). Let 0 be defined in

Example 4.1.1 where H = L 2(X,dF) for r a a-finite measure on (X,E).

Let P be a a-finite measure on ]R x X such that the bilinear form

= f a 2 (x),(x) (da,dx)
IRxX

on Ox 0 is continuous. In connection with neurophysiology applications

Kallianpur and Wolpert (1984) give several examples of Q in which the mea-

sure p is of the form

JiCAx B) = (a) B) + .(a)v(B) A-E BR), Bc E
=k k1 k 9

where {a eai} are positive real numbers and {Ve JVi} are finite measures

on (X,.). The authors consider a W. path-continuous *'-valued indepen-

dent increments process with characteristic functional

.iWt[O ]  itm[o]- t Q(M,)

E(e ) =e t>O

~~~~~~~....... ............. ........... .......... ............'..................-.. . ............. ' .".. •. . . . .................-..-
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where me 01. Theorem 4.1.1 enables us to construct such a process with

continuous paths lying in H_q for any q > rI + r2 if a and Q satisfy

2 + Q2C ) < 82112

for some positive constants 02 and r2.

The continuous positive definite bilinear form Q on Ox 0 is not neces-

sarily diagonalized by the system {oji pa of eigenvectors of -L. If for

example

r(dx) = f a 2 U(dadx)
m

then Q(Ci, .) = fa 2i(x)o.(x)lj(dadx) = 0 for iA j; but in general

this is not the case.

Example 4.1.S (It6 (1978a)). Let $ be as in Example 4.1.2, i.e. 0= S(IRd)

d> I. tt6 (1978a) gives the following examples:

i) The Wiener $'-valued process corresponding to Q1 (,$) <M$>0 is

called a standard $'-valued process and it is denoted by (bt)tc]R . By

Corollary 4.1.1 (b) is an H_1 -valued Wiener process, since for the Example

4.1.2 r =l.
d

(ii) Let A = 2 and define Abt Abt[ ] -btCAO). Then Wt 
= Abt is an

H_2 -valued Wiener process for which

Q2 (0,') = <A0AP>o  0, c •

1 b 2 bd i
(iii) Let lbt"'"b ) where the component processes bt i=l,...,d

t ,...,J

are independent standard V'-valued Wiener processes. Then

d

't i=l b

is an H_ 3-valued Wiener process with
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where A is defined in (ii) .

We observe that while Qis diagonalized by t  iJ-I ' Q2 and Q3are

not.

Example 4.1.6 0'-valued Wiener processes arise in a natural way in the

dfollowing manner. Let A be a relatively compact subset of R dk 1.

Let W(t,x) te T, xe A be a two parameter sample continuous centered

Gaussian system of random variables such that

E(i(t,x)W(s,y)) - min(s,t)V(X,y) t, se IR + ,yA

where V is square integrable over A xA. Define for s, t c IR

W tmO f W(t,x)o(x)dx
A

* for * in a suitable class, 0-=S(IRd) for example. Then from Theorem 4.1.1

we have that {W tI tcR is a 0' -valued Wiener process such that for

s, t c IR and 0,~p

E(Wt(01W5 [flI) = min(s. t) Q (0, go)

where

Q(O,,P) - f f V(x~y)O(x)O(y9dxjdy.
AxA

is not necessarily diagonalized by the system {i )j which in the case

Of D= S(Rtd) is such that

4)d .Cx)O.(x)dx =0 for i j0 J.

Example 4.1.7 (Cylindrical Brownian motion) Let K be a Hilbert space,

(SIJF,P) a complete probability space and (Ft~~ be an increasing family

....................................
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of sub a-fields of F. A measurable mapping

Bt(k,w) = [0,-)xKxf Q -R

is called an Ft-cylindrical Brownian motion on K (Yor (1974)) (c.B.m.)

if it satisfies the following two conditions:

a) For each ke K, kA 0, Bt(k)/I kl K is a one dimensional Ft-Brownian

motion.

b) Bt(k) is linear in ke K.

Two well-known observations (Miyahara (1981)) are the following:

1) A c.B.m. (Bt) cannot be regarded as a process on K, i.e. it is not

a K-valued process; 2) if kI and k are orthogonal elements in K, then
1 2

{B.(k 1) } and (B .(k2) are independent.

Using the notation of Example 4.1.1 we now study the following case

2 A ^considered by Miyahara (1981). Let H =L ([0,1]), L= W, 61= v where A
0

2is the Laplacian (A= d/dx ) on H . Hence for j=l,2,... Xj= j and

0 3T-i ¢j=(x)/= cos(jx).

Then construct 0 as in Example 4.1.1. Miyahara (1981) considers a cylin-

drical Brownian motion Bt on H . Then {Bt ( ) : 4E 0 t O1 is a centered

Gaussian system of random variables such that for *, 0 c and s, tc I+

' EB t ( Bs( M min(s t) (,)

where Q(ip) = <(P.> , ii ¢. Then r2 = 0 and since

.(l+j)-2r <
j-1

for r>- then rl= 7 . Thus, applying Theorem 4.1.1 there exists a

2.... ...........
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V'-valued Wiener process Wt such that

w t  B, JOBt* a.s.

for t >O and Oc (P. Moreover, using Corollary 4.1.1 Wt has an H_ -valued

continuous version.

Note that in this particular example the continuous positive definite

bilinear form Q on $Dx t is diagonalized by the eigenvector system {j l
j j2:V

Example 4.1.8 (Independent system of one dimensional Brownian motions

(Hitsuda and Watanabe (1978))). Let D be the countably Hilbert nuclear

space defined in Example 4.1.3, i.e. D= S(Z). Let {B(i)} t tO i> l be
t

a system of independent one dimensional Brownian motions on a complete

1 2probability space (S1,F,P). For OE D, *= ( 1,2 .) define

Wt[o] B i li

Then since

E( [ B~i) i)2 = t [ ( i)2 < t -

i=l i=l

we obtain that since <$,X>o =

i=l

E(Wt[ ]Ws[P]) = min(s,t) < ' >o"

Hence, using Theorem 4.1.1 Wt has a version which is a S(l)-valuedDt

Wiener process with c.p.d.b. form Q(.,.)= <0,0>0. Moreover, using Corol-

lary 4.1.1 Wt has an H -valued continuous version.
t--

Example 4.1.9 (Finite dimensional case). Suppose $ is finite dimension-
al, then 1= H = 01 = IRm say. Then Wt= (W(I),...,W ) t2!, where each

W~i) is a Gaussian process with independent increments and
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E(W(i)W(J)) r. min(s,t)
t s iJ

m
where R= (r)ij is an mxm positive definite matrix. Then if *= X 4Jej,

j=1

e.= (0,...,l,.•.,0) *g JR j=l,...,m

m mQ(4,,,) -- [ 1J.
i=l j=l

Stochastic processes of this type have been considered in Chapter III.

4.2 Stochastic integrals

Throughout this section we will assume that (Wt) t>0 is a '-valued
t

Wiener process with a c.p.d.b. form Q on Ox 0, defined on a complete prob-

ability space (Q,F,P), and that for each t>0 Ft= Ft=o(Ws 05<s!t),

with F containing all P-null sets of F. Also we make Assumptions 4.1.1
0

and 4.1.2 of Section 4.1. We recall that from Theorem 4.1.1 (Wt) t> O has

an Hq continuous version for q> r 1 + r2.

Stochastic integrals with respect to S( d) '-valued Wiener processes

and E'-valued (E is a CHNS) processes have been discussed in Ito (1978a)

and Mitoma (1981b) respectively. They propose to use the theory of sto-

chastic integration on Hilbert spaces, as presented for example in Kunita

(1970) or Kuo (1975), to construct stochastic integrals for the H-q valued

Wiener process (W t) t2 0. Here we construct "weak" stochastic integrals

similar to the case of a cylindrical Brownian motion as presented in Yor

(1974). However, we do not work with a cylindrical Brownian motion but

rather with an Hq -valued Wiener process. Secondly, if {ek}k>l is any

CONS in Hq, then {Wt[ek]}k_>l is not necessarily a system of independent

random variables (see Corollary 4.1.2), as it would be required in the

case of a cylindrical Brownian motion (see Example 4.1.7). Moreover, we

do not assume that the common orthogonal system in H r 0 {4 - (the

r j~

.... ..... . . . . . . -- -m fnim l |
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eigenvectors of the infinitesimal generator L) diagonalizes the c.p.d.b.

form Q. The case when Q(0,) ,> and then {j}2 diagonalizes Q, has

been considered by Daletskii (1967) and Miyahara (1981) (see Example 4.1.7).

Nevertherless, the nuclearity of the space (,1111 '' r-O) enables us to con-r

struct "weak" integrals even when {W J ]}I  is not an independent system

of random variables.

We present real valued (Section 4.2.1) and '-valued (Section 4.2.2)

stochastic integrals with respect to W . They will be useful in Chapter V- t

in studying real valued and V'-valued nonlinear functionals of W. We make

extensive use of the c.p.d.b. form Q on (x 0 and its associated Rigged Hil-

bert Space (see (4.1.20)). This is motivated from Definition 4.1.2 which

2
suggests that L (IR + 0 H should play the role of the Reproducing Kernel

Hilbert space, a concept that has been useful in studying nonlinear func-

tionals of Gaussian processes (see Chapter VI of Kallianpur (1980)).

4.2.1 Stochastic integrals for D-valued random integrands (Real valued

stochastic integrals)

The aim of this section is to define stochastic integrals for -val-

ued non-anticipative functions.

Definition 4.2.1 Let K be a real separable Hilbert space. A function

f: [0,o) x Q K is said to belong to the class M(W,K) if f is an F t-adapted

measurable (non-anticipative) function on IR x Q to K such that for each

t> 0

"" t

:i(4.2.1) f Ell f (s)I 11.d

0

The special classes we will be concerned with are Mq= M(W,Hq),
q q

qa -r I + r 2 and Q = Q(W,H ).

[ii . :-.i: i $ ::. ::" : :: : : . " .:~i. :. :. : ""i'''": ' '::'1 2 'Q "Q : :""•+. ':_::" ":'';. :.": ." " :: ::
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Stochastic integrals for elements in M q2:r r1 + r 2

Definition 4.2.2 Let q:r 1 +r 2. For ge M qand t> 0 define the stochastic

integral t<g 3,dW > aso s sq

t O

(4.2.2) f <g 8dW a> q= I f <g ,ei> qdW a e]
s0s i-la o q

where {e I is a CONS for H and the integrals on the right hand side of

(4.2.2) are Ito integrals.

Proposition 4.2.1 Let gE M q r1+r 2. Then the integral (4.2.2) is

a well defined element in L 2(Qj,F,P). If q,2trl+ r2 and ge M q1then this

integral is independent of q and q V Moreover the following properties

are satisfied for f. ge M q

a) For a, bc]R and t>O

t t t

f <af +bg dW q> a f<f5 .dW >q+b f <gsldW > a.s.

t

b) E( f <g sdW>s ) q 0 t>O0.

c) :E( fl<g ,dW > ~2f ,dW > E f Q~ ,g)ds t >O0, t >O0.
0 s sq 0 s s q 0 s 1 2

d) E(f <f 8 dW 8> q) f Q(f s d 5Ef 11 f5~ s 1qd
sq 00

t

Proof We first prove that for t> 0 f <gsgdW > is a well defined ele-

2 0 s
ment in L (SI,FW,P). Let {e I be any CONS for H q~tr + r Then for12:1 q 1 2*

each t> 0

g(t,w) <g X ~(w),ej>q e j

and for n, mk 1, using Lemma 4.1.2

......%*. .** ..
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n t
E( I f <gs,e > dWs[e

J-m jq s

n n t t
I I E( f <gs,e > dW[ej] f <g,e> dWs[ek])

J-m k-m 0 o

n n t
I I. E f <gs,e j> q<gs,e k >q Q(ej e k )dS.

J-m k-m o

Then since Q is a bilinear form, using (4.1.21) we obtain

n t 2
(4.2.3) E( I f <gs,e >q dW [ej])

Jfim q

t n n
=E f Q( I <g,e> J <g ,e> e )ds

0 imD i'
t n1 2

0 E 11 1 <g ,e> e1 1 ds2 o Serjq nj q

""t n

= 2 E f ( <g se >2q)ds (ej's are orthonormal)

-' 0 as n,m since ge M
q

Thus <gs,dW > is an element of L2 (Q,FW,P) defined as the L2 (R)-

limit of the Cauchy sequence {In  ft <g ,e> dW [e nl
J1o a j q s j n:1*

The next argument will also show that (4.2.2) is independent of the

CONS {e ij> 1 in H Let qlrl+r2 qlq and {iPIjJ2 be a CONS for Hq.

Then "r I Jq , H cH cH and by Theorem 4.1.1, Wt has
2 q ql q r2

an H -valued continuous version. Hence using Lemma 4.1.2, if g M n M
, •- q1  q q

n t n t 2
E( I f <gs,e > dW [ejl- I f <ga'* > dW [* 1) -

1=1 0 q s ijla 0 iq

t n n n n
E( fQ( J <gse > e 1<g ' 

4 > J , J l<gs ,ej > ej - l<gS,,P > I) ds)
01-1 8 iq J_ 8s qj s q q,

t n n 2!5 02 E f II I <gs,4 > -JI <gs,ej> ej ds

2 jol s'iqi > q jq

%ds

:: J . . . . . . . . . . . .
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+ 0 as n-o by dominated convergence theorem since

n n

2(11 1 <g ,ji> -
2 + 11 e <ge >qe 2

j, sJ q q q SJq q
n 2 n

i:: "  s2(11 1 <gsg* >q 1P[ -1 11 <gs,e>qe[ 12)ii j q i -s j qj q

J.1 q1  jil

< 2(1 g 2 + 1I g 11 2) all n> 1.
.o q

Hence the integral (4.2.2) is independent of q and ql.

The proof of (a) follows by the linearity property of the ordinary

Ito integral and the proof of (b) follows since for each i > 1

E(fo <fsaej>qdWa[ej]) - 0. The proof of (c) follows by using Lemma 4.1.2:

t t

E( f <gsdWs>q f 2 <f ,dWs>q ) -o q

00 0 tI  t2

I E( f <gs,e > qdW s[e f <fspek>qdWa[ek]) -

J-l k-l o q

o l2<g ej > <g, ek>q Q ee)d

J-1 k-l o
t At

E l Q (f s)dS tlt 2 > 0.

0

Finally (d) is obtained by (c) and (4.1.21).
Q.E.D.

Proposition 4.2.2 Let fe M for q>rl+ r. Then the real valued process
q

{ft<fsdW > is an F -martingale with associated increasing process
a sq t t

t

(4.2.4) E f Q(f ,f )ds
0

For te T- [0,T 0, To> 0, it is a square integrable martingale with

5... 0-. ....... ::::. 0 . .. .. .. - : ::: : . . : : : : .: .:... : : ... ....... ::

:.. ., .-,. - , ,".Q,.'-...........................-.".."..........."...:'*.".,-:'*'.'5.5....'* .:.*..,'$...*-. . ..-. _.,-
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a continuous modification.

Proof For t tO and {e 1,,1 a CONS for H q;> r+r let

ii~ q 1 2

CO t
Yt J11 f <fsej>q dWs[ej ]

and for n;> 1write Y in f t<fe > dW [e

In the proof of Proposition 4.2.1 we have shown that for each t> 0

Yt Y in mean square. Next since for each i> 1 fot<fs ei>q dWs[ei] is an

It6 integral, then for each n> 1

E. E(YnIF s  Yn a.s. s< t

and
E(Yn- E(Y JF 2 E(E(Y IF) _ E(YtIF)) 2

8 ts8 tsa

= (E(Y nY )IF 2 5E(E(Yn Y 2 I - E(Y Y-)2 0.t t 5 nt5t

Thus for s< t E(YtIF s) - Y a.s. and from Proposition 4.2.1(c) for

tE T - [0,T 0, (Yt tT is a square integrable martingale with increasing
0 tE

process EftQ(fsf )ds.

Next since each Yn has a continuous modification, then for each n,m> 1
t

n [Y -tmI is a continuous non-negative submartingale and by Doob's inequality

,.''.E[sup 1 ~n . Ym1 2 - m2•""teT t 4E jYo0-YTo' 0 as n~

k Hence there exists a subsequence {Y I that converges uniformly a.s. on T

t t
E to a continuous version of Y00

,: Q.E.D.

D~Corollary 4.2.1 For q rl+ r2 let f: [O,o ) x +l H be a non-anticipative
• ' qH -valued process such that

q

t . ... . . . .. . . . .. . . . .. . . .
.........................................................................................

....................................... .. .. .. ...

Corollary 4~~~~.. .. .. .. ..1.................-x Hq e nn-ntciat
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2d<

(4.2.5) f Ell f(s)Iq d <
q

Define r<f dW > as the mean square limit of f t<fadW > as t * Then
0 saq 0 sq

this integral is well defined and has the properties (a)-(d) of Proposition

4.2.1 writing - instead of t. Moreover, for all t> 0

0t
E( f <fsdWs>qIFt f <fsadWs>q a.s.

0 0

and (f) <fadWs>q, Ft) is a square integrable martingale with increasing

process (4.2.4) and a continuous version on m+.

Proof First we observe that from (4.2.5) we obtain that fe M and there-
q

fore for each t> 0 the integral Y-ft <f ,dW > is well defined. Next by
t

(4.1.21) in Proposition 4.1.3 and (4.2.5)

f E(Q(f s,fs ))ds < -
0

and therefore from Proposition 4.2.4 (Y tF t)tO is a square integrable

martingale. Then Y - f<f dW > can be defined as the mean square limit

of Yt as t-)- and it is such that E(Y.IFt) - t a.s. for each t>O. The

continuous version of Y is obtained as in the proof of Proposition 4.2.2
Jt

•, ' by writing Y. instead of YT " Q.E.D.
0

We will see in Corollary 5.1.5 of Chapter V that the stochastic inte-

grals defined in the above corollary are dense in the space of real valued

nonlinear functionals of (W )
t ttoi

Stochastic integrals for elements in M For fc MQ a stochastic integral

of the form (4.2.1) cannot be defined since (W t) t2 0 is not an H Q-valued

process. However, we are still able to define a stochastic integral for

f M with the help of the following lemma.
Q

* - * * ** * * *.o...- .....

,'..''..''... .,'.'" ..-'..'-. x",.,," ,''.'v,.''..,',,'-., " ,' ,' ". ' x ,' ' ., ''.,' ',,",.,''. ",,' ,. ," ', " " "..",, -, , ." ."." -- "
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XLemuma 4.2.1 Let q:r + r2 and fU Then there exists a sequence1 2 Q
{f nI n in M q such that for each t> 0

f Eli f (s)-f n(s)Il Qds -- 0 as n-o-
0

Proof Recall that fe M Q implies that f is non-anticipative and that for

each t> 0

t

Next let {e i ;> be a CONS for H Qand let P nbe the orthogonal projector

onto the span of {elp,...e}n. For each t> 0 by monotone convergence

theorem
t2 00t2

fIEllf a Q dsI f E(<f 8eJ> )ds
0 j Mlo 0

and hence for each t> 0

f Ell P f -f S 21ds I E(<f 'e > Q)ds +0 as n*
0 j-n+i o

Next for all n 1 there exists a sequence (0 k)kl of non-anticipative

step processes with values in the range of P n(this is the finite dimension-

al case, see for example Lemma 4.3.2 in Strook and Varadhan (1979) or Lemma

1.1 in Ikeda and Watanabe (1981)) such that for each t> 0

f l k ds < k-1,2,....
0

Define the H -valued step process
Q

a~ MtMw - 8 (t)(w) 0!5t <c W n 2:1.
n n

Then for all t> 0

fElila (s) -f d !5 fs Ela()-Pf Q
n a nI nI ) Si Q1 d

........... 0 0

. . . . . . . . . . . . . .. . . . . . . . . . -. . . . . . . . . . ..t
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t t 2

S+ Ell P ff II da5-+ E I Pf-fs ds 0 as n -
Sn a Q n n a Q

Thus we have shown that if fc MQ, for all e>O there exists an H -

valued step process a(t,w) such that for each t> 0
i ~t 2 d /

(4.2.6) f Ell a(s)-f(s)IIQ ds < c14
0

where

a(s,W) - a (t ) a.s. t < < tJ+ 1  J =,...,n-1

,= ( t ) a.s. s2 t- t a
n

where 0- to < t1 <. . . < t <- and each a takes values in a finite dimension-

1 2al subspace B of HQ, it is F -measurable and Ell < for Jinl....n.
t Q

Next for each J=,...,n let {e,...,ej  be an orthogonal basis for B.

Since Hq is dense in HQ we can choose £+!,..,IJk such that 4e Hq and

1P 2
k IZ Q A 2k (tJ+ -t )Ell at II Q

Each a can be written as

ac M t - a(w) eJ)+. + aJ M e j
a 1( 1 k k

where

Ell 11 2 - E ((ai) 2+...+(ai 2) < O
j i Q k

Define

a* a~w)4..+ j mgj

then k". kj

Ell t* 112 E((a) 2+...+(a )2 < o
tq 1 kq

and
2 1j aJ_*Jl

Ell at t Q Ell a i i Q

j -

.' ,.',.. ' , " .*. ,w' ',. ., ' ,.'."+'.' '.'.' ... ,.' '.<'. . .', . .,... ... '. ... ,,. ..'. ..'..,,'.'.., ... .- '- .
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k ~k
:5 {E( (a j2)} M i Ie'*- ~ 2} < -t

Finally define

Iti j j+1

ct* (W) S> t
nn

which is an element of M Then for each fe M and c> 0 there exists

ac ~M such that for each t>O0
q

f Ellct*(t) -ftIQ dt < e
0

and the existence of the required sequence follows.
Q.E.D.

Definition 4.2.3 Let fc MQ, then from Lemma 4.2.1 there exists a sequence

of untins{fn In2- il q fr q:r 1 +r 2 ' such that for each t> 0

f Eli f(s)- f n~) ds -~ 0 as n-,--
0

Then by Proposition 4.2.1 for each t> 0

(sd >2 t l 2
E( f <f n (s)tm (s Ws >q f Elfn()fms1 ds 4~0 n,m 4

t 2
Define for each t> 0 the stochastic integral f dW as the L (Sl)-

limit of the Cauchy sequence f ft<f n(s),dW s> q } .21 This integral satisfies

(a)-(d) of Proposition 4.2.1 and Proposition 4.2.2 for elements in U.If
Q

in addition f is such that

(4.2.8) f Eli f 112 ds <
sQ

0~~%. . :
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then the stochastic integral fo<fdW > is defined (as in Corollary 4.2.1)
bsQ

as the mean square limit of f t<fsdW>Q as t -0

The main properties of the above integral are sumarized in the

next corollary.

Corollary 4.2.2 Let f, gc M . Then

Q*

a) If a, be R and t>O

t t t
f <afs+bg,dWs>Q . a f <f sdWs>Q + b f <gs8dWs>Q a.s..
0 0 0

t
b) E( f <fs,dW>) 0 all t> 0.

d 2 At2<f g
c) E( f <f sdWs>Q f <9sdW>) E f < S>Qds tl,t2 >

0.

o 0 0

d) E( J<fsdWs>Q) = E f1 fs2 Q
0 s Q0 Q

2 t
e) I- do < - then{ f <fs dWs>QIF

0 0

is a square integrable martingale with corresponding increasing pro-

cess
t 2
j Ell f 12 ds

s Q0

and a continuous modification on I+. Moreover, for t> 0

S0o t

E( f <fsdW>Q IF0  f <f ,dW > a.s.
o 8 SQS0 0

and

r2 2E( f <fsdWs>Q) E f I jl ds.
0 0

The proof follows by the above definition, Propositions 4.2.1 and 4.2.2

and Corollary 4.2.1.

.~~ ....... .. .. ....

7.-
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4.2.2 Stochastic integrals for operator valued processes (W'-valued

stochastic integrals)

Let L(O',O') denote the class of continuous linear operators from

.' to '. In this section we study the stochastic integrals of L(O' ,V)-

valued non-anticipative processes with respect to a V'-valued Wiener

process with c.p.d.b. form Q on Ox D.

Definition 4.2.4 A function f:[0,)x Q+L(',V') is said to belong to

the class 0Q(0',') if f is an Ft-adapted measurable (non-anticipative)

function on [0,-)x Q to L($',V') such that for each t> 0

t
(4.2.9) E f Q(f*(O),f*(O)) ds < V *E 0

0

where f*: 0-+ is the adjoint of fs i.e. f* is defined by the relation

f(W)[fl -- W,[*M] IE V', C 0.

Lemma 4.2.2 Let fE 0Q( ','). Then for each t> 0 there exists
Q

qt,f-rl + r 2 such that

|t t
E f 1151 1 f 22c ,H dS E f f 112 ds < o
0qf Q 0 f2(HQHq )

where o2 (Hq HQ) denotes the Hilbert space of Hilbert-Schmidt operators

from H to Hqt,f Q

Proof For each t> 0 and 0, P let

t

(4.2.10) V(4) - E f Q(f*(b),f*(,))ds.
0

Then since fE 0Q(0',') for each t>0

(4.2.11) V( ) < V ¥ $.

................ " ............................................
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We first show that for t>O0 V ( M is a continuous function on 0. Let

* ~in 0, then since f*,E L(0,0) and Q is 0-continuous, using Fatou's lem-n a

ma we have that

t if
V (4m f urn, infQ f*( ),f*(O ))dsl
t 0s n s n

I dim i nfE f Q~*( -,*( ))s) l inf V~ 0~

which shows that V tis a lover semicontinuous function on t'. Applying the

triangle inequality we obtain that for c, 'PD4 V 01N-)0 (0)-IM-+V (P) and
t t t

clearly Vt(ao)um jai V t (0) for ac 1R. Then by Lemma 4.1.1 V t (0) is a contin-

uous function on 4' and there exist V >j- 0 and e > 0 such that

(4.2.12) 2 (0 56If1 il22

Next let 4~ 1 and IX } be as in Assumption 4.1.1. Choose

q 2t rf + r and write 0 . (l+X ) tP:1 i 1. Then is a

CONS for H and using (4.2.10) and (4.2.12) we have that
q fj

t 000 t

E f( I QW*(0 ),f"0 )))ds I E f Q(f( ) f*(O ))ds
ojil si sj o- 0' 8

2- -- E) 2112 =E)2  (+ -2( tf-rt.f)

ej < 00. Thus for each t>O0

(4.213) E fi f~l 2de E f( I Q(f*(0 )If*(~ )))ds<

Proposition 4.2.3 Let fcO0 ($',4). Then for each t>O0 there exists

a 4"-valued element Y Mf such that
t
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t
(4.2.14) Y~ (f) [0] -f <f*(cO),dW > a. s. V 4E 0t~ s Q

where the RHS of (4.2.14) is the stochastic integral of Definition 4.2.3.

Moreover, for each T > 0 there exists a positive integer q such that
0 To

0
Y t(f)E H-qT a.s. for 0:5t:5To. Y t(f) is called the $'-valued stochastic

integral of f v.r.t. W and is denoted by

t

) = f) f f sdW
0

t
Proof We first note that for each t> 0 and *E 0 f <f*( ),dW > is defined

0 s s Q

in the sense of Definition 4.2.3 since f*(O) is non-anticipative and
S

t

5 .8

0

Using the notation of the proof of Lemma 4.2.2, define

Y=f[ f <f*($ ),dw > j 1.t is j s Q
0

Then by Corollary 4.2.2 (d), (4.2.10) and (4.2.12)

e ~2 2e 2
t t Ju .rf t 1

Thus X(Y t(f)[0 1) 2 < a.s.. Let
J=l

S {W: (Y (f~ ](w)) 2< ~~} then P(Q) 1.

Let i }Ji be the CONS for H - jdual to { J,,I and define
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(4.2.15) ()M

Then for each t>O0 Y MfecH a.s. for qt f~trf + r and therefore

tt

It remains to prove that Ytsatisfies (4.2.14). Let t> 0 and 1,e 0,

then o cH and
t f

n
Ji I jr )~<~ > q , (limit in H q

n

and therefore t j I -$)o >0 as n-*'

which implies from (4.2.10) that

t n nx

(4.2.16) E f <'*'jIqColo f* ( <ij>q ))ds -*0

0 8J-m jqtjf 1 9Jrn j tjf1

as n,m-c

On the other hand, since <01[$ <)j>q then

ytMM = 1o 1 1=1 t 1c >

j I Iyt ; >q tja.s.

n

Thus if g~ (S) -f*( I <~~>q

t

-lim f <g (s),dW >Q a.s.
y t(f(o -n 4l 0 no

and from (4.2.16) and Definition 4.2.3

t t 2
f <g ()dWQ -*f <f*(o),dW > in L 01) .
0 0

t

Thus for each t>O0 Y (f)[o] -,f <f*(o),dW > a.s. V oE 0. From now on
t s sQ



142

we write Y (fM instead of Y (f).

Q.E.D.

t
The $'-valued stochastic integral Y~ Mf f f dW has the following

0

properties.

Proposition 4.2.4 Let fge0 ((D v~)

a) If a,bE IR then for each t>O0

Y (af+bg) = aY (f)+ bY (g) a.s.
t t t

b) E(Y (f)[fl) =0 V 4) t >0.
t

t

c) E(Y (f)[01Y (f)[flp) = E f Q(f*( ),f*(WP))ds V 4,4IE (D.
t t 0 5

d) EIIYt(f)Ilq E Ef I I f 5I~H 1ds < Vt> 0.

e) (Y t (f),F )t- is a V'-valued martingale. If T [0,T 0 , T 0>0 then

(Y (f),F ) is a 4'-valued square integrable martingale with an
t t tET

H continuous version for some qT> 0.

00

Proof (a), (b) and (c) follow from Proposition 4.2.3 and Corollary 4.2.2.

To prove (d) let {~=(1+iX tf be a CONS for H .Then using

monotone convergence theorem, (4.1.8), (4.2.14) and (c) above we have that

-2 q t2 qf 2
E lX Ml E(f I (l-I-X1) > E f Q(f*,(lX, -q*4~)

t -q q 1

00 II 2q 12  2d ((+ -2 tj t
I(+ ( ,H 1) 1 (+ is a ON for0 H )
o. 2 J.1 Q j s ~

................. ... ... .... ... ... ...
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-fIIf 512 ds<~ (by Leumma 4.2.2).
E f lf 7 a(HQ9H_.q

e) Let V t( ) be as in (4.2.10). Then for each *e 4 V t(O) is a non-de-

creasing function of t. Hence from (4.2.12) there exist e > 0 and
0

r T J > 0 such that for Oc i
0

e 0 5a2  f1111 V t E T - [0,T ] T > 0.
t T 3

0 Top 0

Then for each te T Y t(f)E H -q a.s. for q ,f 2 rT f+ r 1 (see proof

0

of Proposition 4.2.3). Then using (4.2.14), from Corollary 4.2.2 we have

that for each Oc 0 (Y t(f)[~]f)jdt is a martingale, i.e. (Y t(f),F )t

is a V'-valued martingale. Moreover, it is a square integrable martingale

in T- [0,T ]with associated increasing process
0

t

EJf Q(f*(O),f*(O))ds.
0

Next, using the notation as in the proof of Proposition 4.2.3

X f Y t(f)[_jI 1P as.

Therefore, from (4.2.14) and Corollary 4.2.2 for each J2:1 Y t(f)II0 I
has a continuous version on T= [0,T 0] and therefore for each na 1

n

is an H -q -valued martingale with a continuous version. Then using the

0

usual argument, since IImnwt) M (t)IIqTf is a continuous non-negative

submartingale, by Doob's inequality0

E( sup M (t)-M (t)I 2 !5~ 4 E JIM (T )M(T)L q
tET n m ef n M T0f

0 0
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-4E Y T (f)[1  I 2 q 4E( SU Y T (f) [01 4 1 $j
jun oaof q TII 1j-n o

4 E E(Y~ (f: 2V (
jun T V mnT 0 j

m -2 (q~ T r T) f 2
T54 2f XI +X1  0 0 0' jn ,~x)1-

as n,m Go

Therefore, there exists a subsequence M (t) that converges on T- (0,T]

uniformly to an H -continuous version of Y ()

0 Q.E.D.

We now extend the definition of Y (-) to functions which are integrable
t

in [0,r) x £. Lemma 4.2.2 and Proposition 4.2.4 (d) suggest that it is

enough to construct stochastic integrals for functions arf the form

f: [O,o) x 0 - a o2 (H Q H )for r> 0 as we now do.

Let r> 0. A function f: [O,w) x £2 - a 2 (HqHr ) is said to belong to

the class O(H QHr) if f is an F t-adapted measurable function on m x R2 to

a H ) such that

(4.2.17) f EjJ f s a (HH_ ds <

Proposition 4.2.5 Let r *r 1+ r 2and fE O(lH ).~ Then there exists an

H r-valued element Y(f), called the stochastic integral for elements in

O(H ,H), such that

00

where the RHS is the stochastic integral of Definition 4.2.3. We denote

this integral by

.. . . .. . . .. . .f
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0

It has the following properties: If f,ge O(H QSH)

a) For a, b emI Y (af+bg) -aY (f )+bY (g) a. s..

b) E(Y(f)[fl) =0 Vce H r

c) E(Y(f)[O]Y(g)[*]) - E f Q(f*CO),g*(iff)ds 0, cPHi.
0

d) Ell Y(f) 112  -E f lif 11 2 da < c
-r 0 a o2(HQPH~r

tw

e) If Y (f) f f(s)dW., then (Y (f).IFW) t2:0 is a $'-valued square
t 0 t t

integrable martingale with an H -rcontinuous version.

Proof Taking r = rtf and r- qf all t2:0 as in the proof of Proposition

4.2.3 one shows that for each t>O0 the stochastic integral Y t(f) H-r a.s.

and it is such that

t

Y mm(0 - <f*(O),dW > a.s. V *,E H
t 8 s Q r

0

Then using Proposition 4.2.4 (d) and (4.2.17)

Ell Y t-Yt -r= rE f 11f Silo HIH_ ) ds -1, 0 as t>to
t 2 Q r

Therefore there exists Y(f)- YOO(f) with the required property (4.2.18).

From (4.2.18) and Corollary 4.2.9 (a), (b) and (c) are proved. The

proofs of (d) and (e) are similar to the proofs of (d) and (e) in Proposi-

tion 4.2.4 writing r2 r T 0 and r= q T J .ED



."

CHAPTER V

MULTIPLE WIENER INTEGRALS FOR A NUCLEAR

SPACE VALUED WIENER PROCESS

In this chapter we construct real valued (Section 5.1.1) and

4'-valued (Section 5.2.1) multiple Wiener integrals with respect to a

.'-valued Wiener process (W t)tl with a continuous positive definite bi-
linear form Q on 0 xO, where is the countably Hilbert Nuclear space of+

Section 4.1.1. We consider multiple Wiener integral expansions and sto-

chastic integral representations for real valued (Section 5.1.2) and

•'-valued (Section 5.2.2) nonlinear functionals of W. The Wiener decom-

position of the space of 4'-valued nonlinear functionals is obtained

(Theorem 5.2.2) as well as representation theorems for real valued (The-

orem 5.1.2) and 0'-valued (Theorem 5.2.4) square integrable martingales.

Throughout the chapter we will assume that (0,F,P) is a complete prob-

ability space on which there is defined a 0'-valued Wiener process (Wt)tR

witha c.p.d.b. formQ on -xOand for t_> O, Ft = Ft = G(W s:O:s !t) with

Fo containing all P-null sets of F. Also we assume that O1, rI, { j
1 J>_l

{X H -o<r<o, and 02 r2  are as in Assumptions 4.1.1 and 4.1.2.i ' r 2 ' 2

5.1 Real valued multiple Wiener integrals

For n> 1 let 0 denote the n-fold tensor product of * (see Section

4.1.1). The aim of this section is to construct real valued multiple
"on

Wiener integrals for 0 -valued functions (Subsection 5.1.1) and then

... ....... .. ""12 "- . - ... - . - ..., ,,-, ... .-.-. ... . . . . . . ... .. . .., . .. . .. . . . .
.. -. .- : .. ... . .. ... . ... .. - .- - . .. . -. . ..... . . . .. .. .. .. ... .... ... . .... . ....- .- . .. . .. ..
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use them to study real valued nonlinear functionals of W (Subsection 5.1.2).

5.1.1 Multiple Wiener integrals for 0 -valued functions

Throughout this subsection we will assume, unless otherwise

stated, that n > 1 and T = [0,T 01, To> 0 are fixed but arbitrary. De-

note by LQ(T4 0 n) the class of Oft-valued measurable functions f on

Tn such that

on
(5.1.1) fTn Q n(t),f(t))dt < t (t,...,t

Tn nnOnt

where Qon is the c.p.d.b. form on 0n x e n which is the nth tensor product

of Q (see Section 4.1.1).

We shall define multiple Wiener integrals for elements in the class

A useful concept in the theory of finite dimensional multiple Wiener

integrals is that of symmetric real valued functions on T" (see Theorem

2.3.3 and (2.3.10) and (2.3.11)). We now introduce the analogous concept

of symmetrization of 0 -valued and Ken-valued multivariate functions,

where K is a separable real Hilbert space with inner product <'">K and

norm IIIK"

Definition 5.1.1. Let n2:1 and f:IRn +Ken. Denote by f the symmetriza-

tion of f defined by

- 1(5.C. 1.2) C = 1T fn

f" f

where the sum is taken over all permutations R1= (ll(l),...,fI(n)) of

(1,...,n) and

2o.
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= f<f(t .11( t .,(, ,ej *...e. > *n

J l n= ( Kn

e. *...o. I
J1 n

for {e a CONS of K.

Proposition 5.1.1. Let (Ki, <',.> ) be another separable Hilbert space

such that K c K. Then f11 t_) is well defined for all permutations

1= (1(1),...,JI(n)) and therefore independent of the CONS ei} 1  in K.

Before giving the proof of the above proposition we shall define the

symmetrization of a 4tn-function.

Corollary 5.1.1. Let n2 1 and f:IR n -on . Then the symmetrization f of f+

defined as the symmetrization of f on any of the Hilbert spaces H
n r> 1*' r

is well defined.

on OD an on o

The proof of the corollary follows since n= n H , H r H n for
r=l s

s> r and by using Proposition S.1.1.

Proof of Proposition 5.1.1 Suppose Kc K and let {i l and {e}i> I

be CONS for K1 and K respectively and assume that for each te IR + f(t)
1n +

is Kon and K n-valued. Then

K

f<f ti) ,. ...® e. > e. ... e.:-~~~~~ I11..J~ n()J(n) Kfn  31 n

and

f 11  (t) 9= < f JI 0. 2I""n >K on * .. 1 9 0
n K1Thu1f 1 (t)_zV = 1 V <ti 1,{<f (t1)® . . ej >,) ... 0 1' "e 3 T(n

Se. ... ... n

."'" <£ £gRII( 1) 11 0 £(n) eJ( i) ®..ej (n) K en~b ®""I L ®bn "
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But for all permutations 11

<11(1) "  11(n) ej ,(1)S ". e3 1(n) >K 1  1 n

e. K.. n

1
then

K1
f ft <ft , e. .e e.l..j=1 1 (1) J(n) K n

0 +

I<e. *... Ge i'*110..l n> K 11 *

l n

Pro po it o <f5.1.j2. et [ T), e cl o r... e . Kn e ...(T =  f t

"(Sf)"")n= 1 fJt)n) J1 nf-

The above argument proves that fet is independent of the CONS in K.

• Q.E.D.

may be ide T wiTh> 0 or T= IR we denote by L2 (T n  K n ) the Hilbert

space of K -valued measurable functions on t such that

2 dt <

• Proposition 5.1.2. Let T= [0,To0], To0> 0 or T= IR +.Frf ( " e

i (-Sf) frt. = 1t) = nl __

,." L2 C n  Kon. Then S is an orthogonal projection operator on L whose range $

i may be identified with the n-fold symmetric tensor product space (L2CT)eK) n

Proof. It is known (Reed and Simon (1980)) that L (e+~) = L 2 =e O

(L (T)OK) n . Then it is enough to consider functions of the form

. ~ ft) = f~tl,...,t n )  f (tl)'"."f . (tn)e.l' "® e

"- - 1 in

.where {fi.)i.l and e. i are CONS for L ( and K respectively. Then since
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for all

e. 1 ..(1e >i e.@.))..fs(te1n I f e1 .. 9

e 11~l) i 1 (n) >k en ej lo .S..e.,

f (t ) fe ( ) e e fs . t

11(1 11(n) n 11(n)e1 )

is an element of (L 2(T)OK)en

Next for each permutation 11, from (5.1.3) it is seen that the operator

(V = is linear with adjoint equal to its inverse. Then

n! IT n! Tl

Also from (5.1.3) we have that for each permutation 11

fl ! * j I ... j = 1 *(1) Klo jfin

where the first sum is taken over all permutations 11* of 11. Then for all

permutations HI of (1,...,n) (Pf)11 (Pf) and hence

P 2(f) = P (P (f)) = 1 j Pf11  Pf.

Thus P is a projection operator whose range can be identified with the

symmetric tensor product space (L 2 T)e K)en
Q.E.D.

Corollary 5.1.2 Let T, K and f be as in the last proposition. Then

- K TK

The proof follows by using the fact that Pfuf is a projection operator
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on L2 (Tn -. Ken).

Remark Multiple Wiener integrals on a Hilbert space have been defined by

Miyahara (1981) for the case of a cylindrical Brownian motion on Ho . In

his case Q(.,.) = <-..> and the CONS {0j }p1 of eigenvectors of L diago-

nalizes Q (see Example 4.1.7). In our case we do not consider a cylindri-

cal Brownian motion but rather a 0*-valued Wiener process with an H con-
-q

tinuous version for q1 r 1 + r 2. Moreover, the c.p.d.b. form Q on Ox 0 is

not assumed to be diagonalized by (0.jl This leads to finite dimen-

sional multiple integrals with dependent integrators of the type studied

in Chapters II and III (see also Lemma 4.1.5).

In order to define real valued multiple Wiener integrals for elements

in LQCTn0 on) we shall first construct multiple integrals for H n-valued

.Q q

functions for q> r 1 + r2 (as in the case of stochastic integrals in Chap-

ter IV) and then apply density arguments to define them on the spaces

LQ(Tn en) and L2 (Tn Hen)

Multiple Wiener integrals for elements in L 2(T nH )
q

Definition 5.1.2 Let n> 1 fixed and q> rl+ r 2 . For fe L2 Tn E n ) define

q

the real valued multiple Wiener integral of f with respect to the 0'-valued

Wiener process Wt by

00 n
(C5.1.4) nr(f) f_<f(t),e. . .. e. > d a W[e. ](t)

where {e.}. is a CONS for H and each multiple integral in the RHS of
ii2: q

(5.1.4) is an integral with respect to the symmetric tensor product mea-
n

sure a W[e.] defined in Sections 2.3 and 3.1 (see also Lemma 4.1.5).
i= 1

Proposition 5.1.3 Let H be the linear (Hilbert) space of (Wt)tEI defined

.t . .



2S

in (4.1.25). Let n2:1, q?.r1 + r and f cL 2(Tn -1-H on Then the multiple
1 2 q

integral (S.1.4) is a well defined element in Han (the n-fold symmetric

tensor product of H) and of L 2 (,FW,P).

Proof Let fe I i~ibe a CONS for H q Then for each ill...,

f <f(t),e. a*... e> dt 5f_ I I ft(t) 12 dt<
Jflinq o n -Tnq

n
and by Lemma 4.1.5 and Theorem 2.3.2 <f(t),e . .. .Sej ft is * W[e. 1

q i=l 3

integrable and each integral in the RHS of (S.1.4) is an element in ,oDn.

Next by Theorem 2.3.3 (b)

(5.1.5) Ef<f(t),e. 6 . e nd a W[e.j (t)
9'~ ~ - l 3 q i=l -

S< <f(t),e. * ...SGe. Q e. ,e ) ... Q(e. ,e )dt
T 1 3nq On 31 ins in

- Qn Q(<f(t~),ejlG .. s nj*.. .Ge <f(t.) 1e~ ... *Se~qn

e. 0 .. .e. )dt

Then if {e.i= (l+A )-qo I}: is the CONS in H q by applying Cauchy-

Schwartz inequality and (5.1.5) above we have

(5.16) CI fGo -2(q-r) -2(q-r
(..) EIn,T (f))2 <1 ,2.

002r 2  2r

2 2,

E f j<f(t),O. e > end * W~e. 1(t))1

n1 q.n

!51 ~ ~ f~)~ 0 1fQn<(D00.G. > e .eS0 ..- e
1 n q Ol n , i

........ <............................. n ..*in)t
...............................................
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(Proposition 4.1.2)

nn to n 2r2  
2  2

1 2 &' i 1l " >n q
j1.Jnl~ i nq T 31 nq

o

1 2 <ft e. 1...Se >2 _ e . =l)1 Ol2 njl ... Jn~ - 1 inn~- ej1 .. en 11q

T q

Therefore E(In,T(f))2 < - and the multiple series (5.1.4) converges

in mean square. Then the linearity of I nT() follows.

The next step will also show that In,T(-) is independent of the choice

of the CONS in H
q

Let ql;-Irl+r2, q~ql and assume that f belongs to L nH q) and
Le %r 1 rqqqasl~.~ n

{liil is a CONS in H . Then using Lemma 4.1.5, the bilinearity of Qon

in H xHq and Corollary 5.1.2, we have that for all mal
q q

m n
(5.1.7) E( fn<f(t),e. *...Oe. >on d _ W[e.i](t)

T J" "n q i= i

d, W p.°(t)

mn
-°o Il lqnl

- <f(t),*. n. > d1 . .. ,,._ . .(t))
. ...Jin; 1  1n qn 1 =1

-" <fn (4" * p >m<f(t),e ...®e >. )ed ... eF iJn = ' 31 n qn i Jn

-- I n ql on l  i' ' n

q1  1

.. . .. . . .. ..... e. e. .....
Jl" ... n= I  nqi

- ft l''eJ>q je'eJ ) ) dr

.. =' B "" * ° . -" °' -
° .  

' - ' "".. • o' ' q 'Oo 
o  

"° " '- . % *- . " '% " " '" " " . .°" " .- . " * ' ,% - " 
% - " o '  

" •' ' . % ." -"j o n--° ".% ° " ." m 
°- '.,,-2 '-: : • . :"'Z ' : ""o ,. • .'" " • '-.. .n q , ' .- ".n . ' .... :. ''" '': , ''"v '-...-: -. ',
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,m
S<f(t)e. ... e > e. ... e.

- 2  11 E<f(t *.i.e ' ..jl 1

2 1 1 - jn j1 3T l j, ... n= 1 nq

"I <f (2 .J n 12

S 2f"ftf- .¢j I1f(o. I I alld

."j ...J n = l i n q q -

which goes to zero as m by dominated convergence theorem since

T <f(t ),e ... eea l p r a o...s e

th slolhe m l n=l 1 i ne for a rn

m <ft)¢ .. J~ j® I2
of.(951..Wenow pen te"mn q

nn 1n

r S 2(1 f(t)II 2n +1 1 a 2EE (T m k T f
q, q

oThen the proof of the proposition is complete. Q.E.D.

The multiple integral In,T() has several properties analogous to

*.:those of the multiple Wiener integral for a real valued Wiener process

of Ito (1951) We now present them.

d) IL 2EL(T n" H+ form nl.the

Proposition 5.1.4 Let n l, q :rl + r 2 and fE L )nHo Then if fde-

lq

.)- notes the symmetrization of f (Definition S.1.1).

a) I n,T( I In,T(f).

b) E(In,(f) ) 0 ." ~,T~f)

c) E(In (f)) 2= n1 2 < CO.

".d) If g EL 2 ( T m  FH q ) for m al, then

b.. .

E(I E nT (f)I m'T(g)) ff Snm n fg>L 2(Tn H on

Q Q

-. .....-. . . .. . ... ,(11 n II *l.* ) EI,~ )2=EI n =~ l l 2T ~ )L(nH

. . . . .. . .
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Proof a) Since for all j1 '''jn and te T

~ 1" O

(5.1.8) <f( ),ejl ...en> n=- .
nq'a V kl..n =1

{<f(t),e ... e > <e * ... e . ,e ... e >(I kfl(n)qn kfl( 1 ) k11(n j1 I nqn

= <f(t),ej ... . e >

"- JI JnqO

it follows from (5.1.4) that I n,T()= I n,T(f).

b) By Lemma 4.1.5, for each j .. n

n
ECSf<f(t)e. I... .e > d a W[e. ] (t)) =

and hence E(InT(f)) = 0.

d)

(5.1.9) E(I n,T f) Ia,T(g)) =  I k• j1.' "j n=1 k .. "k n 1
n 1 n=

n
{E(f n<f(t),ejl. ... e> d 9 W[e. 1(t)

Jn q i=l i

m

Tfn g - e k l ' "."®ek > On dW[ek ] (t))T n q i=l i

Then by Lemma 4.1.5 E(In,T(f)ImT(g)) = 0 if n m and if nfm

ne.T.. e d a Wfe. ](t)•
E(fn<f (_Dejl3 .. Ojn on j
T n q i=l ji

n
fn<g (t)-- ekl®'"..ekn >qo n d alW [e k](t_

T 1 nq i=l i

. .. .<f.(..) , e. ... e. > . . ... ..e)dtnt J/(1) J(n) qn J, in
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Therefore, using the continuity of on on He x HnQq q

E(I nT(f) Ifl() = fQT (f(t),g(t))dt

L 2(T- 4%)

and (d) is proved.

The proof of (e) follows from (d), (a) and Corollary S.1.2. The proof

of (c) follows from (d) and since for c o

q

oI'I <n 2t4 on ~ 1+r 2.
Q q Q.E.D.

2 n on
We will extend the definition of Ito functions in L (IR + ~H )

denoted by I and show (Corollary 5.1.4) that orthogonal series of In are

2 W
dense in L (Q,F ,P).

Multiple Wiener integrals for elements in L (Tn, H~n

Lemma 5.1.1 Let fE L 2(T nH o). Then for all q r 1 + r 2 there exists a

2n en 2n a

Proof Let fe L (T -H ) then given F->0 there exists an H -audse
0 Q

function g E:such that

(5.1.10) fn11 f(t) -(tC) o2 ndt /
T Q

where a C(t) = a 1a (t), a e H o, A.cEB(T n and m on(A )<~' i,.,
1 i. Q i i

some k, meOn denoting the Lebesgue measure on (Ti nB(T n)).

on onNext, since for q'ar + r2  H is dense in HI then there exist

b. eI i=l,...,k such that

................... .... . . .. . . .. . . .. . .
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" JJ~~~I ai - bi ll < ken(i

Qn 2km (A.)k1

C k 2 n en)
Define f (t) = i 1A (t), then fc L (T q )

and

fn II fe(t) - ge(t) 1l 2 dt < e/2T n- -- Q O n t --

Then from the last expression and (5.1.10)

' i.I(5.1.11) fn II f(t) - rE(9 {'Qn-2dt < E

and the existence of the required sequence follows.

Q.E.D.

Note that the above result holds if T= IR

Definition 5.1.3 By Propositions 5.1.3 and 5.1.4 we have that I defined
n,T

2 n -*H n 2 oO (nfc
in (5.1.4) is a bounded linear operator from L (Tn H n ) to L2(f2) (in fact

q

to Hon). Hence by Proposition 5.1.4 (e) and Lemma 5.1.1,1 n,T(.) has a

unique extension to L2 (Tn+Hen). We denote this extension by I and call
Q n,T

it the nth real valued multiple Wiener integral for elements in L
2 (Tn+ H o.

We summarize the main properties of In,T in the following lemma whose

proof follows by Proposition 5.1.3 and 5.1.4 and the above definition.

Lemma 5.1.2 Let fE L 2(Tn, o). Then if f denotes the symmetrization of

f on (see Definition 5.1.1)

a) In,T f n,T(f) H

b) E(In,T(f)) f 0.

c) If g L2 (TmH9m) for m> 1 then

E(Iln,T (f)Im,T(g)) = 6 n! Fn Q n(f(t),g(t))dt

d) E(I (f))2= nI f Qn(?(t)ff(t))dt< nI fo(f(t),f(t))dt.
n,T Q Tn

-. T
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The proof follows by Definition 5.1.3 and Propositions 5.1.3 and 5.1.4.

Iterated stochastic integrals We now define the real valued iterated sto-

2 n
chastic integral J (-) for elements in L (nR Hq ) q> rl+ r, and show its

relationship with the multiple Wiener integral I n,T(-) , T= [0,t] t2:0, of

Definition 5.1.2 for elements in L 2(Tn- H"). This connection will allow
q

us to extend the definition of InT(.) to functions in the space L2(Rn Hn)."." + q

2 n L2( n
In what follows L 2JR=L ( ,B(Rn), dt) where dt stands for the

Lebesgue measure on (IR ,B(]Rn)).

Let fk Ik l and lek} k1 be complete orthonormal sets for L (R+) and

H respectively where q> r1 + r2. Then (see Reed and Simon (1980))t q

(5.1.12) .ftf (tn)e *...Oe 1

n 1 n kl k,. n 1

2 IRn) on 2 Tnis a CONS for L (R )®H - L 2Tn H"n).
q q

For kl,...,k , 1 .  and n fixed, let

(5.1.13) f(t) = (f 1(tl)ek )6. .o(ff (tn)ekn) t (tI ..., t n )

and for t> 0 define

'il.Joft M f 1(tl)el

1 t 1 1

t
( .)= fm<J (f)t ,dW. > f (t )e 2:_m:n

m-1 tm o m-1 ti-1q m k m
- _. t

(5.1.15) J = f <Jn-l ftndW >
0 n n~

where the stochastic integrals of the RHS are in the sense of Definition

4.2.2. If f and g are two Hen-valued functions as in (5.1.13) define
q

Jn(f+g) = Jn + Jn(g). Then J is extended to the linear mani-
"-. .. . . . . . . . . . .

......................... ........................ .
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fold S generated by H O-valued functions of the form (5.1.13).
n q

Proposition 5.1.5 If fe S n then for each t> 0 1Jo (f) is well defined

and

E(J n(f)) 2 :5 f n il f(t) 1 2n dt:5 f nil f(st)I o n dt <
nI R Q JR q

Proof By the preceding paragraph to this proposition, it is enough to

prove the result for functions of the form (5.1.13). We first show that

for m= 1,...,n J m1 ~f belongs to M q(see Definitions 4.2.1 and 4.2.2).
mq

Using Fubini's theorem

n f ft (t i)e k11 2 dt i= f nil f.t,)e ek ...0Oft (tfl)e k an2 dt

2 2
- nfi)I11 n dt :5 f ni If~t)l1Io dt <

and therefore for each 1 f.m!5n

f~r Ii f~ )kl dt 1 **.dt < a.e. dt1 . .~**dt.n

Then J0 (f c 0n j(f) VdW > is given by Definition 4.2.2.

Therefore J (f) is H q-valued and from Propositions 4.2.1 and 4.2.2 it is

non-anticipative such that for each t 3 > 0

E f J(f) t 2 dt 2= f3 f IT 1 fit (t i)e kill Q dt 1dt 2 < 0.
o t 2 Q 2 0 oil i

Proceeding in the same way we have that for 2!5m< no Jm (f) tis H q-

valued, non-anticipative and

Er 11J (f)t 112 dt f1 f~ f TI lift (t )e kl dt dm<
0 ~ - m Q 0 0 0i=l Q t1 .

t
i.e., J - (F t e M qand hence the stochastic integral f<Jml,(f)tpdW t> q

........*...>j.* .c*. .. .. . **. :i9 0
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can be defined as in Definition 4.2.2. Thus for each t> 0 J (f) is well
n,t

defined and
t

E(Jnt(f))2  f E Jn-l (f ) t IIH =

0n Q

f fn.. 21 1 1 f X.(t i)e k 11 Q dr 1.. .dr

0 0 0 i=l i

J n1 f(u jl 2 du f nil f(o)nI 2 du
IR + -IR + q Q.E.D.

Definition 5.1.4 Since elements of the form (5.1.13) generate L2 (R on)
+ q

and from Proposition 5.1.5 for each t> 0 Jnt ( .) is a bounded linear trans-
2-- 2 n on

formation from Sn to L
2 (10,FW,P), then it can be extended to L (R+Hn).

This extension is also denoted by J and called the nth iterated

stochastic integral. Moreover, using Lemma 5.1.1 Jn(.) is also extended
n,t

toL2 (IRn- Han)
to L

We now present the relation between Jnt (. and IN .

Proposition 5.1.6 Let q r1 + r2 and n- 1. For any t> 0 let T= [O,t]

and In.T () be the multiple Wiener integral of Definition 5.1.2 for ele-

ments in L 2Tn. fen). Let fe L2 (nH ), then for each t> 0 if f is re-q + q
stricted to T= [O,t]

(5.1.16) I n,T(f) = In,T(1) = n! J n,t()

and
t

(5.1.17) I n,(f) = f <g(s),dW s>Q
nT"SQ

where ge MQ and the RHS of (5.1.17) is the stochastic integral of Defini-

tion 4.2.3. Moreover, E f'-I[g(s)II ds<

2
Proof Let {f }k l and {e be CONS for L (I +) and H respectively

°.......... . . . ..-.... ... °, -.... °. . - %%.°.%%-.. .,,°

, . ,.' . .... ". ' - ....... ,.... '. '.-.... ,., .. -. ' .-. ,. -.. ,.-... .. ,.,. . ' .. ., ,'-.,"..,.- ". ..
--''-'- '',.'- ''-'-..5---t ._-" " .. ". . .. "-'-' '-. , . . , . . . . . ".' " . . .. . . . .
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and f(t) be as in (5.1.3). Then from Definition 5.1.1

f(t) = X(f0  (tn)e ... Off (t )ek )
n I 1 Hi n n Hn

and since for each t> 0 Jnot(f) and In,T(f) are linear on f

Jn f)(-.=I- I_ ,.(f. (t,)e )G..Of (t H )e k )
nH n! 11 n t 11.1 I~ 11 1 "' 1 11n ln k Hn

and

But from (5.1.4) in Definition 5.1.2 and Lemma 2.3.1 we have that

for all permutations ]= (Jl'""*' 1 1n) of (1,...,n) and T= [O,t], t>0

I n,T((f9glCt 11 )ek 1)  " " (f t11 (tHn)ek 1 ))

1 nn
n

f Jnff (t 1 )...f£ (t11 ) dl W[ek (
T IT.1  1 -i nT f l 11j

=1 (f ~ GI.3 ~(f~
W[ek I i Wek 11

where IW[e(]Cft) is the isometric integral of fe w.r.t. the o.s.m. W[e,]

(see Lemma 4.1.5 and Theorem 2.1.1). Then from (5.1.18)

(5.1.19) In,T(f) = 1 )IW[ei il(f .. I ](f 0 n)

11 k Ill k in %

W1[e 91 W [ek 9

On the other hand, from the definition of Jnot and (4.2.2) in Defini-

tion 4.2.2, for all t>O

-. Wn ~ (t )ek  )a,... GCf (t )ekJ
not it H11 k 1  k 1n

t ill 1 1Tntn 1 [n ]

t t .1. tH
Sf( f ' [te).. ]...dWt Eek 3 "

1 o 1 n 11n

b- ' * .
. 

.- ' ° " . ° " -" . - '. . . 'o .- . , ,- " -° • ° - o .- . o. " ° " " • - . . °. - . . . " ° '. 2 '. , . ' , . . . . ° . ,.-° .. . o ... .

;.... .". '...:. .-,. .- ' '.-.--. . " ." ,'.-.-'. - ", ,. . :," , ."," ," , .".",, ."," , ," . ,"-"-. ,".",, ,"."-, -' , .- '

", , .-' ", . " -. .f. 4 9~ .., =," "n , - i -- , i m i i
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By the last expression, (5.1.19) and Theorem 3.3.3 it follows that if f

is as in (5.1.13) then for each t> 0 I n,T(f)= n! J n,t(M. *ext, since

for each t> 0 1n,T(.) and J n,t(-) are bounded linear operators from

2 (IRn Hn) to L2  , that agree (up to a constant n!) on a dense linear

q

manifold S of L 2(IRn -Ho), then (5.1.16) follows for all f in L2 (R ., ).
n q q

Now we shall prove (5.1.17). Let f be as in (5.1.13) and g(s,w) -

n! Jn-l(f)s(w) sc R +, wE Q. In the proof of Proposition 5.1.5 we have

shown that Jnl(f), defined in (5.1.14), belongs to Mq and moreover

E J ( 112 ds <C

Therefore g Mq E fo 21g~s)jI2 ds<o and from (5.1.15) and (5.1.16)

for each t> 0, T= [0,t]

t
I n,T(f) f <gsjdWs>q

0

The above result extends if f belongs to the linear manifold S
n

2 n e
Next, if fE L (IR n-Ho), there exists a sequence of functions

ff } in S such that f converges to f in L2 (R n-Ho). Then there
m_ Ml n M+ q

exists a sequence of functions {g InMal in Mq such that
oq

(5.1.20) E ff1 gm(s) 11ds < M

and for each t> 0

t
(5.1.21) 1n,t(f f f <gm (s),dWs q

0

Then by Proposition 4.2.1 (d) for each t> 0

2 t

E(In,T(fm-fk))
2 = E( f <gm(S)-gk(s)dW> )2

'° t

=E f 1gm(s) - gk(s)JQ ds
0Q

. . . . . . . . .

.-. . . .. . . . . .. . .- . . .. . . . . .. . . . . . .. . . . . . . . . . . - . - . - . . -
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On the other hand, by Proposition 5.1.4 (c), for each t> 0, T= ro,t]

(5.1.22) E(InT(f -fk)) 2 : nl!e0 IIfmfkIl 2 C fn

q

nI 02 II f mfkl1 22 n n0
ThenL 

(R + -H q m, k-

Then

sup E(In,T(fm -fk)) 2 +0 as m,k- -
0<5t<oo

and t 2
sup E f j1 m(s)-gk(s) Q ds -. 0 as m,k-

Ot<D o

Thus, using (5.1.20) and dominated convergence theorem

E f 11 g( 12 ds a: supE f 2 g(s)-gk cs) ds0- Ilms)-gk~s)ilQ •ft4 1g~s g~)1
So O~t<c" o

'+ 0 as m,k-

and then there exists an Hq-valued, Qx IR+ measurable function g, gc MQ

such that

E f1 gm(s) _g(s) 112 ds - 0 as m +io.

0Q

Thus by Definition 4.2.3, for each t> 0

t t2
E( f <g(s),dWs > Q - f <gm(s),dWs > q) 0 as m-*c

0 0

and by (5.1.21) since for each t> 0

E(In,T(f)- In,r(fm))2 - 0 as m-+-

then
t

I n,T (f) = f <g(s),dWs>Q  for each t>O.
.. QQ.E.D.

Corollary 5.1.3 Let fe L(IR n Ho). Then if H is the Gaussian space
+q

of Wt (see 4.1.25)),.

.. .ooo- . '. O , Oo .o . . o .o . . .. . . . . •. . . . . . .b o, o. - . . . . *.. *.** ***** o. • .

." .'- " ,,' ,". . ..' ~ . . " . ".. . . ~.' ,,. ",", .",, ", . -". ".".. , ", ..'' **,. ', ** " , * . " ".' . , , ,
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a) For each t>0 J (f) C Hn,t

b) (Jnt(f),F )tc]R is a square integrable martingale with a continuous

modification and increasing process

t
E f g(s) 11 ds=Ef 1 f (2) du T= [o,t]

0 TQ

for some function geM with E f 1I g(s)IIQ ds< •
Q. 0Q

The proof follows from the last proposition, Definition 4.2.3 and Proposi-

tion 4.2.2.

Remark Using Lemma 5.5.1 one can show that Propositions 5.1.6 abd Corol-

lary 5.1.3 hold if f belongs to L 2CIR n+ H ). However, we have left them
+ Q

the way they are to show the role played by the bilinear form Q and the

Hilbert space HQ.

Multiple Wiener integrals for elements in L2 (IR n -H o)+ *_

Definition 5.1.5 In Definition 5.1.2 we have given the multiple Wiener

integral InT(- for elements in the space L 2(Tn,-Hq) where q- rl+ r2 and

T= [Ot] t> 0 is a finite interval of the real line. Now let

2 n
fe L (IR - f n) and I (f) be the multiple integral of f restricted tof + q nTj

L2 (Tn+Hn). Proposition 5.1.16 shows that for all t>0, n(f)

q ,

n! Jn,t(f) and from Corollary 5.1.3 we are able to define Jn, 0(f)as the

2 IVL (fl)-limit of J tC) such that E(J ()IF ) J ) a.s. . Write
n,t nco t t

I (f) = n! J n,0(f) and call it the multiple Wiener integral for elementsv. n

in L2ORn H ). Then using Lemma 5.5.1 and density arguments as before,

2 n a
I is also defined for elements in L (IR )H-H). Moreover, it is a

2 W

linear operator from each of the above spaces to L2 (Q, F ,P).

The main properties of In(.) are summarized in the next result.
.........

7
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' Lemma 5.1.3 Let fe L2 (Rn H ) Then

a) I n(f) = In (f) iE H where H is the linear space of (Wt)t]R+

b) E(In(f)) = 0.

c) If ge L2  H em) for m> 1 then

'.''( (Cnf) Ira(g)) 6n n! CfiR s)'g~s) > e n s

d) E(I(f))2  n' f nj s 2 ds < nI f ni f() Ondj.
IR, Q IRQ

e) For T= [O,t], t> 0; if InT(f) is the multiple integral of f re-

stricted to Tn then

E(In(f)IF ) (f)

f) In (f) = f <g(s),dWs>

for gE , E f - gs)I ds< and the random variable

f <g(s),dWs> Q is defined as the limit of the square integrable

martingale ft <g(s),dWs>Q.

The proof follows from the above definition, Lemma 5.1.2, Proposition 5.1.6

and Corollary 5.1.3.

5.1.2 Real valued nonlinear functionals

By a real valued nonlinear functional of (Wt)tER+ we mean an ele-

2 W
ment of the space L (f2,FW,P) where FW= FW . In this subsection we use the

techniques developed in the last section to obtain multiple Wiener integral

expansions and stochastic integral representations for elements in

L. 2(,W,P). We follow the same ideas as for the one dimensional Wiener

d
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process, as presented, for example, in Chapter VI of Kallianpur (1980).

Multiple Wiener integral orthogonal expansions Let SI be the subspace

, of L2 (Q) = L2 (Q,FW,P) spanned by the multiple Wiener integrals I n(f)
2~~~~ ~ ~ ~ n, in hr

f L2 n+n> 1 where In is as in Definition 5.1.5 for q r l+ r 2 ,

that is

2
-*~-L (R) 2 n

Sl =p a{In(fn fn e L2(In H )  n>2 1.

n n n + q

By the definition of IN() for elements in L(2Rn Hno) we have that
n + Q

S is also equal to

22

_,,5 ~~sp C') {In(fn): fn EL 2IRn ~ )  zI

" The next result shows the role played by the space L2CIR+)O H.

Proposition 5.1.7 Let EXP(L2 (IR+ )a H ) denote the Exponential Hilbert

2Space of L (IR + HQ. Then

i2 f.

EXP(L2 (R + HQ) SI

where for ge EXP(L2()IR aHQ) g= (go,g 1,...) gn EL 2 (IR+)HQ)n n> 0

rI(g) = . (n!) -  n(g). 1o() = 1.
n=O

L2

Proof Let g= exp *(f) fE L (IR +)®HO, i.e.

(5.1.23) exp a(f) = Cf0 f, 1_ f02 1 f03
v72Irr

Then by Proposition 5.1.2 and Lemma 5.1.3 (c) and (d)

E(rj(exp off)) 2=I (nI5 E(I nf fn)) 2 = (n!jlt f"I 2  n
n=O n=O L (R+) -Q

= Cn5 1Cll fll 2  )n= Iexp Cf)II 2
n=0 L CR) *iQ EXP(L (IR ,)HQ)

.. , •.. ........ ,................. ..................... ..'•....,:,, ........,,.. .. ,.. . ...' ., ... . ..
• - ) .'.. . • . ".%%° ". - ". - "-'.L *." . " o ,, . • ' % % r "% .% % • %, , , ...- ,
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and the proof follows since elements of the form (5.1.23) span

EXP (L 2 (IR )e% ) (see Proposition 2.2 in Guichardet (1972)).

Q.E.D.

Proposition 5.1.8 Let FE L 2(SI,FW.P). Then

F - E(F) I I (f~n a.s.

where f c L 2A ) n G L2 nI and I'* nz: 1 are the multiple

Wiener integrals of Definition 5.1.5.

2
Proof From Definition 4.1.2 H= L (W) L (+ -~H )and by (4.1.26)

2
L (MJW,P) can be identified with EXP(H). Then

22
EXP(H) =- EXP(L (JR )0%)

where

T) (exp e (I (f)) exp * (f) fe L 2 (mR)OH

2 1W

Then by Proposition 5.1.7 L (SI,FW,P) can be identified with S in such

2 W
a way that if Fe L (Q,F ,P)

F -E (F) I 'nfn a.s.
n= 1

where f c L 2Rn eHn) and I n2!1 are the multiple Wiener integrals
n 1+ Hqn

of Definition 5.1.5.
Q.E.D.

The following result shows the density of orthogonal expansions of

2 n OHn
multiple Wiener integrals of elements in L (+ -qH) q ,r1 + r2

Corollary 5.1.4 Let Fe L (SI,F, P), E(F)= 0 and qa r1 .r Then for

all > >0 there exist gneL 2 n *ii n 1 such that

2
E(F - I (g )) < e

n=1nn
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Proof By Proposition 5.1.8 there exist f c L2 (IR H n> 1 such that'.n + Q

F = 'nf )  (L2 ()-convergence)."': n=lI

Let q> r + r and F_> O. Then by Definition 5.1.5 and Lemma 5.1.1 for each

n> 1 there exists gnE L 2(IRn H n) such that
+ q

E(I n(gn) - I n(f n)) < E/2n

Then by the orthogonality of In for nO m

2 n

E( In(g)- I (f ))2 = E(I (g)- (f))2  . E/2n

n=l n n n n=l n n n n=1

and hence E(F - 1 I n(gn))2<
n=.nn Q.E.D.

Stochastic integral representations The next result is the analog of

Theorem 6.7.1 in Kallianpur (1980) for the one dimensional Wiener process.

Theorem 5.1.1 Let Fe L2(,FWP), E(F)= 0. Then

"O

F(w) = f <g(t,w),dW t>Q

where ge MQ, E f 1Ig(t)IIQ dt< - and the RHS is the stochastic integral
0

of Definition 4.2.3.

Proof Since FE L2 (2,FW, P), by Proposition 5.1.8

.. (F = ( nLn -convergence)
2 n=

wheref E L2 (mn Hn) n> 1. Then by Lemma 5.1.3 (f)
n+ Q

I (fn) f = f<gn(t),dWt>Q a.s.
0

00 nn
where g cAQ and E f 2ig (t)II dt< n - 1. Write g* =ig i . Then by

n i n 1
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'00

linearity of the integral f <*,dWt >
0

n 0
r I (fi  f <gn(t),dWt>Q
,- i= 1 0o

and therefore E(F - f <gn(t),dw >Q) 2* 0 as n-*o. Then using
0

Corollary 4.2.2 we obtain that

E f IIgn(t)-g*(t)Il 2 dt = E[ f <g*(t) -g(t),dWt> 0 as n,m-'-
o 0

Therefore there exists gE MQ, E f I g(s)II ds < such that
0

E fJ]g(t) - 2g(t)2 dt- 0 as n- - and
E- fQ 119a)- ~)10

E[ f <g*(t),dW > - f <g(t),dWt>Q] 2  0
0 n t Q 0• .0 0

Hence
CO

F(w) f <htdWt > a.s.

0Q Q.E.D.

The next result shows the density of the stochastic integrals

<,dW > in the space of nonlinear functionals L2 (,FW,P).
o t q

2 W
Corollary 5.1.5 Let FE L (Q,F ,P), E(F)= 0. Then for all qzrl+ r2

and s> 0 there exists gEM E ds < such that
q 0 q

0

The proof follows from the last theorem and Definition 4.2.3.

Representation of real valued square integrable martingales

w
Theorem 5.1.2 Let MF ) be a square integrable martingale, with

t' t IR

Me= 0. Then (Mt) has a continuous modification, say (Mt), which is given

by the stochastic integral

.. . . . . . ... . . . .. . . . . . . . . . . . . . .

.......................
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t
Mt(w) = f <g(s,w),dWs>Q a.s.

0

for every t> 0, where gE MQ, i.e. g(s,w) is jointly measurable, g(s,-)

is FW-adapted and
so

E f 11 g(s) dsQ

Proof Since (M ) is a square integrable martingale, i.e. sup E(M )<0,
t + 5t< t

then M. exists as the mean square limit (and also as the almost sure limit)

of Mt t--, and moreover, M is F W-measurable and EM2 < -, i.e. MoEL 2(Q,F,P).
t OD 0000

Then by Theorem 5.1.1

00

M= f <g(t),dWt>Q  a.s.
0

00

where gE MQ. E f 11g(s) 2 ds< Then by Corollary 4.2.2
0

tt

and the stochastic integral has a continuous version which is the required

modification of Mt -

t Q.E .D.

5.2 4'-valued multiple Wiener integrals

Let P and eOn n> 1, be as in Section 4.1.1 and denote byL((en)',')

the class of continuous linear operators from (n)' to ('. In this sec-

tion we define multiple Wiener integrals of the form

( T f(t)dWt .. .dWt t=(t,...,tn)

where f(t) is a non-random element in L(( )',0') and T= [O,T ] for all

n 1 and T0 >0 (Section 5.2.1). Then we construct multiple stochastic

integral expansions and stochastic integral representations for 1'-valued

j,-.. o-.-o-. . . . .o .. .b,, . . . .•• . .o .. . . . . . ,. ....-. . . .,. . .. .. . .,

....- •-o .•.•.......-.........-- -• .... -~................... -
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nonlinear functionals and 0'-valued square integrable martingales of

(Wt)tE R+ (Section 5.2.2). A Wiener type decomposition of the space

of 01-valued nonlinear functionals is obtained in Theorem 5.2.2 as the

*.-"inductive limit of the spaces L2 (Q+H r2- 0.r>0

5.2.1 Multiple Wiener integrals for (( On)',')-functions

Throughout this section n> 1 is fixed but arbitrary.

Definition 5.2.1 A measurable function f:]RnL((n), ) is said

to belong to the class ',') if for all T= [0T 0 T >0

(5.2.1) n(ff( ),f( ) ) dt<oo V $e
T - -

where f*:O )n is the adjoint of f and t= (tl...tn).

t t j Pt

Theorem 5.2.1 Let f E Q((0 n) ,c ). Then for each TO >0 there exists

a €'-valued element Y,(f), T= [O,To] such that

(5.2.2) Y n,T(f)[] = In, (f*(O)) a.s. V Oc 0

where In,T is the real valued multiple Wiener integral of Definition

5.1.3 for elements in L2 (T'n+HO). Y is called the nth 0'-valuednT

multiple Wiener integral.

Proof We prove this theorem in a very similar way to Proposition 4.2.3.

First note that for each E I n,T(f*(O)) is well defined since fromD" L~2 ( n  enH)

(5.2.1) f*($) L(T H

Next for Oe 0 define Vf(F) = VfT(0) as

(5.2.3) V 2 () =f QnI(f* M ,f M))t

on n

Since Q is ,n-continuous, using Fatou's lemma one can show (as in

[.l :i '. : ", ., .. ,... .-. - . . ".. .: : -,, : , .,. . - .: - -. ,. : :" ... .
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Proposition 4.2.3) that Vf is a lower semicontinuous function on (P. More-

over, V f is a non-negative function on 4D that satisfies conditions (a),

(b) and (c) of Lemma 4.1.1 (use triangle inequality to prove (a) and

(S.2.1) to show (c)). Then this lemma implies that V is a continuous
f

function on (D and therefore there exist f= e f,T and r f r rf,T such that

(5.2.4) V 24 6 efII 2 V 04
f r f

Next let fo .}. : and {A } j: be as in Section 4.1.1, qf qf j such
j j~lj j~l -qf

that qfk rf+ rl and write (l.A) X j > 1. Then t~} is a CONS

for H- and we denote by {.} the CONS for H dual to {~I i.e.
qf j j :l -qf jjl

q k- i >-q = 6k

Define Y (f[0~ I n(f*(O j)) i 1. Then by Definition 5.1.3

and Proposition 5.1.4 (e)

XE(Y
jl n,T

n n'I~ Vf1O.)
< !j fQ=1f j=l

00 12 co -2(qf-rf)
n!ef 1 i. 21 = n! Of I (l1+x !5 n e o 0

i~ rf j=1 i fl1

where e is as in (4.1.4). Then I'jlYTf1j1 2 < 0 a.s.

Let Q2 = {W: 1' < -1, then P(Q21)= 1. Define

*~ ~ (5..5)ynT(f)[ =j 1 "'

-qf1

From now on write Y (f f=

., nT . ... . .
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Next if OE 0, then 4e Hqf qft rf+ r1 and

S()4= Y >,()1.ii~
Yn,T (f)  1 n,T(f )  jj Yn,T(f) Mj Jqf

. j=l n1

j= .1 nT(f)[<0' j>qfJ "

Thus for all Oc €, since Yn,T(f)[ = I n,T(f*(O))

m
(5.2.6) Y n,T(f)[]= lir I T(f*( I <M,> q )) a.s.

Mn, j=l JqfJ

On the other hand, since 4=l<0,0>j>q m -* on H then
qf

Vf(.=l<,'j> qf j- ) - 0 which implies using (5.2.3) and Proposition

5.1.4 Ce) that

m
E(In,T(f*( )) - In,T(f*( I )) O as

j=l Jf 3

Then from (5.2.6) for all T= [0,T 0], T >0

Sn,T(f) [ I = I (f*() a.s. V e O

Q.E.D.

The following properties of the V'-valued multiple Wiener integral

Y n,T (f) follow from the last theorem, (5.2.2), Proposition 5.1.4, Defin-

ition 5.1.3 and Corollary 5.1.1.

Proposition 5.2.1 Let f,geO(C$")','). Then for each T= [0,ToIQ

T >0
0

a) YnT(af+bg) = aYn,T(f) + bYnT (g) a.s. a,be ]R.

b) E(YnT(f)[0]) 0 V 0.

c) If ge E)((0 S )1,01)
%Q

E (Y ECn,T~f) [0] YmT(g) [])
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6 n! f Q C V $,
m T n

where f*(O) is the symmetrization (Corollary 5.1.1) of f*(O)
t t

on

d) EC(YnTf [ 2] !5 n! fnQ on (f_*(O ) ,f t  --)

T n -

Proposition 5.2.2 Let n_> 1 and g: JR+L((e~n)',$'). Define the symmet-

rization g of g such that for each te IR+ and OE 0 gt()= g*( ) where

g*(O) is the symmetrization of g*(6) on d n of Corollary 5.1.1. If

tthe['. fe 0Q((,Pn)',V') then

a) f 6e (OQ n)I, ) and for each T= [0,T, To > 0

Q 0 0

Sn,Tf() = (f) a.s.

b) For each T= [0,T ], T > 0 there exists qf,T> 0 such that a.e.

tE Tn f and f are Hilbert-Schmidt operators from Ho to H

and

(5.2.7) ElIlYn(f) 2  -1 n! 11Y11 2

2 fT L 2Tn4.2(HH qf, T

:- n! 11 (Tn 2 (H
o n ,<H 0

[-2 q qf,T

where a2 (HQan,H ) denotes the Hilbert space of Hilbert-Schmidt operators
onT

from H to H -fT
-qf,T

Proof a) By Corollary 5.1.1 for each t E JR and *, $ f ) E en
+ +

and by Corollary 5.1.2 for each T= [0,T ], T0 > 0 and Oc 4

Q f Q M
Tn~ (f t (t) f(t))d- Q*11(f

which is finite for each T since fe 0Q((0on)', 4P), proving

. .. that
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TnT 0 
0Qn rm hoe

Thus Y ) is defined for each T= [0,T 0]T> 0 and from Theorem

5.2.1, Definition 5.1.3, Proposition 5.1.4 (a) and (5.2.2) we have that

Y n,T(f) = Yn,T(f) a.s. for each T= [0,T ],To > 0.

b) For I= [0,T 0], T0 > 0 let VfT and q be as in the proof of Theorem

5.2.1 and take {(l+Xf)qfT0 Ij> 1 a CONS in H qf,T. Then Yn,T (f) H_qfT

a.s. and

E~Y C)12  00Wq 2
Ell Yn,T(£ )  -q 2 E I (1+q >2qf

-f,T j=1 T

2qfT n,= Xl(l+X.) fE, ( jd>2

"=T -qfT
oo~~0 "2qf,TE (nT)[j]2

I (1+Jx. ) (f)[0 ) (by (4.1.8))

j=1 n,

= (1+X.)- 'Tn ft(O) l 2 dt (Proposition 5.2.1 (d))

i= n, f lTlf*:((lj)qf'Tj)I 2 dt= lr('"

"i I l+nl 111q*('Tx11J)d

00 T~ T1 2

< n! If( . f f*) 2xo n2 dt (Corollary 5.1.2)

T j=l J -

TI nI fn tfT )l*(+ -fT)d

Tj=l -

0"qfTj
2 qfT

" n! I VfT((I+X) (by 5.2.4)
j=l

.0 -2r1
n- f,T I (1+n1) = n fTe1<G

Then a.e. t c T 
n

m. . . . . . .

- ."**

'. . ." " ' " . " ' ' . -' " " " ' . . " " " - . s " ." "- ' '. . . , ". - , . , . " ' " ' , ." " ' ' ' ' , " '" "" -" "" " ' . -: " . "' '

• o a ....'. . o . . ° o I 
-
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.f.2 ( f,T 2 <0C(H H on) j=

2 ~qfT j

and

2 f',1  2 <

HQ(  Ho) j=l -
2' qfT'

where {(l+ )qfT j is a CONS for Hf. Then (5.2.7) follows since

f 2 2

2  H qf,T y 2(Hq f,T H Q.E.D.

We now extend the definition of Y to functions f:]R L(($n) ' 0')n +

Proposition 5.2.2 (b) suggests that it is enough to construct multiple

Wiener integrals for functions f:ARn -(H ,H ) for s2:r + r2, as we+ 2Q -S 1 2

now do.

Proposition 5.2.3 Let s->ql.q 2 and n> 1 be fixed but arbitrary. Let

2 n_ On -fe L OR + 2 (HQ ,H )). Then there exists an H s-valued element Y (f)

2 n enn
called the multiple Wiener integral for functions in L (+ n a 2(HQn ,H s))

such that

(5.2.8) Y (f)[,] = I (f*(,)) a.s. V e H

n n s

where In is the multiple Wiener integral of Definition 5.1.5 for elements

in L2 (IRn H) Moreover, Y (f) satisfies the following properties
(R+H Q. n poete

a) If gc L2 (IRn+o2(HQH_s)) and a,be JR.

Yn(af+bg) = aYn(f) + bYn(g) a.s.

b) If gc L (JIR+ (H 19H)) then

E<Yn (f)'Y m(g)> s= 6 nm n fg> 2 (R n_.2(H n H

.2 Q'S

e__%. w, .7-
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and

Ell Yn(f) 1I s= nI Ili 2 , _ o

n! II fl1 2 o <n
L (]R+ a2NH ,HS))

c) For T= [Ot], t> 0 if I is the real valued multiple Wiener inte-
n,T

gral for elements in L2 (Tn -+  ) then

E(Yn(f)[]i F,) = InT(f*(O)) a.s.V * H5 .

d) For each c Hs there exists g CMQ, E f llg,(s)ll Qds< such that
0

Yn(f)[f1 = f <g,(s),dWs>Q a.s.
0

where the RHS is the real valued stochastic integral of Definition

4.2.3.

Proof The first part is proved as in Theorem 5.2.1 using Definition

5.1.S for elements in L 2]R+ Q ). (a) follows from (5.2.8) and the

linearity property on INC.). (c) and (d) follow from (5.2.8) and Lemma

5.1.3 (e) and (d). The second part of (b) follows as in the proof of

(b) in Proposition 5.2.2. To prove the first part of (b) let

f (lX } be a CONS for H lkthen using (5.2.8) and Lemma 5.1.3 (c)
= O k kl -s

E<Y n(f),Ym(g)>s = (l+ k 2 SE(I n(f*(Ok))Im(g*Ch)))
k=1

T-0

-s k k m
• .. 6nmn Qa~

b.+

=6rm <fg>L2  n n

L (R + 2 (H H ))
2 Q -sQ.E.D.

-aq
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We will see in the next section that the multiple Wiener integrals

Y (-) for elements in L (]Rn-a(H",H_)) s!r + r2 form a complete sys-

tern in the space of $'-valued nonlinear functionals of (W t)te]R

The next result will be useful for the representation of c0'-valued

nonlinear functionals. It relates the c?'-multiple Wiener integral Y nwith

the $'-stochastir integral of Proposition 4.2.3 and it is an infinite di-

mensional analog of Lemma 6.7.2 in Kallianpur (1980).

Proposition 5.2.4 Let n e1, s2:ql.q 2 and fe L + H *_S)

Then there exists a non-anticipative a (HQ H 5)-valued process h(tw)

such that

EJ flh(t,w)l 21 dt <
a 2(HQ.IH 5

and

Yn (f) =f h(t,w)dWt
n 0

where the RHS of the last expression is the $'I-valued stochastic integral

of Proposition 4.2.5.

Proof By Proposition 5.2.3 (d) for each Oc H
s

(5.2.9) Y n(f)[fl f <yt)&dW > Q n I(f*( )) a.s.
0

where ge{*E(0lg sJ~s e e Okt be a CONS for H1

and define h*Ct,w)(e1V= ge (t,w) ka 1. Then h*(t)(e k) is HQ-valued and

h*(t)Ce k) E M Q k2:1. Next

f E( I l h* (t) (e k )112 )dt= I f Eli g e(t) 112 dt
o k=l Q k=l o k q

I E( f <g e t), dW t> Q) 2 (by Corollary 4.2.1)
k=l o ek
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= [ E(Yn(f)[ek]) 2  (by (5.2.9))

k=l

n! 1 II f*(ek) I 2 2 (by Lemma 5.1.3 (d))
k=1 L (IR+ H)

= n!h f*lI 2 = n11f <2  <

L(R - 2 (Hs ,HQ)) L ( 2 (HH_s))

Then
P,0

h*(t)(-) = <,e> h*(t)(e
k= 1

defines an a.s. dtdP linear operator from H to H Moreover, from the
S Q

above calculations h*(tw)E o2 (HQI s) a.s. dtdP. Then

fEll h(t)12 dt=f Ellh*(t) H 12
o a2 Q-s' o 2 Q(Hs

and the proposition follows by the definition of the 0'-valued stochastic

integral f: h(t,w)dWt of Proposition 4.2.5.
0 Q.E.D.

5.2.2 4'-valued nonlinear functionals

Let F W = F W By a $'-valued nonlinear functional of (Wt)t ]

we mean a 0'-valued random element F: Q-+ ' such that F is F+ B(0') mea-

surable, and

E(F[f])2 <0 V 4C •

We denote by L2  ' = L2((QFWP) -4 I) the linear space of all '-

valued nonlinear functionals of (Wt)tc]R+• Observe that it is not a

Hilbert space.

For r> 0 let L2 ( H_ r) = L2 ((SI,FWP) - H_r) be the Hilbert space

of all Fw-measurable elements F: Sl Hr such that E(.IF < The
-r _

Hilbert space L2 (S-H r) is called the space of Hr -valued nonlinear
-r -r

.*, * * .' .'.

-
* . . %*J
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functionals of (Wttt

Wiener decomposition of the space L2 (R-+ 40) Let H= L1 (W) be the Gaussian

space of (Wt)tc] defined in (4.1.25) and On be its n-fold symmetric

tensor product. For fixed s> 0 and n> 1 let
= 2 en

(5.2.10) Gn(Hs ) ={E L2 ( Hs): [fl]cHa V Hs }

Recall that for all n 1 H n is a subspace of L2 (,F Fw,P).

Theorem 5.2.2 (Wiener decomposition of L2 (Q-)-')). The linear space

2L (Q-+0') is a complete locally convex space in the topology given by

the strict inductive limit of the Hilbert spaces L2 (GQ-H r) r 0 and

2
(5.2.11) L2(l.c?') (J O ( *G (H_)).n>0

Y-). nkO n-

The proof of this theorem is based on the following leamas.

Lemma 5.2.1

°2•2

(5.2.12) L2 (Q-') = U L2 (QH_ r).
r=0 -

2Proof Let FE L (Q--H_ r2 0. Then F[0] is FW-measurable for all oc 0
-r

2 2 2 2and E(F[fl])2 !5 1 i.e. F E L (f--0) and hence

2 2
(5.2.13) U L (SI- rH c L (S4 ')

r=0 -

2 2 2
Next let Fe L (l - 0') and for all *e D define V2( ) = E(F[])

Then

(5.2.14) V2 ( < ,I .

As in the proof of Proposition 4.2.3 and Theorem 5.2.1,using the

continuity of F on 0 and Fatou's lemma, one can show that V(O) is a lower

'., . . . ... . . ... . . .- . .- ....... .. ........... .. - - . . ......-.-.-.-.-- -...--..-..,.
.' ". .' .. .- " .. -' .-..' .. .. " .' -" - .. -. .'. .. -. .. -. .. .. -. .- .- ..- -. .- . .. ..". ..... .. - ." -. ; .- '.- -. -. ." ., ..- .- .- .. -" .. .* %.
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semicontinuous function of 0. Moreover it is non-negative and satisfies

conditions (a), (b) and (c) of Lemma 4.1.1. Then V(O) is a continuous

function on 0 and hence there exist eF> 0 and rF> 0 such that

(5.2.15) V2(¢ = E(F( )) 2 
- OFII 2 (

Let r> rF+ rl, then the imbedding of Hr into H is a Hilbert-

Schmidt map. Take . = (1+X Y)., then {.j}jl is a CONS in Hr and

E(l F[@.]2) = X E(F(.])2 = V2( .)
j=1 j j1 j=1

0 1(I -2(r-rF)

1 1 rF 0  F ( E < G
j=l j= F I

where 01 is as in (4.1.4). Then IF[ j]2< a.s., and if {4i p is

the CONS in H-r dual to 4 j I-I

P (F (W) = ( F W[.](w)4.<) = 1
j=l j

and E H a.s. Moreover,

r,2
•Ell --l 2= E < , (1 r I_2 +X o> 2= E( I. F[ ]2) < C

j=1 J j-r j=l

It remains to show that for each *E 4 F[f]=F([). By using (5.2.15)

since j=l<,> r *j n in Hr

. m 2 ml< , j>~ 2
E(F[fl] - I. F[ 1 [l)= E(F[ ) -jI >01

.j=l

M 2
Sj=l ' >  i 0 as m+-

and therefore for each *c 0 F[] = F(] a.s.
2 L2

Thus if Fe L 2 ( ') there exists r2 0 such that Fe L (QH_r)

which together with (5.2.13) implies (5.2.12).
Q.E.D.

A
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Lemma 5.2.2 For r 0O and n 1 let G (H_) be as in (5.2.10). Then forn -r

fixed r :0 G n(H_ r n 1 are Hilbert subspaces of L 2(Q-+H_ r such that if

n m G (H_ ) and G (H_ ) are orthogonal in L 2(0- H_)n -r m -r -r

Proof We first prove that for each n2:1 G (H )is a Hilbert subspace
n -r

of L 2 (f2-I Let Inkk~ be a Cauchy sequence in Gn(H_~ then n--T

in L (0- H. Since for each * H_

2 W

then for each *EH 11 np~l~ in L 2(Q,F ,P).
r k10 no

But by hypothesis n k c H .Then since H is a closed subspace of

2 (Q IVP) [ en
L (~, Pn~~( for all Eff i*e. Ti EG (H_) proving that G (H_)rn -r n -r

2
is a closed subspace of L (0-11Hr ) for n 1.

Next if n m, let Tn E GnG1 r_ Tim E Gm )( and {e R {(+ khl
n r -r ~kkl k 1 Xkr0

a CONS for H .Then

0 o -2r[ ) = 0
E~ n m >-r= Y E(<flmgek>-r <nn" ek>-r) k(l+X k) E(n nInml ) m

since n[~ n (( n k~ E H erliM[0 HO all k ! land H On and H f' are orthogonal in

2 I
L (Q,FW,P).

Q.E.D.

The following result is the Wiener decomposition of the space

L 2(Q~- H_ ). A proof of it appears in Miyahara (1981) for a general Hil-

bert space K, i.e. for L 2 Q+K).

Lemma 5.2.3 For each ra 0

L 2 (Q- H) G n * (H_ ).
n 0O
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Proof Let {ekIk> 1 be a CONS for H and Tic L (Q+H ) i.e. n is FW-kkl-r -r

measurable and E li ni 2 < Then
-r
co

n(w) I <f(w),ek>_rek (L2 (S2+H_ r) convergence)
k=1

where E(<n,ek>2 ) < all k> 1, i.e. <T,ek>_r L2 (QFWP) and therefore

k flr kk kr
00

< -,e r = xn (L2 ()-convergence)
n=l1

where for each k xk EHon n

n

Define 00

Tin = - k

k=l1

We now prove that for each n: 1 n nE G n(H_ r). Note that

kE m n m lkr kfm kfm n

2
[ E(<n,ek>,)_ r 0 as mk

k=m
m

Then { kx e k is a Cauchy sequence in L2 (Q-H ) and therefore con-
Yk~l n k k !l -r

verges to a limit denoted by nn"
k k en

Next if eH r  qn' = k=lxnek[]' H n- 1, i.e. n G n(H-r) n> 1

By construction of Ti ma 1 if in, converges in L2(Q -H ) it must

converge to n. Thus it remains to prove that I.m=lm is a Cauchy sequence:

Ell I n112 m = 1 Elx k12.
Eli~ n -ir= 1 Ell n112 m
m=n m=n k=l m=n

But for each k it=EIxmk2 - 0 as n,k -c , therefore

Eli n ml -e 0 as n,k
m=n

Then 1n-ln is an element of L2 (SH_r) and of nO G (H_), which is
n-nr n0 n -r

equal to n a.e..

• °. ° .° .. % °o , % ". o ,. , • % -% °° % % . . ... .. . . °°° °. -. . • . ...
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|2
Proof of Theorem 5.2.2 Since L2 ( -Hr) c L2( -+l_ ) for all r _ 0

-r -(r+l)

the theorem follows by Lemmas 5.2.1 and 5.2.3 and the following result

(Theorem V.15 of Reed and Simon (1980)): Let X be a real vector space

and Xn be a family of subspaces with Xnc Xn+l X = U Xn . Suppose that
n= 1

each X has a locally convex topology so that the restriction of the topo-n

logy of X n+ to Xn is the given topology on X . Let U be the collection

of balanced, absorbing, convex sets 0 in X for which On Xn is open in Xn

for each n. Then a) The topology generated by U is the strongest locally

convextopology on X so that the injections Xn -X are continuous; b) The

restriction of the topology on X to each X is the given topology on Xn;
n

c) If each Xn is complete, so is X. The locally convex space X is called

the strict inductive limit of the spaces XnQ.E.D.

Define for n> 1 G n(') = {Me L2 (0-+ V): [] aen  V 0 4}. The

following lemma can be proved in the same way as Theorem 5.2.2, using

Lemma 5.2.2 and the fact that for each n>_ 1 H n is a Hilbert subspace

of L2 (Q,FW,P).

Lemma 5.2.4 For each n> 1, the linear space Gn ['] is a complete local-

ly convex space in the topology given by the strict inductive limit of

the Hilbert spaces Gn(H_ ) r> 0, i.e. G (') = lim G (H_).
n r n -4 n -r

Multiple Wiener integral orthogonal expansions Let

Sy= {Y (f): fc L2 (IR no (H On,H )) n - i1, s 0}.
Y n n n + 2 Q'-s

We shall show that S is a complete set in the space L2 (Q 4'). We see

from Theorem 5.2.2 and Lemma 5.2.1 that it is enough to study the com-

pleteness of the multiple Wiener integrals in each of the subspaces

L L2 (Q-H_ r r O•0

°.

".•°• * .- ,*. .- ° •. . . . . . ..... . ,. . . .o.. .
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For 0l be the closed subspace of L2 (Q.H r) spanned by the

multiple Wiener integrals Yn( - ) of Proposition 5.2.3. for elements in

L (IR 2(HQ ,H )). i.e.

S; r . {yn(f): fnE L (R n 2(H o Hr)) n> l)!Y

where the closure is taken with respect to L ( 4Hr).

Although multiple Wiener integrals on Hilbert spaces have been studied

before (Miyahara (1981)) an analog of the next result was not found in

the literature.

Proposition 5.2.5 For each ra 0

2  r
(5.2.16) a(EXP(L (R)eHQ) H ) S

2-Q r Y

where for gc a2 (EXP(L
2 (IR )eHQ), H), g*= (g*,g*,.-.)" 2  +1 Q)o

gC C2 (H ,(L2 (]e H on) n>I

n 2 2:o0

&(g) = I Yn(gn) (convergence in L2 (-*H_r)).
n=l

Proof Let ge o2 (EXP(L2(R +) C HQ),H~r), then g*c a 2 (HrEXP(L2(R +) 9 H )),

i.e. for each OcHs g*( ) e EXP(L 2 (R )H Q) ' g*($)= (g(oC),gl(O),...)

and
O

I g* , II 2 <
n=0 n (L2 (JR ) H)o n

2 Qn
We first show that for each n; 1 g ac o 2 (Hr,(L 2IR ) Let

fe"1- > be a CONS in Hr, then

1 I g*(e )112  2 <
mul EXP(L (IR+)GH

and hence

."' " " ... " '" " '. . .
S.. . .° 

° 
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2 X n jg(em)j 2

=X Xg*(e 2 2 12O
n-i -1 L (R +)eff Q). ~ L I 1

I I g e) 12 <en
.n-1 (Ll ( R +In

( 112

Next, if ge a2 (EXP(L2 (JR )eH H H_ using Proposition S.2.3 (b)2 + Q -r

Eli &(g) ILr 2 l n~ l-
n= 1

11 9lllI 2  n n' 2J In)
n~l L (MR + ) (HenH -) ) n=1 (H L (R+ G

00 00 00

* (eg*(e12n. ml~e~ 2 On= m
I= Mn= I L (JR )OH ) r-I EXP(L (II )OH )+ Q+

11 gll 2 2 llgI 2 2
a 2(H r EXP(L (IR )eH,)) a 2(EXP(L (JR + )eH Q),H r).

Then the result follows since g as above is a typical element in

a 2 (E X(P(L ( R ) H Q) H ) r k 0 Q .E.D .

The completeness of the multiple Wiener integrals Yn (

fncEL OR_ ( _) in L2 (Q-)H) is now obtained.

Proposition 5.2.6 Let r2:0 and Fie L 2(SlZH ),E(F)= 0. Then
cor

2F Y n(fn )a.s. (convergence in L (0- H-r))

where f £cL2 OR +a 2(H~, H)-) na 1.
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Proof By Leuma 5.2.3 L2 (-Hr) = * Gn(H~r) where for each na 1
n2:0

G n(H_r) = {Te L2 (+H r): n[0]c " V 0, Hr.

Then by Proposition 5.2.5 it is enough to prove that

2 n Yn
a 2 ((L2(IR)n+ HQ -r Gn(H -r)

But the last isometry follows from Proposition 5.2.4 and since from

Lemma 5.1.3 and Proposition 5.1.2

(L2 (R)@ HQ)o n  n f nJ+

where In () is the real valued multiple Wiener integral of Definition
2n e

5.1.5 for elements in L2 (mn+HQ.D).
o- Q.E.D.

The above proposition and Theorem 5.2.2 yield the next result which

*. gives multiple Wiener integral expansions for 0'-valued nonlinear func-

tionals.

Theorem 5.2.3 Let Fe L ( -e'), E(F[O]) = 0 V Oc 0. Then there exists

r F > 0 such that Fe H a.s. and
F r F

F = Yn (f ) a.s. (L2( H_r )-convergence)
n=l F

where f e L 2CIRn_ 2 (Hn Hr)) n> 1.

Corollary 5.2.1 For nk 1 let

2 on 2 oa 2((L2(IR) HQ) ,') = U a 2 ((L2(IR) e H ),Hr).

Then Yn
2 on)G n a 2 ((L ( ) HQ ')

~~~~. . . . . ........... nannnu m Ul llnnnnn- .... :.................. " " "
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The proof follows from the last part of the proof of Proposition 5.2.5

pid from Lemma 5.2.4.

Stochastic integral representations for 0'-valued nonlinear functionals

From Proposition S.2.4 and Theorem 5.2.3 one obtains the following

2
stochastic integral representation for elements in L (f.'. This result

is the 0'-valued analog of Theorem 6.7.1 in Kallianpur (1980), from which

the idea of the proof is taken.

Theorem 5.2.4 Let Fe L 2~'~) Then there exist r F>O0 and a non-anti-

cipative a2 (HQ PH-r )-valued process h with

(S.2.17) f EIlh(t~w)1a(HPH2  <0
0 c 2 (Q -rd

such that

F(w) =f h(t,w)dW t a.s.
0

where the RHS in the last expression is the 0'-valued stochastic integral

of Proposition 4.2.5 with an H .rcontinuous version.

Proof Since Fe L 2( I- 01) from Lemma S.2.1 and Theorem 5.2.3 there

exists r F > 0 such that FeH- a.s. and
F

0

2
F Y (f~ (L (n-1H_ )-convergence)

where f neL nR + n ))QPH nz 1.

Next, from Proposition 5.2.4, for each n? 1

0

y n (fn h n(t~i)dw t a.S.
0
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* where h is non-anticipative and E J- II hn(tw) HqH , dt < andis o
the 0'-valued stochastic integral is defined in Proposition 4.2.5.

n
Define gn= a " ht, then

IL=l

n G
SY I(f = gn(t, w)dWt

til 0

and hence

(5.2.18) Ell F- f gn(t,w)dWtll 2 r *0 as n-®
0 F

Then using Proposition 4.2.5 (d)

E o" II gnt)-gmt) iz )dt = Ell f(gn )(t)dWtI _r

0 ~2(H~rF o F

- 0 as n,m-l-ao

and hence there exists a a2 (HQHr)-valued function g, that satisfies

(5.2.17), is non-anticipative and

Go WEll f hdW - f gdWtI - 0 as n-b0

Then from (5.2.18) F = hdW a.e. where h has the required properties.0 t

Q.E.D.

Representation of 0'-valued square integrable martingales

Definition 5.2.2 A 0t-valued stochastic process (Xt)tER on (1,F,P) is

said to be a 0'-square integrable martingale with respect to an increasing

family (Ft)t + of sub a-fields of F if:

For each *e 0 (Xt[0],Ft)tc] is a real valued square integrable

martingale, i.e.

(5.2.19) sup 2 1 <

Although the next proposition follows from condition (t) in Mitoma

2.

': ... ...,;.-..., ...... "......,......,: .. - . ... ,.. *-.,.,- -,- -, -'.-, -.. ,,..,.,..,-,.- , .. . , ... , -,') ...
. . . .. . .. .. . ... , .,. .. , ,, , . ,. ..- -. . • .. .. . .. . . . - - ,- " ., .', ,. ."*,*. • . . . .' .*%.
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.%

(1981b) (page 193), we shall establish and prove it here in a way that

is more convenient for use in our next theorem on the representation of

S * '-valued square integrable martingales.

Proposition 5.2.7 Let (XtFt) tc JR+, X = 0 be a 0'-valued square in-

tegrable martingale. Then there exists rx> 0 such that for each te JR+

It e H_ a.s. . Moreover, for each *£ 0 let X (0) be the mean square

22
Ilimit of Xt(O) as t-=• Then there exists X *' a. L L(G .'),

-L- L2CpH_rx) such that ) =  [] a.s. V O c and for t2 0

- = E(,[]IFt) a.s. V *e 0.

The proof is similar to the proof of Lemma 5.2.1 and therefore we will

omit some details. In Lemma 5.2.1 we have proved that for each t,

(E(Xt[0]) 2)h is a lower semicontinuous function of 0. Then by Lemma 1,

page S, of Gelfand and Vilenkin (1964)

V(O) = sup (ECXt[,])2)

Ost<

is also a lower semicontinuous convex function of . Hence, by Lemma

4.1.1, since by (5.2.19) V(O)< - V Oe 0, there exist >0 and s >0

such that

- Sx6Ol V $£.

X

Then taking rx> s + rI one can show that

0o

(5.2.20) E( (X0( j))2) < < o
j-1 XlI
rx

where = (+4) *j0jil is a CONS for H with dual { jl which is

a CONS for H . Define

* ~ ~~~~~ S S%'5 % . -
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(5.2.21) I

then Xis Hr X-valued a.s. and therefore X , 01 a.s. .Note that from

(5.2.20) and (5.2.21)

2 2

and therefore 1.c L 2(f?-* 0), XOe L 2(P -*Hr ). Then it remains to prove

that Xj(o) )JO a.s. V $c C

From (5.2.21)

X .j0] = Xo(;j)oj(0] a.s. *g H

and then

On the other hand, since X.(O) is linear on 4.a.s.

n 2 n *- 2E(XOP4) - XGO( ~ *> E.) E(X ,(O- I <0.40..>r 4.)
Ia j rX j j-1 Jr

n -2

5 OX10 I<0,**>r -1.11- -0 as n-p
j=1 Xr J r X

Then X ,(O) =X..[O] a.s. V *ce4
Q.E.D.

The following theorem is the 0'-valued analog of Theorem 6.7.2 in

Kallianpur (1980).

Theorem 5.2.5 Let (Xt*FW) ,b 'vle qaeitgal
t' R t 0cl - ,b 1-a dsureitgal

martingale. Then there exists r X> 0 such that Xthas an H- continuous

version X t given by the stochastic integral

t
(S.2.22) Xt(w) I h(s,w)dWs a.s.

0

A . ......... ,.*
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for every t2:O, where h(t,w) is non-anticipative and
oO

(5.2.23) f Ell h(t,.w) II )dt <
o 2 (HQ H-rX

and the RHS of (S.2.22) is the 01-valued stochastic integral of Prop-

osition 4.2.5.

Proof By Proposition 5.2.7 there exists rx> 0 and X .£ 4 such that

c H a.s. and for each t> 0 X ()= E((O)jFW). Then by Theorem

5.2.3 there exists a non-anticipative o2 (HQH r )-valued process h(t,w)
x

which satisfies (5.2.23) and

00

X(w) : f h(v,w)dW a.s.
0

Then the result follows using Proposition 4.2.S, from which the H con--rx

tinuous version is also obtained.

Q.E.D.

Remarks Our results in Sections 4.2, 5.1 and 5.2 may be applied to the

examples considered in Section 4.1.3 to construct stochastic integrals,

multiple Wiener integrals orthogonal expansions and stochastic integral

representations for nonlinear functionals of a multiparameter Gaussian

process (Example 4.1.6), a cylindrical Brownian motion (Example 4.1.7)

or an infinite sequence of independent Brownian motions (Example 4.1.8)

as well as to the finite dimensional Gaussian process with independent

increments (Example 4.1.9).

Throughout Chapters IV and V we have made the assumption that 0 is

. a countably Hilbert nuclear space of the kind defined in Example 4.1.1,

which has the special property of having a common orthogonal set {O . l1

Aj swi

• o

. .

- 'S .
"'-.. -..- . .-.-. " - "' ' """""..:-" . ". ."'"' "'" ""'."."'''-'-",".5,. .""'" "'" "' "":''"..5, . . 5.-:. : ; . . : : . . . '.,.. . . ", .V .; .,''. .Q" ";
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* in Hr r R. Although this assumption makes some computations easier

it is not essential and all our results can be obtained using only the

Anuclearity property of 0.

% i.

',

A .

!.

... 
. 5 .!..~5



APPENDIX

A. INFINITE TENSOR PRODUCTS OF HILBERT SPACES

We present here some material on infinite tensor products of Hilbert

spaces following Guichardet (1972).

Let (Hi)iEI be a family of Hilbert spaces and for each ic I a unit

vector uie H. Let u = (ui)ic be fixed. Consider a family xic Hi ic I

such that xi = ui for all but a finite number of i's. Elements of this

form are called Elementary Decomposable Vectors and are denoted by 0 x.
_ ifIi

They form a pre-Hilbert space with inner product

<Gxi,®y> = i> <x.i'Yi>H
iI 

ui
• °" U

whose completion 0 H. is called the Infinite Tensor Product Hilbert
i4E 1

Space associated with the family of unit vectors u (Guichardet (1972)).

This space may also be constructed in the following manner: for each

finite subset J of I construct the Hilbert tensor product

U

H = H.
(j) icj 1

For Jc K, J,K finite subsets of I define a mapping

Lj ® H. - ®H.

LJ,K H H

by writing * H.= ( Hi)e ( H) as
icK ieJ ieK-J

LJ,K(x) f x 0( 0 ui)
icK-J

S...
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Then the mappings LJK are isometric and form an inductive system, i.e.

for Jc Kc M

LJM L K,M LJ,K

U
Then 6Th. is the inductive limit of the above system. Denote by Li, icl 1

the canonical injection

H(J) I1
UU

The next result identifies some eviments of i® H.

Proposition Al Let (x )ieI, xi Hi be a family of vectors satisfying

the following two conditions:

1 1

and

"'.(2) [ <XiU i > Hi. < OD

1 1

Then TIIIxi . exists, and it is null if and only if one of the x.'s
i i

is null. The family of vectors

* x)
iEJ

U
has a limit in 0 ,1i denoted by ex whose norm isiEI 1

I II xi IH
iel i

Moreover, lim I S x- 0 uII = 0.
J iCI-J iCI -J

Proof See page 150 Guichardet (1972).

.* , . .. . . . ... . .% *. - . - - ° . • . . .. . . .
,.. .; " .",S". '- . -. '- ' . .' ,' .*. ..' , ,- ," v . . ,." * .," ,," \ V ,~ . .- . . ." .. . *'.. ", * : . ,"
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A family (x) satisfying (1) and (2) in the above proposition
1 ieI

is called a Decomposable Vector. For any two decomposable vectors we

have

ii

and

< Ox. y>=T<x y>
V 1yi <i'yiH.
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