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VICTOR M. PEREZ-ABREU C. Product Stochastic Measures, Multiple Stochastic
Integrals and their Extensions to Nuclear Space Valued Processes. (Under

the direction of GOPINATH KALLIANPUR.)
. ) N ab X
~) b . I
/ A theory of Lf-valued product stochastic measures of non-identically
Suh

distributed L"-independently scattered measures is developed using concepts

of symmetric tensor product Hilbert spaces. Applying the theory of vector
.I valued measures we construct multiple stochastic integrals with respect to
the product stochastic measures. A clear relationship between the theories

of vector valued measures and multiple stochastic integrals is established.

This work is related to the work by D. D. Engel (1982) who gives a different
approach to the construction of product stochastic measures. The two ap-
proaches are compared.

The second part of the work deals with multiple Wifner integrals and
2 ¢ S0 ¢ ¥
- nonlinear functionals of a ¢'-valued Wiener process Wt, where f' is the

: dual of a Countably Hilbert Nuclear Space. We obtain the Wiener decompo-

I

sition of the space offb'—valued nonlinear functionals as an inductive lim-
P

it of appropriate Hilbert spaces. It is shown that every ¢'-valued non-

- linear functional admits an expansion in terms of multiple Wiener integrals
in one of these Hilbert spaces and can be represented as an operator valued

.-
Q: stochastic integral of the Itd type.
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CHAPTER I

R

INTRODUCTION

-
-

Beginning with the works by Wiener (1938) and ItS (1951), the notion
of multiple stochastic integrals (m.s.i.) has been a useful tool in ap-
plied and theoretical areas of Probability and Statistics, and several
efforts have been made to build a general theory.

The purpose of the first part of this thesis (Chapters 2 and 3) is

to define the symmetric tensor product measure (s.t.p.m.) and use this

concept systematically to construct multiple stochastic integrals. The |
latter will be obtained as integrals w.r.t. appropriate product stochas- ;
tic measures (p.s.m.). The concept of symmetric tensor product measures
is central to the construction of product stochastic measures.

In Chapter II of this work we develop the theory of tensor and sym-
metric tensor products of orthogonally scattered measures. It turns out
that the different powers (in the symmetric tensor product sense) of the
s.t.p.m.'s are orthogonal and take values in a common, appropriately de-
fined (exponential) Hilbert space. Then we construct multiple integrals
with respect to the s.t.p. measure using the theory of integration w.r.t.
vector valued measures as developed, for example, in the book by Dunford
and Schwartz (1958).

In Chapter III we apply the results of the previous chapter to study
symmetric tensor product stochastic measures and multiple stochastic inte-
grals of dependent, non-identically distributed Lz-valued independently

scattered measures. We identify the appropriate exponential Hilbert space

N nul.-“-L RN
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which is the common range for the s.t.p. stochastic measures and m.s.i. of
different orders. We investigate the Gaussian and Poisson situations sep-
arately since a more general treatment is possible for these cases. We
show that the symmetric tensor product measure approach includes the usual
multiple Wiener and Poisson integrals defined by It6 (1951) and Ogura
(1972) respectively, as well as the multiple Wiener integrals with depen-
dent integrators of Fox and Taqqu (1984). This establishes a clear rela-
tionship between the theory of multiple stochastic integrals and the theory
of vector valued measures. We conclude Chapter III with a comparison of
our results with previous attempts to define product stochastic measures
including the one by Engel (1982) on the Lz-theory of products of indepen-
dently scattered measures.

The second part of this work (Chapters 3 and 4) deals with stochastic
processes taking values in infinite dimensional spaces. Realistic models
for the investigation of many important problems in Physics, Statistical
Mechanics, Geophysics and certain areas of Biology, lead to stochastic pro-
cesses of this kind. A convenient choice of infinite dimensional spaces
is the class of nuclear spaces (more precisely, duals of nuclear spaces).

Nuclear space valued stochastic processes have been considered in the
works of K. It6 (1978a, 1978b, 1983) and the papers, among others, of
Dawson and Salehi (1980), Shiga and Shimizu (1980), Mitoma (198la, 1981b)
and Miyahara (1981). In most of the above papers, the nuclear space con-
sidered is S(IRd), whose dual S(nld)' is the space of tempered distributions.
However, in several practical problems, e.g. those occurring in neurophysi-
ology, it is not possible to fix in advance the space in which the stochas-
tic processes take their values (see Kallianpur and Wolpert (1984)).

We begin Chapter IV by defining the nuclear space ¢ we are going to
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consider in the remainder of this work. Then we define &'-valued Wiener
processes with continuous positive definite bilinear form Q on &x ¢, and
study some related concepts that are used later in this work. We conclude

. Chapter IV by presenting stochastic integrals with respect to a ¢'-valued
Wiener process.

The main object of the second part of this work is to develop tech-
niques for the study of nonlinear functionals of Wt. In this direction
we co”struct in Chapter V multiple Wiener integrals (m.W.i.) with respect
to a ¢'-valued Wiener process Wt. This construction leads to real valued, w
finite dimensional multiple stochastic integrals w.r.t. dependent non-iden-
tically distributed independently scattered measures of the kind considered
in the first part of this work. In addition we obtain the Wiener decompo-
sition of the space of ¢'-valued nonlinear functionals of W, as an induc-
tive limit of appropriate Hilbert spaces. Multiple stochastic integral
expansions and stochastic integral representations for nonlinear function-
als of W, are also obtained in Chapter V. It turns out that the stochastic

integrals constructed in Chapter IV are the ones useful in representing

nonlinear functionals and ¢'-valued square integrable martingales.




v - ey TW WY T W YN T W T N T e w TN W R TR TR TR TN EA T e T LT T eV e e T W R e e e s e -
AL IO A S AR SR S ARSI AN RO A SR S SR AT M PR A Ak A B . . Y

—
i

RIS B

’
!
3
!

CHAPTER II

TENSOR PRODUCT AND MULTIPLE INTEGRALS OF
ORTHOGONALLY SCATTERED MEASURES

We begin this chapter by presenting results on tensor products of
orthogonally scattered measures. We include the infinite tensor product
case (Theorem 2.1.4) which seems to be considered for the first time and
appears as a natural generalization of Theorem 2.1.3. In Section 2.2 we
obtain the symmetric tensor product measure of different orthogonally
scattered measures which are mutually orthogonal over disjoint sets, and
present somé of its properties. Finally, in Section 2.3 we apply the the-
ory of integration with respect to vector valued measures to define multi-

ple integrals for the symmetric tensor product measure.

2.1 Tensor and infinite tensor product of orthogonally scattered measures.

The theory of orthogonally scattered measures with values in a Hilbert

space has been presented by Masani (1968) among others. We begin this sec-
tion by presenting a definition and a theorem which are given in the above

named work.

Definition 2.1.1. Let H be a 1eal separable Hilbert space with inner pro-

duct <,y and norm |L||H, and let (T,A,u) be a measure space where u is
a non-negative, countably additive, o-finite measure. Let Au denote the

ring

A= {AeA : u(A) <=},
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The H-valued set function X is said to be an orthogonally scattered measure

(o.s.m.) on (T,A) with values in H and control measure y if the next two

conditions hold:

i) For each sequence {An}n21 of disjoint elements in Au such that

[} a0

m

U A €A, Z X(A ) converges in H to X( U A ) when m+ o,
n i n n

n=1 n=1 n=1

ii) For A, B € Au
(2.1.1) <X(A), X(B)>H = u(AnB).
It follows from (2.1.1) that

(2.1.2) uw = x|} Aeh

and that if A, B ¢ Au, AnB = ¢ then X(A) and X(B) are orthogonal elements
in H.

The linear space of H
(2.1.3) Hy = sp{X(A): Ae A

is called the subspace of X. Condition (2.1.2) enables us to define a

well-known isometry between H, and LZ(T,A,u) as follows:

X

. . _¢r
For an Au-s1mp1e function f(t) = Xi=1 cilAi(t), Aie Au, cje R
i=1,...,r define

c.X(A.)
p i

N~

I,(f) = [ £(t)dx(t) = _
T i

and for f ¢ LZ(T,A,u) define

I,(£) = [ £(t)dX(t) = lim [ £ (t)dX(t)
T T "

n-rco

where {fn}nZI is a sequence of Au—simple functions converging to f in




LZ(T,A,u). The following result is known as the isomorphism theorem.

Theorem 2.1.1 (Masani (1968)). Let X be as in Definition 2.1.1. Then

(2.1.4) I,: £~ [ £(t)dx(t)
T

is an isometry on LZ(T,A,u) onto H, € H such that for A ¢ Au, X(A) = Ix(lA).

X
Then every o.s.m. X carries with it two Hilbert spaces Hx and LZ(T,A,u)

which are isomorphic under the isometric integral I

X
Similar to the classical theory of real valued product measures
(Halmos (1950)), it is possible to develop a theory of tensor products of
orthogonally scattered measures. In this direction we give a proof of the

next theorem which is established in Chevet (1981). Before doing this

we first introduce some notation: For two Hilbert spaces H, and Hz, H.®H

1 1 2
denotes their Hilbert space tensor product (Reed and Simon (1980)) with

inner product <=,> , and hla h2 denotes the tensor product of the

HIGH2
elements h1 € Hl’ h2 € Hz. Given two real valued measures py and v, uye v

denotes their product measure.

Theorem 2.1.2 (Chevet (1981)). For each i=1,...,n, let (Ti,Ai,ui) be a

o-finite measure space, Hi a real separable Hilbert space and Xi an o.s.m.

on (Ti,Ai) with values in Hi and control measure ui. Then there exists a
n

unique orthogonally scattered measure @ xi on (TIX...XTn, Alx...xAn)
i=1

with values in HIO...Q Hn and control measure ule...@un such that

n
(2.1.5) i:1 Xi(Alx...XAn) = XI(AI)O...GXH(An)
n
for Ai € Au = {Ae Ai: ui(A)<<w}. The o.s.m. ® Xi is called the tensor
i i=1

product o.s.m. of xl""’xn'

Proof It is enough to show it for n= 2. Let

e T R T . N




v

i

R = {A1><A

% A € Ai i=1,2},

® H_-valued set function

For Ai € Au i=1,2 define the H1 2

i
2
® Xi (A1><Az) = x1 (Al) ® x2 (Az) .

i=1

Next let C(2)= FO(R) be the field generated by R, i.e. the collection
of all disjoint unions of elements in R. For C € C(z) with ula uz(C)<°°,
i.e.

C =
j

nan

A.xB.
| 4578))

where ul(Aj) < o, uz(BJ.)<oo and Aj X Bj’ j=1,...,r are disjoint elements

in R, define

2 def r 2 r

@ X.(C) = ® X, (A.xB.) = X.(A,)®X_(B.).
- x1( ) X 1( Jx J) 'Zl 1( J) 2( ))

i=1 j=1 i=1 J

Thus
Il . 1K § f
® X, (C) = <X (AL),X (A )>, <X, (B.),X, (B )>y ..
i TR T N L R 0 e Rt L R S

But (AJ.XBJ.)n (A B = ¢ j#k, then
and therefore

2 T
2
ICRAGH = ¥ u (AU, (B,) = u @y (C) <=
j=1 1 }*IIOH2 j=1 1V 7377247 1772

Since ulﬂ H, is a o-finite measure on Alez, the result follows

from the Hahn extension theorem for o.s.m. given in Masani (1968).
Q.E.D.

For convenience of later reference we present the following theorem

which is a special case of Theorem 2.1.2. We shall use it frequently on

the remainder of the chapter. In this result we require the o.s.m. X;'s




to take values in the same Hilbert space H and the control measures ¥y

to be finite.

Theorem 2.1.3 Let Xi i=1l,...,n be orthogonally scattered measures on

(Ti,Ai) with values in a common Hilbert space H and corresponding finite .

. . . t
control measures ui i=1,...,n. Then there exists a unique n h tensor
n
product orthogonally scattered measure @ xi on (Tn,An) with values in
i=1

n n
Hen = ® H and finite control measure @ ui = ule...eun such that for

i=1 i=1

A; € A. i=1,...,n

e

(2.1.6) X;(A%...xA ) = X (A))e...8X (A )

ness

i=1

and

||.0=

n 2
(2.1.7) | e xi(A)lIHon =

u. (A) Ae A"
i=1 1

i=1 .

where T" = Tlx"'xTn and A" = Alx...XAn is the n-fold product o-field.

We now consider the extension of Theorem 2.1.3 to infinitely many
dimensions. Suppose that (Ti,Ai,ui) i21 is a sequence of probability
spaces and that for each i=1,2,... Xi is an o.s.m. on (Ti,Ai) with values
in a common Hilbert space H and control measure e An example of this
situation is given at the end of Section 4.1.2 in Chapter 4 of this work.

We use the following notation (as close as possible to Halmos (1950)):

00 *® ® @ n n
T=xT,A =xA M - T, ™M=t A" = & A )
i=1 i=1 j=n+1 } i=1 1 i=1
o0
and uw =@ ui.
i=1

For notation, definitions and basic results concerning infinite tensor

products of Hilbert spaces, see Appendix A. Let u = (ui)°°

i=1 where u, = Xi (Ti)

be the sequence of unit vectors in H from which we construct the infinite

''''''''''''''''''''''''''
........

.....................................

.................................
...........................
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tensor product Hilbert space i:ilﬂ whose inner producrtl is denoted by

<+,*>_ . For each n21, the n"'h tensor product o.s.m _0 )(i of Theorem 2.1.3

takes values in _2 H. This space may be seen as a sxlxi;slspace of ;QH ‘
through the inje;;on = |

©
hlo...shn -+ hle...ehn ] ® xi(Ti)
i=n+1

h. e H i=1,...,n.
i

Let C be the field of cylindrical sets in A”. For Ae C, A= BXT(n)

®y
B e A" some n21, define the @ H-valued set function X~ as
i=1
o0 n «©
X (A) =0 Xi(B) ® o X, (T.).
i=1 i=n+l 1
cu o
Lemma 2.1.1 The @ H-valued set funtion X is well defined and finitely
i=1
additive on C. Moreover,
) 2 00
X, = u @ Ae C.

Proof Suppose A e C, A = Bx T(n), Be A" and A = Cx T(m), Ce A™ m<n.

Then B = C x Tm+ X...xTn and

1
n m ‘
8 X;(B) = ®X(C) e X (T ,)e...8X (T)
i=1 i=1

Then
n © m @©
®@ X,(B) 8 © X.(T.) =@ X,(C) ® ® X, (T.)
i=1 ! ji=ns1 Y =1l jeme1l 1

and hence X is unambiguously defined for A ¢ C. ‘

Next, if Al’ A, e C, A.nA, = ¢, then for some n=1, Al=B XT(n),

2 12

- (n} -
A2 BZXT and Blnl!2 ¢. Hence

1

n [- -]

oD

X (Alqu) =® xi(BIUBZ) e‘ ® xi(Ti)
i=1 i=n+1




Ty

9t by,

’ﬂ | .. ;
. '. '- .

Yy

n n ®
= { ® X, (B) *.°1x‘i(32)}° ® X, (T,) (by Theorem 2.1.3)

n oo n [+ ] © .
=@ X.(B.))oe ® X.(T.)+e X.(B,)® ® X (T.)=X (A,)+X (A,)
i=1 * 1 i=nel ! 1 i=1 ! 2 i=n+l1 it 1 2

i.e., X is additive on C.
Finally, if A e C, A = Bx T(n), Be A" some n>1
IXC@I12= Nl X, B 112, = upe...on (B) = 1(A)
o i @n 177" ""n ’
i=1 H
Q.E.D.
In fact we now prove that X~ has a o-additive extension to A”. The

following result appears to be new and due to the finiteness of u_ its proof

does not need the Hahn extension theorem for o.s.m. of Masani (1968).

wy
Theorem 2.1.4 There exists a unique @ H-valued orthogonally scattered
o0 (o] o« . i=1 o0
measure X on (T ,A ) with control measure u (a probability measure), such
that for every A ¢ C A=Bx T(n), Be Al
0 n ®
(2.1.8) X (A) =@ X,(B)e o X, (T.)
. i . iti
i=1 i=n+1
[ -]
and for every A ¢ A
o0 2 oo
(2.1.9) HX Il =w M.
Proof Step.l: X~ is o-additive on C.
Let Ai e C i=1,2,... Ai + ¢ (null set). We need to show that

||Xw(Ai)||i + 0 as i +®, But this follows since from Lemma 2.1.1

® 2 o o . © -
Hxaplly=w (A;) and W (A) 0 as i >« for u is a probability

[ -]
measure on A ,

o
Step 2: Extension to A

Let Ae A = o0(C), then there exists a sequence of sets {An}n>1 in C




a4, 0y

N MM IO
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such that um(AAAn) + 0 as n+ and {Xw(An)}n21 is a Cauchy sequence in
oy

® H:

i=1

X)) - a2 = W ) +0 nmse

Then define’fw(A) = |

- oo » . .
|| .- lim X (A)) which has the required properties.

Q.E.D.

x 8

Corollary 2.1.1 Let Ei € Ai i21, A= E.. Then

1

i=1

X"(A) = ® X, (E) .
i=1

Proof It is known (Halmos (1950)) that A ¢ A" and
[ o]
© —
u (A) -.H ui(Ei).
i=1
This last expression implies that

(-]

5ol (B )51 <=
. it
i=1
and
[e o]
DERUNCHERII LS
i=1
Then conditions (1) and (2) of Proposition A.l1 in Appendix A are satisfied
oy
and hence e—'xi(Ei) is a decomposable vector. The result follows by taking
i=1

An = EIX...XEnx T(n) n2>1 in the final part of the proof of the last theorem.

Q.E.D.
Corollary 2.1.2
[s o]
o0 0
X(T) = @ X,(T.)
. iti
i=1
and
) 2 © oo
(X (T)[|o=w(T) = L
DR OO R LA e -\..::\..:\~\;\ .' R0 St ":"- "\ “:"\‘ o \": -
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2.2 The symmetric tensor product measure

In this section we obtain results regarding symmetric tensor products
of different orthogonally scattered measures with values in the same Hilbert
space. We have restricted ourselves to the case where each o.s.m. is bound-
ed (finite control measure) and defined on a g-field. The reason for these
requirements is that we are primarily interested in using the well estab-
lished theory of vector valued measures in order to construct product sto-
chastic measures and their corresponding integrals, and in this theory these
requirements are needed. This limitation may not be very restrictive since
one could always study the limit behavior of the product measure or the in-
tegral when the control measure goes to infinite, as indeed we do in Chap-
ter 5. Moreover, bounded orthogonally scattered measures have recently be-

come of interest (see Niemi (1984)).

Assumption 2.2.1 Throughout this section, unless otherwise stated, we will

make the following assumptions: Let (T,A) be an arbitrary measurable space,

H a separable real Hilbert space with inner product <-,+>, and norm || «|]

H H’
and n a fixed but arbitrary natural number. Let Xi i=l,...,n be o.s.m.'s

on A, taking values in H and with corresponding finite control measures

ui i=l,...,n. Assume there exist real valued set functions ui. such that

for A,B ¢ A
(2.2.1) uij(AnB) = <Xi(A),XJ.(B)>H i,j=1,...,n.

Applying Cauchy-Schwartz inequality it follows that for each i,j=1,...,n,

uij is a signed measure of bounded variation, where uii = ui i=1,...,n.
At times we shall use the facts that if Yo is a o-finite non-negative mea-

sure on (T,A) such that My << My i=1,...,n, then uij << My i,j=1,...,n

L T T R B A IS

et . " e v . - -’ a - - - .
N N T T e N N ~
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- . " - . -
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and if
(2.2.2) MOR ——l (t)
then R(t) = (rij(t)) is an nxn non-negative definite matrix a.e. du,.

Symmetric tensor products In order to set up notation we now present some

facts about symmetric tensor products of Hilbert spaces (see Guichardet
(1972)). As in Section 2.1 let H@n denote the n-fold tensor product of H.

For hle...ahn € HQn hi e H i=1,...,n define

(2.2.3) on(he...eh) =1 T (h e...eh )

I 1 n
where II = (Hl""’nn) is a permutation of (1,2,...,n). The n-fold symmetric
tensor product Hilbert space Ho" is the closed subspace of B generated by

elements of the form

k
k{ ckc (h .-@h )

where Cy € R, h? eH k=1,...,m, i=1l,...,n.

The operator og can be extended to an orthogonal projection operator

on H@n whose range is Hon. We write

where

(2.2.4) h.e.® =0"(h®..6h) h, eH i=l,...,n
n n 1

and notice that for g; € H i=1,...,n

n n
1
(2.2.5) < eh, ®g>_ == ) <h,g <h _,g
j=1 1 j=p 3 H@n n! I Hl H n Hn H
n
Thus in particular, if h ® h, h e H, then
i=1

.........
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en ©n
(2.2.6) <h ,g > on

= (<f,g>“)n geH
H

and
en;, 2 2.n
I %y = Bl ™

For hi e H i=1,...,n, hlo...ehn can be represented as a linear com-

bination of elements of the form hon h € H:

(2.2.7) hio...ohn =

1 n-1 [} on
= )7 (-1 (1 _(1)h,+...+1 (n)h)
n! 2=0 NZP2 N¢ 1 N© n

where Pz is the set of subsets of {1,...,n} with 2 elements.

Symmetric tensor product measure The first result of this section gives

the symmetric tensor product measure of X ..,Xn, which is a Hilbert space

1’

(Hon-valued) measure. Although it can be proved for any o.s.m.'s not neces-

sarily bounded, we assume them as in the beginning of this section.

Theorem 2.2.1 Let X ,...,Xn be orthogonally scattered measures as in

1
n
Assumption 2.2.1. Then there exists a unique Hon-valued measure © Xi on
i=1
(Tn,An) such that for Ai e A i=1,...,n
n
(2.2.8) 121 Xi(AIX...XAn) = Xl(Al)e...eXn(An).
n ® n ,n
Proof Let ® X, be the H "-valued o.s.m. on (T",A") given by Theorem 2.1.3.
i=1 .
For A ¢ A" define ‘
n n
(2.2.9) ®X.(A) = o: ( ® X, (A))
i=1 i=1

where og is the projection operator on T with range p" defined in (2.2.3).

Then for A ¢ A"
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I ex@ll o 51l ®x @l
(2.2.10) | ® X.(A) < @ X. (A)
i=1 ? K" j=1 1 Hn
n en n
. and ® Xi is a finitely additive H -valued measure on A°. Next since
:: n i=1 .
- ® X, is o-additive on A" - thus contiuous by above at the empty set - it
" i=1 n
. follows from (2.2.10) that e Xi is continuous by above at the empty set
-~ i=1
& and then o-additive on A".
e n
tf Finally, by Theorem 2.1.3, @ X, is the unique o.s.m. on (Tn,An) with
) i=1
i values in H‘x’n such that
gl n
:-_: iflxi(Alx“'xAn) = Xi(Al)e...sxn(An)
o =
[
i for A; € A, i=1,...,n, from which (2.2.8) follows.
" Q.E.D.

2T,
. e

Corollary 2.2.1 Under the assumptions of the last theorem, for A e Al

R ) R

n 2 n
(2.2.11) Il-o Xi(A)|| on * .:

u‘ (A) L]
i=1 H j=1 1!

1

. _v<

5 AT,
P ]

v PR .

The proof follows using (2.2.10) above and (2.1.7) in Theorem 2.1.3.

n
The above corollary gives an upper bound for the norm of @ Xi (A),
i=1
A ¢ A". We shall obtain an exact expression for this norm (Corollary 2.2.2)

which uses the signed measures uij defined in (2.2.1). We first present

a more general result.

e Lemma 2.2.1 For A, Be A"

3 n n

o (2.2.12) < o Xi(A)’ .0 xi(B)> on -

o i=1 i=1 H

S !
g 1 m 1 n

i: = % ulnle...eunnn(AnB ) =5 % ulnla...@unnn(BnA )

Z_, where for A ¢ A" and I = (Hl,...,Hn) a permutation of (1,...,n) ArI is




AgiRats Suin i Biagn T
R A

defined by

(2.2.13)

Proof Step 1

A., B. e A i=1,...,n.
i’ Ui

n n
<e
i=1

i=1 H

1

n!

Z<X(A),X
i 1V1 Hl

=it~

nm_ n,
A = {(tl,...,tn) e T : (tnl,...

Assume that A,Be An, A

Then from (2.2.1), (2.2.5) and

u (A,nB_ )...u (
III1 1 II1 nIIn

16

,tn ) € A} ,
n

xB

A% xA , B = B,x n

1% XA 1%
Theorem 2.2.1

X;(A), ® X.(B)> o = <X (A))e...eX (A),X (B )e...eX (B })> o

H

(BH1)>H- . -<Xn(An) > X-nn(BHn) >

A_nB_ )
an

- A P |
== T ®--8up ((Ax...xA )0 (Byx...xB)")
I 1 .n
1 I
== ) My @« -®u o (AnB7).
I 1 n
Step 2 Assume A, Be A" are of the form
m mz
A= vt bl B UT @B
j=1 7 ] k=1
1 n 1 n . _ .
whtlare AJ.X...><AJ.,1 ka...xBk j=1, sosMys 11(-1,...,1112 arcle as in Step 1 and
n n, _ .y n n,o_ ..
(ij,_,xAj) 2 (Aix,_,xAi) = ¢ i#j and (Bjx...xBj) n (ka...ka) ¢ j#k.
Then since @ )(i is additive on An, from Step 1 we have that
i=1
n n u ;2 n 1 n, N 1 n
<®X.(A), ®X.(B)> o = ) < ®X,(A:x...xA0), ® X_ (B x..-xBM)>
i=1 1 T i=1 VT ™ 521 k=l i=1 b ) i RPN S k'”en
m, m,
1 z z 2’ 1 n 1 n,ll
= Hyvy @...0U ((A.x...xA.) n (B x...xB,)")
n! T §=1 k=1 ml nIIn j j k k
m
=-% ) {1 Myp ® -8 p ((alx...xa") n 8N
M=l e J
1
*71 L Yine...en . (AnBY).
1 nll
n
ORROERCACACIEA T e e e e e e e e e e e ARSI L el
POty A :lﬁ;:::;:il;:::;;l"-I"-Z"-L-‘.;-'._-'.,-:.j\'-' e e L e T e T R S
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n .
Step 3 Assume A,BeA". Then there exist sequences {Am}mzl’ {Bm}le of

sets in A" as in Step 2 such that

n n
@ ui(AmAA) + 0, © ui(BmAB) - 0

i=1 mco i=1 m>o
and
n n n n
< ® X,(A), ® X, (B)> = lim<® X.(A), ®eX.(B)> _ .
i=1 1 iml B E™ g el D™ iap BT

Then it is enough to show that
) Myp ® -8 (Amnt) ) My ® - ®W o (AT,
Il 1 n me I 1 "

Using the fact that for all Il and A, Be A"

n n
© 1, (W) o U, (8))

I
lu, ®...8u_ (AnB)| s {
ln1 an i=1 i=1

we have that

1
|

) I 1 I
YRl ulnle...eunnn(AnB ) -y % ulnle...ounnn(Aman)|

.11 I i
= In! % umle...eunnn(AnB \(A_nB )

I 1
O n (AgnBp (Anb NI

-

=1 I
= n!l % plnla...@unnn(AnB nA;)

r

L JADRACR

n . .n
® + ) M @O o (AnB n(Bm)c)
e I 1 n
}f - T uyg e...ou o (A nBIA)
o n 1 n m
i. 1l I, ¢
= - ) U, ®...8u - (AnBn(B)")]|
. i 1II1 an m m
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1 m.c
s— Ylu,,e...en - (AnB nA )]
n! I III1 nnn m
+—1' ZIum ®...8u o (Aann(BH)C)l
n! o 1 nll m
1 I .c
+= Y|y, ®...8u - (AnB nA)|
n! Ii lII1 an m m
1 n_Il.c
+—= Jlu,; ®...8u - (A nB a(B) )|
n! I 1II1 an m m
n L M 1 n 1 n ”
s{eu.(A\A)IIH{ e u. B} +{eu (A)}* eu,(B\B)}
. 1 m . 1 . 1 . 1 m
i=1 i=1 i=1 i=1
n 0 L n 1 n i
+{ e u (AN @ u; (B 12+ {eu (A)}* @ u (B \B)}
i=1 i=1 i=1 i=1
n n
which goes to zero as m »> », since @ ui(AAAm) + 0 and e ui(BmAB) + 0.
i=1 o i=1 lliaad
Q.E.D.

Corollary 2.2.2 If A e A", then

n
2 1 n
(2.2.14) || iglxi(A)“HQn == IZ[ umla...epnnn(AnA ).

We now consider special cases for which the previous results simplify.

Symmetric sets A set Ae A" is called a symmetric set if AH= A for all per-

mutation I of {1,...,n}, where An is defined in (2.2.13). The o-field of
symmetric sets of A" (Dellacherie and Meyer (1978)) is denoted by AOn. Since
for Ae Agn AnAn = A for all II, we obtain the following result which is a
generalization to the case of several orthogonally scattered measures of cor-

ollary to Theorem 1 on Chevet (1981).

n
Corollary 2.2.3 The vector measure © Xi is an Hgn-valued orthogonally
i=1

en . on .
scattered measure on (Tn,A ) with control measure p  given by
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= en
(2.2.15) u™ (A Z uln .Ounnn(A) Ae AN,
and

I 0 X, (A)H = u™().
i=1 ! ‘

Antisymmetric sets Let I denote the identity vermutation of (1,2,...n). A

set Ac A" is called an antisymmetric set if AnAH= ¢ for all permutation II

of (1,...,n) distinct from I . For this kind of set Corollary 2.2.2 simpli-

fies as follows:

Corollary 2.2.4 1If Ae A" is an antisymmetric set, then

(2.2.16) e x.mll2 =L eu(A)
e i @ n! ._

i=1 H i=1

The next result is an application of the last corollary to the case when
T is an interval of the real line and the measures ul,...,un are non-atomic.

This will be a useful result in the next section.

Corollary 2.2.5 Let T € R be an interval of the real line, A= B(T) and

suppose that HyseeosU are finite non-atomic measures on (T,A). For each

permutation I = (II ,Hn) of (1,...,n) let

1°°°"

(2.2.17) ™ = {(t

Then for each T T° is an antisymmetric set of A" and for each Ae A"

I
n
® U, (A) = n! Z Il o X, (AnTn)H
i=1 i=1
The o-field
n o_ n
(2.2.18) A = ATy

is called the o-field of antisymmetric subsets of TR corresponding to 1.
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Proof First note that if Il and JI* arc two distinct permutations of (1,...,n)

then Tﬁ n TR* =¢. Let S" = UT%: where the union is taken over all permuta-
)
tions Il of (1,...,n). Then

(Sn)c = {(tl,...,tn)e ™, t, = tj for some i#j}

and since the measures ul,...,un are non-atomic

n

e 1. ((SMH% = o.

. 1

i=1

n n n n
Hence @ u.(A) =) @ u, (AnT,) Ac A",

. 1 . i Il

i=1 M i=1

But for each permutation II, TR is an antisymmetric set; then using Corollary

2.2.4
n n
2 1 n
| e x,cantp Il = 57 _glui(Am‘I‘I) Ac A
i=1 H 1=
and hence
n n n
®u (A) =n! ] || ®x (ATl zen Ae A™. i
i=1 I =17 H
g Q.E.D.
u
-' We now take into consideration a concept that plays an important role

A

in the theory of integration with respect to vector valued measures.

A o 4
1
v
« el e

n
Semivariation of @ X. We first review the definition of semivariation of
i=1

L o

a bounded vector valued measure and related concepts. We follow Kussmaul

pp————
. s

R (1977).

Let M be a bounded vector valued measure on a field Aoof a set S with

values in a Banach space (E,|| *||). The semivariation of M is the extended

nonnegative function sv(M;¢) whose value on a set Ae:Abis given by

sv(M;A) = sup IIZ GjM(Aj)“
J




where the supremum is taken over all finite partitions (Aj) of Ayinto dis-

joint sets Aje Ao,and all finite collections (aj) of scalars aj satisfying
lajls 1. The set function sv(M;*) is extended to the family of all subsets

B of S by defining
sv(M;B) = inf{sv(M;A): Bc A, AcA ).

A subset Bc S is called an M-null set if sv(M;B) = 0. The exceptional

sets for M-almost everywhere convergence are these M-null sets. For two

scalar valued functions f and g on S we define
d(f,g) = inf{a+ sv(M;|f-g|>a)} .,
a20
Convergence with respect to the topology generated by the pseudometric d
is called convergence in M-measure.

The following result (Diestel and Uhl (1977) page 14) is known in the
theory of vector valuel measures as the Bartle-Dunford-Schwartz Theorem.
It will play a key role in Section 2.3. We write it here adapted to the
Hon-valued bounded measure .: Xi of Theorem 2.2.1.

i=1

. = . n
Lemma 2.2.2 There exists a finite nonnegative measure v on A" such that

n
a) V(A) < sv( ® X, ;A) Ae A"

- i=1 1

- and

S n

rﬂ; b) lim sv( @ Xi;A) = 0.

- V(A)*0  i=1

F: We are not able to compute exact expressions for the semivariation

»::'- n

Ef; of e Xi nor for the measure v of Lemma 2.2.2. However, we will find very

- i=1 n

}ﬂ useful upper and lower bounds for sv( @ Xi;A).

t'-‘ i=1

D.

o Lemma 2.2.3 Let Xl,...,Xn be o,s.m.'s and ul,...,un be measures as in

=

P

s

e

Sf{fi”i“i”:;llﬁi:513?;“};£K: . ;??;:;;ii:;i;}féi}i;L;i;i;i:SZk” e




Assumption 2.2.1. Then

n
(2.2.19) sv(izlxi;A) < {ule...eun(A)}% .

Proof. Let (aj);;1 be real numbers such that |aj|$ 1 and let Al,...,Am
m
be disjoint elements in A" such that U Aj= A for m21. Then from (2.2.9)

j=1
and Theorem 2.1.3

I Ja ex aillZ =llo%Fa ox a?
o, @ X, (A)) =llo. () a, ® X.(A)) <
j=1 i=1 173 e T ey Jyy 10T Ty

m n 2 m m n n
| a; @ xi(Aj)ll on" ) ajak<{elxi(Aj),iglxi(Ak)>

j=1 “i=1 H j=1 k=1 i= B
mo, m
= . e,.. .) < .) =
.Z o5 Hye...8u (A)) < _Z We. ..o (A) = upe...eu (A)
j=1 j=1
and hence (2.2.19) follows.
Q.E.D.
n
To obtain a lower bound for the semivariation of @ X. we have to
i=1

assume an additional condition on the measurable space (T,A) and on the

control measures ul,...,un.

Lemma 2.2.4 Let T < R be an interval of the real line, A= B(T) and

xl,...,xn be o.s.m.'s as in Assumption 2.2.1 with finite non-atomic control

measures ul,...,un. Then for Ae A"

|-

n li n n ;i
- { e ui(A)} <ssv(eX.;A) s{eup (A)}*.
: . . 1 . 1 .
i=1 i=1 i=1

(2.2.20)

-1

Proof By Corollary 2.2.5, if A ¢ A"

hes

n
A) = n! Z
(A) = n ]ZI I i‘:l"i(“”’?r) I on

i=1

where for each permutation Il of (1,...,n) TR is defined in (2.2.17).

.............
..............................................
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Next from Proposition 11 of Diestel and Uhl (1977), giving a lower
bound for the semivariation of a vector valued measure,
n n n
sup{|| e X. (B) || :A>BeAl} <sv(o X, ;A).
._q 1 @n - . 1
i=1 H i=1
n n, 2 n 2
Then n!y || @ x.(AnTH)II on S M Y {sv( @ X.;a)}
I =11 H n i=1 1
n
= (n!)z{sv( ® x.;A)}2
. i
i=1
and therefore
1.0 " n
= {e ui(A)} < sv( @ X.;A).
T =l i=1 1
The upper bound in (2.2.20) follows from the last lemma.
0.E.D.

The next two results are consequences of the above lemma. They char-
n
acterize convergence in @ Xi-measure in terms of the control measures
i=1

ul,-,.,un.

Corollary 2.2.6 Under the asuumptions of Lemma 2.2.4, for a sequence
n n
{A} _in A", sv(® X.;A) =+ 0 if and only if ® u,(A) - O.
m m=1 =1 1™ e i=1 1M e

Corollary 2.2.7 Under the assumptions of Lemma 2.2.4, a sequence of real
n
converges in @ Xi-measure to real valued
i=1 n
function f on T" if and only if fm converges to f in © M, -measure.
i=1

n .
A" -measurable functions (fm)m21

: Orthogonality We now study a special property of symmetric tensor product

measures. We assume that for each n=1 we have Xl,...,Xn orthogonally scat-
tered measures as in Assumption 2.2.1, all taking values in the same Hilbert
;‘ space H.
The Hilbert Exponential space of H (Guichardet (1972)) is the Hilbert

space

................
.....................
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o (2.2.21) EXP(H) = )} "™ @® = r)
N n20
o that is, the set of all sequences x = (xn) X, € H.n n20
e such that RIEN < «, with inner product
< n' eén
> n=0 H
- o
o (2.2.22) X, Y=L XLV oo
o n=0 H
- Since for each n20 H™" may be seen as a subspace of EXP(H)
(o ,...,xn,...) X, € HO"), then for each n 2 1
n n
® X.: A" + EXP(H)
i=1 1t
is a vector valued measure with values in EXP(H). Therefore symmetric
tensor product measures of different orders may be realized as taking
values in the same Hilbert space, viz, EXP(H) and we have the following
result.
n; n, n;
Lemma 2.2.5 If nlf n,» then for all A€ A~ and Aze A® e X.(Al) is
n i=1 1
orthogonal to oZXi(AZ) with respect to the inner product <-,->e in EXP(H).
i=1
o ", n omy
The proof follows since ® X, and @°X, are H and H valued respec-
on i=1 1 i=1 * on

2

tively and H ! is orthogonal to H 2 in EXP(H) if n #n,.

th . : .
The n  symmetric tensor product measure of an o.s.m. with itself To con-

clude this section we turn to the special case of symmetric tensor product
measures of an orthogonally scattered measure with itself. We show how pre-
vious results are simplified and other new results can be obtained. We take
X to be an o.s.m. defined on an arbitrary measurable space (T,A), with values
in a real separable Hilbert space H and finite control measure p (which is

not assumed to be nonatomic). We may take H to be Hy, the linear subspace
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generated by X as in (2.1.3). For n21 let xOn be the nth symmetric tensor
product measure on A" with values in EXP(HX) (or H;n) given by Theorem 2.2.1,
and let u@n dencte the n-fold product measure of py with itself. The main
properties of Xon are summarized in the next result in which some possible

simplifications of earlier results are shown.

Proposition 2.2.1 a) For Al""’An e A n21.

on _
XTM(A x- xR = X (A)O...0X (A)
b) If Ae A" and B ¢ A™

RO S L . <X""(A),X°"(B)>H(,,1

X
- 1 en I, _ 1 en I
=8 = %u (A0B) =8 = T u (A nB).
i
c) [[x°"(A) l 2 =—1-, ) uen(AnAH) < u°"(A) Ae A" n21.
HOn n! 1

X

d) The vector measure XGn is an H:n—valued orthogonally scattered measure

on (Tn,Aen) with control measure u@n
e) If Ae A" is an antisymmetric set

2
W1l on == ).

X
The proof of (a) follows from Theorem 2.2.1. Lemmas 2.2.1 and 2.2.5 imply

1 xem

(b) and Corollaries 2.2.2, 2.2.3 and 2.2.4 imply (c), (d) and (e) respec-
tively.

In particular, Lemma 2.2.4 applies to Xon. However, in that lemma we
have assumed that T is an interval of the real line and the control measure

is nonatomic. In the case of X it is possible to improve Lemma 2.2.4 and
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compute an exact expression for the semivariation of XQ“, without assuming

that T< R or U is nonatomic.

Lemma 2.2.6 Let X be an o.s.m. on an arbitrary measurable space (T,A) with

values in H, and finite control measure p (not necessarily nonatomic). Then

X
for A ¢ A"
@
(2.2.23) w8 = (5 T e anah Y - [Tl
! H
X
Proof From (c) in the last proposition and the definition of sv(Xon;A)
(2.2.24) L7y = x| 2 s sve®™;a) |
n! on
I H
X
On the other hand if |ai|S 1 i=l,...,m are real numbers and A ,...,A
m .
are disjoint sets in An, U Ai= A, then for each permutation Il of (1,...,n)
i=1
m
A?,...,Ag are disjoint sets in An and AII =U Ag. Thus, using (b) in the
i=1

last proposition and the fact that u  is a positive measure on A" we obtain

m m m
on 2 _ on on
T o XA e = 1 1 ooy <XTU(A)D, X7 (A))>

i=1 HX i=1 j=1 H:n
m m m m
1 Z Z z en I 1 en 1
== a0, WUANAL) <= T T T w (A NA)
{ {
mim1 =1t o VI oma A i
1 @n Il on 2
== Luana) = IxTTa 14,
| H
X
Therefore )
- sv(xon;A)2 s—% )) uan(AnAH)
.. n:
- n -
}j and the lemma follows by using (2.2.24).
L Q.E.D
- As one may expect Corollaries 2.2.6 and 2.2.7 can be improved for XO".

.................................................
.........................................................................
..........
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Corollary 2.2.8 Under the hypotheses of Lemma 2.2.6 for A ¢ A"

(2.2.25) {n—ll u@"(A) };i < sv(x®;A) < (W®(A) }li

. n ®n . .
and for a sequence (Am)mzl in AV sv(X ;Am) + 0 if and only if
@n
U > 0.
nmreo

Proof Since uen is a positive measure on A" then for each A e A"
en Il
) < T ™ @ana) s ntu®(a)
i

and hence (2.2.25) follows from (2.2.23). The second part of the corollary

follows from (2.2.25).
Q.E.D.

Corollary 2.2.9 Under the hypothesis of Lemma 2.2.6 a sequence of real

valued A"-measurable functions {fm}m>1 on ™" converges to a real valued
function f on T" in Xon-measure if and only if fm converges to f in
an
H  -measure.
The proof follows by the above corollary and the definition of conver-

gence in M-measure for a vector valued measure M, given before Lemma 2.2.2,

2.3 Integrals with respect to the symmetric tensor product measure

We now apply the theory of integration with respect to vector valued

measures (Dunford and Schwartz (1958)) to define a multiple integral

n
f .Th.f £(t),.nt )dX (8. .dX (¢t ) = {nf(_g)diglxi(g)
n on
where f is a real valued function and @ Xi is the H -valued measure of
i=1
Theorem 2.2.1. We assume, unless otherwise stated, that H, Xl,...,Xn, ”ij

i,j=1,...,n and (T,A) are as in Assumption 2.2.1 of the beginning of Sec-

tion 2.2.

OAGA
A A
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We begin by presenting a definition and a proposition from the theory
of integration with respect to bounded vector valued measures. They are
given, for example, in the book by Kussmaul (1977) (Definition 10.3 and Pro-
position 10.4). We shall write them here using the notation for the vector
valued measure : Xi.

i=1

Definition 2.3.1 Let f(t) be an An-measurable simple function on Tn, that is

k
(2.3.1) £(t) =‘§ “le.(E) = (t,..at)
j=1 ]
where aj ¢ R j=1,...,k and Al,...,Ak are disjoint elements in An. The in-
n n
tegral of f with respect to @ X., denoted by [ f(t) de X.(t), is the
on i=1* ™ i=1 *
element of H ~ given by
f n E n
(2.3.2) f(t)d @ X, (t) = o, ® X.(A.).
™ j=1 1 j=1d 4= 1)

n

A real valued function f on T" is said to be ® xi_integrable if there ex-
i=1

ists a sequence {fm}m>1 of A"-measurable simple functions on T" such that

n
(2.3.3) fm converges to f in © X, -measure and
i=1
f n
(2.3.4) lim a.f )(E)d o X.(t) =0
sv( g Xi ;A0 ™ Am i=1 t
i=1

uniformly in m=1,2,..., i.e.: for each €> 0 there exists §> 0 (independent

of m) such that for every set A for which sv(og= Xi;A) < § we have

1

n
|{n 1Afm(£)di:1xi(g)| <e for m=1,2,...

n n
We denote by L,( ® Xi) the class of all e X.-integrable functions.
i=1 i=1

n
Proposition 2.3.1 Let f(t) te Tn bea ® Xi—integrable function and
i=1

{fm}m21 be a sequence of An-simple functions satisfying (2.3.3) and (2.3.4).
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n n i
Then for every A ¢ A (lAf) (t) is o Xi-mtegrable and the sequence
i=1
n
UnQaf) (04 o X, (O},
T i=1
converges to an element in Hon uniformly in A € A", The element
] n f n
(2.3.5) (1,£)(t)d e X, () = 1lim J_(1,f )(t)d @ X. (V)
™ A j=1 1 e T8 AT Ty
n
is called the integral of f with respect to o X, over the set A.
i=1
Sometimes we will use the following notation
n
I(£; X5eeunX ) = [nf(z)d.? X; ()
T i=1
and
f n f n
f(de X.(v) = [ (1,£)(t)d e X. (1)
A j=1 1 ™ A =117
n
We now obtain a sufficient condition for the @ Xi-integrability of a
i=1
function f in terms of the control measures ul,...,un.
2.n,m O n
Theorem 2.3.1 If fe L°(T ,A, © ui) then f is e X, -integrable.
i=1 i=1 *
. 2.n,n " . n
Proof Since fe L°(T,A", @ u.), there exists a sequence {fm}m>1 of A -
i=1 -
measurable simple functions such that |fm| < |f] a.e. ® w, for m21 and £
) ~on i=1 n
converges to f in L (’I‘n,A , © ui) . Then fm converges to f in @ Y, -measure
i=1 n i=1
and by Lemma 2.2.3 fm converges to f in e X,-measure. Thus condition
i=1
(2.3.3) in Definition 2.3.1 is satisfied.
Next, for Aec A" 1,(8) (£,(8) - £, (1)) is a simple function for all
m, k21, i.e.
2
L (E,®) - £, ) = ] o1, (8)
j=1 " 7
for some aj ¢ R and Al""’AQ, disjoint elements in A", Then by definition
o e S e e e
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n
of @ X, (Theorem 2.2.1)
i=1 *
| [, Qp(E,-£)) (4 o X, @ % = | iz @, o X ()|  on
T i=1 H j=1Ji=1 * J " H
n L n 2
=||o°(2a.@xi(A.))|| < || Za @X(A)Il
j=1 Ji=1 J H j=1 s i=1

and using Theorem 2.1.3

L 2 n
Il z . o X, (A )|| =1 ] o, a, < e X, (As ), @ X (A, )>
j=1 Ji=1 "oipl g dz e Iy i B Iy
Jo? e 1,0 2 s
: = a; e u.(A.) = 1, (OIf (t)-£f,(t)]|°d @ u. (t)
. j=1 9 i=1 1 J AT M k(© i=1 ¥

which goes to zero as m,k+ = for Ae A" because {fm}m>1 is a Cauchy sequence

—'(‘ n
F‘ in L2(T",A",8"__1.). Therefore for each Ac A" 1lim [,£ (t) d ® X.(t)
i=1l"1i A m = s _q 1=
o i=1
exists.

Fi Next, since for each A ¢ A" and m2 1 lAfm is a simple function, i.e.
- there exist aj j=1,...,% and disjoint elements Al""’AR of A" such that
o % .

- 1,f (t) = A B
.- A'm J=1 J J
] n

[ then from (2.3.2) and the definition of sv( @ Xi;A)

» i=1

_. n 2

- ] £,(0d @ x; ()] Jon | _Z " o X, (A) |
b A i=1 j=1 3 i=11 Hon

o = || fm 2 . o x (A)]I on S I fmll SV( ® X A)

- eI, i=1
i where

- m m

:kl - n

o Hence we have that for each m>1 f( )f (t)d o X (t) is sv( @ x « }-contin-
. =1 i=1

uous. Then by the Vitali-Hahn-Saks Theorem (Dunford and Schwartz (1958))

and Lemma 2.2.2 we have that
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I o x, (t)]| .
(1,f )(t)d @ X, (t) +0 as sv(® X,;A) + 0
R N j=1 1
uniformly in m=1,2,... . Then condition (2.3.4) in Definition 2.3.1 is
n
satisfied and hence f is ® X, -integrable.
. i
i=1 Q.E.D.

Under additional conditions on (T,A) and the control measures Mpse-esMy

we are able to give a converse of Theorem 2.3.1.

Theorem 2.3.2 Let T c¢ R be an interval of the real line, A= B(T) and

suppose that ul,...,un are finite non-atomic measures on (T,A). Then a real

n 2 n
valued function f on T" is @ Xi-integrable if and only if fel (Tn,An, ® ui).
i=1 i=1
n
Proof Sufficiency follows from Theorem 2.3.1. So assume that f is e Xi-
i=1

integrable, i.e. there exists a sequence {fm}mzl of A"-measurable simple

functions that satisfies conditions (2.3.3) and (2.3.4) of Definition 2.3.1.

. . . . 2
Next, since for each k,m f -f, is a simple function, £,()-f, (t) = zj laleﬁt)

say where aj e R j=1,...,24 and A_,...,A, are disjoint elements in AN,

1 2

then for each A e A" using Lemma 2.2.1 we have that

n
(2.3.6) 1 fnlA(fm—fk) (t) d o
T .

2
X. () || =
i=1 1 HOn

n n
<[ 1,(£,-£,) (Dd olxi(_t), [l (£ -£) (D4 °1Xi(9> on
T i= i= H

™

A % n n
=) a, a, <o X, (A. nA), ® X.(A. nA)>
U O I IEF A S S U O S T
L 2

nAn(Aj nA)n)

) Mo ®...8u - (A,
I an j 2

7 a., o,
n il 3ol J1iJdan 1

=

!/,
T

n

3

%
) a. a, 1 (1) 1 n(t)du. - ®...8p - (1)
j1=1 j2=1 iy 3, Aj nA (Aj nA) 1H1 nﬂn

1 2

...........
................

e
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A

2

- 1

3 == Zﬁlmmgu%fggn%fgﬂgwme“m%nQL

; Il 1 n

;2 Next, using the notation of Corollary 2.2.5, for each permutation II, Tﬁ

=3 : . . . : . ™o (T o

b defined in (2.2.17) is an antisymmetric set, i.e. " { H) = ¢ for each .

permutation II* distinct from the identity permutation I . Then for each II

A P
L P 2
M

the above expression (2.3.6) simplifies as

R
.

I
B ':_'l_r

+

n
2
1 ) dex, (] %, =
i=1 H

s
/
T

b
=

1 2
Al fn 1a® GO ®) due.. o, (©).
1

n

But from Proposition 2.3.1, if m,k > «

n
2
||{n(lA(fm'fk)(E)dijlxi(E)"Hen

- converges to zero uniformly in A € A". Then if s" = u Tg
- 1T

. , M

: [ol fOE (D-F, (1)) deu(t) >0 asmk >
3 T S i=1

!. and since the measures ul,...,un are non-atomic

-

2 n n,c

- @eu.((SH)H =0

. . 1

< i=1

which implies that

n
2
{n|fm(£)-fk(3)| dizlui(g) >0 as mk + o,

n
Thus {fm}m>1 is a Cauchy sequence in LZ(Tn,An, ® ) and since by Corol-
- n i=1 2 n n
lary 2.2.7 fmé-f in @ M, -meaure, then f belongs to L (Tn,A , ® U.).
i=1 i=1 1
Q.E.D.

n n
Properties of In f(t)d e Xi(Ej Since the integral fnf(E)d ® X.(t)
T i:l T i=1 11—
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has been constructed using the theory of integration w.r.t. vector valued
measures, then this integral inherits the properties from that theory. For
the sake of completeness we present here some of these properties. They are
Propositions 2.3.2-2.3.5 whose proofs are given in Kussmaul (1977). We
write them here using our notation even though they hold for every bounded

- vector valued measure.

On the other hand we are able to prove another kind of properties for
fnf(ED d ;g Xi(g) which use the special structure of symmetric tensor product
gf .g X;thd Assumption 2.2.1. They do not necessarily hold for every vec-
torljgiued measure. They are presented in Theorem 2.3.3, Lemmas 2.3.1-2.3.2

and Corollaries 2.3.1-2.3.3.

n
Proposition 2.3.2 Let fbea o xi-integrable function on Tn, i.e.
i=1

n
f e L1 (.o Xi)' Then

i=1
n n
a) If ge Ll( ® Xi) and a,be R, for each Ac A" we have
i=1
n n n
[(af(t)+bg(t)id @ X. (1) = a [ f()d e X (D +D [ g(t)d ® X. (1)
A i=1 ! A i=1 A i=1 °
- n n ,n
- b) [ f(t)d ® X_(t) is a countable additive bounded measure on (T ,A")
< () =1t
E: with values in Hon such that
; n n
= sv( [ £(t)d ® X.(t);A) > 0 as sv( ® X;3A) > 0.
) i=1 ! i=1

Proof See Kussmaul (1977) Proposition 10.4.

Proposition 2.3.3 Let S be the vector space of real A" -measurable simple

T I T

functions. Define for fe S

n
(2.3.7) €1l = sv( [ £(©)d ® X, ()3T
) i

i=1

| Iennsaias! pdd
S

L3 "'
S

* L R R e T At At Y T et T et et L, e
. - % e - R . Vet . . . T . et et -, . R N T et R o .-‘.'. ------ ‘.'."~‘.-
. PR % - Vo L . N . A . EAL T R A T R PR P L P T
s e” o et et " ‘et e - . . co . - - e L R S S R L R . PR »
. . . . B . S e s e T R N Tl TS T T T Tt T ) e e e .
e % e . .. o e e e e e T e e e NS '-,‘-.'-',. ....... _.'."-'...'_-\‘..'..'_-
PP RPN W S . Y PR WINPT AP U4 L T4 G S S TSN T RER TR SN L)
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Then
a) ||£]] is a norm on S.
b) Let v be the nonnegative measure on A" given by Lemma 2.2.2. Then

every || ¢ ||-Cauchy sequence {fm}m21 of elements in S converges in

n
® X.-measure {and hence in v-measure) to an A" _measurable function
i=1
fonT. '
n n
- c) The space Ll( ® X;) of e X,-integrable functions can be identified
o i=1 i=1

with the completion of S with respect to the norm ||+ || given by

- (2.3.7).
S n On
d) The linear operator In(-; Xl,...,Xn): Ll( e Xi) + H = defined by
. n o= .
iﬁ In(f’ xl""’xn) = {nf(E)d i:1 Xi(E) is continuous with norm
% 1 li= 1
Proof See Kussmaul (1977) Theorem 10.8. :
n
Proposition 2.3.4 a) Let f ¢ Ll( e Xi)‘ Then the element .
i=1
Jo £ o o
f(t)de X.(t) e H
™ j=1 1
is uniquely determined by
f n j n
<f f(t)d @ X, (¢v),F> = f(t)d< e X.,F> (t)
™ i=1 1 imoom j=1 1
n
for all Fe Hon’ where < @ X, ,F>(+) is the signed meaure on A" given by
i=1
n n n -
<o xi’F>(A) = < e X, (A),F> on Ae A,
- i=1 i=1 1 H
- n n
- b) An A -measurable function on ™is @ X;-integrable if and only if
- n i=1
7 for every Fe H™ fis<® X.,F>-integrable and the family
- i=1 1

on}

n
{{nf(gcki? Xp P(L) ! Il F||H0n <1 FeH

1

................................................................
.........................................................
...............................

............................
....................

.............................
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is weakly sequentially compact.
Proof See Kussmaul (1977) Corollaries 1 and 2, page 107.
Proposition 2.3.5 (Lebesgue Dominated Convergence Theorem).
n
Let {f } ) be a sequence of e X; - integrable functions which converges
i=1 n

to a function f in @ X, - measure and |f |sg m21 where gisa e X;-

j=1 1 n i=1
integrable function. Then f is X - integrable, f converges to £ in

n 1-1
the Ll( ® Xi)-norm of Proposition 2.3.3 and
i=1
[ f(t)d o X,(t) = lim f f (t)d @ X; (©) .
™ i=1 1 me TO =1
Proof See Kussmaul (1977) Corollary 3, page 108.
In all the above properties (Propositions 2.3.2-2.3.5) we have only

n
used the fact that ® X, is a bounded vector valued measure. Now we shall

i=1 n
use the special structure of symmetric tensor product of e X and the hypo-

i=1
theses in Assumption 2.2.1 to show add1t1ona1 properties of the integral

[, f(B)d ° X; ().
T i=1
Our first result gives an expression for the inner product of two in-

tegrals and consequently for their norm. We first introduce some new nota-

tion: Let p,be a o-f1n1te non-negative measure on (T,A) such that My <<‘b

- - -
AL IO ARRIAE MAT I
COREPERE T Y DIETRAT T B S 4

i,j=1,...,n = z u, for example) and R(s) = (rij(s)) be the non-nega-
i=1
tive definite matrix a.e. duo given by (2.2.2), that is
dui.
f rxj(s) = Eﬁzl (s) a.e. duo

dTaTET e T T T Y
.

DRl )

For each t = (tl,...,tn) € l!n, let

(2.3.8) R™() = R(t,)8...8R(t )

DAL et
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where & denotes the Kronecker product for matrices, i.e. if A = (aij) is an

(mxn) matrix and B = (bkz) is a pxq matrix, then A®B is the (mpxnq) matrix

a8 3198 -+ 3B )
A®B = aZIB azzB aZnB
8 amlB asz cee amnB i . «
Then R@"(;) defined in (2.3.8) is an (nnxnn) non-negative definite matrix
a.e. dug.
Let (31)2=1 be the canonical basis in R". For each permutation
= (Hl""’%) of (1,...,n) let
n _ fad A
(2.3.9) €en = oI 0...09_1.[ .
1 n |
and for a given real valued function f on T" define the (Rn)m-valued :
functions on T"
i I
(2.3.10) fm(g) = f(EII) €an
and
=1
(2.3.11) £ () == 1 fa ().

1
We shall denote by fon(—t—) the transpose of fon(g .

Using the above notation we now establish the next result.

n
Theorem 2.3.3 a) If f,g ¢ LO(TV,A", e u,)
i=1 1
[£(©)d o J g0 o
(2.3.12) <[ £(t)d ® X. (1) g(t)d @ X.(t)> =
™ j=p 1 M i=1 1 4™

. g n
fon(D)' R (D)ggy (DU (D).

b

...................................
..............
..................................
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2 n n
b) If fe L°(T,AY, @ 1.)

n
[FEOTERACY f{,,, - Jafon® RO, OO

2 n
< '{nlf(g)l dewu ().

i=1
2.,.n ,n n
Proof First we will show that for fe L°(T ,A", @ ui)
i=1
en n
(2.3.13) 1f‘nf@n(gvn (D) fy, (DU (D) < =.
Since ]ny(g)'Ren(E)s(E)duz(E) is a semi-inner product in the space
T

of A"-measurable (n!")en-valued functions on Tn, it follows by the triangle

inequality that

1N n
fon (D) 'R (D) (DA (D)

T

(2.3.14) 0s<f
/

m,,,on 1 Il n
Y IzI E(tplegy) 'R (1) (3 an(zn)em)duo(_t_)

$ (1 JUn(ECp ) K@ (e epdlg@ Y

5 s € & TV
L !

Next wusing (2.3.8), (2.3.10), the transformation theorem and the fact that

éi du.
i .
t rii(s) = HE;(S) a.e. dup, we have that for each permutation II = (Hl,...,nn)
o I en Il n
o 1[,,(f(gn)e@,,)'a (1) (£(ty) e )du, (1)
= [of2 ey Ty () ery (6 G

- T 171 nn n
. d ey,
- 2 2 i=
- = [E2®T (s r (s )dun(s) = [ £4(5) 2 (9)dug(s)

T T dua
: [l£)1% o
- = £(s)|“d ® u, (s).
.- o= (=] 1
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n
Then from (2.3.14) we obtain that if f ¢ L(T",A", @ u)
i=1

(2.3.15) £, (1) "R (D)E, ()dug (L) <

on

-L‘—.

[ 1e@)% o u, (0
t @ Uu.(t) < =
™ - j=1 1

which proves (2.3.13) and the inequality in (b).
Thus applying Cauchy-Schwarz inequality we have that if f,g e

L2(™, A", .2

H.), then
i=11

b

Now we shall show that (2.3.12) holds if f and g are A"-measurable

£ (1) 'R (D)gg, (D)AUD (L) < =

real simple functions, that is

m
£0t) = Y a1, (1)
= kgl k“Ay =

m
(t) = J b1, (t)
8= kzlkAk_

where 3 b, ¢ R k=1,...,mand A,,...,A, are disjoint sets in An. Then
1 k 1 k

using the definition of the integral fnf(g)d.; Xi(E) for simple functions
and Lemma 2.2.1 ' =
n n
< 4nf(3)di:1xi(£), {ng(i)dijl"i<£)>ﬂen

= E ? a.b <.:

n
X.(A,), ® X.(A)>
1 k=1 K o1 173 i K"

j =

1 T 0% I
== jzl kZlajbk % ulnla...eunnn(AjnAk)
1

== 1 [ f@®)g (t)du, ®...0dy - (t)
“!n'{n _)]'[.— 1]'[1 nﬂn—

1
= IZI {nf(ggn(g) rmlctl)...rnnn(tn)dug(g

...................................................
..........

st . . L e e DR . - - .. RN R
........ b A I L R L R I L U RSP PO R I RS RIS N + S mtet. .
T #, o 2 % e L. S N A L A B . e e e e et A e e et e e

R RS R o oo AR
R R R R ROt SRR Sy G, Sy LAY SO R, Gt Wil Wall Lol S, € S L




39

Fon(® 'R (D) g (D AG(D)

=1
i

= 1N n
= | nfon (0 'R (D55, (DA

where f@n(E) = fﬁh(g) for I the identity permutation.
Next for each permutation I, applying the transformation theorem we

obtain

£y (0 R (D) gy, (DAL

en

-—L%

1 n
== ) ] £ (t)gq, ()T s eooro L (t )du (t
nl %,{nn— 1Y) nln_l(-tl) I+ on ol

Es

[

f(E)gH*(g)rlni(sl)...rnn;(sn)du2(§)

. '8N n
- {nf,,n(s) R (1) gqy (VAU (D) -
Then (2.3.12) holds for An—simple functions using (2.3.11),

n
Now suppose that f,ge Lz(Tn,An, ° ui). Then there exist sequences
i=1

{fm}mZI’ {gm}m21 of An-measurable simple functicns such that fm m:w f and
n
gp * g in LZ(Tn,An, ® ui) and by Theorem 2.3.1
M i=1
n n
[(fa®dex. (@ ~ [fvdex (v
T i=1 mo T i=1
and
/ n f n
g (deXx (1) » [ gt)de X (b).
" i=117 e T i=1 *
Then it is enough to show that
en n
{,,((fm),n(g))'n (1) (8y) g (B)dH (1)

Fon (D) 'RTT (D) gg, (DA (D).

—IJH
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2 N 2 n
Denote L°( @ W) = L (T,A",
i=1 i

"nesx

ui). Then using (2.3.15)
1

|{n((fm)on(g)'k°“(g () gy (DAMG(D) -
[nfon ) 'R (D)2, (DaU(D) |
T
$ |[a (g (®) - fon (1)) 'R (1) ((8,) gy () - Eop (D)Mo (D) |
i

s [ ((Een® - £ R (g, (DG |

* I{nfm(g'k°"(g)((gm)m(g) - on (DA |

<heeell, o Megsll o o gl o el
L'(en) L"( e W) L"( e n) L°(®u)
i=1 i=1 i=1 i=1
s el llegll . +0 asmeo
Lz( ® u.) 12 (®u)
i=1 i=1
2 n
because fh + f and 8y ~ € in L (.0 ui).
moo oo i=1

(b) follows from (a) taking f = g.
Q.E.D.

Corollary 2.3.1 If A is an antisymmetric set in A" then for all

2 n D
f e L(T‘n,A,eui)
i=1

I #0008 X, 011 %, =4 [ £ 1% 8 uce
A © i=1i(—) Ht’n’n!A (B]"d e u (Y.

i=1

Proof Since An AII = ¢ for all Il distinct from the identity permutation I ,

then using (b) in the last theorem

n
2
I £a e @Il g = £ (1) 'R (D) £ (D) AUG(2)
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== % %n £(t) 1A(1)fn(91An(9dumle...edunnn(g
-1 J If(t)l2 dy,® Gdu.(t)
n! A — 17" rn="

Q.E.D.

Corollary 2.3.2 If uij= v i,j,=1,...,n and f ¢ Lz(Tn,An,uen), then

n 2 ~ 12, 8n
f(t)d e X, (t) = f(t)|°d t)
1, 204 e X, @l g = [, E0 "™

where HO) =;1!. ] £,(0)
i

Proof  Taking u =, then rij(t)= 1 all i,j,=1,...,n and from Theorem

5 2.3.3 (b)

n
2
: 1, £ e @l g = 1{,, £ (1) "RT(E) £y (2) i (D)
' - Lo f05@8" - [IF0 %80,
T

Q.E.D.

Corollary 2.3.3 If uij= pi,j=1,...,n and f is a symmetric function

in L2(Tn,An,uen) then

n
2 2, en
f(t)d @ X, (t) = f(t) |du (t

~

The proof follows from the last corollary since f = f.

The next lemma may be seen as a Fubini's type theorem for multiple sto-

chastic integrals. We write

n
I(f; XpheennX) = {n f(gdi:lxi(g.

2
Lemma 2.3.1 Let f(tl,...,tn) = fl(tl)...fn(tn) where fie L (T,A,ui)

S S P ST S Yt My A S PRt M S il a0 a2 e e S 0 Yl e v el i g Janis Auleinie Snih st Sttt Sl St bunie S A e s

n
i=1,...,n. Then f is e X,-integrable and
i=1
I (f; X;,...,X) =1, (£f,)e...01_ (f
a5 Xphee X)) = I (£)) x (En)
1 n
e e T e e el e e e e T
N e N SR T e e e D D e e T T
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where for each i=l,...,n, Ix is the isometry between LZ(T,A,ui) and Hx
i i

given by Theorem 2.1.1.

n
Proof By Fubini's Theorem £(t) = £, (t,)...£ _(t ) belongs to L2, A", o uo)
n i=1
and hence by Theorem 2.3.1 f is @ xi-integrable.
i=1
First assume that each f, is a simple function on (T,A), i.e.

A, (5

k.
£.(s) =]t a1
Pooga Ty

where a5 e R j=1,...,ki and Ail""’A' are disjoint sets in A i=1,...,n.

n

ik,
i
Then
k1 kn
IR TR e (O
1% I, I LV
and by Definition 2.3.1 and Theorem 2.2.1 .
§1 kn n
I (f; X.,.0.,X) = ) ees a,. ...a_. @ X, (A,. x...xA_. )
n 1 n j1=1 =1 131 NJnoi=1 113 nj
n
k1 n
=y -] a . ...a_. X.(A . )e.. .6X (A .)
j1=1 jn=1 131 nj i 131 n nj

k
= 1 n
(J §=la 1j lxl (Alj 1) e .o(jrzflanjnxn(Anjn))
= Ix (fl)o...olx (fn).
1 n

Next since each fi € LZ(T,A,ui), there exist sequences (fl;')m?_1 i=1,...,n
of simple functions on (T,A) such that f? + f in LZ(T,A,ui) for each

m-—>ce
i=1,...,n. Define '

m
£() = £(t)...£1(t)

n
then £° + f in L2(Tn,A", -] ui). Next since In(';xl....,xn) is a bounded
i=1
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linear operator, to prove the lemma it is enough to show that

lecf‘;‘)o...erxn(f:‘) v ngfl)e...olx (£).

n
m n

Let og be the projection operator defined in (2.2.3), then

2
|1, (£Ne...oI, (£ - I, (£,)e...0I  (£)]]|
l X1 1 Xn n x1 1 Xn n Hon

n 2
I oe(le(fT)@. . .erxn(fﬁ) - le(fl)c. . .aIxn(fn))H on

IA

2
I le(f"l‘)s. : .eIxn(f':) - le(fl)a. . .eIXn(fn) ||qu

2 2
||1xl(fT)a...eIxn(f:)" H°n+ i le(fl)Q"'QIxn(fn)IlHen

2¢ le(fl;)o. X .elxn(f‘r‘;) , le(fl)e. . .elxn(fn) > o

[ENEAY 2l Iy (5] RN AR R AR Iz

- 2< le(f';),lxl(fl)>H...<Ix (f:), I, (£,
n n

which goes to zero as m—+« since by Theorem 2.1.1

2 2
ho, DA =NEN%, ~ g%, =1 €y
i L7( ) i

M) moe Loy
. 2 2
for each i=1,...,n, where L (ui) =L (T,A,ui).
Q.E.D.
The next result gives the orthogonality of multiple integrals of differ-
ent order. We use the notation of Lemma 2.2.5.
n

n
Lemma 2.3.2 (Orthogonalty) Ifn, #n,and f e L.( ®X.,), geL.( ezx,)
—_— 1 2 11 1 j=1 1

b

then I“l(f; xl,...,xnl) is orthogonal to In2
to the inner product <°,->e in EXP(H).

(g; xl,...,xn ) with respect
2

..........................................................................
....................................
...................................................
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on
Proof From Definition 2.3.1 I (f; X,,...,X ) takes values in H 1 and
— on n 1 n on
In (f; xl....,xn) in H 2. Then the lemma follows since for n, # n, H 1 and
e'212
H are orthogonal in EXP(H).
Q.E.D.

The case of only one o.s.m. X To conclude this section we consider the

special case of only one measure X, i.e. X is an orthogonally scattered mea- p

sure on a measurable space (T,A) with values in H, and control measure u. We

X
use the hypotheses and notation of Proposition 2.2.1 and Lemma 2.2.6. For

f an Xon-integrable function we will write
(2.3.16) I(6) = [ £(0)dX(t) = I(£;X)
ne Tn — — n? .

Additional properties to those given above are now presented for the

integral' 1

(f). They are similar to those for the multiple Wiener inte-
ne P

gral with respect to a Gaussian random measure presented in It6 (1951).
For a real valued function f on T we denote by f the symmetrization -

of f defined as
f(t) =‘—1 ) £(t)
= nl j |

The exponential space EXP(HX) is defined in (2.2.21) with inner product

<+,*>, given by (2.2.22) with corresponding norm [

e’

Proposition 2.3.6 Let f,g ¢ Lz(uen) = Lz(Tn,An,u@n). Then

a) 1 (B =1 (6 .

b) <I__(f), I__(g)> = <f,§> =
e Ml L™ Lo

c) <In0(f)’ Ime(g)>e = 6nm<f’g> 2_¢en

2 ~n 2
& 1@l =1 @®1%, = IE17?
Hx L (u

2
< || £
oy L0
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Proof a) Let f be an elementary function of the form

(2.3.17) f(t) = E a i A, x...xA ()
i,...4. =1 "1t By TR
1 n 1 n

where a, ; € Rand A ...,Ap are disjoint sets in A. Then

171, 1
O = 1 L 3 L e &
mi,...i_= 1 n i i
1 1 n
and from Definition 2.3.1
D
I__(f) = ) a, . X(A, Je...eX(A, )
ne i.ei=1 it 1
n
and
~ 1 p
n@(f) = ¥ . z. i a, X(Ai )@...QX(Ai ).
Il 11...1n-1 1 n H-l II.1
(1) (n)
But for all Il = (H(l)""’n(n)) permutation of (1,...,n)

X(Ai )o...oxu\i ) = X(Ai

Jo...®X(A, ) .
1 n 1

-1 -1
Ty )
Then Ino(f) = In(fﬁ if £ is an elementary function as in (2.3.17).

If £ ¢ Lz(Tn,An,u@n) a limit argument applies, since elementary functions

form a dense linear manifold in LZ(Tn,An,uen).

b) It follows from Theorem 2.3.3 as in Corollary 2.3.2 that

ToglD) 100> o == } [ @epan©
X

= [ £ = <£,g>
™ - L2(u®)

and the second equality of (b) follows from (a). The proof of (c¢) and (d)

follows from (b) and Lemma 2.3.2
Q.E.D.

b _



A

We denote by Lz(u@n) the subspace of Lz(Tn,An,u@n) consisting of all

symmetric functions (f(EH) = f(t) for all II).

Proposition 2.3.7 (Orthogonal expansions). Let y € EXP(HX). Then

8

¥ = I_(£) (||'||e-convergence)

n® ' n

o~

n=0

where En € Lz(uan) n>1. Moreover

2 9 2 v = 112
Helly =2 1€ 1= = L T oE D%, < =
® n0 " %™ n=0 MO 400

i.e. the system of multiple integrals {Ino(gn): f e Lz(u@n)} is complete

n
in EXP(HX).
Proof For h € Hx let
exp ®(h) = (1,h, = 1n®%, 1 1®3 . ).
/IT /30

It is known (Guichardet (1972)) that {exp ®(h): he Hx} generates the space

EXP(HX) and therefore if Ye EXP(HX)

(2.3.18) ) =n§0 N v e€H n21 ¥, = constant.

Next, let hi € H, i=1,...,n. Then by Theorem 2.1.1 hi = Ix(gi) g. €

X i

L2(T,A,1) i=1,...,n and by Lemma 2.3.1 and Proposition 2.3.6 (b)
h10...0hn = Ix(gl)e...elx(gn) = Ino(gl...g ) =1__(f)

where fn = gl...gn. But from Proposition 2.3.6 (b) there is an isometry

en
X

Then since elements of the form hlo...Ohn generate H;n, it follows by con-

then y = I_ (f ) where f e L21®™y . Then

between Lz(uon) and a closed subspace Rn of H

PRI . en
tinuity of Ine that if wn € Hx ,

the proposition follows from (2.3.18).

Q.E.D.

- .. 12, @n
where Rn = {Ino(f).fe L°(n )},




CHAPTER III

PRODUCT. STOCHASTIC MEASURES AND MULTIPLE STOCHASTIC

INTEGRALS OF LZ-INDEPENDENTLY SCATTERED MEASURES

Let (T,A) be a measurable space and (,F,P) be a complete probability
space. The real valued set function X on (T,A) is said to be an indepen-

dently scattered measure (i.s.m.) on (T,A) if for each sequence of pair-

wise disjoint sets {Ak}kzl in A, {X(Ak)}kZI is a sequence of independent

random variables on (f,F,P) and
[+ [+ ]
X(CUA) =] X(A) a.s.
w1 ® G

We say that X is an LZ(Q)-valued i.s.m if X(A) belongs to LZ(Q,F,P) for
each Ac A and the above series converges in LZ(Q). Zero mean (E(X(A)) =0
Y AceA LZ(Q)-valued independéntly scattered measures are special
cases of orthogonally scattered measures.

In this chapter we apply the results obtained in the last one to
study Lz-valued product stochastic measures and multiple stochastic in-
tegrals of non-identically distributed Lz-independently scattered measures.
We include the Gaussian (Section 3.1), Poisson (Section 3.2) and general
Lz-independent increments process (Section 3.3) cases. Although the last
situation includes the first two, we gain generality in the measurable
space (T,A) by studying them separately, apart from the fact that results
presented in the first two sections are later used in Section 3.3. In
each case we present the identification of the exponential space and the

symmetric tensor products of the common Hilbert space where the indepen-
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dently scattered measures take values. We conclude the chapter with Sec-
tion 3.4 where we make comparisons with recent works in the literature

including the one by Engel (1982) on the Lz-theory of products of differ-

200 ~ et B0

ent stochastic measures.

yyryeY
e

¥
LA

Ctar} T ———
e - s e e e
oL TR N ) .

3.1 Gaussian random measures

In this section we consider non-identically distributed Gaussian
random measures and their symmetric tensor products. We use the well-
known identification of the exponential space of a Gaussian process (Neveu
(1968), Kallianpur (1970)) and our results of Section 2.2 to obtain an
: Lz-valued product stochastic measure. Further, applying the theory of
ii Section 2.3, we construct multiple integrals, obtaining as special cases
E the multiple Wiener integral of Ito (1951) and the multiple stochastic
integral with dependent integrators of Fox and Taqqu (1984). -
h Let (,F,P) be a complete probability space, T < Rd (d21) a mea-

- surable subset, A=B(T) its Borel subsets and Ac its relatively compact

;: subsets. Let W(A) = (WI(A),...,Wn(A)) A e Ac be a zero mean n-dimension-

al Gaussian random field on (Q,F,P), such that W(A) and W(B) are indepen-
dent if AnB = ¢, A,B ¢ Ac' Then for each i=1l,...,n Wi is a Gaussian
random measure and therefore an LZ(Q,FW,P)-valued orthogonally scattered
measure, where Fw = g(W(A); A ¢ Ac). Further, Wi and Wj are independent

(and hence orthogonal) over disjoint sets for i,j=1,...,n. Define

_ 2 .
: (3.1.1) u; (A) = E[W, (A)] Ac A, i=1,...,n

{ (3.1.2) Wj; (AnB) = E(Wi(A)WJ.(B)) A, BeA i,j=1,...,n
: and let

(3.1.3) H=5p {a'W(A): aeR", AcA}
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be the Gaussian space, closed subspace of LZ(Q,FW,P) generated by W.
Then each wi is an H-valued orthogonally scattered measure on (T,A) with
control measure ui, which we assume finite for i=1,...,n. (If W is a
Wiener process this finiteness assumption means T has to be a bounded
set, since Uy is Lebesgue measure.)

It is known (Proposition 7.3 of Neveu (1968)) that

1]
(3.1.4) exp() = L2, Y,p)

where for all heH
' 1 2
(3.1.5) Y(exp ®(h)) = exp(h-i-E(h ))

exp o(h) = § (1)% 1™ e Exen)
n20
and that {y(exp ®(h)):he H} generates LZ(Q,FW,P).

2
In our first result of this chapter we obtain an L -valued product

stochastic measure of the Gaussian random measures wl,...,wn.

Proposition 3.1.1 Let wi i=1,...,n be Gaussian random measures on (T,A)

satisfying the above conditions. Then there €xists a unique LZ(Q,FW,P)-
n

valued measure @ Wi on (Tn,Ap) such that for Aie A i=l,...,n
i=1
n
(3.1.6) i:lwi(Aix...xAn) = w1(A1)°'“°wn(An)
and for A ¢ A"
n
E( ®W.(A)) =0
s =1 1
1
n 1 1
oW, =
VAR(i=1 ;) = IZI u1n1°...9unnn(AnA ).
on n
Proof Existence and uniqueness of the H  -valued measure © wi follow
i=1

-
o
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n
from Theorem 2.2.1. By (3.1.4) o Wi is seen as an LZ(Q,FW,P)-valued
i=1

n
measure., Since for each nz21, @ Wi is Hen-valued and Hen is orthogonal
i=1
n
=R, then E( ® wi(A)) =0 for Ac A". The expression for the var-
i=1
iance follows from (2.2.14) in Corollary 2.2.2,

to Hoo

Q.E.D.
on n
The H ' -valued measure e Wi is an example of the symmetric tensor
i=1
product measure constructed in Section 2.2. Then all results of that sec-
n
tion may be applied to this LZ(Q)-valued product stochastic measure o W..
n i=1
In order to compute the symmetric tensor product measure _olwi for some
1=
sets A € A" we shall use the identification of the Exponential space of a

general Gaussian space studied by Neveu (1968) and Kallianpur (1970). The
next well known result is Proposition 7.5 in the work of the first named

author. We present it here for the sake of completeness and later reference.

Proposition 3.1.2 (Neveu (1968)). If H is a Gaussian space and h h

1".. k
are orthogonal elements in H, then
en @n k
1 -
(3.1.7) h le...en K- (ni)~ Ik (hol)
=1 7
2 2 X 2
where Gj = E(hj), n = Z n, and hm(x;o ) are Hermite polynomials defined
j=1
by
2 2, .n 2 2
h (x;oz) = (-02)n e* /(207) 4 e X /(207) 02>0, m20.
m n
dx
Using the above proposition and the notation in (2.2.7) we obtain the
following.

Proposition 3.1.3 Let H be a Gaussian space and hi e H i=1,...,n. Then

(3.1.8) h1°"'°hn =
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n 2
1 (), ,E( ] 1 ()9,

n-1
a3y (nt 1
0 1 N i=l N

n (
P NePE n°.

ne~13

The proof follows from (2.2.7) and (3.1.7).
The first few expressions given by (3.1.8) are
N b
(3.1.9) hje hz = (2) {hlh2 - E(hlhz)}
_ L
(3.1.10) hl ® hzo h3 = (3!) {h1h2h3 - hIE(hzhs) - th(hlhs) - hSE(hlhz)}
PP . -
(3.1.11) h;eh,e h39h4- 4 {h1h2h3h4 hlth(h3h4) hlhsE(h2h4)

- h2h4E(h1h3)- hzhsE(h1h4)- h1h4E(h2h3)- h3h4E(h1h2)

+ E(hlhz)E(h3h4) + E(hlhs)E(h2h4) + E(h1h4)E(h2h3)}

where hl""’h4 e H. They are called Multivariate Hermite polynomials
(Fox and Taqqu (1984)).
Using the last two propositions we are now able to compute the symme-

. . LN
tric tensor product measure for some sets in A,

Corollary 3.1.1 Let Wi i=1l,...,n be Gaussian random measures as in Prop-

osition 3.1.1. Then if Al,...,An are disjoint sets in A

n -
(3.1.12) .o wi(Alx"'xAn) = (n!);5 WI(AI)...Wn(An).

i=1

Proof By (3.1.6) in Proposition 3.1.1

n
iglwi(Alx“.xAn) = wl(Al)e...ewn(An).
Since Al,...,An are disjoint sets in A, then by (3.1.2) wl(Al),...,wn(An)

are orthogonal elements in H where the latter is defined in (3.1.3). Then

(3.1.12) follows using Proposition 3.1.2 with k=n, n, = 1, hi-=wi(Ai)
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i=1l,...,n, and since h(x;02)= X.
Q.E.D.

Corollary 3.1.2 Let W ..,Wn be Gaussian random measures as in Proposi-

1’°
tion 3.1.1. Then if Ai e A i=1,...,n

n
(3.1.13) iglwi(AIX...XAn)
_3/2 n-1 ) n n 2
(n!) (-1) h ()1 (LW, (A)),E(C )1 _(DIW. (AT
yza=o NZPQ n i-2=1 N¢ 11 iZI N© P

The proof follows by (3.1.6) in Proposition 3.1.1 and Proposition 3.1.3.

In the next corollary we consider the special case in which w-wl

=...= W and uij= p i,j=1,...,n. We use the notation of Proposition 2.2.1.

Corollary 3.1.3 If Ae A

WO (Ax. . .xA) = NCA) 1™ = (nt3 ® A (WCA) 5UCA)) .
The proof follows from Proposition 3.1.2 since u(A) = E(W(A))2 and

B = (n1j Tk (h,E(RY)).

n
Multiple integrals Let wl""’"n and izlwi be as in Progos1t1on 3.1.1.
Using the notation of Section 2.3 we have that if fe Ll( ® Wi), i.e. f is
n i=1
o'wi-integrable (see Definition 2.3.1), then

i=1

n
(3.1.14) I (£50,. .., 0) = {"f@diil"i@

is an element of HOn (and by (3.1.4) an element of LZ(Q,FW,P)) which sat-
isfies all properties of the integral w.r.t. the symmetric tensor product
measure constructed in Section 2.3. Moreover, we have the next result, in

which we use the notation of Theorem 2.3.3.

...................................................

.......................................................

.....
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n
Lemma 3.1.1 Let Wl,...,wn and @ wi be as in Proposition 3.1.1. Then
i=l
n
a) If f ¢ Ll(izlwi), E(In(f;wl,...,wn)) = 0.
n m
B If £ e L2T™A", o 1) and g ¢ LA A, o 1)),
i=1 1 i=1
ECL (£5W .0 W)L (g5W,,..0,H0 )
_ , o®N n
=8 ,{,nfen(-t-) R () gq, () du (1)
n én
i where y, = ] ;> RT(t) is defined in (2.3.8) for M i,j=1,...,n as in
i=1
(3.1.1) and (3.1.2), and £, (t) is given by (2.3.11).
W . _on en
3 Proof a) Since In(f;wl,...,wn) is H "-valued and H is orthogonal to
- 0 . i
% H =R, then E(In(f’wl’ . .,Wn)) = 0.
-
: b) It follows from Theorem 2.3.3 and (3.1.4).
Q.E.D.
Two special cases of the multiple stochastic integral In(f;wl,...,wn)
n
= fnf(s)d ® wi(E) are now considered. First assume the situation studied
T i=1

- by Fox and Taqqu (1984): Let uij(A) = siju(A) AeA, i,j=1,...,n, where
N u is a (o-finite)-measure on (T,A) and S = (sij) in an nxn non-negative
! definite matrix, i.e. Wl,...,wn are Gaussian random measures such that

for i,j=1,...,n

X (3.1.15) E(W. (AW, (B)) = s. . u(ANB) AB ¢ A,
» 1 J 1)
é Fox and Tagqu following Ito (1951), define the multiple stochastic inte-
s
S gral with dependent integrators Jn(f;wl,...,wn) in the following manner:
y
R Let f be a special elementary function on Tn, i.e.

(3.1.16) £(r) = z. ai R | 1A. X,..XA ()

il...1 =1 1 i in

.......
e . % . L e, . Y .~ . N e e e = .
L e A L S T L PR S I R i S N L S S L S T A S

--------

- » - - ’- -~ - T e®a - A - A
N AT S A SN N R L L
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where Al""‘ﬁpis a collection of disjoint sets in A and ai ; € R are
1--+i,

zero unless il""’in are all distinct. Denote by Sn the class of all

N (H-. '

special elementary functions. If u satisfies the continuity property

PR s
At
[ RN

(i.e. Ve >0 and AcA, u(A) <», there exist some disjoint Bj €A, u(Bj) <g
m
j=1,...,mand A = U Bj) then Sn is a dense linear manifold in LZ(Tn,An,uen)
N j=1
(Ito (1951)). For f € Sn define

o~

l'v"—'. N
.
A0 X

P
(3.1.17) J (£3W.,...,W ) = ] a, . W.(A. )...W(A, ).
ol L SR T Ut S i) | L

Then Jn can be extended to a bounded linear operator from Lz(Tn,An,uan) to
L2(2,F¥,P) (Fox and Taqqu (1984)).

On the other hand, using Definition 2.3.1 and Corollary 3.1.1 we have
that for f e Sn

P
(3.1.18) I (£:Wy,... W) = {' a. ...inwl(AiI)°"'°"n(Ain)

E
T
.
.
b
[
E;

P |
i i, 1n-1 1

13 5
= (n1) Iooa L WA WA

1.0 =1 p---3, 1 n

Therefore from (3.1.17) and (3.1.18)

- ]
(3.1.19) In(f,Wl,...,Wn)= (n!) Jn(f;wl,...,wn) if f € Sn .

Proposition 3.1.4 Let u be a finite measure on (T,A) satisfying the con-

tinuity propérty. Then if fe LZ(Tn’An’uOn)

<1 .
In(f,Wl,...,Wn) = (n!) Jn(f’wl""’wn) .

The proof follows since In and (n!ik Jn are LZ(Q)-valued continuous bounded

operators on LZ(Tn,An,uon) which agree (see (3.1.19)) on the dense linear

manifold Sn'

.........
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Hence the multiple stochastic integral with dependent integrators
of Fox and Taqqu (1984) is a special case of our integral In(f;wl,...,wn)
of (3.1.14). Moreover, we do not need to assume the continuity property
on U to construct this integral, although we require y to be finite (see

beginning of Section 2.1).

Next assume the situation considered by It8 (1951): W==W1,...,Wn is
a Gaussian random measure on (T,A) and p satisfies the continuity property.
It6's multiple Wiener integral Jn(f;W) is constructed as in the Fox and
Taqqu case above and it is a bounded linear operator from LZ(T",An,uon)
to Lz(ﬂ,Fw,P). As in Proposition 3.1.4 we have that for fe¢ Lz(Tn,An,uon)
I o(£:W) = (n!iLi J (£,W) where I, is as in Proposition 2.3.6.

The next two propositions were obtained by It8 (1951). They relate

multiple Wiener integrals with Hermite polynomials. We prove them here

t
E@%
[
B
é

using the symmetric tensor product set up. We remark that since in the

v
R

-

construction of Ino(f;w) in Section 2.3 it was not required that u satis-

M
[

fies the continuity property (as it is required in It§'s case) this will

not be assumed in the next result.

Proposition 3.1.5 Let ¢1(t),...,¢m(t) be an orthogonal system of real

P valued functions in LZ(T,A,u) and hk be the Hermite polynomial of degree
;% k given in Proposition 3.1.2. Define
L
- £(E) =6, (t,)...0,(t Tt )0, (t b (t
5 (© =0y (603 (1 305 (5 )98 4 oo 0n(Ey oy )
Ln’
= .0 (t .
" ¢m( p1+...+pm)
. Then if n = py+...+p,
"
[ )
= 1o = (1) T (1,06,)5 EC1,(6;1)%)

ne® . p; 171"’ 171

i=1 Fi
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where Il(g) = [g(s)dﬂ(s) is the isometric integral w.r.t. W given in Theorem
T
2.1.1.

Proof From Lemma 2.3.1 f is Won-integrable and
op1 opm
Ine(f,W) = Il(¢1) o...oIl(¢m) .

Next since for i#j E(Il(¢i)I{¢j)) = [ ¢i(s)¢j(s)du(s) = 0 then by Propo-
T
sition 3.1.2

®p ®p m
1,06)) 1@...011(¢m) LI .I_Ilhp.(ll(cbj); E(Il(¢j))2).
1= Q.E.D.

Proposition 3.1.6 Let T = [0,1] and u be non-atomic. Then if

’I"l‘ = {(t),.-0t) e 0st<...<t 51}

-3/2 .
I o1 iW) = (nt) kn(W(T),u(T))

Tl .

That is formally

-3/2
(3.1.20) [ oo ] aw(e)...aN(e) = (nD) R (1T ;u(T).
Ost1<...<tn51

Proof By Definition 2.3.1 Ing(l n;W) = Wen(TT). Then the result follows
T
1
by Corollary 3.1.3, since Wo" is finitely additive, u is non-atomic and Prop-

osition 2.2.1 (¢).

Q.E.D.
A different proof of (3.1.20) above is given in Theorem 6.5 of Engel
(1982).

3.2 Poisson randon measure

Let (R,F,P) be a complete probability space and (T,A) be any measurable

space such that all singleton sets are measurable, i.e. {t}eA V teT.




.v----.v—v-ﬁ-vvv—r--wv
a‘ I‘ -‘ -I lA >Y I s PR R . * .I'..‘. “ .~

B M

I ‘Sadieiee ReeSous 5 (R gy —— " At G Sl it o |

57

Let M(T) be the set of all o-finite measures on (T,A). We assume that N
is a Poisson random measure on (T,A) with intensity pe M(T), i.e. N(A)
Ae A is an integer-valued random measure such that the following two condi-

tions hold:

(i) for each Ae A, u(A) <« ,N(A) is a Poisson random variable with

mean u(A) ,

(ii) if Al""’A'k are disjoint sets in A then N(Al),...,N(Ak) are inde-

pendent random variables on (Q,F,P).

The signed random measure q(A) = N(A) - u(A) Ae A, U(A) <= is called a
centered Poisson random measure. Since for A,Be A with U(A) < », u(B) < <,
E(q(A)q(B)) =u(AnB), then Qq is an orthogonally scattered measure on (T,A)
with control measure pu. We assume p is a non-atomic measure.

In this section we consider symmetric tensor product measures of the
centered Poisson random measure q with itself for all n21. That is, using
the notation of Proposition 2.2.1 we construct qen for n21 and multiple
integrals w.r.t. q@n

Let F9 = G(N(A): Ac A, u(A) <o), Iq(f) be the isometric integral of f
w.r.t. q (Theorem 2.1.1) for fe LZ(T,A,u), and Hq be the subspace of

12(,F9,p) generated by q (see (2.1.3)), i.e.
2
= {1 _ (f): A, .
Hy {q() fe L°(T,A, W)}

The exponential space EXP(Hq) associated with a Poisson random mea-
sure has been studied by Neveu (1968) and Surgailis (1984) for the cases
when the control measure uy is finite and o-finite respectively. We do not
follow the identification of EXP(Hq) given by the second named author since
he uses multiple Poisson integrals to obtain this identification and we

want to proceed in the opposite way: first identify EXP(Hq) , then obtain
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the symmetric tensor product stochastic measure qen and finally construct
multiple integrals w.r.t. qen’ as we did in the last section for the Gaus-
sian random measure. Although for the purpose of this sgction the identi-
fication of EXP(Hq) given by Neveu (1968) (u finite) is sufficient, in

the next theorem we extend Neveu's result to the case when u is o-finite.
This result will be used in Section 3.3 where we study the general Lz-inde-

pendent increments processes case.

Theorem 3.2.1 Let (,F,P) be a probability space in which there is de-

fined a centered Poisson random measure q on a measurable space (T,A)

with o-finite non-atomic control measure u. Then

$
EXP(Hq) = LZ(Q.Fq,P)
where for f ¢ Lz(T,A,u)
N(T.) -J.. fdu
© (N
(3.2.1) d(exp (I (£)) =4 I T (1+£(Z,77))e
q i=1j=1 J
where
(i) Ti i2l1 are disjoint sets in A, 0< u(Ti) <wand U 'l‘i =T,
i=1

(ii) for each i=1,2,... and j=1,2,..., Z§1)is a T;-valued random
element with distribution given by the measure u(Ti)'lu('), and

for each i=1,2,... N(Ti) follows a Poisson distribution with para-

PADENE AR
B R DR B e

L SR . DR
[T R ) v COR T

meter u(T.)
1l

(iii) ng)N(T.) i=1,2,..., j=1,2,... are mutually independent.
j i y P

Moreover, 2 2 2
E(o(exp (1 (£)))" = exp(E(I(£)) = exp(fo dy) < =,

In order to prove the theorem we first prove the following technical

result.
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Lemma 3.2.1 Let p and Ti,N(Ti), Z§1) j=1,2,..., 1i=1,2,... be as in
(i)~(iii) in the above theorem. If ge Ll(Ti,AnTi,u) for some i=l1 then

[N(Ti) [ (g-1)du
E

Il g(Zgi))] =e ! .
=1

Proof Since N(Ti) follows the Poisson distribution with parameter u(Ti)<5“

and for each j=1,2,... Zgl) has distribution u(Tifiu(°), then using

j
(i) (i)
N P

the independence of N(Ti)’ YA

N(Ti) . o 'u(Ti) n n
E[ I g(Zgl))] =] S— 1 Ta(t) Mau(t)
J ns0 ™ onj=l I g1
i

j=1

[.gdu [ (g-1du
L L O Y
= e e = e .
Q.E.D.

T

Proof of Theorem 3.2.1 For any Hilbert space K {exp o(k): ke K} generates

EXP(K) (Guichardet (1972)), where

exp o(k) = (1,k,(2) 7% k%, ...)

and
kpska%g
<exp o(kl), exp Q(k2)>EXP(K)= e kl,kze K.

I
J

Then since LZ(T,A,u) Hq’ in order to prove the theorem we have

to show the following three conditions:

a) for each fe LZ(T,A,U) ¢(exp O(Iq(f)))e Lz(Q,Fq.P).

b) for £,£,¢ LAT, AW EColexp o(1(£,))0(exp o1 (£,)))

[ £ £,du
= <exp Q(Iq(fl)), exp Q(Iq(fz))>Exp(Hq) =e

c) {¢(exp o(Iq(f))): fe LZ(T,A.H)} generates LZ(Q,Fq,P).

- - e m - m— N W —r—r ~——y - O VW W g P T VE TE T E W TETE TR TA T FTF TG F ¥V T TV T T TR T W
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Since y is a o-finite measure on (T,A), there exists a sequence of
[« ]

sets {'I‘i}izl in A such that 0< U(Ti)<‘” and U Ti= T. The existence of

i=1
the random elements Z§1) j=1,2,..., 1i=1,2,... satisfying (ii) and (iii)

follows from the construction of a Poisson random measure N with control
measure U (Theorem 8.1 in Ikeda and Watanabe (1981)).
Let fe LZ(T,A,u), then for each izl f belongs to LZ(Ti,AnTi,u) and

Ll(Ti,AnTi,u). Then by taking g= (1+f) in Lemma 3.2.1 we obtain

N(T,) -f. fdu
: (i) Ty
E| I (1+£(Z:7" N e =1 i=1,2,...

ie1 h]

J
N(T,) = fau

Then using (iii) Gi =1l (1+f(2§1)))e 1 is a sequence of inde-

j=1

pendent random variables with E(Gi)= 1 izl and therefore

is a martingale. Next, using Lemma 3.2.1 with g= (1+f)2 and the indepen-

dence of Zgi), N(Ti) j=1,2,..., 1i=1,2,...
N(T.) -f duy2
[ : (144, i ]
Il (1+f(Zj ))e

n
E Di =1 E
i=1

i=1

2
0 -ZITifdu [N(Ti) . 2] n -ZfTifdu ITf(1+f)-1)du
=Je E| T (1+£(Z.77)) =1J e e
i=1 j=1 J i=1
] fzdu
n T . 2 2
=NTe 1 =exp(f , f£f7du) < exp(fo dy) < «
i=1 U Ti
i=1
i.e.
2 2
ED < exp(f £dy) < = all n=1.
T

Then by the martingale convergence theorem Dn converges a.s. and in

mean square to ¢(exp O(Iq(f))). Therefore

.............................................
...............................................................
Vet

..........................................................
...............................
...............................................

..................................
...................................

-----------------------------
......



© N(T.) . 'fr.fd“‘
ln niasezPyye T {-ED =1
i=1 j=1 J J n
and I £4
© N(T.) (.. T W2 )
Eln n?t (1+£(Z,))e 1 = 1im E D
i=l j=1 ) N n

= lim exp( [ £24y) = exp( [ £2dy) < w
noe U T, T

i=1 1
which shows (a).
Let fl,f2 € LZ(T,A,u),then applying Lemma 3.3.1 to g= (1+f1)(1+f2)

one shows in a similar way as above that

2 2
n (N(T.) - 'ﬁi(fl*fz)d“
E(exp o(Iq(f'l_)) exp O(Iq(fz)))=z:2 igl E jgl (1+fg(1+fg(2j Je

n o fifde [if £
=1lim I e 1! =e
neo i=l

proving (b).

Finally, to prove (c) let G ¢ Lz(ﬂ,Fq,P) and suppose that
E(exp o(Iq(f))G) =0 for all fe LZ(T,A,u).
We want to .show that G=0 a.e. dPFq, where
Fl = o(1 (5): £ L3(T,A,W) -

Using (3.2.1) we have that for all fe L2(T,A,u)

-f. fdu
®  N(L.) oy,
e[ I { pi (1+f(2§1)))e i } c} =0

i=1 =1

Next let i21 be fixed and for ge Lz(Ti,AnTi,u) define f: T+ R by

f(t) =g(t) te Ti and zero if t/ Ti' Then fe Lz(T,A,u) and
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N(T,) (i) -ITigdu | 2

El I (1+g(Zj ))e GJ =0 allgel (TiAnTi.u).
j=1

Hence by Proposition 7.13 in Neveu (1968) (Lemma 3.3.2 below)
E(Gng) =0 a.s. where Fg = O(Iq(g): ge Lz(Ti,AnTi,u)), and FgC:Fq

all ixl1,

Hence for all n21 E(Gl_chz) =0 a.s. since Fg,...,Fg are indepen-
dent o-fields. o

Next let Fn =131F(il and Fw =n::1Fnc F1. Then since B(GZ) <o by the
martingale convergence theorem G=0 a.s. dP _. Thus is remains to show

o F
that FlcF .

Let fe Lz(T,A,u), then

£(t) = ] £(0)1, (1)
i=1 i
and

f) = I (f-1 eSe &
Iq( ) ‘Zl q( Ti)' a.s

Thus Iq(f) is F“Lmeasurable all fe Lz(T,A,u) since for each izl Iq(felT )
i

is Fg-measurable. That is, Flc f” and G=0 a.e. dP Q"
F

Q.E.D.
We are now going to apply our results of Chapter 2 to the construc-
tion of the product stochastic measure qen. Therefore in the remainder
of this section we will assume that the control measure p is finite and
the following version (Proposition 7.13 in Neveu (1968)) of the last the-

orem will be enough for our purpose.

Lemma 3.2.2 (Neveu (1968)). Let q be a centered Poisson random measure

as in Theorem 3.2.1 with finite control measure u. Then

n=

EXP(H ) L2, F,p)
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where for f£e L2(T,A, )

N(T) -[£du

(3.2.2) niexp o(I (£f)) = T (1+£(Z.))e
q j=1 J

where {zj}jzl is a sequence of independent random elements, independent

of N(T), each Zj taking values in T and having distribution {u(T)}-lu(°).

Using the identification of EXP(Hq) given by the above lemma, in
our next result we obtain an Lz-valued product stochastic measure of the

Poisson random measure q.

Proposition 3.2.1 Let q be a centered Poisson random measure on (T,A)

with finite non-atomic control measure u. Then for each n2l there exists

a unique Lz(Q,Fq,P)-valued measure qon on (T“,An) such that if Al,...,An
belong to A
(3.2.3) A x...xA) = q(A,)e...8q(A )

2. q 1% XA, q(A)Je... "

and for A ¢ A"

E(q""(A)) = 0
VAR(q™(A)) ==& I21u°“(Ams\“).

Moreover, Proposition 2.2.1 (b)-(d), Lemma 2.2.6 and Corollaries 2.2.8-

2.2.9 hold for qon.

Proof For each n21, existence and uniqueness of the H™ _valued measure
qon follow from Proposition 2.2.1 (a). It is seen as an LZ(Q,Fq,P)-valued

element by Lemma (3.2.2). The expressions for the mean and the variance

P T

follow similar to Proposition 3.1.1.
Q.E.D.

ST

We now compute special cases of (3.2.3). If AeA then q(A)= Iq(lA)

AR

and from (3.2.2) we have that
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_ n
q(A)en = (n!);5 (ln) exp ®(zq(A))
dz" 2z=0

n N(T) -zf 1,du

- T'A
! — (1+21,(Z.))e
(n}) (dzn) 2=0 i=1 AT

- n
1) 4 MW
dz z=0

A

But (1+z)xe-z z> -1 is the generating function of the Poisson-Charlier

polynomials (Chihara (1978)) with parameter A\ >0, denoted by cn(x;k), i.e.

Az P
(3.2.4) e P(1e2)* = ] = ¢ (x;)) A> 0.
n=0
Then for A ¢ A"
en -
(3.2.5) q (A = (n!) c (N(A);u(A)).

We now obtain a similar result to Proposition 3.1.2 for symmetric

tensor products of Poisson random measures.

Proposition 3.2.2 Let q be a centered Poisson random measure as in Prop-

osition 3.2.1 and Al""’Ak disjoint sets in A. Then

en, en, -k
(3.2.6) q(A))  “e...eq(A) "= (nl) jglc“j(N(Aj)’ u(AJ-))
k
where n = } n:i and cm(x;l) are Poisson-Charlier polynomials with parameter A
j=1

defined in (3.2.4).

Proof Since Al’”"Ak are disjoint sets in A, then q(Al),...,q(An) are

mutually orthogonal in Hqc LZ(Q,Fq,P) and therefore the family
@n
k

on
{q(Al) lo. . .Oq(Ak) 3 ny2 0,... My 2 0} is orthogonal in EXP(Hq) . Next

for zl,...,zke R

by =5
exp o(z;q(A)+...+2,q(A)) = Zo (nl) (zlq(A1)+--.+qu(Ak))°"
n=
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z z en en

)} ;lj-...;ET q(A)) le...Oq(Ak)

n‘o nl’ .o -’nk=n 1
S ((nl*...+nk)!$¥ n, n Onl enk
3 n.om L 2) 7 AlA) e eq(Ay)

k

"
e |

...nk!

S On the other hand from (3.2.2)

n(exp ®(z,q(A,)+...+2,q(A)))

N(T) -(z,u(A))+...+2, u(A))
ST (ezgl, (204071, (2)) e 171 WA

i=1 1 Ak
k N(Ai) -ziu(Ai)

=.n (1+Zi) e
i=1

Then the assertion of the proposition follows from the last two

expressions since

on on 18 S ST N(A.) -zu(A.)
q(A)) 10...Oq(Ak) = (nl;;i L—;;—-——-ﬁ—] I (1+z,) e i
1 K=l
321 ...azk 2=0

(z = (zl,...,zk)),

Q.E.D.

Expression (3.2.6) is related to the multivariate Poisson-Charlier

polynomials (Ogura (1972), Chihara (1978)) defined by

S K ((x)_ 5-ean(x) 5 (A 4eees (X)) ) =
. n'¥1 n, k n 1 nl' k n,

8n k X, -Aizi
—_— M (l+z,) 1 e
Tk i=1 *
azl ...azk z=0

k
where n = | n, (x) = c IPPRR and A; >0 i=1,...,k .
i=1 i

ni times
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The first few expressions are
Ko(x;x) =1, Kl(x;k) = cl(x;l) = X=X
Kz(xl,xz;kl,kz)= *1‘*2‘512)"*1*1' x2A2+ Alkz
K3 (X)sXpXg5h05 290 25) = X (%561 5) (x5-6813-653)
=[xy (xp=812) A2 * Xp(x5-8,5) Ay Ag + X5(x =61 50 Ay A4]
+ x1A1+-x2A2+ xsls- llkzks
where Gij =1 if i=j, and 0 otherwise.

Corollary 3.2.1 If A An are disjoint sets in A

1,--0,

<
q(A})e...0q(A) = (n!) q(Al)...q(An)-
Proof Taking k=n, ni=1 i=1l,...,n in Proposition 3.2.2 since

q(A1)”"’q(An) are orthogonal
-3 N
q(A))e...8q(A;) = (n!) iElcl(N(Ai); u(A)),

Then the corollary follows since cl(N(A); u(A)) = N(A) - u(A) = q(A) for

all AcA.
Q.E.D.

.

Multiple Poisson integrals Using the notation of Section 2.3., if

fel (q™) n21 then
Tne(£i@) = [y £(8)dq”" ()

is an element of H:n (and hence of LZ(Q,Fq,P) by (3.2.1)). This integral
satisfies all properties of the integral w.r.t. the symmetric tensor prod-

uct measure of Section 2.3, and in particular Propositions 2.3.6 and 2.3.7
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now written in the following manner.

Lemma 3.2.3 a) If fe L (q"), E(I 4(£;q)) = 0.

b) If fe L2(T"A",1®) and ge L3(T", AR, %)

E(I o(£;Q)I (g;q)) = 6§  <f,g>

2 .
LT, A, 1

2.n ,n én .
c¢) {1 (32 : £ L°(T,AN,u™) n20} constitutes a complete orthogonal

system in LZ(Q,Fq,P), where 1 }J=1.

ool

Proof a) follows from Proposition 3.2.1, (b) from Proposition 2.3.6

and (c) by (3.2.1) and Proposition 2.3.7.
Q.E.D.

Multiple Poisson Wiener integrals were introduced by Its (1956) and
studied later by Ogura (1972) and Surgailis (1984). H. Ogura uses multi-
variate Poisson-Charlier polynomials to define a multiple stochastic in-
tegral with respect to q (when Tc R), which we denote by Jn(f) . If £

is an elementary function defined in (2.3.17)

P
J ()= & K (NCA, ). NCA, D5u(A; ),..., (A, )
" il..?in=1 i R ! hoh n

where Kn is multivariate Poisson-Charlier polynomial. Then Jn extends to
a bounded linear operator from Lz(Tn,An,uQn) to LZ(Q,Fq,P) (Ogura (1972)).
On the other hand, using Proposition 3.2.2, if f is an elementary

function

P
I_(f;q = ] a, . q(A, )e...eq(A, )
ne il"'i =] iy°-- n 11 1n
n
5
il...inﬂl

= (nl) a, . Kn(N(Ail)...-,N(Ai );u(Ai ),--.,u(Ai )).

1'.'1]\ n 1 n

%

Thus I_o(f;q) and (n1) J (f) agree on a dense linear manifold of




L St i Mg Sl M N YN N Mt P et Mg i it R AR v hovie Wt e, ity s Sk St e libie nde i iy i "Rl e SN S b Ant S
-.!

-

w'J

h'Y 68

-

u

Lz(Tn,An,uen) and therefore the following result is obtained.

Proposition 3.2.3 If fe L2(T" A", ™)

e Tyt e [
.' l. 2

s
I (£:q) = (al)° I (£).

¥, Ey ATyt
T

Proposition 3.2.4 Let T = [0,1] and u be non-atomic. Then if
1’1‘={(t

EAC Lot

n
€ . .<
.,tn) T :0<t, <.. tnsl}

1’ 1

‘,.,.
S

-
.

e, -3/2

. Ine(l p® = () e (NT); u(Tm),
T

- 1

- That is, formally

/

-3
(3.2.7) [...]  da(t))...dq(t) = (n1) zcn(N(T);u(T))

OSt1<...<tnSl

where ¢ is the Poisson-Charlier polynomial of degree n defined in (3.2.4).

Proof By definition Ino(ITﬂ;q) = qen(T?). The rest of the proof follows
1
similar to Proposition 3.1.6 using Corollary 3.2.1
The expression (3.2.7) above is Theorem 6.9 in Engel (1982), who gives

a different proof.

3.3 Nonidentically distributed Lz-independently scattered measures

In this section we study Lz-valued product stochastic measures and
multiple stochastic integrals of nonidentically distributed Lz-independent-
ly scattered measures that are mutually independent over disjoint sets. The
identification of the exponential space of H, the common Hilbert space where
the i.s.m.'s take values, is obtained using results given in the last two
- sections. The parameter set T considered in this section is an interval
- of the real line. This is an important assumption throughout the section

since we use martingale theory to identify symmetric tensor products of H.
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We conclude this section by giving characterizations in terms of multiple
stochastic integrals of Poisson and Gaussian processes with independent
increments.

Our first result of this section is a general one, in the sense that
it identifies the exponential space of any Hilbert space H which is a direct
sum of an arbitrary Gaussian space Hw and an arbitrary Poisson space Hq,
where Hy and H_ are stochastically independent. _

Theorem 3.3.1 Let (Q,F,P) be a complete probability space and q be a

centered Poisson random measure on a measurable space (E,E) defined on
(Q,F,P), with o-finite non-atomic control measure u and generating the

Poisson space
2
Hy = {Iq(f): fe L°(E,E,u0)}

where Iq is the isometric integral of f w.r.t. q. Let Hw be a Gaussian
space on (Q,F,P) stochastically independent of the system of random vari-

ables Hq. Define the o-fields Fw =‘o(Hw), Fl - o(Hq) and the Hilbert

space
H=H o Hq
Then
ent 2 W
(3.3.1) EXP(H) = ] eH ™" = Ly (Q,F vil p)
nz0

where for he H, h=hw+ hq hwe Hw, hqs Hq

y: EXP(H) + L]2R , vl p)
is defined by

(3.3.2) Y(exp o(h)) = Y(exp o(h,))é(exp o(hq))

and ¢,¢ are the isometrics given in (3.1.4) and Theorem 3.2.1 respectively.
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Proof We first prove that for all he H, y(exp ®(h)) is an element of

LZ(Q, vaFq,P) and that
) 2 2
(3.3.3) E(y(exp ®(h)))" = exp(Eh).
By Theorem 3.2.1 for all h_ e¢H
qQ q
2 2
E(¢(exp @(hq))) = exp(th) < @
and by Proposition 7.3 in Neveu (1968) for all hwe HW
E(¥(exp o(hy)))? = exp(Ehy) < = .

Then if h= hw+ hq Y(exp ®(h)) = y(exp o(hw))d)(exp o(hq)) belongs to
LIZR (Q, vaFq,P) since hw and hq are independent. Moreover, from the above

expressions we have that
2 2 2 2
E(y(exp ®(h)))" = exp(Ehw+ th) = exp(Eh7).

Next we shall prove that {y(exp ®(h)): he H} generates LfR (Q,vaFq,P),
which will imply (3.3.1) since for any Hilbert space K {exp ®(k):ke K} gen-
erates the Hilbert space EXP(K) (Guichardet (1972)).

Let Ze L; (Q, FWqu,P) and suppose that
E(Zy(exp ®(h))) = 0 for each heH.

Then for all hw € HW and hq € Hq

E(ZY(exp @ exp o(h = 0.
(Zy(exp (hw))¢( xp o( q)))
But from Proposition 7.3 in Neveu (1968) and Theorem 3.2.1 in this

thesis {y(exp e(hw)): hy € HW} and {¢(exp o(hq)): hqe Hq} generate
lek (Q, F",P) and L; (2,F9,P) respectively. Then for all A€ A and Aye Fa

.
I
2
i
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8 [ zap =0,
: AlnAz
- But it is known (Dellacherie and Meyer (1978)) that if two o-fields F1 and

F2 are independent, then Flv F2 is generated by the field Co of all finite

PR R A AN

disjoint unions of sets AjnA, Ale Fl’ Aje FZ'
Thus since Z is P-integrable
C = {AeF: [ zdP = 0}
A

is a monotone class, and by the monotone class theorem
[2dP = 0 ¥ Ae F'vd
A

since Coc C. That is, Z=0 a.e. dP

- vaFq‘

Then

{y(exp ®(h): he H}

generates the space L; (2, FWVFq,P) .
Q.E.D.

Assumption 3.3.1 Throughout the remainder of this section we will make

the following assumptions and notations: Let (Q,F,P) be a complete proba-
. i1 _ _ o_ _ o
: bility space, T= [0,T ] T_>0, A=B(T), R =R _- {0} and Bg- B(R_) for

n2l. Suppose that
(3.3.4) Y, = (xl(t)""’xn(t)) teT, Y,=0

_ is an n-dimensional stochastically continuous, right continuous, zero mean,
2 . . . . . .
L"-stochastic process with independent increments defined on (Q,F,P), with

characteristic function given by

(3.3.5) @Y (a) = exp{-% a'o(t)a+ fo(e ia'x -1-ia'x)v(t,dx)}
t

. ae R
. = "n

.......................................
....................................................................................
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and Levy-Ito representation (Gikhman-Skorokhod (1969))
t
(3.3.6) Y, =W, + [ [ xq(ds,dx) allt e T
o — -
0 R
n
where
(3.3.7) Wt is an n-dimensional Gaussian process with independent
increments, W0= 0 and positive definite diffusion matrix
ii a(t);
[
p .
P (3.3.8) q(B,T) = N(B,T) - v(B,T) Te Bz, BeA
»Zij is a centered Poisson random measure on (TXR:, AXBz)
with o-finite control measure v, and independent of
{Wt} teT;
(3.3.9) N(B,T) = E l5,r(s,4Y ) AY =YY,
(3.3.10) v(B,I') = E(N(B,T)),

t
g folglzl\lv(ds,di)<°° teT
R

n
and \)t(I‘) = v([0,t],T) is increasing and continuous.

From (3.3.5) we have that for i,j=l,...,n and teT

(3.3.11) L (t) = EXi(t)xj (t) = o3 t) +Aij (t) <=
where
A(8) = /s x;%;V(t,dx) X = (XpheenX)
n

Define

n n
(3.3.12) u (1) = ) 0,4 (t) + ) A ()

i=1 i=1

and denote by uij’ oij’ Aij and M, the corresponding finite (signed) mea-

sures on (T,A) generated by iy (t), %3 (v, Aij (t) and uo(t) respectively.
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Then for each i,j=1,...,n Aij
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<< << .. <L
Hys  O54 SSHG» My ¥ and

J J o

rdoi. n
(3.3.13) Rl(t) = Eﬁ-l (t)]ij i a.e. duo(t)
rdki. n ®
3.3.14) R,(t) = ———l-(t) a.e. du (t
( 2 ~duo Ji,j=1 o

are non-negative definite matrices a.e. duo(t) and so is the matrix

R(t) = (rij(t))? , where for i,j=1,...,n

i,j=1
dui. doi. dki.
(3.3.15) rij(t) = aﬁ;l-(t) = Eﬁ;l (t) + Eﬁ;l (t) a.e. duo(t).

Finally if A(t) is an nxn non-negative definite matrix a.e. duo(t), we denote

by Li(uo) the linear space of

xi's where xi([o,t]) = xi(t)

H, = sp{gfwt;

functions

(3.3.16) L2 = {£:T> R™: £ ADED A (1) < =)
T

In the next two results we use Theorem 3.3.1 to identify some func-
tionals of the process Y, as elements of an appropriate Hilbert space Hy
and its exponential space EXP(HY). Having this and using the framework
of Chapter 1I, we will be able to study symmetric tensor product measures

and multiple stochastic integrals of the independently scattered measures

i=1l,...,n and the latter are given in (3.3.4).

Proposition 3.3.1 Let Yt’ teT be a stochastic process as in Assumption

3.3.1. Let H" be the Gaussian space generated by wt’ i.e.

ae an, teT}

and Hq the '"Poisson" snace generated by q, i.e.

. 2 o 0
(3.3.17) Hq = {Iq(g). ge L°(TxR_, AxBn,v)}.




Define
Hy = Hy o
q
Let R(t) be as in (3.3.15). Then if fe L;(uo), f(t) = (fl(t),...,fn(t)),

the random variable

n

(3.3.18) Jgedy = [ T, (£) + I (£'%)

e WM q = =
T i=1 i

h is an element of Hy, where (£'x)(t,x) = f(t)'x teT, xe¢ Rn, and IX(¢)
{ is the isometric integral (Theorem 2.1.1) of ¢ w.r.t. the orthogonally
t scattered mesure X. Moreover,
2 2 1
P £(t)'xe L°(Tx R2,AxB2,v) n L (Tx R_,Ax B2, V).

Proof To prove that f feodY € HY it is enough to show that fie LZ(T,A,cﬁ)
T

. 2 o 0 . .
i=l,...,n and f'x eL"(Tx IRn, Ax Bn,\)), since Iwi(fi)eHw i=1l,...,n

and I (£f'x)eH .
q(f'%) et

. 2 2 2
Since f ¢ LR(uo) then from (3.3.15) f ¢ LRl(uo) n LRz(uo) where R,

and R, are given in (3.3.13) and (3.3.14) respectively. Then

2
3 2 3 doss
izl "1[ fi(Hdoy; (8) =121 -{- £ du (Of, (t)du < =
i.e £ ¢ L¥(T,A,0,.) i=1,...,n

On the other hand, using (3.3.12)

' 2 T ¢
(3.3.19) [JE@® ', =] § | fofi(t)fj(t)xixjdv(t,i)

R i=1 j=1 T R?
)
i=1 j=1

/
T
5

'{‘fi(t)fj(t)d)\ij(t) = {f(t)'nz(t)f(t)duo(t) <o

Finally, to prove that f(t)'xe Ll(Tx R(:I,Ax B:,v) it is enough to show that

..........................

...........................
. .

..................................................
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n
£,(t)x, e L'(Tx RO,Ax B2,v) i=l,...,n since £(t)'x = ] £;(t)x;. By (3.5.19)

i=1
for each i=1,...,n

2
4 £,(t)d), (1) < o,

Then since each )\i is a finite measure on (T,A)
{Ifi(t)ldki(t) < ®
and therefore using (3.3.12)

[£.(0)dA (t) <= |

T

/ n{ofi(t)xidv(t,E) =
n Q.E.D.

T

For the process Yt’ Theorem 3.3.1 is written in the following manner.

Proposition 3.3.2 Under the assumptions of Proposition 3.3.1

n=

(3.3.20) EXP(HY] L2ca, FY,p)

where y is given by (3,3.2) in Theorem 3.3.1 and

FY = o(Yt:te T) v {P-null sets of Q}.

Proof From the construction of the Levy-1t6 decomposition (3.3.6) of Yt
(Gikhman and Skorokhod (1969)) Wt and q are F' measurables. On the other
hand, by (3.3.6) and Proposition 3.3.1, Yt is va Fl_measurable all te T,
where Fw= o(Hw) and Fl= o(Hq) . Then the result follows using Theorem 3.3.1

and the fact that l-lw and Hq are independent.
Q.E.D.

For purposes of later reference, the main properties of the integral

[ £+dY defined in Proposition 3.3.1 are summarized in the next result.
T

Lemma 3.3.1 Under the assumptions of Proposition 3.3.1, for fe Li(uo)

define

...........................
.......................
...............
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(3.3.21) F, = [ fdY=[1

(s)£(s) -dy teT
[0,t] S

[0,t]

where right hand side is defined in (3.3.18). Then (Ft)teT is a zero mean
Lz-stochastic process with independent increments and (Ft,F:) is an Lz-right

continuous martingale such that
a) Ft € HY teT
b) <F>, = [ £(s)'R(S)E(s)du (s) <= V¥V teT
0

where <F> denotes the predictable quadratic variation of F.

2
c) Ifge LR(uo)

t
<F,6> = ({) £(s) 'R(s)g(s)duy(s) = E(FG) teT

d) The characteristic function of F, is given by

t 3 \J
o (a) =exp{-%a.<Fc>t+ / fo(e1af (s)f-l-iaf'(s)g)dv(s,z)
t 0 R
where n
t
(3.3.22) <FO> = [ £(s)'R (SIE(s)du (s)  teT,
0

Proof Since the process Yt is right continuous, then (Fz) teT is a right
continuous filtration. From Proposition 3.3.2 F:cF'Y = o(Hw)\Io(Hq) all

teT and by (3.3.18)

T3
M:’

Iy, o, erfsd * mfo £1()x 11y 4 (s)dq(s,x) e Hy .

t a1
n
It is known (Galthouck (1976)) that if £, e LZ(T,A,oii) i=1,...,n and

F(t)= (£,(8),.. ., (1))

(3.3.23) FC = Iwi(l[o,t]fi)

then (FS FY) is an L"-continuous martingale with <Fc>t given by (3.3.22).

t’ t teT
Also it is known that if

LaPC g A N M i Gl N S Tl S Al A Tt . e s il St e dee Bt e Jon 2 n ot




o ——e g P e g ey ”
............ . DS N LI . N B, - 1

77

(3.3.24) F

=] J, £09)'x 114 1 (S)da(s,x)

then (F‘:,FI) is an Lz-right continuous martingale with

a. _ ¢ 2
<F> = ) Io (£(5)'x) “dv(s,x) teT.
0 R

n

But from (3.3.19) and the last expression
d t
(3.3.25) <F> = / £(s) 'R, (s)£(s)du, () teT.
0 (o)
Thus (Ft’F:) is an Lz—right continuous martingale and since er HW

d
and Ftqu, then E(Ft) =0 teT and

_ 2, _ c\ 2 d\2 _ _.c d
<F>t—E(Ft) = E(Ft) +E(Ft) = <F >t + <F >t

t
= {)f(s)'R(s)f(s)duo(s) <o teT.

The proof of (¢) follows from (b) and the polarization identity

1
<F,6> =7 {<F+G,F+G>t - <F-G,F-G>t} teT -

d

. . _nC c d .
Finally (d) follows since Ft-Ft+ Ft’ Fte HW’ Ftqu, HW and Hq are inde

pendent and using (3.3.5).
Q.E.D.

Now we shall apply Propositions 3.3.1 and 3.3.2 and our results in

Chapter 2 to construct an Lz(ﬂ) -valued product stochastic measure of Xl,
.,xn.

The next theorem gives an LZ(Q) -valued product stochastic measure

of non-identically distributed independently scattered measures. It is

the main result of this section.

Theorem 3.3.2 Let {xl,...,xn} be a system of n21 Lz-independently




]

Datie e 44
o

i
\- N

v wrw
Y
. .

2 1oy i = -

o IENORIOIAOLNOR { T3 (08,0 = [ du; (0

v

P.-- = ui(A) < o,

j;. Next, by Proposition 3.3.1 for each Ae A

! X; (A) = '{ £o0dY € H i=1,...,n

where HY = HWOHq. Thus each independently scattered measure Xi is an
;' orthogonally scattered measure on (T,A) with values in the common Hilbert
:t- spcae HY and control measure My Therefore existence and uniqueness of
N n

. the H$n-va1ued measure © X. follow by Theorem 2.2.1. On the other hand
f'..: i=1

b,
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scattered measures on (T,A) such that Y, = (Xl(t),...,xn(t)) teT, is
an n-dimensional stochastic process with independent increments as in
Assumption 3.3.1, where Xi(t) = Xi([O,t]). Then there exists a unique

2 Y n n .
L°(Q,F ,P)-valued measure ©® Xi on (Tn,A ) such that for Ai eA i=1,...,n

i=1 -
n
3 =
(3.3.26) iglxi(AIX...XAn) X (A))e...oX (A)
n n on
and for A ¢ A e Xi(A) € HY
i=1
n
(3.3.27) E( ® X, (A)) = 0
i=1
and
(3.3.28) VAR ( o X ) =% Tu . e...eu_ (Aal
e 224 nt & Mg ®---%Map
i=1 Il 1 n
where
(3.3.29) u;; (CAB) = EX; (C)X; (B) C,BeA i,j=1,...,n.

Proof Let {gi};l:l be the canonical basis in R and define

i, .
fA(t) = lA(t)gi teT AcA i=1,...,n.

- i 2 .
Then for each i=I,...,n fAe LR(uo) since
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by Proposition 3.3.2 we can see o xi as an LZ(Q,FY,P)-valued measure.
i=1
Finally, the equalities (3.3.27) and (3.3.28) follow in the same way as
n
for o Wi in Proposition 3.1.1.

i=1 Q.E.D
N ' n

In order to compute the symmetric tensor product measure © Xi(A)
i=1

for Ae An, we have to find concrete expressions for general symmetric ten-

2 sor products of elements in H, where Y is an n-dimensional stochastic pro-
cess with independent increments as in (3.3.4). This last problem was
studied by Kailath and Segall (1976) for the case of a one-dimensional sto-
chastic process with stationary and independent increments. Although the
main ideas behind the next two results originated from the above named work,
we were not able to find them in the literature in the generality that they
are presented and proven here.

The next result is a generalization of Propositions 3.1.2 and 3.2.2.

- We remark that for this theorem to hold it is required that T is an inter-

jé val of the real line.

Theorem 3.3.3 Let (Yt) teT = [O’To] and HY be as in Proposition 3.3.1.
For each i=1,...,n let fle L;(uo) and
(3.3.30) Fo(t) = [ flaay, F, =] f-qy

[0,t] T

where the f''s are not necessarily all different. Then

¥ n
(3.3.31) Fy@...0F, = (a1)" Pp (Fy,.0 Fy)

where g?(Fl,...,Fn)are multivariate functionals of the process Y (Kailath

and Segall (1976), Meyer (1976)) defined by

(3.3.32) PP () =1 teT

4

---------
.................
--------------------------
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Lemma 3.3.2 Let Yt te T and HY be as in Theorem 3.3.3, fe Li(uo),
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(3.3.33) Pi(F) = F(t) teT i=1,...,n
n
(3.3.34) P (FiseeobF) =
Ly g |
= n-1(F_,...,F_ ,F_. . ,...,F )dF_(s) teT.
noo [O,t]gs- 1 r-1’ 1+l nor

The proof of this theorem is based on the following lemma.

F(t) = I[O’t]f-dYand F=F, 6 = fo-dY. Then

TO
" = (n1)® PR (F)
4]

where Pn(F) n21 are univariate functionals of the process Y (Kailath and

Segall (1976), Meyer (1976)) defined by

(3.3.35) pzp)=1 VteT

(3.3.36) Pi(F) = F(t)

(3.3.37) PP(F) = [ PV 1(F)dF(s).
R (3

Proof We first show that the functionals (3.3.35)-(3.3.37) belong to
LZ(Q,FY,P) and that they are square integrable F:-martingales: each P:(F)
is F: adapted all n21 te T and by Lemma 3.3.1 (Pi(F),Fz) is an L%-martin-
gale. Next using Lemma 3.3.1 (b) we have that
EC) )17 ae>))
(0,t]

TOI ]E(P:-I(F))zf(s)'R(s)f(s)duo(s) ,
)

s E(P$‘1(F))2[OI O R EE (o),
o st

n

Hence, using induction, if E(P,r

"1(f))%2 <, then
0




T T ey /"
-

: .

X .

n-1 2
E( { (PI(F)d<Fy) <=

which shows that P:(F) = I[O t]P::I(F)dF(s) is a square integrable F:-martin-

gale.

Next from Lemma 3.3.1 amd Theorem 3.3.1, if fe Li(uo)

c d
F.. =F_ +F_ € HW ® H
and TO TO TO q -ITIR Of' (w) _)_(_d\) u :}__)
(3.3.38)  y(exp ®(F)) = exp(Fy - 2E (ES )2 I (1+£'(s)A¥ e ©
o]

o ssT
o

since f'(s)x e L2(Tx ]R:,Ax B:,\)) n Ll(Tx Rg,Ax Bﬁ,v) by Proposition 3.3.1.

But under this last condition

F;l. =1, (£' ()0 = [ [ E'(s)xdN(s,0) - [ [ £'(s)xdv(s,x).
T R R

T
o n n

Then using (3.3.9)

S o= 1 £Us)av, - [ [ £(s)xdv(s,x)
o ssTo T IRn

=1 aF - [ [, £(s)xdv(s,x)
s<T ° T R

and therefore from the last expression and (3.3.38)

-AF
Y(exp ©(F)) = exp(FS +F3 -2 <> ) 1 Qe ) = Bp(R)
0 [} O S
o]

where Exp(F) is the exponential semimartingale of F (Doleans-Dade (1970)).
Then the lemma follows using Proposition 3.3.2, since from Section 3 in

Doleans-Dade (1970), for any B € €
(3.3.39)  Exp(8F), = ] B“P’t‘(F) a.s. VteT
n=0

and on the other hand

exp ®(BF) = § (n!f;i g"Fn.
n=0 Q.E.D.
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Proof of Theorem 3.3.3 Using the notation in (2.2.7) and by Lemma 3.3.2

n-1 n
Fio-oF, = @3* § D EPp (21 R

MeP, To i=1 M

Next, using induction on n one shows that for all t

from which the theorem follows.
Q.E.D.

We now obtain an extension of Proposition 3.1.2.

1
Lemma 3.3.3 Let Yt te T and HY be as in Theorem 3.3.3. Let f ,...,fk

be elements in LR(uo) with disjoint support,

- i, - - [ £i.
F;(t) = [ £ +d¥and F, = F.(T) = £ £*.dy.

[0,¢] :
Then
én én a2 k n,
(3.3.40)  F| le...eF, K= (a1} N Pricr)(mD?
i=1 o

n, k
where P ! are defined in (3.3.35)-(3.3.37) and n = Z n, .
i=1

Proof Since fl,...,fk have disjoint support, then by Lemma 3.3.1 (c),

Fl""’Fk are mutually orthogonal elements iJlHYand therefore the family

{F1 ®...0F ":mn 20,...,m2 0}

n=<

is orthogonal in EXP(HY) L@, FY,p).

Next, for Bl,...,Bke R

(3.3.41) exp o( ] B.F) =] (nt)" ([ B;F,)
is1 1 n=0 i=1
n n
@ B 1 B K en
=1 (1) ) Lo k_ Fy lo...oF:nk
n=0 ny+.. .40 =n ™ My*
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=

((nl+...+nk)!;;5 n, n FOnl en,
: 1

B,". ®...0F
I
0. n1!...nk. 1 k

On the other hand since for i#j f' and £) have disjoint support,
j . then if [ , ]t denotes the optional quadratic variation, using Lemma

3.3.1 (b) we obtain

C C
[BiFi,Bij]t B.8. <Fi’Fj>t +B. 8. ZAFi(S)AFJ-(S)

1 17 <t

B.B, J £(s)'AY(s)E (s)AY(s) = 0.
1 s<t

EZ Then

o

= (3.3.42) Exp(BlF1+...+Bka)t =iI=IIExp(BiFi)t a.s. V teT.

Hence the assertion of the lemma follows from (3.3.39), since

n=x

Exp(BiFi)T

en on - n1+...+nk
F, le...oF, Ko ay? |2
ag 171

1 n n
1 k
381 ...ask o

B = (Bl,...,sk),
Q.E.D

With the above lemma we are able to compute the symmetric tensor prod-
n

uct measure e Xi(A)’ for special sets AecA". The following result will
i=1 ’
be used in Section 3.4.

Corollary 3.3.1 Let {Xl,...,Xn} be a system of independently scattered
measures as in Theorem 3.3.2. Let Al,...,Ak be disjoint sets in A for

% k>0. Then if i,,...,i, € {1,...,n}

-k
(3.3.43) xil(A1)°“'°xik(Ak) = (k!) xil(Al)...xik(Ak).

The proof follows by Lemma 3.3.3 since P% (Fi) = Fi(To) and by taking
)

.............................

...................................................
...................
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fl(t) = IA.(t)Ei’ where {Ei}2=1 is the canonical basis in R,
1

The main properties of the functionals EP(ZI,...,ZH) and P"(Z)
defined in (3.3.32)-(3.3.34) and (3.3.35)-(3.3.37) respectively, are
given in Kailath and Segall (1976) and Meyer (1976), including recursive
expressions to compute them. In particular, the univariate functionals
P"(Z) are Hermite polynomials in the case when Z is a Gaussian martingale.

The first few expressions for 2?(21,...,Zn) are:
Pl =1 gi(zi) =Z,(t) ¥erT
(3.3.44) gi(zi,zj) =<%{Zi(t)zj(t)- (22,1}
(3.3.45) g:(zi,zj,zk) . %{Zi(t)Zj(t)Zk(t)
- (t)[zj’zk]t"Zj(t)[zi’zk]t

- Zk(t)[Zi,Zj]t + 2s£tAzi(s)Azj(s)Azk(s)}

where Zl""’zn are semimartingales not necessarily all distinct.

Multiple stochastic integrals As in the Gaussian and Poisson cases
n

(Sections 3.1 and 3.2 respectively), integrals with respect to o Xi
i=1

can be constructed using the theory of Section 2.3. Under Assumption

3.1.1 T is an interval of the real line and the measures ui's are non-
n
atomic. Then by Theorem 2.3.2 a function f is © Xi-integrable if and
i=1
. 2.n ,n n . n 2.0 ;N n
only if feL“°(T ,A, ® u,), i.e. L.(® X,) = L°(T ,A, ® u.).
. i 1. 1 . 1
i=1 i=1 i=1

n
Thus from Proposition 3.3.2 we have that if fe Lz(Tn,A", e u.)

i=1 1
n
I (£:Xp,...,X ) = 4nf(£)di:1xi(£)
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is an element of LZ(Q,FY,P) with all the properties of the integral of
Section 2.3. 1In the next result we summarize some of these properties.

We use the notation of Theorem 2.3.3.

T n
Proposition 3.3.3 Let Xl""’xn and & Xi be as in Theorem 3.3.2. Then
n i=1 n
a function f is @ Xi-integrable if and only if fe Lz(Tn,An, ® ui) in
i=1 i=1
which case
a) I (£;X X ) e L2@,F,p)
n > 1"") n ] ] .
b) E(In(f;xl""’xn)) = 0.
2 m m
c) Ifgel (Tm,A , ® ui) m#n
i=1

E(L, (65X 500X )T (83X, X0))
= %n {n fon(z)'ken(ﬁ) EOn(E)dug(EJ.

The proof follows analogous to the proof of Lemma 3.1.1.

One dimensional case We now consider the case when X= X1= ceo=X

n

i.e. Yt==xt is a one dimensional stochastic process with independent in-

crements as in Assumption 3.1.1 with n=1. Then X is an Hx-valued ortho-

gonally scattered measure and by (3.3.11) it has control measuie

(3.3.46) WA = o (A) + [ [ xPav(t,x) AcA
A R

Then in this case U, =M and r(t) =1 all teT. If we identify functions

which are equal a.e. duo(t), the space of functions Lg(uo) can be taken

T aT TN

..‘ -"‘f“[".“‘."‘;n" ~.".'v‘|' .

to be the Hilbert space Lé(uo), that in this situation is equal to

L2(T,A,u). Then is this case

I.(£) = [ £.dY
x® =]

TR
s
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where the last integral is defined in (3.3.18) for n=1.

Following the notation of Propositions 2.2.1 and 2.3.6, by Proposition
3.3.2 we obtain that for n21 the symmetric tensor product stochastic mea-
sure x°“ on (Tn,An) and the multiple stochastic integral Ine(f;x)’
fe LZ(Tn,An,UGn)’ are LZ(Q,FX,P)-valued elements. They satisfy the
properties of Proposition 2.2.1 and Proposition 2.3.5 respectively.

The next two results are extensions of Theorem 3.1 in Ito (1951)

(Propositions 3.1.5 and 3.1.6 in our work) to the case of a general L2-

independent increments process.

Proposition 3.3.4 Let X be a one dimensional stochastic process with in-

dependent increments as above. Let Pk(°) be the functionals defined in

(3.3.35)-(3.3.37). Assume that fl(t),...,fm(t) is a system of real valued

functions in LZ(T,A,u) with disjoint support. Define

f(t) = fl(tl)...fl(tkl)fz(tk +1)...f

1 1

Then if n=k,+...+k
1 m
2 m

k.
I o(£:X) = (n!) PTZ(Fi)(ki!)

i=1

where Fo o= {fidx = Ix(fi).

Proof By Lemma 2.3.1 f is x® -integrable and

ok ok

. - 1 m
Ino(f’x) = Ix(fl) o...on(fm) .

Next using Lemma 3.3.1 (c)

] fi(S)fj(s)du(S) =0

ZL L L N P D ErE N
: 1 72 1 m
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since f., fj have disjoint support. Then by Lemma 3.3.3

ek1 @k

1 m Kk,
@... Mm_ (ntj? 1 N
(6 e (U Py (R (1)

Ix(fl)

Q.E.D.

Corollary 3.3.2 Let T = [0,1]. Then if

'1"’11 = {(t, .t 0st <<t <1}

el ¥ = (07 P00

1

That is, formally

f...] dx(t,)...dx(t ) = (i) phx).
0st, <...<t <1 n 1

no(1 n;X) = X@n(T?). Then the result follows
T

1

from the last proposition since X is finitely additive, u is continuous

and Proposition 2.2.1 (c).

Q.E.D.

Finally, in this section we discuss the completeness of the multiple
stochastic integrals In0(f;X) nz0 in LZ(Q,FX,P), obtaining a characteriza-

tion of the Gaussian and certain Poisson random measures on (T,A).

Proposition 3.3.5 Let X be an L2-stochastic process with independent in-

crements as in Proposition 3.3.4. Then the system

(3.3.47) {1 (£,:X): fneLz(T“,A“,u"“), n21}

NIRA Sre . BGE SEL i et e |
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generates L°(2,FY,P) if and only if
a) Vv(t,A) =0 V¥ Ae Bo, teT (Gaussian situation) or
b) Ol(t) = 0 and v(t,*) is concentrated in one point x, #0.
Proof Assume (a) holds. Then u(A) =01(A) AcA, xt=wt teT, Ix(f)
= Iw(f) fe L2(T,A,u) and HX=HW' Thus from Proposition 2.3.7 the system

(3.3.47) generates the space EXP(HW) and by (3.1.4) EXP(HW) is identified

with LZ(Q,FW,P). Then the system (3.3.47) generates LZ(Q,FWP).

Now assume (b) holds, then u(A) xz\)(A;xo) Ae A for XO#O, q(A) =
q(A;xo) is a Poisson random measure on (T,A), Xt =q([0,t]), IX= Iq(f)
fe L2('1,A,u) and HX=Hq' Then as above, from Proposition 2.3.7 the system
(3.3.47) generates the space EXP(Hq) and by Lemma 3.2.2, EXP(Hq) is identi-
fied with LZ(Q,Fq,P). Then the system (3.3.47) generates LZ(Q,Fq,P).

Next assume that the system (3.3.47) generates the space LZ(Q,FX,P)
which is identified with EXP(H) by Proposition 3.3.2, where H= Hwe Hq. Then
by Proposition 2,3.7 the system (3.3.47) generates EXP(HX). Therefore,

EXP(HX) = EXP(H) which implies H,=H. Then for each g€ LZ(T,A,OI) and

X
2 o 0 . 2
g,¢€ L°(Tx R ,Ax B ,v) there exists fe L"(T,A,u) such that

F But from (3.3.18) in Proposition 3.3.1
g
1

I,(f) = L(£)+ Iq(fx)
E Therefore
t' Iw(gl) - Iw(f) =0 a.e.
p- and

Iq(gz) - Iq(fx) =0 a.e.

which implies

...................................

T T R A S N B I T A
AT RIS S DI DR I AN GO R O SO >0 o W N ittt mibmisnahnnbnnm oot




-y

;

. AD-A159 181  PRODUCT STOCHASTIC MERSURES NULTIPLE STOCHASTIC 2/3
INTEGRRLS AND THEIR EXTEN. . CU) NORTH CAROLINA UNIY AT
CHAPEL HILL CENTER FOR STOCHHS C PROC..

UNCLASSIFIED V M PEREZ ABREV C. JUN 85 TR-107 F/G 1271 NL



0N N O
IS ]| 5_____
= N

R EE

K EFEETTITR

IIO
——
——
——
—
——

l [ ] l
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS ~ 1963 ~ A

3|
Te)
q




89
(3.3.48) 8 = f a.e. dol
and
(3.3.49) gz(t,x) = f(t)x a.e. dv

Suppose there exists tyeT and Ae B® such that

(3.3.50) 0 <\)([0,t1] xA) < ®

Then 0 <V(t,A) <= t>t; since v(t,A) = v([0,t] x A} is a non-decreasing

function. Let gl(t) =qal (t) for an arbitrary a# 0 and gz(t,x) =

[O’tll

2 2 o o]
1[0,,t1]><A(t’x)' Then g€ L (T,A,ol) and g€ L°(Tx R ",AxB ,v) and by the

above argument there exists fe LZ(T,A,u) such that

(3.3.51) f(t) al [O,tll(t) a.e. do1

{3.3.52) f(t) = I[O,tl]xA(t’x) a.e. dv.

Let te [O,tl] and X sX,€ A. Then (t,xl)e [O,tl] x A and (t,xz)e [O,tl] x A
and by (3.3.52) f(t)x1= f(t)x2= 1 i.e. f(t)#0 and £f(t) = 1/x1= 1/)(2
which implies X)= Xy and therefore v(t,A) is concentrated in one point
X > say, and f(t) = l/xo te [O,tl]. Then by (3.3.51) if xo# A_l, Gl(t)= 0
te [O’tll and since a 1is arbitrary, then ol(t) =0 all te [O,tl]. Then
since v(t,A) is non-decreasing the above argument holds for all t>0, i.e.
v(t,A) is concentrated in ome point and ol(t) =0 all t>0. Hence condition
(b) holds.

On the other hand, if there do not exist teT and Ae BY such that
(3.3.50) is satisfied, then v(t,A) =0 all te T and Ac B® since v is a

o-finite measure on (Tx RO,AX B°). Then condition (a) holds.
Q.E.D.

3.4 Comparisons with earlier results

Engel (1982) and Rosinski and Szulga (1982) have recently studied
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Lz—valued product stochastic measures. In all these works the usual prod-
uct of independently scattered measures has always been considered and in
none of them has the symmetric tensor product been used. In this section
we point out the main differences between the two approaches and the advan-
tages of the symmetric tensor product measure.

Engel and Kakutani (Engel (1982)) have considered the construction of
an Lz(ﬂ)—valued product stochastic measure from a system of n2l stochastic
processes {Xl(t),...,xn(t)}, teT = [O,Tol, on a probability space (9,F,P),

satisfying the following four conditions (R1-R4 in Engel's notation (1982)):

(3.4.1) The funtion mk(t)= Exk(t) is a continuous function of

bounded variation on T, for each k=1,...,n.

(3.4.2) The function uk(t)= E(xk(t)-mk(t))2 is a continuous mono-

tonely increasing function on T, for each k=1,...,n.

(3.4.3) If {Il,...,Iq} is any set of disjoint intervals contained
in T and {il,...,iq} is any set of integers where 1<k<n,
k=1,...,q, thea {X. (I,),...,X, (I.)} forms an independent

1, 1 i''q

system of random variables, where for I= (s,t], Xi(I)=

Xi(t)- Xi(s).

B A e zie

(3.4.4) If IcT is any interval and 1$j1<...< ijn is any sequence

of integers between 1 and n, then

2
Elxj (I)Xj (1)...xjk(1)| <

1 2

and

E(IX, (I)...X. (D2 >0 as 1] +o.
1 Ik

Let Ag (Fg in Engel's notation) be the field of elementary subsets

of Tn of the form

--------------
- .'.
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(3.4.5) B = U ¢ 4 T eI

where {Il,...,Iq} is a partition of T into disjoint intervals (depending
on B) for which Ik <Ik+1 (i.e. 1if S € Ik and 52e Ik+1 then sl< sz) k=1,

...5q~1 and ¢, . is either zero, indicating that I, x...xI, is not
1,001 1 1
1 n 1 n
included in the union, or is one indicating that it is included. Engel
(1982) defines the finitely additive LZ(Q)-valued product measure Y(n) on
n
A, as

(3.4.6) M@y = e X (I )...X (I,) BeAp
il...in=1 11 *n 1 noi,

and proves the following theorem which extends the measure Y? to A" = O(Ag).

Theorem 3.4.1 (Theorem 4.5 Engel (1982)). Let {Xl(t),...,xn(t)}, te T=

[O,TO] be a system of n21 stochastic processes satisfying the regularity
conditions (3.4.1)-(3.4.4). Then the Lz(ﬂ)-valued measure Y(n) defined
by (3.4.6) on Ag can be extended to a countably LZ(Q)-valued measure (also

denoted by Y(n)) on the Borel o-field A"=0¢ (Ag).

The idea of the proof of this theorem is to partition the set ™ into
disjoint pieces on which an appropriate countably LZ(Q)—valued measure can
be defined and then show that the sum of all these measures is the required
measure. This procedure uses a complicated double induction and involves
prior knowledge of what the measure Y(n) should look like, even when the

mean function of each process is assumed to be zero. On the other hand
n

the construction of the symmetric tensor product measure ® X, follows the
i=1

more natural ideas from the theory of product real valued measures. More-

over, the assumption that T is a subset of the real line is essential in

(n)

the construction of Engel's product measure Y and therefore more general

..........................
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parameter sets T, as those considered in Sections 3.1 and 3.2 of this chap-
ter, cannot be contemplated in Engel's framework.

Assumptions (3.4.2) and (3.4.3) imply that
Yt = (xl(t),...,xn(t)) teT .

is an n-dimensional Lz-stochastic process with independent increments. Then
if we assume Exi(t)= 0 VteT i=l,...,n, we are able to construct the
Lz(Q,FY,P)-valued productAstochastic measure .: xi as in Section 3.3. This
""zero mean" condition is satisfied in many int:iesting cases and allows us
to use Hilbert space techniques in the construction of .: X.. On the other
hand, although the 'zero mean" condition simplifies the1;ioof of some of
Engel's results (e.g. Theorem 4.1 Engel (1982)) it does not make easier the
proof of his Theorem 4.5 using his method. In the zero mean case Engel's
problem (the construction of an Lz(ﬂ)-valued product stochastic measure) is
more easily solved using Section 3.3, although the product stochastic mea-
sure obtained is not the same, as we shall see later. Multiple Wiener in-
tegrals have been applied to obtain expansions and stochastic integral rep-
resentations of Lz-functionals of Yt (Its (1951), Kallianpur (1980)). Since
the o-fields generated by the processes (xl(t),...,xn(t)) and (Xl(t)-ml(t),
...,Xk(t)-mk(t)) are the same, from the point of view of this application

the zero mean assumption is unimportant. Moreover, this assumption enables

us to use the techniques of Chapter II to construct integrals with respect

n n
to © xi and identify the class of ® Xi-integrals that in this case is
i=1 i=1

n
equal to L2(Tn,An, ® ui). Engel (1982) does not consider stochastic inte-

i=1
gration w.r.t. his product stochastic measure Y(n).

‘Assumption (3.4.4) is used in Engel's work to assure that Y("), as de-

fined in (3.4.5), is an Lz(ﬂ)-valued measure, i.e. Hilbert space valued.
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In our framework, this additional moment condition is not necessary to obtain

n n
a (Hilbert space) @ Hi-valued measure ® Xi’ where H is given in Proposition
i=1 i=1
n n
3.3.1. Furthermore, for nlyén2 the measures olxi and ozxi take values in
i=1 i=1

the same Hilbert space EXP(H) and they are orthogonal w.r.t. the inner prod-
uct in EXP(H). Moreover, the identification of symmetric tensor products
of H provides more insight into the structure of {Xl(t),...,xn(t)}. Such
identification is known for important cases (Neveu (1968), Kallianpur (1970)),
and we have obtained in Sections 3.2 and 3.3 identifications for other im-
portant situations.

As well as differences in the assumptions and in the techniques used,

there are also important differences between the resulting product stochastic
n

measures Y(n) and o Xi. We now study some of these differences.
i=1
If Ec Ay is as in (3.4.5), then
(3.4.7) Y™ () < § e. . X, (L. )...X(L, )
. . iye..i "1V i
11...1 =1 1 n 1 n
. and
[-.
!I n
. (3.4.8) ® X.(E) = % C. . X (I, Je...eX (I. )
i=1 1 ip...i=1 1t bl nin
- 1 n
< Thus if I, <...< I, » using Corollary 3.3.1 we obtain
N 1 n
n
(3.4.9) ® X. (I, x...xI, ) = X_(I,)e...®X (I.)
i=1 1 1 inn UL nig
= I X )x (1) = )t Y™ x )
h In 5] In
5 () .
which suggests that (n!)* Y and © Xi agree on antisymmetric sets (see
i=1

Corollary 2.2.4), as it is shown by the following result.

Proposition 3.4.1 For each permutation Il = UH""’Hn) of (1,...,n) let

......... ISR
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T; = {(tl,...,tn)e'l’n: tn1<...< tnn}
and

4 - .
Then

n

_ sk (n) n )

(3.4.10) i:I)Ki(A) = (n!)*Y (A) AeAn .

Proof A; is the o-field generated by the field of all elementary subsets

of T; of the form

B = U c. i Ii X...in
1sip <...<ip sq o R Wb | n
1 n
where Il<"’<Iq is a partition of intervals of T and ¢, i 's are as in
1°""""n
n

(3.4.5). By (3.4.9) and the additivity property of the measures Y( ) and

n .
e X,

i=1 1

n
e x,(8 = 7Y™ .
i=1

Therefore from Theorem 3.3.2, since B is an aptisymmetric set

n
m!) Y™ (8))? = rs(iglxi(n))2 =% upe...ou (B).

Then an approximation argument shows (3.4.10) for all Be A;.

Q.E.D.
;3 If A is not an antisymmetric set then (3.4.10) does not hold. Consider
» for example the case n=2, then from (3.4.7) and (3.4.8) if Be Ai is given
E by (3.4.5)
¢ YD) -} e, %0, 0%a,)
[j iliz=1 172 1 2

and using Theorem 3.3.3 and (3.3.44)
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- 2
: ® X.(B) = E c. . X (I, )ex (I.)
: j=1 1 i,i =1 1112 11 27,
K 1’72
L = (2!)-;’{ 3 . i {XI(Ii )XZ(Ii ) - [xl’XZ](Ii n Ii )}
:: iliz=1 172 1 2 1 2
o ] 1
= @7 L) ey I IX0; ) - )¢ g (XXl A )}
ii =1 "172 1 2 i.,=1 "171 1
172 1
- -3 (2) -
= (2) {y'“’ (B) { 1B(s,s)d[x1,x2]s}
i.e.
(2) y 2 n
. (3.4.11) Y'“7 () = (2) ® X.(B) +[ 1 (s,s)d[X,,X,] BeA
.. . 1 B 1’72%s o °
i=1 T
‘ Then it follows from the above expression that even in the '""zero mean”
. case we have that
er® 8)) = [ 1,(s,5)du,,() = n,,(B)
T B*™? 12 12
2
- since E( @ )(i (B)) = 0 by Theorem 3.3.2 and
.:‘ i=1
: u,(B) = ECX (B)X,(B)) = EC[X},X,1(B)).
Therefore Engel's product stochastic measure Y(n) is an uncentered mea-
o n
- sure which gives rise to an uncentered stochastic integral, while e )(i is
i=1
centered.
s Let T=[0,1], A = B(T) and X be a single zero mean Lz-independently
scattered measure on (T,A) with control measure u. Rosinski and Szulga
. (1982) have considered the random product measure of X with itself in such
o a way that
%
>
. (3.4.12) (P (AxA) = X(A,) X (A,) ALA €A
! . 72 1 2 1°2
- can be extended to an L1 () -valued vector measure on (TxT, AxA). Under

the additional assumption of X(A) € L¥(Q) all AecA, they have shown that X2
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can be extended to an LZ(Q)-valued vector measure on (TxT, AxA). This
last case corresponds to the Bngel's situation n=2 and X= xl = Xz. They do
not go beyond the case n=2. One of the complications that will appear is

that for n=3, if X(A) € L2(R) AcA; then
XY A xAxA) = X(A,)X(A)X(A,) A. €A i=1,2,3
1A*As P X(A)X(ARg) Ay »2,

is not necessarily an element of LI(Q). This means more moment conditions
about X are required and that product random measures of different orders
take values in distinct spaces. Rosinski and Szulga (1982) use the theory
of integration with respect to vector valued measures to construct integrals
with respect to X(Z), characterizing the class of x(z)-integrable functions.
For purposes of comparison some results of Rosinski and Szulga (1982) are

summarized in the next two propositions.

Proposition 3.4.2 (Rosinski and Szulga (1982)). Let (T,A,u) be as above

and X be a zero mean Lz-independently scattered measure on (T,A) with control

measure Y. For A Aze:A define X(z)(AIXAZ) = X(Al)x(Az). Then

1’
a) X(z), as a vector measure in LI(Q), has a countably additive exten-

sion to (TZ,AZ).
b) For a real valued measurable function f on TZ define

2
N(E) = [I£Ce,0) [duce) + L [ [l£(s,t) |2au(s)an(e))®
T TAA
where A = {(s,t) ¢ Tz:s=t}. If N(f) <® then f is X(z)-integrable

with Ll(Q)-valued integral denoted by
[, £(s,00axB (s,¢).
T

c) If N(f) <= then




97

(3.4.13) [ £ P s, 0= [ £e,00av (1) + [, £(s,t)dV,(s,t) a.s.
T T T
where Vl(t) = [X,X]t is the optional quadratic variation process of
X(t) = X([0,t]) and V,(A) = x(P(aa)  aen’.

Moreover, the first integral on the RHS of (3.4.13) belongs to LI(Q)

while the second belongs to LZ(Q).

d) Let X be a Gaussian random measure. Then f is x(z)-integrable if

and only if N(f) < .

Proposition 3.4.3 (Rosinski and Szulga (1982)). Let X be an independently

scattered measure as in Proposition 3.4.2 and asuume that E(X(A))4)<°° for

all AcA. For A,A,cA define X2 (A xA)) = X(ADX(A) . Then

a) X(Z), as a vector measure in LZ(Q), has a countably additive exten-
sion to (TZ,AZ).

(2)

b} A real valued function on Tz is X" -integrable if and only if the

next three conditions are satisfied.

(1) [ |£(t,t) |du(t) <=
T
an [ (e P <o
T2\A
(iii) J |f(t,t)|2|c|(dt) <w
T
where |G| is the variation of the signed measure

6(a) = E(x(a? - 3exan?? Ac A.

Denote by
[, £(s,00ax P (s, 1)
T

the LZ(Q)-valued integral of f w.r.t. X(z).
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c) If fis X(Z)-integrable

(2))2

ECf,£x?)% = (f £, 00au)? + [ [, (s, ) du(s)du(r)
T T T

+ [ [, £(s,t)£(t,s)du(s)du(t) + / |f(t,t)|26(dt).
T T

d) If X is Gaussian then G= 0 and the random integrals with respect to

X(z) in the sense of L1 and L2 coincide.

On the other hand, following the notation of Proposition 2.2.1, let
x°2 be the LZ(Q,FX,P)-valued symmetric tensor product stochastic measure
on (TZ,AZ) constructed at the end of Section 3.3 (n=2) under the only mo-
ment assumption of X being Lz-valued. From Theorem 3.3.3 and (3.3.44)

if ApA, < A
x°2(A1xA2) = X(A)) ® X(A,) = c(X(A})X(A)) - [X,X](A, 0 A)))
where c= (2)™% , and therefore by (3.4.12)
(3.4.10)  XP(apa) = P apa) - LXTA 04D
Hence since E(X°*(A;xAj)) = 0
E(x(3) (A,xA,)) = ECIX,X](A;n AL)) = u(A nA)
x(?

i.e. is not necessarily a centered product random measure and gives

rise to an uncentered integral as it is shown in (3.4.13) of Proposition

3.4.2. Moreover, from (3.4.14) and (3.4.13) we obtain that

2

c V,(A) = x°2A)  AcA

1f fe LZ(TZ,AZ,uOZ) then f is on-integrable and the converse holds

if y is non-atomic. The integral with respect to X 2 is centered (Proposi-
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tion 3.3.3 taking n=2 and X= X1= XZ)'
Then the advantages of the symmetric tensor product measure approach
are that it does not need additional higher moment conditions to construct

an LZ(Q)—valued random product measure and it gives rise to centered multi-

ple stochastic integrals. Moreover, this approach can be used (as it was

done in Sections 3.1, 3.2 and 3.3) to construct product stochastic measures
of order n2 1, all taking values in the same space LZ(Q,FX,P), without need-

ing extra higher moment conditions.

Concluding remarks We have seen in this chapter that the symmetric tensor

product approach is an appropriate t»ol . obtain product stochastic mea-

sures and to construct multiple stochastic integrals w.r.t. them. A clear

relationship between the theory of multiple stochastic integrals and the

theory of vector valued measures has been established. Moreover, Theorem
2.1.4 suggests that this approach could be used to construct infinite prod-
uct stochastic measures, which we have not done since we have not been suc-
cesful in defining the concept of infinite symmetric tensor product. This

last notion was not found in the literature.
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CHAPTER IV

NUCLEAR SPACE VALUED WIENER PROCESS
AND STOCHASTIC INTEGRALS

In this chapter we bring together several notions and results about

nuclear space valued Wiener processes that will be used in the next chap-

ter. We begin by presenting the Countably Hilbert Nuclear Space ¢ that
we are going to consider in the remaining part of this work (Assumption

4.1.1). Then we define a ¢'-valued Wiener process (Wt) t20 with a contin-

uous positive definite bilinear form Q on ¢x ¢ and study some of its prop-
erties such as the corresponding Rigged Hilbert Space associated with it;
the Wiener integral and its associated Gaussian space; and an infinite

system of independently scattered measures that are non-identically dis-

tributed and mutually independent on disjoint sets. At the end of Section
4.1 we present some examples of ¢'-valued Wiener processes that show how
our framework includes many cases already considered in the literature.

In Section 4.2 we discuss real valued and ¢'-valued stochastic integrals
with respect to wt in a manner that they can be used in Chapter V in rep-

resenting nonlinear functionals of Wt.

4.1 Nuclear space valued Wiener process

4.1.1 The Countably Hilbert Nuclear Space ¢and its nthtensor'product o™

Suppose E is a real linear space whose topology is determined by a

countable family of Hilbertian semi-norms [|+|| (<,*>) n20. For each n

................
....................................
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let E_be the Hilbert space completion of E with respect to ||°||n. For

n<m suppose we have || ¢{| ns ||¢||m ¢e E. Then
E c Em c En < E'

E' being the topological dual space of E. Furthermore, let E = no E'1 and
n20 *

suppose that for every n there is an m>n such that the injection of Em into

En is a Hilbert-Schmidt map. Then E is said to be a Countably Hilbert Nu-

clear Space (CHNS).
Among important properties of a CHNS E we have that (Gelfand and Vilen-

kin (1964)) E is a complete metrizable locally convex space (Frechet space)
which is separable and every bounded closed set in E is compact. A useful
result that we will use several times in this work is the following lemma.
Although it can be proved for any linear topological space of the second
category (see Xia (1972) page 386), we shall establish and prove it in the
case when E is a CHNS. A result of this type, involving a Baire category
argument, was first used in the study of E'-valued stochastic processes in

Mitoma (1981a, 1981b).

Lemma 4.1.1 Let E be a CHNS and let V(4) be a non-negative, lower semi-
continuous functional on E (i.e. ¢, > ¢ in E implies that V(¢) < lim V(¢n)),

satisfying the following conditions:
a) For any ¢, veE V(o+y) < V() + V(y).
b) For any ¢c E and ae R V(a¢) = |a|V(9).
c) V(¢) <~ for any ¢eE.

Then V(¢) is continuous on E and there exist a positive real number 6 and

a positive integer r such that

V(o) s 0 |[oll V ¢eE.

e “-- .\- _Q- ‘u- =
"..-'.-.':\'1\\ ~.'...-' Y : . )
SO OO

—
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Proof Let

D, = {¢e E: V(¢) sn} .

Since V is a lower semicontinuous function on E then for each n21 Dn is a

closed set of E (see Reed and Simon (1980)). Condition (c) implies that

Then by the Baire category theorem, since E is a complete metric space, it
is never thé union of a countable number of nowhere dense sets. Therefore

there exists n, such that Dn is not a nowhere dense set, i.e. there exist
o

$o€ E, 61>-0 and a positive integer r such that

Uy = (0B [l o-00ll <8} < D, -
Then for any ¢ E ¢#0 if 6< 61

¢ R )
"I, * %o < Y, = %~ T, < Yo,

and hence they belong to Dn , i.e.

o
¢
vcs-l-[gll-l—r * 99 = ng snd V9= ST ) S g

But using (b) with a= -1 V(GTrgﬂ— - ¢°) = V(¢o-Tﬁ$Tr9 sn, .
r T

. Then by (a)

: YOS § VST %0 * VOTRTT - %) <
r r

and hence using (b), if 6= no/d

v(e) <8 [lell . ¥ ¢eE.

Then the continuity of V follows since using (a) we obtain
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V() - v(» | = V(o-w) < @ [fo-yl| .
Q.E.D.

As examples of CHNS we have S(n{d) the Schwartz space of all rapidly

d d=1 and S(ld) the space of all rapidly de-

decreasing functions on R
creasing sequences on Zd, the d-dimensional lattice space. Stochastic pro-
cesses taking values in duals of these spaces have been considered in the
recent works of K. It6 (1978a, 1978b, 1983), Dawson and Salehi (1980) and
Shiga and Shimizu (1980) among others. However, in several practical prob-
lems, like those occurring in neurophysiology, it is not possible to fix in
advance the space in which the stochastic processes take their values (see

Kallianpur and Wolpert (1984)). The next example is taken from the work

of the last named authors (see also Daletskii (1967)).

Example 4.1.1 (Kallianpur and Wolpert (1984)). Suppose a strongly con-

tinuous semigroup (Tt)tzo given on a Hilbert space H0 (that can be taken as
H0= LZ(X,dr)for some o-finite measure space (X,I,T)). The semigroup (Tt)t>0
usually describes the evolutionary phenomenon being studied, such as the

behavior of the voltage potential of a neuron (Kallianpur and Wolpert (1984)).

Suppose that the strongly continuous and self adjoint semigroup (Tt)tzo

satisfies the following two conditions:
[++]

(4.1.1) The resolvent Ra = f e'atTt dt 1is compact for each a> 0.
0
T

(4.1.2) For some r1> 0 (Ra) 1 js a Hilbert-Schmidt operator,

By the Hille-Yosida theorem (Tt) has a negative definite infinitesimal
generator -L. Then by Corollaries 4.4.1 and 4.4.2 in Balakrisnan (1981),

Ho admits a complete orthonormal set {¢j}j21 of eigenvectors of L with

R |




eigenvalues 0< A, s A, < ... satisfying

1772

® -21'1

(4.1.3) Y (o+d)) < (r;>0).
=1 J

Set

(4.1.4) o, =1
j=

-2r1 .
(1+1.)
1T ) :

Denote by <¢,<>, the immer product in H o and let

(4.1.5) 0= {¢eH : § <¢,0.>> (141.)%"< ® for all re R}.
of & %70 1Y

For each re IR define an imner product <:,+>_ and norm I« 1l . on

¢ by
- v 21'
(4.1.6) <¢’w>r -j§1<¢,¢j >o<w,¢j>o(1+)\j)
2
(4.1.7) ||4>Hr = <4, 6>

and let H be the Hilbert space completion of ¢ in the immer product <0

Then ¢ with the Frechet topology determined by the family {||- || of

r}relR

Hilbertian norms is a Countably Hilbert Nuclear Space. Let ¢'=0U Hr with
T

the inductive limit topology. Then &' is identified with the dual space

(in the weak topology) to . The following properties hold (see Kallianpur

and Wolpert (1984)):

(4.1.8) H-r and Hr are in duality under the pairing

o

A0 =j§1<~s,«1»j>_r EeH_, ¢eH

(4.1.9) bc Hsc Hrc ' if r<s and the injection of Hs into Hr

is a Hilbert-Schmidt map if s>r+ .

(4.1.10) Finite linear combinations of {¢j} are dense in ¢ and in

every Hr; moreover, {¢j }jzl is an orthogonal system in




grwhwegen
. .. -

105

-r R
each H , and then{(1+>‘j) ¢j }j21 is a CONS for H_.

Assumption 4.1.1 From now on, unless explicitly stated otherwise, we will

assume that ¢ is the CHNS of (4.1.5) and that L, {"j}jzl’ {¢j}j21, .58, HY
-o»<r<o, and ¢' are as in the last example.
We will see in Examples 4.1.2 and 4.1.3 how the CHN spaces S(le) and

S(z%) may be obtained within this framework.

The tensor product nuclear space 9"  Under the notation and the hypothe-

ses of Example 4.1.1, for each re R let H? be the n-fold tensor product

Hilbert space of H_ with immer product <, ->r”n and nornm || - ”ren .
Define the linear space
o™ = {yeH: ye HY all re R)
with the topology determined by the family of norms {|| - || on'reR °
r

Proposition 4.1.1 For each n21 (Qm, |+ ] on T€ IR) is a Countably
T
Hilbert Nuclear Space. It is called the n-fold tensor product nuclear

space of . If r<s then

<I>a"cH:"cH°"c o

)I

where (P m), is the inductive limit of H:n re R, identified with the

dual to ¢ in the weak topology.

Proof Since for r<s H_cH_ and || || <1 Il s then for each n>1
en _ .en
Hg cH_" and || Ilrms I Il gq+ Then
[
(4.1.11) o™ =n WM
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and therefore ¢™ is a complete metric space.
Thus we only have to prove that if s>r+ Tos the injection from H

into H is a Hilbert-Schmidt map. Let {e (1+A )'s¢ }.., be a CONS for

j21
H_, then {eJla...ee }31”’ ,J 5 isa CONS for Hs and using (4.1.10)
and (4.1.6)
0 (<]
2 2 2
) lle, ®...0e. || = ] lWe. lz---lle; |
. . = J J en |, . Jj r J T
Jpeeedy 1 1 n r Jyee-dp 1 1 n
pos - ‘2
= 3 (1+x, )75 e, 3250, Ilf,..-llcb. ||f.
§peeedpnl )1 In 51 In

) (H(I«M fzs)(ﬂ(l)« )Zr) (X(IA)Z(sr)) se < w,
jlo--jn‘l. 1-1 1 J__

Thus the injection from H:" into H:n is a Hilbert-Schmidt map.
Q.E.D.

The next proposition will be useful in studying multiple Wiener inte-
grals. It gives the nth tensor quadratic form of a continuous positive def-

inite bilinear (c.p.d.b.) form on ¢ xo .

Proposition 4.1.2 Let Q(*,*) be a continuous positive definite bilinear

form on ¢ x4, Define

(4.1.12) Q™ (uye.. 0w, m@..on) = QUMY QWM YN, <.

Then Qon can be extended to a continuous positive definite bilinear form
én_.@n

ond "x® . Moreover, there exist 92> 0 and r2> 0 such that
@n n 2 én
(4.1.13) Q7 (n,n) s GlInil° nee .
T
2

Proof The first part follows as in the construction of a tensor product

immer product (see Proposition 1, page 49 of Reed and Simon (1980)). To
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prove (4.1.13), since Q is a c.p.d.b. form on ¢ x®, by the nuclear theorem

there exist 62> 0 and r2> 0 such that

2
Q9,9) < 8, ||¢ll,r2 bed .

Then using (4.1.12), for y, e ® i=1,...,n

en n 2
Q (y®...89 , ¥;0...0y )56, ||wle...mpn|| on
2
and (4.1.13) follows from the extension of Qm.
Q.E.D.

We finish this section by showing how the nuclear spaces S(le) and

S(lzd) may be obtained in the framework of Example 4.1.1.

Example 4.1.2 (S(IRd)) (Ito (1978a)). Let H°= Lz(lR,m), m Lebesgue mea-

sure in IR, -L= dZ/dxz- x2/4 be the harmonic oscillator (Reed and Simon

{1980)), L¢n= Ancpn n=1,2,... where {(pn}“21 are Hermite functions, An= n--;-

nzl

}

boy 0 = (@0 B (2750 (Frim THE k20

2
I -
glx)=(2m e /2 and h, are Hermite polynomials defined by

2
2 -X
k/Z(_l)kex dk (e - )
dx

hk(x)= k=0,1,2,... .

Then (see It (1978a)) r,=1, 6,="/2 and ¢ as defined in Example 4.1.1

1
is the space S(IR) of rapidly decreasing functions on IR, with the topology
defined by the family of Hilbertian norms

[ ]

2 _ 2p 2 .
el -ngocmlﬂ <6,6.>, p20, <¢.¢n>o-{k 6(x) 6 (x)dx .

~ d
In a similar fashion Ito (1978a) constructs the space S(R") d21

v
ate’ats

which can be seen as the d-fold tensor product nuclear space (S(lR))ed.

.
2%
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Example 4.1.3 (S(ld)). Let H°= 12 be the Hilbert space of all real se-

2 — -
quences x = (xn) such that X:-lxn< o, Lx= {nxn}. Then )\n-n and ¢n- e, nz21,

where {e } is the canonical basis in %,. Thus r;=1, 6= /6 and the

nz1
space ¢ defined by

- o= {xeR : ) (n+l)2px <o all P20}
- n=1 n
E; and topologized by the family of Hilbertian norms
_ 2 v 2p 2
N Ix]lg = I (n+1)“x P20
P, P n
-
. is the space S(Z) of all rapidly decreasing sequences. The space S(ld) may

be constructed as the d-fold tensor product muclear space of S(Z).

4.1.2 ¢'-valued Wiener process

Throughout this section we assume the hypotheses and notation of
Example 4.1.1. Let (Q,F,P) be a fixed but arbitrary complete probability
space. All ¢'-valued random elements and ¢'-valued stochastic processes
considered in this section are defined on this probability space. We de-

note by B(®') the o-field on ¢' generated by the sets

E¢’a = {Ecd': E(¢) < a} aeR, e

which is the o-field generated by the open sets in the weak topology. Mea-

sures on &', ¢ '-valued random elements and ¢ '-valued stochastic processes

are defined with respect to the og-field B(%'). Thus a mapping
xt(W): [0:°°) xQ > ¢!

is a ®'-valued stochastic process if and only if Xt(-)[¢] is a real valued

stochastic process for all ¢e9.

= AR
' N LN ‘e 0
'..,L'.‘-;'.-.'.v‘n.,'A’.'l‘l:_,
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A ¢'-valued stochastic process (Xt) t20 is called an H r-valued
process if for every t20 )(t is an H_r-valued element,.
From now on we will write R = [0,9) and A= B(R+) will denote its

Borel sets.

Definition 4.1.1 A sample continuous ¢'-valued stochastic process

W= (wt)tem defined on (,F,P) is called a (centered) ¢'-valued Wiener
+

progess with covariance Q(-,°) if
a) WO = 2 .
b) Wt has independent increments.

¢) For each ¢ ¢ dand t20
iN, (9] |
E(e ) = exp(-t/2 Q(4,9))

where Q(+,*) is a continuous positive definite bilinear (c.p.d.b.) form
on &x 9.

From the above definition we see that the system

W, [9); ¢ed,t20}

is a Gaussian system of random variables and that if ¢, Yed, the real
valued processes wt [¢] and wt [v] are independent on non-overlapping in-

crements. Moreover, for each ¢, Yeband s, te ]R+

E(W_[o]W, [v]) = min(s,t) Q(¢,¥).

If Q(+,*) = <+,> , following Ito (1978a), W, may be called a standard ¢'-

valued Wieper process. If Q(+,*)=<-,> for some re R, then {¢j}j21»

the system of eigenvectors of the generator L, diagonalize Q (see (4.1.10)).

In general we will not assume that Q is diagonalized by the system {¢j }jzl'

Rt
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Several examples of ¢'-valued Wiener processes with different covariances

Q are presented in Section 4.1.3.

. The existence of a ¢'-valued Wiener process with an H q continuous ver-
> sion is now established.

Theorem 4.1.1 Let {Y(t,$):0e ®, te R+} be a centered Gaussian system of

random variables such that

E(Y(t,$)Y(s,¥)) = min(s,t)Q(¢,¥) ¢, Ve®, s, teR

where Q is a c.p.d.b. form on ®x ¢. Then there exists a ¢'-valued Wiener
process (Wt) te R+ with c.p.d.b. form Q such that Y(t,¢) =Wt[¢] a.s. for
all ¢e ¢, te lR+, and wt has an H_q-valued continuous version for some

qzT + Ty, where r, is such that for some 62> 0

(4.1.14) Qe, ) < 6,10l 2 ¥ oeo
2

Proof Using the bilinearity of Q, for t 20 fixed and €€y € R,

2
¢1,¢ze ® we obtain that

E(Y(t,c;0,4¢,0,) - Y(t,e,8) - Y(t,c,0,0)% = 0,

By the Kernel theorem for CHNS's (Gelfand and Vilenkin (1964)), there exist

62>0 and an integer r2>0 such that (4.1.14) is satisfied. Therefore
2 2
(4.1.15) E|Y(t,$)|° < 62t||¢|| bed .
T2

= Fix t throughout the argument. Then Yt: $-+Y(t,$) is a bounded linear oper-

ator from the pre-Hilbert space (9,]|* ]|r ) into L%= LZ(Q,F,P) and hence
2

extends uniquely to a bounded linear operator from Hr into Lz, denoted
2
L also by Y.
. (aar 17D o Syt
3 Let {(1+ j) ¢j }jzl be a CONS for Hrl'rz. Write ¢j=(1+)\j) ¢J.
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dual to {¢j}j21' i.e.

: jz1 and let {fj }j21 be a CONS for H_(rlﬂ.z)
~ - j = ~
: <fk’¢j>-(r1+r2) = 6kj' Set Xt Y(t,¢j). Then from (4.1.15)
. 2 uja2 2 b4 -2y
- B( Y (ot § 6,115 =8t 1 () =6.6,t>0.
a P 4 2", jtlr 27, 3 12
j=1 j=1 2 j=1
}
3 © .
[ Next let 0 = {we@: ] (Xi(m))2<w}, then P(2,) =1. Define
j=1
0
m¢91
W (w) = o
t J XJ@E, we®
j=1 e ',

Then for each t=0 Wt(w) eH('1=H_q a.s. for Q2T+ 7T, and

-]
2 _ jy2
Ellwtll_q-E(jZI(xt) ) < 8,0,t.

Next for ¢¢ Hq

ite~18
<

- i
N
©
-
-1
\%

e 8

J -
xt(w)fj [¢] = .

j=1

(4.1.16) W _[0] =
- i=1

J

and for 0 ss< t

’ R
- W [6]-W (4] = jzl (X - X)) <6,0;%
i vin2 - . -2(r,+1,)
But E(Xt- Xs) = (t—s)Q(¢j,¢j) = (t—s)(1+)\j) Q(¢j.¢j)

-2(r

+1.) -2r
s (t-5) (1+y) 2 1

2
V0 ll0ll; =0y T

Then
gllw. W |2 = sup W (o]-W_[o]l’
t s''-q “ P t s
qsl
b 2 o~ 2 AN T T S S
=E sup () (X.-X)° <¢,6,> ) SE su (] 2 -xDHHC] <6,0.>)
ol gy 351 © ° 3 a |\¢\rq51j=1 tos Ty A

oo j J 2 o -21‘1
< e(jzl(xt- X)) s 92“'5’,.21“**3" = 8,8 (t-s) <. |
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Thus

2
(4.1.17) El[wt-wsu “q < Olezlt-sl

and applying Kolmogorov continuity theorem we have that there exists an

+T,.

H -valued continuous version of (Wt) te R for q2 T +T,

Q.E.D.

Corollary 4.1.1 If (Wt) te R_is a standard ¢'-valued Wiener process,

then it has an H__r -valued continuous version, where r, is as in (4.1.4).

1 1
Proof Since for a standard ¢'-valued Wiener process Q(+,*) =<+, >,
then we have equality in (4.1.14) with 62= 1 and T,= 0.
Q.E.D.
If (Wt) t20 is a ¢'-valued Wiener process with c.p.d.b. form Q on
¢x ¢, then W(t,¢) = wt [¢] is a centered Gaussian system and therefore by
the last theorem wt has an H_q-valued continuous version, also denoted by

W_, for Q2T +T,.

t’

Assumption 4.1.2 From now on we will assume that (wt) te 1R+ is a ¢'-

valued Wiener process with c.p.d.b. form Q on ¢x ¢ and an H_q continuous

version for q2 T)+ Ty, given by Theorem 4.1.1, where r, and 62 are as in
W

(4.1.4). Moreover, assume that for each t20 F = O(Ws[¢] :0ss<t, ped)

with Fo containing all P-null sets of F.

2

uous martingale with quadratic variation process

Lemma 4.1.2 Let q=2 T +T,. Then for each ¢¢ Hq (wt[¢]’;:w) is a contin-

(4.1.18) W[$]>, = tQ (4,9) t20.

Moreover, the cross predictable quadratic variation of W, [¢] and W _[y] for

’ H is
¢lb€q

- FTRTE TR oW
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Proof The martingale property follows since (Wt)
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(4.1.19) W[, W[y]>, = tQ (6,¥) t20.

. '
£20 is a $'-valued

process with independent increments and for ¢e Hq and t20 IE(Wt (¢1) = 0.

Next since for each t20
WIOTH[Y]> = 5 (<HISTeW[Y],NI6]+W [v]>,
- <H[0]>, - WW]>)

then we only have to prove (4.1.18). But from (4.1.16) since Q has a

+T, (see Proposition 4.1.3) if

continuous extension to qu Hq for q= r
H th
be q en
B (oD% [ I <0.8,>.<0,3 > E0OXD
t =1 k=1 19 "kq tt
j=1 k=l
[+ 00 - ~ -
=t < s > < » > . =t R
g1g1¢%q¢¢kqm%wg Q (¢,9)

and hence E((W, [6]-W_[$D°|FY) = (t-5)Q(6,8) s<t o¢eo.

For ¢e Hq qzr,+ r, (Wt [d)],F‘:) has a continuous version since from
Theorem 4.1.1 W, has an H -continuous version.
¢ -4 Q.E.D

Corollary 4.1.2 Let (Wt) be a ¢'-valued Wiener process with a

t20
c.p.d.b. form Q on ¢$x ¢. Then if q2r

+T

1 2

E(W, [6]W_[¥]) = min(s,t)Q(¢,¥) ¢, Ve Hq

where Q(¢,¥) ¢, Ve Hq is a c.p.d.b. form on qu Hq that extends the c.p.d.b.

form Q on ¢x ¢,

Proof It follows from the proof of the last lemma by observing that if

s<t

1

~~~~~~ b
. et e
Am bt A L'L:L‘._‘J
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W
E(W [61W_[¥]) = E(W_[VIE(W [#][F)) = E(W_[o]W_[¥])

= 3 B _[o29])® - B (oD% - B D) %1
Q.E.D.

We now consider several concepts associated with a ¢'-valued Wiener
process (wt) t20 with a c.p.d.b. form Q on &x ¢ and an H_q continuous ver-

sion for q= T +T,.

Rigged Hilbert space associated with a ¢'-valued Wiener process. Let

(wt) t>0 be a ¢'-valued Wiener process with a c.p.d.b. form Q on &x ¢,
Then Q is an inner product on ¢x ¢. Denote by Hq the completion of ¢ with

respect to Q and by <,',>Q or Q(*,*) (”' ”Q

) the corresponding inner prod-

uct (norm) on Hq. Then

' .
(4.1.20) <I>CHSCHQ HécH_SC<I> szr2

The system (4.1.20) is called the Rigged Hilbert Space (see Gelfand and

Vilenkin (1964)) associated with the ¢'-valued Wiener process (Wt) t20

with c.p.d.b. form Q on ¢x &,

Proposition 4.1.3 a) For 52T, and ¢ e H

(4.1.21) o, < 8,1l¢ |I§

and therefore (4.1.20) makes sense, and Q has a continuous extension to

HSXHS.

b) For sz2r. +r_  the injection of HS into H, is a Hilbert-Schmidt map.

17 72 Q

Proof a) From the Kernel theorem (see (4.1.14))

Qo,4) = 02H¢||iz Vged

...............
..............................................................
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Next if Ye Hs since ¢ is dense in Hs there exists a sequence {wn} in ¢
. 2 . .
such that y >y in H_. Then Q(tpn-lpm,wn-wm) < ezllwn-wmll ¢ * 0 which im-

plies that Q(lbn,wn) + Q(Y,¥) n>e and then (4.1.21) follows.

~ - =S
b) Let {¢j (1+>\j) ¢j }j21 be a CONS for Hs, then

T o~ o~ % -2s 4 -2s 2
,-ZIQ("J""’J') - jzlguj) Q(¢j,¢j)sezj__2_1u+xj) lle 5l r,
© —2(s-r2]
= ezjzl(mj) S 9,8, <

and then the injection of H into H, is a Hilbert-Schmidt map for s2r;+r,.

Q
Q.E.D.

In a similar way, for each n=>1 the Rigged Hilbert Space

en en en en _en
$  cH <cH, =(H tc (o)
o < Hy' = (' e (0™
may be constructed where
en n 2 en
Q (n,M Seznﬂ“ _n neHs s2r,

and the injection from H:n into Hzn is a Hilbert-Schmidt map for s2 T 4T,

Wiener integral and the Gaussian space H of Wt Let C=C([0,») + &) be the

linear manifold of all measurable step functions on R with values in &,
i.e. feC iff there exists a finite collection of positive real numbers

<t,<...<t

0= t<><At1 2

and a; € $ i=1,...,k such that

(4.1.22) f(t) = a, 1

SRR R

[N e Tl

i

For £fe C define the Wiener integral

k
(4.1.23) I.()= ] W, -W_  )la].
! i1 4t !
N L T e R R D U PPN NNINUN N
............ N T T e T s TN T e SRR A

.............

" Y St
. [ -
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Then Il(-) has the following properties.

Lemma 4.1.3 Let £, ge C. Then

a) Il(cf) = cIl(f) ceR,

B) I, (fsg) = I,(6) + I,(g),
c) E(Il(f)) = 0.

3 DIRIHOINOIENRLCOR LS

+

o B = [ £ I de .
+

Proof (a) and (b) are proved as in the real valued case using the fact
that for each t20 Wte ¢'. The proof of (c) follows since E(Wt[¢]) =0

V ¢ed and t20. To prove (d) write Ai= (ti_l,ti] and "(Ai) swti- "‘1-1'

Then if
X
£(t) = izlai lAi(t)
and
k
g(t) = i§1Bi 1Ai(t)

for O0< t°<t <eus < tk’ a, Bie & i=1,...,k, by definition of I1

1

k
I,(f) = -le(Ai) CH

k
11(8) = .z W(Bi) [ai] ‘
i=1

Them if m(+) denotes the Lebesgue measure on (1R+,B(R+))

kK k
E(1,(£)1,(g) =i=)=:1 jglﬁ("("i) [og IWCA;) T851)

kK k kK k
= m(A,nA.)Q(a, ,B.) = 1 (t)Q(a,,B.)dt
4 jgl 17 izl jzl {R+ AiA; 1"




k k
=/ Q(]al, (v), ] 8.1, (t))dt = [ Q(f(t),g(t))
Ai j=1 j A,

R, i=1? j R

+ +

which proves (d) and (e).
To extend I1 to LZ(R*’* HQ) we first prove the following

Q
R, (identifying those which are equal a.e. dt) such that

[ lf@llgat <=
R

+

Lemma 4.1.4 C is a dense linear manifold in L2(1R+-> H

Q).

Q

step function fe, i.e.

k
£ft) = ] ailAi(t)

ial
a; e Hq, Ai= (ti_l,ti] i=l,...,k O=s t°< t1 <.,.< tk k21,
(4.1.24) | Ilf(t)-fe(t)llé dt < /2.

R

+

Since ¢ is dense in H., there exist a, € ¢ i=1,...,k such that

Q’

2 €
“ai- ai”Q < Zk(ti p

i=1,...,k.
Y

Define
k
€
g (t) = ] a1, (1)
i=l i
then gE e C and
[ £ -gfm )2 at < 2,
R Q

+

Then from the last expression and (4.1.24)

/ Ilf(t)-ze(t)llé dt < e
R

117

dt

Q.E.D.

result, where

LZ(R++ HQ) is the Hilbert space of H_. -valued measurable functions f on

Proof Let fe L2(1R++ H.)), then for each € > 0 there exists an H_ -valued

Q

such that

''''''''''''
...........
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~ 2
) =L (1R+)Oﬂq.

i.e. C is a dense linear manifold in L2(11++ H

Q
0.E.D.

The Gaussian space (linear space) associated with the ¢'-valued

Wiener process W, is defined as
(4.1.25) H= LI(W)=?p_{Wt[¢]: ded, t20}

where the closure is taken with respect to LZ(Q,FN,P), where F"==Fi. From

Proposition 7.3. in Neveu (1968)

b
(4.1.26) ey JeH™
n20
where

nl(exp o(h)) = exp(h-E(hz)) heH and

exp o(h) = (1,h, — 1%, L 1* ..
V27 /3T

as it was shown in Chapter III (see also Kallianpur (1980) Chapter VI).
Then for all n20 H™ may be seen as a closed subspace of LZ(Q,FW,P).
This fact will be used in Sections 5.1 and 5.2 together with the next

definition.

Definition 4.1.2 Lemma 4.1.3 shows that I1 is an isometry from the linear

space C of ¢'-valued step functions into H. Hence from Lemma 4.1.4 this iso-

metry can be extended uniquely to an isometry from Lz(nl+* H.) onto H, also

Q
denoted by I, and called the Wiener integral. It has the properties (a)-(e)

of Lemma 4.1.3.

¢'-valued Gaussian random measure Let T= nz‘ and A= B(l{+). A $'-valued

set function W(+) on (T,A) is said to be a ¢'-valued Gaussian random mea-

sure if for each ¢e &, W(*)[¢] is a real valued Gaussian random measure on

(T,A). For re R we denote by LZ(R+H_) the Hilbert space (identifying
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elements which are equal a.e. dP) of Hr-valued random elements G such

that E||G||2 <.

Proposition 4.1.4 Let (Wt) t20 be a $'-valued Wiener process as in

Assumption 4.1.2. Define for A= (s,t] O<s<t
W(A) = Wt- WS

Then W(°*) can be extended to a ¢'-valued Gaussian random measure on

(T,A), which is an orthogonally scattered measure in LZ(Q* H_q), for

q2 T+ Ty, and control measure u(-) = eqm(-) where m denotes the Lebesgue

measure on (T,A) and
8 =

L

o~ 8

..Zq o
1(1+AJ-) Q(¢jl¢j) < .

Moreover, if Ae A m(A) <» and ¢¢ Hq’ W(A) [¢]eH, and if Be A m(B) <=

then for all ¢, e Hq

(4.1.27) E(W(A) [¢]W(B) [¥]) = m(AnB) Q (¢,V¥) .

Proof From Theorem 4.1.1 (wt) teT has an H_q-valued continuous version

for q2r

q if A=
1t Ty Let {(1+Aj) ¢j}j21 be a CONS for H_q. Then if A= (s,t],
W(A) =W -W_
2 s 2q 2
E|| W(A =E ; L.
lIwea )} 2, (jzltmg) N, 057 )
T -2q 2 -2q,
=] ) TEW) [¢,D° = L as) (A)Q (¢.,4.).
j=1 ) J j=1 J J° )
[« ] -Zq
Let 8 = . 0. h
e q jzl(h)\J) Q(ct)J ¢J) then
® ® -2(q-r,)
-2q 2 2
8 < ¥ @+)) o,1¢.]15 <o a+») $6,0 <o
q J.Zl 5 211 %y, zj==1 3 21
and hence El| W(A) Il 3‘1 = qu(A) = u(A).

.................
......................
..............................
.................
............
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Thus W(°+) can be extended to an orthogonally scattered measure on (T,A)

with values in the Hilbert space LZ(Q+ H~q) and control measure u(*) = eqm(-) .
Next if Ae A m(A) <~ and {A }nzl is a sequence of disjoint sets in

A with m(A )<oall n>1 and A= UlA then for all ¢e Hq
n=

E(W(A) [6] - Z W(A; oD s o]l E||W(A) - 2 weay |2 g*0 asmre
j=1

i.e., W(*)[¢] is a real valued Gaussian random measure with values in H.
Let {$J.= (1a~xj)'q ¢j} be a CONS for Ho- Taking Ae A, m(A) <®, W(A)[¢, i1j21
and using a similar argument to the one used in the proof of Theorem 4.1.1
one shows that W is a ¢'-valued Gaussian random measure. Finally, (4.1.27)
follows by applying the approximation theorem to A, Be A, m(A) < », m(B} <

and using Corollary 4.1.2.
Q.E.D.

Now let T= [O,TOI, T, >0 and A= B(T). For q2r +r, let {e, }

1 k k21
be a CONS for Hq. Then from the above proposition we are able to obtain
an infinite system of independently scattered Gaussian random measures
{w() [ek]}k21 on (T,A) with values in H, that are mutually independent

over disjoint sets, each one with control measure uk(°) =m(*)Q (ek,ek)

and such that for all k,j=1 and A, Be A.
(4.1.28) E(W(A) [ek)W(B) [ej D= m(AnB) Q (ej,ek) .

Then for each set of index kl, ...,kn in {1,2,...} we may construct

the symmetric tensor product measure of W(-) [ek IseeesW(e) [ek ], denoted
1 n

n

by e W[e J, as in Sections 2.2 and 3.1 of this work, and construct multi-
i=1 1

ple integrals with respect to it. In the next result we summarize the

n
main properties of © W[ek ] and their integrals. It will be used in
i=1 i




Propositions 5.1.3 and 5.1.4.

Lemma 4.1.5 Let T= [O,To], To>»0, A= B(T) and { be the Gaussian space

defined in (4.1.25). For q2r +T, let {e } be a CONS in H.. For a

1 kkzl n q
finite collection of index kl""’kn in {1,2,...} denote by ® Wle, ]
i=1 i
the symmetric tensor product measure of W(-)[ek ],...,N(°)[ek ] given
1 n
by Theorem 2.2.1. Then
n on
a) ® W[ek ] is an H " -valued measure on (Tn,An) .
i=l i
n n
b) E(e® W[ek J(A)) =0 for each Ae A",
i=1 i
n n
c) A function £: T - IR is ® W[ek ]-integrable (see Definition 2.3.1)
i=1 i
n
if and only if £e LZ(T",A%,n®). Denote by | £(t)d o Wie, 1() this
Tn i=1 i
integral.
d) Let £e LZ(T",A%,n™) and ge L2(T%,4%0%Y.
Then for each collection of index jl""’jn’ kl""’kz in {1,2,...}
n L
E(f £(t)d ® W[e. ]() [e(t)d ® Wle 1(1)
T i=1  Ji T i=1 i

on ~ ~
= §_,nl e, ®...8e, ,e 9...8¢ f(t)g(t)d
ng Q ( i iy k1 kn) "1[" (_)g(_) T

where F(t) = 3 121 £(t).

Proof Since for each k21 W(-)[ek] is a zero mean H-valued indepen-
dently scattered measure then (a) follows by using Theorem 2.2.1. The
proof of (b) follows since H™ is orthogonal to sp{l} in LZ(Q,F",P) and by
using (a). Next since uk(')=1n(-)Q (ek,ek) where m is the Lebesgue mea-
sure on (T,A), the proof of (c) follows by Theorem 2.3.2.

Finally, the proof of (d) is similar to the proof of Theorem 2.3.3,
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first using An-simple functions and then using approximation arguments.

Q.E.D.

If T =1 and Qle,,e) =1, all k21, {W(+) le; ] }kzl is a sequence of

orthogonally scattered measures in H of the kind considered in Theorem

L. +]
2.1.4. Then we can construct the infinite tensor product measure o W[ek]
k=1
oy
on (Tm,A ,mm) with values in ® H, u= (W(T) [ek] k21) (see Theorem 2.1.4).
i=l

However, the construction of the infinite symmetric tensor product mea-

sure is a problem that remains open.

4.1.3 Examples

We now consider some examples of ¢'-valued Wiener processes.

Example 4.1.4  (Kallianpur and Wolpert (1984)). Let ¢ be defined in

Example 4.1.1 where Ho= Lz(X,dI’) for T a o-finite measure on (X,I).
Let 4 be a o-finite measure on R x X such that the bilinear form
2
Q¥ = [ a“¢(x)¥(x)u(da,dx)
RxX
on $x ¢ is continuous. In connection with neurophysiology applications
Kallianpur and Wolpert (1984) give several examples of Q in which the mea-
sure u is of the form
1k k 2 2. 2
u(AxB) = ) 1,(a)v (B)+ 1,(-a,)v,(B) AeB(R), Bel
At e e AT 171
k=1 2=1
k k . k £ ..
where {ae,ai} are positive real numbers and {ve,vi} are finite measures
on (X,I). The authors consider a W. path-continuous ¢'-valued indepen-
dent increments process with characteristic functional

1
thlcb]) eitm[¢]-§tQ(¢.¢)

E(e

bed, t20
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where me ¢'. Theorem 4.1.1 enables us to construct such a process with

continuous paths lying in H-q for any q2 T, if m and Q satisfy

Inio11* « . <0yllell;  eee

for some positive constants 62 and r,.
The continuous positive definite bilinear form Q on ¢x ¢ is not neces-
sarily diagonalized by the system {q)j }jzl of eigenvectors of -L. 'If for

example

redx) = / a®u(da,dx)
R

then Q(¢i,¢j) = fa2¢i(x)¢j(x)u(dadx) =0 for ifj; but in general

this is not the case.

Example 4.1.5 (It (1978a)). Let & be as in Example 4.1.2, i.e. &= S(RY

d>1. Itd (1978a) gives the following examples:

i) The Wiener ¢'-valued process corresponding to Q1(¢,w) = <$, P>, is

called a standard ¢'-valued process and it is denoted by (bt)te]R . By
+

Corollary 4.1.1 (b) is an H_l-valued Wiener process, since for the Example

4.1.2 T = 1.

d
. - T 32 : - - :
(ii) Let A _izlai and define Ab = Ab [¢]=b (A¢). Then W, =Ab_ is an
H_z-valued Wiener process for which

Q,(0,¥) = <Mb, 0> 6, Ve .

2
t’
are independent standard ¢'-valued Wiener processes. Then

(1ii) Let lbt= (bi,b ...,b:) where the component processes b: i=1,...,d

% i
W, = 3.b
t i=1 it

is an H_s-valued Wiener process with

.....................................................................
...........................................
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Ll 3ot 2w
ol a4

N Q5(8,4) = -<b9,0>, ded

where A is defined in (ii).

We observe that while Q; is diagonalized by {¢j }j21’ Q, and Q are

Example 4.1.6 ¢'-valued Wiener processes arise in a natural way in the :
d

following mamner. Let A be a relatively compact subset of R dz21.
Let 'ﬁ(t,i) teT, xeA be a two parameter sample continuous centered

Gaussian system of random variables such that

E(W(t,x)W(s,y)) = min(s,t)V(x,y) t, seR_ X, yeA

where V is square integrable over Ax A, Define for s, te R,

W (6] = [ W(t,x)6(x)dx
A

for ¢ in a suitable class, ¢= S(Rd) for example. Then from Theorem 4.1.1
we have that {wt}teR is a 9'-valued Wiener process such that for

+
s, te ]R‘_ and ¢, Ye ¢

E(wt [¢]w5 ['P]) = min(s,t) Q (4’.‘1’)

where

Q(o,y) = [ { V(x,y) $(x) ¢(y) dxdy .
Ax

is not necessarily diagonalized by the system {¢J. }521’ which in the case

of ¢= S(Rd) is such that

m'rd ¢; ()8, (x)dx = 0 for i ¢ j.

Example 4.1.7 (Cylindrical Brownian motion) Let K be a Hilbert space,

(9,F,P) a complete probability space and (Ft) be an increasing family

t20
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of sub o-fields of F. A measurable mapping
Bt(k,w) = [0,9)xKxQ >+ R

is called an Ft-cllindrical Brownian motion on K (Yor (1974)) (c.B.m.)

if it satisfies the following two conditions:

a) For each ke K, k£ 0, Bt(k)/ll k| g is a one dimensional F_ -Brownian

motion,

) Bt(k) is linear in ke K.

Two well-known observations (Miyahara (1981)) are the following:
1) A c.B.m. (Bt) cannot be regarded as a process on K, i.e. it is not
a K-valued process; 2) if k1 and k2 are orthogonal elements in K, then
{B .(kl)} and {B .(kz)} are independent.

Using the notation of Example 4.1.1 we now study the following case
considered by Miyahara (1981). Let H°= Lz([O,ﬂ])a L=&, @= V=B where A

is the Laplacian (A= d/dxz) on Ho' Hence for j=1,2,... Aj=j and

d)j(x) = \/3— cos(jx).
m

Then construct ¢ as in Example 4.1.1. Miyahara (1981) considers a cylin-
drical Brownian motion B, on H . Then {Bt(q)): de ® t>0)} is a centered

Gaussian system of random variables such that for ¢, Ye ® and s, te R+
EB, (¢)Bs(‘b) =min(s,t) Q (¢,V)

where Q(¢,¢) = <¢,w>o ¢, e &. Then T,= 0 and since
"Z" (1+j)'2r < ®

j=1

for r>—§- then r1=%. Thus, applying Theorem 4.1.1 there exists a
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¢'-valued Wiener process W, such that

wt[¢] = Bt(¢) a.s.

for t20 and ¢¢ . Moreover, using Corollary 4.1.1 wt has an H_%-valued

continuous version.

Note that in this particular example the continuous positive definite

bilinear form Q on ¢x ¢ is diagonalized by the eigenvector system {¢j}j21'

Example 4.1.8 (Independent system of one dimensional Brownian motions

(Hitsuda and Watanabe (1978))). Let ¢ be the countably Hilbert nuclear
space defined in Example 4.1.3, i.e. &=S(Z). Let {Bgl)} tz20 iz1 be
a system of independent one dimensional Brownian motions on a complete

probability space (Q,F,P). For ¢¢ o, ¢= (¢1,¢2,...) define
Wlel = § s{Mel .
i=1

Then since

oo

E( ]

BehyZ =t ] ohP<we t20
. .

1 i=1
[e o]

we obtain that since <¢,¥> = Z ¢1¢1
i=1

E(W _[¢]W_[¥]) = min(s,t) <¢,y>,.

Hence, using Theorem 4.1.1 Wt has a version which is a S(Z)-valued
Wiener process with c.p.d.b. form Q(+,*) = <oy0>5e Moreover, using Corol-

lary 4.1.1 wt has an H_l-valued continuous version,

Example 4.1.9 (Finite dimensional case). Suppose ¢ is finite dimension-
al, then ¢= Ho= ¢'= R™ say. Then Wt= (wgl),...,wgn)) t2 0, where each

N is a Gaussian process with independent increments and

................
- PR
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E(Wﬁi)ng)) = ;5 min(s,t)

m .
where R= (rij) is an mxm positive definite matrix. Then if ¢-= z ¢Jej,
j=1
e.= (0,...,1,...,0) ¢.e R j=1,...,m
J j J
mom . ;
Qo) =1 1 T,

i=1 j=1

Stochastic processes of this type have been considered in Chapter III.

4.2 Stochastic integrals

Throughout this section we will assume that (wt) t20 is a ¢'-valued
Wiener process with a c.p.d.b. form Q on ¢x ¢, defined on a complete prob-
ability space (Q,F,P), and that for each t20 Ft= F¥==°(ws: 0<s<t),
with Fo containing all P-null sets of F. Also we make Assumptions 4.1.1
and 4.1.2 of Section 4.1. We recall that from Theorem 4.1.1 (Wt) t2 0 has

2

Stochastic integrals with respect to S(nld)'—valued Wiener processes

an H q continuous version for q2 T +r,.

and E'-valued (E is a CHNS) processes have been discussed in Ito (1978a)
and Mitoma (1981b) respectively. They propose to use the theory of sto-
chastic integration on Hilbert spaces, as presented for example in Kunita
(1970) or Kuo (1975), to construct stochastic integrals for the H_q valued
Wiener process (Wt) t2 0. Here we construct 'weak' stochastic integrals
similar to the case of a cylindrical Brownian motion as presented in Yor
(1974). However, we do not work with a cylindrical Brownian motion but
rather with an H_q-valued Wiener process. Secondly, if {ek}k21 is any

CONS in Hq’ then {Wt[ek]} is not necessarily a system of independent

k21

random variables (see Corollary 4.1.2), as it would be required in the

case of a cylindrical Brownian motion (see Example 4.1.7). Moreover, we

do not assume that the common orthogonal system in Hr rz20 {¢j}j>1 (the
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eigenvectors of the infinitesimal generator L) diagonalizes the c.p.d.b.

form Q. The case when Q(*,*) = <-,°>o, and then {¢j}j>1 diagonalizes Q, has

;; been considered by Daletskii (1967) and Miyahara (1981) (see Example 4.1.7).

.~ Nevertherless, the nuclearity of the space (9,]||- lr r2 0) enables us to con- .
i struct "weak" integrals even when {Wt [¢j]}j21 is not an independent system

b"

o of random variables.

We present real valued (Section 4.2.1) and ¢'-valued (Section 4.2.2)

stochastic integrals with respect to Wt. They will be useful in Chapter V
in studying real valued and ¢'-valued nonlinear functionals of W. We make
extensive use of the c.p.d.b. form Q on ¢x ¢ and its associated Rigged Hil-
bert Space (see (4.1.20)). This is motivated from Definition 4.1.2 which

suggests that L2(n1+)ali should play the role of the Reproducing Kernel

Q

Hilbert space, a concept that has been useful in studying nonlinear func-

tionals of Gaussian processes (see Chapter VI of Kallianpur (1980)).

4.2,1 Stochastic integrals for ¢-valued random integrands (Real valued

stochastic integrals)

The aim of this section is to define stochastic integrals for ¢-val-

ued non-anticipative functions.

Definition 4.2.1 Let K be a real separable Hilbert space. A function

f: [0,#) x Q+K is said to belong to the class M(W,K) if f is an Ft-adapted
measurable (non-anticipative) function on I{+x ! to K such that for each
t>0
F 2
( 4.2.1) | E]| () ] ds <@
0
The special classes we will be concerned with are Mq= M(W,Hq),

qQ2r. +r

L+ 1, and MQ= M(W,HQ).

..........
..............
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Stochastic integrals for elements in &q qzr,+r

1 "2

Definition 4.2.2 Let q2 r1+ r,. For ge Mq and t> 0 define the stochastic

integral f; <gs,dws>q as

t
(4.2.2) f<gs,dw> = Z j <gg »e

]
] i=1 o 1

1>qdws [e

where {ei}i>1 is a CONS for Hq and the integrals on the right hand side of

(4.2.2) are Ito integrals.

2t Then the integral (4.2.2) is

a well defined element in LZ(Q,FW,P). If qlz r1+r

Proposition 4.2.1 Let ge Mq qzr +r
o and ge Mql then this
integral is independent of q and 9 Moreover the following properties

are satisfied for f, ge Mq.

a) For a, be R and t>0

t t t
= >
| <af +bg_,dW > = a ] < hdW > +D [ <g .aw, q 5.
o (o] (o]
t
b) EC [ ggrdW ) = 0 £>0.
o
1 t2 £1°t
c) E( <Bgrd¥y> £ <fs,dws>q) = E £ Q(f ,8 )ds t;>0, t,>0.

d) E(

O “~rt O “—rt

t t
2 2
<fs.dws>q) = E C{ QUf ,f_)ds < E £ I fsll MELERE

t
Proof We first prove that for t>0 f <gs’dws>q is a well defined ele-
o

ment in LZ(Q,FW,P). Let {ei}iZI be any CONS for Hq gz, +r,. Then for
each t>0
P
g(t,w) = 321 g (W),e> e

and for n, m2 1, using Lemma 4.1.2

......
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n t 2

n n t t
jzm k.Z'm E( £ <ggre > W, [e] £ Bgrer>q dwslekj) -

n n t
jzm kzm : £ “8g7®)7qBa>% 7 Aeyre)de

4 Then since Q is a bilinear form, using (4.1.21) we obtain
;S z
(4.2.3) E( <g ,e,> dW [e.,])
j=m o s 14 L
fac} )
=E | Q( <g ,e.> e,, <g ,e.> e,k)ds
o jmm 8 34 ¥y TeTIa]
fi} 12
<6, E <g ,e.> e ds
25 jem 8% 3a 374
t n 2
= 62 E f ( Z <gs,ej>q)ds (ej's are orthonormal)

o j=m

+ 0 as n,m >~ since ge Mq.

Thus t <g ,dW > 1s an element of LZ(Q,FW,P) defined as the LZ(Q)—
o °8’ s q

limit of the Cauchy sequence {2?'1 f§<gs,e§ quS [ej]}n21.

The next argument will also show that (4.2.2) is independent of the

CONS {e,} in H . Let qu2r +r 2q and {y,} be a CONS for H_ .

37321 q 172 j7321 a,
Then |{|-° <]l <}l H cH cH and by Theorem 4.1.1, W_ has
el el s el o m cHoen, ana by -
an H_q -valued continuous version. Hence using Lemma 4.1.2, if ge qu Mq
1 1 -

n t n t 2
E(121 £ “Bgre57q Mgleyl- j21 £ “Bgr¥y7q WelV5 D -

t n n
E( IQ(E<gs,e> e,-) <g ,,> U

n n
A I A ] <ggre;>g ¢y ) 52y V) 69)

j’jnl j-l

t n

sezEf” Z <g_s¥

n
2
o =1 8 NCACI L <ggrey>q eyl de

i=1
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X + 0 as n+*> by dominated convergence theorem since
: n n 9
- < > - < e.,>

2 y < > 2 | E < > e, | 2
< (ngl ggVy qle“q + lj-1 8a2¢5°¢%3 11 ¢ )

2| ) I'z 5 ||2
< > < >
< 2(| jgl gs.wj qle q1+|g§1 8s’ej i q)

2 2 .
< 2|l gl a e lly) atinz1.
Hence the integral (4.2.2) is independent of q and q-

The proof of (a) follows by the linearity property of the ordinary

o’ I1to integral and the proof of (b) follows since for each 121

’ E(f;<fs,ei>qdw8[ei]) = 0. The proof of (c) follows by using Lemma 4.1.2:
; t1 t2
- EC [ <BgrdW > i <f godis> ) =
o 0
T JEC [<g ,e,> aW [e,] [“<f ,e.> daW [e.]) =
j*l1 k=1 o ° jas 3’ s"kq sk
) ) ilf\tz
] 1lE <g ,e.,> <g ,e. > Q (e,,e )ds =
j-l k=1 o 8 j q s’k q j k
t. At
1 2
J E (f) QUf,8,)ds t),t,20.

- Finally (d) is obtained by (c) and (4.1.21).
- Q.E.D.

- Proposition 4.2.2 Let fe Mq for q2 rl+-r2. Then the real valued process

{f;<fs,dws>q} is an Ft-martingale with associated increasing process

t20

t
- (4.2.4) E [ Q(f_,f )ds .
o 8 8

. For te T= [O,TO], T°> 0, it is a square integrable martingale with
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a continuous modification.
Proof For t20 and {ei}iZI a CONS for Hq qzr +r, let
o t
= ) [ <f,e >0 AW [e ] .
t =l o ia

¢ n_gn ot S
and for n2 1 write Yt zjﬁl‘ro fs’ej q

In the proof of Proposition 4.2.1 we have shown that for each t> 0

dws[ej]. -

Yt in mean square. Next since for each i21 f;<fs,e

¢ > dws[ei] is an

igq

Itd integral, then for each nz1

n n
E(YtIFs) Y, a.s. s<t
and

n 2 n 2
E(Y - E(Y [F )" = E(E(YLIF) - ECY|F)

n 2 n 2 n,2
= E(E(Yt-Yt)lFs) S E(E(Y_- Y)) |Fs) =E(Y -Y)" > o.

n-roo

Thus for s<t E(YtIFs) = Ys a.s. and from Proposition 4.2.1(c) for
te T = [O,To], (Yt) teT is a square integrable martingale with increasing
t
process EfoQ(fs,fs)ds.
Next since each Y: has a continuous modification, then for each n,m21

IY::- Y‘:| is a continuous non-negative submartingale and by Doob's inequality

E[sup |Y -Y | ] s 4E |Yg -Y;l |2
teT o o

+ 0 as n,m*+*® ,

Hence there exists a subsequence {Y:k} that converges uniformly a.s. on T

to a continuous version of Yt'
Q.E.D.

Corollary 4.2.1 For q2r,+r

let f:[0,®) x Q + Hq be a non-anticipative

1

Hq-—valued process such that

2

.................
-------- ’- . x -. . o V.-.
S A Y. O - RO
s LP‘._"-!.A ._tAJr-(A L ADARIE,




A
\
W
~
-

L

s x
4'-’1

Wl it‘, l"'l'_ R

(4.2.5) [Ell£(e)]|2 a8 < = .
: q

Define f:<fs,dws>q as the mean square limit of f§<fs,dws>q as t + <, Then
this integral is well defined and has the properties (a)-(d) of Proposition
4.2,.1 writing © instead of t. Moreover, for all t>0
© t
E( £ <fs,dws>q|Ft) - £ <EgadW > a.s.

t
and (fo <fafdws>q’ Ft)tzo is a square integrable martingale with increasing

process (4.2.4) and a continuous version on R,.

Proof First we observe that from (4.2.5) we obtain that fe¢ Mq and there-

fore for each t> 0 the integral Yt- f; <fs’dws>q is well defined. Next by

(4.1.21) in Proposition 4.1.3 and (4.2.5)

£ E(Q(f,f))ds <

and therefore from Proposition 4.2.4 (Yt’Ft) is a square integrable

t20

martingale. Then Y _ = f:<fs,dws>q can be defined as the mean square limit
of Yt as t* and it is such that E(Yw'Ft) = Yt a.s. for each t> 0. The
continuous version of Yt is obtained as in the proof of Proposition 4.2.2

by writing Y instead of YT .

o Q.E.D.

We will see in Corollary 5.1.5 of Chapter V that the stochastic inte-
grals defined in the above corollary are dense in the space of real valued

nonlinear functionals of (wt)tZO'

For fe M_ a stochastic integral

Q Q

of the form (4.2.1) cannot be defined since (wt) t20 1is not an HQ-valued

process. However, we are still able to define a stochastic integral for

Stochastic integrals for elements in M

fe MQ with the help of the following lemma.
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Lemma 4.2.1 1Let q2r

1+ r, and fe MQ' Then there exists a sequence

>
{fn}nZI in Mq such that for each t> 0

t
| Ell f(s)-fn(s)llé ds + 0 as n+o ,
o

Proof Recall that fe MQ implies that f is non-anticipative and that for

each t> 0
t
£ ||f.(s)||(22 ds < o,

Next let {ei}izl be a CONS for HQ and let Pn be the orthogonal projector

onto the span of {el,...,en}. For each t> 0 by monotone convergence

theorem

F 2 P 2
({ E|l £l Q % -jzl i’ E(<fg,e,>)ds

and hence for each t>0

t ° t
f Efl Pnfs—fsll éds = ; 2+1 f E(<fs,ej>(22)ds +0 asn+x .,
o =n+l o

Next for all n2 1 there exists a sequence (B:)k?_1 of non-anticipative
step processes with values in the range of Pn (this is the finite dimension-

al case, see for example Lemma 4.3.2 in Strook and Varadhan (1979) or Lemma

1.1 in Ikeda and Watanabe (1981)) such that for each t> 0
t
n 2 1
£ Ell 8 (s)-P £ || Q 4<% L2, .

Define the H.-valued step process

Q

a (t) () = B:(t)(w) 0<st<® wef n21l.

Then for all t> 0

F 2 t 2
£ Ellan(s)— fs”Q ds < c{ Ellan(s)-Pnsz Q ds
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i
"q: t 2 1 t 2
- +£ EHPnfs-szQ dss;+£ EIanfs-szQ ds 0 as n+o> ,
] :'- Thus we have shown that if fe MQ’ for all €> 0 there exists an HQ-
N valued step process a(t,w) such that for each t> 0
A
t 2
" (4.2.6) f Ella(s)-f(s)HQ ds < €/4
o o
- where
-
a(s,w) = atj(u)) a.s. tJS 8< tj+1 }=0,...,n-1
. = at (w) a.s. s2 tn
) n
. where 0= t°< t1<... < tn< « and each at takes values in a finite dimension-
al subspace B, of H ., it is F_ -measurable and Ell o || 2<°° for j=1,...,n.
h) Q tj tj Q
Next for each j=1,...,n let {e:]l_,...,ei } be an orthogonal basis for Bj'
Since H is dense in H_ we can choose {wj,...,wj } such that wje H_ and
- q Q 1 kj L° Tq
~ £
- 3312 -
., “wg’ ez“ Q < - (t i )E“a ” 2 L 1,...,kj .
~ J 3+ ) &y Q
Each at can be written as
]
3 a () = aj (w) ej+...+a:l (w) ej
X t 1 1 k k
. 3 ] 3
y where
2 2 2
Ella_ || 2 = ECtad)®+...+@a) 1Y) <= .
t,"'Q 1 k
3 h|
Define
> 3 ured 3 (0)0]
] - J
# at (w) al(uu)llll+...-i-ak (w)wk
. 3 I
. then kj
b 2 j\2 3 \2 MIRA
: Ella* || £ s E(a))“+...+(ad )°) ] ||w||€ <=
t:J q 1 kj {=1 s A |
and

k

3
2 Jed-ypdy 1 2
Ella_ - a* || & = E|| a; (ex-v7) ||
o - of llg =Bl 3 =ylewpllg




............
.....................
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k
<2 D ladl -2
i=]1
k k

3 4.2 3 2
s BT @HHH Y |d-vI|1?) <« Et— .
121 1 121 17700 2(ty,,-ty)

Finally define

4.2.7) a: (w) t, <8<t

j j+1 j=1l,...,n-1

ak*(s,w) =

a: (w) s>t
n

n

which is an element of Mq. Then for each fe M, and €> 0 there exists

Q

ake Mq such that for each t> 0
t 2
[ E|| a*(t) - f(t)IIQ dt < ¢
o

and the existence of the required sequence follows.
Q.E.D.

Definition 4.2.3 Let fe MQ' then from Lemma 4.2.1 there exists a sequence

in Mq for q2 r1+ T, such that for each t>0

of functions {fn}nZI

t
fE”f(s)—f (s)szs-*O as n+ o ,
o n Q

Then by Proposition 4.2.1 for each t>0

t t
2 2
E( £ <Eo(8)-f,(s), a0 > )" = £ Ellfn(s)—fm(s)||Q de > 0 n,m >,

Define for each t> 0 the stochastic integral I<§<fs’dws> as the LZ(Q)-

Q

n>l" This integral satisfies

(a)-(d) of Proposition 4.2.1 and Proposition 4.2.2 for elements in MQ' If

1imit of the Cauchy sequence { Lt (8),dw > }
o n s q

in addition f is such that

(4.2.8) f E||fs||g ds < ®
o]
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then the stochastic integral f:<fs,dws> is defined (as in Corollary 4.2.1)

Q
as the mean square limit of f§<fs,dws>Q as t+o

The main properties of the above integral are summarized in the

next corollary.

Corollary 4.2.2 Let £, ge M Then

Q.
a) If a, be R and t> 0

t
+b [ <g s dW >

t t
< > = < >
f af_+bg_,dW_ af £ sdW_

a's.'
o Q ° Q o Q

t
b) E( £ <fs,dws>Q) =0 all t>0.

t t, tyat,
c) E( £ <EgrdW > £ <gs,dws>Q) = E £ <f8,gs>st £,,t,> 0.

t 2 t 2
d) E( £ <fs,dws>Q) = E £ llfsllq ds < = ,

© t
2
e) If E £ l[fslIQ ds < © then { £ €W >0F g

is a square integrable martingale with corresponding increasing pro-
cess
¢ 2
£ Ellfsl|Q ds
and a continuous modification on R +° Moreover, for t>0
ol t
E( £ <£s’dws>Q|Ft) - | <f_,dW > a.s.

o Q
and

[ <]
E( £ <fs’dws>Q

2 T 2
) =E | ||fs||Q ds.
o

The proof follows by the above definition, Propositions 4.2.1 and 4.2.2

and Corollary 4.2.1.
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4.2.2 Stochastic integrals for operator valued processes (9'-valued

stochastic integrals)

Let L(¢',9') denote the class of continuous linear operators from
$' to ¢'. 1In this section we study the stochastic integrals of L($',$')-
valued non-anticipative processes with respect to a ¢'-valued Wiener

process with c.p.d.b. form Q on ¢x ¢,

Definition 4.2.4 A function f:[0,®) x Q+ L($',d') is said to belong to

the class OQ(¢',®') if £ is an Ft-adapted measurable (non-anticipative)

function on [0,°)x Q to L(¢',3') such that for each t> 0
t

(4.2.9) E [ QUEA(4),£%(9)) ds < = ¥ ded
o

where fg: ¢+ is the adjoint of fs’ i.e. f* ig defined by the relation

£WI0] = vIE* ()] ved', ¢eo.

Lemma 4.2.2 Let fe OQ(Q',<I>'). Then for each t> 0 there exists

qt,fz r1+ r, such that

t
2
B f | e8] ST E: ds < =
° s Oz(l-lqt’f,ﬂ ) o OZ(HQ oH qt’f)

where 9, (H ,HQ) denotes the Hilbert space of Hilbert-Schmidt operators
e, £

from H to H

9 £ Q

Proof For each t> 0 and ¢e ¢ let
2 t
(4.2.10) Ve(®) = E [ QEX(4),£%(4))ds.
0

Then since fe OQ(¢',¢') for each t>0

(4.2.11) vi(¢) <o ¥ e d.
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We first show that for t>0 Vt(dx) is a continuous function on ¢. Let
¢n->¢ in ¢, then since f:e L(9,9) and Q is ®-continuous, using Fatou's lem-

ma we have that

t
. a
v.(#)=1{E £ Lim inf Q(*(4,),£*(¢ ))ds}

t
. Y .
< {1lim infE ({ Q(f:(¢n),f:(¢n))as} = lim inf V (4 )

which shows that V ¢ is a lower semicontinuous function on ¢. Applying the
triangle inequality we obtain that for ¢, YPe ¢ Vt(¢+¢) svt(¢)+vt(w) and
clearly Vt(a¢)- |a| Vt(¢) for ac R. Then by Lemma 4.1.1 Vt(¢) is a contin-

uous function on ¢ and there exist Vt >0 and Gt f> 0 such that

’f ]
2 2
4.2.12) V@) s6; 6]l 2 V de 0.
’ t,f
Next let {¢,} and {),} be as in Assumption 4.1.1. Choose
3321 j 321 _ )
~ - t,f ~
qt,fz rt,f+ r, and write ¢j (1+Aj) ¢j j21. Then {¢j}j21 is a

CONS for Hq and using (4.2.10) and (4.2.12) we have that
t,f

t o -
E fC] Q(E*(o

))ds
o =1 s )

~ *® t ~ ~
)»£4(6,)))ds =j§1E £ QEA(9,), £4(0,

0o —Z(q -r )
2 t,f ¢,f
1 a) ’ ’
e (2

T 2 2 T v o2
-1 vi@ose? . TS N2 =0
=1 t75 t,f ju1 h| rt,f o f

0. <o , Thus for each t> 0

t t ® ~ ~
.2.13) [ || ] ‘2’2‘“ ’Hq)ds - & [ ] aea@,). 650,
[o]

3 )))ds< = .,
e, £ o j=1

QOE'D.

Proposition 4.2.3 Let fe OQ(tb',tb'). Then for each t> 0 there exists

a ¢'-valuyed element Yt(f) such that
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t
(4.2.14) Y (£)[¢] = / <EX(9),dW > a.s. V ¢ed
o]

Q

where the RHS of (4.2.14) is the stochastic integral of Definition 4.2.3.
Moreover, for each To> 0 there exists a positive integer 4y ¢ such that
9
o
Y (f)eH a.s. for 0st<T . Y _(f) is called the ¢'-valued stochastic
t “qp ¢ o t
integral of f w.r.t. W and is denoted by

t
Y () = £ £ AW .

t
Proof We first note that for each t> 0 and e f <f;(¢)’dws>Q is defined
o

in the sense of Definition 4.2.3 since f;(¢) is non-anticipative and
t
[ QUER(),£2(0))ds < =
o o

i.e. f;(¢) e M

Q.
Using the notation of the proof of Lemma 4.2.2, define
~ t ~
= <f* > z21.
Y (£) [9,] £ £4(0,),d0 >0 jz1

Then by Corollary 4.2.2 (d), (4.2.10) and (4.2.12)

s ~ 20 % ~ 2 % 2~
E(jgl(Yt(f) CHNY —jZIE(Yt(f) [6,) jzlvt(q»j)
2% o2 2
<0, ¢ jglllcpjnrt’f S8, ¢ 0.

Thus Z (Y (f)[$ ])2 < o a,g,, Let
=1 &

o0

~ 2
Q= {w:jgl(Yt(f)[¢j](w)) < =}  then P(R)=1.

Let {wj} be the CONS for H_q dual to {Ej} and define

j21 e.f j21
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i jzlvt[¢j](w)wj we Ry
(4.2.15) Y, () (w) =
0 wé

1

> Y .S. 2 +
Then for each t>0 Yt(f)e H_qt . a.s. for q‘:’f rt,f r, and therefore
]

?t(f)e ®' a.s. .

It remains to prove that ?t satisfies (4.2.14). Let t>0 and ¢¢ 9,

then ¢ ¢ H and
t,f
n ~ ~
¢ = lim ) <¢,6.> ¢, (limit inH_ )
po §=1 3 e, f e, £
n ~ ~
and therefore Vt( Z <$,0,> $,-¢) >0 as n+>®

je1 3 e,

which implies from (4.2.10) that

t n n
(4.2.16) E [QUE*( T <6,8,> 8.0, £*( ] <¢,8,>  $,))ds > 0
£ 8 jzm 3q,.¢3 8 jzm 3 ¢
as n,m—' ©

On the other hand, since VY. [¢] = <¢,$ > then
J J qt,f

Yt(f) [¢] ..jzlyt[q,j]wj [¢] = jzch[¢j]<¢.¢j>qt,f

oo

, ¢j] a.s. .

n
Thus 1f g (s) = f;<j§1<¢.¢j>qt R
~ t
Yt(f)[¢] = ii: £ <gn(8).dws>Q a.s.

and from (4.2.16) and Definition 4.2.3
t t

2
£ <g(8),dW >0 > £ <ER(9), AW >y in LT@).

t
Thus for each t> 0 Yt(f) (4] -,f <f:(¢),dws>Q a.3. V ¢e &. From now on
o

]
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we write Yt(f) instead of ?t(f).
Q.E.D.
t
The ¢'-valued stochastic integral Yt(f) = | fsdwS has the following
o
properties.
Proposition 4.2.4 Let f,ge OQ(Q',Q').
a) 1If a,be IR then for each t>0
Yt(af+bg) = aYt(f)i-bYt(g) a.s.
b) E(Yt(f)[¢]) =0 Vd¢ed ¢t>0.
t
) E(X (D[OIY (D)[W]) = E [ QUE*(9),£2(¥))ds ¥ ¢,0e 0.
o
2 ¢ 2
= < > 0.
d) E||Yt(f)||_q E[ ||fs||0 (B LH yds <=V t>0
t,f o 2°°Q’ —q
t,f
- =
e) (Yt(f)’Fc)CZO is a ¢'-valued martingale. If T [O,To], T03>0 then
(Yt(f)’Ft)teT is a 9'~valued square integrable martingale with an
H continuous version for some q,, > O.
—qT To
o

Proof (a), (b) and (c) follow from Proposition 4.2.3 and Corollary 4.2.2.

q
) t’f¢.} be a CONS for H . Then using
h| i‘321 ~q ¢

monotone convergence theorem, (4.1.8), (4.2.14) and (c) above we have that

To prove (d) let {$j= (1+X

2 i ~ 2 s Qg 2
Ell Y (£)]| = E( ) <Y _(£),0,> Y=) E<Y_(£f),(14r,)
t e, 4= © 3¢ 4=1 F ] U, ¢

4 ~2q 2q
=) (1+},)

t,f 2 _ s N
S5 E(F (D[4 = [ (a9

€, £
"B [ Q(EA(o
j=1 o

j),f;(¢j))ds

= E } T aeercn,) B e excn,) BEe ))ds
0o3=1 & 1 7787 3

t -q
=E | ||fg||§ @ ,n9)9s ({(1+kj) t,f¢j}jZl is a CONS for Hqt f)
o
t,f ’

AT W S BT T .t MEVRER )
............... LA L
. O L I R TR ST MR A I R LA L A I S S SR
F T S N P T A S P

PRI AL . RIS . w R A T IR L A R e P R A
P IR IS P IR 0 S N R P PN P SRS Y S I T R S S A VA AR AN

T

L e
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s a sl

t
. - 2
: E! Il £l 0, (o yds<e  (by Lemma 4.2.2).
U,
N e) Let Vt(¢) be as in (4.2.10). Then for each ¢¢ & Vt(¢) is a non-de-
o creasing function of t. Hence from (4.2.12) there exist OT f> 0 and
i

rT f> 0 such that for ¢e ¢
o,

2 2 2
vi(9) < eTo’f”M r VteT=[0,T] T >O0.

>
o

Then for each te T Yt(f)e H_q a.s. for dy L£2 Tp ,f+ r, (see proof
To'f o o
of Proposition 4.2.3). Then using (4.2.14), from Corollary 4.2.2 we have

= that for each ¢e ¢ (Yt(f)[¢],Ft) is a martingale, i.e. (Yt(f)’Ft)

t20 t20

is a ¢'-valued martingale. Moreover, it is a square integrable martingale

in T= [O,To] with associated increasing process
t
, E [ QUEX(9),£2(9))ds.
(o]

Next, using the notation as in the proof of Proposition 4.2.3
o
Y, (£) =§ Yt(f)[$j] v as.
j=1
Therefore, from (4.2.14) and Corollary 4.2.2 for each j21 Yt(f)[zj]

has a continuous version on T= [O’To] and therefore for each nz1
n ~
M (t) =j§1Yt[¢j]wj

is an H_ ~valued martingale with a continuous version. Then using the
. qTO » f
2 usual argument, since ||Mn(t)-Mm(t)||_q is a continuous non-negative
n 2

submartingale, by Doob's inequality

2
E(sup || M (£)-M (t)]| ) S4E||M (T)-M (T)]|
teT ° n 1, f e Mo Ty,
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- 4EIIZY <f>[¢ ¥, 12 = 4EC  sup | ZY <f>[¢ 1, (611
j=n o T;,f Il ¢l S1 j=n To 3
v . f
(o]

<4 2 E(Y, (f)[¢ D% z Ve ()

J=n j=n o j

-2(q )

2 m T £ T ,f =2r

< 4 eT £ jZn(1+kj) o’ < 4 ez f Z a+,) L
j=n

as n,m > ® ,

Therefore, there exists a subsequence Mn (t) that converges on T= [O’To]
k
uniformly to an H_ ~continuous version of Yt(f)'

T »f Q.E.D.
We now extend the definition of Yt(°) to functions which are integrable
in [0,2) x Q. Lemma 4.2.2 and Proposition 4.2.4 (d) suggest that it is
enough to construct stochastic integrals for functions of the form
f:[0,°) x Q » OZ(Hq,H_r) for r> 0 as we now do.
Let r>0. A function f:[0,») xQ + oz(Hq,H_r) is said to belong to

the class O(HQ,H_r) if f is an Ft-adapted measurable function on IR x § to

OZ(Hq,H_r) such that

(4.2.17) f E[lf (2 ds < = ,

H »H_
0, ( Q’ )
Proposition 4.2.5 Let r2-r1+-r2 and fe O(HQ’H-r)' Then there exists an

H_r—valued element Y(f), called the stochastic integral for elements in

O(HQ’H-r)’ such that

oo

(4.2.18) Y(E) (6] = [ <E%(¢),qw >

! sQ a.s. VY ¢e¢ Hr

where the RHS is the stochastic integral of Definition 4.2.3. We denote

this integral by
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Y(£) = | £V .
o
It has the following properties: If f,ge O(HQ’H—r)

a) For a,be R Y(af+bg) = aY(f)+bY(g) a.s.,
b) E(Y(£)[¢])=0 V ¢e Hr .

¢) E((H)[¢]Y([Y]) = E [ Q(fZ(¢),g3(V))ds ¢, YeH .
o

F; 2
o EllvollZ =& [ el ds <=
-T ‘{ 8 OZ(HQ,H_r)

t
e) 1If Yt(f) = f f(s)dws, then (Yt(f),F‘:) t20 is a ¢'-valued square
o
integrable martingale with an H-r continuous version.

Proof  Taking r2= 1-t £ and r= 1, ¢ all t20 as in the proof of Proposition
’ ?

4.2.3 one shows that for each t> 0 the stochastic integral Yt(f)e H_r a.s.

and it is such that

t

Y (£)[¢) = cf, <f:(¢),dws>q a.s. V ¢eH.

Then using Proposition 4.2.4 (d) and (4.2.17)
2 ' 2
Elly -Y |5 =€ [ [[£l ds + 0 as t'>t+e
t ' er ¢ 8 oz(uq,u_r)

Therefore there exists Y(f)=Y_(f) with the required property (4.2.18).
From (4.2.18) and Corollary 4.2.9 (a), (b) and (c) are proved. The
proofs of (d) and (e) are similar to the proofs of (d) and (e) in Proposi-

tion 4.2.4 writing T,=Ty f and r= qTo'f'
o Q.E.D.
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MULTIPLE WIENER INTEGRALS FOR A NUCLEAR
SPACE VALUED WIENER PROCESS

In this chapter we construct real valued (Section 5.1.1) and
¢'-valued (Section 5.2.1) multiple Wiener integrals with respect to a

¢'-valued Wiener process (W with a continuous positive definite bi-

t)teR+
linear form Q on ¢ x ¢, where ® is the countably Hilbert Nuclear space of
Section 4.1.1. We consider multiple Wiener integral expansions and sto-
chastic integral representations for real valued (Section 5.1.2) and

¢'-valued (Section 5.2.2) nonlinear functionals of W. The Wiener decom-

position of the space of ¢'-valued nonlinear functionals is obtained

(Theorem 5.2.2) as well as representation theorems for real valued (The-

orem 5.1.2) and ¢'-valued (Theorem 5.2.4) square integrable martingales.
Throughout the chapter we will assume that (2,F,P) is a complete prob-
ability space on which there is defined a ¢'-valued Wiener process (wt)tell
+

witha c.p.d.b. formQ on ¢x ¢, and for t20, F_ = F”tv = (W :0<55t) with

F, containing all P-null sets of F. Also we assume that 61, T {¢j}j21’

{kj}jzl’ Hr-'m< r<®, and 6, T are as in Assumptions 4.1.1 and 4.1.2.

2

5.1 Real valued multiple Wiener integrals

> For n21 let ¢en denote the n-fold tensor product of ¢ (see Section
4.1.1). The aim of this section is to construct real valued multiple

Wiener integrals for ¢°n-va1ued functions (Subsection 5.1.1) and then
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use them to study real valued nonlinear functionals of W (Subsection 5.1.2).

5.1.1 Multiple Wiener integrals for O.n-valued functions

Throughout this subsection we will assume, unless otherwise
stated, that n21 and T = [O,To], To> 0 are fixed but arbitrary. De-

note by LQ(Tn*-fan) the class of ¢°n-va1ued measurable functions f on

Tn such that

on . oo =
(5.1.1) IT,,Q GBI <= t= (...t )

where Q°n is the c.p.d.b. form on o™ x °0n

which is the nth tensor product
of Q (see Section 4.1.1).

We shall define multiple Wiener integrals for elements in the class
LQ(1‘“+¢°“).

A useful concept in the theory of finite dimensional multiple Wiener
integrals is that of symmetric real valued functions on ™ (see Theorem
2.3.3 and (2.3.10) and (2.3.11)). We now introduce the analogous concept
of symmetrization of ¢Qn-va1ued and Kon-valued multivariate functions,
where K is a separable real Hilbert space with inner product <Ly and

-

norm ||+ ||

Definition 5.1.1. Let n21 and f:nz?-*Kon. Denote by f the symmetriza-

tion of f defined by

(5.1.2) v = ;11—!- ;Ifn(g)

where the sum is taken over all permutations II= (II(1),...,NI(n)) of

(1,...,n) and
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[ <3

(5.1.3) £ () = 1 {<f(z
Lk
Jl ..Jn

n(l),--o ejn(n)>K¢n *

S )
for {ei}izl a CONS of K

Proposition 5.1.1. Let (Kl’ <°,°>K ) be another separable Hilbert space

1

such that K ¢ Kl' Then fn(E) is well defined for all permutations

n= (1(1),...,lI(n)) and therefore independent of the CONS {ei}i>1 in K.
Before giving the proof of the above proposition we shall define the

symmetrization of a ¢ -function.

Corollary 5.1.1. Let n21 and f:n12->¢°“. Then the symmetrization f of £

defined as the symmetrization of f on any of the Hilbert spaces H:n r21
is well defined.
Qoo
The proof of the corollary follows since ¢°" = H_, H 5H for

r=1 .
s> 71 and by using Proposition 5.1.1.

Proof of Proposition 5.1.1 Suppose K< K, and let {wi}i21 and {ei}iZI

be CONS for Kl and K respectively and assume that for each te Bl? £(t)
X is K®" and K?n-valued. Then

K 0
£2(t) = ) <f(ty),e. @...8 ¢, > e,0...8e€,
I TS IS ) (€Y inm) ™ ) in
and
K, E
fr (v = <f(tp,v ®...0y > on Vo ©...0 Y
m 2.2 =1 T fnmy K 4 L
n 1
oo T
Thus for(t) = {<f(t.),e, @...9 e, > .
n — . N —
IR SESUE TS I LS FEY) Iy "
<y e...8 { ,e. ®...%e, > Y, e...ey, } .
101 21y Inen Inem M T

e

PR IR L I I e . .t
UL T T R S T I S
AT A R R Y AP T AU R, N BOAPICIAN Jg) ‘
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But for all permutations II

<y ®...0 - ®...8 e. > =<y, ©...0y), ,
2116} 3 ORS¢, i 4 o
. 9...9e. >
eJ1 e’n K?“
then
K, %
£ = ] <f(t),e. ©.o8e > _ °
1 5yeeed =1 T S Ingn) «®
n
[ ]
{ 3 <e. ®...0e, ,Y, ®...00, > Y, ®...80 }
S R n A L™ Yy e
n 1
s K
= ) <f(t), e, O...%, >  e.e,...ee, =f (t).
jpesed =1 T i Ingmy ®* I jp U

The above argument proves that fn(g) is independent of the CONS in K.

Q.E.D.

For T= [O,To], To> 0 or T= nz+ we denote by Lz(Tn*-Ken) the Hilbert

space of Kan-valued measurable functions on T® such that

n

Proposition 5.1.2. Let T= [O,To], T°> 0 or T= nz*. For fe Lz(Tn-*Ken) let

Hﬂgu}n@<“-

Sﬂ@=?@=ﬁ;%%@-

Then S is an orthogonal projection operator on Lz(Tn-rKen) whose range S

may be identified with the n-fold symmetric tensor product space (LZ(T)eK)en.

Proof. It is known (Reed and Simon (1980)) that Lz(Tn*-Kan): Lz(Tn)oKO" =
(LZ(T)GK)en. Then it is enough to consider functions of the form

f(t)= f(tl,...,tn)= fil(tl)...fi (tn)eile...o e,
n n

2 . .
where {fi}iZI and {ei}izl are CONS for L°(T) and K respectively. Then since
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for all1 Il

fn(L) = fil(tn(l))"'fih(tﬂ(n))j ,; {<e, o...0 e, >

e. ®...0 e, > e. ®...9¢e, }
In Inm) ™ N In

-1
, Izl(fi (tl) ein(l)) ®...® (fin(n)(tn) eH(n))

is an element of (LZ(T)OK)Qn.
Next for each permutation II, from (5.1.3) it is seen that the operator
Dn(f)= fII is linear with adjoint equal to its inverse. Then

-1

1 1
Pr=— JOr== 70D _=P,
n! i I nt i n

Also from (5.1.3) we have that for each permutation Il

&~ 8

1
(P == 1 <f(tq.),e. ®...%¢. > e, @...8e,
Tnl fa jpend =l = e (1) ins@ x®" J1 n

where the first sum is taken over all permutations TI* of II. Then for all

permutations Il of (1,...,n) (Pf)n= (P£f) and hence

P2(£) = P(P(£)) =nl! IZI(Pf)n = Pf.

Thus P is a projection operator whose range can be identified with the

symmetric tensor product space (LZ(T) ® K)Q“'
Q.E.D.

Corollary 5.1.2 Let T, K and f be as in the last proposition. Then

HE@ I “godt < [ I £ %, dt .
ot Kcn - Tn - KOn -

o

The proof follows by using the fact that Pf=°f is a projection operator
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on Lz(Tn->K?n).

Remark Multiple Wiener integrals on a Hilbert space have been defined by

Miyahara (1981) for the case of a cylindrical Brownian motion on Ho. In’
his case Q(°,*) = <-,->° and the CONS {¢j}j21 of eigenvectors of L diago-
nalizes Q (see Example 4.1.7). In our case we do not consider a cylindri-

cal Brownian motion but rather a ¢'-valued Wiener process with an H_0 con-

.

1t Tp Moreover, the c.p.d.b. form Q on ¢x ¢ is

not assumed to be diagonalized by {¢j}

tinuous version for q2r

ja1° This leads to finite dimen-

sional multiple integrals with dependent integrators of the type studied
in Chapters II and II] (see also Lemma 4.1.5).

In order to define real valued multiple Wiener integrals for elements

in LQ(Tne-éon) we shall first construct multiple integrals for H:n-valued

functions for q2r, + r, (as in the case of stochastic integrals in Chap-

1
ter IV) and then apply density arguments to define them on the spaces
LQ(T"+ ¢®) and L3(r"> H;“) .

Multiple Wiener integrals for elements in LZ(Tn->H:n)

Definition 5.1.2 Let n>1 fixed and q2r,+1,. For fe L2(1"» H:“) define

the real valued multiple Wiener integral of f with respect to the ¢'-valued
Wiener process wt by

o n

(5.1.4) In,,r(f) = )) - fn<f(£),ej ®...0, > md_? W[ej.](_g_)
Jl...Jn-l T 1 nq i=1 i

where {ei}iz is a CONS for Hq and each multiple integral in the RHS of

1

(5.1.4) is an integral with respect to the symmetric tensor product mea-
n

sure © W[ei] defined in Sections 2.3 and 3.1 (see also Lemma 4.1.5).
i=1

Proposition 5.1.3 Let H be the linear (Hilbert) space of (W defined

)
t telR*
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in (4.1.25). Let n21, q2 r1+ r2 and fe Lz(Tn->H;“). Then the multiple
integral (5.1.4) is a well defined element in e {the n-fold symmetric

tensor product of H) and of LZ(Q,FW,P).

Proof Let {ei}izl be a CONS for Hq' Then for each S PEREES

2 2
<f(t),e, ®...9, > dt < f dt < »
{n @.e5 o oom % {,, £l gy at
n
and by Lemma 4.1.5 and Theorem 2.3.2 <f(t),e. ®...®e. > on is o® W[e, ]-
| Jn q i=1  Ji

integrable and each integral in the RHS of (5.1.4) is an element in Hon.

Next by Theorem 2.3.3 (b)

n
2
(5.1.5) E(f <f(t),e. ®...8e, > _d o We, ](t)
™ T ) n g™ =1 i

<E(D) ¢, o...0e, >2 . e, vej )---Qey se; )t

{n 1 n q 1 n °n
/

IA

Q°“(<f(5_),ej 0...aej > e, a...eej ,<f(3_),ej @...8e, >

1 nq™ 1 n 1 n ¢®

n n

T

e. e...eej )dt .

5 n
Then if {e.= (1+1.) %.}._. is the CONS in H ,by applying Cauchy-
ni {eJ (1+43,) ¢J}le o' by applying y

Schwartz inequality and (5.1.5) above we have

w -2(q-r,) -2(q-r,)
(5-1.6)  E(_L(0%s{ ] qaa.)  Z.ae ) 2}
’ jpeeedgsl N In
o 2r 2r
{ I a=, ) 2..as, ) 2
jpeerigst N In

n
_ 2
E ({n<f(£),¢jlo...wj >en ¢ © wleji](g) }

nq i=1
o n 2r
<o T (1eh, ) %[ QM (<E(L),0.0...00.> _ e. ®...0¢,
Vipedgerae 380 b ™A in
<f(),6; ©...0. > e, ©o..0e. )dt
)1 In qon jl In

............

L]
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(Proposition 4.1.2)

n
seel J I
§peeedo=1 i=1

2r, 2 2
1+A, e ®,..8e <f(t),$. ®...04, > _ dt

In ) <f(t),e, 0...®ej >2 dt (Ilej o...eej

5.3 =1 J1 n ™" 1 n q

[
<D
<D

2
2 L@ g dt < =
T q

Therefore E(In T(f))2 < = and the multiple series (5.1.4) converges
in mean square. Then the linearity of In T(-) follows.

The next step will also show that I )} is independent of the choice

n,T(.

of the CONS in Hq.
L 2T > o0
et q, Zrl +1,, 929, and assume that f belongs to L™ ( +Hq ) and

1
is a CONS in Hq . Then using Lemma 4.1.5, the bilinearity of Q?n
1 ,
. en on
in Hq ><Hq and Corollary 5.1.2, we have that for all m21

{v.}

i“iz21

n
5.1.7 E <f(t),e. ©...0e, > d @ W[e. t
( ) (j .?.j =1 {“ © )1 In g™ =1 [ Ji](-)
1

n
2
- <F(t),p. ©...e¢, > _d e WY, ](t))
jl..§jn=1 {“ - In qf" i=1  Ji T

en m
sfQC ] (<f(t),e, ©...@e. > _e. ©...0¢
™ jyeed =l i1 in o i

-<ﬂgwjm”wj>mwjmnw.h

1 n q1 1 In

m
)) (<f(t),e, ®...8e. > _e. ©...0%,
...jn=1 N In q 3| In

N

- <E(DLV ..o > g Yy 0.0

. ))dt
1 nq, 1 In

......................................
............................................
.......
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IR
s 0 <f(t),e. ®...0e > e. ©...0¢,
2 ™ jl...j =1 1 In qu 71 In
n
) 12
- <f t,, . Oooc . > dt
Jyeood =1 © le an qenl Q-
1 n 1
which goes to zero as m+= by dominated convergence theorem since
)
<f(t),e. ©...0e, > __e. ®...0e,
“jl"'jn=1 Iy in ™ N In
) 12
- <f(t),y. @...8p, > _ Y. ©...8Y,
. . en
RS B 11 Jnq N1 In 4
2 2 ‘
s 2([1 £ gn* HEWI “gy) all m21.
q; q
Then the proof of the proposition is complete. Q.E.D.
The multiple integral In T(-) has several properties analogous to
those of the multiple Wiener integral for a real valued Wiener process
of Ito (1951). We now present them.

‘e 2.,.n_.@en cr B
Proposition 5.1.4 Let n21, Q21+, and fe L (T -*l-lq ). Then if f de-
notes the symmetrization of f (Definition 5.1.1).

a) In,T(f) = In,T(f)'
b) E(In’,[.(f)) = 0.
2 n 2
¢) E(I_ .(£)° sn! o] £ < .
n,T 2 LZ(Tn+HQn)
q
4 If geLz(Tm-*H:m) for m21, then
E(I ()1 .(g)) = & ni<f,g> :
n,T m,T nm LZ(Tn_’Hgn)
2 ~oy 2 ~n 2 2
e) E(I .(£)° =E(I ()" =nt] £ < nt]| £]] :
n,T n,T LZ(T"+H3n) Lz(Tn-'rH;")
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Proof a) Since for all jl"'jn and teT

[+ -]
(5.1.8) <f(t),e, ®...0e, > == .
3y In ™ ™ Rk kel
1 n
{<f(t;),e, ©...® > _<e, ©...8e ,.@,. .0, > _}
Ty krm)e®™ knay *na) 91 In o™
5 = <f(t),e. ©...0e, >
b RS | In qwn
r4
h it follows from (5.1.4) that In,T(f)= In,T(f)°

b) By Lemma 4.1.5, for each jl...j

n
E(J <f(t),e. ®...0e, > dewWle. ] (¢)) =0
'{'n - J1 i1'1 q@n i=1 I3 -

and hence E(In,T(f)) = 0.

d)
19 #n, 10, (80 7 j1.§.jn=1 kla}.:.krfl '
n
{E('{n<f(1:_) e le. . .oejn>q@n di:1w[eji] ®
m
£n<g (t) ,ekla. . .d!»ekn>qu diZIW[eki] ()l

Then by Lemma 4.1.5 E(In T(f)lm T(g)) =0 ifn#mand ifn=m

n
E(f <f(t),e, ®...0e, >, deoWe, J(t) °
™ Iy in ¢ i=1 I

vy vy
2 BB vf("‘. T —
PRI A . RV .

n
[r<g(D),e, @0, > de W[eki](g)

T 1 n q i=1

(S <f(t,),e. ©...%e, > e, ©...0e, ,
a1 iy inmy ¢ 1 In

1

- <f(t.),e. ®...ee, > e, ®...@_ )dt .
nbg T pay T Inmy M Jn
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Therefore, using the continuity of Q@n on H:n x H:n
en ~ ~
E(I, (D1 1(8)) = {,, QT (£(1),8(t))dt
= <¥’E>
L (Tn_’Hen)

and (d) is proved.
The proof of (e) follows from (d), (a) and Corollary 5.1.2. The proof

of (c¢) follows from (d) and since for Ye H:n

”lP“ 2 ”‘PH Q2T +T,.
q Q.E.D.

We will extend the definition of In T(-) to functions in Lz(mr:-*H:n),
’
denoted by In’ and show (Corollary 5.1.4) that orthogonal series of In are

dense in LZ(Q,FW,P) .

Multiple Wiener integrals for elements in Lz(Tn->Hgn)

Lemma 5.1.1 Let fe LZ(Tn->H3n). Then for all q= T T, there exists a
2..n en . 2..n en
sequence {fm}mZI’ £ e L°(T +Hq ) mz1, such that f_ m:m f in L°(T *HQ ).

Proof Let fe Lz(Tn-vﬂgn), then given £€> 0 there exists an Han—valued step

Q

function gE such that

(5.1.10) Ll f® - "W 2@,, dt < e/2
where ge(t) = Zl: 12 A (), a; eHQ . .e B(Tn) and m@n(A.)<°° i=1,...,k

some k, m denotmg the Lebesgue measure on (T B(T )).

Next, since for q2 T+ e is dense in H on then there exist

2 q Q’
b, e B®® 4=1,...,k such that
i~ q
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a, - b J] 2 < —f |
i i Q@n kaon(Ai)

Define £€ (t) = .
i

il >3

b, 1, (1), then ¢ L2 1" 1Y
1Y AT Q
and

[ Nefw-gfwll% dt <e/2 .
n - T en —

T Q
Then from the last expression and (5.1.10)

(5.1.11) [ @ - £t < e
T Q

and the existence of the required sequence follows.
Q.E.D.

Note that the above result holds if T= R .

Definition 5.1.3 By Propositions 5.1.3 and 5.1.4 we have that In T defined

L

in (5.1.4) is a bounded linear operator from Lz(Tn-» H:n) to LZ(Q) (in fact

to Hon). Hence by Proposition 5.1.4 (e) and Lemma 5.1.1, In T(*) has a
3
unique extension to Lz(Tn+ Hgn) . We denote this extension by In T and call

it the nth real valued multiple Wiener integral for elements in L2 (Tn-> H;n

in the following lemma whose

).

We summarize the main properties of In T
»

proof follows by Proposition 5.1.3 and 5.1.4 and the above definition.

Lemma 5.1.2 Let fe L2 (Tn* HZ") . Then if f denotes the symmetrization of

f on Hgn (see Definition 5.1.1)

= on
a) I () =1 ,(f) e

b) E(In,T(f)) =0,

am

c) If ge L2(1‘“+HQ

) for m21 then

E(,, r(O 1y p(8)) = 6, nl {n M EIORTOILI

O B, ()=l 'J;an(?(_t,) E(t))dts n! {nq""(f(_t_),f(p)d_t..
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The proof follows by Definition 5.1.3 and Propositions 5.1.3 and 5.1.4.

Iterated stochastic integrals We now define the real valued iterated sto-

chastic integral Jn(~) for elements in LZ(Rn-*H:n) qz r+ T, and show its
relationship with the multiple Wiener integral In T('), T= [0,t] t=0, of
Definition 5.1.2 for elements in Lz(Tn» Hzn). This connection will allow

us to extend the definition of In T(') to functions in the space LZ(RZ-*H:n) .
4

In what follows L°(R™ = L’(R™,B(R™), dt) where dt stands for the
Lebesgue measure on (an,B(an)) .

Let {fk}kzl and {ek} be complete orthonormal sets for L2(1R+) and

k21

Hq respectively where q2 T+ Then (see Reed and Simon (1980})

2¢

212 1,...,R.n2 1
(5.1.12) {fll(tl) .. 'fkn(tn) e, ®.. .Oek }

1 n k,21,...,k 21
1 n
is a CONS for LZ(R™ @H:n = LZ(T“+H:“).
For k.,...,k ,2.,...,2 and n fixed, let
1 n’"1 n
{(5.1.13) f(t) = (fz (tl)ek )@...o(fz (tn)ek ) t= (tl,...,tn)
1 1 n n
and for t> 0 define
J (), =£f, (t)e
0t 7ty 21 1 k1
}m
(5.1.14) J (£, = [T<I_ (f) ,dW > £ (t)e 2<m<n
m-1 th o m-2 tm-l t 149 Q'm m kg
t
(5.1.15) Jn,e(B) = / <J 1D, LW >q
o n n

where the stochastic integrals of the RHS are in the sense of Definition

4.2.2. If f and g are two H:nwalued functions as in (5.1.13) define

Jn,t(f+g) = Jn,t(f) + Jn,t(g)' Then Jn,t is extended to the linear mani-
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fold Sn generated by H:n-valued functions of the form (5.1.13).

Proposition 5.1.5 If fe Sn’ then for each t>0 I t(f) is well defined

E

and
Ta s L el 2, dxs ) N E@I %, ar <o
»t n — en — n — en -
R Q R q
+ +
Proof By the preceding paragraph to this proposition, it is enough to

prove the result for functions of the form (5.1.13). We first show that

for m=1,...,n Jm_l(f)t belongs to Mq (see Definitions 4.2.1 and 4.2.2).
m

Using Fubini's theorem

n
n | ||f (t )e || dt.=[ || £, (t,)e, e.. .of, (t e
i=] R, kgt {z“ T K

+

f llf(_)ll dtsf el %, dt < =
R, q

Il 2, dt
k_ Qon

and therefore for each 1<ms<n

m
2
lme__n Il £, (e |l 2 dt)...dt <= ae. dt ...t .
. i=1 i i
t

Then Jo(f)t € Mq and f <J°(f)t ,dwt >q is given by Definition 4.2.2.

1 o 1 1
Therefore Jl(f)t is Hq-valued and from Propositions 4.2.1 and 4.2.2 it is

2
non-anticipative such that for each t3> 0

I| £, (t.)e

2
|| & dt.dt <.
LS 7Rt St PR Bl R

ll‘,:lN

t
3 2
E [P35, ||
£ 1 t2 Q

O St

3}2
01

Proceeding in the same way we have that for 2<m<n, Jm (f)t is Hq-
1 m
valued, non-anticipative and

E S |l9 (6 ||2dt=ff“‘1 anlf (t)e, ||2dt...dt <o
° m-1 th Q m I Q1 m

o0 o i=1 1

t
i.e., Jm_l(f)tme Mq and hence the stochastic integral £<Jm_1(f)tm,dw

>
t q
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can be defined as in Definition 4.2.2. Thus for each t> 0 Jn t(f) is well

defined and

E(J fz-fan 2 ae -
G e &7 = JEINI O I}, de -

Q
tt t. n
n-1 72 2
O, (t)e, ]S dt,...dt s
£ o £ i=1 % U k@1
[l f@ g, dus [ Nl el %y au
rY T ™ R? " Q.E.D.

Definition 5.1.4 Since elements of the form (5.1.13) generate LZ(R r:-*H:“)

and from Proposition 5.1.5 for each t>0 J (*) is a bounded linear trans-

n,t
. 2. oW . ’ 2. n_.en
formation from Sn to L°(Q,F,P), then it can be extended to L"(R +~>Hq ).
This extension is also denoted by Jn t(-) and called the nth iterated
»

stochastic integral. Moreover, using Lemma 5.1.1 Jn,t(.) is also extended

2 n_.en
to L (R+->HQ).

We now present the relation between Jn t(') and In
’

NOY

L

Proposition 5.1.6 Let q2r. + r, and n21. For any t>0 let T= [0,t]

1
and In T(') be the multiple Wiener integral of Definition 5.1.2 for ele-

ments in Lz(Tn->H:n). Let fe LZ(IR:_‘-*H:n), then for each t> 0 if f is re-

stricted to T= [0,t]

(5.1.16) In,T(f) = In’T(f) = n! Jn’t(f)
and

t
(5.1.17) In’T(f) = £ <g(s),dWS>Q

where ge¢ MQ and the RHS of (5.1.17) is the stochastic integral of Defini-

tion 4.2.3. Moreover, E f:llg(s)llé ds< o ,

Proof Let {f } and {e,}

2 3
k' k21 k k1 Pe CONS for L"(R ) and Hq respectively
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and f(t) be as in (5.1.3). Then from Definition 5.1.1

HORF JCH

(t, e, )e...o(f (t, e, )
— m, Iy kII L I, 'k

1 nn nn

and since for each t>0 J (f) and 1 (f) are linear on f
n,t n,T

s 1
J .H== Y3 (£, (tg)e, Je...8(f, (ty)e ))
n,t n! %n,t Rn‘l ny knl Znn My knn
and
~ 1
(5.1.18) I .H== 1 (£, (t )e )e...o(f, (tr)e )).
,T i AN MR LS SN IR | Mt *
n nogn P N m, m I

But from (5.1.4) in Definition 5.1.2 and Lemma 2.3.1 we have that

for all permutations II= (III,...,Hn) of (1,...,n) and T= [0,t], t>0

I (£, (t.)e, )e...e(f, (t-)e ))
n, Ty Sy ey by Ty

n
J £, (t )...f, (t;) deWe 1(1)
™oy T A T i Ry

I (£, Je...ol (£, )
W [ek]’[ 1] M, W [ekﬂn] Ty

where 1 ](fz) is the isometric integral of fR, w.r.t. the o.s.m. W[el]
L

W[e
(see Lemma 4.1.5 and Theorem 2.1.1). Then from (5.1.18)

(5.1.19) In’T(?)

On the other hand, from the definition of Jn t and (4.2.2) in Defini-

s’

tion 4.2.2, for all t>0

3 ((F, (tp)e de...8(f, (t;)e ))
moUm, m, m T,
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By the last expression, (5.1.19) and Theorem 3.3.3 it follows that if f

is as in (5.1.13) then for each t>0 In T(?) =n! Jn ('E). Jext, since
2

,t

for each t>0 In,T(.) and Jn,t(') are bounded linear operators from

LZ(IRn-* H:n) to LZ(Q), that agree (up to a constant n!) on a dense linear

manifold S_ of chnz"a-H:“), then (5.1.16) follows for all f in Lz(nz“ou:“).
Now we shall prove (5.1.17). Let f be as in (5.1.13) and g(s,w) =

n! Jn_1(f)s(w) se R _, we 2. In the proof of Proposition 5.1.5 we have

shown that Jn_l(f), defined in (5.1.14), belongs to Mq and moreover

r 2
E { I(Jn_l(f)SIIQ ds < =,

Therefore ge Mq, E f: i g(s)H(z2 ds<e and from (5.1.15) and (5.1.16)
for each t>0, T= [0,t]
t

In,T(f) = '([ <gs’dws>

q°
The above result extends if f belongs to the linear manifold Sn'
Next, if fe LZ(IRT:-* H:n), there exists a sequence of functions

. . 2,.n_.©n
{fm}mZI in Sn such that fm converges to f in L (R Hq ). Then there

<

exists a sequence of functions {gm} in Mq such that

m21

(5.1.20) E [ ||gm(s)||é ds < o mz 1
[s]

and for each t> 0

t

(5.1.21) Lo () = £ <gm(s),dws>q .

Then by Proposition 4.2.1 (d) for each t>0

t
E(In,T(fn.‘f1<))2= E( £ <zm(5)-gk(s),dws>q)2

t
“E [ llgy(s)- g ()11 ds
(o]
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On the other hand, by Proposition 5.1.4 (c), for each t>0, T= [0,t]

2 n 2
(5.1.22) E(I_ (f-£))°<n! 8] || £ -£ ||
n, T 'm 'k 2 m .k L2(Tn-H:n)
snt 6, [[£-£01%, o > 0.
m L(R H ) m, ke
q
A ‘ Then

2
sup E(I (f-£))"+0 as mk-w
0<t<o n,T" ' m "k
and

t
2
sup E [ ||g (s)-g,(s)||~ds +0 as mk>w.
0st<o o #n k Q

Thus, using (5.1.20) and dominated convergence theorem

o t
Ef llg (s)-g,(s)|| 2 ds = supE [ || g (s)-g,(s) | 2 ds
[ Nl o= ane ]yl

+ 0 as mk+>

and then there exists an Hq-valued, Qx R | measurable function g, ge M

Q
such that

Ef“gm(S)-g(s)llé ds +0 asnm -+ .
[0}

Thus by Definition 4.2.3, for each t>0

t t
2
E( £ <g(5).dWS>Q-f <gm(s),dws>q) +0 asm>o

o]

and by (5.1.21) since for each t>0

E(T, (6 - In,T(fm))z >0 asm>o

then
t
In’T(f) = f <g(s),dWS>Q for each t> 0.

° Q.E.D.

Corollary 5.1.3 Let fe L(lR':* H:n). Then if H is the Gaussian space

of W, (see 4.1.25)),
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a) For each t>0 J_ t(?)eH"“ )

b)) J (?),F?)tenR is a square integrable martingale with a continuous
+

n,t

modification and increasing process
SETCLE Fw)|2
()|l g as=E [ £l dn T= [0,t]
) T

-}
for some function ge MQ with E [ ||g(s)||é ds< o ,
o

The proof follows from the last proposition, Definition 4.2.3 and Proposi-

tion 4.2.2.

Remark Using Lemma 5.5.1 one can show that Propositions 5.1.6 abd Corol-
lary 5.1.3 hold if f belongs to Lz(llf-*Hgn). However, we have left them
the way they are to show the role played by the bilinear form Q and the

Hilbert space HQ'

Multiple Wiener integrals for elements in Lz(nlg-*HZé).

Definition 5.1.5 In Definition 5.1.2 we have given the multiple Wiener

integral L T(-) for elements in the space LZ(Tnd-H:n) where qzr +T and
»

2
T=[0,t] t>0 is a finite interval of the real line. Now let

fe L2(n124-H:“) and In,T(f) be the multiple integral of f restricted to
L2(1‘n->H:n). Proposition 5.1.16 shows that for all t>0, I_ 1(f) =

n! Jn’t(?) and from Corollary 5.1.3 we are able to define Jn’w(?)as the

2 . ~ A ~ .
L°(Q)-1imit of Jn,t(f) such that E(Jn,m(f)|Ft) = Jn,t(f) a.s. . Write

In(f) = n! Jn °°('f) and call it the multiple Wiener integral for elements
]

in chnzfa-H:“). Then using Lemma 5.5.1 and density arguments as before,
In is also defined for elements in Lz(nifé-HSn). Moreover, it is a
F.p,

The main properties of In(°) are summarized in the next result.

linear operator from each of the above spaces to LZ(Q,
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Lemma 5.1.3 Lt fe LY(RI+HY).

a) In(f) = In(§) € H®® where H is the linear space of (Wt)

Then

telR+'
b) E(In(f)) =0.

c) If ge LZ(RT-*Hgm) for m21 then

E(I, (D)1 (g))= Gnm n! |

<F(s),8(5)> g ds-
R n

Q

n
+

2 ~ 2 2
) EX (N =n! [ €)1, ds sn! [ || f()] °, ds.
n lR': QOn ]R': Q@n

e) For T= [O,t], t>0; if In T(f) is the multiple integral of f re-

stricted to ™ then

W
E(I“(f)lFt ) = In’T(f).

£) 1(0 =] <g(s),dW >,
(o]
for ge MQ’ E f: I g(s)”é ds<= and the random variable

f: <g(s),dws>Q is defined as the limit of the square integrable

martingale fz <g(s) ,dws>Q.

The proof follows from the above definition, Lemma 5.1.2, Proposition 5.1.6

and Corollary 5.1.3.

5.1.2 Real valued nonlinear functionals

By a real valued nonlinear functional of (Wt) teR we meah an ele-
+
ment of the space LZ(Q,Fw,P) where Fw= Fz . In this subsection we use the
techniques developed in the last section to obtain multiple Wiener integral

expansions and stochastic integral representations for elements in

L2 (Q,FW,P). We follow the same ideas as for the one dimensional Wiener
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process, as presented, for example, in Chapter VI of Kallianpur (1980).

Multiple Wiener integral orthogonal expansions Let SI be the subspace

of (@) = L%(2,F",P) spanned by the multiple Wiener integrals I_(f.)

f € LZ(]Rn->H°n) nz1 where I_ is as in Definition 5.1.5 for qzr_+r_,
n + q n 1 2

that is

2
e AN (%)) . 2,.n_.@n
S, = 5p (1,(£): £ e (R >HT™ nz 1.

By the definition of In(-) for elements in LZ(IR':-v Hgn), we have that
SI is also equal to

2
- P (£): £ e Lz(m':m;") nz1},

The next result shows the role played by the space L2(1R+)o HQ'

Proposition 5.1.7 Let EXP(L2(1R+) OHO) denote the Exponential Hilbert

Space of L2(1R+)0H . Then

Q
EXP(LZ(]R+)@HQ) 1 5,
where for ge EXP(LZ(IR JOH), g=(g s8,s.+.) g € (Lz(m )eH)* nz20
+ Q > o, 1" . n + Q
n® = 3 mn* 1 (g).  I() = 1.

Proof Let g= exp ®(f) fe LZ(IR_'_) eHO, i.e.

1 ®2 1
5.1.23) exp o(f) = (£°,£, =— £, =
(5.1.23) 7T AT

o3
£°,..))

Then by Proposition 5.1.2 and Lemma 5.1.3 (c¢) and (d)

o o 2
E((exp o(£) %= ] (i1 (¢ %= ] i3I,
n=0 n=0 L R+)OH

Q

(=]

- 1 iyl el g "= llexp o112
=0 L°(R)eH EXP(L” (R )el

Q Hy)
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and the proof follows since elements of the form (5.1.23) span

EXP(LE(R ,)eH

) (see Proposition 2.2 in Guichardet (1972)).
Q

0.E.D.

Proposition 5.1.8 Let Fe LZ(Q,FW,P). Then

F-EF) =] I(f) a.s.
n=1
2 en ~ 2. n_.8n .
where fne (L (]R+)0HQ) =L (IR+->HQ ) and In( ) n21 are the multiple

Wiener integrals of Definition 5.1.5.

1

Hy

Proof From Definition 4.1.2 H-= Ll(w) [,Z(m+->H

Q) and by (4.1.26)

12(2,F",P) can be identified with EXP(H). Then
)
~ 2
EXP(H) © EXP(L (R )eH)

where

ny(exp o(1,(£) = exp o(f) fe LA(R,) o H,.

Then by Proposition 5.1.7 L2 (Q,Fw,P) can be identified with SI in such
a way that if Fe LZ(Q,FW,P)
o
F- E(F) =n£1 1(f) a.s.
where fne LZ(IRI:-* e

Q

of Definition 5.1.5.

)} and In(~) n=1 are the multiple Wiener integrals

Q.E.D.

The following result shows the density of orthogonal expansions of

multiple Wiener integrals of elements in LZ(R?+ Hzn) qQz T +T,.

Fw +r.,. Then for

Corollary 5.1.4 Let Fe L3(%, 1t

,P}), E(F}=0 and q2r

all € > 0 there exist g, € LZ(R?*H:“) nz 1 such that
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L. . 2 n_.en
Proof By Proposition 5.1.8 there exist fne L (lR\\-*HQ ) n21 such that
F=] I (f) (LZ(Q) -convergence) .
nep MM

Let q2 T+, and €> 0. Then by Definition 5.1.5 and Lemma 5.1.1 for each

nz 1 there exists g, € LZ(IRT-' H:n) such that
n
E(L (8) - I (£)) < /2" .

Then by the orthogonality of I for n#m
ECTT () -1 (0% =T B (g)-1 (£02 5] /2"
pzp oM n-n ne] RnooM nn n=1 '

and hence E(F - § In(gn))z <e.
n=1 Q.E.D.

Stochastic integral representations The next result is the analog of

Theorem 6.7.1 in Kallianpur (1980) for the one dimensional Wiener process.

Theorem 5.1.1 Let Fe LZ(Q,FW,P), E(F) = 0. Then

Flw) = [ <g(t,w),dw>
(o]

Q

Q
of Definition 4.2.3.

o
2
where ge M., E [ || g(t) ”Q dt< o and the RHS is the stochastic integral
0

Proof Since Fe LZ(Q,FW,P), by Proposition 5.1.8

F=)1(f) L) -convergence)
nLynon

en

) n21. Then by Lemma 5.1.3 (f)
Q

where £ e LZ(R™+H
n +

- -3

I(f) = c{ <gn(t),dwt>Q a.s.

® n
2 .
where g_e MQ and E ({ | g, (1) W Q dt<e nz1. Write g* =izlgi. Then by

..................
.......................
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linearity of the integral Z <',dwt>Q
n ©
121 I,(f;) = g <gp (t),dW >,
and therefore E(F - ? <g;(t),dwt>Q)2 >0 as n+o , Then using

0
Corollary 4.2.2 we obtain that

E [ |l g*(t)-g*(©) ]| 2 at = E[ [ <g*(t) -g*(t),dW >.]+ 0 as n,m+>o .
T ls30-sg001 e = 51 ] <6300, 8010 a5 no

Therefore there exists ge MQ’ E [ ||g(s)||é ds < o such that
o

B[ llgx(e)-g(e)]]g de>0 as n>w and
(o]

-] o 2
E[ £ <g;;(t),dwt>Q—£ <g(t),d > 1" > 0 .
Hence
[o+]
Flw) = £ <ht’dwt>Q a.s. .

Q.E.D.
The next result shows the density of the stochastic integrals

f: <-,th>q in the space of nonlinear functionals LZ(Q,FW,P).

Corollary 5.1.5 Let Fe LZ(Q,FW,P), E(F) = 0. Then for all q2 T, *T,

o 2
and €> 0 there exists ge Mq’ E Io [l g(s) | a ds < » such that

[« o]
2
E(F - g <gt,dwt>q) <e .

The proof follows from the last theorem and Definition 4.2.3.

Representation of real valued square integrable martingales

Theorem 5.1.2 Let (Mt’F be a square integrable martingale, with

"
t t:elR+
M, = 0. Then (Mt) has a continuous modification, say (ﬁt), which is given

by the stochastic integral
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t
M (W) = £ <g(s,w) ,dW >

Q

for every t> 0, where ge M, i.e. g(s,w) is jointly measurable, g(s,*)

Q
is Fz-adapted and

A aTRe e . ade e oese e e
s Ty T e NS i 4

EJ el g ds<o.
0

Proof Since (M) is a square integrable martingale, i.e. sup E(M2)<w,
—_ t te]R+ 0<t <o

then M_ exists as the mean square limit (and also as the almost sure limit)
of M_ t+», and moreover, M_is Fw-measurable and EM2< o, i,e. M eLz(Q,F,P).
t e <] (-] oo

Then by Theorem 5.1.1

M, = f <g(t),dwt>Q a.s.
o
T 2
where ge MQ’ E [ ||g(s)||Q ds< o ., Then by Corollary 4.2.2
o
W t
M, = E(MmlFt) = ({ <g(t),dwt>Q a.s.

and the stochastic integral has a continuous version which is the required

modification of Mt'
Q.E.D.

5.2 ¢'-valued multiple Wiener integrals

Let ¢ and ¢Qn nz 1, be as in Section 4.1.1 and denote byL((@en)',¢')
the class of continuous linear operators from (@Qn)' to ¢'. In this sec-

tion we define multiple Wiener integrals of the form

Yn,T(f)= I%ﬁ.f f(gdwtl...dwtn t=(ty,...,t)

where f(t) is a non-random element in L((¢°n)',¢') and T= [o,To] for all

nz 1 and T,>0 (Section 5.2.1). Then we construct multiple stochastic

integral expansions and stochastic integral representations for ¢'-valued
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nonlinear functionals and ¢'-valued square integrable martingales of
(wt)tell (Section 5.2.2). A Wiener type decomposition of the space

+
of ¢'-valued nonlinear functionals is obtained in Theorem 5.2.2 as the

inductive limit of the spaces LZ(Q*-H_r) r=0.

5.2.1 Multiple Wiener integrals for L((¢@n)',¢')-functions

Throughout this section n2 1 is fixed but arbitrary.

Definition 5.2.1 A measurable function f:nzf-»L((¢°“)',¢') is said

to belong to the class OQ((Qen)',¢') if for all T= [O,To], T°> 0

(5.2.1) {an(f;(¢),f;(¢)) dt<e Ve

where £2:0+8"" is the adjoint of £, and t= (t,...,t ).

Theorem 5.2.1 Let fe OQ((Qen)',Q'). Then for each To>-0 there exists

a ¢'-valued element Yn T(f), T= [O,To] such that
’

= *
(5.2.2) Yn,T(f)[¢] In,T(f (9)) a.s. Ve
where In T is the real valued multiple Wiener integral of Definition
5.1.3 for elements in LZ(T"~>H3n). Yn T is called the nth $'-valued

multiple Wiener integral.

Proof We prove this theorem in a very similar way to Proposition 4.2.3.
First note that for each ¢¢ ¢ In,T(f*(¢)) is well defined since from
(5.2.1) £+(0) e L"'(T"»HZ“) .

Next for ¢e ¢ define Vf(¢) = vf,T(¢) as

2
(5.2.3) Ve =/, Q" (3 (@), £7 ().

. en ., on . . .
Since Q  is & -continuous, using Fatou's lemma one can show (as in

.....
NP
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Proposition 4.2.3) that Vf is a lower semicontinuous function on ¢. More-
over, Vf is a non-negative function on ¢ that satisfies conditions (a),
(b) and (c) of Lemma 4.1.1 (use triangle inequality to prove (a) and
(5.2.1) to show (c)). Then this lemma implies that Vf is a continuous

function on ¢ and therefore there exist 6f= Gf T and rf= rf T such that

’ »

(5.2.4) Vi) s el ol if Voed .

Next let {¢J.} and D‘j}jzl be as in Section 4.1.1, g = A such

e ~ )
. j21. Then {¢.}._, is a CONS
¢J J ¢J je1

jz1
that qu Te+T, and write $j= (1+AJ.)

for H and we denote by {y_.}._ . the CONS for H
A jTi=zl -

<P ,4.> =68 .

3 e = * ~ L3 3 - -
Define Yn,T(f) [¢j] In,T(f (¢>J,)) j21. Then by Definition 5.1.3

d to {$.}._,, i.e.
a ual °{¢J}J21 i.e

and Proposition 5.1.4 (e)

~ 032
jzl E(Y, ¢(£)[6;1)
< n! Q (£3(4.),£5(4.))dt = n! Ve(9.)
j.-):‘l ’{‘n LA LA - J-'}-:l £
® . *® 'Z(Qf‘rf)
< n! b 2|]¢.||2=n!6 (1+1).) <n6 b <
fj=1 il szl j f1

where 6 is as in (4.1.4). Then Z?=1(Yn,,r(f) [33.])2 < a.s.
Let @, = {u: X;I(Yn’.r(f) [Ejl(w))zm}, then P(Q,) = 1. Define

'Zl Yn’T(f) [gj](w) ‘PJ- we Ql

(5.2.5) Y, p (D) =

0 we Ql

~ ~ '
Then Yn,T(f) € H__qf a.s. for qu To+T and then Yn,T(f) ed' a.s. .
From now on write Yn,T(f) = Yn,T(f) .
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Next if ¢e &, then ¢e qu qu Te+ T, and

Y, (6 [6]= jZIYn»T(f) (0;1%; (0] =j§1Yn,r(f) (051 <85>

DA I RGOS

ifag's

fHt~18

1

Thus for all ¢e &, since Yn,T(f)[aj] = In,T(f*(zj))

m
5.2.6 Y ()[¢]=1im I _(f* ,0.> 9. .S. .
( ) n, 70 0] Lim n,T¢ (jzl<¢ ¢J>qf¢3)) a.s

On the other hand, since ZW_1<¢,$.> 3 - ¢ onH then

vf(ZW_ <$,9.> ¢.-¢) > 0 which implies using (5.2.3) and Proposition
=1 *Tiae ) T
5.1.4 (e) that

m ~ ~
E(In,T(f*(¢)) - In,T(f*(j§1<¢:¢j>qf ¢j)))2*'0 as m*>® .,

Then from (5.2.6) for all T= [O,To], T°> 0

Y, p(B)[0] = I ((£*(4)) a.s. V oed.
Q.E.D.

The following properties of the ¢'-valued multiple Wiener integral
Yn T(f) follow from the last theorem, (5.2.2), Proposition 5.1.4, Defin-
E4

ition 5.1.3 and Corollary 5.1.1.

Proposition 5.2.1 Let f,ge OQ((an)"q")' Then for each T= [O.To]
T >0
o
a) Yn’T(af+bg)= aYn,T(f)+ an,T(g) a.s. a,beR.

b) E(Yn,T(f)[¢])= 0 V¥ ¢eo.

c) If ge 0. ((8™™',0")

%
BV, £(6)[8] Y, £(8) [¥])
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r~
where f;(¢) is the symmetrization (Corollary 5.1.1) of f;(d))

on °0n .

O B, (O8] %5 n! IOSGIORHOIL S

Proposition 5.2.2 Let n21 and g:R ~ L((d>@")',<b'). Define the symmet-
~ ~ /\/
rization g of g such that for each te R and ¢e ¢ g‘t‘((b) = g;(¢) where

Va4 en
g;(cb) is the symmetrization of g;(¢) on &  of Corollary 5.1.1. 1If

fe OQ((¢°“)',<1>') then

a) fe OQ((Qm)',Q') and for each T-= [0,'1'0], To> 0
Yn,T(f) = Yn,T(f) a.s. .

b) For each T= [O’To]’ T°> 0 there exists Qe T> 0 such that a.e.
3

te TR £ ¢ and Et are Hilbert-Schmidt operators from H™ to H

t t Q "¢ T
and
(5.2.7) el y, ool =nt NEN?%, | o
s qf,T L°(T ~>02(H »H_ ))
U, T
s nt ||f] <o
2. n Sn
Le (™o, (2™ H
( 02( Q » _qf,T))

where o (Hon,H ) denotes the Hilbert space of Hilbert-Schmidt operators
2 Q 'Qf T P

from Hen to H .

Q -qf,T

Proof a) By Corollary 5.1.1 for each te ]R+ and ¢¢ f;(d)) = f;(cb)e ¢

and by Corollary 5.1.2 for each T= [O,To], T°>O and ¢¢ ¢

/ m(;*;;) £4(6))dt < [ Q™ (£2(4),£*(9))dt
TnQ t(0).5¢ )dt T“Q(.E(’E t

which is finite for each T since fe @Q((¢°n)',¢'), ‘proving that
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Te eQ((«»"‘)',o-).

Thus Y_ T(?) is defined for each T= [0,T ] T >0 and from Theorem

5.2.1, Definition 5.1.3, Proposition 5.1.4 (a) and (5.2.2) we have that
Yn,T(f) = Yn,T(f) a.s. for each T= [O,To],To> 0.

b) For T= [O,To], T°> 0 let Vf,T and e T be as in the proof of Theorem

A, T
. .
5.2.1 and take {(1+Xj) ¢j}j21 a CONS in H_ Then Yn,T(f)e H_

a,T U ,T
a.s. and
Elly. «Bll% =E OZO Y (), (1+A )qf'Tcp 2
n,T -qf,T j=1 n,T ,’ J J —qf,T
) 2q
£,T 2
=) (1+1.) TPUESY. (£),4.>
le( * J) n»T( ) ¢J -qf,T
3 -2q¢ 1 2
=l ) TR (D61 (by (4.1.8))
j=1 » J
°° ~29¢ 1 2
=nl a7 [ (1 £200) || ©pdt  (Proposition 5.2.1 (d))
. ) en —
j=1 T = Q
s ~ S, T 2 S K Y
=nl ] [ lErcaery) Te0 || S dt=ntf (] ]| £r@aa) T |17 0dt
j=1 Tn _t_:_ h) h) Q@n - Tn j=1 t ? ] Qm? -
0 -q
snl J (1 ] £2(14)) f’T¢.)||2 dt (Corollary 5.1.2)
™ j=1 t J J QOn -
cnt [T Qe ETe excan ) 7o ))at
Tnj=1 E J J £ J J -
T 2 ",
= n! 1. by 5.2.4
n j§1 Ve, r((1+25) 7176) (by )
w -2r1
< nl 6, jzl(nxj) =nl B 18,<w
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oo -
2 U, 7 2
IH £l en. = L I £ F R0 || % <
= o, MH j=1 0k qQ
Qf,'r Q
and
=11 2 R S, T, 2
[ £x1| = IFcaa) Tleyllc, <
t en, .. t j en
= o, Ho) 31 = Q
£,T
-q
where {(1+1.) f'T¢.}. is a CONS for H . Then (5.2.7) follows since
j i“i=l ¢ T
2 2
e | = || £2]] .
t &n t on
o,(H, ,H = H »H
2t Q¢ T %! ag,7 © )

Q.E.D.

We now extend the definition of Yn to functions f:lR?-* L((<b°n) e,
Proposition 5.2.2 (b) suggests that it is enough to construct multiple
Wiener integrals for functions f:er:-_v oz(Hon,H_s) for s2 r +r,, as we

now do.

Proposition 5.2.3 lLet s2 q, * 4, and n21 be fixed but arbitrary. Let

en

fe L2(1R1:+ GZ(H ,H_s)). Then there exists an H_s-valued element Yn(f)

Q
called the multiple Wiener integral for functions in LZ(R2+02(H3n,H_S))
such that
(5.2.8) Yn(f) (4] = In(f*(¢)) a.s. -V ¢e Hs

where L is the multiple Wiener integral of Definition 5.1.5 for elements

in chmf+ Hen). Moreover, Yn(f) satisfies the following properties

Q
a) If ge Lz(er:* oZ(H:n,H_s)) and a,be R.
_ Yn(af+bg) = aYn(f) + an(g) a.s. .

b) If ge Lz(mT+02(Hgm,H_s)) then

E<Y_(£),Y (g)> _ = &_ nl <f,g>
n m s n,m Lz(m':-'oz(H
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and
2 ~
ElY (Ol 2= nt ||£]]
n -s 2...n on
L (R:OZ(H‘ H_))
< n! || £]| < e,
2..1n on
LS (R0, (Ho H_))
¢) For T= [0,t], t>0 if I T is the real valued multiple Wiener inte-
»
gral for elements in Lz(fn*»Hon) then

Q

B () [11FD = I, p(£4(#) a.s.V e H .

o0
d) For each ¢ H_ there exists gy MQ’ E [ ||g¢(s)||;ds<'= such that
o

-

D8] = [ gyl aus.

where the RHS is the real valued stochastic integral of Definition

4.2.3.

Proof The first part is proved as in Theorem 5.2.1 using Definition
5.1.5 for elements in Lz(er:-*Hgn). (a) follows from (5.2.8) and the
linearity property on In(-). (¢) and (d) follow from (5.2.8) and Lemma
5.1.3 (e) and (d). The second part of (b) follows as in the proof of

(b) in Proposition 5.2.2. To prove the first part of (b) 1let

{ek= (lﬂk)sd’k}kzl be a CONS for H__, then using (5.2.8) and Lemma 5.1.3 (c)

E<Y_(£),Y_(g)>__ =k§1(1+xk5255c1n(f*(¢k))Im(g*wk)))

[ 1 <t .ante
§__n! <f¥(e.),g*(e)> o dt
nm mi\ k=1 t k7’5t k Qon

= § <f, >
nm chmfmzcug“,n_s))

Q.E.D.

...............

RERTR RIS P 6
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We will see in the next section that the multiple Wiener integrals

Yn(-) for elements in Lz(]Rr:-> oz(Hen,H_s)) szr1+ r, form a complete sys-

2
tem in the space of ¢'-valued nonlinear functionals of (wt)tenl .
+
The next result will be useful for the representation of ¢'-valued
nonlinear functionals. It relates the ¢'-multiple Wiener integral Y, with

the ¢'-stochastic integral of Proposition 4.2.3 and it is an infinite di-

mensional analog of Lemma 6.7.2 in Kallianpur (1980).

Proposition 5.2.4 let n21, s2q,+q, and fe LZ(R':-»oz(Hg“,H_S)).

Then there exists a non-anticipative oz(H H_s)-valued process h(t,w)

Q,
such that

T 2
E [ || h(t,w]| dt < »
o OZ(HQ’H‘S)
and

Y (f) = ({ h(t,w)dW,

where the RHS of the last expression is the ¢'-valued stochastic integral

of Proposition 4.2.5.
Proof By Proposition 5.2.3 (d) for each ¢e HS

(5.2.9) D] = [ <gy(0),di>g = (@) a.s.

where gy € MQ’ E(f: |[g¢(s)]]éds) < o , Let {ek}k>1 be a CONS for H_

and define h*(t,w)(eQ= 8q (t,w) k=21. Then h*(t)(ek) is HQ-valued and
k

h*(t) (ek) € MQ k2 1. Next

00

E(Z

Il h*(2) (e) || Byat = Ell g (t)] 2at
k=1 7 Q kzlc{ | e QR

8 O0—38

)2 (by Corollary 4.2.1)

It~

[
E( [ <g_ (t),dw>
k=1 o %k Tt Q
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(by (5.2.9))

-1 E(Y_(£) [e,1)°

on (by Lemma 5.1.3 (d))
+HQ

2 2
Sl e 3, -l ?, <o
L™ (R +->02(HS,HQ)) L°(R +-’02(H0,H_s))

snt § |l £cepll ?
k£1 2@

Then

h*(t) (*) =k21<-,ek>s h*(t) (e})

defines an a.s. dtdP linear operator from H, to Hy. Moreover, from the

Q
above calculations h*(t,w) e oz(Hq,Hs) a.s. dtdP. Then

[ Ellney) 2 dt= [ E||n*(t) || 2 dt < o
Po) OZ(HQ’H"S) ) OZ(HS,HQ)

and the proposition follows by the definition of the ¢'-valued stochastic

integral f: h(t,w)dW, of Proposition 4.2.5.
Q.E.D.

5.2.2 &'-valued nonlinear functionals

Let e Fz . By a ¢'-valued nonlinear functional of (Wt)telR
+
we mean a %'-valued random element F: Q=+ &' such that F is Fw->8(¢') mea-

surable, and

E(F[6])2<®  V ded .

We denote by L2(@+ ') = LZ((®,F",P)> 0') the linear space of all &'-

valued nonlinear functionals of (Wt) Observe that it is not a

teR °
Hilbert space.

For r2 0 let L2(94-H_r) = Lz((Q,FW,P) - H-r) be the Hilbert space
of all F'-measurable elements F: Q+H__ such that E(IIFlIfr)<4m . The

Hilbert space LZ(Q*-H-r) is called the space of H_r-valued nonlinear
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P

rj:f : functionals of (Wt) teR

Wiener decomposition of the space L2(9+ $') Let H= LI(W) be the Gaussian

space of (Wt) defined in (4.1.25) and Hon be its n-fold symmetric

teis+

tensor product. For fixed s> 0 and nz21 let
2 en
(5.2.10) G (H_)={neL7(@+H_): n[¢leH VoeH} .
on . 2 W
Recall that for all n21 H  is a subspace of L°(Q,F ,P).

Theorem 5.2.2 (Wiener decomposition of L2($2-> $')). The linear space

L2(9+ ®') is a complete locally convex space in the topology given by

the strict inductive limit of the Hilbert spaces LZ(Q» H—r) rz2 0 and

(5.2.11) L2(@+0") = lim ( J @ G_(H ).
™ 20 T

The proof of this theorem is based on the following lemmas.

Lemma 5.2.1

(5.2.12) L2+ 0" = u LZ(Q->H_r).
r=0

Proof Let Fe LZ(Q* H_r) r2 0. Then F[¢] is Fw-measurable for all ¢e ®
and EFD2< o | 2Bl FII 2 <=, i.e. FeL?(@>9') and hence

(5.2.13) U LZ(Q+H_r) c L@+ o)
r=0

Next let Fe L(Q+ ') and for all ée & define V2(4) = E(F[6])°.

‘T Then -
-2 2
- (5.2.14) Vo(9) <= Voed .

)
[ 2

As in the proof of Proposition 4.2.3 and Theorem 5.2.1,using the

continuity of F on ¢ and Fatou's lemma, one can show that V(¢) is a lower

..........................
.............................

- '...".' IR S ".4"‘."_. re e e T e T e T
e




.. DS AR AR At M DR v AN RN A Rl Sl A A e el el ) RN ke Y > A i SR Aai A M i R mli e gt )

181

semicontinuous function of . Moreover it is non-negative and satisfies
conditions (a), (b) and (c) of Lemma 4.1.1. Then V(¢) is a continuous

function on ¢ and hence there exist 91=> 0 and rF> 0 such that

(5.2.15) Vi) = BN < o llell2 voeeo .
F

Let r2 Tp+ Ty, then the imbedding of Hr into Hr is a Hilbert-

F
. ~ -r ~ . .
Schmidt map. Take ¢j = (1+)‘j) d)j, then {¢J. }j21 is a CONS in H_ and

EC ] F[3.1% = L ECF[O. D2 = § V2@
S U B U
-2(r-r

)
Fsepe <

) - 2 ) ©
< BF'21|l¢j||rF— eF.z (1+Aj) 1

j= J=1
where 91 is as in (4.1.4). Then Z‘;z

~ 02 . .
1F[d;).] <o a.,s., and if {wj}jZI is

the CONS in H__ dual to {9 J.}J.21

P(F(w) = | F[$.1(w¥,<») =1
j=1 3 j

~

and Fe H r 25 - Moreover,

[s¢]
E”F”21.= ) E<F,(1+)\.)r¢.>_2=ﬁ(
- j=1 ) J-T j

°§

F[$J-]2)<°° :
1

It remains to show that for each ¢¢ ¢ F¢] ='f5[¢]. By using (5.2.15)

since z‘;=1<¢’¢j>r &;j + ¢ inH|

oo
LN 2 T~ o~ 2
E(F[4] -jZIij]wj [61)“= E(F[o -j§1<¢,¢j>r¢j])
L~ w2
< &ll¢ ‘j£1<¢-¢j>r¢j”r +0 as m*o

and therefore for each ¢e¢ ¢ F[9] = ?-"[¢] a.s. .

Thus if Fe L2(@> ') there exists r2 0 such that Fe L7(2+H_)

which together with (5.2.13) implies (5.2.12).
Q.E.D.
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Lemma 5.2.2 For r20 and n2 1 let Gn(H—r) be as in (5.2.10). Then for
fixed r20 Gn(H-r) nz 1 are Hilbert subspaces of L2(§2+ H_r) such that if

. 2
n#m Gn(H_r) and Gm(H-r) are orthogonal in L™(Q~ H-r) .

Proof We first prove that for each n21 Gn(H-r) is a Hilbert subspace
2 . '
of L (Q+li_r). Let {nk}k21 be a Cauchy sequence in Gn(h-r)’ then nkk-;o n

in LZ(Q-> H-r)' Since for each ¢¢ H_r

In (01 -nlol| < llell Il n-nll
. 2 W
then for each ¢eH_ nk[d)]"n[d’] in L°(Q,F,P).

But by hypothesis Ny [¢] € Hon. Then since H®" is a closed subspace of
12@,F",P), n(o]e #° for all g H i-e. N €G (H_), proving that G (H_)

is a closed subspace of L2(Q+ H_r) for nz2 1.

] . _ T
dext if ném, let n e« Gn(H-r)’ € Gm(H-r) and {e, } {(1+)\k) ¢.}

k k21" Kk21

a CONS for H-r' Then

00 o]
=) E (<nm,ek>_r<nn,ek>_r) =kz

~2r

E<n_,n >
n’mo-r o2y

since nn[¢k] € Hon,nm[cbk] e H°™ 211 k=1 and H®" and H®™ are orthogonal in

Li, ¥ p).
0.E.D.

The following result is the Wiener decomposition of the space

LZ(Q» H-r)' A proof of it appears in Miyahara (1981) for a general Hil-

bert space K, i.e. for LZ(Q-* K).

Lemma 5.2.3 For each r2 0

2
L°(Q+H ) = ® G (H ).
-r ngo no-r
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be a CONS for H__r and ne L2(§2+ H_r), i.e. nis Fw-

Proof Let {ek}

k21
measurable and E{| nl| fr<°° . Then

[«

2
n(w) =k£1<n(w)’ek>-rek (L°(Q+H_) convergence)

where E(<n,ek>3r) <o all k21, 1i.e. <n,ek>_re LZ(Q,FW,P) and therefore

[ ]
<T1,ek>fr = X x:: (LZ(Q)-convergence)
n=1

where for each k x:e HOn nz1.

Define

oo
SRR
k=1

We now prove that for each n21 N, € Gn(H-r) . Note that

2 L 2
kK 12 K2 K2
El}] J xell =EC] Ix |9 =} E|x |
kem P KT g 0 kem O

A
<] E(<n,ek>?r) + 0 as m,R > >,
k=m

m
Then { Zk=1x§ek}k21 is a Cauchy sequence in L2(9+ H_) and therefore con-

verges to a limit denoted by n,.

. k @ .
Next if ¢e Hr nn[¢>] = Z:=1xnek[¢]e H™ n21, i.e. n. € Gn(H-r) nz1.

By construction of n m21 if Z:::lnm converges in LZ(Q-> H-r) it must

converge to n. Thus it remains to prove that Z:=1nm is a Cauchy sequence:

2 ') o ®
2 2 k2
Ell InllZ =2Elnll® =3 1JEx]|® .
m=n ® ¥ m=n M -T y=1m=n ™
2

But for each k zm=n

Elx;I2 + 0 as n,2 > =, therefore

v 2
E|| Z r\m“ _e+0 as n,L + =,
m=n

Then X:=1nn is an element of LZ(R~ H_) and of Y n0® G,(H_), which is

equal ton a.e..
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Proof of Theorem 5.2.2 Since Lz(Qe-H_r)c Lz(Qﬁ-H_

(r+1)) for all r=20

the theorem follows by Lemmas 5.2.1 and 5.2.3 and the following result
(Theorem V.15 of Reed and Simon (1980)): Let X be a real vector space

[20]
X=1U Xn. Suppose that

and Xn be a family of subspaces with ch X
n=1

n+l’

" each Xn has a locally convex topology so that the restriction of the topo-

logy of Xn+ to xn is the given topology on Xn’ Let U be the collection

1
of balanced, absorbing, convex sets 0 in X for which On Xn is open in Xn
for each n. Then a) The topology generated by U is the strongest locally
convex topology on X so that the injections Xn+-X are continuous; b) The
restriction of the topology on X to each Xn is the given topology on Xn;

c) If each Xn is complete, so is X. The locally convex space X is called

the strict inductive limit of the spaces X .
n Q.E.D

Define for n21 Gn(¢')=-{ne LZ(Q*-Q'): n¢le H® ¢e d}. The
following lemma can be proved in the same way as Theorem 5.2.2, using
Lemma 5.2.2 and the fact that for each n=z1 Ho is a Hilbert subspace

of L2, F,p).

Lemma 5.2.4 For each n> 1, the linear space Gn[é'] is a complete local-
ly convex space in the topology given by the strict inductive limit of

the Hilbert spaces Gn(H_r) r20, i.e,. Gn(¢') = ii: Gn(H_r).

Multiple Wiener integral orthogonal expansions Let

_ ] 2...n ®n
Sy = {Yn(fn). f el (H{++-02(H ,H_S)) n>1, s20}.

We shall show that SY is a complete set in the space LZ(Q*-¢'). We see

from Theorem 5.2.2 and Lemma 5.2.1 that it is enough to study the com-

pleteness of the multiple Wiener integrals in each of the subspaces

LZ(Q*H_r) r2 0.
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For r2 0 let S; be the closed subspace of LZ(Q-P H-r) spanned by the
multiple Wiener integrals Yn(-) of Proposition 5.2.3. for elements in
LR 0, H_ D), iee.

b S . 2 n on
Sy = SP {Yn(fn). fne L (Ra-"oz(HQ ’H-r)) n21}

where the closure is taken with respect to L2(9+ H-r)'
Although multiple Wiener integrals on Hilbert spaces have been studied
before (Miyahara (1981)) an analog of the next result was not found in

the literature.

Proposition 5.2.5 For each rz2 0

r

g
(5.2.16) o, (EXP(LE(R,) o H), H_) ¥ 5y

where for ge oz(EXP(Lz(lR‘.)oHQ), H_ ), g&%=(g5.8],---)

®
ghe oy, (LA(R Yo HY "

Q)nZl

£(g) =n£1Yn(gn) (convergence in LZ(Q-» H-r))'

Proof Let ge o (EXP(LZ(R )@ H,),H_), then g*e o,(H ,EXP(L’(R )@ H)),

Q Q

i.e. for each ¢eH_ g*(¢) ¢ EXP(LZ(R +)OHQ). g* (¢) = (g5(4),81(4),...)

and

Il g* (@) || <w .
n)=:o n (L2(1R+)0HQ)°n

en
We first show that for each n21 g;e oz(Hr.(Lz(m+)ﬂlQ) }. Let

{em}m21 be a CONS in Hr’ then

g*(e) ]| 2 <
m21” n EXP(LZ(IR’)OHQ)

and hence
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I lsecep -1 T extell?

w1 " Eeat(R el AL lu.zmgonq)’“
=1 Illeyepll? <o

n=1 mzl nom (LZ(R)OHQ)QH

Thus for each n and {em} o] 2 CONS for H_

I lgpcell? <=,
w1 2R e )"
Q
ie.  gre oy, (AR )eHY™) nz1.

Next, if ge o,(EXP(L’(R )@ H ), H_) using Proposition 5.2.3 (b)

H

sle@lly = Bll v g1l 2
n=

=1 lgl? =1 Nzl ?
a1 oM Lz(m}ozcr{;“,ﬂ_r)) n=l " o?_(ur,LZ(m,,)eHQ)”)
-1 Dllentepll? - T llgrep 2 :
nslmel "% (LA(R el )" mzl ™" Exp(LE(R )eH )
Q +Q
= gl ? , = gl ? ,
0, (Ho EXP(LE (IR, JoHy)) 0, (EXP(L*(R DeH)) H_ ).
Then the result follows since g as above is a typical element in
2
0o (EXP(L°(R JOHQ) H_) 20 . 0.5,

The completeness of the multiple Wiener integrals Yn(fn),

2..n on . 2 . .
fne L (1R++ oz(l-lQ ’H-r)) in L™ (0> H-r) is now obtained.

Proposition 5.2.6 Let 20 and Fe LZ(Q+ H-r)’ E(F) = 0. Then
v 2
F=)Y(f) a.s. (convergence in L°(Q+H _))
D el °r

2,.n on
where fne L (R++02(HQ , H-r)) nz1.
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Proof By Lemma 5.2.3 L2(9+H ) =] ©G_(H ) where for each n21
L1123 -r T %y mier

G,¢_) = ne Lz(f}ﬂi_r): niele K™ v peH_}.

Then by Proposition 5.2.5 it is enough to prove that

Yn

2 on ~
o (L (R IO HY™H_) 5 G (H ).

But the last isometry follows from Proposition 5.2.4 and since from

Lemma 5.1.3 and Proposition 5.1.2
2 n
(L (IR+)0HQ)°" T #™M

where In(-) is the real valued multiple Wiener integral of Definition

5.1.5 for elements in Lz(mf-* H;n).

Q.E.D.

The above proposition and Theorem 5.2.2 yield the next result which
J gives multiple Wiener integral expansions for ¢'-valued nonlinear func-

tionals.

Theorem 5.2.3 Let Fe L2(Q+9'), E(F[¢]) =0 V e &. Then there exists

- r.> 0 such that FeH a.s. and
" F rF

o0 .
2
F -nzl Y (f) a.s. (L°(Q+H_ rF) -convergence)

on

2...n
where fne L (1R+* oz(HQ . H_rF)) n21.

Corollary 5.2.1 For n21 let

2 on ..\ _ o 2 on
o, ((L (IR)OHQ) &) =r‘;'002((14 (R)QHQ ),H_ ).

Then Yn
3 "o~ 2 en .,
. Gn(tb ) = 02((L (R)O HQ) ') .
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j The proof follows from the last part of the proof of Proposition 5.2.5

v and from Lemma 5.2.4.

%

w7 Stochastic integral representations for ¢'-valued nonlinear functionals

\.

From Proposition 5.2.4 and Theorem 5.2.3 one obtains the following
stochastic integral representation for elements in L2(Q+ $'). This result
is the ¢'-valued analog of Theorem 6.7.1 in Kallianpur (1980), from which
the idea of the proof is taken.

‘_: Theorem 5.2.4 Let Fe L2(9+ ¢'). Then there exist > 0 and a non-anti-
- cipative oz(Hq,H_r )-valued process h with
; F

T 2

(5.2.17) [ Ellnct,0) ] 5 w9t

o 2V Q -Tp
such that
N -
- Flw) = [ h(t,w)dW, a.s.
A o]

where the RHS in the last expression is the ¢'-valued stochastic integral

- of Proposition 4.2.5 with an H»r continuous version.
F

Proof Since Fe L2(9-> %') from Lemma 5.2.1 and Theorem 5.2.3 there

exists r_.> 0 such that Fe H a.s. and
F -rF
3 2
F=)Y(f) (L°(Q+H _ )-convergence)
n=1 M n ~Tp

2..n on
where fne L (m++ oz(HQ ,H_rF)) n21.

Next, from Proposition 5.2.4, for each n21

i ) a
RO AN NS

Yn(fn) = £ h“(t,m)dwt a.s.
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2
dt < » , and
oz(Hq,H_r )

F
the ¢'-valued stochastic integral is defined in Proposition 4.2.5.

where h is non-anticipative and E [ IIhn(t,uﬂll
o

n
Define g, = I h then

»
g=1 ¥

n L
LY (£ = £ g, (t,w)aW,

and hence

o0
(5.2.18) E|| F- £ gn(t,w)dwtllfrpw as n+w .

Then using Proposition 4.2.5 (d)

E !; Il g, (t) -g"(t)”"z(HQ'“-rF)dt = E|| i(sn-gn) (tyaw_ || g

+0 asnm+®
and hence there exists a cz(ﬂq,H_rF)-vaIued function g, that satisfies
(5.2.17), is non-anticipative and
Bl [ nan, - J 8.0 12 >0 asnee.
o t o th g
Then from (5.2.18) F = f: hdwt a.e. where h has the required properties.
Q.E.D.

Representation of ¢'-valued square integrable martingales

Definition 5.2.2 A ¢'-valued stochastic process (Xt) on (Q,F,P) is

teR
+
said to be a ¢'-square integrable martingale with respect to an increasing

family (Ft) of sub o-fields of F if:

teR
+
For each ¢e ¢ ()(1:[¢~],f~'t,_)t€]R is a real valued square integrable
+
martingale, i.e.

(5.2.19) sup Exfm <o,
0gt <o

Although the next proposition follows from condition (1) in Mitoma
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\
*
~
- (1981b) (page 193), we shall establish and prove it here in a way that

is more convenient for use in our next theorem on the representation of
" )
1: ¢'-valued square integrable martingales.

Proposition 5.2.7 Let (xt’Ft) teR,, X =0 be a ¢'-valued square in-

tegrable martingale. Then there exists rx> 0 such that for each te R .

Xte H-r a.s. . Moreover, for each ¢e ® let X _,(¢) be the mean square

X

limit of xt(¢) as t+=. Then there exists X_e ¢' a.s. X, € L2(9+ %),
2 'i('me LZ(Q+ H_rx) such that 'im(¢) =X_[¢] a.s. V ¢ec® and for t20
: X [6] = ER [81|F,) a.s. Voed.
»
The proof is similar to the proof of Lemma 5.2.1 and therefore we will
:Z omit some details. In Lemma 5.2.1 we have proved that for each t,
(E(Xt [¢])2)!5 is a lower semicontinuous function of ¢. Then by Lemma 1,
. page S, of Gelfand and Vilenkin (1964)
., _ 2%
! V(e) = sup (E(X . [61)7)

0<t<w
:ﬁ is also a lower semicontinuous convex function of ¢. Hence, by Lemma
) 4.1.1, since by (5.2.19) V($) <= V ¢e 9, there exist 6,>0 and 5 >0
" such that
2
vi(e) s 0,116l12 veeo.
X

Then taking Ty2sy+r, one can show that
: . :
3 (5.2.20) E( ) (X,(6,0)%) s 8,8 <
‘s j:l J
. - -r
» where {¢j= (1+xj) x¢j}j21 is a CONS for er with dual {wj}jzl which is
¥ a CONS for H_ . Define

X
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(5.2.21) X, =1 X (3.0,
5o =Y

then 'iw is H_, -valued a.s. and therefore 'iwe %' a.s. . Note that from
X
(5.2.20) and (5.2.21)

e, [o1)% < 6,0 || ol ry< =

and therefore 'iwe L2(Q+ ®'), i@e LZ(Q-»H_r ). Then it remains to prove
X

that X_(¢) = X_[¢] a.s. V ¢ed.
From (5.2.21)

X, [4] ',-Elx““i”’j['” a.s. ¢eurx

and then

o~ n 4
X, [6] = 1im J X _(4.)v.[9] .
1 b R

noe j=

On the other hand, since X_(¢) is linear on ¢ a.s.

Ty a2 P a s %42
E(X(4) - x“(i£1<¢'¢j>fx¢j)) E(X_(¢ -j§1<¢.¢j>rx¢,-))

n
~ ~ 2

SO lle-J<,0.> 6.0l +0 as n+vo
BT ya Iy

Then X (¢) = X [0] a.s. Voed .
Q.E.D.

The following theorem is the ¢'-valued analog of Theorem 6.7.2 in

Kallianpur (1980).

. W .
Theorem 5.2.5 Let (xt'Ft)teR‘_' Xos 0, be a ¢'-valued square integrable
martingale. Then there exists ry >0 such that X has an H__ continuous
- X

version )(t given by the stochastic integral

~ t
(5.2.22) X, (@) = [ h(s,w)dW a.s.

o
O L IRV A
......... ~

»..’s\-b \‘. .-\-n:'¢1
et .JZ'.!-}_-, 1.&]
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~
X
ﬁ for every t2 0, where h(t,w) is non-anticipative and
N .
2

(5.2.23) [ Elln(e,0 HoH )%t
- o 2VQ “Ty
'y
,ﬁ and the RHS of (5.2.22) is the &'-valued stochastic integral of Prop-
N
. osition 4.2.5.
- Proof By Proposition 5.2.7 there exists ry> 0 and iwe $' such that
% im e H a.s. and for each t>0 X (¢)= E(§Q(¢)|F¥). Then by Theorem
‘ X

5.2.3 there exists a non-anticipative OZ(HQ’H~r )-valued process h(t,w)

. X
which satisfies (5.2.23) and

im(w) = [ h(u,w)dw a.s. .
° u

Then the result follows using Proposition 4.2.5, from which the H_r con-

X
o tinuous version is also obtained.

Q.E.D.

Remarks Our results in Sections 4.2, 5.1 and 5.2 may be applied to the
examples considered in Section 4.1.3 to construct stochastic integrals,

multiple Wiener integrals orthogonal expansions and stochastic integral

N representations for nonlinear functionals of a multiparameter Gaussian
. process (Example 4.1.6), a cylindrical Brownian motion (Example 4.1.7)
or an infinite sequence of independent Brownian motions (Example 4.1.8)
as well as to the finite dimensional Gaussian process with independent

increments (Example 4.1.9).

Throughout Chapters IV and V we have made the assumption that ¢ is

U I

a countably Hilbert nuclear space of the kind defined in Example 4.1.1,

-

which has the special property of having a common orthogonal set {¢j}jzl

[

L) .
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B R, P T

in H, re R. Although this assumption makes some computations easier
it is not essential and all our results can be obtained using only the

nuclearity property of 9.
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APPENDIX

A. INFINITE TENSOR PRODUCTS OF HILBERT SPACES

We present here some material on infinite tensor products of Hilbert

spaces following Guichardet (1972).

Let (Hi)iel be a family of Hilbert spaces and for each ie I a unit
vector uie'Hi. Let u = (ui)iel be fixed. Consider a family X; € Hi iel

such that X;=uy for all but a finite number of i's. Elements of this

form are called Elementary Decomposable Vectors and are denoted by © X

- iel
They form a pre-Hilbert space with inner product

<®x.,0y.> =] <x.,y.>
i*%5 Yy

iel Hi
u
whose completion @ Hi is called the Infinite Tensor Product Hilbert
iel

Space associated with the family of unit vectors u (Guichardet (1972)).
This space may also be constructed in the following manner: for each
finite subset J of I construct the Hilbert tensor product

u

= @H, .
) ieJ 1

H

For Jc K, J,K finite subsets of I define a mapping
L : @H, » @H,
i i

J,K iedJ iekK

by writing ® Hi= (o Hi) e( © Hi) as
iekK ieJ iek-J

L (x) =xo( ©® u,)
K jek-J 1




Then the mappings LJ g are isometric and form an inductive system, i.e.
»

for Jc Kc M

Lym= bgm®lyx

u
Then O'Hi is the inductive limit of the above system. Denote by LJ
iel
the canonical injection

u
H + OH. .
0 iel 1
u
The next result identifies some eiv¢ments of @ Hi .
iel

Proposition Al Let (xi)i Xy € Hi be a family of vectors satisfying

el’

the following two conditions:

m RIENWERTRE
and

(2) E |<xi’“i>Hi' 1| <o,

Then T|| xill y exists, and it is null if and only if one of the x,'s
i i
is null. The family of vectors

L,(® x.)
J ieJ *
u
has a limit in G"I-li denoted by ®x, whose norm is
iel

I ” xi” H. -
iel i

Moreover, lim || e x, - ® ui|| = 0,
J iel-J iel-J

Proof See page 150 Guichardet (1972).
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A family (xi)iel satisfying (1) and (2) in the above proposition
For any two decomposable vectors we

is called a Decomposable Vector.

have
g I<xi’yi>Hi- ll <

and
< ®., ®.> =11 <x.,y.>
Xi» ®¥5 1’y1 Hi
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