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INTRODUCTION

Effective military operations in chemical warfare envirouments are largely
dependent on the extent and quality of chemical wavfare training received by
military personnel. Objective evaluation of individual protective equipment,
collective protection facilities, and individual proficiency in use of military
equipment can be enhanced by use of appropriate chemical agent uptake simulants.
As a minimum, a cherical warfare agent uptake simulant should fulfill the
following criteris:

1. Have physical properties that allow generation of realistic exposure
atmospheres of the chemical agent to be simulated.

2. Have good detectability characteristics for biological and environ-
meutal monitoring of the chnemical.

3. Be as biologically inert as possible so that expired air or body fluid
chemical concentrations can be quantitatively related to a chemical exposure.

4. Be safe to humars in the concentrations to be used.

The U. S. Air Force contracted with Arthur D. Little, Incorporated, to
prepare # candidate chemical agent uptake simulant list (AFAMRL-TR-82-87) based on
chemicals that have had widespread human use without associated adverse health
effects, e.g., chemicals from the FDA's Generally Recognized as Safe (GRAS) List
(Arthur D. Little, Inc., 1982). The most attractive candidates were dipentene,
methyl benzoate, n,n-diethyl-m-toluamide, and dimethyl methyl phosphonate. All of
these candidates failed to satisfy the minimal criteria ci%ed above for an
acceptable uptake simulant. The primary deficits occurred in the areas of good
detectability and biological inertness. Rather than concinue the approach of
trying to identify & chemical from the GRAS list as a potential uptake simulant,
an alternative approach was adopted: the requirements for a chemical agent uptake
simulant would be well defined and then a chemical would be chosen based on
meeting the established criteria. 1In particular, the selection of a chemical as a
candidate simulant would be based on properties such as partitioning of the
chemical between tissues, air and blood, resistance to extensive metabolism in the
body, and the physical characteristics essential to the delivery of realistic
concentrations to the testing enviromment. The assessment of metabolic character-
istics was accomplished using laboratory animal testing and physiological modeling.
Physiological modeling provides a mathematical description of the absorption,
distribution, metabolism, and excretion of a chemical with respect to a particular
biological system.

Since good detectability and relative biological inertness are two of the
most important criteria for a chemical agent uptake simulant, perfluorochemicals
were the first compounds investigated. These chemicals provide excellent
detectability (0.0l ppm) with gas chromatography and electron czapture detection.
Adéitionally, perfluorocarbrns Lave been exteasively studied in an effort to
design and optimize a synthetic blood substitute (Degani, 1982, and Clark, 1978).
These studies have shown that perfluorocarbons are not extensively metabolized
since increased fluoride concentrations are not found in the urine following
administration (Yokoyama et al., 1978), The vapor pressures of the




perfluorocarbons do vary considerably with the structurz of the chemical; however,
generation of a perfluorocarbon training atmosphere should not be difficult.

The goal of this work was to describe a selection protocol which idenrifies
candidate chemical warfare ageut uptake simulants based on established physical,
chemical, and biological criteria. This study did not address the logistical or
economic feasibility of these potential candidates or the toxicity testing
protocols for chemicals identified for further consideration in this selection
process.

METHODS AND MATERIALS

Chemicals. Perfluoropentane, perfluorohexzane, perfluoroheptane, perfluorodecalin,
and perfluorobenzene were purchased from PCR Research Chemicals, Incorporated,
Gainesville, Florida. The pentafluorobenzene, bromopentafluorobenzene (BPFB), and
chloropentafluorobenzene (CPFB) were supplied by Dr. Christ Tambourski, Air Force
Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohfo. The pyrazole (98I
purity) was purchased from Aldrich Chemical Cowmpany.

Partiticn Coefficlents. The blood:air, fat:air, liver:air, and muscle:air
partition coefficients were determined using a modification of a vial equilibra-
tion technique (Sato and Nakajima, 1979). The technique involves headspace
sampling after the chemical reaches equilibrium between the headspace and the
homogenate (or blood). The headspace samples were analyzed using a Hewlett-
Packard 5880 gas chromatograph with a flame fonization detector and a 1/8"
diameter, 8' long stainless steel column packed with 10Z SE-30 on Chromasorb W.
One (1) mL headspace samples were injected into the column for analysis,

Closed Chanber Studies. The uptake (closed chamber) studies were conducted
following the procedure described by Gargas and Andersen, 1985. Three to four
animals were placed into a2 9.1 L closed chamber and the volume of chemical
required to produce the desired initial concentration was added to the chamber.
The chemical concentration in the chamber was monitored every 10 minutes with an
automatlc sampling valve and a flame ionization detector on a Hewlett-Packard 5790
gas chromatograph. The HP 5790 used a 1/8° diameter, 10' long stainless steel
column packed with 10Z SE-30 on Chromosorb W. The oveu temperature was 125°C.

The chamber concentrations of 1 and 10 ppm were achieved by injecting a gas sample
prepared in a sample bag into the chamber. The sampling of the chamber concentra-
tion at these low levels was done by manual injections (0.1 mL) into a Hewlett-
Packard 53890 gas chromatograph equipped with a 63N1 electron capture detector,

The column used for the analysis was prepared as in the analysis using the flame
ionization detector. A plot of chamber chemical concentration against time was
prepared. The disappearance of chemical over time reflects partitioning of the
chemical into the body tissues, the metabolism of the chemical, and the loss of
the chemical by adsorption to the exposure chamber. The first phagse of the curve
describes partitioning and the second phase is descriptive of the aetabolism
(Andersen et al., 1978j.

Computer Simulation/Physiological Modeling. The chemical concentration data
generated in the uptake chamber were interpreted by neans of a computer




simulation of the chemical exposurz. The description uf the aninmal system used
in the phyciological model 18 shown below.
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In this illuotration,”QA is the alveolar ventilation rate, C, is the alveolar
coacentration, Cyyg is the chamber concentration, and Cppr and Cypy are the
concentrations in the arterial and venous blood, respectively. Qp, Qp, Qp, and

are the blood flows to the respective tissues, Cyp, Cym, Cyp, and Cyp are the
chemical concentrations in the venous blood leaving the respective tissues, and
Qr is total cardiac output. Differential equations (mass balance equations) are
used to account for the amounts of chemical entering and leaving a particular
tissue or organ compartment. The g:neral form of the equations describing the
change in.chemical conccotration vwith respect to time is illustrated in the
folloving equation which corresponds to the liver compartment:

d(Amty) Vmax (CL/Ry)
* QCart - NCL/RL -
de Ky + CLCRL

- kge ° VL * CL/R

vhere (;C,u7 is the acount of chemical entering the liver in arterial blood,
NUCL/Ry = QCyy 1s the amount of chemical leaving in the venous blood, and
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Vaar (CL/Rp)
(Ky + Cp/Rp)

is the amount of chemical metabolized within the liver. Vg,. is the maximum
velocity of the saturable metabolic pathway and K is the free chemical
concentration where the velocity of the reaction 1s cne-half the maximum
velocity. The first order component of metabolism is described by the term k¢, x
Vi (CL/RL) where k¢. 1s the first order rate comstant (time'l) and Vv, 1s the
volume of liver, Similar equations without terms for metabolism are written to
describe the cther compartments in the computer model. The temporal chamge in
amount of chemical in the chamber is given by the equation:

= kg oV '(CL/RL)

d¢Amt) .
- = Rx QP (CA/PB - C1) =~ (KL * AI)
dt

In this equation R is the number of rats, Qp is the pulmonary blood flow (L/hr),
CA is the alveolar concentration, PB 1s the blood:air partition coefficient for
the chemical, CI is the concentration jin inhaled air, KL is the rate of loss to
the chamber system (ht‘l), and AI is the amount of chemical in the chamber. The
metabolic coustants in the liver portion of the model can be varied to produce a
fit to the experimental data. The set of metabolic csnstants'(vmax, Ky, and kgo)
that fits experimeutal data for several. runs over a range of exposure concentra-
tions can be used to assess the metabolism of the chemical being evaluated.

Physical Constants. Boiling point and density measurements were made for all of
the chemi:als evaluated. The volatilities (mg/m3) for selected chemicals were
determined by analyzing (with GLC) an atmosphere saturated with the chemical at
25°C. Tte saturated atmcsphere was produced by placing 0.1 mL of liquid into a
5.0 mL glass scintillation vial which was sealed with a septum screw cap. The
volume of liquid added was sufficient to ensure that liquid remained ia the vial
at all times. The vial was placed irnto a heating block which was maintained at
25°C. After 48 hours a headspace sample was analyzed by gas chromatography for
the chemical concentration in the vapor. The concentration in the headspace was
converted to standard volatility units (mg/m3). The vapcr pressure was
calculated from the volatility via the ideal gas law,
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Selection Scheme. The overall scheme used for the evaluation of the chemicals !
for adherence to the criteria is shovm at the top of the following page. The v
performance of a chemical at each branch point in the scheme determined whether :
furcher testing would be performed. ’
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Evaluation Scheme for Caudidate Chemical Uptake Simulants
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|y 1
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I
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UPTAKE CHAMBER

COMPUTER SMMULATION

DETERMINE METABOLIC
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PHASE 1

_____________ e e e e - e = e = v o e = e o e o - -~ o~ = -
PHASE 2

TOXICITY TESTING
ACCEPTABLE Lum\ccsvnus
FIELD EVALUATION Cl)
RESULTS

Plhysical Properties. The boiling points, densities, vapor pressures, and vola-
tilities are displayed in Table 1. Bromopentafluorobenzene and chloropentafluoro-
benzene had vapor pressures at 25°C of 3.76 mmHg and 14.1 mmHg, respectively.

Table 1. PHYSICAL PROPERTIES OF HALOCARBON
CANDIDATE SIMULANTS

VAPOR
CHEMICAL MOLECULAR BOILING DENSITY PRESSURE
COMPOUND FORMULA _ WEIGHT PUINT(*C: (g/m1) (mm Hg, 25°C)
FERFLUOROPENTANE CsFya 208 - 33-32 1.61 840
PERFLUOROHEX ANE CoFrg a8 s7 1.08 263.0
PERFLUONOHEPTANE CrFye ass 80-02 1.69 92.8
PEAFLUORODECALIN C10*18 482 143 1.96 5.77
PERFLUCROBENZENE CqFq 183 s 1.59 8s.8
AROMO-
PENTAFLUCNOBENZENE Cg8rFs 247 138 104 1.78
CHLORO-
PENTAFLUUNUBEMZENE  CgCIFs 202 117 1.66 14.1
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Jarft.ce21 Cocsriclenats.  _he partltion coerficients for cne chemicals evaluated
are presented in Table 2. Straight chaiun perflucrocarbons and perfluorodecalin
had olood:air partition coefficients less than 1.0 as measured using the vial
equilibration technique. Because these chemicals have very low blood solubilities
and are rapidly exhaled, they would not be retained in the body for z sutficient
time to allow post-exposure sampling. The aromatic fluorocarbons had higher
blood:air partitions as well as considerably higher fat:air partition coefficients
than the aliphatic cowmpounds. The chenical with the highest partition ccefficient
in all of the tissues tested was bromopentafluorobenzene.

Table 2. HALOCARBON TISSUE: AIR
PARTITION COEFFICIENTS *

CHEMICAL BLOOD:AIR FAT:AIR LIVER:AIR MUSCLE:AIR

PERFLUOROPENTANE 0.22%0.1 157210 26.82:.8 27.2%1.0
PERFLUOROHEXANE <0.1 54203 145213 5.25:19
PERFLUORCHEPTANE «<0.1 6.120.06 10.9: 0.8 54205

PENTAFLUORCBENZENE 4.120.1 245.0:14.0 12.1219 9.020.9

PERFLUORCBENMZENL 28201 182.0%3.4 14.6210 4.320.8

PERFLUORODECALIN «0.1 30.820.7 10.821.1 1.3¢%0.1
BROMO~

PENTAFLUOROBENZEME 32.920.4 857.0244.0 T71.5%4.0 53.5:3.0
CHLORO-

PENTAFLUOROBENZEKE 13.510.5 7686.0216.4 30.620.5 34.621.0

* ALL VALUES ARE MEANM: COEFFICIENT OF VARIATION

Closed Champer Uptake Studies. Chamber concentrations of bromopentaflunrobenzene

vs. time were obtained for initial concentrations of 2137, 855, zrd 214 ppm and
ail were essentially biphasic (Fig. 1). In the first phase (0-2 hours), the
chamber concentration dropped rapidly. In the 2137 »pm run 91% of the initial
concentration had peen removed from the chamber, and in the 855 and 214 ppm runs,
897% and 95% of the initial concentrations had been removed by the aaimals,
respectively. The second phase (2-6 hours) demonstrated a much slower, relatively
constant rate of disappearance of chemical from the chamber atmosphere. Figure 2
shows rthe plots of chamber concentration for naive and pyrazole treated (320
mg/kg)rits., As can be seen, the pyrazole had no apparent effect on the concentrs-

rtior pvofily when compared ro the nalve rats., Pyrazole i{s an inhibitor of oxida-
[P Tation and can tes ased to deteraiae (e proportion of metahad an resulting
[ ‘ s Tal e naibdays Inhibired hy percsale (Andersen et oal,, 1973 .
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Figre 1. CONCENTRATION PROFILES FOR Flgure 2. PYRAZOLE PRETREATED VS NAIVE RATS
BROMOPENTAFLUOROBENZENE BPFE EXPOSURE

EXPOSURES

The best fit computer simulatioc of the bromopentafluorobenzene exposure used
a first-order metabolic constant of 6.0 hr~l and no saturable component. The loss
rate to the chamber was 0.0773/hr for the first hour and decrzased to near zero
after 4 hours. The computer simulation prediction of concentration profiles
compared to ths observed cocncentration profiles 1s shown in Figure 3. The loss of
chemical is proportional to the chemical concentration in the chamber and 1is
consistent with a first order pathway for metabolism.
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Figwe 3. COMPUTER SBMULATION VS OBSERVED DATA ;
FOR RATS EXPOSED TO BACMOPENTA- & 3,02
FLUOROBENZEME IN A CLOSED CHAMBER
SYSTEM
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The computer simulation of the chloropentafluorobenzene exposure is shown in
Figure 4 along with the observed data. The equilibrium phases of the
chloropentafluorobenzene curves were more accurately described by the simulation
than were those of the bromopentafluorobenzene curves. The concentration profiles
for chloropentafluorobenzene were also biphasic with the first phase ranging from
0-2 hours and second phase ranging from 2-6 hours. However, the loss of initial
concentration in the first phase was 84%, 82Z, 84X, and 84X for 2137, 855, 214,
and 10 ppm, respectively. The chloropentafluorobenzene also appeared to be i
metabolized by a first order mechanism; however, the rate constant was only about
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1/3 that of tromopentafludrohenzene. The computer simulation agreed with observed
'data when tbs: first-order metabolic constant was 2.0 hr~l with po saturable

component.
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~— = COMPYTER SR ATION
o3 .
Fioure 4. COMPUTER SIMULATION VS OBSERVED DATA 102 e
FCR RATS EXPOSED TO CHLORCPENTA~ ; 5
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A A cowparison of the bromopen:tafluorobenzene and chloropentaflvorobenzene
- exposures 18 illustrated in Pigure 5. The lower par~itiom coefficients fox

chloronpentafluorobenzene in all of the measured tissues is consisteat vith the
reduced uptake of chloropentafluorobenzene relative to the bromopentafluoro-
benzene during the equilibration phase (Pbase 1). Similarly, Phase 2 of Figure 5
iilustrates the relative biological inertness of chloropentafluorobeszene when
compared to bromopentafluorobenzene. The slope of the concentratiom profile
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The identificatior of chloropentafluorobenzene as a potential chemical
warfare agent uptake simulant resulted from the methodical application of physio-
iogical modeling and biological experimentation to evaluate compliance with
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predetermined criteria. 1In this particular application, several aliphatic per-
fluorocarbons were chosen as initial candidates because of their sensitivity to
detection by gas chromatography with electron capture detection and the reported
biological inertness of the perfluorocarbon chemicals. The physical properties
vere determined and the vapor pressures of all of the tested chemicals were high
enough to readily permit the genmeration of useful vapor concentrations. The next
step in the evaluation was to determine the partition coefficients in the various
biological tissues. The blood:air partition coefficients of less than 1.0 for the
aliphatic fluorocarbons led to their elimination since tne low blood:air partition
would preclude detectioon of the chemical in blood at long times. To retain the
exceptional detectability afforded by the fluorocarbons and increase the blood
solubility, an aromatic perfluorocarbon was evaluated (perfluorobenzene).
Perfluorobenzene had a blood:air partition coefficient of approximately 2.

Altbough an improvemert, the blood solubility was still too low to allow for
acceptable post-exposure biological monitoring since the perfluorobenzene would be
rapidly expired. T.{ increase the blood solubility to acceptable levels a polar
analog was obtained. Instead of a perfluorinated benzene, one of the fluorines on
the aromatic ring was replaced by bromine (bromopentafluorobenzene). This
chemical had a blood:air partition coefficient of 32.9 and also had increased
detectability since the bromine responds more strongly than fluorine to electroun
capture detection. At this point a chemical with acceptable physical properties,
sood detection, and acceptable blood solubility has been jdentified. The next
step in the process was to determine the extent of metabolism of .he chemical.
Animals were exposed in the closed uptake chamber and the observed data were
compared to computer simulations describing the exposure. The physiological model
and computer simulation allowed assigmment of the biochemical constants
descriptive of the rates of metabolism of the chemical. Unlike perfluorc
chemicals vhich are purportedly ummetabolized, bromopentafluorobenzene wai
metabolized to a limited extent as is shown in Figure 6 (Yokoyama et al., 1975).
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Since bromopentafluorobenzene improved the adherence to the established criteria
over perfluorobenzene except for the biological inertness criterion, a compound
vith the bromine replaced with a chlorine was evaluated. The rationale for using
the chlorine analog was that since the carbon-fluorine bond on the aromatic ring
was reportedly biologically inert and the carbon-bromine bond was vulnerable to
attack in vivo, perhaps a carbon-chlorine bond (chlogine is a poorer leaving group
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than bromine) would impart the desired solubility and detection characteristics of
‘bromopentafluorobenzene and the biological inertness of perfluorobenzene. As
discussed earlier, the chloropentafluorobenzene provided good detectability,
desirable partitiooning ia biological tissues, acceptable physical properties, and
relative biological inertness (Fig. 7).
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The method described in this report provides a quick, reliable means of
evaluating or screening chemicals as potential chemical warfare agent uptake
simulants. The design of an uptake simulant using physical properties, computer
simulations, and closed chamber exposures to ascertain adhereunce to established
criteria allows for rapid identification of a chemical with optimized physical and
biochemical characteristics. Additionally, modifications in structure can be
quickly evaluated for compliance to established requirements or cowpared against
other potential candidates for selection of the best possible uptake simulant.
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