AD-A159 151 DISTRIBUTED FIFO ALLOCATION OF IDENTICAL RESOURCES
USING SMALL SHARED SPA.. (U> YALE UNIV NEW HAYEN CT DEPT
OF COMPUTER SCIENCE M J FISCHER ET AL. JUN 85

UNCLASSIFIED YALEU/DCS/TR-421 N@8@14-82-K-@8154 F/G 972

e

S p—— TS

[W WL W Ll i NS gl A ie

o

lizs s pe

EFEE
FE

FEEFERE
]

N
5

er

—
-
———
4

Fr

==
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. - - P R N S S R
N N T T N LI N N TR R
A A S RO - . . SRR A TR .
” ':"- . o ",.':‘ .‘-'\"‘.- . . N YA

N »

MO SRt S S R SR B g o aeath Sk et duis & Sk Ba fh Sai Vet digne i nathostn Bt o hei g

REPRODUICED AT GOVERNMENT FXPFNSE

R
o
i . o !
‘b ot D

WX ViRiAs

AD-A159 151

CoTh I

DISTRIBUTED FIFO ALLOCATION OF IDENTICAL
RESOURCES USING SMALL SHARED SPACE
Michael 1. Fischer. Nancvy A. Lvnch,
James L. Burns and Allan berodin

YALEU/NCR /TR w21

June, 19847

;;-: YALE UNIVERSITY

U DEPARTMENT OF COMPUTER SCIENCE

R A I I N S I A T SN UL R R S UL I ey
. '._1,:.: \3‘.. ."(.-':‘..‘\.‘- R TR AN .‘:“.":.‘_ Caln T o

o .

.

‘u | - L r(\985
<A

ssie

T W TR T T TN w

-
L
X
DISTRIBUTED FIFO ALLOCATION OF IDENTICAL

RESOURCES USING SMALL SHARED SPACE
Michael J. Fischer, Nancy A. Lynch, X
James E. Burns and Allan Borodin »
YALEU/DCS/TR 421 r

June, 1985

LT YT WT R WI RT N TRTTRT VT W TR YR T - i &) Sl st L Sadt Sl BT Sl Sy oL
-

-,

~2

JCh
R
:

. .
o8

-

I SECUR!TY CLASSIFICATION OF ThiS PAGE (When Dets Entered)

READ INSTRUCTIONS’

- REPORT DOCUMENTATION PAGE e T RUCTIONS

_ 1. REPORT KUMBEX 2. GRYY ACCESSION 8. 3. NT'S CATALOG NUMBER

x s21 A-AI57 2/

?‘ 4. TITLE (and Subtitle) $. YYPE OF REFPORY & PERIOD COVERED

- DISTRIBUTED FIFO ALLOCATION OF IDENTICAL Technical Report

5 RESOURCES USING SMALL SHARED SPACE 6. PERFORMING OXG. REPORT NUMBER

.'., . 7. AUTHDR(s) - 8. CONTRACT OR GRANY NUMBER(s)

- Michael J. Fischer, Nancy A. Lynch, ONR: NOOOI“'SZ'K’01546

. % U.S.ARO: DAAG29-79-C-0155;
James E. Burns and Allan Borodin NSF: MCS77-02474, MCS77-15628

MCS78-01689 -

AR 8. PERFORMING ORGANIZATION NAME AND ADDRESS 10. Pnocﬁ‘hsotg.xiusr:.Pl:‘oa.'zié:;!. TASK

- Department of Computer Science/Yale Universityv AREA umIT WY

o Dunham Lab./10 Hillhouse Avenue

- New Haven, Connecticut 06520

- 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

_ Offiﬁe of_Naval Research June, 1985

800 N. Ouincy 13. NUMBER OF PAGES

w Arlington, VA 22217 ATTN: Dr. R.B. Grafton 39

. 14, MONITORING AGENZY NAME & ADDRESS(If gilterent trom Conrtrolling Olhice) 15. SECURITY CLASS. (of this report)

152 BDECL ASSIFICATION DOWNGRADING

- : SCHEDULE

‘ 16. DISTRIBUTION STATEMENT (of this Report)

Cj' N Approved for public release: distributed unlimited

o

-;:\(’) 17. DISTRIBUTION STATEMENT (of the abatract entered in Bleck 20, {{ dilferent fresn Report)

-

15

J

< 6. SUPFLEMENTARY NOTES

o .

::" ;&l'.sf Aocvms r

J 18. KEY!:VQRDS {Continue on reverse aide il necossary and identity by block number)

o Digtributed algorithm Shared space complexity

y:: Resource allocation Fault tolerance

o FIFO order Stopping failures

o Queue * Lower Bound

- Critical section

L] 20. ABSTRALY (Continve on reverse aide (! necessary and identify by dlock number)

_}‘ i We presentsa simple and efficient algorithm for the FIFO allocation of k

- . identical resources among asynchronous processes which communicate via shared

T memory. The algorithm simulates a shared queue but uses exponentially fewer

- shared memory vhlefks, resulting in practical savings of time and space as well

:e as program complexity. The algorithm is robust against processes failure

Q! through unannounced stopping, making it attractive also for use in an environ-

K ment of processes of widely differing speeds. In addition to its practical ad-

- vantages, we shoy the algorithm ig optimal (to within a constant factor) with

?ORM =
< DD ,an3s 1473 toivion of 1 wov es irBsOLETE
‘ wy e frd - SECURITY CLASSIFICATION OF TRIS PAGE (When Dats Bntered)
- . - -
vy L i / P ‘ = ., IR . . P,
. R R L L T el
) A ‘ ' : v S

BN R I A T e
R T e S . RN
Ll

v .t . o . . O TR AL) >
WAL AR R TR AL R U PR TR RS T Sy

» e

RSP

LA

L

_. v

N
? .-

J Distributed FIFO Allocation of Identical
Resources Using Small Shared Space!

z Michael J. Fischer

R Yale University

5 New Haven, Connecticut

Nancy A. Lynch James E. Burns
< Massachusetts Institute of Technology Indiana University
X Cambridge. Massachusetts Bloomington. Indiana
u Allan Borodin

- University of Toronto

. Toronto, Ontario

.

HC June 26, 1985

.
Y

h'l

YThis work was supported in part by the Office of Naval Research under Contract

v NO00014-82-K-0154, by the U. S. Army Research Office under Contract DAAG29-79-
*{ . C-0158, and by the National Science Foundation under Grants MCS77-02474. MCS77- a
K- 15628, MCS78-01689, and MCS-8116638. to 0
*, n
', i By
o Distribution/

T - Availability Codes
ere lAvail and/or
: A _ Dist Speaial

ST i
a0y

)v'
x L SR S SN
f. o ':.’ PR et ..)_‘ o $J‘ rf

T L P T eamae b g0 der aa- e U"Uﬂ"["l'l'!'l'l!!l"l."!ul"

Abstract

We present a simple and efficient algorithm for the FIFO allocation
of k identical resources among asynchronous processes which commu-
nicate via shared memory. The algorithm simulates a shared queue but
uses exponentially fewer shared memory values, resulting in practical
savings of time and space as well as program complexity. The algo-
rithm is robust against processes failure through unannounced stop-
ping, making it attractive also for use in an environment of processes
of widely differing speeds. In addition to its practical advantages, we
show the algorithm is optimal (to within a constant factor) with respect
to shared space complexity.

',-.-,-.‘.'.'..
Fo P e

NS P A ST,

’h‘p' *ata - o . " -- --b'l‘t'h'l
N A - - - -' -* - "
BRI p At . -« B - \ R \ (LS Sae
e 3PS AR I - *;} AN, .le L

PR R W 'L A ok Ak PO WAy \;1’ A

1 Introduction

The critical section problem has been widely studied for its illustrative value
in problems of synchronization as well as for its practical application to real
concurrent systems [BJLFP82], [Bur81)], [CH75], [CH78], [CH79], [deB67].
[Dij65], [EM72], [FLBB79}, [Knu66}, [Lam74]. [Lam76], [Lam77)], [Lam80].
[Mor79), [Pet80]. [Pet81], [PF77], [RP76]. The problem is to devise protocols
for each of several communicating asynchronous parallel processes to control
access to a designated section of code called the eritical section. Such code
might manipulate a common resource, in which case access to the critical
section corresponds to allocation of the resource. In the simple case of a
single nonsharable reusable resource such as a line printer or a tape drive.
the two basic properties desired of the access policy are mutual exclusion
and impossibility of deadlock. Mutual exclusion means that two processes
can never simultaneously be executing their critical sections. Deadlock is a
situation in which one or more processes are attempting to enter or leave
their critical sections, but none of them ever succeeds. Finding appropriate
protocols to insure these two properties is the critical section problem.

Two protocols comprise a solution. The trying protocol is the section of
code that a process executes before being admitted to its critical section,
and the ezit protocol is the code to be run when the process leaves its critical
section and returns to the remainder of its code, called the remainder section.
Equivalently, the trying protocol allocates the resource corresponding to the
critical section and the exit protocol returns it to the system.

In this paper, we generalize the critical section problem to the case where
some number k > 1 of processes (but not more) are permitted to be simulta-
neously in their critical sections. Regarded as a resource-allocation problem,
we consider k identical copies of a non-sharable reusable resource, where each
process can request at most one copy of that resource. Again, entry to the
critical section corresponds to allocation of a resource copy, but we ignore
questions of just how the individual copies of the resource are managed.

The exclusion property of the k-critical section problem, that at most
k processes are ever simultaneously in their critical sections, we call k-
ezclusion. To avoid degenerate solutions, we must also formalize the notion
that “it should be possible for as many as k processes to be simultaneously
in their critical sections.” We interpret this to mean, roughly, that if fewer
than & processes are in their critical sections, then it is possible for another
process to enter its critical section, even though no process leaves its criti-
cal section in the meantime. We call this property “avoiding k-deadlock™.

L8 T R TR T TG T TR AT LR e Gnal et M wads Badh aiegh dhA Sl e ir-ge et St I ShJis bt A B Sl 2 1 AU I P Ul b A g ACIUAE R - p il b e bl iy CORLs T WON e W L g0 i alikad

S \‘s".".:'
%ﬁ:‘ T N

Precise definitions of these properties are deferred until Section 3. after the
algorithms have been presented.

A trivial generalization of a binary semaphore yields a system exhibiting
k-exclusion and no k-deadlock. Assume a shared variable, COUNT, which at
any time contains the correct count of the number of processes currently in
their critical sections. A process wanting to enter its critical section performs
an atomic transaction on COUNT which, in one indivisible step, reads the
value of COUNT, increments it if it was less than k, and stores back the
result. The process then proceeds to its critical section if it saw COUNT less
than k, and it loops back and repeats the test otherwise (busy-waiting). A
process leaving its critical section simply decrements COUNT.

This algorithm imposes no fairness criteria on the order in which pro-
cesses enter their critical sections, and in fact it is possible that an individual
process will always find the critical section “full” (i. e. COUNT = k) when-
ever it happens to examine COUNT and therefore will be “locked out™ of its
critical section forever.

Rather than devise new algorithms for the k-critical section problem with
stronger fairness conditions, an obvious approach is to try to reduce the k-
critical section problem to the 1-critical section problem and then apply
known solutions to the latter problem. e.g. |[BJLFP82], [CH75], [CHT78],
[CH79], [Lam74]. Such a hybrid solution is commonly used in banks for
scheduling people waiting for a teller. People entering the bank line up in a
single queue. When one or more tellers become available, the person at the
head of the queue goes to any free teller.

To see the reduction that is illustrated by this simple example, think
of the position at the head of the queue as a “resource”. Only one person
has this resource at a time, and the queue itself serves to allocate that
resource in first-in-first-out (FIFO) order. Only the person holding the head-
of-queue resource is permitted to go to a teller. so the order of service by a
teller is “essentially” FIFO, modulo possible delay between leaving the head
of the queue and arriving at a teller!. Such a reduction is possible given
any l-critical section solution. and the number of values of shared memory
increases by only a factor of (k + 1).

The bank algorithm has a rather subtle defect which becomes apparent
when several tellers become simultaneously free. If k > 2 tellers are free, one

!By running, a person might actually arrive at a teller before another who was ahead
of him in the queue. Nevertheless, we consider this to be a reasonable approximation
of what people mean by FIFO since once one arrives at the front of the queue, one no
longer has to wait for others.

™
1

- r—rr‘. A

(A AN

ol rag
k4

NPT

would like the first k& people in line to all move “simultaneously” to a teller,
vet the algorithm requires them to file past the head of the queue one at a
time. If the person at the front of the line is slow, the i — 1 people behind
him are forced to wait unnecessarily. In fact, if the person at the front of the
line “fails”, then the people behind him wait forever and the syvstem stops
functioning. In this case, one failure can tie up all of the system’s resources!

We are thus led to generalize our requirements to include controlling the
degradation of processing in the event that a limited number of processes
fail during the execution of their protocols.

Our notion of “failure” is quite different from the “shutdown” considered
in [RP76] and [PF77). Unlike a process which shuts down, a failed process
does not announce to the world that it has failed. Rather. we say a process
fails if there is a time after which it executes no more steps of its program.
To distinguish a failed process from a correct one that is merely running very
slowly, one must look infinitely far into the future and determine that it never
takes another step. Thus, other processes have no way of distinguishing a
failed process from a correct one in a finite amount of time. (In particular,
timeouts won’t work since we make no assumptions about the relative speeds
of processes.)

Our interest in this kind of failure stems partly from the practical prob-
lems of building fault-tolerant distributed systems and partly from the de-
sire to understand the dependencies among processes competing for entry
to their critical sections. Each instance of one process waiting for another
indicates a lack of concurrency in the whole solution. Taken together, these
dependencies tend to cause the whole system to run at the speed of the
slowest process. Algorithms which continue to operate correctly even when
a limited number of processes fail cannot exhibit such simple dependencies.
For example, if process A waits for process B to take some action and pro-
cess B were to fail, then process A would wait forever and make no further
progress toward its goal. Hence, B’s failure would cause the whole system
to fail by locking out A. Insisting that algorithms be robust in the face
of a certain amount of failure gives us a formal way of studying degrees
of concurrency which in turn have implications for the running time of the
system.

At first sight, the concepts of robustness and fairness, say FIFO order-
ing, appear to be contradictory. Robustness says, for example, that if one
process fails in its trying protocol, the system must continue to function. In
particular, other processes which enter their trying protocols after the failed
one will necessarily enter their critical sections ahead of it. Since the appar-

- N e T e e e e e e e T e e >,-_<_-."_-"'. b -_.\-_. " 3.\ -
.. " AT R TR IR N Sl Sl R P S S w ot AR -
T J;.i;l‘n.x: R PP SN AEAE IS N A AN N DA PRSP A RO

M aCND

.\.‘. 3
PR
e

e)

1
» -.. s

O
.ty

R N N N W W L W B WL WL N Tt e T e e TR e w .':.A s i, i s it

PSS

\r 'v“ .Al
. i

A i i i A

ently failed process might actually be correct but slow. robustness implies a
violation of the usual definition of FIFO ordering.

The problem is circumvented by defining the fairness conditions not in
terms of the order in which processes enter their critical sections but rather
by the order in which they become “enabled” to enter their critical sections.
By enabled, we mean that a process no longer needs to wait for action by any
other process before it can go into its critical section. nor can the actions
or inactions of other processes prevent it from so doing. Intuitively, when
a process becomes enabled. a copy of the resource is reserved for it, and
actions of other processes are no longer needed in order for the given pro-
cess to complete its trying protocol. The key distinction between enabling
and actual entry to the critical section is that a process might become en-
abled passively by the action of some other process changing shared memory,
whereas entry to the critical section can take place only by a positive action
of the given process.

In this paper. we desc:ibe an algorithm. the Colored Ticket Algorithm.
for solving the k-critical section problem which is robust, enables processes
in FIFO order. and uses O (N?) values of shared memory for fixed k. The
algorithm can be thought of as a distributed implementation of a queue, for
it simulates the behavior that would be achieved by explicitly storing the
entire queue of waiting processes in shared memory. but it uses far less shared
space and is fast and simple to implement. We also show ¢ ar algorithm to be
essentially optimal in terms of the amount of shared memory used by giving
an 2(N?) lower bound on the number of distinct shared memory values for
any robust algorithm which so simulates a queue.

If one weakens the robustness conditions to permit lockout to occur in
case more than a prespecified number of processes fail, then more space-
economical solutions are possible [FLBB79]. However. these solutions lack
the elegance and simplicity of the Colored Ticket Algorithm as well as its
time efficiency. If one ignores robustness altogether, then O (') values suffice
[LF83].

The main technical content of the paper is contained in the next four
sections. The Colored Ticket Algorithm is presented in Section 2. Section 3
presents a formal model of computation and precise definitions of properties
which characterize the k-critical section problem. Section 4 describes how
to translate the Colored Ticket Algorithm to a process in the formal model
and sketches how to prove that it solves the k-critical section problem in
small shared space. Section 5 contains the lower bound proof that shows
the Colored Ticket Algorithm to be space-optimal (to within a constant

U ety e St e Javh saalh St ek et S Jadt.d v

factor) among all algorithms that satisfy the strong form of the k-critical
section problem given in this paper.

ol

B
e

v, YN, W, T,
PR
.

v

.
(<]

P

— T

{

BTN Rt s gt L s a M- A A e e e e i S et A A A e e A A i 2o e A fua e Rbe e ik |

2 k-critical Section Algorithms

In this section, we present four algorithms, each a refinement of the preced-
ing. the last of which is the Colored Ticket Algorithm. The algorithms ruu
in an environment consisting of N processes, each with its own private mem-
ory. and a common shared memory (database) through which the processes
communicate. Access to the shared memory is via atomic transactions that
allow a process. in o< indivisible step, to read the entire contents of shared
memory and mcdify . .n an arbitrary way, depending in general on the data
just read.

We specifv our algorithms and the transactions they use in a Pascal-like
language augmented with two new statements for specifyving transactions.
start and commit. Statements executed dvnamically after start and before
the next commit comprise a single atomic transaction. While it is possible
in this language to write transactions of unbounded size (for example. by
executing a loop between start and commit), the transactions we actually
use are all bounded. a fact that is important for the implementation in terms
of “test-and-set” instructions whick we give in Section 3.

Ir order for our algorithms to have the desired correctness and robustness
properties. we make two assumptions about the implementation of transac-
tions:

1. A process crash in the middle of 2 1ransaction does not cause the sys-
tem to hang and leaves the shared memory as it was before beginning
the transaction.

2. The system never aborts transactions. (Alvernatively. a transaction
that is retried repeatedly will eventually succeed.)

While these assumptions are difficuit to implement exactly, they can be
approximated in real systems, so we believe our algorithms will be useful in
practice.

As a convenience, we use the construct “wait until C” as an abbreviation
for “while not C do [commit; start]”. Thus, every time around the wait loop
ends one transaction and begins another.

2.1 The Queue Algorithm

We first describe a simple but inefficient solution to the k-critical section
problem. This basic algorithm, the Queue Algorithm, stores the entire queue

TN TR T e L S-St i - St S ik * S It A

of waiting and critical processes in the shared variablé. A process in any of
the first k positions of the queue is permitted to enter its critical section.
This algorithm requires no communication among processes other than that
provided by the queue itself, and in fact. each process need only change
shared memory at the moments of entry to the trying protocol and remainder

R section.

:;::'.' In the code given in Figure 1, the shared memory contains a single queue

- which admits two operations. ENQUEUE places an element at the rear
of the queue. and REMOVE deletes a particular element from the queue.

. regardless of where it occurs. Initially, the queue is empty.

- repeat forever

L start;

® ENQUEUE(3);

R wait until 7 is in one of the first ; positions of QUEUL;

commit;

{ Critical Section }

start;
REMOVE(¢);
commit;

{ Remainder Section }

end repeat.

Figure 1: Queue algorithm {code for process 1).

i Note that many transactions might be executed before the process
reaches its critical section since each execution of the wait loop ends one
transaction and begins another. However. only the first of these actually
updates shared memory; the others are all “read-only”.

S 2.2 Ticket Systems

While the Queue Algorithm satisfies all the correctness properties we want,
keeping the queue in shared memory requires too much space to make the
algorithm very interesting. Our goal is to find an algorithm equivalent to the

¥

v

r o _ax
R e

s
f
i - B

Al

L

Fy T B T
2

PR
¢y
ER]
3

0y
'
L DU U SRR

Queue Algorithm which keeps a lot less information in the shared variable.
In other words, we wish to devise a space-efficient “distributed simulation”
of the Queue Algorithm.

All of our remaining algorithms are modeled after the ticket systems
often used in bakeries. A process wishing to enter its critical section takes
the next available ticket from an ordered sequence of tickets and then waits
until its ticket becomes valid, at which point it is enabled to enter its critical
section and proceeds to do so on its next step. When it leaves its critical
section, it discards its ticket and validates the next ticket in order, thereby
allowing the next process in line to proceed. (In case no process is cur-
rently waiting, the next ticket is nevertheless validated, and when a process
eventually takes that validated ticket. it will proceed directly to its criti-
cal section.) Once 2 ticket becomes valid, it remains valid until discarded.
Tickets are validated in the same order as they are issued. and at any time.
exactly k (non-discarded) tickets are valid, some of which may not have vet
been issued.

Since every process in its critical section holds a valid ticket, k-exclusion
is satisfied. Since tickets are validated in the order in which they are issued,
processes are enabled in FIFO order, so the algorithm satisfies our fairness
condition. Robustness follows since a process does not modify shared mem-
ory from the time it enters its trying protocol until the time it returns to its
remainder section; hence, whether or not it is alive in the meantime has no
effect on the rest of the system.

Any such ticket algorithm simulates the Queue Algorithm in the sense
that if the natural correspondence is made between transactions of the two
algorithms and those transactions are run in the same order, then processes
enter and leave their critical and remainder sections in exactly the same
order in both. Indeed. the simulated queue of the Queue Algorithm can
be obtained by arranging the processes holding tickets in increasing order
of their tickets. Issuing a ticket corresponds to adding a process to the
end of the queue, and discarding a ticket together with validating the next
corresponds to removing a process from the queuve. The k valid tickets
always correspond to the first k positions of the queue.

Code to implement this basic paradigm is shown in Figure 2. Func-
tion TAKE_NEXT_TICKET issues the next available ticket and returas it to
the calling program. Function IS_VALID(T) returns a Boolean value telling
whether or not the ticket T is valid. Procedure VALIDATE_NEXT_TICKET(T)
discards the ticket T and updates shared memory so as to cause the next
invalid ticket in sequence to become valid. In order to fully specify a ticket

coa e,

FRERCAS A
.-"\ f.‘-" \\:-

A

-
.

ey wm

algorithm, one must specify these three subroutines.

local variable TICKET;
repeat forever

start;

TICKET := TAKE_NEXT_TICKET;
wait until IS_VALID(TICKET);
commit;

{ Critical Section }

start;
VALIDATE_NEXT_TICKET(TICKET);
commit;

{ Remainder Section };

end repeat.

Figure 2: Basic ticket algorithm (code for process i).

2.3 The Numbered Ticket Algorithm

The first ticket system we present, the Numbered Ticket Algorithm, uses an
infinite number of values and hence requires an unbounded amount of shared
memory for its implementation. The Colored Ticket algorithm, which uses
only finite shared memory, is then described as two further modifications of
this algorithm.

In the Numbered Ticket Algorithm, tickets are natural numbers in their
usual order. The algorithm maintains two variables in shared memory.
ISSUE holds the most recently issued ticket, and VALID holds the most
recently validated ticket. Initially ISSUE = 0 and VALID = k. An entering
process takes a ticket by incrementing ISSUE and using the variable’s new !
value as its ticket number. Ticket number t is valid whenever VALID > t:
hence, any process can determine by looking in shared memory whether or
not its ticket is valid. A process returning to its remainder section discards
its ticket and increments VALID.

10

a4 -m e et bes Dum g S Aecat i b am Aot Sr sl A Aamn de - g

The code for the Numbered Ticket Algorithm is shown in Figures 2 and
3. The initial value of the local variable TICKET does not matter to the
operation of the algorithm.

global variable ISSUE = 0. VALID = k:

function TAKE_NEXT_TICKET: ticket:
begin

ISSUE := ISSUE + 1:

return ISSUE:
end;

function IS_VALID(T'): Boolean
begin

return (T < VALID)
end;

procedure VALIDATE_NEXT_TICKET(T);
begin

VALID := VALID + 1;
end;

Figure 3: Numbered ticket algorithm.

The drawback to the Numbered Ticket Algorithm is, of course, that
ISSUE and VALID grow without bound.

2.4 Colored Ticket Algorithms

We now give two variations of the Numbered Ticket Algorithm based on
the idea of colored tickets, the second of which is the final Colored Ticket
Algorithm.

In the previous algorithm, either ISSUE or VALID could be larger than
the other, and we say the larger one leads the smaller. (In case of equality,
each leads the other.) However, they could never be too far apart. If VALID
leads ISSUE, then there are VALID — ISSUE valid but not-issued tickets;
hence

VALID — ISSUE < k.

P o N T ——————_pre. s Lt ans uad aun b ee @ Bk snd Aats s \‘ﬂ,ﬂ

If ISSUE leads VALID, then all k valid tickets are held by processes, and
there are ISSUE ~ VALID invalid tickets held by processes waiting in their
trying protocols. Since there are only N processes in all, k£ of which hold
valid tickets, we conclude that

ISSUE- VALID X N - k.

Let M > 1+ max(k,N — k). Then we can determine which variable
leads the other given only the information:

e B = (|VALID/M| = |ISSUE/M|)
e 17V = VALID mod M
o [= ISSUE mod M

Namely, if B = true, then VALID leads ISSUE if V > I, and if B = false,
then VALID leads ISSUE iff V < I.2 Thus, we divide the tickets into blocks
of size M. B is true iff VALID and ISSUE are in the same block; V and I are
the relative positions of VALID and ISSUE within their respective blocks. It
is easy to see that if VALID and ISSUE are not in the same block, then they
must be in consecutive blocks, and the condition on M insures that which
block leads which can be determined by comparing V and I.

The colored ticket algorithms replace numbered tickets by colored tickets
that consist of ordered pairs T = (t,c), where {, the value of T', is a number
between O and M — 1 indicating the position of the ticket within the block,
and ¢, the color of T, is a non-negative integer indicating the block that
contains the ticket. We write T.VALUE and T.COLOR to denote the two
components of T. There is a natural one-to-one correspondence v between
numbered ticket ¢ and colored ticket (f mod M,|i/M]). Using this corre-
spondence, a process can determine for colored tickets whether VALID leads
ISSUE without using the ordering on colors by computing:

e B := (VALID.COLOR = ISSUE.COLOR)
e V/ := VALID.VALUE
e] := ISSUE.VALUE

%In case k # N — k, we can actually take M = max(k, N ~ k) and adjust the conditions
appropriately.

L Dl M) e Ay T el i Pl dntal A IV OO0 ¥ e T TR T E T e oy i i~ b ol L LA e b Amd ied Jhar. el Aol Aok oo J ad -

and then applying the above remarks. It aiso follows from the above remarks
that (VALID.COLOR - ISSUE.COLOR| £ 1.

Now, a process can easily determine whether or not a ticket T that it
holds is valid. T is always valid if its color differs from both VALID.COLOR
and ISSUE.COLOR, for then its color must be less than both. If T's color is
the same as VALID.COLOR, then T is valid iff T.VALUE < VALID.VALUE.
Finally. if T’s color is the same as ISSUE.COLOR but different from
VALID.COLOR, then T is valid iff VALID leads ISSUE. Using these ideas,
the function IS_VALID can be defined as in Figure 4.

function LEADS(A. B): Boolean: { Tests if A leads B }
begin
if A.COLOR = B.COLOR then
return (A.VALUE > B.VALUE)

else
return (A.VALUE < B.VALUE);
end:

function IS_VALID(T): Boolear;
begin
if T.COLOR = VALID.COLOR then .
return (T.VALUE < VALID.VALUE)
else if T.COLOR = ISSUE.COLOR then
return LEADS(VALID, ISSUE)
else
return true;
end;

Figure 4: Validity testing functions for colored tickets.

Unbounded Colored Ticket Algorithm We complete the Unbounded
Colored Ticket Algorithm by exhibiting in Figure 5 the definitions for
the ticket issuing and validating functions. Initially, ISSUE = (0,0) and
VALID = (k,0).

The Unbounded Colored Ticket Algorithm simulates the Numbered
Ticket Algorithm using the correspondence v' between numbered tickets and

13 .

T
":-. ,\)‘.':\' LR

- n

- T R T T R T T T o T T T P o T W T oy e

constant M = 1+ max(k. N - k);
global variable ISSUE = (0,0), VALID = (k,0)

function TAKE_NEXT_TICKET: ticket;
begin
if ISSUE.VALUE < Af — 1 then
ISSUE.VALUE := ISSUE.VALUE + 1
else begin
ISSUE.VALUE := 0;
ISSUE.COLOR := ISSUE.COLOR + 1:
end;
return ISSUE;
end;

procedure VALIDATE_NEXT_TICKET(T);
begin
if VALID.VALUE < M - 1 then
VALID.VALUE := VALID.VALUE + 1
else begin
VALID.VALUE := 0;
VALID.COLOR := VALID.COLOR + 1;
end;
end;

Figure 5: Unbounded colored ticket algorithm.

14

2 sy - Phadii= fae SRR e L P AN WL e B UW]

N
-y
'.--
e
'::j colored tickets given above. Thus, we have bounded the set of ticket “val-
':::' ues” at the cost of introducing an unbounded set of “colors”™. It may appear
a3 that no progress has been made. but the algorithm paves the way for the
e final modification which yields the space-efficient Colored Ticket Algorithm.
oo Colored Ticket Algorithm We now present the main contribution of
:-f: the paper. the Colored Ticket Algorithm. Like the previous algorithms. it
simulates the Queue Algorithm, but it is very space efficient. requiring only
. O(N?) values of shared memory. It is obtained by modifving the Unbounded
- Colored Ticket Algorithm so that only k + 1 different colors are used. This
[requires that tickets (and colors) be reused.
::j-: The change from the unbounded version of the algorithm comes when
::‘:j ISSUE.COLOR or VALID.COLOR is to be incremented. The new algorithm
— instead considers two cases. If the leading pointer (ISSUE or VALID) is being
_ incremented, then a new color is chosen that is different from the color of
s any currently issued or validated ticket and different from the color of the
\ other pointer. This insures that no two processes ever simultaneously hold
the same ticket. If the trailing pointer is being incremented. then it is set
7 equal to the color of the leading pointer. That this is correct follows from
the fact that the pointers (in the Numbered Ticket Algorithm) never differ
o by more than M.
- To see that it is always possible to select a new color when needed, we
N show (for the Unbounded algorithm) that every color in use at the time o
:-::.' new color is needed is the same as the color of some valid ticket; hence.
: at most k colors are then in use. A color is in use if it is the color of

a valid or issued ticket that has mot been discarded, or if it is equal to
VALID.COLOR or ISSUE.COLOR. Note that in the exit protocol., a new
ticket is validated immediately before the old one is discarded, so except for
the brief moment between validating the new ticket and discarding the old
one. exactly k tickets are valid, the most recently validated ticket T is still
valid, and VALID.COLOR = T.COLOR. Hence, VALID.COLOR is always the
A color of one of the k valid tickets, so it suffices to show that when a new
T color is needed, both ISSUE.COLOR and the colors of all issued but not yet
O validated tickets are the same as VALID.COLOR.

" There are two cases. If a new color is needed because VALID is about

®. to be incremented, then VALID.VALUE = M — 1, VALID leads ISSUE, and

a process is in its exit protocol attempting to validate a new ticket. Then

':-'.f ISSUE.COLOR = VALID.COLOR since %~!(VALID) — ¢:~}(ISSUE) < k <

2y M — 1. Since there are no issued but not validated tickets, the only colors

3, :\’

o 15 .

_ gl LA stek ot i nlAaili-a utCaiiulic ol A g |

in use are those belonging to the k valid tickets.
On the other hand, if a new color is needed because ISSUE is about to
be incremented, then ISSUE.VALUE = M - 1, ISSUE leads VALID, and a
ticket is about to be issued to an entering process. Again, ISSUE.COLOR =
VALID.COLOR, for 4~} (ISSUE)—-¢~!(VALID) < N—k < M- 1.3 Moreover,
any outstanding invalid tickets lie between VALID and ISSUE, so they also
have color VALID.COLOR. Again. the only colors in use are those belonging
to the k valid tickets.
We conclude that with £+ 1 colors altogether, there is always a free color
o whenever a new one is needed.
b To permit a process to determine which color is free, we introduce an
array QUANT of length & + 1 into the shared variable, where QUANT(¢) €
{0.1,...,k} gives the number of valid tickets of color c. There are exactly
k valid tickets, so the total number of different values for the QUANT array
is the number of partitions of k into k& + 1 sets, or (zkk). While this number
is exponential in k, it is independent of N. QUANT is updated whenever a
ticket is discarded and a new one is validated.
The code for finding a new color is shown in Figure 6. It simply scans
for a color with QUANT = 0.

R A -;".

function NEW_COLOR: integer; { Returns unused color }
local variable C;

begin

[-. C:=0

while QUANT(C)>0do C:=C+ 1;

return C

end;

Figure 6: Find unused color function (used by colored ticket algorithm).

The final algorithm is contained in Figures 2, 4, 6 and 7. Initially,
ISSUE = (0,0) and VALID = (:,0).

This algorithm simulates the Unbounded Colored Ticket Algorithm. To
prove this, one shows that any two issued or validated (and not discarded)
tickets T and T’ have the same color in this algorithm iff they have the same

AN

3 Actually, v~ (ISSUE) -~ ¢~*(VALID) € N — k-1 since the entering process does not
yet hold a ticket, but we do not make use of this fact.

16

)
7
-
o
A
o
=
'
s
-
o

. .‘D.»-.I .‘.. --u.'-A.‘}-\ ..‘\)l.‘-".‘l~.I.h
e e T T N T T
R S A Syt A 28 il NAEL A T 3

:”,— constant M = 1 + max(k, N — k);
global variable ISSUE = (0,0), VALID = (k.0), QUANTI0].....QUANT[k] = 0:
. function TAKE_NEXT_TICKET: ticket;
N begin
5 if ISSUE.VALUE < M - 1 then
ISSUE.VALUE := ISSUE.VALUE + 1
i else begin
A if LEADS(ISSUE, VALID} then
{ ISSUE.COLOR := NEW_COLOR
= else
q ISSUE.COLOR := VALID.COLOR:
= ISSUE.VALUE := 0
end:
- return ISSUE;
g end:
procedure VALIDATE_NEXT_TICKET(T);
2 begin
-1 if VALID.VALUE < M — 1 then
Ry VALID.VALUE := VALID.VALUE + 1
N else begin
. if LEADS(VALID, ISSUE) then
VALID.COLOR := NEW_COLOR
- else
‘ VALID.COLOR := ISSUE.COLOR;
. VALID.VALUE := 0
N end:;
-:, { Update quantity information. }
- QUANT(VALID.COLOR) := QUANT(VALID.COLOR) + 1;
= QUANT(T.COLOR) := QUANT(T.COLOR) - I;
. end;
2
N Figure 7: Colored ticket algorithm.
u 17 _
.;:
o
o
”
>
d

€ o
a0,
P
PRI

e
4 ’
e

3
s

P

NN
LI

‘l

RSN ’:“4‘ o
RN,
Ll

o

“'--
- .
-._.

T

¢
!
*

<.
~
g

" n
s
L,

‘

M
"I"-.N“-
P LR

-

w T

TYITYdvadTa DA G b i g e e d Sk g o A AL A S MM R i md ahh Ll adhies i Al e~ ol i~

T BT TR TR TR TN TR T,

color in the Unbounded algorithm; hence, the two algorithms always make
the same decisions. We leave the details to the reader.

The total number of shared memory values needed by the Colored Ticket
Algorithm is the product of the number of values assumed by QUANT,
ISSUE, and VALID. This works out to (3)((k + 1)M)? = O(N?) as de-
sired, since M = O(N).

18

]

L

L

rrrrrTy WP
_)
Ca y'»','.'n] NRRRR)
[N RN e e
B A R S

M3

"
2]

. ,.-'.Tﬁ"
PRERN

3 A Formal Model for Systems of Processes

We now present a formal model of computation and state the conditions
that define the k-critical section problem. The model is derived from that

of [BIJLFP82]. It can also be regarded as a special case of the general model
of [LF81].

3.1 Processes and Systems

A process is a quadruple P = (V,X.§.R), where

e V is a set of values for a shared variable.
e X is a (not necessarily finite) set of process states.

e 0 is a total function from V7 x X 1o V' x X. the trensition function.
and

e R is a total function from X to {R.T,C.E}. the region function.

Assume process P is in state x and the shared memory has value v. A step
of P changes the state to z’ and the shared memory to t'. where (v'.2') =
(v, z).

For a state £ € X. R(x) gives the region of r. where R denotes the
remainder region, T the trying region. C the critical region and E the ezit
region. We assume that 6 respects R as follows. For every {v.2) €V x X:

1. R(z) € {R,T} implies R(é6(v,z)) € {T.C}. and
2. R(z) € {C.E} implies R(6(v,z)) € {E.R}.

The allowed transitions are indicated in Figure 8. The transitions out of
R and T comprise the trying protocol, and the transitions out of C and T
comprise the exit protocol.! We “abstract away” the steps comprising the
critical and remainder sections treating only the protocols explicitly: hence
the absence of self-loops on R and C. Thus, the next step of a process in R
takes it out of R. and similarly for C.

“Our formal mode! imposes a slight restriction on the form of protocols in that all
transitions leaving a state of the trying region must belong to the trying protocol (and
similarly for the exit region and protocol). Thus, a process, once permitied to begin
its critical section, must first take a step to leave the trying region before it begins
executing steps of its critical section, and the step which takes it out of the trving
region is considered to be a part of the trying protocol. This restriction is for technical
convenience only and does not weaken the results, for any protocol can be easily put
into this form by adding dummy steps to the ends of the trying and exit protocols.

19

1

Ny

"

L} !_".‘K q.’;‘-l .'.l.;)

-,ﬂ_,
U]

p "
[AR

PR

R P ROEMAIND:

.'f LA ..-.- “ L .4' .- .
.-”,_. -«."u-,.x. r .. —f‘, A -.\. ..';\ ‘ ‘-,-',._..,

T L S e e el A e M M st RA bl ek AR i vend anie o cie e e T o L SRR RO ;.‘.r_“-;.-‘!_“‘.ﬁw

Figure 8: Possible region changes.

For a natural number N, let [N] denote {1,...,N}. A system S of N
processes is a collection of processes P, = (V,X;.6.R;). 1 <7 < N, all
having the same shared variable 17,

An nstantaneous description (i.d.) ¢ of S is a snapshot of the configura-
tion of § and completely determines S’s possible future behaviors. Formally,
gisan (N+1)-tuple (v, z;....,2x). where v € V is the contents of the shared
variable and z; € X, 1 < i < N, are the states of the N processes. We
denote v by V(q) and z; by X;(g), 1 <1< N.

The functions 6; and R; of the individual processes are naturally ex-
tended to functions on the set of i.d.’s of § by defining

Gi(vyzy...oozn) = (v 1y, o), T gy, ZN)
where (v',2') = (v, z;), and
R,‘(’U.xx,.. ..IN) = R,’(I,‘).

A schedule h for S is any finite or infinite sequence of elements of [N).5
A schedule describes the interleaving of process steps in a particular “run”
of the system. Since the processes are deterministic, the entire run is deter-
mined by the starting i.d. ¢ of the system and a schedule k. Formally, the

®Note that & is not required to be “fair”. Processes that take only finitely many steps
in & are considered to have failed.

20

-,v-,»' -~y f

F A S .'._.-' i e e ._'..-r:.—,‘ te '.'.. -

A T ¥ e ~ B N e Y i Y e TR TR R TR T) Y

run determined by ¢ and h = kL, lia.... is the finite or infinite sequence of
i.d.’s Q(g.h) = g0,91.¢2.... such that:

1. If h is infinite then Q(g.h) is infinite. and if & is finite then |Q(g.h)| =
|k} + 1.

2. go=g¢.
3. If ¢,—1.¢; are successive elements of Q(g.h). then ¢; = &, (gi-y).

If Q(q.h) is finite. then the last i.d.. g,. is the result of Q(¢.h). and we
denote g, by 6(g.h), extending é once again. 1.d. ¢’ is reachable from ¢ via
h provided &(g.k) = ¢'. and ¢' is reachable from ¢ if ¢' is accessible from ¢
via some finite schedule h.

3.2 Equivalence of Systems

Let S and S’ be systems of N processes. with ¢ and ¢' i.d.’s of S and &'
respectively. We sav that (S.q) and (S'.¢'} are equivalent if for every finite
schedule k. all processes are in the same regions in 6(¢.h) and é'(¢'. I): that
is. for everv 1 € {N]. R;(6(g. 1)) = Ri(6'(q". h))-

3.3 Dependencies Among Processes

We have noted that processes are always free to leave their remainder or
critical regions on their own. but the same is not true for the trving and
exit regions. We next give some important definitions that describe possible
dependencies among processes progressing tirough their regions.

Let Z denote any region. A process F; in a system of processes is Z-
enabled in i.d. ¢ if for every schedule & in which ¢ occurs infinitely often,
there is a finite prefix h of & such that R;(6(¢.%)) = Z. Thus, the Z-enabled
i.d.’s are those in which a process is either already in Z or will eventually
enter Z if it takes infinitely many steps, no matter what the other processes
do. Note that a process P; can become Z-enabled because of its own actions
or because of actions of other processes. A Z-enabled process can be thought
of as passively belonging to region 2.

We say that P, is T-waiting in ¢ if it is in T but is not C-enabled in q.

. Similarly, we say that P, is L-watting in ¢ if it is in E but is not R-enabled

{. in ¢.

} 21 .
F‘!

b A S At Al Bt el e Bt Sl S (el B e at A i - S g P S
-

3.4 Properties of Systems

We now state the properties that define the k-critical section problem.
Throughout this section, S denotes a system of N processes, ¢ an i.d. of
S.k < N a natural number, and #)” the cardinality of the set Y.

Our first condition is the basic k-exclusion condition.

e k-Exclusion. I.d. g satisfies k-ezclusion if #{i € [N] | R;(¢) =C} <
k. S satisfies k-ezclusion from g if every i.d. reachable from ¢ in §
satisfies k-exclusion.

Note that any set of processes that are C-enabled but not in C can. by
taking steps on their own, reach an i.d. in which all are simultaneously in C.
Thus, if S satisfies k-exclusion from g¢. the number of C-enabled processes
in any i.d. reachable from ¢ is at most k.

Our second condition describes our robustness requirements. We say
that i.d. ¢ is k-full if #{¢ € [N] | P, is C-enabled in ¢} > k. We say that a
process P; makes progress in a run if. for some pair of i.d.’s ¢’ and ¢” in the
run, either

L Ri(¢') # Ri(g"), or
2. P; is T-waiting in ¢’ but not in ¢”, or

3. P; is E-waiting in ¢’ but not in ¢".

e Avoidance of k-Deadlock. An infinite schedule h ezhibits k-
deadlock from ¢ if no process makes progress in the run Q{g, k). and
either

1. some process is T-waiting in ¢ and ¢ is not i-full. or

2. some process is E-waiting in ¢.%

S avoids k-deadlock from ¢ if no infinite schedule exhibits k-deadlock
from any i.d. reachable from gq.

:'.' SIntuitjvely, a schedule exhibits k-deadlock if some process “wants” to make progress
- and progress is possible, but no process actually does make progress. At first sight,
b it might seem necessary to exclude failed processes from consideration in the formal
- definition, for we do not consider that progress is possible for failed processes. However,
] it is unnecessary to distinguish between failed and non-failed processes because our
% convention of no self-loops on R and C implies that every non-failed process “wants”
1a to make progress (since it cannot continue taking steps and remain in R or C), and at
: least one process is non-failed in every infinite schedule.

o

.

y 22

U

RIS N o se S ol

. .. BT N P .
e e T T e e e e e L e e I s e o e e s e e e e

~ R]
e T T T e e T T S T N TN SN

.
\ EE S - L LT AT e e '
PRGOS PG WL V. PR WY, WSV VI Wi vy

=
- P

=

SRR
PAP ST

4NN
R D A

TP T PIY P

Laidts

Our third and final condition describes the fairness property, FIFO en-
abling. Intuitively, violation of FIFO enabling occurs if a process remains
T-waiting while another process, beginning in its remainder region, becomes
C-enabled. Similarly, a violation occurs if a process remains E-waiting while
another process, beginning in its critical region, becomes R-enabled. For-
mally, let ¢ be an i.d. and % a finite schedule. We say P; overtakes P; in
Q(q, k) if P; is T-waiting in all i.d.’s of Q(¢,h), Rj(¢g) = R. and P; is C-
enabled in 6(g,h), or if P; is E-waiting in all i.d.’s of Q(q,h), R,(¢) = C.
and Pj is R-enabled in 6(q, k).

e FIFO Enabling. S achieves FIFO enabling from gq if for all ¢’ reach-
able from ¢, all finite schedules h, and all 7,5 € [N], P; does not
overtake P; in Q(¢',h).

The Problem Let g be an i.d. with every process in its remainder region.
A system S solves the k-critical section problem starting from g if it satisfies
k-exclusion, avoids k-deadlock, and achieves FIFO enabling from g¢.

23

'-".

"-"'-.»..;v,aﬁ‘,"x“'v'.'.\.w.'\.-s'.w.',--. &

2R, Pt I A I G U AP OR CA TS

M din B S wnd okt 8 e 8- A Sk e Al el piam aitd susdh Aaed aul altd sk st 2l st sl oA dria e it sheis et JAmit i Suiab i ek ot il Sk -v.‘t'l'.v‘:‘lvl"".'i('v:-'T

4 Upper Bound

The Colored Ticket Algorithm. when translated into the formalism of our
model, shows that the L-critical section problem can be solved by a system
S that uses only O(N?) values of shared memory.

The translation requires a few comments. The transactions used in the
algorithm make several accesses to the shared global variables. change inter-
nal variables, and branch to one of several possible exits depending on the
values in shared and private memory at the start of the transaction. In our
formal model. each transaction becomes a single process step. The program
counter and all internal storage of a process is represented by the state z.
and the entire contents of the global variables is represented by the value v
of the shared variable. To construct the value (', 2') of the transition func-
tion 6(v,z), if the program counter in z points to a start instruction. then
run the algorithm until it encounters a commit statement, and move the
program counter past the commit. z' is the state and ' the shared memory
contents that results. If a commit is never reached, or if the program counter
in z does not point to a start instruction, then §(v,z) is defined arbitrarily.
This translation is not fully general, but it is adequate for algorithms such
as ours in which every transaction terminates, and the next instruction to
be executed after a commit is always a start.

Theorem 4.1 The Colored Ticket Algorithm, when translated into the for-
mal model as described above, solves the k-critical section problem and uses
(k + 1)(3) (1 + max(k, N — k))? = O(N?) values of shared memory.

A formal proof can be constructed following the development given in
Section 2. Namely, one first proves that the Queue Algorithm solves the k-
critical section problem. Next one shows that each of the three successively-
presented algorithms is equivalent to the preceding in the sense formally
defined in Section 3.2. Finally. one applies the following lemma, whose
proof is straightforward.

Lemma 4.2 Assume (S,q) is equivalent to (S'.¢'). If S satisfies the k-
critical section problem from q, then S' satisfies the k-critical section problem
fromyg'.

\ .:‘- .))
ey

. "‘b
=
-

.Qh .l
-‘_-\"

A 5 Lower Bound
~ - In this section, we establish a lower bound on the size of the shared variable

3 of any system of processes that solves the k-critical section problem. We
,.‘_'-:.: assume throughout that £ and N are natural numbers with N > k+2, S'is

R a svstem of N processes, and ¢ is an i.d. with every process in its remainder
7{‘ : region such that S solves the k-critical section problem from g¢p.

o Our method of proof is to construct a collection of runs and show that

each leaves the shared variable in a distinct state. In order to carry out the

o construction, we need several “liveness™ lemmas that show certain kinds of

progress are always possible.

o 5.1 Progress Lemmas

e We begin with some basic properties which follow from the fact that &
solves the k-critical section problem. FIFO enabling places rather severe
S constraints on the order in which processes can become C-enabled. whick

o are expressed by the relation <4 that we next define.

g Consider any i.d. ¢ and processes P; and P;. We define 7 <4 j to hold
i precisely if one of the following conditions holds at ¢:

5 1. P, is C-enabled and P; isin EU R;

;'.-'i : 2. P, is C-enabled and P; is T-waiting;

S 3. P, is T-waiting and P; is in EU R;

)

. 4. P; and P; are both T-waiting, and in some run leading from ¢, to ¢.
..}:.;-" P; last entered T before P; did.

e We also define ahead;(gq) = {i € [N]|i <4 j}. The ordering <, is illustrated

e in Figure 9.7
B The first lemma says that the order in which processes become C-enabled
o from ¢ respects <,.

,_'_ - Lemma 5.1 Let q be reachable from go, and let 1 <, j. Let h be a finite
NS schedule such that P; is C-enabled in 6(q,h). Then P; is C-enabled in some

‘ - i.d. in Q(q.h).

4-';? "One can show that if ¢ is reachable from go, then <, is 2 strict partial order which
N ".-_':. totally orders the T-waiting processes in q. as illustrated, but we do not need this fact.
o0

5?{

, - 25 .

o

EA A D n B i Raa S len Meca b st b am o de - ghe wled Mg Jham ae Mbtronhd it ol ihd adht e giad St Beatd-aadh 2ol calaind e At caih S A e Y SR A S ate B it SR bt w.v-.v-:--x--:—jnij

O
O
O
O
O

e,

C-enabled T-waiting EUR

Figure 9: The relation <,.

Proof: Assume the conditions of the lemma. Since 1 <4 j, P; is either C-
enabled or T-waiting in ¢. If P; is C-enabled, then we simply choose h' = X,
the null schedule, and we are done. Hence, assume P; is T-waiting in g.
Again since ¢ <4 j, P; is either in EU R or is T-waiting in ¢. In either
case, there exists an i.d. ¢; (possibly equal to ¢) and schedules ho, h; such
that ¢; is reachable from go via ho, ¢ is reachable from ¢; via hj, Pj is in
EURin q, and P; is T-waiting in every ¢’ € Q(q1,hy). P; is not T-waiting
in every ¢' € Q(g,h), for if it were, then P; overtakes P; in Q(q1,h; k),
violating FIFO enabling. Hence, P; is C-enabled in some i.d. in Q(g,4). I}

The next lemma implies that among the T-waiting processes there is one
that is “ahead” of all the others.

Lemma 5.2 Let g be reachable from gy, and assume that at least one process
ts T-waiting in g. Then there is a T-waiting processes P; in g such thatt <g j
Jor all j # i such that P; i3 T-waiting tn q.

Proof: Let g be reachable from go via h, and consider the run Q(go, A).
Order the T-waiting processes in g according to the times of their most recent
entry to T in Q(go,h), and let P; be the first such process. By definition,
i <¢ 7 holds for all j # ¢ such that P; is T-waiting in ¢. I

26

1938
-
1
:.:
99

1:'1'

e
'-'\ ’
*.:_:.

*:f:“: Lemma 5.3 Let ¢ be reachable from gq.
:*\ 1. If q s not k-full, then no process is T-waiting in q.

_ 2. No process 1s E-waiting in ¢.

o . . -
e Proof: 1. Assume that ¢ is not k-full but some process is T-waiting in g¢.

“‘:_‘_f: We proceed to derive a contradiction.

o By Lemma 5.2. there is a T-waiting process P; in ¢ such that : <4 j for
all 7 # ¢ such that P; is T-waiting in ¢. Since P; is T-waiting in g, there is

- a schedule & in which P; takes infinitely many steps but it remains in T in
e every i.d. of Q(g.h); hence P; is T-waiting in every i.d. of Q(g.h).

Y Suppose a process P; becomes C-enabled during Q(g.%). That is, sup-
X ::-', pose one can write h = h; - hy - ha such that P; is not C-enabled in
o q1 = 6(g,hy), but P; is C-enabled in 8(g;.h2). Then i <, 7 bolds by

’ definition, so by by Lemma 5.1, P; is C-enabled at some i.d. in Q(q1.h2).
‘.{'_'_.'. a contradiction. Hence, no process becomes C-enabled during Q(g,k). so
L none of the i.d.’s in Q(q,h) are k-full.

Now, for some suffix Q(¢',h’') of the run Q(g,h), no process makes
o progress since each process can change region or become R-enabled only

a finite number of times without becoming C-enabled. Thus, k' exhibits

X k-deadlock from ¢', contradicting the avoidance of k-deadlock condition.
- 2. The proof is similar (and simpler). Assume that P; is E-waiting in
hy g. Then there is a schedule h in which P; takes infinitely many steps but it
~ remains in E in every i.d. of Q(g, k). It follows that P; is E-waiting in every
- i.d. of Q(g,h).

Only processes P; already in E in ¢ can become R-enabled during
::}_’.: Q(g,h), and that can happen at most once per process, for otherwise P;
f- would overtake P;, violating the FIFO enabling condition. Hence, in some
suffix Q(g', k') of the run Q(g, k), no process makes progress since each pro-
Vo cess can change region or become C-enabled only a finite number of times
\e without becoming R-enabled. Then k' exhibits k-deadlock from ¢', contra-
a0 dicting the avoidance of k-deadlock condition. I

o
‘x’-::(; The following lemma says that a process can only be C-enabled while it
-u}".'* is in its trying or critical region.

W

oM
'! Lemma 5.4 Let g be reachable from qo. If process P, is C-enabled in g,
DA then P, isin TUC ingq.

T

- . 27 .
.
ik
i
e
35
-

e e \:;.:_-.::.:_'.:_‘\' ;\i.\;;":;-.:_-,: "_':- 3

e ol B dlas e — B an e oy -m

K~
'y
:: Proof: Assume the contrary, that P, is C-enabled in ¢, and P; isin FEUR
AR in g. For each j € [N], j # 1, run P; for zero or more steps until an i.d.
" is reached in which it is in T"U C. This procedure must terminate after a
finite number of steps, for otherwise P; remains forever in £ U R. But that
.: is impossible by Lemma 5.3 and the absence of self-loops on region R. Call
- the resulting i.d. ¢'.
& In ¢, every process other than P, is either T-waiting or is C-enabled. At
< most k processes can be C-enabled (by the remark following the definition

of k-exclusion). Thus, since we assume N > k + 2, some process P is T-
5 waiting in ¢’. P; is still C-enabled in ¢’ (by definition of enabling), so it
enters C in the run Q(¢',7™) for some m. By Lemma 5.3, ¢’ is k-full, so
P; remains T-waiting throughout Q(¢’,i™). But then P; overtakes F; in
Q(q¢’.7™), violating FIFO enabling. §

The next lemma says that, no matter what the other processes do.

>

X any process in its trying region that takes infinitely many steps eventually
M reaches its critical region, provided that there are not too many processes
N ahead of it.

-

- Lemma 5.5 Let g be reachable from qo, and let P; be in T in q. Then

#tahead;(g) < k iff P; 1s C-enabled in q.

N

2 Proof: Assume the conditions of the lemma.

) (=) Suppose #tahead;(¢g) < k but P, is not C-enabled in g. Then P; must
b be T-waiting in ¢, so by Lemma 5.3, ¢ is k-full. But then all the processes
" which are C-enabled in ¢ are in ahead;(g), so that ftahead;(¢) > k. This is
Y a contradiction.

X («=) If P; is C-enabled in ¢, then P, is in TUC by Lemma 5.4. But then
" ahead;(q) = 0. 1

:':' The next lemma says that it is always possible for all the processes to
, run so as to end up simultaneously in their remainder regions.

- Lemma 5.6 Let g be reachable from go. Then there ezists ¢’ reachable from
. g such that every process is in its remainder region sn ¢'. Moreover, ¢’ can
% be reached from q via a schedule sn which no process already in its remainder
; region in g takes any steps.

< Proof: It suffices to show that if not all processes are in their remainder
regions, then there is some P, not in R which is C- or R-enabled. Assuming
o’ 28

- e
L S

MNP

MG VAL IE T R R P AR WS S) R I WA . PR AR S IR R
NS D T .~_.;‘._-1\ ARSI TR TS RO I CEABINGA T T W .

27

4

'A'l
.

[IR I

EU T P 3
RO
EREY I) l‘l

z .
Tg by LT,
PR
.
L

RN

1
y

.
M I

e
.l

R TRTRT——— .m

we have shown that such a P; exists, we run P; until it changes regions. We
then repeat this construction on each resulting i.d. until an i.d. is reached in
which all processes are in R. This procedure must eventually terminate since
each process can change regions only finitely many times before entering its
remainder region.

Now suppose that every processes not in R is neither C- nor R-enabled
in ¢. Then ¢ is not k-full, since no process is C-enabled, by assumption and
Lemma 5.4. By Lemma 5.3, no process is T- or E-waiting in q; therefore, no
process is in T U E in ¢q. But also no process is in C in ¢ since no process is
C-enabled. Hence, every process is in R. It follows that if not all processes
are in R, then some such process is C- or R-enabled, as desired. §

5.2 The Schedule i(7, 7)

Now choose any ¢ reachable from ¢y in which all processes are in their
remainder regions. ¢ exists by Lemma 5.6. Fix{ and j, with s < j <1 <
N - 1. Construct a schedule, (7, J), as follows.

1. Starting at g, each of P,..., P, takes steps on its own, just until it
enters its critical region. This is possible by Lemma 5.5. Then each
of Piyy,...,Px takes one step, going to its trying region. Let Pp’s
state after its entry be denoted by z, for future reference. (Note that
z does not depend on ¢ or j.)

2. P, takes steps on its own, just until it returns to its remainder region,
leaving one empty critical slot. This is possible by Lemma 5.3. Call
the resulting i.d. ¢’ for later reference. (Note that ¢’ does not depend
ontorj.)

3. Each of Pi4i....,P; in turn takes steps on its own, just until it returns
to its remainder region. This is possible by Lemmas 5.5 and 5.3.

4. Each of Pp4,,...,P; takes one step, thereby entering its trying region
once again. The resulting i.d. is denoted ¢(7,).

This construction is diagrammed in Figure 10. Arrows are labeled by
‘0. ‘I, or ‘*’ to indicate that the corresponding process takes 0, 1, or an
unspecified number of steps.

29

Figure 10: The Lower Bound Construction.

5.3 Distinctness of shared values

We now relate the construction to the size of shared memory.
Lemma 5.7 The shared variable has a distinct value tn each ¢(1, 7).

Proof: Assume to the contrary that V(g(7,5)) = V(¢(¢',s')) for (i,7) #
(¢',7'). Without loss of generality, it suffices to consider two cases.

Case 1: i < ¢,

Among all T-waiting processes in ¢(i’,j'), P41 was the first to enter its
trying region, so #ahead; 41(g(?',5")) = k — 1. Then Py, is C-enabled in
g(?',5') by Lemma 5.5. Also Pj4 is in the same state in both ¢(,j) and
q(7',J'). Since also the shared variable has the same value in both i.d.’s, it
follows that Py, starting from ¢(t,), can take some number m of steps
and enter its critical region. We claim that the schedule 2 = h(i, 7)- ('+1)™
violates FIFO enabling from ¢. This is because P;1,; goes from its remainder
to its critical region during h while P;,,, which entered its trying region first,

30

Vata '

- Pt
"_'l _‘! ‘I_l

ez
2 *,

-

. £
PR N

. The

l.l.- -‘
"o

s ; 3 =
o, f“.".‘..'..‘.;' .‘ SR

Yy

remains T-waiting. (P;4+; does not become C-enabled during F, for if it did.
then k-exclusion would be violated in the schedule k- (i + 1)“.)

Cese 2. i=1"and j < J'.

Consider schedule h constructed as follows. Starting from ¢(7, 7).
Pji4y takes one step. thereby entering the trving region. Then each of
Pit1s..-s PNy Pryr, ..., Pj, in turn, takes sufficiently many steps to return
to its remainder region, possible by Lemmas 5.5 and 5.3. Call the resulting
i.d. ¢1. Then aheadjr4+1(q;) = {2....,k}, so Pjiy; is C-enabled in ¢; by
Lemma 5.5.

Now consider the application of /i to ¢(i,;') and let ¢} be the resulting i.d.
Pji41 is in the same state in both ¢; and ¢}. and also the shared variable
has the same value in both i.d.’s: thus Py, starting from ¢}, can take
some number m of steps and enter its critical region. Hence. Pj:4; enters
its critical region in the run Q(g¢(i,s').h’). where h' = h- (' + 1)™. The
schedule h' violates FIFO enabling from g(.5'). for P14, overtakes P;4; in

Qlgli,j"). 1) B

5.4 Lower bound theorem

Finally we prove the main lower bound result.

Theorem 5.8 Let N > k + 2, and let S be a system of N processes with
value set V' for its shared variable, and let qp be an 1.d. such that S solves
the k-critical section problem from go. Then

V| > k(‘\ "2‘ - 1) +N-k-1=0Q(N?.
Proof: The proof proceeds by induction on k.
Base: k= 1.

By Lemma 5.7. there are at least (h; H=1. (A; %) + N - 2 distinct
values.

Inductive step: k > 1.

By Lemma 5.7, there are (N ';'1) distinct values of the variable for the
i.d.’s ¢(t,7) for ¢, 5 satisfying k < j < ¢ < N — 2. Each such ¢(t.7) is k-full
since Py,..., P, and P,4; are C-enabled in ¢(:.5). Hence, by k-exclusion,
if v(¢,7) is the value of the shared variable in ¢(7, 7). then no finite number
of applications of Pyx’s transition function éy to the pair (v(i,7),z) can put

31

" S i aeos ey an e den g ey ek atest aew ge-gh g gbaney PN e T T L aall hatl el naid anf el ool sah wal ool vl coibh el <Rl A ha fin - e o=l e 6 o ke hs CEoe R

Px in its critical region. (Recall that Py is in the same state z in each
ali» 1))

Now reconsider the construction of Section 5.2. Starting at ¢/, let each of
Py,..., P take steps until they return to their remainder regions, possible
since all are R-enabled by Lemma 5.5. Now let each of Pryy....,Py—1 In
turn enter their critical regions and then return to their remainder regions,
again possible by Lemmas 5.5 and 5.3. Call the resulting i.d. ¢".

Py, ...,Py_; are in their remainder regions and Py is in its tryving re-
gion in ¢”, so Py is C-enabled in ¢" by Lemma 5.5. From ¢". coumsider
Py,....Py_, as comprising a system, S'. of N — 1 processes. Since S solves
the k-critical section problem from g, it can be shown that S’ solves the
(k = 1)-critical section problem from (the appropriate restriction of) ¢”.
Thus. by induction, the number of values that can be taken on by §''s
shared variable is at least

(1:—1)((]\'-1)—(]"—1)-)+(1\'—1)—(I:—1)-—1

o

-

,—k—
= (1:-1)(1\ . l)+N-1.~-1.

Since Py is C-enabled in ¢”, each value v that can be taken on by the shared
variable in i.d.’s reachable from ¢” using only Py,..., Py—; has the property
that some finite number of applications of éx to the pair (v, z) will put Py
in its critical region. Thus, these shared variable values are disjoint from
the values v(7,7) considered above.

We conclude that

WS (A _21:‘1)+(k—1)(1\ "f'l)+1*-k—1

r4

k(A '2""1)+N—k—1,

as desired. |

PRI

V.r

LS AN

Cho

[)
[N S
SRR

M A AU i abinth o g et dabui vl pinhr i -l st adul Sadbiie nadr plgre i odiain e e v e Sl Sad bt BasAan Sode Sk ol Aad T Bl B A e fh4n 2t 1 a - AAa -t Yhien R I A i NGt i S S it A R

6 Summary and Open Questions

Iu this paper, we have described the k-critical section problem in general
terms and have defined an extremely robust version of the problem: equiv-
alence with a particular simple but space-inefficient algorithm, the Queue
Algorithm.

As our main result, we have presented an interesting new algorithm. the
Colored Ticket Algorithm, which solves the given version of the problem
and uses only O(N'?) values of the shared variable. Our lower bound proof
shows that, for fixed k. this algorithm is optimal to within a constant factor
in terms of number of values of shared memory.

There is still a large gap between the constants in the upper and lower
bounds. Both depend on k. but the constant in the upper bound is expo-
nential in /, while the constant in the lower bound is linear in /. It remains
to close this gap.

Acknowledgement

We are grateful to Brian Coan for helpful comments on an early draft of
this paper.

33

TR LR TR

TP AOT T 0 Ty i

Fv—v (Rie Ade Miate . au o am e 8 ued T N T T T W T
.

References

[BJLFPS82] J. E. BURNS. P. JACKsON., N. A. LyNcH, M. J. FISCHER.
AND G. L. PETERSON. “Data Requirements for Implementation of N-
Process Mutual Exclusion Using a Single Shared Variable™. J. ACM
29, 1 (1982), 183-205.

[Bur81] JAMES E. BURNS. “Complexity of Communication among Asyn-
chronous Parallel Processes™. Ph. D. Thesis, Georgia Institute of Tech-
nology, 1981.

[CH75] ARMIN B. CREMERS AND THOMAS N. HIBBARD. “An Algebraic
Approach to Concurrent Programming Control and Related Complex-
ity Problems™. Technical Report, University of Southern California.
(Nov. 1975). (Presented at Symp. on Algorithms and Complexity.
Pittsburgh. April 1976.)

[CH78] ARMIN B. CREMERS AND THOMAS N. HIBBARD. “Mutual Exclu-
sion of N Processors Using an O(N')-Valued Message Variable™. In
Proc. 5th ICALP, Udine, Italy, Lecture Notes in Computer Science,
vol. 62, Springer Verlag, 1978, 165-176.

[CH79] ArMIN B. CREMERS AND THOMAS N. HIBBARD. “Arbitration and
Queueing under Limited Shared Storage Requirements”. Technical Re-
port No. 83, Dept. of Informatics, University of Dortmund (Mar. 1979).

[deB67] N. G. DEBRULIN. “Additional comments on a Problem in Concur-
rent Control”. Comm. ACM 10, 3 (Mar. 1967), 137-138.

[Dij65] EDSGAR W. DIIKSTRA. “Solution of a Problem in Concurrent Pro-
gramming Control”. Comm. ACM 8.9 (1965), 569.

[EM72] MURRAY A. EISENBERG AND MICHAEL R. McCGUIRE. “Further
Comments on Dijkstra’s Concurrent Programming Control Problem™.
Comm. ACM 15, 11 (Nov. 1972), 999.

[FLBB79] MICHAEL J. FISCHER, NANCY A. LYNCH, JAMEs E. BURNs,
AND ALLAN BORODIN. “Resource Allocation with Immunity to Limited
Process Failure”. Proc. 20th Annual IEEE Symp. on Foundations of
Computer Science, (Oct. 1979), 234-254.

[Knu66] DoNALD E. KNUTH. “Additional Comments on a Problem in Con-
current Programming Control”. Comm. ACM 9. 5 (1966), 321-322.

34

Cn A8 - g it o S e M St St lbae nd San s gt g "

{Lam74] LESLIE LAMPORT. “A New Solution of Dijkstra’s Concurrent Pro-
{ gram Problem™. Comm. ACM 17. 8 (1974). 453-455.

[Lam76] LESLIE LAMPORT. “The Synchronization of Independent Pro-
cesses”. Acte Informatice 7 (1976), 15-34.

[Lam77; LESLIE LAMPORT. “A Bug in the Bakery Algorithm™. Technical
Report CA-7704-0611. Massachusetts Computer Associates, Inc. (Apr.
1977).

2 [Lam80] LESLIE LAMPORT. “The Mutual Exclusion Problem”™. Unpublished
. manuscript (1980).

[LF81] NaNCcY A. LYNCH AND MICHAEL J. FISCHER. “On Describing the
Behavior and Implementation of Distributed Systems”. Theoretical
Computer Science 18 (1981). 17-43.

[LT83] NANCY A. LYNCH AND MICHAEL J. FisCHER. “A Technique for De-
composing Algorithms which Use a Single Shared Variable™. J. Comp.
Sys. Sci. £7. 3 (1983). 350-377.

[Mor79] JosepH M. MORRIS. “A Starvation-Free Solution to the Mutual
Exclusion Problem™. Infermation Processing Letters & 2 (Feb. 1979).
76-80.

[Pet80] GARY L. PETERSON. “New Bounds on Mutual Exclusion Prob-
lems™. Technical Report TR 68, University of Rochester (Feb. 1980).

: [Pet81] GARY L. PETERSON. “Myths about the Mutual Exclusion Prob-
- lem”. Information Processing Letters 12, 3 (Jun. 1981), 115-116.

- [PF77} G. L. PETERSON AND M. J. FISCHER. “Economical Solutions for
-~ the Critical Section Problem in a Distributed System™, Proc. Ninth
ACM Symp. on Theory of Computing, (1977), 91-97.

[RP76] RONALD L. RIVEST AND VAUGHAN R. PRATT. “The Mutual Ex-
clusion Problem for Unreliable Processes: Preliminary Report”. Proc.
17th Annual IEEE Symp. on Foundations of Computer Science (1976),
1-8.

35

et i m et c-- T T Tee e Ch
S P = o < - -,-,.u‘ A

. R ERE R Aol A *."\.\\x
PP PO PR, L‘.—ﬂl_&‘_{\- = .._.L‘.L‘:L P, L;L\;_;.-.\‘n.’\; el B

Loe e i) ot Sutet St asChuE gl
O ;a'..‘.‘\‘ . Py

e

RRE R

DISTRIBUTION LIST

Office of Naval Research. Contract N00014~82~K-0154

Michael J. Fischer, Principal Investigator

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

(12 copies)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Dr. R.B. Grafton, Scientific
Officer (1 copy)

Information Systems Program (437)
(2 copies)

Code 200 (1 copy)
Code 455 (1 copy)
Code 458 (1 copy)

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

(1 copy)

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D.C. 20375

(1 copy)

Dr. A.L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps
Code RD-1

Washington, D.C. 20380

(1 copy)

Naval Ocean Systems Center

Advanced Software Technology Division
Code 5200

San Diego, CA 92152

(1 copy)

Mr. E.R. Gleissner

Naval Ship Research and Development Center
Computation and Mathematics Department
Bethesda, MD 20084

(1 copy)

Captain Grace M. Hopper

Naval Data Automation Command
Washington Navy Yard

Building 166

Washington, D.C. 20374

(1 copy)

Defense Advance Research Projects Agency
ATTN: Program Management/MIS

1400 Wilson Boulevard

Arlington, VA 22209

(3 copies)

AN

o
L

