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ABSTRACT

Nonparametric estimation of the hazard rate of a

lifetime distribution based on right-censored data is discussed.

The methods considered include maximum likelihood, kernel-type,

Bayesian, and histogram estimators. Recent results for kernel-

type estimators are presented and compared.
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i . INTRODUCTION

Nonparametric estimation of the hazard rate or failure rate is a

frequent topic of investigation in the statistical literature because of

its practical importance. Until quite recently, hazard rate estimation

had been based on complete samples of n independent identically distri-

buted lifetimes. However, observations may be censored or truncated in

many life testing situations (for example, see Lagakos, 1979). This

occurs often in medical trials when the patients may enter treatment at

different times and then either die from the disease under investigation

or leave the study before its conclusion. A similar situation may occur

in industrial life testing when items are removed from the test at random

times for various reasons. It is of interest to be able to estimate non-

parametrically the unknown hazard rate of the lifetime random variable from

this type of data without ignoring or discarding the right-censored infor-

mation.

The purpose of this paper is to discuss nonparametric estimation of

the hazard rate function for right-censored samples. The various types of

estimators that have been proposed in the literature will be indicated and

briefly discussed in Section 3. They-include maximum likelihood estimators,

kernel type estimators, Bayesian estimators, and histogram estimators.

Due to their computational simplicity and other properties, the kernel-type

hazard rate estimators will be emphasized. Results of Tanner (1983) and

Tanner and Wong (1983, 1984) will be presented in Section 4 while the esti-

mator considered by McNichols and Padgett (1981) will be discussed in

Section 5.
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2. NOTATION AND PRELIMINARIES

Let ,...,X be the survival times of n items or individuals

. which are censored from the right by a sequence of random variables U1,... U

Let F°  denote the common unknown absolutely continuous distribution function

of the X 's which are assumed to be independent and nonnegative, and let
i

f be a corresponding density function. The observed data will be denoted

by the pairs (XiAi), i-l,...,n where
0i o

X. uminfXo,U} . 1U

0.if Xi  > Ui .

Thus, it is known whether a particular observation is a time of failure (or

death) or a loss time (censored time). The nature of the U 's determines
i

the type of censoring. (i) If UI,...,U n  are fixed constants, the observa-

tions are time truncated. If all U 's are equal to the same constant, then
i

the case of Type I censoring results. (ii) If all Ui W X(r) the rth

order statistic of X '...,Xn', then the situation is that of Type II censor-

ing. (iii) If UI ,...,U constitute a random sample from a distribution

H (which is usually unknown) and are independent of 0,...,X0 , then

(Xi,Ai), i-l,...,n, is called a randomly censored sample. Assuming (iii),

A,... ,An  are independent Bernoulli random variables and the distribution

function F of each Xi, i=l,...,n, is given by 1-F = (1-F0)(1-H). If it

is assumed that there is a positive constant 8 such that 1-H - (l-F) 0,

then this is called the Koziol-Green (1976) model of random censorship (which

is the proportional hazards assumption of Cox, 1972). Chen, Hollander, and

Langberg (1982) indicated that the pairs (Xi,Ui), i1,...,n, follow this

.............. -- " - ",
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proportional hazards model if and only if (X,,...,X n ) and (AI)...,A)

are independent. This Koziol-Green model of random censorship arises in

several situations (Efron, 1967; Cs6rgd' and Horvath, 1981; Chen, Hollander

and Langberg, 1982) and will be referred to in Section 5. In practice,

however, this model may be somewhat restrictive.

Next, let ZI....,Zn  denote the ordered X1 ,...,X n  with corresponding

A-values, Al....,A n. The Kaplan-Meier (1958) estimator. P (t), or product-n •

limit estimator (Efron, 1967), of the survival probability 1-F0 (x) at x > 0

is given by

(1, 0 5x :5 Z1
^ k-l n-i A
Pn (x) (-) , x (Z k , k=2,...,n

, x > Zn .

A A

Also, F (X) = 1 - P (x) will denote the product-limit estimator of F (x).

3. BRIEF REVIEW OF THE LITERATURE

The hazard rate function of the lifetime distribution Fo is defined

by r (x) - f (x)/[l-Fo(x)], x - 0. Several authors have considered the non-

parametric maximum likelihood estimation (MLE) of r°(x) assuming the random

censorship model. Padgett and Wei (1980) obtained the MLE of r°  in the class

of increasing failure rate (IFR) distributions, while Mykytyn and Santner

(1981) derived the MLE of r0  assuming either an IFR, DFR, or U-shaped

failure rate.

Bartoszy'ski, Brown, McBride and Thompson (1981) investigated the problem

of estimating the intensity, or rate, function of a nonstationary Poisson

L-... °. . . . ... 
.°' , • " • o ° ° .- ° o . . . " . . • . • • o . . . . o- . - . . . . . . . . .. - ° . " ° °
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process arising in cancer studies under a type of right censorship. They

considered a kernel estimator, a constrained maximum likelihood procedure,

and a discrete maximum penalized likelihood approach.

Kernel-type estimators have been perhaps the most popular estimators

in practice due to their relative computational simplicity, smoothness, and

other properties. Blum and Susarla (1980) were the first to consider a kernel-
o

type estimator of r assuming randomly right-censored data. Some other

kernel-type estimators for this case were obtained by Foldes, Rejtg and

Winter (1981), McNichols and Padgett (1981), Tanner (1983), Tanner and Wong

(1983, 1984), and Schafer (1985). These particular estimators will be dis-

cussed in more detail in Sections 4-6.

Burke (1981) considered a competing risk model (see also Burke and

Horvith, 1982) in which the hazard rate estimator for the jth risk was either

a kernel-type estimator or was of the form r nX) - f jn(X)/(l-F nX)), where

f jn(x) was a kernel density estimator and Fn was the empirical distribution

function of Xi, ...,

Yandell (1983) obtained general delta sequence curve estimators and

generalized the results of Watson and Leadbetter (1964) and Rice and Rosenblatt

(1976) to the arbitrarily right-censored case. Using the martingale technique

developed by Aalen (1978), Ramlau-Hansen (1983) considered the general multi-

plicative intensity model which included the kernel-type estimators of F6ides,

Rejto and Winter (1981) and Yandell (1983).

Bayesian nonparametric extimators of the hazard rate function of the

lifetime distribution have been obtained by Padgett and Wei (1981) and Dykstra

and Laud (1981) for right-censored samples. Padgett and Wei (1981) used pure

.,' .. - . " b° " a. oo ° . o o ' ...... " . o °. ' o . " . . " o ' °. ' ° " . . % " ° . ° .
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jump processes as prior distributions on the hazard rate function which was

assumed to be increasing, while Dykstra and Laud (1981) considered an ex-

tended gamma process as a prior. Lo (1978) also used a Bayesian nonparametric

approach by constructing a prior random density as a convolution of a kernel

function with the Dirichlet random probability. This technique could be

applied to complete or censored samples.

In a recent paper Liu and Van Ryzin (1985) obtained a histogram esti-

mator of the hazard rate function from randomly right-censored data and gave

an efficiency comparison of their estimator with the kernel estimator of the

hazard rate. Also, Liu and Van Ryzin (1984) gave the large sample theory for the

normalized maximal deviation of a hazard rate estimator under random censoring

which was based on a histogram estimate of the subsurvival density of the

uncensored observations.

4. KERNEL-TYPE ESTIMATORS

Tanner and Wong (1983) considered the kernel-type estimator of ro given

by
^n 1 _

rn(x) - h - j (n-j+l) -1 Aj K(h ,

J--i

where K was a symmetric nonnegative kernel, K(t) - a(t- ) as t -,

and r_ K(t)dt - 1. The failure rate r° was assumed to be continuous and

x satisfied 0 < F(x) < 1. The following results for the mean and variance

of r (X) were obtained:

nI
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E[rn(x) ] - h - f(l-Fn(y))ro(y)K( h.)dy,

Var[(r X)] - h - f n(F(y))r°(y)K 2-Y)dy + 2h- ffy,,{Fn(z)- Fn(y)Fn(z)
n n hyz

l-F(y) [Fn(z)-Fn(y)]K r(y)r°(z)K(xy)K(-)dy dz
F(z)-F(y) h h

where

I (F) n-i -l n k Cl-F)n-k
n k=0(n-k) (k)F

In order to investigate the limiting behavior of these expressions the

concept of compatibility was defined and is given below.

Definition. K is said to be compatible with a cdf F if for any M > 0,

there exists h small enough such that h-'K(h-(y-x))/(l-F(y)) is uniformly

bounded for Jy-xJ > M.

Suppose the h 's satisfy h n 0 and nh n =. Tanner and Wong (1983)n n n

then showed that r (x) was an asymptotically unbiased estimator of r0 x)n

0whenever K was compatible with F . Furthermore, if in addition K was

also compatible with H, then

A 1 2 1 -1
Var(r n(x)) - (nh) (fK2(t)dt)r°(x)(-F(x))-I + o((nh)-).

Thus, r n(x) was a mean-square consistent estimator of r0 (x) provided

the aforementioned compatibility conditions held. In addition, by using

Hajek's projection method, Tanner and Wong (1983) proved the asymptotic

normality of r (x) (assuming K was compatible with F° and H).n

Tanner and Wong (1984) also studied a class of estimators of the same

general form as r n(x) with K(y/h) replaced by K(y/e), where e was
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a positive-valued "smoothing vector" chosen to maximize a likelihood function.

Hence, for this estimator the smoothing parameters were chosen based on the

observed data. Due to their complexity, these data-based estimators were

studied by computer simulations.

Tanner (1983) considered a modified kernel-type estimator of the form

1n A'
r n W (2R)- n ji K((x-Zi) /2Rk),n i=l 2

where R.k was the distance from x to the kth nearest of the uncensored

observations among X1 ,...,X n . This estimator allowed the data to play a

role in determining the degree of smoothing that would occur in the estimate.

Assuming that F° and f were continuous in a neighborhood about x,

k - (no], < a < 1, where [-1 was the greatest integer function, that

K had bounded variation and compact support on the interval [-1,11, and

that r° was continuous at x, it was shown that rn (x) was strongly

consistent.

In a recent paper Schafer (1985) considered a modified kernel-type

estimator where the bandwidths were stochastic but did not depend on the

point of interest x (as Tanner's 1983 estimator did). More specifically,

Schafer (1985) suggested the estimator

n -1 1 xZ
r Wx I (n-j+l) A R~l K(--
n j1l j n~ Rnj

where

Rn j - inf {rHn(Z.+r)-H (Z.-r) > Pndn j

Pn is a sequence of positive numbers for which p., 0, and H is the

S , . .- .- .. . .. . . ...
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empirical cumulative hazard function introduced by Nelson (1969). Schafer

commented that the bandwidths suggested by Tanner (1983) had the disadvantage

of being "biased" by the censoring distribution in the sense that they

adapted to the conditional density of the random variables Xo under the

condition < U of being uncensored, rather than to the hazard function
i i

r to be estimated. Using the bandwidths suggested by Schafer (1985), the

uniform strong consistency of his estimator could be proven. More precisely,

his result was the following.

Theorem. Choose pn such that pn log(n)/n " Let K(-) be a bounded

Riemann integrable function with compact support on the interval (-1,11.

Let the density ounctions of both the and the U be continuous everywhere,
i i

A

and let 0 < b < b2 with P(Ui < b 2 ) < 1. Then sup r n(x) -r(x)l -) 01 2 i 2xE [bl,b 2 ] n

with probability 
one.

5. KERNEL ESTIMATION UNDER THE PM

In this section we will discuss the results of McNichols and Padgett

(1981). Here the Koziol-Green model or proportional hazards model (PHM)

defined in Section 2 will be assumed. Recall that this assumption is equivalent

to assuming that X = (X1 ,...,Xn) and A n ) are independent.

Although they are somewhat restrictive in practice, proportional hazards

models have been used frequently in censored data problems to derive procedures

and to study their theoretical properties. For the two sample test problem,

Efron (1967) computed the Pitman efficiency of three competing test statistics

under PHM. Koziol and Green (1976) derived the Cramer-von Mises statistic

corresponding to the Kaplan-Meier product-limit estimate. Csorg& and Horv~th

-. . . . .*. .

* " " ," ' .- 2 , . '*''' ,', .- ... *. ,-. ,... "• '. -" -. "" .-. . .. .,- . ... .,.,' ,,"% ,
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(1981) constructed empirical exact confidence bands for the life distribution

of the censored variable and also gave rates of convergence for a wide class

of functionals including the Cramer-von Mises functional. Chen, Hollander,

and Langberg (1982) obtained small sample properties of the Kaplan-Meier

estimator (in particular, the ath moment), while Cox (1972) derived procedures

for regression models under a proportional hazards assumption. Such models

also arise naturally due to the type of system under study in some

reliability problems.

Throughout this section let r (x) denote the hazard function estimatorn

given by Watson and Leadbetter (1964a,b) for the uncensored case; that is,

considering the Z.'s as order statistics of a complete random sample from F,J

-1n -1 x-Z.

r () = h-  I (n-j+l) 1K( h- ), x 0.n ~ j=lh

Let K(t) be a suitable kernel and h - h be a positive sequence. Basedn

on the arbitrarily right-censored sample (Xi,Ai), i=l,...,n, McNichols and

Padgett (1981) considered

'.l -t (F n(t) 1
rn(x) f (x)

-40 (1-Fn(t)) ]

as an estimator of the hazard function r°(x). This was understood to be

n x-Z.

r nx) =  [h-  v. K( h "[0,o) *(x), (5.1)
J=lI

where IA () is the indicator function of the set A,
AA

Pn(Z )-Pn(Z *+l) A'V - -i - j -- ) J, ... n-l,

S P n(Z.) n-j+l

and v 1.
n

. . . .. .
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The limiting behavior of (5.1) was considered under Parzen's (1962)

conditions on the kernel function K(t) and the sequence {h = h n} and

Watson and Leadbetter's (1964a,b) conditions on K and F. These results

are given in the next two theorems.

Theorem 5.1. Let K(t) be a Borel function satisfying the conditions

Mi sup IK(t)f <
-M< t<00

(ii) f jK(t)jdt<

(iii) lim it K(t)j 0,

and 0
(iv) f K(t)dt = 1.

Then for x Z: 0

E[i n(x)] a E[r n(x)]I+(1-a) h Ez x-ZK
n

where a EP[X :5 U I Furthermore, if

Ui) h -h > 0 is such that lim h 0,
n ___ n

(ii) r(x) is continuous at x (where r(x) is

the hazard function of the X.'s), and

(iii) K is compatible with F,

then

lim E[r nx)] a r(x) r W0 x, x 0.
n-x



Outline of Proof: Note that rn (x) is a function of Z1, ... PZn and

Also, since A and X are independent under PHM, Z and A'are

independent. Thus,

E[r nx) EZA[in(x)l -h' E A (v j)E z[K( hI)

h1  I X-Z. -lx-Z
h iji11[A(-vjEZJ )] + h En [K(-f)]

+ a h' Ez [K( -n M. (5.2)

But E A (vj = (n-j+1)F, P[A.=] + 0 P[A 0] a(n-j44)

for J-l,...,n-1 so that (5.2) becomes

a E(r (x)] + (1-a)h 1  E Z [K(-ii~) n a'r(x)n n

as n co by Watson and Leadbetter's (1964a,b) results and the fact that

n

By the PHM,

1-F(x) -[1-F (x)][l-H(x)] = 1-Fo(x)1

Therefore,

f(x) (1-+-) fo Cx) [31-F 0 (x)]8

and

a r(x) a f(x) a(1+6)f 0 (x)[1-F0 ( r 0 W-
-F~x) (1-F0 Cx)]1+

since a ERP[X~ U] (1+6) -1 (Csirg' and Horvath, 1981). /
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* Note that

rnW -r nCx) + (1.- A)h K(-- 53

*where r (x) is the estimator of Tanner and Wong (1983). Thus r- (x W r Cx)

whenever A' - 1, that is, whenever the largest observation is uncensored.

Also, (5.3) and the fact that a rWx - roCx) under the FPlM assumption

account for the somewhat different expressions (for the mean and variance)

obtained by McNichols and Padgett (1981) and Tanner and Wang (1983). The

conditions on K assumed by Tanner and Wang were essentially Parzen's (1962)

* conditions. Also, under the FPlM,

(i) r(x) is continuous implies that r 0(x) Is continuous

* and

0
(ii) K is compatible with F implies K is compatible with F

The following result was proven for the second moment of r n(x).

Theorem 5.2. Let K(t) satisfy the conditions of Theorem 5.1. Then

for x aO,

-2 2 2 2 )E~r n(4)J - a E~r n(4)] + (a-a )p + (1-a)E n+ p~n

where

h-2 nx-Z~)1 2 - ,t, Ft - t
E -2 - K(-)ft~ Ft) nidt h 2 E [K 2  n

and
2'h-2  -rt 2 n-i n! i-i

P3n 2(a-a )h J0f 0 ii (n-i+l)(i-l)!(n-i-l) ! F(tl) [F(t 2

-F(t 1)] n-ilK f~(t 1 ~x) K ,n (t29 dt1 dt 2 v
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with K f,n(t,x) f(t)K((x-t)/h). In addition

li E[rn(x)] - [lim E nx)] - (r°(x)] , x > 0,
nn

if nh n and n - Sup 1 I K (Y)j- 0 as n - - f or e > 0 f ixed.

Corollary 5.3. Under the conditions of Theorem 5.2, for x > 0,

-0.

I ~ lira Elrn(x) - r°(x)] 2 - 0.

Note that the last condition on K in Theorem 5.2 is satisfied for

kernels with finite support and also for the normal kernel for choices of hn

such as h - n-lS. It should be noted also that nh * is Parzen'sxl , n

(1962) condition. In addition, Theorem 5.2 implies that var[i (x)] - 0

as n for each x > 0.

Outline of Proof of Theorem 5.2: Squaring rn(x) from (5.1) and taking

the expectation,

C-2-2 n 2 -2j
E Wr C) -h I EA(v) E [K()
n-i - h

nn x-Z. x-Z.
+ 2h 2 I EA(viv) EZ Z[K( K(I) (5.4)

i<j - i i'j

Now, the first term in (5.4) can be written as

-2  -2 2  -2 2 X-Zn

ah (n=aln E+( + -a)E [
n

E a p ln + (l-a)E n

a 2  + (a-a 2 )Pln + (1-a)En. (5.5)-aPln nn

I

, , ~~ ~~~~~~~~~~~~~~~~~........ = ...,,. .:...-...-....''...............-.....-......-......,.........,.



14

"-Next, for i < j, J-2,...,n-1,

E,_ vivj) - EAI(v i ) E(vj) - a (n-i+l) (n-j+i)

since v1  is a function only of Ai, and A' and A' are independent.
i

Also, E <vivn ) - E A i(vi) - a(n-i+l)-I . Thus, the second term in (5.4) becomes

2 n-i n-I x-Z. x-Z.
Ih~ Et(viv ) Ez z K (=2h i<j - .j Vj

. 2 n-i x-Z. x-Z
+X2 EAI(vi) Ez,' zK K--r

n-i x-Z x-Z
2h-2 il a2 (n-i+l)-i E Z ZK(- )K( )]

2
2a P2n + P3n'

where
h 2  n1 x-Zi  x-ZP~n I<I (n-i+l) -nJ+l)- E~~jK- K(;r)]

and

n- i x-Z x-Z
p -2(a-a 2)h -2 (n-i+i)- Ez [K(-L-K( . n~)]. (5.6).3n in

Thus, from (5.4) - (5.6) we have

-2 2 '- 2 2
E[2r (x)] - a Er(x)I + (a-a )Pln + (1-a)En + P3n

+ 2
since Pln+ 2P2n is simply E[rn(x] 2 . This then implies that

lim E(ra (x)] -a2 2 x) - [r°(x)12

since it can be shown that the piln's, E n's and the P3n 's converge to zero

* -. .* *

2 .
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as n-o. Thus, under the PHM

-2 0 2
E(r n(x)] [r°(x)] 2 . /

Note that Tanner and Wong (1983) required that K be compatible with

both e and H in order to derive their results for Var[r (X)]. The

compatibility condition of K with H is different from the supremum condition

on K in Theorem 5.2.

6. CONCLUSION

Numerous methods for estimating the hazard rate of a lifetime distri-

bution based on right-censored data are now available in the literature.

These results are all fairly recent and appear to be growing rapidly. As

the results in Sections 4 and 5 indicate, the kernel method has been most

widely studied and perhaps provides the smoothest nonparametric estimates

of the hazard rate. They are simple to compute for a given bandwidth h n

An important problem which should be studied with respect to this estimator

is how to optimally select the bandwidth for a given right-censored sample.

................................

. .. . . . . . . . . . . . . . . . ..o. . . . . . .

°°.. .... . . . . . . . . . . . . . . . . . . . . . .
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