REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY
AFOSR/NM

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
Distribution unlimited

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AFOSR-TR-85-0646

5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFOSR-TR-85-0646

6a. NAME OF PERFORMING ORGANIZATION
Mathematical Sciences Research Institute

6b. OFFICE SYMBOL
(AFOSR/NM)

7a. NAME OF MONITORING ORGANIZATION
AFOSR/NM

7b. ADDRESS (City, State and ZIP Code)
Building 410
Bolling AFB, DC 20332

8a. NAME OF FUNDING/SPONSORING ORGANIZATION
AFOSR/NM

8b. OFFICE SYMBOL
(AFOSR/NM)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
AFOSR-83-0265

10. SOURCE OF FUNDING NO.

11. TITLE (Include Security Classification)
Turbulence & Dynamical Systems

12. PERSONAL AUTHOR(S)
Dr. A. Chorin, Dr. J. Feldman, Dr. C.C. Moore

13a. TYPE OF REPORT
Final

13b. TIME COVERED
FROM 7/1/83 TO 12/31/84

14. DATE OF REPORT (Yr., Mo., Day)
1983

15. PAGE COUNT
48

16. ABSTRACT (Continue on reverse if necessary and identify by block number)
Abstract enclosed.
See page 7.

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Turbulence, Dynamical Systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED (Includes RPT. & DTIC USERS)

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Dr. Robert Buchal

22b. TELEPHONE NUMBER
(202) 767-5025

22c. OFFICE SYMBOL
NM

DD FORM 1473, 83 APR
EDITION OF 1 JAN 73 IS OBSOLETE.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report</td>
</tr>
<tr>
<td>Announcement of Workshop</td>
</tr>
<tr>
<td>List of Participants</td>
</tr>
<tr>
<td>Abstracts</td>
</tr>
<tr>
<td>MSRI List of Preprints</td>
</tr>
</tbody>
</table>

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

NOTICE OF LIMITATION TO DTIC

This technical report has been limited and is approved for public release, distribution unlimited.

MATTHEW J. KLINER
Chief, Technical Information Division

Approved for public release; distribution unlimited.
The emphasis in this program was on the aspects of turbulence: fluid dynamics, plasma physics, liquid helium theory, crystal growth, etc., and using the various available approaches: numerical methods, dynamical systems, statistical mechanics, etc. Several prominent visitors: Kadanoff, Foias, Klainerman, Guckenheimer, as well as several younger scientists, came for visits during the Spring, and a conference/workshop was held in January/February 1984.

Three postdoctoral fellows, I.L. Chern, P. Constantin and L.S. Young were supported by the AFOSR grant. There was exceptionally good interaction between the senior scientists, these postdocs, and workers at U.C. Berkeley, Lawrence Berkeley Laboratory and Stanford. In addition to papers completed during the period of the program, groundwork was laid for many further publications, advancing the state of knowledge. Chern completed research on a conservative front tracking method for hyperbolic conservation (joint with P. Colella at LBL). Constantin studied the development of singularities in the solutions of Navier-Stokes equations. L.S. Young, in joint work with Ledrappier, studied metric entropy of diffeomorphisms and established formulas relating entropy, dimension, and Lyapunov exponents.

The January conference/workshop was well attended and drew a lot of praise. The general view is that everyone was surprised by at least one talk. The topics covered included: disorder in crystal growth, meteorology, vortices in liquid helium, wake turbulence, the geophysical dynamo, attractors, Lyapunov exponents and dimension, the Navier-Stokes and Euler equations. The program seems to have had a major influence on the participants. Two examples of work that grew out of the program can already be pointed out. A discussion of the numerical work done at Berkeley on blow-up of the solutions of Euler's equation has led Constantin, Klainerman and Majda to a model system whose blow-up can be proved, an important first step towards unravelling the still mysterious long-time behavior of the Euler equation in fluid mechanics. The talk
of C. Schwarz on liquid helium showed to several people in the audience that the problem of turbulence in liquid helium is within the ken of available numerical methods, and several papers and theses on the subject are in preparation at Berkeley alone.

The format of the conference/workshop has since been imitated by several other groups, including the International Union on Theoretical and Applied Mechanics, which held its version in Tokyo in September 1984.

Attached is information about the workshop.
The Mathematical Sciences Research Institute is holding a one week conference devoted to the topic of Turbulence, January 30-February 3, 1984. The organizing committee in charge of the conference consists of John Guckenheimer, Roger Temam, Alexandre Chorin, and Andrew Majda. The conference will be a multifaceted examination of turbulence and fluids. Recent progress in experimental techniques, theoretical developments, and advances in computational methods will be discussed. Emphasis will be placed on issues that extend beyond transition regimes and address the nature of fully developed turbulence. Invited speakers include the following:

Steven Childress
Paul Dimotakis
Ciprian Foias
Uriel Frisch
Louis Howard
Akiva Jaglom
Leo Kadanoff
Robert Kraichnan
James Langer
Albert Liebchaber
Hans Lieppman
Richard Lindzen
Edward Lorenz
Steven Orszag
Yves Pomeau
Mario Pomeau
David Rand
Anatol Roshko
David Ruelle
Klaus Schwarz
Edward Spiegel
Harry Swinney
Roger Temam

The mathematical sciences community is warmly invited to attend. Additional, more detailed information will be sent to people indicating a desire to attend. There will be a limited amount of money available to provide partial expenses for people wishing to attend and participate. Preference will be given to new and recent Ph.D.'s in awarding these partial expenses. Address applications for support and other inquiries concerning the workshop to Calvin C. Moore, Deputy Director, Mathematical Sciences Research Institute, 2223 Fulton St., Room 603, Berkeley, California 94720. Funding for the workshop is provided by the National Science Foundation and the Air Force Office of Scientific Research.
TURBULENCE CONFERENCE
JANUARY 30 - FEBRUARY 3, 1984

PARTICIPANTS

Chris Anderson Stanford University
Serge Aubry Labortoire Leon Brillouin, CEN
SACLAY
Giles Auchmuty University of Houston
J. Thomas Beale Duke University
Robert N. Buchal APOS/NS, Boiling Air Force
Bob Burton Base, D.C.
Tom Buttke Oregon State University
Gary Chapman University of California, Berkeley
H.H. Chen NASA, Ames Research Center
Margaret Cheng University of Maryland (Physics)
I-Liang Chern Stanford University
Steven Childress MSRI
Ray Chin Courant Institute, NYU
Alexandre Chorin Lawrence Livermore National Lab
University of California, Berkeley
Peter Constantin & MSRI
Jim Crutchfield University of California, Berkeley
(Physics)
J.H. Curry University of Colorado
David G. Ebin SUNY, Stony Brook; visiting UCLA
Aaron Fogelson University of California, Berkeley
Ciprian Foias Indiana University
Andrew Fowler Massachusetts Institute of
Technology
Marlies Gerber Indiana University & MSRI
Neil Gershenfeld University of California, Berkeley
Yoshikazu Giga (Physics)
Harland M. Glax Courant Institute
Naval Surface Weapons Center,
Silver Spring, MO
Claude Greengard University of California, Berkeley
John Guckenheimer University of California,
Santa Cruz & MSRI
Brosil Hasslacher Los Alamos National Lab
Gerald Hedstrom Lawrence Livermore National Lab
Stephen M. Hohs University of California,
Berkeley (EECS)
S.K. Hong NASA Ames Research Center
Louis Howard Florida State University
Muriel Ishikawa NASA Ames Research Center
Carson Jeffries University of California, Berkeley
(Physics)
Jeffrey Joel Mathematical Reviews & MSRI
Stewart Johnson Stanford University
Bernard Julia CNRS & MSRI
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution & Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leo Kadanoff</td>
<td>University of Chicago (Physics)</td>
</tr>
<tr>
<td>Feng Kang</td>
<td>Chinese Academy of Science & Stanford University</td>
</tr>
<tr>
<td>Allan Kaufman</td>
<td>University of California, Berkeley (Physics)</td>
</tr>
<tr>
<td></td>
<td>Lawrence Berkeley Lab</td>
</tr>
<tr>
<td>Robert Kerr</td>
<td>Lawrence Berkeley Lab</td>
</tr>
<tr>
<td>Robert Kraichnan</td>
<td>Institute of Theoretical Physics, UCSB</td>
</tr>
<tr>
<td>Robert Krausny</td>
<td>Systems Applications</td>
</tr>
<tr>
<td>James Langer</td>
<td>Lawrence Livermore National Lab</td>
</tr>
<tr>
<td></td>
<td>Lawrence Livermore National Lab</td>
</tr>
<tr>
<td>John Langstaff</td>
<td>Systems Applications</td>
</tr>
<tr>
<td>Dave Levermore</td>
<td>Lawrence Livermore National Lab</td>
</tr>
<tr>
<td>Albert Libchaber</td>
<td>University of Chicago (Physics)</td>
</tr>
<tr>
<td>Hans Liepmann</td>
<td>California Institute of Technology (Engineering)</td>
</tr>
<tr>
<td>M. Luskin</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Andrew Majda</td>
<td>University of California, Berkeley & MSRI</td>
</tr>
<tr>
<td>Peter Mansfield</td>
<td>Cornell University</td>
</tr>
<tr>
<td>D. McLaughlin</td>
<td>University of Arizona</td>
</tr>
<tr>
<td>Dan Meiron</td>
<td>University of Arizona</td>
</tr>
<tr>
<td>Z.C. Mi</td>
<td>Brown University</td>
</tr>
<tr>
<td>Hiroshi Murata</td>
<td>Hiroshima University & MSRI</td>
</tr>
<tr>
<td>Michael Nauenberg</td>
<td>University of California, Santa Cruz</td>
</tr>
<tr>
<td>Charles Newman</td>
<td>University of Arizona & Los Alamos National Lab</td>
</tr>
<tr>
<td>Basil Nicolarnko</td>
<td>MSRI</td>
</tr>
<tr>
<td>Lenny Nusse</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Steven Orszag</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Bob Palais</td>
<td>University of California, Berkeley, (Mechanical Engineering)</td>
</tr>
<tr>
<td>Maciej Z. Pindera</td>
<td>SACLAY (Physics) and Schlumberger Corporation</td>
</tr>
<tr>
<td>Yves Pomeau</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Gerry Puckett</td>
<td>University of Rome</td>
</tr>
<tr>
<td>Mario Pulvirenti</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Harishankar Ramachandran</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>David Rand</td>
<td>Cornell University (Physics)</td>
</tr>
<tr>
<td>K. Ravishankar</td>
<td>Oregon State University</td>
</tr>
<tr>
<td>Alice Roos</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Anatol Roshko</td>
<td>California Institute of Technology (Engineering)</td>
</tr>
<tr>
<td>David Ruelle</td>
<td>IHES (Physics)</td>
</tr>
<tr>
<td>Ernesto Franco Sanchez</td>
<td>California State University, Fresno</td>
</tr>
<tr>
<td>J.C. Saut</td>
<td>University of Paris & MSRI</td>
</tr>
<tr>
<td>James Sethian</td>
<td>Lawrence Berkeley Lab</td>
</tr>
<tr>
<td>Michelle Schatzman</td>
<td>University of California, Berkeley & CNRS</td>
</tr>
<tr>
<td>Klaus Schwarz</td>
<td>IBM, Thomas J. Watson Research Center, NY</td>
</tr>
<tr>
<td>Bruno Scheurer</td>
<td>Commisariat Energie Atomique</td>
</tr>
<tr>
<td>E. Sigga</td>
<td>Cornell University (Physics)</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/University/Field</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ralf Spatzier</td>
<td>MSRI</td>
</tr>
<tr>
<td>Edward Speigel</td>
<td>Columbia University (Astronomy)</td>
</tr>
<tr>
<td>J.W. Swift</td>
<td>University of California, Berkeley (Physics)</td>
</tr>
<tr>
<td>Harry Swinney</td>
<td>University of Texas, Austin (Physics)</td>
</tr>
<tr>
<td>Suzuki Takashi</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Roger Temam</td>
<td>University of Paris-SUD</td>
</tr>
<tr>
<td>James Thomas</td>
<td>Colorado State University</td>
</tr>
<tr>
<td>Murray Tobak</td>
<td>NASA, Ames Research Center</td>
</tr>
<tr>
<td>Tom Umeda</td>
<td>BAAQMD</td>
</tr>
<tr>
<td>M. Weinstein</td>
<td>Stanford University</td>
</tr>
<tr>
<td>Amy Wendt</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Kurt Wiesenfeld</td>
<td>University of California, Berkeley (Physics)</td>
</tr>
<tr>
<td>Lai-Sang Young</td>
<td>MSRI</td>
</tr>
</tbody>
</table>
CHAOTIC COHERENT STRUCTURES

By E. A. Spiegel

ABSTRACT

This abstract is derived from a talk that attempted to bring together a number of features of turbulent flows. Only one of these features is mentioned here: the modelling of the so-called coherent features. If one has bands of unstable modes for flows in channels of finite transverse extent but of infinite extent in the other two directions, one may derive evolution equations using standard asymptotic methods. In the simplest examples, such equations are nonlinear p.d.e.s involving time and one spatial coordinate. While such equations generally contain the effects of instability, dispersion and dissipation, the relative importance of these effects is controlled by parameters in the problem. Examples can be found arising from the fluid equations in which there is a parameter choice that makes the dissipation and instability disappear. In the simplest cases, soliton solutions are found at such parameter values. Near to such values, soliton-like structures persist, though they suffer mild instability and dissipation. The dynamics of such models was discussed on the basis of asymptotic treatments and numerical simulation. Prospects for further extensions were outlined.

References

A CONCISE PRESENTATION OF THE EULER EQUATIONS OF HYDRODYNAMICS

By David Ebin

ABSTRACT

We give a concise proof of the well-posedness of the initial value problem for the Euler equations of hydrodynamics in a bounded domain. We also show that if the domain is two-dimensional, then smooth solutions exist for all time. Furthermore, we show that for any dimension the solution is a smooth (not just continuous) function of the initial data.

Our method entails rewriting the Euler equations as a first order ordinary differential equation on a certain non-linear function space — namely the space of all diffeomorphisms (invertible smooth self-maps) of the domain. This new equation can be solved by the usual picard iteration.
DYNAMICS OF DENDRITIC PATTERN FORMATION

By J. S. Langer

ABSTRACT

Modern experimental and computational methods are bringing us to the verge of a new understanding of how complex forms emerge in nature. Dendritic solidification patterns are relatively simple examples of morphogenesis which, in addition to being of great interest themselves, are rich sources of tractable models. General features that are emerging from ongoing model-based investigations include the intrinsically nonequilibrium nature of pattern formation, the sharp selection mechanisms that are characteristic of certain kinds of nonlinear processes, and the delicacy of the separation between growth of regular patterns and chaotic behavior.

This lecture will present a review of recent developments in the theory of dendritic solidification including a summary of experimental evidence in favor of a marginal-stability criterion for velocity selection and a description of several one-dimensional models of pattern propagation in which this criterion turns out to be valid. Finally, a new, mathematically tractable, "boundary-layer" model of solidification will be discussed.
\[\frac{dx}{dt} = A_x \sum_{n=1}^{N} y_n z_n, \quad \frac{dy}{dt} = A_y x_n, \quad \frac{dz}{dt} = A_z x_n, \quad A_x + A_y + A_z = 0, \]

which conserves the energy \(E = x^2 + \sum (y_n^2 + z_n^2) \). If this system is modeled by the three-mode system

\[\frac{dx}{dt} = A_x y z, \quad \frac{dy}{dt} = A_y x z, \quad \frac{dz}{dt} = A_z x y, \]

there is no choice of the \(A' \) coefficients which can reproduce the equipartition behavior of the original system in equilibrium. The model system conserves \(E' = x'^2 + y'^2 + z'^2 \) and gives \(\langle x'^2 \rangle = \langle E' \rangle / 3 \) in equilibrium while for the original system \(\langle x^2 \rangle = \langle E \rangle / (1 + 2N) \). In the present scheme, the modeling is instead

\[\frac{dx}{dt} = A_x y z + q, \quad \frac{dy}{dt} = A_y x z, \quad \frac{dz}{dt} = A_z x y, \]

where \(q \) is the constrained random forcing. Because of \(q \), it is \(\langle E \rangle = \langle x^2 \rangle + N \langle y^2 + z^2 \rangle \) which is conserved, and the original equipartition survives. The constraints which may be applied to \(q \) (with suitable independent initial statistics) include, at the lowest level, the conservation relation

\[\langle q(t)x(t) \rangle = (N-1)A_x \langle x(t)y(t)z(t) \rangle \]

and

\[\langle q(t)q(t') \rangle = (N-1)A_x^2 \langle y(t)x(t)y(t')z(t') \rangle, \]

which fixes the variance and time-correlation of \(q \).

The decimation scheme does not appeal to small-perturbation theory. But in the limit of strong decimation, where the number of explicit modes is very small compared to the total number of modes, the scheme yields particular classes of renormalized perturbation-theory approximations, including the direct-interaction approximation. This limit can be set up even for small systems by dealing with collective coordinates for a large collection of such systems with similar statistics.

The present scheme is conceptually close to renormalization-group (RNG) philosophy, but it differs in several ways from typical RNG approaches. The decimation is here done all at once. The moment relations which fix the random forcing representing the eliminated modes come just from symmetries. The dynamics do not come in as such until the final
ON THE VORTICITY GENERATED BY THE
BOUNDARY IN THE NAVIER-STOKES FLOW

By M. Pulvirenti

ABSTRACT

One of the most interesting features in the time evolution of a viscous
incompressible fluid is its behavior near the boundary, especially for very high Reynolds
numbers. What is characteristic in this behavior is a production of vorticity at the
boundary, due to the fall-down of the velocity, to satisfy the perfect adherence boundary
conditions [1]. Therefore, it seems natural to try to estimate the rate of production of
vorticity at the boundary and to give a method to construct the Navier-Stokes flow, taking
into explicit account this feature. This program can be performed in the half-plane case
[2].

The main idea is to look at the Navier-Stokes evolution for the vorticity as
perturbed by a singular term, to be determined by means of the solution itself and the
boundary conditions. Doing so, one obtains an equation for such a shear-source production,
that can be solved in a suitable Banach space.

The same procedure can be applied (obviously for short times) to the half-space
case.

This approach has been inspired by a numerical algorithm due to A. J. Chorin ([3].
[4]), which may be thought as a discretization of the above method. For this, one can
hope to use the ideas in [2] to prove the convergence of the Chorin product formula.
(See [4] for the position of the problem). Results in this direction are in progress.

References

LOW-DIMENSIONAL STRANGE ATTRACTIONS IN COUETTE-TAYLOR FLOW

By Harry L. Swinney

ABSTRACT

We have studied the onset and development of chaotic behavior in experiments on the Couette-Taylor system and on the Belousov-Zhabotinskii reaction in a well-stirred flow reactor. The data have been analyzed to obtain phase space portraits, Poincaré sections, maps of the interval, maps of the circle, the largest Lyapunov exponent λ, and the dimension d of the attractors. Although noise is inevitably present at the smallest temporal and spatial scales of the experiments, it is found that the limiting processes required to determine λ and d are well-defined for some laboratory data; thus the global structures of the attractors persist in the presence of small amounts of noise. Moreover, the limiting processes can provide a direct measure of the experimental noise level. The requirements on the quantity of data required to deduce d and λ increase rapidly with increasing d. For Couette-Taylor flow at Reynolds numbers twice that corresponding to the onset of chaos we have obtained d = 5; thus, even though the flow appears visually to be quite turbulent, it is still described by a low dimensional strange attractor.

This research is supported by NSF Fluid Dynamics Program Grant MDA82-06889.

A VORTEX-TUBE MODEL OF INERTIAL-RANGE EDDIES

By Stephen Childress

ABSTRACT

A vortex-tube geometry representing the cascade of energy to small-scale eddies in fully developed turbulence is proposed. The model, which is a special case of the beta model of Frisch, Salem, and Nelkin (1978) is based in part on kinematic considerations which conserve the principle invariants of an Euler flow. We assume, however, that viscosity permits crucial changes in the local topology of vorticity even when energy and total helicity are effectively conserved.

In the proposed "gamma" models, active vortex tubes split into smaller active tubes carrying smaller circulation and an inactive structure. The Hausdorff dimension D of the set of active tubes at the termination of the cascade may then be related to an inertial-range spectrum, as in any beta model.

We describe two examples of gamma models, based upon ring and helical vortex tubes. The helical geometry is suggested as a candidate for the structure of a singularity of the inviscid limit of a Navier-Stokes flow, when modeled by vortex tubes.

The parameters describing a gamma model are not unique, but the simplest helical model has \(D = \frac{13}{5} \), a value in agreement with that given by Hentschel and Procaccia (1982), by analogy with established results for certain branched polymers.

References

SUPERFLUID TURBULENCE - A PROBLEM IN CLASSICAL HYDRODYNAMICS

By E. W. Schwanz

ABSTRACT

Because of their light mass and very weak mutual attraction, helium atoms do not freeze into a solid as the temperature is reduced, but remain in liquid form all the way down to absolute zero. Since quantum mechanical effects predominate at very low temperatures, the flow properties of this superfluid are very different from those of an ordinary liquid. For example, a flow set up in superfluid helium experiences no dissipation and will persist forever.

The only way in which the superfluid velocity field can differ from pure potential flow is through the appearance of quantized vortex lines, which thread the superfluid and make the flow field more complicated. It has long been known, for example, that if the superfluid is made to exceed a certain critical velocity, it spontaneously changes to a state where it becomes permeated by a dense random tangle of such quantized vortex lines. This transition is analogous to the transition of a classical fluid to the turbulent state, and the phenomenon is referred to as superfluid turbulence.

Quantized vortex lines behave exactly like classical vortex filaments subject to a small frictional force. Because of the great difficulty of treating a random tangle of such filaments, however, it has not been possible to extend this description to obtain an understanding of superfluid turbulence or critical velocities. We have taken an entirely new approach to this problem by implementing the classical rules in a numerical simulation. An important new physical concept which is introduced is the idea that as the vortex filaments cross, they will reconnect to each other and thus change the topology of the tangle. This reconnection process continually generates new quantized vortex singularities, and in this way maintains the vortex tangle in a steady state. A quantitatively accurate, deterministic description of superfluid turbulence is thus obtained. It appears that the topology-changing reconnections provide the underlying mechanism which generates the random "turbulent" behavior.
TURBULENCE AND METEOROLOGY

By R. L. Lindzen

EXTENDED ABSTRACT

The problems of meteorology (predicting and understanding weather and climate) are of evident importance and research in this area has been relatively easy to justify to the public. Not unreasonably, it has become commonplace for research in other areas to be justified by its relevance to meteorology. Turbulence and solar physics are two such areas that come immediately to mind. Not surprisingly, however, the relevance is not always obvious. This lecture will probe into the role that turbulence studies can play in meteorology. The treatment will be superficial—but not so glib as the casual statement that turbulence is the fundamental unsolved problem in fluid mechanics and hence automatically relevant to everything. While there is a measure of truth to this statement, it is equally clear that not everything about turbulence is equally relevant to any particular problem.

Two potential roles are discussed. First is the use of turbulence calculations as a paradigm for the treatment of nonlinearity in numerical simulations of the atmosphere. Advocates of this role tend to view atmospheric eddies as turbulent eddies writ large. Moreover, there is an inclination to assume that nonlinear processes are not strongly dependent on the physical origin of the eddies. Under such conditions, turbulence computations stripped of the cumbersome physics of general circulation models might offer important insights into appropriate numerical methodologies and even into hydrodynamic processes. It is difficult to completely refute such hopes, but there are at least a few indications that suggest problems. First, simple mechanistic descriptions of two instabilities are presented: convection and shear instability. The former involves clear force imbalance and is commonly involved in generating boundary layer turbulence as well as patches of turbulence in the free atmosphere. Such turbulence is generally unresolved in weather models. The latter involves kinematic distortion of wave fields at steering levels and the maintenance of this interaction by wave fluxes. Examples of shear instabilities are baroclinic and barotropic instability which generate transient weather systems. It seems unlikely that the nonlinear evolution of such disturbances should, in fact, be independent of
<table>
<thead>
<tr>
<th>PREPRINT</th>
<th>AUTHOR(S)</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-83</td>
<td>S.S. Chern</td>
<td>Pfaffian Systems</td>
</tr>
<tr>
<td>002-83</td>
<td>C.C. Moore</td>
<td>Compact Subgroups of Semi-Simple Lie Groups</td>
</tr>
<tr>
<td>003-83</td>
<td>J. Conn</td>
<td>On the Structure of Real Trans Lie Algebras</td>
</tr>
<tr>
<td>004-83</td>
<td>J. Neu</td>
<td>The Dynamics of Stretched Vortices</td>
</tr>
<tr>
<td>005-83</td>
<td>R. Shibata</td>
<td>A Theoretical View of the Use of AIC</td>
</tr>
<tr>
<td>006-83</td>
<td>G. Mendoza & G. Uhlenann</td>
<td>A Necessary Condition for Local Solvability for a Class of Operators</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with Double Characteristics</td>
</tr>
<tr>
<td>007-83</td>
<td>R. Shibata</td>
<td>Selection of the Number of Regression Variables; A Minimax Choice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of Generalized PFE</td>
</tr>
<tr>
<td>008-83</td>
<td>A. Natsumura & T. Nishida</td>
<td>Initial Boundary Value Problems</td>
</tr>
<tr>
<td>009-83</td>
<td>P. Huber</td>
<td>Projection Pursuit</td>
</tr>
<tr>
<td>010-83</td>
<td>S.S. Chern</td>
<td>Deformation of Surface Preserving Principal Curvatures</td>
</tr>
<tr>
<td>011-83</td>
<td>M. Nicolai</td>
<td>Stable Minimal Surfaces in Euclidean Space</td>
</tr>
<tr>
<td>012-83</td>
<td>C.R. LeBrun</td>
<td>The Embedding Problem for Twistor CR Manifolds</td>
</tr>
<tr>
<td>013-83</td>
<td>P. Aviles</td>
<td>Phragmen-Lindelöf and Non-Existence Theorems for Non-linear Elliptic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equations</td>
</tr>
<tr>
<td>014-83</td>
<td>J. Packer</td>
<td>Point Spectrum of Ergodic Abelian Group Actions and the Corresponding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group-Measure Factors</td>
</tr>
<tr>
<td>015-83</td>
<td>R. Does & C. Klaassen</td>
<td>The Berry-Esseen Theorem for Functions of Uniform Spacings</td>
</tr>
<tr>
<td>016-83</td>
<td>P. Groeneboom</td>
<td>A Monotonicity Property of the Power Function of Multivariate Tests</td>
</tr>
<tr>
<td>017-83</td>
<td>C. Stone</td>
<td>Rates of Convergence for Additive Regression</td>
</tr>
<tr>
<td>018-83</td>
<td>C.F. Jeff Wu</td>
<td>Some Restricted Randomization Rules in Sequential Designs</td>
</tr>
<tr>
<td>019-83</td>
<td>S. Lalley</td>
<td>Conditional Markov Renewal Theory I. Countable State Space</td>
</tr>
<tr>
<td>020-83</td>
<td>J. Neu</td>
<td>Evolution of Diffusion Flames Conected by Vortices</td>
</tr>
<tr>
<td>021-83</td>
<td>S. Antman</td>
<td>Large Lateral Buckling of Nonlinearly Elastic Beams</td>
</tr>
<tr>
<td>022-83</td>
<td>J. Neu</td>
<td>The Dynamics of a Columnar Vertex in an Imposed Strain</td>
</tr>
<tr>
<td>023-83</td>
<td>K. Yamauchi</td>
<td>Typical Classes in Involutive Systems of Second Order</td>
</tr>
<tr>
<td>024-83</td>
<td>R. Kahn</td>
<td>Explicit Relaxation of a Variational Problem in Optimal Design</td>
</tr>
<tr>
<td>025-83</td>
<td>D. Freed; M. Freedman;</td>
<td>Gauge Theories and 4-Manifolds</td>
</tr>
<tr>
<td></td>
<td>& K. Uhlenbeck</td>
<td></td>
</tr>
</tbody>
</table>

* 025-83 is no longer available as a preprint. It is available in the MSRI Publications series with Springer-Verlag.
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>056-03</td>
<td>J. Sylvester</td>
<td>Some Conditions Equivalent to Strong Hyperbolicity for First Order Systems with Constant Coefficients</td>
</tr>
<tr>
<td>057-03</td>
<td>J. Sylvester</td>
<td>On the Dimension of Spaces of Linear Transformations Satisfying Rank Conditions</td>
</tr>
<tr>
<td>058-03</td>
<td>U. Shadwick</td>
<td>A Simple Characterization of the Contact System on \mathbb{R}^8</td>
</tr>
<tr>
<td>059-03</td>
<td>R.C. Reilly</td>
<td>Affine Geometry and the Form of the Equation of a Hypersphere</td>
</tr>
<tr>
<td>060-03</td>
<td>N. Kuiper</td>
<td>Tent Sets in Three Space are Very Special</td>
</tr>
<tr>
<td>061-03</td>
<td>B. Solomon</td>
<td>On the Gauss Map of an Area-Minimizing Hypersurface</td>
</tr>
<tr>
<td>062-03</td>
<td>J. Gasqui & H. Goldschmidt</td>
<td>Infinitesimal Rigidity of $S^4 \times C^2$</td>
</tr>
<tr>
<td>063-03</td>
<td>I. Johnstone</td>
<td>Admissibility, Difference Equations and Recurrence in Estimating a Poisson Mean</td>
</tr>
<tr>
<td>064-03</td>
<td>Chang Kung-ching</td>
<td>Applications of Nomology Theory to Some Problems in Differential Equations</td>
</tr>
<tr>
<td>065-03</td>
<td>F. Estabrook</td>
<td>Invariant Differential Systems and Intrinsic Coordinates</td>
</tr>
<tr>
<td>066-03</td>
<td>A. Treibergs</td>
<td>Existence & Convexity for Hyperspheres of Prescribed Mean Curvature</td>
</tr>
<tr>
<td>067-03</td>
<td>D. Freedman & S. Peters</td>
<td>Bootstrapping an Econometric Model: Some Empirical Results</td>
</tr>
<tr>
<td>068-03</td>
<td>D. Freedman & S. Peters</td>
<td>Bootstrapping a Regression Equation: Some Empirical Results</td>
</tr>
<tr>
<td>069-03</td>
<td>H.R. Lerche</td>
<td>On the Optimality of Open-Ended Sequential Tests with Parabolic Boundaries</td>
</tr>
<tr>
<td>070-03</td>
<td>Ball, J.M.</td>
<td>Remark on the Paper "Basic Calculus of Variations"</td>
</tr>
<tr>
<td>071-03</td>
<td>Wahba, G.</td>
<td>Cross-Validated Spline Methods for the Estimation of Multivariate Functions from Data on Functionals</td>
</tr>
<tr>
<td>072-03</td>
<td>I. Johnstone & Shahshahani</td>
<td>A Poincare-Type Inequality for Solutions of Linear Elliptic Equations with Statistical Applications.</td>
</tr>
<tr>
<td>073-03</td>
<td>I. Johnstone</td>
<td>Admissible Estimation, Dirichlet Principles and Recurrence of Birth-Death Chains on $\mathbb{R}^2 +$</td>
</tr>
<tr>
<td>074-03</td>
<td>I. Johnstone & B. MacGibbon</td>
<td>An Information Measure for Poisson Characterization.</td>
</tr>
<tr>
<td>075-03</td>
<td>B. MacGibbon, S. Grashen</td>
<td>Calculations for Early Stopping in One-Sample Clinical Trial with Censored Exponential Responses.</td>
</tr>
<tr>
<td>07601-3</td>
<td>R. Lerche</td>
<td>The Shape of Bayes Tests of Power 1</td>
</tr>
<tr>
<td>07702-03</td>
<td>J. Conn</td>
<td>Normal Forms for Analytic Poisson Structure</td>
</tr>
<tr>
<td>07802-03</td>
<td>L. Birge</td>
<td>Estimating a Density Under Order Restrictions: Non-Asymptotic Minimax Risk</td>
</tr>
<tr>
<td>07902-03</td>
<td>J. Gasqui</td>
<td>Infinitesimal Deformations of Riemannian Symmetric Spaces</td>
</tr>
</tbody>
</table>
Restricted Orbit Equivalence

Approximately Transitive Flows and Transformations Have Simple Spectrum

Non-Abelian Magnetic Monopoles

Saddle Diffeomorphisms and Surface Topology

Hamiltonian of Kac Moody Lie-Algebras with Arbitrary Coefficients

A Hamiltonian Approach to Normal Mode Coupling in a Coulomb Plasma

The Metric Entropy of Diffeomorphisms

The Godbillon Measure of Anosov Foliations

On the Behavior of the Navier Stokes Equations Lying on Invariant Manifolds

Blow-Up for a Non-Local Evolution Equation

Asymptotically Behavior in the Dynamics of Chaotic Mappings.

\[C^{1+\epsilon} \] Mappings, expanding on an Invariant Compact Set

Asymptotically Periodic Behavior in the Dynamics of Chaotic Mappings.

\[C^{3} \] Mappings with Nonpositive Schwarzian Derivative

Qualitative Analysis of the Dynamics and Stability Properties for Axiom A Maps

Dimension of Invariant Measures for Maps with Exponent Zero

Secondary Classes and Transverse Measure Theory of a Foliation

The Restricted Simple Lie Algebras Are of Classical or Cartan Type

Restricted Orbit Changes of Ergodic \(\mathbb{Z}^d \)-Actions to Achieve Mixing and K-Mixing

Secondary Classes, Nielsen Measures and the Geometry of Foliations

The Metric Entropy of Diffeomorphisms; Part II

Semigroups and Graphs for Sofic Systems

A Lie Group Structure for Fourier Integral Operators

Simple Proofs of Local Conjugacy Theorems for Diffeomorphisms of the Circle with Almost Every Rotation Number

Abstracts of the Workshop on the Topology and Geometry of Smooth Dynamical Systems, June 4-8, 1984

Global Shadowing of Pseudo-Anosov Homeomorphisms

Entropy & Exponential Growth of \(\mu^2 \) in Dimension Two

Linearizing Flows and a Cohomological Interpretation of Lax Equations

Linearization in Two Dimensions

On Waterwaves in the Boussing and Korteweg deVries Limit

Transversal Heteroclinic Intersections in Slowly Varying Systems

Some Bounding Manifolds for Compact Lie Groups
A Polynomial Invariant for Knots via von Neumann Algebras

The K"{u}nneth Theorem and the Universal Coefficient Theorem for Kasparov's Generalized K-Functor

C*-Algebras, Positive Scalar Curvature, and the Novikov Conjecture, II

On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds

Some Homotopy & Shape Calculations for C*-Algebras

Mappings of Reducible 3-Manifolds

Group Actions on 3-Manifolds with Non-Haken Quotients and Intersections of Surfaces Minimizing Area in Their Homology Class

Bauer-Carron's Conjecture for Foliated S^1-Bundles

The Signature With Local Coefficients of Locally Connected Spaces

The Fourier Transform of Weighted Orbital Integrals on SL(2,IR)

Strong Morita Equivalence, Spinors and Symplectic Spinors

Affine Manifolds and Orbits of Algebraic Groups

Toeplitz Operators on the Segal-Bargmann Space

Foliation Dynamics and Leaf Invariants

Rational Algebraic K-Theory of Certain Truncated Polynomial Rings

Product Formula for Imaginary Resolvents, Modified Feynman Integral and a General Dominated Convergence Theorem

A Note on the Normal Subgroups of Mapping Class Groups

K-Theoretic Freeness of Finite Group Actions on C*-Algebras

Three Test Problems for Quasisimilarity

Generalized s-Numbers of T-Measurable Operators

Characterizing Certain Incomplete Infinite-Dimensional Absolute Retracts

A Spectral Mapping Theorem for Functions with Finite Dirichlet Integral

Spectral Analysis for Automorphisms of UHF C*-Algebras

Cyclic Cohomology of Polynomial Rings

Special Positions for Surfaces Bounded by Closed Braids

Amenability and Virtual Diagonals for Von Neumann Algebras

An Infinite Set of Exotic R^3's

Elementary Construction of Perverse Sheaves