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on the lattice points of the plane is defined and it is shown that in

contrast with other problems related to the past of random fields the

angle for stochastic processes have been extended to the case of random

and angle

Abstract. The angle between past and future for stationary random fields

positivity of the angle between past and future is independent of different

pasts which have been considered. Most of the known facts concerning the
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1. Introduction. Several authors have studied random fields on the lattice
points of the plane. Some of the important results in this field are included
in the work of Helson and Lowdenslager [2], where a generalization of Szegé's
theorem to half-planes is proved, Chiang [1], where the regularity problem for
the half-planes is discussed; Kallianpur and Mandrekar [7], where a Wold-Halmos
decomposition Theorem is proved; Korezlioglu and Loubaton [8], where spectral
factorizations are considered, Soltani [15], dealing with regularity and
quarter-plane moving average representationj and Miamee [10], where an extension
of Szego's theorem for third quadrant is given. Another problem which has
been proved to be useful in the prediction theory of stationary stochastic
processes is the idea of the angle between past and future. Several authors
have worked on this area and revealed its connection with the prediction theory
of stationary stochastic processes. cf. Helson and Szego [4], Hunt, Muckenhoupt
and Wheeden [5], Pousson [12], Sarason [14], Pourahmadi {11], and Miamee [9].
In this paper we introduce the definition of the angle for a stationary
random field and prove that the crucial properties of the angle in the case of
stationary processes have natural extensions to the case of stationary fields.
In contrast to other problems concerning the past of random fields, we show
that the positivity of the angle between past and future does not depend on
the choice of the kind of past one considers. Thus starting with

the usual half planes, this fact enables us to use the results of Helson and

Lowdenslagers proved for another kind of half-planes that they consider.
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2. Preliminaries. In this section we introduce the notations and terminologies

needed in the rest of the paper. Let an, (m,n) € 22, be a double sequence of

random variables on a probability space (Q,B,P) such that

2
EX =0 E|an| < o, for all (m,n)eZ.

The double sequence xmm’ (m,n) € 22 is called a statiomary random field if

Exmni;s depends cnly on the differences m-r and n-s; i.e.

Eaner = p(m-r,n-s).

In this case the covariance function p(m,n) = EanXoo is a positive definite

function on the group Z2 of lattice points of plane. It is known (cf. for

example Salehi and Scheidt [13]) that there exists a non-negative measure yu,

defined on the Borel sets of the torus

-3
n

{a: 0 <a< 7w} x {B8: 0< B < 2m}

such that

I e-l(ma+n8)du, for all (m,n) ¢ 22,

(2.1) p(m,n)

This measure y is called the spectral measure of the stationary random field

an. If y is absolutely continuous with respect to the normalized Lebesgue
measure do = dadg its Radon-Nikodym derivative w is called the spectral
47

dengity of the field.
Li will denote the Hilbert space of all functions on the torus which are «
square summable with respect to the measure u. From (2.1) it is clear that
the operator
o~ 1 (ma+ng)

X >
mn

R T IRt S AT i I S P TR TR I fa v

a N - . -t et . - - . - . - - - . - . . - - B o - -

- . - . b . . - - . . L4 - - - - . - . .
ST RN S . . L e e DT Tt PR A AN
P T S YR NIRRT S ST RSN RS DR N

e S, TN P P R .

- .
o ot Y . . W Yt
O e, . O i TSP P P EEUARIRN A -

B L PPV LIPIL PR Tl SAPS. AL P PP PRIEAPT I IOOPE R R LA VAL g WAL WA R W wi M S WA

-
«
-

- SRR
o .
W VR, W




......

S o oY e r— gy

FiPCIR O i S e A R e At Ot it S et i i N B i P a it i Sl ag oy

extends to an isomorphism from HX = the closed linear subspace generated by
all an's, onto Li. This is called the Kolmogrov isomorphism between the time
domain and spectral domain.

For any subset M of Z2 we define Hx(M) to be the closed linear subspace
of Lz(n,B,P) = H,spanned by all xm’n's with (m,n) € M. The vertical

past-present PI and the vertical future Fi of the field an is the subspace

Hx(Sv), and Hx(Sv), respectively; where
\'
S = {(mm): m<0, nez}

As a measure of the angle between the vertical past-present and future

subspaces of the field Xmn Ve take its vertical-cosine defined by
v _ . v v 0l = 13-
o, = sup{{(Y,2)]: Y ¢ P» ZeF , |IYll = 1|]z]] =1}

and the subspaces P: and F; are said to be at positive angle if p: <1.
The horizontal past-present subspace P:; the horizontal future subspace F:
and the horizontal-cosine of the angle between these subspaces 02’ are defined

similarly. Finally we define
_ v h
o, = max(p ,0 ).

For any nonnegative measure on the torus o;, pz, and pu can be defined in the

same way. However, if u is the spectral measure of our stationary random field

\' h h
u’ Ou = Ou,

an,then by the Kolmogrov isomorphism it is evident that pX = p and




3. Geometric Characterizations of Py < 1. In this section we present some

important geometric properties of stationary random fields an with px < 1., These
include the generalizations of the known geometric characterizations concerning
the positivity of the angle between past-present and future of discrete time
stationary random processes. At the end of this section we give a set of
sufficient spectral conditions which guarantees the validity of the commutative
property (to be explained later) which has been used by several authors working
on the prediction theory of stationary random fields.

The proof of the following lemma is similar to the corresponding fact in
the case of univariate stationary processes and it is hence omitted (cf.
Helson and Szego [4, p. 129]).
3.1 Lemma. Let X . be a stationary random field. In order for the angle
between the vertical past-present and vertical future to be positive it is

necessary and suffictent that there exists a constant N such that

-2 II X v amnxmnHH <N Ii Z ammxmmHH !
(m,n)eS (m,n)eZ

where {amn} i8 any double sequence of scalars with finitely many non-vanishing
elements.

A similar statement for the horizontal angle is also true, Combining
these two facts we get the following Lemma. Proof is again omitted.
3.3 Lemma. Let X be a stationary random field. Then the following statements
are equivalent

(i) oy < 1

(ii) There exists a constant N such that
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S
I z v amnxmnHH f-N|| 2 zamnxmnllH
(m,n)eS (m,n)e2
and
1T duXully <ML T agrglly,
(m,n)eS (m,n)eZ

where {amn} 18 as in Lemma 3.1, and Sh is defined similar to S'.

Now we can prove the following

3.4 Lemma. Let xmn be a stationary random field. Then Py < 1 2ff there
exists a conmstant M such tnat for any double sequence as in Lemma 3.1 and any

integers m my, Ny, and n, we have

0’
"M
(3.5) WL I e x Hy<mli I a x [l
m=m, n=n; (m,n)el

Proof. If Px < 1 then p; < 1. Using Lemma 3.3 and considering the fact that

our field is stationary we have

ml i
1T T e Xl M2 e X
m=-o n=-o (m,n)eZ

Using Lemma 3.3 again, together with stationarity of an, and the fact that the

angle between two subspaces is defined symmetrically, we get

Mmoo m1 -
a X < N a X
| mzmo ,,Z-m SRS VS Ilmz_w nz-«, SR
s ]
<N a XAy
(m,n)el

. . . . h .
Finally, since Py < 1 implies Py < 1, applying Lemma 3.3 two more times, we get

mh
4
NI I agx lly<n (11 , a X |l

m=My M=My (m,n)eZ




Thus, one can choose M = N4.

To prove the converse we assume that (3.5) holds. Now since M does not

depend on the choice of my,MysNy, OT Ny and since {amn} has finitely many
non-vanishing elements, if we let m0 =n, = - (3.5) becomes as
1] el bWl T a1l
M€ (m,n)eZ

which in turn implies p: <1 (by Lemma 3.3). A similar argument shows that

h . .
oy < 1; yielding P < 1.

Next we show that for a stationary random field X o the property px <1
is equivalent to the fact that X n is a Schauder basis for Hx' A double

sequence e is called a Schauder basis for a Hilbert space H if for any element
mn

Z in H there exists a uniquely determined set of coefficients Cmn(z) such that

0 o
Z= 2 Z cmm(z)emn.
m=-00 n=-%«
0 [e o]
We should mention here that by the convergence of a double series % I a
m=-® np=-o

to a limit we mean that the double sequence of its partial sums converges

mn

to that limit and by the partial sums we mean the rectangular partial sums,

defined by m n
mln1 1 1
=1 1 a
m.n
00 m=m0 n=n0

mn

Having Lemma 3.4 proved the proof of the following theorem is a standard
Schauder basis argument and,in particular can be given similar to the proof

given on pages 102 and 103 of [6], and hence it is omitted.

3.6 Theorem. A stationary random field Xim 18 a Schauder bastis for HX if and

only if Py < 1.
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We are now going to prove the following theorem which generalizes a
well-known fact concerning the positivity of the angle between past and future
for a stationary sequence. (cf. Helson and Szegd [4] and Hunt: Muckenhoupt;
and Wheeden [5] for scalar weight functions and Pousson [12], Pourahmadi [11],

and Miamee |[9] for the matrical weight functions.)

3.7 Theorem. Let Xmm be a stationary random field with a spectral measure u
on the torus. py <1 if and only i1f

(i) wu is absolutely continuous with respect to the normalized Lebesgue

measure do = dagB’ with spectral density w,
4m
oy 02 1 2 _ .2 .2
(ii) L, L, where L, = LWdG = Lu

(iii) The Fourier series of any f ¢ Lﬁ converges to f in the norm of Ls.

The proof of Theorem 3.7 is established via a series of Lemmas which we

proceed to prove

3.8 Lemma. Let an be a statiomary random field. If Py < 1, then an 18
horizontally, vertically purely non-deterministic, and strongly non-determi-

ntstie, that is

{0},

n HX({(m,n): m<p,nezl)
pel

n HX({(m,n): meZ, n< aql) {0},
A

qe
and

n H {(m,n): m < p or n < q} = {0}.
P,QeZ -

.........

~




Proof. We just give the proof of first statement. The proof of the other two
statements are similar. Suppose that
Ye n HX({(m,n):m <k, ne?Z})

keZ -
then Y ¢ HX({(m,n): m <k, nez}), for all k € 2. It follows from Theorem 3.6
that X__ is a Schauder basis for Hy; hence {an, m<k, ne Z} is a Schauder
basis for HX({(m,n): m<k, ne Z}) for each k. Thus for each k ¢ Z we have a
representation as follows

k o

) k
Y= z z bmnxmn

=-00 nN=z=-o°

but since these representations must be unique we conclude that bin = 0 for all
k,m and n. Thus Y = 0, which completes the proof of our lemma.
Using Lemma 3.8 above and Theorem 3.4 of Soltani [15] we arrive at the

following lemma,

3.9 Lemma. Let an be a stationary field with spectral measure u. If py <1

then u 18 a.c. with respect to the Lebesgue measure, and its spectral density w
has the property log w ¢ Lt
3.10 Lemma. Suppose an is a stationary random field satisfying py < 1. Then

with the notations of Theorem 3.7, we have

Proof. The operator I defined by

(r
I(P) = J J aOOW(a,B)do,
on the polynomials P = } a_ e i(ma+nf) is bounded because

mn
(m,n)eZ2

- saTe e T e . . ) A ATt T
I T N S T A Wt s T T e ety Tt TR I PO S Y R I
R ST St et S S L S PRI A A S S G S S ST R U A S e WP ST ST e ¥ GG W Sy G L R P, S L . S S




A M S i et I T G St A A U M it M e e _ —y ARSR A B S il et i A et et i e - AP AT AVt o A Sl sy o

(
|1(P)] |JJaOOw(a,B)do¢ =|JJa00/G Yw do|

or

| 1(P)|

| A

(JJ\aoolzwdo)l/z(Jdeo)l/z

Hence by Lemma 3.4 and the Kolmogrov isomorphism we get

1| < M| , VTwdo.
L's

. 2 .
Thus "I" can be extended to a bounded functional on Lw. Hence there exists a
function g in Li such that

I(£) = (f.g) , , forall ge L2,
L w

W
In particular we have
I(ei(moumB)) - (ei(ma+nB),g) 5 -
L
w
On the other hand
) 0, if (m,n) # (0,0)
I(el(ma+n8)) =

1, if (m,n) = (0,0)

Thus we have
(f s 0, if (m,n) # (0,0)
JJel(m“*“e)w(a,e)gﬁitﬁTdo -

1, if (m,n) = (0,0)
. - _ -1 - 2. . . 2 1
which means wg = 1. Hence w =g e Lw; implying Lw c L” because for any

h e L2 we have
w
( (.
JJhdo - JJh«G‘J@‘l do < ([thwdo)l/z (IJw lao) .

Remark. Recall that a stationary random field Xon is minimal , if and only

if its spectral measure u is absolutely continuous and, with the notation of

Theorem 3.7, w-1 € Ll. (cf. Salehi and Scheidt [13]). Thus the argumentation

in the proof of Lemma 3.0 shows that the property (N 1 implies that Xin is

................................................
...............
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minimal. That is to say

X ¢ Hx{(p,q): (p,q) # (m,n)}.

This in particular implies that Xmm is purely non-deterministic in the

Helson-Lowdenslager [ 2] sense. Hence we have

(
JJ log wdo > -,

3.11 Lemma. With the notations of Theorem 3.7, if Py < 1, then the Fourier series

of any function f in Li comverges to it in Li.

Proof. For any fixed non-negative integers m and n, the operator Smm defined
on the polynomials by

. m
( Z a el(pa+q8)) = z

Pq _ =
(p,q) ez’ p=-m q=-1

is bounded (by Lemma 3.4) with a bound M not depending on m,n; and hence it
can be extended to a bounded operator on L:, which we will again call Smn’
with the same bound M. It can be seen that these operators Smm are just the

symmetric Fourier partial sum operators. Let f ¢ Li,to show

. 2
Smn(f) > £ in Lw’

given € > 0, we take a polynomial P such that

€

f-P < =,
le= el < ‘
W
We then have
AT R AT P T .-_ R P R R LA e LAY SRR - '_~‘,-.‘- R
- '.' T R A A A SN OO e T S P e e e T IOV YU
e e N S a3 o N e T R A S “‘-"‘"" '.b‘-" BN




11

s, () - fllLz < sy, - D - P)lle + |Is (P) - Plle

w w w

< sy = T 11 = P11y + Vs - Pl

w w

Thus

+

’ I, (£) - fllL2 <M+ )
w

s, - 2l].
Now if we take m and n large enough we get Smnp = P, and hence we get

s, () - £]] , <.

L
W

This completes the proof of the lemma.

3 Proof of Theorem 3.7. If Oy < 1 then Lemmas 3.9, 3.10, and 3.11 respectively,
imply that (i), (ii), and (iii) hold.
On the other hand, suppose that (i), (ii), and (iii) holds. Thus any f

. 1 . s
in Li belongs to L and, as such, has a Fourier series

£ . Z a el (Pa"'qs) .
2 P4
(P»Q)€Z
: We consider the partial sum operator
) m.n
00
- defined by
m n
' m.n 1 1 :
‘ siley =1 1 a @99
00 p=-m, q=-n, Pa

For any f ¢ Li we can write

................

......................

...........................
............................
..................

........................
........

.
. ; T T T N I,
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SISO

12
m ml
1
IENCT T B BN e
0 W p=-my q=-n, L
moM
<
<y 1 llapqlle
p=-m, q=-n, W
Hence n n
mln1 1 1
sy o (Bl = TTwao [ 1 l<
00 LW 'p:-m0 q=-n0

(2mgm, + 2non; + 1)V wdo l]fl,Ll

Now since Li c Ll, Miamee [9,Lemma 3.1] implies that there exist a constant K such

that

£l < xl{£1]
e 12

w
m,n
This means that all operators Sm nl are bounded. On the other hand by (iii)
00
for each f ¢ L: we have
m.n
sl ~f, intil.
00

Hence by uniform boundedness principle there exists a constant M such that

™™
||sm n Il <M, for all my,m ,n;,n, > 0.

00

This means that for any f ¢ Li we have
™™
llsm n ()11 5 < M|[f]| , » for all my,m ,n ,n; > 0. .
00 L L
W W
In particular for any polynomial P we have
™™

w w
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But this, up to the Kolmogrov isomorphism, is exactly (3.5). Hence by Lemma
3.4 we deduce that ox < 1.

We conclude this section with an application of the results obtained above
to the prediction theory of stationary random fields. We are going to present
some sufficient condition which guarantees the validity of a commutative
property which has been widely assumed by the authors working on prediction of
stationary random fields, cf. Kallianpur and Mandrekar [7],  (One can also see
Korezlioglu and Loubaton [8], and Miamee [10]). A set of such sufficient
conditions is also given by Soltani [15, Theorem 4.5].

We start with the following lemma.

3.12 Lemma, Let X  be a stationary random field with py < 1. Then for any

two subsets A and B of lattice pointe of 22 we have Hx(AnB) = HX(A) n HX(B).

Proof. Since Py < 1 by Theorem 3.6 the double sequence an forms a Schouder basis
for HX' Now let Y € HX(A) n HX(B), then Y € HX(A) and Y € HX(B). Hence we

can write

Y = X nd Y = b X .
L apqpq 2 ) Pq Pq
(p,a)eA (p,q)eB
But by the uniqueness property of representations with respect to Schauder basis an
we must have
Y = a X_ .
(p,q)eAnB P9 PI
Thus Y ¢ HX(AnB). This shows that

Hy (A) 0 Hy (B) < H, (AnB)

The other inclusion being always correct we have proved our lemma.
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A stationary random field an is said to have the strong commtative

property if

where for each subspace M, PM denotes the projection on the subspace M,

This is a major assumption in results of Kallianpur and Mandrekar [7] '
concerning their four-fold Halmos decomposition and it is nice to find
some spectral characterization for it. Moreover, the next theorem gives some

sufficient condition for the validity of this commutativity condition.

3.13 Theorem. Let an be a stationary random field with spectral measure \.
If Py < 1 and the Fourier coefficients of lcg w (which is in L1 by Lemma 3.8 )

are zero outside QU(-QU {(0,0)}. Then X oo has the strong commutative property.

Proof. The proof follows from Lemma 3.8, Lemma 3.9 and Lemma 3.12 together

with Theorem 2.4 in Miamee [10]. *

............
...........................
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4. Analytic Characterization of px < 1. In this section we obtain some

analytic characterizations for the density w whose corresponding stationary
random field an has Py < 1. This provides an extension of a well-known
result due to Helson and Szego [4 Theorem]. In our proof we would need the

following lemma which is of independent interest too.

4.1. Lemma. If X i8 a stationary random field then py <1 if and only if
the angle between HX(UV) and HX(UV) as well as the angle between HX(Uh) and

HX(Uh) are positive, where

UV

{(mn): m< -1, neZ} v {(0O,n):n< -1}

and

(=
!

= {(mmn): mez n<-1}u{(mM0): m< -1},

If this is the case then the angle between H,(Q) and Hx(ﬁj is also positive,

where Q is the third quadrant, namely
Q = {(m)n): m_<_0’ n _<_0} - {(0’0)}0
Proof. We break the proof of our lemma into the following steps:

Step #1. The angle between HX(UV) and HX(UV) is positive if and only if there

exists a constant N such that

) § a X ||, <N} a X |l
(m,n)eV (m,n) ez
where {amn} is any double sequence of scalars with finitely many non-vanishing

elements. This statement can be proved similar to Lemma 3.1.

Step #2. The angle between HX(UV) and HX(UV) as well as the angle between

Hx(Uh) and Hx(Uh) is positive if and only if there exists a constant L such that
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(4.2) I e X tys Ll Zam#mJ|H’
(m,n) eR (m,n)eZ

where an is any double sequence of scalars with finitely many non-vanishing

elements, and the first summation ranges over any generalized rectangle of the form

v v h h

. o Umo“o " U”l"l ! Upoqo " Uplql
where

U;n = {(r,s): r <m1, s e 2} u{(ms): s <n-1}
and

U;,n = {(r,s): TeZ, s <n-1} u {(r,n): r < m-1}.

The proof of this step is similar to that of Lemma 3.4, and hence it is again

omitted.

Step #3. We note that the generalized rectangles contains all the usual
rectangles thus to complete the proof of the lemma it suffices to show

that (3.2) implies (4.2). To see this we observe that any region R

in 4.2, that is any region R of the form 4.3 can be divided as the disjoint
union of at most 5 rectangles, say Ri , i=1,2,3,4,5. Thus we can take the

L in step #2 to be simply SM. In fact for any R of the form in (4.2 or (4.3)

we can write

5
D atllys DD el
(m,n)eR 1= (m,n)eRi
5
< IMIT e x|l
i=1 (m,n)eZ
< s5M ||} a Xy

A




Now we can prove the following generalization of a well-
known analytic characterization for positivity of the angle between past and

future due to Helson and Szego [4].

4.4 Theorem. Let an be a stationary random field with spectral measure \u.
In order that py < 1 it i8 necessary and sufficient that u be a.c. with respect

to the Lebesgue measure and its spectral density can be written as

with
(D Gv(a,B) and Gh(a,B) are bounded real valued functions;

(ii) kv(a,B) and kh(a,B) belong to Hm(UV) and Hm(Uh) respectively:

(i11) larg k| < 2 -¢ ana |arg M| <3 -e  (mod2m.

Proof. We know that Px < 1 if and only if p; <1 and pg < 1. But p¥ <1 if

and only if

Y; = sup | JI PwFdo | < 1,

where P and F range over all polynomials on u¥ and Uv, respectively, and have

norm less than 1. Now since log w ¢ L1 (by Lemma 3.9) we can write

e-i(mu+n8)

logw=a +z m

(m, n)eZ

taking DY the corresponding optimal factor

1 .
v 2200+ ) a e—1(ma+n8)
D ==e v mn
{m,n)el
we have
w(e,8) = (DV(a,8))° e 20L%E)
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Hence
Y;(’ = sup | H 0¥y (FD"y e7¢ dol,
with P and F as above. By a result due to Helson and Lowdenslager [2,

Theorem 6] these PD's are dense in the unit hall of HZ(UV). Thus .
\ ( -i¢
Yy = sup | J khe " "do],

where h and k range over the unit hall of HZ(UV). Now this together with

another theorem due to Helson and Lowdenslager [2, Theorem 4] gives
= sup | { e-ipdol
Yy sw i )] 8 ,

where g ranges over the unit ball of Hl(UV). Hence YX is the norm of the

functional

g > JJ ge'i¢do .

considered over Hl(Uv). Thus we can write .
v . -i
Yy = inf || %Al

where A ranges over Hm(UV). Thus p§ <1 if and only if Y§ < 1 and this in
turn is equivalent to the existence of a positive € and a function, say Av,
in H"(UY) such that |AY| > € and |arg AVDVI 5_%-- t (mod.2m). Now we can
define G’ and k' as in the one dimensional case. A similar argument for 02
instead of p; completes the proof.

Now if we continue the proof of Theorem 4.4 further as in the proof of

corresponding results of Helson and Szegd [4] we arrive at the following

theorem. The proof, being similar except for the details, is omitted.
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4.5 Theorem. Let Xmm be a stationary field with spectral measure u. If Py < 1

then we can write ’ _
v TV h
w = eG S and w = eG *s s
~
where G’ is a bounded real valued function and for each X\, s 18 the

conjugate of a real valued funetion s’ with sV, < g- with similar statements

P~

for Gh, Sh, and Sh.

To state our next theorem we need the following definition

4.6 Definition. The vertical conjugate operator ¢’ and the horizontal eondugate

operator ch and the quarter~plane conjugate operator ? are defined for any

£ in LY with

f.a_ + ) a_ et(Pa+aB)
0 (p,q)#(0,0) P9
by
') = 3 ~i(segm p)apqe+i(pa+q8)
(p,q)#(0,0)
Ch(f) = ) -i(segm q)apqe+i(pa+q8)

(p,q)#(0,0)

cQg) = -i e’

4.7 Theorem. Let an be a stationary field with spectral measure . and
spectral demeity w. (a) In order that P, < 1 2t 18 necessary and sufficient
that ¢ and Ch be bounded operators on Li. If this is the case then c?

18 also bounded.

Proof. Having proved Lemma 3.3 the proof of the first part is as in the case
of one variable. The proof of the last statement follows from the definition

of CQ.
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