1a. REPORT SECURITY CLASSIFICATION
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY
Unclassified

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
5274192

6a. NAME OF PERFORMING ORGANIZATION
New York University, Courant Institute of Math. Sciences

6b. OFFICE SYMBOL

7a. NAME OF MONITORING ORGANIZATION
AFOSR/NM

7b. ADDRESS (City, State, and ZIP Code)
Bldg 410
Bolling AFB D.C. 20332-6448

8a. NAME OF FUNDING/SPONSORING ORGANIZATION
AFOSR/PK2

8b. OFFICE SYMBOL
NM

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
AFOSR-80-0228

11. TITLE (Include Security Classification)
Effective Behavior of Composite Materials

12. PERSONAL AUTHOR(S)
Prof. George C. Papanicolaou

13a. TYPE OF REPORT
Final

13b. TIME COVERED
From 1 Sep 83 to 30 Nov 84

14. DATE OF REPORT (Yr., Mo., Day)
1985 APR 23

15. PAGE COUNT
5

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Composite Materials

DTIC FILE COPY

SEP 10 83
Final Report

Contract AFOSR 80-0228

1 September 1983 - 30 November 1984

Title

EFFECTIVE BEHAVIOR OF COMPOSITE MATERIALS

Principal Investigator

George C. Papanicolaou
Courant Institute
251 Mercer Street
New York, N.Y. 10012
During this period two thesis students have completed their work and have obtained the Ph.D. (September 1984):

M. Z. Guo -- Selfdiffusion of interacting Brownian motions
K. Golden -- Analytic continuation method for effective parameters

Guo is back in China now while Ken Golden won a National Science Foundation Fellowship and is at Rutgers University. In addition to Guo and Golden, B. Le Mesurier is supported by AFOSR for his thesis work on the nonlinear Schrödinger equation.

A. S. Sznitman was partially supported by AFOSR. P. L. Sulem and C. Sulem visited with us during June and July 1984, supported by AFOSR. Renato Spigler was also partially supported.

A list of papers, published and submitted for publication, is attached.

The main results of our work fall into three categories which we list in order of significance to our present and future work:

1. **Focusing a singularity of the nonlinear Schrödinger equation.**

 We have solved by a careful analytical-numerical method the basic question of what the local rate of blow-up is for solutions of the nonlinear Schrödinger equation with cubic nonlinearity in 2 space dimensions. This problem is a basic one that arises in many aspects of nonlinear wave propagation.

Approved for public release; distribution unlimited.
The mathematical problem is at the center of a canonical problem to determine the nature of the self focusing singularity. We have found that the blowup is not like $t^{-2/3}$ ($t \to 0$ corresponds to reaching the singularity) by rather $t^{-\frac{1}{2}}$ times a slowly varying function that goes to infinity slower than $\log t$.

2. **Selfdiffusion of interacting Brownian motions.**

Using methods of wave propagation in random media that we had developed earlier, we were able to study the effective behavior of a tagged Brownian particle in interaction with an infinite system of other such particles. The problem is technically difficult but of basic importance in composite fluid materials, suspensions for example. This is the first complete mathematical theory for the problem.

3. **Bounds for effective properties of composites by analytic continuation**

Following earlier work (supported by AFOSR) on the use of analytic continuation, Golden and Papanicolaou obtained bounds for multicomponent media that was previously unknown and impossible to get by variational methods. The reason variational methods fail is because the problem is not selfadjoint. Interest in the nonselfadjoint case comes from trying to obtain frequency dependent bounds (not just static ones). The analytic continuation method was known to work only for two component...
materials. In our work we extend it to multicomponent materials by using the theory of several complex variables.

Copies of the papers listed on the following page were sent to AFOSR on August 3, 1984, along with our proposal for renewal of this grant.
LIST OF PUBLICATIONS

END

FILMED

10-85

DTIC