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ON THE NUMBER OF BOOTSTRAP SIMULATIONS REQUIRED TQ o
CONSTRUCT A CONFIDENCE INTERVAL ‘

by E

Peter Hall] :

University of North Carolina, Chapel Hi]12

Summary. We make two points about the number, B, of bootstrap simulations
needed to construct a percentile-t confidence interval based on an n-sample
from a continuous distribution: (i) The bootstrap's reduction of error of

coverage probability, from O(n'”2

) to 0(n°]), is available uniformly in B,
nrovided nominal coverage probability is a multiple of (B+1)']. In fact, this
improvement is available even if the number of simulations is held fixed as n é
increases. (ii) In a large sample, the simulated statistic values behave like é
random observations from a continuous distribution, unless B increases faster

than any power of sample size. Only if B increases exponentially quickly is

there a detectable effect due to discreteness of the bootstrap statistic.

Key words: Bootstrap, confidence interval, number of simulations.
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1. Introduction J B ;
- The purpose of this ;afé.{s to make two points about the effect of the 5
number of bootstrap simulations, B, on percentile-t bootstrap confidence i
intervals. The first point concerns coverage probability: the second, distance E
of the “s1mu1ated" critical point from the :irue‘}br1t1ca1 point derived with %

ot f‘ PRRPEEN fac Q— "9/
B=os,

In both cases we-have- in mind applications to smooth statistics, such

L

as the Studentized mean of a sample drawn from a continuous distribution. We g

- shatt indicater the changes that have to be made if the d1str1but1on of thg___,
- /

statistic is not smooth. _/taJw AR A ’A/Z? Cda -‘”f e

B gy A

\
-

To make our point about coverage probability, recall that if we conduct
B bootstrap simulations, the resulting statistic values divide the real line

into B+1 parts. Therefore in principle, confidence intervals whose critical

) WML wid SN

points are based on B simulations have coverage probabilities close to nominal
levels b/(B+1), for b=1,...,B. If the sample size is n and B=x, then the
"Edgeworth inversion" effect of the bootstrap argument means that true coverage
probability of a confidence interval whose desired coveraqé is a, is actually o +

én(w), and § = sup !6n(a)| = O(n‘]) (Hall 1984). This is a notable improve-
)

ment over the level o + O(n']/z) offered by traditional methods. Strikingly,

this improvement is available for ary value of B, even for fixed B. In fact,

if S; is the worst possible error between true coverage probability and

o
d
|

o,
i
{

nominal coverage probability when only B simulations are used, then 6; < dn

Y

unt formly in B, Therefore the worst departure of truc coverage probability

!l

from mominal coverage probability using any finite number of simulations, does

.l'l'

L i AL A

?

not exceed the worst departure using an infinite number of simulations.

For example, suppose we wish to construct a one-sided 90% confidence

1
LS

interval. The smallest value of B we can use is B=9: notice that 90% =9/(9+1).
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The endpoint of the interval would be based on either the smallest or largest

of the 9 simulations, depending on whether the interval was left-handed or

;jﬁ:.' ST A-E}Iyl.".l‘

right-handed. If we let n»», but always did only 9 simulations, then the
coverage probability of our interval would still be 0.9 + O(n'1). So even with
a fixed number of simulations, we improve on the traditional coverage probability

of 0.9 + 0(n""/?),

e e w - e e
y vy L
KRNI off PN

This property forms a convenient safety-net for the bootstrap algorithm:
if a statistician cannot conduct as many simulations as he would like, he can
be sure that he pays virtually no penalty in terms of accuracy of coverage
probability. The only penalty is in length of confidence interval - if B is
small then the true critical point may stray from its 1imiting value when B=w,

so that there will be some tendency for confidence intervals to be over-long.

IRVIVRE il ROOBOD el TR

In addition, B does not have to be particularly large before exact coverage

probability agrees with the theoretical limit as B»», For example, if B equals
sample size then the probabilities only disagree at the level O(n'z).

We shall investigate these properties in Section 2. As part of our study
we shall give an explicit formula for the second-order term in an expansion of
coverage probability for the case of Studentized mean. That formula makes it
clear that if the sample is actually normally distributed, then even using a
fixed value of B, the coverage probability of a bootstrap confidence interval
for population mean differs from the nominal level by only O(n'z).

We shall also investigate the effect of the size of B on critical points.
Remember that the distribution of the bootstrap statistic is discrete. Beran
(1984), amonqg others, has pondered the use of smoothing techniques to overcome
discreteness. In Section 3 we shall show that under a very weak smoothness

assumption, even weaker than continuity, the distribution of the simulated
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bootstrap statistic behaves 1ike a continuous distribution with a density

uniformly close to the standard normal density. In fact, the error in this

continuous approximation to the discrete bootstrap distribution is of order 12

n'A for all 2>0. Ve shall show that the number of boctstrap simulations, B, has to

be an exponentially large function of sample size before the discreteness of

the bootstrap distribution becomes apparent. N
On the other hand, if the sampling distribution is lattice then it is easily o

-]/2, and then

seen that the atoms of the bootstrap statistic are of order n

it is essential to smooth the distribution of the bootstrap statistic. Our

results on coverage probability have analogues for lattice-valued statistics, -

but it should be remembered that in that case, roundina error reduces approxi- —

mation order from n”' to only n"1/2, 3
We shall confine attention to one-sided, percentile-t confidence intervals.

The bias-corrected percentile technique (Efron 1979) is suitable only for

two-sided intervals, and in that situation traditional methods, percentile ;

Rt R
[T

Aos

methods and bias-corrected percentile methods all give coverage probabilities

whose errors are of order n_1. There, the advantages of the bootstrap cannot

be reported so clearly in terms of coverage probability. f'
Related work includes that of Beran (1982,1984), Singh (1981) and Babu N

and Singh (1983), who have studied large-sample properties of the bootstrap

alaorithm. The latter two papers are concerned with conditional Edgeworth

expansions. In Section 2 we shall briefly mention Edageworth expansions, but

those considered here are unconditional. :
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2. Coverage probability

¢

Let 8 = e(X],...,Xn) be a /n-consistent estimator of a parameter 5, based
on a random sample X ={X],...Xn}. Let n']o (X],....Xn) be a consistent
estimator of the variance of 8. We shall consider confidence intervals for 6 °

1/2,%

based on the statistic T = n /“(6- e)/c

Let Y],...,Yn be independent and identically distributed, conditional on

E\? X, with distribution P(Y = lex) = n'], 1 < j<n. The bootstrap statistic

is obtained by using the sample Y = {Y], Y } in place of X. Thus, we consider
E§¥ ak oo e(Y],...,Yn), o* = o(Y,...,Yn), T* = ]/2(6* e)/o* We may work out the ;
- !
jg: distribution of T*, conditional on X, to arbitrary accuracy by means of i
0
L simulation. Thus, we may define
LA
ot t = inf {t: P(T* < tlx) > al,
+3 o - -

which is the bootstrap approximation to that point X, such that P{T f_xa) =

4&:f For example, the "optimal" but unattainable interval I = [6 - n']/zxaa,w)

i:i covers 6 with probability a; the interval 11 = [5 - n']/ztaa,m) covers 9 with
probability a+0(n”1).

::i: In practice the value of tOl is usually itself estimated, by simulation.

: Conditional on x, let Tf, TE be independent copies of T*. Arrange them in

ascending order: T?]) < ues < T?B)' Suppose we select Tzv+]) as our approxi-

g mation to t,s for a given integer 0 < v < B-1. Let p = P(T* < T|X), and
ShEs

[{b% conditional on X, let N have the binomial Bi(B,p) distribution. In place of
;' "" A A

3!1* I], we would use the interval 12 =[6-n 1/2Tzv+1) og,»). Conditional on X,
L the chance that I, covers 8 is

1 P(T < T4l ¥) = Plat most v out of Tf,...,T are < T|x)

= P(N < v|x) = Z ( By pd (1 - p)B'j-
J“O

A ;.x‘"»'

A b e R



Therefore the exact, unconditional coverage probability of 12, is

1 .
a(v,B) = 7 (B) jo S0 - wBdap(p < ). (2.1)

e~

B
j=0J
Had we been able to do an indefinite amount of simulation , we would have -

taken v .~ aB as B-»», and obtained the interval I] whose coverage probability is

1im a(v,B) = P(p < a).
B
Our aim is to determine how close a(v,B) is to its limit, P(p < o).

Hall (1984) has described expansions for the distribution of p in general
circumstances. Those results show that p has asymptotically a uniform distri-
bution, and that

Plp<a) =a+ n']Rn(a) (2.2)
where Rn is bounded uniformly in n > 1 and 0 < a < 1. Define
Vv . .
G(u) =) (Q) uJ(1-u)B J
j=0 9
then by (2.1),
1
a(v,B) = (v1)(B+1)") + n"J 6u) dR (u). (2.3)
0

We call (v+1)(B+1)_] the nominal coverage probability of confidence interval
I,. To simplify the integral in (2.3), let T = 1(v,v) be the solution of
G(t) = v, for 0 < v < 1. Then

dv (T

1 (G(u) I]
0 J0

1 1
IOG(u)an(u) = JO an(u) JO dv = an(u) = JO Rn(r)dv,

and so

A,
a(v,B) = (w1)(8+1)" + n jo R (t)dv. (2.4)




\‘
. \}
" At
A
6 ]
- It is clear from (2.4) that if we seek a confidence interval whose J
. coverage probability is a multiple of (B+1)'], then the worst error we commit L!
‘ if we simulate only B times is no more than n'] sup IRn(a)|. In view of (2.2), e
- a s
) this is the worst error committed if we simulate an Znfinite number of times. g
In this sense there is nothina to be gained, in terms of coverage probability,
;il: by simulating often. If we are after a 95% interval, and are not overly
.';f concerned about interval length, we might simulate B=19 times and take v=18.
To investigate this phenomenon a little more deeply, we shall examine an
- asymptotic formula for Rn(a). Here it is convenient to concentrate on a special
case, such as Studentized mean. There, ¥ = {X;,...,X } is a scalar random sample J
i from a distribution with mean u and variance cz, and 8 =y, 8 =X = n°]):X1., gq
l 82 = "-]Z(Xi - Y)Z. The bootstrap argument may be used to set confidence
*' intervals for u without knowing 02. Techniques developed in Hall (1984), although /
=
now requiring much more tedious algebra , give us H
) -1/2 -1 1
Ro(a) = w(z )e(z,) + n” "Cuy(z Jo(z)) + O(n"T)
]
E uniformly in o, where & is the standard normal distribution function, ¢ = ¢', L
{_ z, is the solution of d)(za) = a, \:
2 13,2 2 3
"' w](Z) = B‘ ('2" X3 - >\4)Z(‘ + 22 )’ l‘i
= bp2) = Ay g (1 + 229)(2" - 182° - 39) 2
~ 31 2008 4 2,2 5 2,2
. - >\3 {g‘g“ +22°)(z7 + 42" - 23) + 732 (4z°-1)}
£ 2
1 2,4 ' 270262
5 *+ Aghy {m (1+22°)(52" + 2z 139) + 36(36z 23)}
‘l.-
¥ 1 2.,.4 2 1.2,.2
~ - g {W(HZZ Y(z" - 6z -33)+1—2-z (z° - 3)1,
.
;K9
e
N

‘.
r-'
-
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and )\]. is the standardized j'th cumulant; for example, >\3 = E(X-u)3g-3 and

Aq = E(X-u)4o'4-3. An outline of the argument is given in Appendix (i). For

A bl SR

Y

simplicity, define Q_i(a) z wi(za)¢(za); then

-3/2

Plp<a) =at+ n']Q1(a) + Ty a) 0(n~?) (2.5)

uniformly in a. From (2.4) we obtain:

Sttt
11 S

1 1
a(v,B) = (v+1)(B+1)7" + n']J Q, (t)dv + n’3/2f Q,(t)dv + 0(n"%)  (2.6)
0 0

. T

uniformly in 0 < v < B-1 and B > 1. A little asymptotic analysis based on the

normal approximation to the binomial shows that

t(v,v) = 3-3'1/2 {8(]-[3)}]/22V + B'] %(1-28)(“223) + 0(8"1),

where 8 = (v + %—)B']. This expansion holds uniformly in values v e (8'2,1-8'2).

it -

. L I L
i

Substituting into (2.6) and noting that fz dv = 0, we get:

-3/2

a(v,B) =o' + n']Q](a') +n Qz(cx') + O(n']B"I + n'2),

v r 'r

where o' = (v+1)(B+1)']. This expansion is virtually identical to (2.5).

s

Coa

If B is chosen so that nominal coverage probability equals a, then a(v,B)
and P(p < a) agree to second order if B is of larger order than square root of

sample size, and to third order if B is of larger order than sample size.
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3. Critical Point

For the sake of definiteness we shall concentrate on the Studentized

mean. We shall impose Cramer's smoothness condition on the pair (X,X2):

Tim sup  |E exp(isX + ith)l < 1. ‘ (3.7) :J

|s|+[t]>e "

This condition holds for any random variable X whose distribution has a nontrivial Ei
continuous component, and also for certain singular distributions. ;?
Our initial aim is to investigate the smoothness of the distribution of T*, E;

conditional on y. Of course, T* has a discrete distribution, with atoms
determined by the sample X. We may artificially smooth that distribution by

adding small, continuous errors to the simulated sample points Yi' For example,

0wl R

take £ > 0 and let N]""’Nn be independent N(O,n-zz) random variables independent

of ¥ and Y. (Remember: x= {x1,...,xn}, Y= {Y1""’Yn}') Set ZiEYi+Ni,7én°1ZZi and

oo
L. L

T = n]/z(f'- Y)/(n'122§ - 72)]/2. g;

.::]

The presence of the smooth perturbations N, means that conditional on X, T' Zj
has a continuous distribution with density g, say. Given any X > 0 we may !m
-3

choose £ so large that with probability one,

it
voar
P

1

. »
. f
3 + ‘ 2

[ el
At t e

POIT' - T%| > n™2x) = 0 (n™) (3.2)

as n»o. In this sense, the discrete random variable T* may be approximated by

a continuous variable T', with an error of order n'k for arbitrarily larae ).

...'.‘,
" n" + v,
che s a2ty

At first sight this approximation seems spurious, and the reader is justified

v

v

in being very skeptical. It seems 1ikely that the density of g will closely

3 _1

R MO
B

JAAA'A.‘

-
¥

track the atoms of the discrete distribution of T*, and so be quite unsmooth.

14

Y

v

After all, the continuous approximation is only supported by minute perturbations

owl

A

Ny which are shrinking to zero at a rate of n'£ for arbitrarily large £.
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However, the theorem below shows that the density g is actually auite smooth.
In fact, no matter how large the value of £, g uniformly approximates the

standard normal density 4.

Theorem 3.1. A4ssume condition (3.1), and that E(IXI4+E) < e Ffor eore : > 0.
Then for each £ > 0,

sup  |g(x) - ¢(x)| ~ 0 (3.3)

=00 X< 00

alrost surely as Noe,

The proof uses standard techniques of Fourier inversion, and will be
outlined in Appendix (ii). The key to this result is the fact that the order
of the approximation in (3.2) is not required to be exponentially small. There
exist constants <, decreasing very rapidly to zero such that, if (3.2) holds for
a continuous variable T' and with ¢y replacing n'k, then the approximation at
(3.3) breaks down. In that case the density g does track the atoms of T* too
closely.

Theorem 3.1 implies that the simulated bootstrap values behave 1ike values
from a continuous distribution, provided B is not exponentially larage. For
example, suppose we conduct B simulations and use va+1) as our approximation
to the true critical point ta. Assume v is chosen so that v = aB + o(B]/z)
as B»o: this is quite reasonable, since we would usually have v = aB + 2(1).

We shall prove below that if B increases no faster than nk, for any » >~ 0, then
as B and n»~ the conditional probability P{B]/Z(va+]) -ta) < x| ¥} converaes
to the probability that a normal variable with zero mean and variance

1/2

A O -a)/@z(za), does not exceed x. Therefore B /“(T* -ta) has a

(v+1)
limiting N(0,0%) density, conditional on X and also unconditionally. This

is the limiting distribution of the «'th quantile from a continuous
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‘? distribution whose density converges uniformly to the standard normal density.
- The result will fail if B increases too quickly, but B has to increase faster %
than any power of sample size before the discreteness of the distribution of
T* beconcs apparent. Therefore, provided the sampling distribution is continuous,
N we seldom need to smooth before constructing critical points. j
N To prove the result stated in the previous paragraph, let y = ta+B'1/2x f
;. and q = P(T* f_ylx), and observe that with probability one, 1
. 3
' p!/2(T -t ) < xlx} = P(T* .\ < ylx) '
N zv+'l) al — (vi1) =Y
- B . .
=5 (&) q'1-0)% = 1 - e[(v+1-89)(Bq(1-9)} 210 (1), (3.4) .
J=v+] J J
using the normal approximation to the binomial. If we show that with probability one, N
5 q=a+8 2z +o (877, (3.5)
: b
;Qj then it will follow that the right-hand side of (3.4) converges almost surely ;
Y to ¢[x@(zu){a(1-a)}'1/2], as required. Choose A > 0 so large that B/nx+0,
'j and let T' be as in (3.2). In view of (3.2), result (3.5) will folluw if we
:i; show that for each -w=<x<~, and with probability one, E
P(T <t + 87/ 5x) = o+ 87 200z ) + 0 (877, (3.6)
‘ o L
But Theorem 3.1 implies that 3
i P(T <t + B ) = p(Tr <t fx) + 87/ Za(t ) + 0 (8713). (3.7)
. . »
- It also follows from the theorem, and from the definition of t , that <
. , , -1 -1 :
% P(T* < talx) <P(T' <t - 28 ¥y + 0 (B ') -
_ _ 3
<P(Tct -8 %) +0 (8% cavo/?, 3
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S o . -1/2 . _ -1/2 -
- and likewise P(T' < t {x) > o + 0 (B7 /7). Therefore P(T' <t |x) =a+ o (B 7). .
- Result (3.6) is now immediate from (3.7). 3
- N o (1) ~
o Appendix (i): Verification of (2.5)
o lhe proof is similar to Hall (1984), although with considerably qreater
8N
‘7f complexity. The only smoothness condition reauired is (3.1). To identify
L functions Q] and QZ’ let T be the Studentized mean and let TysTpsTy be polynomials
,If defined by the following inverse Cornish-Fisher expansion:
;i; P{T < x + n']/zn](x) + n']nz(x) + n'3/2w3(x)} = ¢(x) + O(n"z).
‘f; Formulae may be derived using results of Geary (1947); for example,
- } 2 .2 2 2
my(x) = 2{(5/72)x3 (427-1) - (1/12)3,(27-3) + (1/4)(2"+1)}.
Let nj denote the version of "5 in which kj is replaced by its samnle estimate
ij; for example, §4 = 5741 Z(Xi-Y)4 - 3. The functions Q,,Q, are obtainable
»3. from the relation
- -1/2 -1 -3/2 _ -2
7 PIT <z +n" "M (z)) + n My(z ) + n 7" Ta(z )} = P(p <o) +0(n ")
i (A.T)
o - - -
" =g +n ]Q1(a) +n 3/2Q2(a) + 0(n 2).
';-‘_'.v
'if First find the cumulants of the random variable
o : 172 -1 Y
. S{(a) =T -n H1(za) -n Hz(za) n n3(za)
Eﬁ: to order n'z; then use the cumulants to obtain an Edaeworth expansion of ‘
e P{S(a) < x} to order n"?; and finally set x = z , to obtain formula (2.5) )
via (A.1).
:Z? (1)For easy comparison with classical literature, we assume sample variance has

o divisor n-1, not n. Notice that (2.5) is invariant under changes of scale of T.
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Appendix (ii): Proof of Theorem 3.1.

Without loss of generality, E(X)=0. Let wi = Zi-Y; w2=E(W$|X),

2 -1/2

= (M, Wo-w ) U=mn

TV, L= var(U]IX), f be the density of U
conditional on x, fo be the conditional density of the bivariate normal
distribution with zero mean and covariance I, and XsXq be the characteristic

functions of f,fo, respectively. Notice that

a0

{(I+n-1/2v)(1+n -1 2) 3}1/2 3

g(x)=l Flwu(x,v),w 2,}dv, (A.2)

) -
n- 172

where u(x,v) = x{(]+n'|/2v)(|+n']x2)'l}]/2. Define 9, by (A.2) but with fo
a.s.
replacina f. It 1s easily proved that sup |go-¢| -~ 0, and so it suffices

a.s.
to show sup )g—gol > 0. For this, we may show

sup (1 + |y|9)1F(y) - foly)| 258

That result follows by Fourier inversion if we prove that for nonnegative
a.s.
integer vectors y = (Y1,Y2) with Yyt Y, <2, IIDY(X-XO)[ + 0, where D is

the differential operator. We treat only y = 0: other cases are similar.
Characteristic function manipulations common to estimates of rates of
converaence show that for some small n > 0, and for all sufficiently large n,
ntz -1_-n
sup X, (t) - x(t)le™ <n''n
Itlfnn]/z

with probability one. Therefore it suffices to prove

{ a.s.
x.(t)ldt - 0. (A.2)
172 "

[t|>nn

Notice that if N is standard normal, |E exp(isN + ith)l5 is inteqrable in

(s,t). From this fact, taking n > 5, and letting En be the empiric character-

istic function of the sample of pairs (Xi,Xf), 1 <1< n, we see that the left
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side of (A.2) is dominated by

const. n4£ sup | (t] - thf} tz)ln-s
2 2 N
t] +t2>n

edl G B o AR N T

o ) a.s.
for all sufficiently large n. Finally observe that sup lgn - Egnl +~ 0, and

invoke condition (3.1).
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