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ABSTRACT

The requirement to develop stochastic mathematical models arises across
the whole range of engineering and applied research where observations are
made of a physical process, corrupted by noise, and it is desired to determine
the underlying nature, either in time or frequency, of the observed phenomenon.
This paper presents some of the current approaches in stochastic modeling,
including adaptive autoregressive (AR) models, which have been found to be
useful in this area.
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METHODOLOGY FOR STOCHASTIC MODELING

1. INTRODUCTION

The requirement to develop stochastic mathematical models arises across

the whole range of engineering and applied research where observations are made

of a physical process, corrupted by noise, and it is desired to determine the

underlying nature, either in time or frequency, of the observed phenomenon.

This paper presents some of the current approaches in stochastic modeling which

have been found to be useful in this area.

Consider a system in which an input at produces an output yt as shown in

Figure 1.

at Yt
Input or System Output
Exci tation

Figure 1

In general we entertain the idea of expressing the output yt in terms of

its past history Yt-i, Yt-2, ... , Yt-p and the current and past history of the

excitation at, at.1, at_2 ... atq as shown

q p
Yt Y ekat-k - 4 'k Yt -k (1)

k=O k=1

Z" with e0 =1

where the coefficients 9k and *k are to be estimated as well as the parameters

p and q. Equation (1) represents an autoregressive moving average (ARMA) model

of order (p,q). It is advantageous to assume that the input or excitation at

is a zero mean gaussian white noise. For the case where all k=O we have

what is called a moving average (MA) model.

7
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q

Yt = I ek at-k
k=O (2)

and for 6k - 0 (k1) we have an autoregressive (AR) model

p

Yt = - .lk Yt-k + at (for eo =1) (3)
k=1

2. BOX-JENKINS TECHNIQUE

The Box-Jenkins [1] approach for time series analysis of observed data is

widely used and is based on the statistical properties of the data, namely, the

autocorrelation function (ACF) and the partial autocorrelation function (PAC) for

each of the AR and MA models.

a. Autoregressive (AR) model of order p: An autoregressive model of

order p, AR(p), is characterized as follows:

(1) The autocorrelation function (ACF) is either a decreasing exponential

or a damped sine wave.

(2) The partial autocorrelation function (PCF) is non zero for lags less or

equal to p and zero for lags greater than p, i.e., the PCF cutoff after lag p.

When we multiply equation (3) by Yt-k (k>O) and take expectation we obtain

the Yule-Walker equations

Pk= - 1 Pk-1 - *2 Pk-2 - . - lp Pk-p (4)

(k = 1, 2, ..., p)

where Pk is the autocorrelation function of the process yt of lag k. The Yule-

Walker equations can be solved for j when we replace the theoretical auto-

correlation Pk by the estimated autocorrelation rk, i.e., where

-1 (5)
.t=Pp .2pp(5

8
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P Pp

-1 P - 1 P1 P2 • • • pp-
02P2 P1 P p-2

*~ P2

* P1

.. __p l --Pp - --Pp-1 Pp-2 Pp-3 . . . P1 --1

Since the autocorrelation function for an AR(p) is infinite in extent, the

partial autocorrelation ;I,also called "reflection coefficient," can be obtained

from the Levinson-Durbin Algorithm [2, 3] namely

rl

r z - O t-1,j r X-j
A- j=i

t =2, 3, ... , L (6)
2I- 4 €-1,j rj

j=1

where

;Xj = X-l,j ;u ;XJ€-I, X-j (j-1,2,..., x-1.)

where rj is the autocorrelation of the sampled data of lag j with the initial

values €21 and 022 given by

;1 rI (1-r2)4€21 = . ..

1 -

r 2 -rf

;22 = -
1 -i

The 95 percent confidence interval, or (+2;), for rk and kk are given by

1 q-
Var [rk] + 2 7 rZ ; (k > q) (8)

_ i=1

(Bartell 's approximation)
9
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and

;[4kk] 1 ;(k > q)()

which are useful quantities in determining order of the model.

It is advantageous to plot the ACF (rk) and PCF (Okk) for lag 1 up to any

specified lag k with the corresponing 95 percent confidence interval +2 a

The selection of the form of the model is determined from the behavior of the

autocorrelation function and the partial autocorrelation function as follows:

a. If the autocorrelation function decays either exponentially or sinuos-

idally, and the partial autocorrelatlon function ("reflection coefficient")

cuts off after a lag p, then the model is AR (p) i.e., no moving average terms

exist.

b. If the autocorrelation function cuts off after lag q, drd the partial

autocorrelation function decays either exponentially or sinusoidally, then we

have a moving average model MA(q) i.e., no aiatogressive terms exist.

c. Should there be no cutoff in either the autocorrelatio functi n or

partial autocorrelation function, and they independently decay either exponen-

tially or sinusoidally, then the model is ARMA (p, q) i.e., autoregressive-moving

average of order p, q respectively, so that there exist both autoregressive and

moving average terms.

The Box-Jenkins procedures for ARMA modeling are given as follows:

Program #1:

Define expected value and variarff as follows:

I N
(Expected value) X r xt

N t=1

(Variance) 5x C

Autocovariance function:

10



1 N-k
Ck = - I (x ) (xt+k -X)

N t1l

k - 0, 1, 2, ... , K

Autocorrelation function:

rk =  k = 0, 1, .., , K
co

Partial Autocorrelation function:

riL-.

r - 1 -1,j r t.j
j=1

oi= .......... ... .l = 2,3,4... L
t -1

1- . -1,j rj

j=1

where

tj= *t-1,j - Ctt 01-1, Z-j j=1, 2, ... ,

Each of the autocorrelation functions and the partial autocorrelation functions

are plotted as a function of the lags.

Program #2:

For an ARMA (p,q) model represented by

xt = 01 xt-1 + ... + * p xt-p + 0o+at - Olat-1 - 02 at-2 -... Oqat-q

we estimate the AR parameters =(1, 02,..., *p) for P>O by solving

the linear equation

A to =x (p > 0)

where

Aij - c (p+q>O, K> p+q)
jq+i-jj

xi cq+ i  (Ck, k = 0, 1, "'" , K )

i, j=1,2,...,p

-o (10, 20, '" pO)

'" 11
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To estimate 0 of the moving average parameters we use the autocovariance

of xt, namely Ck, and calculate{p p
I10 k I iO OkO c lj+i-kl 00 I0 = -'.-;I =0 K=0

cj p=0 (j=0, 1, ..., q)

Box [1] then applies to the Newton-Raphson algorithm

T i+1 = Ti - h

where

Tih = fi

To calculate the vectors Ti+1 at the (1+1) iteration from its value T i at
the ith iteration

."L -(TO, T1, .. Tq)

q-jfj~
= Ti i+j - cj

1=0 i+-
_ = (f0 , fl, ... , fq)

TO I ...... Tq TO T1 . . . . Tq
T1 T2 • Tq
. + TO Ti.. Tq.1

Tq 0 0

Newton-Raphson algorithm converges when IfiI< c, j=0, 1, ... , q for some

prescribed E with

Ojo = -Tj/TO j =i, 2, q

p
(1I Oio) p>O0)00 =  l

p=0

12

...+ . ........."......""."'"''+ .-..... *.........-....,- . . . . . . .. R'"' ' | ~~a""°' '
w"ia 

''
'' ie B|1eZ•' 

°
.. . . ... .. .. .. ..." 

" •
" 

~ "
"""+ "" 

'
"" " 

' '
"'" "'' "

° '



" and the estimatea of white noise variance

T6 q>O

2
aa =

- iq=O

We therefore have calculated all the parameters in the ARMA (p, q) model.

3. OVERDETERMINED RATIONAL MODELS

Cadzow [4] has developed spectral estimates using an overdetermined set of

Yule-Walker equations for a rational model. The procedures are summarized below:

1. For spectral models employing exact autocorrelation lag information.

a. Moving average model (MA), a Blackman-Tukey approach is used for

determining the spectrum SX (ei ) namely

q
Sx (e4') = ] w(n) r x (n) e j on (10)

mwhere w(n) is a desired data window, a wide variety of which can be located in

o [5, 6, 7].

rx(n) is the exact autocorrelation function of lag n for the observed

signal x(t).

b. Autoregressive model (AR) - Having determined the order p of a purely

autoregressive model from Box-Jenkins technique by studying partial autocorrela-

. tions, we form a (p+l)x(p+l) AR autocorrel.ation matrix R whose elements are

R(ij) = rx (i - j) 14 i ( p + 1 (11)
1-. j • p + 1

Solve for Ra= lboi2 e_

where a = (1, al, a2 .... ap)' (12)

"' : (1, o 0 )-

13
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and bo is selected so that the first component of a is one.

Using the value of a just calculated, the spectrum Sx (ej1 ) is given by

Sx (eJ1)= (13)v1+a, e-J '  +... + ape -JP

A more efficient method for calculating recursively the components of a and at

the same time determining the order of the AR model is the Levinson-Durbin

algorithm. The procedure for coefficient determination is as follows:

Step #1

al - rx (1)/rx(O) (14)

_b6l)1 2 = [i - I all)12 rx (0)

where we define aik) as the jth coefficient associated with the kth iteration

Step #2. For k = 2, 3, 4 ...

k-(k) = . [ rx(k) -1 am (k-i) r (k-m)]/ I b6k-l)1 2  (15)

a! x.k + r. km](5
a4k) = ak-i) + 4k) ak-1i) 14 i ;(k-i)

ib k)12 = - aik) 12 ] Ibmk-l) 12

The iteration stops when bk) assumes a constant value or a sufficiently small

S % value after sane value of "k" which thus establishes the order of the model.

c. Autoregressive moving average (ARMA) - In general an ARMA model takes

the form

p q
x(n) + I ak x (n-k) = I bk c (n-k) (16)

k=1 k-0

14
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where [ e(n)) is normalized white noise. For a model to be causal the Yule-

Walker equations take on a simple form for n>q

p
ak rx (n-k) = 0 n> q + 1Ik-O (17)

For an overdetermined model, the extended Yule-Walker equations for q+l < n < q+t

i.e., t linear equations in p autoregressive parameter unknowns, is given by

-rx (q+l) rx (q) . . . rx (q-p+l)- 1 0
rx (q+2) rx (q+l) . . . rx (q-p+2)

* . aI 0
* • n(18)
* . a2  0

I

*. . .

*' . ap 0
_rx (q+t) rx (q+t-1) . . . rx (q-plt)_ _ _ _ -

or simple RI a 0

where RI is a Toeplitz matrix

RI (i,j) = rx (q + 1 + i - j) I i t
14 j 4 p +1

where
a= (1, a1, a2 , ... ap)

are the (p+l) autoregressive coefficients and

rx (n) = E I x (n + m) i (m)1

Using the above developed structure the algorithm for ARMA model is as follows

1. Form the t x (p+1) ARMA autocorrelation matrix Rl. Define R* as the

transpose complex conjugate matrix.

2. If the rank (Rl Rl) < p+1 then solve

R, Rla = 0

using singular value decomposition (SVD) to determine "p". Discussion on SVD

will be presented later in this paper.
15
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3. If the rank (R* R1) p 1 then we solve

RR 1 a = a (19)

where e1 - (1, 0, ...0), and a is a normalizing factor so that the first

component of a is one or we can find the minimum elgenvalue () and associated

elgenvector xk.

Xk < Xk+1 (eigenvalues)

so that

a! (20)
xI (1)

which now gives the AR coefficients.

4. The moving average component to the AR' model is determined using the

AR coefficients.

Spp
r s (n) = I ) ak-im rx (n+m-k) (21)

k=O m=0
0N n 4q

with rs (n) = 0 n > q

so that the moving average component of the spectrum is given by

q
SM (eJw) = ( r (n) e-Jwn (22)

n=-q

To find the zero's zk of SP% (ejw)

q
SMA (eJ ) = lbo! 2 H (1-zkeJw) (1 - YkeJw) (23)

k=1

where we require Izk I < 1; all the zero's of SMA(eJ") will be conplex conjugate

pairs. With

q q
I bke'J = b0  H (1- -J

k=O k=0 zke) (24)

16
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we can compare coefficients of e" wk to determine bk. Thus for the

rational ARM modelL q
rs In -Jw n

S r5 (n) ejo
n=- q

1 1 + a, e1Jae + .... + ap eiJPw 12

where Sx (e
Jw) is the spectrum.

2. For spectral models using only a finite number of observation so that

we have only estimates of the autocorrelation function, Cadzow [43 has identified

the following procedures.

a. Mbving average model - We again use Blackman-Tukey procedure, I.e.,

q
Sx (eJw) = I w(n)rx(n)e'Jwn (26)

n=-q

where

1 N
rx(n) = - Y x (k+n) V(k)

N k=1 -q< n 4 q

rx(n) = 0 outside

2n/(N-1) 0 n < (N-1)/2
win)= 2-2n/(N-1) (N-1)/2 < n < (N-i) (27)

1 0 otherwise

w(n) is known as the Bartlett window.

Any "suitable" window w(n) can be used to weigh rx(n): for the present, we use

w(n)=l.

b. Autoregressive model (AR) -

1. Compute R(ij) = rx (i-J) for 1 • 1, j < p + 1

1 N
R(i ,j) = x (k+i-J)(k) (28)N-ji-JI k=1 (8

17
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2. Ra = bo I2t
where bo is selected to normalize first component of a, i.e., a(1) = 1.

SAR (eJw)= bo (29)

p
1 + I ane

n=l

c. Autoregressive moving average (ARM%) model - For an AR4 model the AR

components are calculated first, as follows:

I. Compute the autocorrelation matrix estimate kj whose elements RI (i,J)

are given by

I (i,j)= rx (q+l+i-J) (30)

for 1 < i < t and 1 < j < p + 1 so that ki is a tX(p+l) matrix. The rank of

R1 is equal to the min (t, p+1). If the number of etgenvalues are computed

for Rj* R1 it will be equal to min (t, p+l) so that if t>> p+1 we can be

assured that rank R1R1 =P+I. Hence p, the order of AR component of our

model, is determined. The value of t will be bounded, typically selected, to

be p < t < N - q - 1.

2. Solve for a in equation R WRa = ft where a is a normalizing

constant so that 1st component of a0 is 1 and W is a diagonal weighting matrix

which is taken as I (identity) where R1 is unbiased.

3. R W RI(i,j) = .w(m) (q+m+l) ; (q+m+i-j) (31)
m=1

for I < 1, j < p + 1 with w(m) correspopnding to diagonal elements of diagonal

weighting matrix W.

18
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4. Compute (Ij W 1j)' and

* solve for aO

a0 _ (R t (32)
-aO(1)

* which normalizes a so that 1st component of a0 is 1.

p
IAp(eJ w)J2 = j 1 + i a2 ej wkj2 (33)

k=1

* Moving average model. Several methods exist for computing the moving average

* coefficients which require spectral factorizatlon of the moving average spectrum.

Method #1 - The system to be described generates a moving average "residual

signal" obtained by passing the observed data x(t) through a filter whose

transfer function is the denominator of the ARMI model, hence an AR(p), thus

producing a moving average output whose MA spectrum Bq corresponds to the

; original ARMq model. System is described in Figure 2.

White noise Bq Observed Data Residual signal
. -7• Ap

iS
Ap

" Figure 2.

Define sf(n) = ak x(n-k) p+1 < n < N (34)
k=O

sbn)= I ak x(n+k) 1< n < N-p
k=O

19* . .. - . . *



r N-p-n
ri(n) I sf(n+p+k)f(p+k)+Sb(fn+k)b(k) (35)

(N-p-n) k-1 r I

for O<n<q and rs (-n) = rs(n). It should be noted that for a moving average

model rs(n)=O for n.q+l. The spectrum SMA (ejw) is given as follows

q
Sm%(eJ() = Bq (eJ()1 =I w(n) (snle-Jon (36)

n=-q

where w(n)= (, ) q f ) (37)
N-p q+ 1

* For w=1

IB (eJw)12  [l+rs(1) (z-l+z)+...+rs(q)(z-q+zq)] (38)

where z = ejW

In general we can find the zero's zk of IBq(eJW)12 = Bq (eJi) Wq(eJi)

and carry out a spectral factorization
q

IBq(eJw)1 2 = 1 (1-zke-Jw) (11k eJw) (39)

. so that

q
Bq(eJw) = bOkR (1-zk e-j() (40)

* Since
q

Bq(ej(U) I bk e -jwk
-k =O ( 4 1 )

*; we have

q q
I bk e = bo n (lzke'Jw) (42)
=- k=1

20
-a . ... . .. ' * * * * *



By equating coefficients we determine the values of bk.

Ithod #2. Assuming the AR parameters ak are known, we define the 
autocorrelation

function rx(n) and its causal image r+(n) as follows

rx(n) = E { x (n+m) x*(m) } ; n=O, +1, +2,

I
,"r(n) = r (n)u(n) - - rx (0) 8 (n) (43)

X " 2

11 n0-
where u(n) = standard unit step =• 0 n<O

SO)= Kronecker delta sequence

,.1 n :0

"0 n 0

and rx(-n) = rx  (n)

Noting that rx(n) = r+(n) + rx (-n)*

we have Sx(eJw) = Sx (e) + Sx (44)

= 2 Re [S+ (eJw)]

which is the spectrum of the signal

p

and c(n) = r+(n) +kF ak rnn-k) 0 nax (q,P) (45)

k-1

= 0 n outside interval

Define
s

Cs(eJw) = ' c(n) eJ~ n  where s = max (qp)
n=O

21
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so that

m,.'C s(eJ41) =[1+n1 an e-Jwn] S+ (eJw) (6

C5 es n x1 (46)
n=

then

( ) Cs (eilo) Cs (eJw)
X Ap (eJw) A*(ejw)

A*(eJw) (Cs(eJw) + Cs(eJw) A (eJw)

A (eJw) A* (eJw)p p
However B (ejw)B*(ejw) = A*(eJw)C (eJw) + Ap(eJw)Cs (ejw)

q q p se (ep C (ew

so that if we find the zero's of Sx (e
J() identified as zk and using spectral

factorization we can determine the bk by equating coefficients in

q q
k bk e-jwk = bOR (1-zkz-1) for IZk 4 1 (48)

k=O k=1

to maintain minimum phase.

4. ORDER DETERMINATION

A fundamental issue in applying the methods that have been presented is

that the order of the model needs to be determined. Methods that have been

used include:

1. Levinson-Durbin Method for pure AR.

2. Test for autocorrelation function, rs(n)=O with n>q+l for pure K.

A new method receiving considerable study is the singular value decomposition

(SVD) using the Frobenious norm of a mxn matrix difference, A-B,

defined as

m n 1/2
11A - B 11 )7 lai bij 12

i=1 J=1 (49)

22
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The SVD is carried out as follows:

1. Set Pe " p. qe >> q for t >> p

2. Form Re:

rx (qe+l) rx(qe) .............. . . . . . rx(qe-Pe+1l)
rx (qe+2 ) rx(qe+l) ............. . rx(qe-Pe+2

Re=

rx (qe+t) rx(qe+t-1) .... ............. rx(qe-Pe+t)

This is a tx(Pe+l) matrix which satisfies

Re a m (50)

for which Re = U Z V*

where U and V are unitary matrices

3. Determine eigenvalues Akk of ReRe

4. Take Okk =+ V xkk, called the singular values, which are ordered

011>022>...> Ohh>O where h = min (t, Pe+1 )

5. Form the matrix ReRe* which is nonnegative hermitian. Using the

Gram-Schmidt method for calculating elgenvectors, determine the columns of U,

txt matrix, corresponding to ordered orthonormal eigenvectors of ReRe.

6. The columns of V are the orthonormal eigenvectors of ReRe. V is a

(Pe+l)x(Pe+1) matrix.

7. Ztx(pe+1) is a matrix whose elements are zero except possibly along

main diagonal, akk.

Form A(k) = U Ek V*

where E k is obtained by setting to zero all but its "k" largest singular values.
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8. Finally, we define

I10iAk) 11
v(k) = - (51)I IJAI I

[Ul+ 021+---+ Oki 11/
2

so that as v(k)---) 1 as k - p, the order of our model.

The above approach requires that singular values be generated for carrying out

SVD. Improved accuracy for computing singular values has been developed by

Dongarra [8].

The work of S. Y. Kung [9] using state space variables with SVD has recently

demonstrated superior spectral estimates than estimates obtained in terms of

transfer function parameters. The work in this area should be explored for

improved estimates for perturbed covariance data.

5. ADAPTIVE MODELING

The goal of this investigation is to develop refined models which adapt to

a changing environment. Naturally, it becomes appropriate to develop adaptive

models which continously update the parameters as new time series observations

become available (x(N+1), x (N+2),...). To start this investigation it will be

appropriate to develop a class of adaptive autocorrelations estimates and

adaptive algorithms which from experience have proved most successful. We will

define an adaptive class of autocorrelation estimators as follows.

1 n+k2-1
R(i,j) x (k+l-i)x(k+l-j) (52)

(N + k2 - ki) k=kl

where N is the total set of observations
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1 < kl, k2 4 P +1

with kj and k2 selected so that the number of lag products (N + k2 - kI)

is at least equal to p+l.

The data matrix R which uses R (i, j) as its (i, J) elements can be

written in the form

N + k2-k1  XN X  (53)

where XN is a (N + k2 -kl) x (p + 1) data matrix such that

XN (i, j) - x (ki + i - j)

and

1 < i'< N + k2 - k1

1 < j < p+ 3.

It should be noted that we set x = 0 whenever kj +i-j falls outside the

- observation set 1 < n < N.

We have now established the data matrix to be used in adaptive modeling.

Experience has shown that R is unbiased and provides consistent statistics

when k1=p+l and k2=1. This method is called the covariance method.

*AR Model - Covariance Method:

As indicated, with kj = p+1 and k2=1,

XN XN 2 = (N+k2-kl) Ibo1 2 t_ (54)

*- where bo is selected to normalize 1st component of _aN to 1.

; Now let

XN+ XN+ = XN XN + .N+1 -!N+1 (N> p+l) (55)
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where j+1 = Ex (N+1), x (N), ...,x (N+1-p)]
For k2=1 and N = p+l, and the initial value XNXN=X+I Xp+ I so that

p+1
Xp+1 Xp+1 = 7 (k+1-i) x (k+l-j) (56)

k=kl

for 1i<p+l and 1<j<p+1. As can be seen from the expression for aNj we need
to compute [XN+ I XN+1

] '. This is given by

EX*+lXN+1(- = CXN*XNJ'- Y*+i YN+1) (57)

(1 + YX+1 2SN +i)

where

ZN+1 = ._ N+1 [X*XN]'I for N~p+k1

Accordingly, using Gaussian elimination, we can calculate [XNXN- 1 for N=p+kl

so that for all N> p+kj, we can calculate [XN+lXN+l]  using the above expression.

This will be used for updating the parameter aN+ 1 .

AR adaptive algorithms then require the following steps:

Step 1: Input data: x(N+1), [XNXN ] 'I

Step 2: Compute: [XN+IXN+

Step 3: Let c = [XN+IXN+I]

Step 4: N+1 = c(1)-1 c where c(1) is the 1st component of c

The problem of AR order determination still remains as in the non-adaptive case.

The approach recommended in using raw time series data where R (ij) =rx (i-j)

for 1i,j~p+l is to find the order "pl" for which R has (p-p1) of its eigenvalues

sufficiently close to zero for all p>pl. This could be carried out using SVD.

ARIP Adaptive Modeling:

* As in the AR adaptive model we need to define R1 (i, j) which we do by using

1 N-q+2+k2
R1 (ij) = x (k+l-i)x(k+q+2-j) (58): (N+k2-kl-q-i) k~kl
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with li<t and 1cjp+l.

Z kl(i,j) rx (q+l+i-J)

The number of lag products, (N+k2-kl-q-1), is selected such that

(N4k2-kl-q-1)>p+l and 1 < kj < t 1 < k2 4 p+1.

As in the AR adaptive model the covariance method had preferred properties, in

the ARM adaptive model the covariance method with kl=t amd k2=1 has similarly

been demonstrated as being unbiased and statistically consistent.

ARK Covariance Method:

As indicated we constrain the parameters k1 , k2 as shown: kI = t, k2 = 1,

then we write RI as follows

i ( N+k2 _kl-q-1 YN XN (59)

wherewXN(ij) = x (kl+q+l+i-J)
" for

for 1 < i < N+k2 - k1 - q - 1

1 < j < p+l

with
YN (i,j) = x (kl+i-J)

and 1 < 1 4 N+k2 - kI - q - 1

1 Cj ' t

with x(n) = 0 for n>N or n<1

To determine the AR parameters we need to solve

. N YN YN XNN A - (60)

where a is selected for the first component of aj equal to 1.

When the updated A+, parameter is calculated we will require YN+IXN+l •
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This can be calculated using

YN N+l = YNXN + N (Nt)

where = [x(N+1), x(N),...,x(N+l-p))

N= [x(N-q),x(N-q-1),...,x(N+l-q-t)J

so that for N)t

XN+lYN+lYN+lXN+l = XN YN YN XN + -N zN + KN + N-N(61)

and

-N = N YNXN

The best overall ARMPA adaptive 1i4odel performance is the covariance method

for k2=1 and kl=t (ki can range in the Interval 1 < kl t); the ARMA adaptive

model algorithm for k2=1 and 1 4 kl q t is given as follows:

Step 0: The input to commence the algorithm at N = q + p + kl + 1

is YN XN and IX YN YN XN]'

which can be calculated by Gaussian elimination.

Step 1: N = q + p + kl + 1

Step 2: Compute YN+I XN+1 from
YN+1 XN+1 = YN XN + N

_N = [x(N+I),x(N),...,x(N+I-p)]

yN = Cx(N-q),x(N-q-1),...,x(N+l-q-t)J

Step 3: KN =YN XN

Step 4: =KN

Ail = (XNYNYNXN)"

Compute [A, + u_,l from
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[A"- J =A 1  
- [A-Iu*] [vA-1)

= [A + uA-,; (1+_±A-1u*
"I ~ Step 5: Y -2 = -AN

A il = [A, +u 4 v_.]-I

Compute [A2 +_ v2 -2-1 fran step 4

Step 6: .= (INN) N

A31 = [A2 + * 2 -1

Compute [A3 + * Y-3] "1 = [XN.IYN+lYN+XN+1]"

from step 4.

Step 7: c a [XN+IYN+IYN+IXN+I] el

where -2N+I = [c(i)]'1 c

c(1) is the first component of c.

Step 8: Let N = N + 1, go to step 2.

We have presented a sufficient number of useful methods that should be

explored in stochastic modeling for any application you may have in mind. The

application of SVD provides an important method for determining order of the

model. The recent results by S. Kung using state space and SVD appear to

provide higher resolution models and should be evaluated for Army applications.

The next page is blank.
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