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ABSTRACT

The requirement to develop stochastic mathematical models arises across
the whole range of engineering and applied research where observations are
made of a physical process, corrupted by noise, and it is desired to determine
the underlying nature, either in time or frequency, of the observed phenomenon.
This paper presents some of the current approaches in stochastic modeling,

including adaptive autoregressive (AR) models, which have been found to be
useful in this area.
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METHODOLOGY FOR STOCHASTIC MODELING

1. INTRODUCTION

The requirement to develop stochastic mathematical models arises across
the whole range of engineering and applied research where observations are made
of a physical process, corrupted by noise, and it is desired to determine the
underlying nature, either in time or frequency, of the observed phenomenon.
This paper presents some of the current approaches in stochastic modeling which
have been found to be useful in this area.

Consider a system in which an input ay produces an output yt as shown in

Figure 1.
at yt
Input or System ‘ Output
Excitation —
Figure 1

In general we entertain the idea of expressing the output y¢ in terms of
its past history yt-1, ¥Yt-2, +-» Yt-p and the current and past history of the
excitation ag, at-1, at-2 ... at-q as shown

q p
yt = kzoekat-k 'kzl¢k Yt -k (1)
with o4 =1
where the coefficients 8y and ¢y are to be estimated as well as the parameters
p and q. Equation (1) represents an autoregressive moving average (ARMA) model
of order (p,q). It is advantageous to assume that the input or excitation ag

is a zero mean gaussian white noise. For the case where all ¢x=0 we have

what is called a moving average (M\) model.
1
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q
kEO (2)

and for 6 = 0 (k>1) we have an autoregressive (AR) model

p
yt -k§1¢k Y-k * 3t (for 8¢ =1) (3)

2. BOX-JENKINS TECHNIQUE
The Box-Jenkins [1] approach for time series analysis of observed data is

widely used and is based on the statistical properties of the data, namely, the

autocorrelation function (ACF) and the partial autocorrelation function (PAC) for
each of the AR and MA models.

a. Autoregressive (AR) model of order p: An autoregressive model of
order p, AR(p), is characterized as follows:

(1) The autocorrelation function (ACF) is either a decreasing exponential
or a damped sine wave.

(2) The partial autocorrelation function (PCF) is non zero for 1ags less or
equal to p and zero for lags greater than p, i.e., the PCF cutoff after lag p.

When we multiply equation (3) by yi.x (k>0) and take expectation we obtain

the Yule-Walker equations

PK= = 61 Pk=1 = 92 Pk=2 = «e+ = 6p Pk-p (4)
(k=1,2, ..., p)

where pyg is the autocorrelation function of the process yy of lag k. The Yule-
Walker equations can be solved for ¢; when we replace the theoretical auto-

correlation pk by the estimated autocorrelation r¢, i.e., where
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$=Pp 2p
01 o1 1 Pl P2 « o+ «Ppel
$2 P2 Pl Pp=-2
. . P2
¢=1. 3 By s . 3 Pp = .
. . . pl
_fp_ Pp— _Pp-1 Pp2 Pp-3 - » -P1 1

Since the autocorrelation function for an AR(p) is infinite in extent, the

partial autocorrelation 312,also called "reflection coefficient,” can be obtained

from the Levinson-Durbin Algorithm [2, 3] namely

[ ri 2=1
-1
re -'21 0g-1,j " 2~j
-~ J=
dog = L=2,3, ..., L 6
{ u (6)
Lo T g1,y
j=1
\
where
';zj = $z-1,j - su ‘;g-l, 2=j (j=1,2,..., 2-1.)

where rj is the autocorrelation of the sampled data of lag j With the initial

values ¢21 and ¢22 given by

. ry (1-r2)
$21 =
l- rf
(7)
A rp - rf
022 =

The 95 percent confidence interval, or (:28 ), for rx and 4kk are given by

- q -
1
Var[r]::_—1+2§r‘2 ; (k> q)
k /Nl i l (8)

(Bartell's approximation)
9
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and
R 1
ofekk] = ~ (k > q) (0)
which are useful quantities in determining order of the model.
It is advantageous to plot the ACF (rg) and PCF (¢yk) for 1ag 1 up to any
specified 1ag k with the corresponding 95 percent confidence interval +2 o.
The selection of the form of the model is determined fram the behavior of the
autocorrelation function and the partial autocorrelation function as follows:
a. If the autocorrelation function decays either exponentially or sinuos-

idally, and the partial autocorrelation function (“reflection coefficient")

cuts off after a lag p, then the model is AR (p) i.e., no moving average terms
exist.

b. If the autocorrelation function cuts off after lag q, and the partial
autocorretation function decays either exponentially or sinusoidally, then we
have a moving average model MA(q) i.e., no autogressive terms exist.

c. Should there be no cutoff in either the autocorrelation functiun or
partial autocorrelation function, and they independently decay either exponen-
tially or sinusoidally, then the model is ARMA (p, q) i.e., autoregressive-moving
average of order p, q respectively, so that there exist both autoregressive and
moving average terms.

The Box-Jdenkins procedures for ARMA modeling are given as follows:
Program #1:
Define expected value and variar.c as follows:
1 N

(Expected value) x = — " oxp

N t=]

(variance) si = Cq

Autocovariance function:

10
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1 N-k _ _
ck = = 1 (xg = %) (xgeg =~ X)
N t=1
k‘o,l,z, s ’K
Autocorrelation function:
Ck
€0
Partial Autocorrelation function:

rk= k"'o,l,...,K

( r 2=1
g-1
re - ,21 0g-1,j " 2-j
- J=
$pg = ﬁ g =2,3,4... L
2-1
1 = y ¢2°1’j J

where
89,5 = 62-1,j - o2 62-1, 2-] =1, 2, .oy -1
Each of the autocorrelation functions and the partial autocorrelation functions
are plotted as a function of the lags.
Program #2:
For an ARMA (p,q) model represented by
xt = 61 xt-1 + ... + ¢ p Xt-p + 00*at - 61at-1 - 62 at-2 -... 8qdt-q
we estimate the AR parameters ¢ =(¢1, ¢25..-» ¢p) for p>g by solving

the linear equation

Aso = x (p > 0)
where

Ajj = ¢ . (p+g>0, K> p+q)
la+i-J|

Xi = Cq+i (cks kK=0,1, ..., K )

i, j=1,2,...,p
9;0 = (¢109 ¢20, «oy ‘pr)
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To estimate 6 of the moving average parameters we use the autocovariance

of xt, namely cg, and calculate

p P .

) I ¢i0 6k0 C |j+i- p>0 (400 = -1

) Lo Lo Hi10 ¢k0 |i+i=k| $00 )

Cj =

Cj p=0 (3=0, 1, ..., q)

Box [1] then applies to the Newton-Raphson algorithm
Ti+1 =T1' _h

where

Tinh = ii

To calculate the vectors titl at the (i+l1) iteration from its value <1 at
the ith iteration

I = (TOS Tls -+ Tq)
_4J .
fJ -]ZO T T.i+j - CJ-
fr = (fo, f1, ... , fg)
T T]e e e . Tq T t1.... 1q
1112 ... 1g

q

——

Newton-Raphson algorithm converges when |f;|< e, j=0, 1, ..., q for some

prescribed ¢ with

850 = ~tj/x0 §=1,2, .y q
/ _ p .
. x (1 -7 040 p>0
%00 = i=1
; p:O
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and the estimate g4 of white noise variance

L 1:6 a0
- 2
o' =
a P
co -] d4cy q=0
i=1
We therefore have calculated all the parameters in the ARMA (p, q) model.

3. OVERDETERMINED RATIONAL MODELS
Cadzow [4] has devel oped spectral e§timates using an overdetermined set of
Yul e-Walker équations for a rational model. The procedures are summarized below:
1. For spectral mndels employing exact autocorrelation lag information.
a. Moving average model! (MA), a Blackman-Tukey approach is used for
determining the spectrum S, (eim ) namely

q
S, (ed®) =7 w(n) r, (n) e~dun
n=-q -

(10)
where w(n) is a desired data window, a wide variety of which can be located in
(5, 6, 7].
rx(n) is the exact autocorrelation function of lag n for the observed
signal x(t).
b. Autoregressive model (AR) - Having determined the order p of a pure{y

autoregressive model fram Box-Jdenkins technique by studying partial autocorrela-

tions, we form a (p+l)x(p+l) AR autocorrelation matrix R whose elements are

R(1,§) =ry (1 =3j) lkicp+l (11)
1< j < p+ 1
Solve for Ra = |b°|2 8
where a = (1, aj, a2 .... ap)° (12)

e1=(1,0 ....euuea 0)°
13
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_.and bg is selected so that the first component of a is one.

..........................................
...................................................

Using the value of a just calculated, the spectrum S, (edv ) is given by

. bg 2
X (er) = S - (13)
lta; emd + ., + a, e -Jpw

S

A more efficient method for calculating recursively the camponents of a and at
the same time determining the order of the AR model is the Levinson-Durbin -
algorithm, The procedure for coefficient determination is as follows:
Step #1

1) = - ry (/ry(0)

(14)
|b61)|2 =[1-| a{1)|2] r (0)

where we define aSk) as the jth coefficient associated with the kth iteration

Step #2. For k=2, 3, 4 ...

k-1 . N o
) = - D+ 1oy (K1 ry (em/ | ofeeD) 2 (15)
agk) = agk'l) + aék) ak_gk‘l) 1< i < (k1)

Ibék)lz =[1-| a|((k) IZ ] |b6k-1) |2

The iteration stops when bék) assumes a constant value or a sufficiently small
value after some value of "k" which thus establishes the order of the model.
c. Autoregressive moving average (ARMA) - In general an ARMA model takes

the form

P

q
x(n) +k£1ak x (n-k) =k§0 bk € (n-k) (16)

14
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where [ €(n)] is normalized white noise. For a model to be causal the Yule-

Walker equations take on a simple form for n>q

p
-k) =0 mq+l
kz=0 % rx (n-k) | (17)

For an overdetermined model, the extended Yule-Walker equations for g+l < n < g+t

i.e., t linear equations in p autoregressive parameter unknowns, is given by

ry (q¥1) rx (q) . . . . . rx (g-ptl) 1 0
L™ (Q"'Z) rx (q+1 ) « o o o Iy (Q' p+2 )
. . aj 0
Y L] (18)
. . a2 o
. . ap 0
_rx (g+t) ry (gq+t-1) . . . rx (a-p*t) _ - _

or simple Rpa=0
where Ry is a Toeplitz matrix
Ry (1,3) = rx(@+1+1i-j) <ict
K j<p+l

where
a=(1, q, 3, ... ap)

are the (p+l) autoregressive coefficients and
ry (n) =€ { x(n+m x (m}
Using the above developed structure the algorithm for ARMA model is as follows
1. Form the t x (p+l) ARMA autocorrelation matrix Ry. Define R; as the

transpose complex conjugate matrix,

® 2. [If the rank (RI Ry) < ptl then solve
S R} Rja = 0
using singular value decomposition (SVD) to determine "p". Discussion on SVD

- will be presented later in this paper.
’ 15
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3. If the rank (RI Ry) = ptl then we solve
RI Ry a = agg (19)
where e; = (1, 0, ...0)” and a is a normalizing factor so that the first
component of a is one or we can find the minimum eigenvalue (1) and associated

eigenvector xg.

Ak < A+l (eigenvalues)
*
Xg X = 1
so that
0 1
a = S| (20)
x1 (1)

which now gives the AR coefficients.
4. The moving average component to the ARMA model is determined using the

AR coefficients.

p P
rg (n) = kZO mZO ak ay ry (n+m-k) (21)

0< n <q
with rg (n) =0 n>gq
so that the moving average component of the spectrum is given by
. q
Sy (e3©) :.iq re (n) e-Jjun (22)

To find the zero's z; of Sy (ed®)

) q . .
Sua (ed¥) = |b0|2 kEI (1-z,e73%) (1 - z,edv) (23)

where we require [z; | < 1; all the zero's of SMA(ejm) will be complex conjugate

pairs. With

n = o0

q
~juk - _
L, e o o (1 - zemdu)

k 0 (24)

16
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we can compare coefficients of e-Juk to determine by. Thus for the

rational ARMA model

q
T rg(n) e7dun
n=-q
S, (edv ) = (25)
x 1€ | 1+q edu 4 L4 a, e~3pw 2

where S, (ed®) is the spectrum.

2. For spectral models using only a finite number of observation so that
we have only estimates of the autocorrelation function, Cadzow [4] has identified

the following procedures.

a. Mving average model - We again use Blackman-Tukey procedure, i.e.,

q
Sy (edv) :=§qw(n)?x(n)e‘j““ (26)
where
ry(n) = ! ? x (k+n) X (k)
N k=1 ~g< N <q
re(n) = 0 outside
2n/(N-1) 0<n< (N-1)/2
w(n)= {2-2n/(N-1) (N-1}/2 < n < (N-1) (27)
0 otherwise

w(n) is known as the Bartlett window.
Any “"suitable" window w(n) can be used to weigh ry(n); for the present, we use

win)=1.
b. Autoregressive model (AR) -

1. Compute R(1,j) = re {(i=§) for 1 < i, j<p+1

1N
—_— T x (k+-1)%(K)
N-14-31 & (28)

17
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2. Ra = |bg|%,
where bg is selected to normalize first component of a, i.e., a(l) = 1.
3. b 2
SAR (e'j“’)= l g l

1+7 a, e~Jun
n=1

(29)

c. Autoregressive moving average (ARMA) model - For an ARMA model the AR
components are calculated first, as follows:
1. Compute the autocorrelation matrix estimate Ry whose elements Ry (1,j)

are given by
Rl (i,3)= ry (q+l+i-j) (30)

forl <cic<tandl<j<p+1 sothat ﬁl is a tX(p+l) matrix. The rank of
ﬁl is equal to the min (t, p+l). If the number of eigenvalues are computed
for Ri* Ry it will be equal to min (t, p+l) so that if t>> p+l we can be
assured that rank RIR1=p+1. Hence p, the order of AR component of our

model, is determined. The value of t will be bounded, typically selected, to

bep<t<N-gq-1.

2. Solve for a in equation ﬁ; Hﬁg = a e; where « is a normalizing
constant so that 1st component of 39 is 1 and W is a diagonal weighting matrix

which is taken as I (identity) where Ry is unbiased.
Ak L a t N .
3. Ry WRyli,g) =mZIW(m) r (gtmtl) r (qtm+i-J) (31)

for 1 < i, j < p+ 1 with wim) correspopnding to diagonal elements of diagonal

weighting matrix W.

18
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4. Compute (R W R;)~! and

solve for a0

R WR)le,
20 = R R e (32)
- a0(1) '

.which normalizes a so that 1st component of a0 is 1.

I3 p »
|Ay(ed w))]2 = |1+ kzl af e wk|2 (33)

Moving average model. Several methods exist for computing the moving average
coefficients which require spectral factorization of the moving average spectrum.
Method #1 - The system to be described generates a moving average "“residual
signal" obtained by passing the observed data x(t) through a filter whose
transfer function is the denominator of the ARMA model, hence an AR(p), thus
producing a moving average output whose MA spectrum Bq corresponds to the

original ARMA model. System is described in Figure 2.

White noise Bq Observed Data T Residual signal
X s -
Ap
Figure 2.
p ~
Define s¢(n) =7 ax x(n-k) ptl < n < N (34)
k=0
P - '
sp(n) =7 ag x(n+k) 1< n < N-p
k=0
19
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. 1 N-p-n

rg{n) = ——— 7 [-Sf(n+p+k)§}(p+k)+sb(n+k)§b(k)-1 (35)
(N-p-n) k=1 |

for 0<n<g and rs (-n) = rg(n). It should be noted that for a moving average

model r¢(n)=Q0 for n>q+l. The spectrum Sy (ej”)Ais given as follows

q ~
SMR(ej“) = 184 (edw)|2 - 7 win) rs(n)e'j“" (36)
n=-q .
N-p-n q+tl - |n]
where w(n) = —————— — (37)
N-p q+1
For w=1
1B4(ed9)12 = o2 [1+r (1) (z7l4z)+.. 4rg(q)(z-H29)] (38)
where z = eju
In general we can find the zero's z, of |Bq(ej"’)l2 = Bg (edu) Eﬁ(ejm)
and carry out a spectral factorization )
Jwyr2 d Jw = oJu
w = - - -
|Bq(ed®)] bﬁkzl (1-z e"39) (1-7) edv) (39)
.s0 that
q .
Bq(ede) = bo 1 (1-z &™) (40)
Since
Ju ] Juk
= -Ji
Bq(e™) kZO ok © (41)

(42)
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. By equating coefficients we determine the values of by.
Method #2. Assuming the AR parameters ag are known, we define the autocorrelation

function r,(n) and its causal image r;(n) as follows

ren) = € { x (n+m) x"(m) | 5 n=0, 1, #2, ...
. 1
1 n30
where u(n) = standard unit step =
0 n<0
s(n) = Kronecker delta sequence
; 1 n=0
: 0 n#0
*
and rel-n) = ry (n)

rtin) + rk (-m*

Noting that r,(n)

st (edu) + s} (ed0)” (44)
2 Re [S} (edw)]

we have Sx(ej“)

1]

which is the spectrum of the signal

p
and cln) = ri(n) + 7 a ry(n-k) 0 < n < max (4,p) (45)
k=1
=0 n outside interval
; Define
. s ,
2 Cs(eJ“) =7 c(n) ¥l where s = max (q,p)
., n=0




so that

p
cyledv) = [1+n§1an e-Jony st (edu) (46)
then
C. (eJu) % (edw)
Sledo) = S S (47)
Apled®) Ay(edv)

Ax(ed0) (Coledv) + coledw) Ap(edw)
Ay (e3@) AT (edu)

However B(eJ9)pgleds) = aj(eduic(edw) + aj(eduicy (edo)
so that if we find the zero's of S, (eJw) jdentified as z, and using spectral
factorization we can determine the by by equating coefficients in
q ok q
kéobk e~Juk - bokzl (1-z,z°1) for Iz l< 1 (48)

to maintain minimum phase.

4. ORDER DETERMINATION
A fundamental issue in applying the methods that have been presented is

that the order of the model needs to be determined. Methods that have been

used include:
1. Levinson-Durbin Method for pure AR.
2. Test for autocorrelation function, r.(n)=0 with n>q+l for pure MA.
A new method receiving considerable study is the singular value decomposition

(SVD) using the Frobenious norm of a mxn matrix difference, A-B,

defined as

n 1/2

J[J1A - B || = 1 Ia,-j-b,-j |2

H~3

(49)

i=1 J

22
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The SVD is carried out as follows:

1. Set pe > p, qe >> q for t >> p
2. Form Re:

“rx (getl) rxlge) . .

P A SRR rx(Qe‘pe+1)_
ry (get2) ry(qgetl) « .

e « « « Px(Ga~pet2)

Fod
(1)
]

ry (gett) rylgett-1) . . . . . . .. oo ... ryx(ge-pett)

This is a tx(pe+tl) matrix which satisfies

Rea=8 (50)
for which Re = U 1 V*
where U and V are unitary matrices

3. Determine eigenvalues Xy of ReR;

4. Take oyk =+ ¥ Akk, called the singular values, which are ordered

0117622>...> ohp>0 where h = min (t, pgtl)

5. Form the matrix RgRe* which is nonnegative hermitian. Using the
Gram-Schmidt method for calculating eigenvectors, determine the columns of U,
txt matrix, corresponding to ordered orthonormal eigenvectors of ReR;.

6. The columns of V are the orthonormal eigenvectors of R;Re. Visa
(pe*l)x(pe+l) matrix.

7. Ztx(pe+l) s a matrix whose elements are zero except possibly along

main diagonal, oyg-

Form AlK) =y g, v*

T VY, T
. LR TR A

where £  1s obtained by setting to zero all but its "k" largest singular values.
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8. Finally, we define

[1A(K) (]
[A]]

v(k) = (51)

[o18+ 0p8+. ..+ o, 11/2
[o18+ agh*...+ opp?1t/?

so that as v(k)=—> 1 as k —=> p, the order of our model.
The above approach requires that singular values be generated for carrying out
SVD. Improved accuracy for computing singular values has been developed by
Dongarra [8].
The work of S. Y. Kung [9] using state space variables with SVD has recently
demonstrated superior spectral estimates than estimates obtained in terms of
transfer function parameters. The work in this area should be explored for
improved estimates for perturbed covariance data.
5. ADAPTIVE MODELING

The goal of this investigation is to develop refined models which adapt to
a changing environment. Naturally, it becomes appropriate to develop adaptive
models which continously update the parameters as new time series observations
become available (x(N+l), x (N+2),...). To start this investigation it will be
appropriate to develop a class of adaptive autocorrelations estimates and
adaptive algorithms which from experience have proved most successful, We will
define an adaptive class of autocorrelation estimators as follows.

1 ntko-1

R(1,§) = wwmmemmmem— 57 X (k#1-1)x(k¢1-3) (52)
(N + k2 - k1) k=kj

where N is the total set of observations
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l<ic<cp+1l

l1<j<p+1l
1<k, kp<p+l
with ky and kp selected so that the number of lag products (N + k2 - ki)
is at least equal to p+l.
The data matrix R which uses R (i, j) as its (i, j) elements can be
written in the form
1

*
Xy X
N + kp-kq NN (53)

>
"

where Xy is a (N + k2 -k1) x (p + 1) data matrix such that
Xy (i, J)

x (kg + 1 - J)

and
1 <i<N+kp-Kkj

l1<j<p+l
It should be noted that we set x = 0 whenever k1 +i-j falls outside the
observation set 1 < n < N.
We have now established the data matrix to be used in adaptive modeling.
Experience has shown that ﬁ is unbiased and provides consistent statistics
when ki=p+l and kp=1. This method is called the covariance method.

AR Model - Covariance Method:

As indicated, with k1 = p+l and kp=1,
* = 2
Xy Xy 2y = (N+ka-k1) [bg|® & . (54)

where bg is selected to normalize 1st component of ay to 1.

Now let

* * *
Xyl XNe1 = Xy Xy * Xyep Xner (N2 ptl) (55)




where xN+1 = [x (N+1), x (N), ...,x (N+l-p)]
For ko=1 and N = p+l, and the initial value XﬁXN=X;+l Xp+1 so that

pHL _
X;+1 Xps1 = T ox (k+1-i) x (k+1-j) (56)

for 1<i<p+l and 1<j<p+l. As can be seen from the expression for ay4+; we need

to compute [X;+1 XN+1]‘1. This is given by

*
(1N+1 IN+1 ) (57)

* 1 _ ru*y 1-
DXNerXnar 170 = Dxxyd~t - -
(1+ yne1 Xy 41)

where
I+l = X yep DXXyI7L for Naprkg

Accordingly, using Gaussian elimination, we can calculate [XEXN]‘1 for N=p+k;
so that for all N> p+k;, we can calculate [x§+1xN+1]‘1 using the above expression.
This will be used for updating the parameter ay+i.
AR adaptive algorithms then require the following steps:
Step 1: Input data: x(N+1), [XyXyI~!
Step 2: Compute: [Xy,1Xy+p1™t
Step 3: Let ¢ = [XyyXnspl™t &
Step 4: ay,; = c(1)-] c where c(1) is the 1st comp;nent of ¢
The problem of AR order determination still remains as in the non-adaptive case.
The approach recommended in using raw time series data where R (i,j) =ry (i-§)
for 1<i,j<p+l is to find the order "p;" for which R has (p-p1) of its eigenvalues
sufficiently close to zero for all p>p;. This could be carried out using SVD.

ARMA Adaptive Modeling:

As in the AR adaptive model we need to define §1 (i, j) which we do by using

. 1 N-g+2+kp_
R1(1,3) = T % (k+l-1)x(k+q+2-j) (58)
(N+ko-k1-g-1) k=k}
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with 1<ict and 1<j<p+l.
Rp(1,3) = ry (qrl+i-j)

The number of lag products, (N+k2-ki-q-1), is selected such that
(N+k2-k1-q-1)>p+l and 1 < k1 < t 1< k2 < ptl.

As in the AR adaptive model the covariance method had preferred properties, in
; ' the ARMA adaptive model the covariance method with k1=t amd k=1 has similarly
b. been demonstrated as being unbiased and statistically consistent.

: ARMA Covariance Method:

As indicated we constrain the parameters kj, kp as shown: k3 =t, k2 =1,

then we write ﬁl as follows

. 1 *
N+kp-k1-g-1

where
Xnyli,3) = x (kp+q+l+i-j)
for
1 <ic<Ntkp -k -q-1
1<j<ptl
with
YN (1,3) = x (ky+i-J)
and 1<ic<Nkg ~k1-q-1
1¢jct
with x(n) = 0 for n>N or n<l

To determine the AR parameters we need to solve

* *
X v YN Xy 3y T agg (60)

where a is selected for the first component of ay equal to 1.

When the updated ay,; parameter is calculated we will require Y;+1XN+1.

27

.........

..........
.................................




N This can be calculated using

. * *, *

¥ TNetXner = YN Y oy (N0Y)
3 where  xy = [x(N+1), x(N),... x(N+1-p)]

R yn = [x(N-q) ,x(N-g-1) ... ,x(N+1-g-t)]

so that for N>t

* *x +* * * * * *
Xne1VNe1YN#1XN41 = XN YN YN XN+ 2y 2y + Xy 2yt () Xy Xy (61)

and
- *x,
zy = yx YN\

The best overall ARMA adaptive unodel performance is the covariance method
o for k2=1 and kj=t (k1 can range in the interval 1 < kj < t); the ARMA adaptive
, model algorithm for k=1 and 1 < k1 < t is given as follows:
Step 0: The input to commence the algorithm at N = q+ p + k} + 1
is Yy Xy and [Xy Yy Yy X1}
which can be calculated by Gaussian elimination.
Stepl: N=qg+p+k;+1l
Step 2: Compute Yﬁ+1 Xy+y from
el Xl = YN XNt ON X
[x(N+1),x(N),...,x(N+1~p)]

N
= [X(N"Q) ,X(N"Q"l ) go e aX(N"l'Q‘t)]

&

Step 3:  zy = yy !ﬁ XN
Step 4: uj = zy

Yi =X
apl = Oy

Compute [A; + gf 11]'1 from

28
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[A-1u*] [vA-1]

N e/ AP S Bt i e Al S S

[A + E*v -1 = A-l -
Y (1+va-l )

Step 5: = _)5;, Y2 = 2y
Azt = [Ay + y )t
Compute [A, +_25 12]‘1 fram step 4
Step 6: uy = (lﬂlﬁ) XN
y3 = XN
A3l = [ag + g o1t
Compute  [A3 + w3 ¥33™h = [Xhuy Yy Yier X 172
fram step 4.
Step 7: ¢ = Dy Vw1 i Xenn 170 &)
where LT fc(1)]-! ¢
c(1) is the first component of c.

Step 8: Let N= N+ 1, go to step 2.

We have presented a sufficient number of useful methods that should be

explored in stochastic modeling for any application you may have in mind. The

application of SVD provides an important method for determining order of the

model. The recent results by S. Kung using state space and SVD appear to

provide higher resolution models and should be evaluated for Army applications.
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