UNIVERSITY OF PITTSBURGH
DEPARTMENT OF CHEMISTRY

FINAL TECHNICAL REPORT

submitted to the

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
DIRECTORATE OF CHEMICAL SCIENCES
GRANT AFOSR-80-0207

MEASUREMENT OF RATE CONSTANTS OF ELEMENTARY GAS REACTIONS OF
IMPORTANCE TO UPPER ATMOSPHERE AND COMBUSTION SYSTEMS

Principal Investigator: Frederick Kaufman
University Professor of Chemistry

10 May 1985

Approved for Public Release: Distribution Unlimited
MEASUREMENT OF RATE CONSTANTS OF ELEMENTARY GAS REACTIONS OF IMPORTANCE TO UPPER ATMOSPHERE AND COMBUSTION SYSTEMS

Abstract

The vibrational energy transfer of highly excited HCl and HF was studied by the infrared chemiluminescence method in a series of five papers. HCl(v ≤7) and HF(v ≤7) were produced by fast generating reactions, e.g. H + ICl → (v=7) + I or H + F₂ → HF(v=7) + F in large excess He which relaxes the rotational but not the vibrational excitation. With various added quencher gases, about 200 rate constants for stepwise vibrational energy transfer were measured. They tend to increase rapidly with increasing v, often independent of the vibrational energy defect. For HF(v) + HF(0), self-relaxation, the V-V channel decreases from 55% at v=2 to zero at v=5 even though the relaxation rate constant rises as v².7.

A versatile flow reactor system was built that features three detection methods (laser-induced fluorescence, vacuum u. v. resonance fluorescence, and modulated molecular beam mass spectrometry) plus upstream radical production.

Subject Terms

- Vibrational energy transfer; HCl(v); HF(v); Lambert-Salter correlation;
- HF self-relaxation; fractional V-V channel; versatile flow reactor; laser-induced fluorescence; isotope exchange.

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB GR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distribution/Availability of Report

Approved for public release; distribution unlimited.
by IR laser multiphoton decomposition. The NH$_2$ + NO and CH$_3$O + NO$_2$ reactions were studied successfully. The latter was found to have a recombination (CH$_3$ONO$_2^*$) and disproportionation (CH$_3$O + HNO$_2$) channel and both were measured indirectly. The 18O + NO or O$_2$ isotope exchange reactions were measured, and the results compared with measured and calculated high-pressure limits of the respective recombinations and with NO vibrational relaxation.
1. Introduction

The research carried out under this grant falls into three major categories and is described thoroughly in eight publications which are listed in Section 3. It is therefore not necessary to duplicate this detailed description, but highlights of these results will be presented in Section 2. The three categories are: (a) Measurement of vibrational energy transfer rate constants from highly excited HCl and HF to various acceptor molecules; (b) Design and construction of a versatile flow reactor apparatus; and (c) Measurement of important rate processes and comparison with theoretical estimates.

2. Summary of the Most Important Results

In the first of our series of papers on vibrational energy transfer, "Vibrational Relaxation of Highly Excited Diatomics. I. Method, Analysis, and Application to HCl(υ<7) + CO₂ and N₂O," the infrared chemiluminescence method of I. W. M. Smith and co-workers was adapted to fast flow reactor conditions. A sensitive, liquid N₂ cooled circularly variable filter and InSb detector view the mixing zone in which a "generating" reaction, e.g. H + ICl → HCl(υ<7) + I produces infrared chemiluminescence. It is run in great dilution with He such that rotational excitation of HCl(υ) is relaxed but vibrational excitation is not. The chemiluminescent emission spectrum is unfolded, first for the unrelaxed distribution and then for similar, partially relaxed distributions where quencher molecules have been added at known concentrations. A modified Stern-Volmer analysis then calculates specific relaxation rate constants, k_{Q,V_V-1}, where Q is the quencher and where it is assumed that energy transfer occurs in single quantum steps, $Δυ=-1$. This last
assumption has later been relaxed by assuming that 10 or 20% of the vibrational energy transfer proceeded by $\Delta v = -2$ steps, but no substantive change of the rate coefficients was observed. The great advantage of this method is that the fast pumping rate is the reference process of the Stern-Volmer analysis so that the results, even though not highly accurate, are highly consistent with one another.

In the first paper, we reported the energy transfer rate constant of HCl($v \leq 7$) to CO$_2$ and N$_2$O which rose from a probability of 5×10^{-3} per Lennard-Jones collision frequency at $v=1$ to 0.40 at $v=7$.

The second paper, "Vibrational Relaxation of Highly Excited Diatomics. II. HCl($v \leq 7$) + 20 Quenchers," reported measurements for six diatomic, three triatomic, and eleven polyatomic quenchers. For most of these, k_{Q} increased with increasing v, independent of whether the vibrational energy gap was reduced or increased. Surprisingly, some large polyatomic molecules, e.g. CF$_4$ and SF$_6$, are very inefficient relaxers whereas hydrocarbons, CH$_4$, to iso-C$_4$H$_{10}$, are efficient. No single effect, i.e., V-V resonance, dipole interaction, Van der Waals forces, or adduct formation, seems to control the rate of the process. As is seen for both HCl and HF, He and Ar are very inefficient collision partners which leads us to believe that the rotational degrees of freedom in the acceptor molecule are of critical importance.

In the third paper, "Vibrational Relaxation of Highly Excited Diatomics. III. HF($v=5,6,7$) + H$_2$, D$_2$, N$_2$, HF, CO$_2$, N$_2$O, CH$_4$, and C$_2$H$_6$; HF(v) was produced by the highly exothermic H + F$_2$ → HF(v) + F reaction. The initial, unrelaxed v-distribution was as unrelaxed as Polanyi's low pressure "arrested relaxation" distribution. All quenching rate
constants rose with increasing v, even when the vibrational energy defect increased, as for H₂ and HF. The Lambert-Salter correlation, log (v/P) vs. ΔE, where P is the relaxation probability per collision, and ΔE is the vibrational energy defect, was reasonable only for Q = D₂, because the HF(v=7→6) quantum is in resonance with D₂(v=0→1). When expressed in the form of a power law, k_Q(v,v-1) = v^n, n ranged from 2 to 8. The highly endothermic relaxation of HF(v) by HF(v=0) is extremely fast, faster than the Lennard-Jones collision frequency for v=7, which shows that the process cannot be a V→V relaxation.

The fourth paper, "Vib'ational Relaxation of Highly Excited Diatomics. IV. HF(v=1→7) + CO₂, N₂O, and HF," extended the v-range of HF by using an additional four generating reactions, viz. F + HBr → HF(v<4) + Br, F + CH₄ → HF(v<3) + CH₃, F + H₂ → HF(v<3) + H, and F + H₂O → HF(v=1) + OH. All initial v-distributions were compared with published results and found to be in very good agreement. All seven relaxation rate constants were then measured and compared with other published work. The agreement with direct laser excitation studies by Crim and coworkers was excellent. The Lambert-Salter correlations for CO₂ and N₂O look reasonably normal, based on transfer to the asymmetric v₃ vibration of 2349 or 2224 cm⁻¹, but the relaxation rate constants are too fast for the large energy defects of ~600 to 1700 cm⁻¹. For Q = HF(v=0), the Lambert-Salter correlation makes no sense at all, since the energy transfer becomes faster as the energy defect becomes larger. Interestingly, power law plots for all three quenchers are reasonably linear and have similar slopes (2.8 for CO₂, 3.0 for N₂O, and 2.7 for HF). For the HF-HF case, classical and semiclassical trajectory calculations have been published that are in fair agreement with our experimental data for low v, but miss at high v.
In the fifth paper, "Vibrational Relaxation of Highly Excited Diatomics. V. The V-V Channel in HF(v) + HF(0) Collisions," the fraction of V-V energy transfer, \(f_V \), in the self-relaxation of HF was experimentally determined for the first time for all v-levels. For each quenching experiment, the average fractional V-V probability, \(F_{V-V} \), was determined by detailed accounting of the changes of all v-level populations. This \(F_{V-V} \) is a weighted average of the desired, specific \(f_V \) values. It is clear, therefore, that one wants to start with low vibrational excitation, preferably with \(v=1 \) and \(2 \) only in which case one would obtain \(f_2 \) directly (since \(v=1 \) has no V-V channel).

In reality, one obtains \(v=1, 2 \), and some 3 from the \(F + H_2 \) and \(F + CH_4 \) generating reactions. The results of \(~20\) quenching experiments provide limits of \(0.5 < f_2 < 0.6 \) and \(0.2 < f_3 < 0.4 \). Continuing then to higher v-levels with the \(F + HBr \) and \(H + F_2 \) generating reactions, one can bracket all \(f_V \) values on the assumption that \(f_V \) decreases monotonically with increasing \(v \). The results are that \(f_2 = 0.55 \pm 0.10 \), \(f_3 = 0.30 \pm 0.10 \), \(f_4 = 0.15 \pm 0.10 \), and \(f_5, f_6, \) and \(f_7 \) are zero to within their large error bars, i.e. it is quite likely (but not provable) that \(f_5 \sim 0.07, f_6 \sim 0.03, \) and \(f_7 \sim 0.01 \). These interesting results were compared with theoretical predictions and with one laser double resonance experiment that yielded \(f_2 \) 0.59 to 0.79 where the lower value was the most likely.

The sixth paper, "Kinetics of Polyatomic Radical Reactions Using a Versatile Flow Reactor Apparatus," describes our new apparatus and provides initial results on the kinetics of the \(NH_2 + NO \) and \(CH_3O + NO_2 \) reactions. At the downstream end of the flow tube, three independent detection techniques are used: laser-induced fluorescence (LIF) in the visible or near u.v., vacuum u.v. resonance fluorescence, and modulated molecular
beam mass spectrometry for monitoring "dark" species. Radicals are produced upstream by direct or sensitized infrared laser multiphoton dissociation (MPD) at 10 or 20 Hz and are swept into the flow tube by He carrier gas.

In the first application, NH$_2$ radicals were produced from N$_2$H$_4$ by SF$_6$-sensitized MPD and detected by LIF at 597.7 nm synchronized with the dye laser at 200 Hz so that 10 points could be obtained and coherently summed for each NH$_2$ pulse. NH$_2$ was then reacted with excess NO, and a rate constant of 0.90×10^{-11} cm3 s$^{-1}$ was obtained, in very good agreement with other reported results. CH$_3$ radicals were produced by MPD of C$_6$F$_5$OCH$_3$ and reacted with excess NO$_2$ to produce CH$_3$O radicals which were monitored by LIF at 298.5 nm. The slower CH$_3$O + NO$_2$ reaction rate constant was then determined by measuring the pseudo-first-order rate constant of the CH$_3$O decay as function of excess NO$_2$ concentration. A detailed study of this reaction is described below. The new, versatile flow reactor apparatus was found to work very well.

In the seventh paper, "Kinetics of the Reaction of CH$_3$O with NO$_2,"$ rate coefficients were measured over the temperature range 220-473 K and over the pressure range 0.6-4.0 torr. The reaction has two product channels, CH$_3$ONO$_2$ (1a) and CH$_2$O + HNO$_2$ (1b). The recombination channel, 1a, is likely to be pressure-dependent and to have a negative temperature dependence at lower pressure, near its third-order limit. The H-atom transfer reaction, 1b, is likely to be independent of total pressure and to have a positive temperature dependence. The correctness of these predictions was borne out by the experimental results: At 250 and 298 K, the first-order rate constants were found to be strongly pressure dependent, because the reaction was dominated by the
recombination, 1a, while at 390 K and especially at 473 K, the pressure dependence disappeared, because the reaction was dominated by atom transfer.

All data points were then fitted to an expression that combined a parameterized recombination rate constant, \(k_{1a} \), with a simple Arrhenius expression for \(k_{1b} \). The best fit gave
\[
k_{1a} = 2.6 \times 10^{-29} \ (T/300)^{-4.5} \ \text{cm}^6 \ \text{s}^{-1}
\]
for the low pressure limit of 1a, and
\[
9.6 \times 10^{-12} \ \text{exp}(-1150/T) \ \text{cm}^3 \ \text{s}^{-1}
\]
for the atom transfer, 1b. All of the fitted parameters have large uncertainty limits, but their values seem quite reasonable by comparison with similar reactions.

In the eighth paper, "Kinetics of the Isotope Exchange Reaction of \(^{18}\text{O}\) With NO and O\(_2\) at 298 K," the modulated molecular beam mass spectrometer was used to monitor O and NO, their detection limits being in the \(10^9\) to \(10^{10}\) cm\(^{-3}\) concentration range. If the isotope exchange occurs via a relatively long-lived NO\(_2^+\) or O\(_2^+\) intermediate, the measured rate constant is one half of the O + NO or O + O\(_2\) recombination rate constant at its high pressure limit. Earlier published results had given a very low \(^{18}\text{O} + \text{NO}\) isotope exchange rate constant, \(0.18 \times 10^{-11}\) cm\(^3\) s\(^{-1}\), in poor agreement with the measured high-pressure recombination rate constant, \(3.0 \times 10^{-11}\) cm\(^3\) s\(^{-1}\) and with the related vibrational relaxation of NO\((\nu=1)\) by O, \(k = 6.5 \times 10^{-11}\) cm\(^3\) s\(^{-1}\). Our experiments showed that the isotope exchange process was indeed much faster than had been reported, i.e. \(k = (3.7 \pm 0.5) \times 10^{-11}\) cm\(^3\) s\(^{-1}\), and we were able to show why the low value had been found earlier.

For the \(^{18}\text{O} + \text{O}_2\) exchange, earlier measurements had given 0.10 to 0.17 \(10^{-11}\) cm\(^3\) s\(^{-1}\) whereas we found \((0.29 \pm 0.5) \times 10^{-11}\) cm\(^3\) s\(^{-1}\) as the result of three different
ways of measuring the isotope exchange rate. The agreement with the measured or calculated high-pressure recombination rate constant is fairly good. Trajectory calculations that used two different potential energy surfaces showed that the exchange process was partly "direct," i.e. did not proceed by way of a long-lived O_3^+ intermediate. This may be due to the relatively weak O-O_2 bond, but needs to be confirmed by further calculations.

3. List of All Publications

4. List of All Participating Scientific Personnel

Frederick Kaufman, Principal Investigator, part time

Stuart M. Anderson, Postdoctoral Research Associate, part time

Jay B. Jeffries, Postdoctoral Research Associate, part time

James A. McCaulley, Graduate Researcher, full time

Laila S. Dzelzkains, Graduate Researcher, full time