Residues of Integrals with Three-Dimensional Multipole Singularities with Application to the Lagally Theorem

When the singularity system within a body moving in an irrotational flow contains multipoles, their residues are required in the derivation of the Lagally theorem for the force and moment acting on the body. Derivation of these residues are presented and an example illustrating the application of the Lagally theorem to a case with multipoles is given.
RESIDUES OF INTEGRALS WITH THREE-DIMENSIONAL MULTIPOLe SINGULARITIES, WITH APPLICATION TO THE LAGALLY THEOREM

by

L. Landweber

Sponsored by
Office of Naval Research
Special Focus Research Program in Ship Hydrodynamics
Contract No. N00014-83-K-0136

IIHR Report No. 290
Iowa Institute of Hydraulic Research
The University of Iowa
Iowa City, Iowa 52242

July 1985
Approved for Public Release; Distribution Unlimited
RESIDUES OF INTEGRALS WITH THREE-DIMENSIONAL MULTIPOLAR SINGULARITIES, WITH APPLICATION TO THE LAGALLY THEOREM

by

L. Landweber

Sponsored by
Office of Naval Research
Special Focus Research Program in Ship Hydrodynamics
Contract No. N00014-83-K-0136

IIHR Report No. 290
Iowa Institute of Hydraulic Research
The University of Iowa
Iowa City, Iowa 52242

July 1985
Approved for Public Release; Distribution Unlimited
RESIDUES OF INTEGRALS WITH THREE-DIMENSIONAL MULTIPOLAR
SINGULARITIES, WITH APPLICATION TO THE LAGALLY THEOREM

I. INTRODUCTION

An important mathematical relation in the theory of three-dimen-
sional irrotational flow is the Gauss-Green transformation between volume
and surface integrals. A very useful result of this transformation,
Green's third formula, requires, in its derivation, the evaluation of the
limit of a singular integral over the surface of a sphere as the radius
of the sphere approaches zero. Since, in this case, the singularity is
due to the potential of a source at the center of the sphere, its limit
may be called the residue of a source. Similarly, limits of integrals
over the surface of a sphere of vanishingly small radius, with higher-
order derivatives of the source potential in the integrand, will be
called residues of multipoles. The latter occur in the derivation of the
Lagally theorem for the force and moment acting on a body moving in an
irrotational flow when multipoles are present in the hydrodynamic
singularity system within the body (see Landweber, 1967 and Landweber and

In contrast to the very simple derivation of the residue occurring
in Green's third formula, the evaluation of the multipole residues was a
challenging application of the theory of spherical harmonics. The
derivations of a set of multipole residues, which were required but not
included in the aforementioned references, will be presented here.

This work is dedicated to my long-time friend and colleague, Chia-
Shun Yih, with whom I worked 30 years ago on the generalization of the
Lagally theorem to unsteady flows (1956). Support by the Office of Naval
Research under Contract N00014-83-K-0136 (NR-062-183) is gratefully
acknowledged.

II. FORMULATION AND TABULATION OF RESULTS

The velocity potential \(\phi_p \) of a multipole of strength \(M \) and of order
\(q = \alpha + \beta + \gamma \), situated at a point \(P(x_s, y_s, z_s) \), with position vector \(\vec{r}_p \), of
a rectangular Cartesian coordinate system \((x, y, z) \) will be expressed as
Let S denote the surface of a sphere of radius c with center at the point $O(x_o, y_o, z_o)$ and position vector \vec{r}_O such that $c > b = |\vec{r}_P - \vec{r}_O|$. It is necessary to displace the singularity from the origin in order to ensure that the coordinates (x,y,z) of a point on S are independent of (x_s,y_s,z_s). Put

$$\vec{p} = \vec{r} - \vec{r}_O = \rho \hat{n}, \quad \vec{p}_O = \vec{r}_P - \vec{r}_O = \hat{n}_p$$

(2)

where \hat{n}_p is the unit vector in the direction from 0 to P and \hat{n} the unit vector from 0 to the point (x,y,z).

The integrals of interest involve a pair of vectors \vec{u}_p and \vec{v} where $\vec{u}_p = \nabla \phi_p$, $\nabla = \nabla \Psi$, and Ψ is regular harmonic within the sphere and on S. Thus both \vec{u}_p and \vec{v} are irrotational and solenoidal within the sphere and on S, except for the multipole singularity of ϕ_p at P. Results for the residues are given in Table 1. Their derivations will be presented in the following sections.

We observe that, when $q = 0$, the first integral in Table 1 reduces to the residue of Green's third formula,

$$\lim_{c \to 0} \int_S \Psi \nabla \cdot \frac{1}{R} dS = -4\pi M \psi(x_s,y_s,z_s)$$

(3)

The second integral is a corollary of the first since each of its components is of the type of the first. This shows that the second integral does not require the conditions $\nabla \psi \nabla = 0$ and $\nabla \cdot \nabla = 0$. It is included in the list of integrals because pairs of the three integrals, (5), (6) and (7), yield the residues for the three vector-product combinations of \vec{u}_p, \vec{v} and \vec{n}, viz:

$$\phi_p = -\frac{M}{4\pi} \delta \frac{R}{S^3}, \quad D = \frac{3}{2} \frac{q}{\alpha_s \alpha_s \gamma_s \gamma_s} R^2 = \frac{(x-x_s)^2+(y-y_s)^2+(z-z_s)^2}{2}$$

(1)
Table 1. Multipole Residues

\[
\begin{align*}
\lim_{c \to S} \int \vec{n} \cdot \vec{u}_p \, dS &= \frac{4\pi M(q+1)}{2q+1} \frac{\partial q}{\partial S}(\vec{r})_p \\
\lim_{c \to S} \int \vec{n} \cdot \vec{v} \, dS &= \frac{4\pi M(q+1)}{2q+1} \frac{\partial q(v)}{\partial S}(\vec{v})_p \\
\lim_{c \to S} \int \vec{u}_p \cdot \vec{v} \, dS &= \frac{4\pi M}{(2q+1)(2q+3)} \frac{\partial q}{\partial S}(\vec{v})_p \\
\lim_{c \to S} \int \vec{v} \cdot \vec{u}_p \, dS &= \frac{4\pi M(q+1)}{2q+3} \frac{\partial q(v)}{\partial S}(\vec{v})_p \\
\lim_{c \to S} \int \vec{n} \cdot \vec{p} \times \vec{u}_p \, dS &= \frac{4\pi M(q+1)}{2q+1} \left[\frac{\partial q}{\partial S}(\vec{r}x\vec{v})_p - r_p x \frac{\partial q(v)}{\partial S}(\vec{v})_p \right] \\
\lim_{c \to S} \int \vec{v} \cdot \vec{p} \times \vec{u}_p \, dS &= \frac{4\pi M}{2q+1} \left[\frac{\partial q}{\partial S}(\vec{r}x\vec{v})_p - r_p x \frac{\partial q(v)}{\partial S}(\vec{v})_p \right] \\
\lim_{c \to S} \int \phi_\vec{p} \cdot \vec{v} \, dS &= -\frac{4\pi M}{2q+1} \frac{\partial q}{\partial S}(\vec{r})_p \\
\lim_{c \to S} \int \phi_\vec{p} \, dS &= -\frac{4\pi M}{3} \frac{\partial q}{\partial S}(\vec{r})_p \\
\lim_{c \to S} \int \phi_\vec{p} \times \vec{r} \, dS &= -\frac{4\pi M}{3} \frac{\partial q}{\partial S}(\vec{r})_p \times \frac{\partial q(v)}{\partial S}(\vec{v})_p
\end{align*}
\]

()_p indicates that the quantity between the parentheses is evaluated at the point P(x_s,y_s,z_s).
\[
\lim_{c \to 0} \int_{S} n \cdot (v x p) \, dS = \frac{8\pi M(q+1)}{(2q+1)(2q+3)} \frac{d^q}{d^q S} (v) p
\] (13)

\[
\lim_{c \to 0} \int_{S} v \cdot (u x n) \, dS = \frac{4\pi M q}{2q+1} \frac{d^q}{d^q S} (v) p
\] (14)

\[
\lim_{c \to 0} \int_{S} u_p x (n x v) \, dS = -\frac{4\pi M(q+2)}{2q+3} \frac{d^q}{d^q S} (v) p
\] (15)

III. SOME LEMMAS

It will facilitate the derivations if we first collect some useful spherical-harmonic properties. Put \(\mathbf{\xi} = x-x_0 \), \(\eta = y-y_0 \), \(\zeta = z-z_0 \), so that \(\mathbf{p} \) has the components \((\xi, \eta, \zeta)\). We shall also employ spherical coordinates \((\rho, \mu, \phi)\), \(\mu = \cos \theta \), with the origin at the point 0 and the polar axis along \(\mathbf{OP} \).

a) The scalar \(\Psi \) and the vector \(\mathbf{v}(\xi, \eta, \zeta) \) may be expanded in the forms

\[
\Psi = \sum_{m=0}^{\infty} \Psi_m (\xi, \eta, \zeta), \quad \Psi_m = \rho^m S_m (\mu, \phi)
\] (16a)

\[
\mathbf{v} = \sum_{m=0}^{\infty} \mathbf{v}_m (\xi, \eta, \zeta), \quad \mathbf{v}_m = \rho^m \mathbf{T}_m (\mu, \phi)
\] (16b)

where \(\Psi_m \) and \(\mathbf{v}_m \) are solid spherical harmonics, homogeneous of degree \(m \) in \(\xi, \eta, \zeta \), and \(S_m \) and \(\mathbf{T}_m \) are the corresponding surface spherical harmonics of order \(m \).

b) Since \(\Psi_m \) and \(\mathbf{v}_m \) are homogeneous in \(\xi, \eta, \zeta \), they satisfy the Euler relations

\[
\rho \cdot \nabla \Psi_m = m \Psi_m, \quad \rho \cdot \nabla \mathbf{v}_m = m \mathbf{v}_m
\] (17)
c) When the irrotational vector \mathbf{v} is regular harmonic, the quantities $\rho x \mathbf{v}$ and $\rho y \mathbf{v}$ are also regular harmonic.

Proof: In index notation with the summation convention, we have

$$\frac{\partial^2}{\partial \xi_i \partial \xi_j} \epsilon_{ijk} \xi_j v_k = \epsilon_{ijk} \left(\xi_j \frac{\partial^2 v_k}{\partial \xi_i \partial \xi_j} + 2 \frac{\partial v_j}{\partial \xi_i} \delta_{jk} \right) = 2 \epsilon_{ijk} \frac{\partial v_k}{\partial \xi_j} = 0$$

$$\frac{\partial^2}{\partial \xi_i \partial \xi_j} \epsilon_{ijk} v_{ij} = \frac{\partial^2 v_i}{\partial \xi_i \partial \xi_j} + 2 \frac{\partial v_j}{\partial \xi_i} \delta_{ij} = 2 \frac{\partial v_i}{\partial \xi_i} = 0$$

where ϵ_{ijk} is the permutation tensor, and δ_{ij} is the kronecker delta function.

d) The orthogonality relation between Legendre polynomials $P_n(\mu)$ and a surface spherical harmonic S_m or T_m shows that the integral of their product over the unit sphere is proportional to the value of S_m or T_m when $\mu = 1$; (see MacRobert, 1945). Since S_m or T_m is homogeneous of degree m in ξ, η, ζ, and the point P lies on the polar axis, this result may be expressed in terms of $\frac{\partial}{\partial \psi} = \rho^m(S)$ or $\frac{\partial}{\partial \psi} = \rho^m(T)$,

$$b^m \int_{-1}^1 \int_{0}^{2\pi} P_n(\mu) \{ m \} d\mu d\psi = \frac{4\pi \delta_{mn}}{2n+1} \{ m \} \{ m \} \{ m \}$$

(18)

e)

$$b^{m-1} \int_{-1}^1 \int_{0}^{2\pi} P'_{n}(\mu) e^{i \phi} S_m(\mu, \phi) d\mu d\psi = \frac{4\pi \delta_{mn}}{2n+1} \frac{\partial \psi}{\partial \psi} + i \frac{\partial \psi}{\partial \psi} \rho^m$$

(19)

where $P'_{n}(\mu)$ is the associated Legendre function of degree n and order 1, $i = \sqrt{-1}$, and the (x,y,z)-coordinate system has been taken so that the x-axis is parallel to the polar axis of the spherical coordinate system.

Proof: $S_m(\mu, \phi)$ may be expanded in the series

$$S_m = A \phi^1(\mu) + P'_{n}(\mu) (B \cos \phi + C \sin \phi) + \ldots$$
Then, by orthogonality, we have,

\[\int \int_{-1}^{1} P_n(\mu) e^{i\phi} S_m d\mu d\phi = \frac{2\pi n(n+1)}{2n+1} \delta_{mn} (B+iC) \]

(20)

In terms of unit vectors \(e_1, e_2, e_3 \) in the directions of increasing values of \((\rho, \theta, \phi) \), the gradient of \(\psi_m \) at \((1,0,\phi)\) is

\[\nabla \psi_{m,1,0,\phi} = \frac{1}{2} m(m+1) [e_2(B \cos \phi + C \sin \phi) + e_3(-B \sin \phi + C \cos \phi)] \]

Then, taking components of the gradient in the y- and z-directions, we obtain

\[\frac{\partial \psi}{\partial y}_{1,0,\phi} = \frac{1}{2} m(m+1)B, \quad \frac{\partial \psi}{\partial z}_{1,0,\phi} = \frac{1}{2} m(m+1)C \]

which, substituted for B and C in (20), yields (19), the result we wished to prove.

f) \[\lim_{c \to \infty} D_s^q \{ \psi \} = D_s^q \{ \psi \} \delta_{qm} \]

(21)

since the terms of the expansion (16a,b) with \(m<q \) vanish under q differentiations, and those with \(m>q \) vanish as \(c \to \infty \).

g) Two different expansions of the velocity field of a multipole \(\overline{u}_p \) will be useful. We have

\[\overline{u}_p = M \rho^q (\overline{R}/R^3), \quad \overline{R} = \overline{\rho} - \rho_p \]

(22)

The expansion of \(1/R \) then gives

\[\frac{\overline{R}}{R^3} = \nabla_s \frac{1}{R} = \nabla_s \sum_{n=1}^{\infty} \frac{b}{n+1} P_n(\mu), \quad \mu = \overline{n} \cdot \rho_p, \quad \overline{n} = \frac{\rho}{\rho_p} \]

(23a)

and

\[\frac{\overline{R}}{R} = \sum_{n=1}^{\infty} \left[\frac{b}{n+1} \left(\frac{\overline{\mu}}{n} \overline{n}_p - \overline{\mu}_n \overline{n} \right) \right] \]

(23b)
since

\[\nabla_s (b_n^P) = nb_n^{n-1} \frac{\partial}{\partial n} n^P + b_n^P \nabla_s \left(\frac{\partial_P}{\partial P} \right) \cdot n \]

\[= b_n^{n-1} [nP \frac{\partial}{\partial P} n + \beta (n-\mu n)] \]

and (see MacRobert, 1947)

\[\mu \dot{P}_n(\mu) - nP_n(\mu) = \dot{P}_{n-1}(\mu) \quad (24) \]

Here the dot indicates differentiation with respect to the argument. We shall also require the relation

\[\dot{P}_n(\mu) - \mu \dot{P}_{n-1}(\mu) = nP_{n-1}(\mu) \quad (25) \]

IV. DERIVATIONS OF RESIDUES

The residues in Table 1 will be derived in the order shown, except that we must first verify (15) in order to derive (6).

A. Derivation of (4) and (5). Substituting (16a) for \(\Psi \), (22) and (23b) for \(\bar{u} \), putting

\[dS = -c^2 dyd\phi \]

and applying (25), we obtain

\[\int \nabla \cdot \Psi \ dS = MDQ \sum S \sum \int_{m=0}^{\infty} \int_{n=1}^{\infty} c^{m-n+1} b^{n-1} nP_{n-1}(\mu) S dyd\phi \]

Orthogonality of the surface spherical harmonics requires \(n=m+1 \), so that the right number of this equation becomes
or, by (18),

\[
\lim_{c \to \infty} \sum_{m=0}^{\infty} \frac{4\pi(m+1)}{2m+1} D_{s}^{q}(\psi_{m})_{p} = \frac{4\pi M(q+1)}{2q+1} D_{s}^{q}(\psi)_{p}
\]

since the terms of the expansion of \(\psi \) in (16a) vanish under \(q \) differentiations, and those with \(m > q \) vanish as \(c \to \infty \). This is the result given in (4). As has already been remarked, the residue (5) is an immediate consequence of (4).

B. Derivation of (6) and (15). Substituting (16b) for \(\vec{v} \), and (22) and (23a) for \(\vec{u} \), we obtain

\[
\int_{S} u \times (\bar{n} \times v) dS = MD_{s}^{q} \sum_{m=0}^{\infty} c^{m-n+1} b^{n} v x \int_{S}^{1} 2\pi \int_{-1}^{0} n \frac{2\pi}{m} (\bar{n} \times \bar{T}) d\mu d\phi
\]

According to Lemma c, \(\bar{n} \times \bar{T} \) is a surface spherical harmonic of order \(m+1 \), and hence, by orthogonality, the integral vanishes unless \(n=m+1 \). Then, by (18),

\[
\lim_{c \to \infty} \int_{S} u \times (\bar{n} \times v) dS = MD_{s}^{q} v x \sum_{n=0}^{\infty} 2n+1 \frac{4\pi}{(\bar{n} \times \bar{T})_{p}}
\]

\[
= \frac{4\pi M}{2q+3} D_{s}^{q} v x (\bar{n} \times \bar{T})_{p}
\]

since the differential operator \(D_{s}^{q} v \) is of order \(q + 1 \). But

\[
\nabla x (\bar{n} \times \bar{T})_{p} = (\nabla \times \bar{T} \times \bar{n})_{p} + \rho \nabla \times \bar{T} \times \bar{n} - \rho \nabla \times \bar{n} \times \bar{T} - \rho \nabla \times \bar{n} \times \bar{n} = - (q+2)
\]

since
\[\nabla V \cdot \nabla \rho = V, \quad \nabla \cdot \nabla V = 0, \quad \nabla \cdot \rho = 3 \]

and, by (17),

\[\nabla \cdot \nabla \rho = q \nabla \rho \]

Then, by (21),

\[\lim_{c \to 0} \int_{S_p} u_p x (n x v) dS = - \frac{4 \pi M(q+2)}{2q+3} D_s^{q+1}(\nabla \rho) \]

as we wished to show.

The result in (6) can now be obtained as the sum of the residues in (5) and (15), since

\[u_p \cdot v n = u_p x (n x v) + n \cdot u_p v \]

C. Derivation of (7). By the same procedure as in the previous cases, the integral in (7) is first expressed as a double summation and then reduced to the single term

\[\lim_{c \to 0} \int_{S_p} v \cdot u_p dS = \frac{4 \pi M}{2q+3} D_s^{q+1}(\nabla \rho) \]

since, by Lemma c, \(T \cdot n \) is a surface spherical harmonic. Also put \(\nabla \Psi_{q+1} \) where \(\Psi_{q+1} \) is a spherical harmonic of degree \(q+1 \). Then we have, by (17),

\[\nabla (\nabla \rho) = \nabla (\nabla \Psi_{q+1}) = (q+1) \nabla (\Psi_{q+1}) = (q+1)(\nabla \rho) \]

Hence, by (21),

\[\lim_{c \to 0} \int_{S_p} v \cdot u_p dS = \frac{4 \pi M(q+1)}{2q+3} D_s^{q+1}(\nabla \rho) \]
as was stated.

D. Derivation of (8). Since $\vec{p}x\vec{v}$ is regular harmonic (Lemma c) and $\vec{p} = \vec{r} - \vec{r}_o$, we obtain from (5)

$$\lim_{c \to 0} \int_{S} \vec{n} \cdot \vec{p}x\vec{v} \, dS = \lim_{c \to 0} \frac{4\pi Mq}{2q+1} \int_{S} \vec{p}^q [(\vec{r} - \vec{r}_o) \times \vec{v}] \, dS = \frac{4\pi Mq}{2q+1} \left[\int_{S} \vec{p}^q (\vec{r} \times \vec{v}) \, dS - \int_{S} \vec{r} \times \vec{p}^q (\vec{v}) \, dS \right]$$

in agreement with (8).

E. Derivation of (9). As in the derivation of (7), we have

$$\vec{p} \cdot \vec{v} = \vec{p} \cdot \vec{v} = \sum_{m=0}^{\infty} m \vec{p} \cdot \vec{v} = \sum_{m=0}^{\infty} m \vec{p} \cdot \vec{v} = \sum_{m=0}^{\infty} m \rho^m S$$

Hence, by (22) and (23b), since $\vec{p} = \rho \vec{m}$, the integral in (9) becomes

$$I_g = \int_{S} \vec{v} \cdot \vec{p}x\vec{u} \, dS = M \int_{S} \sum_{m=0}^{\infty} \frac{m \vec{p} \cdot \vec{v}}{c^{n-m-1}} \cdot \sum_{n=1}^{\infty} \frac{2\pi}{c^{n-m-1}} \cdot \int_{S} \vec{p} \cdot \vec{v} \, dS \, d\mu d\phi$$

We have

$$\vec{n} = \vec{m} + \sin \theta (\vec{j} \cos \phi + \vec{k} \sin \phi)$$

where \vec{m}, \vec{j} and \vec{k} are an orthogonal set of unit vectors. Hence, applying (19) and putting $b_{\vec{m}} = \rho \vec{p}$, we obtain

$$\rho \vec{p} x (\vec{v}x\vec{m} \cdot \vec{p} \times \vec{v} \cdot \vec{x} \vec{m} \cdot \vec{p} = \frac{4\pi Mq}{2q+1} \int_{S} \vec{p}^q (\vec{r} \times \vec{v}) \, dS$$

and then, since $\vec{p} = \vec{r} - \vec{r}_o$,

$$\lim_{c \to 0} I_g = \frac{4\pi Mq}{2q+1} \left[\int_{S} \vec{p}^q (\vec{r} \times \vec{v}) \, dS - \int_{S} \vec{r} \times \vec{p}^q (\vec{v}) \, dS \right]$$
in agreement with (9).

F. Derivation of (10). The desired result is immediately obtained by writing

\[\phi_p = -\frac{\omega}{\rho_s} \sum_{n=0}^{\infty} \frac{b^n}{c^{n+1}} P_n(\mu) \] \hspace{1cm} (28)

and applying (26), (18), and (21).

G. Derivation of (11). Since \(\bar{n} \) is also a surface spherical harmonic, application of (27) and (28) yields, by orthogonality,

\[
\int_S \phi_p \bar{n} dS = -\frac{4\pi M}{3} \delta_{lq} D_{sq}(b_n) = -\frac{4\pi M}{3} \delta_{lq} D_{rP} \bar{r}_P
\]

since \(b_n = \bar{\rho}_P = \bar{r}_P - \bar{r}_0 \). This agrees with (11).

H. Derivation of (12). Substituting \(\bar{r} = \bar{r}_0 + cn \) into (12) and applying (11), we obtain

\[
\lim_{c \to 0} \int_S \phi \bar{r} x dS = \lim_{c \to 0} \int_S \phi \bar{n} dS
\]

\[
= -\frac{4\pi}{3} M \delta_{lq} \bar{r}_P x d_{qP} \bar{r}_P
\]

in agreement with (12).

V. EXAMPLE

Force on a Stationary Sphere in a Steady, Slightly Nonuniform Flow

A sphere of radius \(c \) is introduced into an irrotational flow of an inviscid fluid. We shall employ a rectangular, Cartesian coordinate system \((x, y, z)\), and a spherical coordinate system \((R, \mu, \phi)\), \(\mu = \cos \theta \), with
polar axis along the x-axis and both with origin at the center of the sphere, so that

$$x = R \cos \theta, \ y = R \sin \theta \cos \phi, \ z = R \sin \theta \sin \phi$$ \hspace{1cm} (29)$$

The velocity potential of the undisturbed flow will be written as

$$\psi = URu + R^2 S_2(u, \phi), \ S_2 = A_p^2(u) + p_2^1(u)(A_1 \cos \phi + B_1 \sin \phi)$$

$$+ p_2^2(u)(A_2 \cos 2\phi + B_2 \sin 2\phi)$$ \hspace{1cm} (30)$$

This corresponds to the most general harmonic flow quadratic in x,y,z. The x-axis has been taken in the direction of the uniform stream, represented by the first term. Its expression in terms of x,y,z is

$$\psi = Ux + \frac{1}{2} A_0 (2x^2 - y^2 - z^2) + 3A_1 xy + 3B_1 xz + 3A_2 (y^2 - z^2) + 3B_2 yz$$

$$= Ux + A_0 x^2 + (3A_2 - A_0) y^2 - (3A_2 + A_0) z^2 + 3B_2 yz + 3B_1 xz + 3A_1 xy$$ \hspace{1cm} (31)$$

The velocity field corresponding to \(\psi\) is then

$$\overline{v} = \nabla \psi = i(U + 2A_1 x + 3A_2 y + 3B_1 z) + j[3A_1 x + (6A_2 - A_0) y + 3B_2 z]$$

$$+ k [3B_2 x + 3B_1 y - (6A_2 + A_0) z]$$ \hspace{1cm} (32)$$

where \(i, j, k\) are the unit vectors in the x,y,z directions.

The disturbance potential \(\phi\) which satisfies the boundary condition

$$\frac{\partial}{\partial R} (\phi + \psi) \bigg|_{R=c} = 0$$ \hspace{1cm} (33)$$
is

\[\phi = \frac{Uc^3}{2R^2} + \frac{2c^5}{3R} S_y(\mu, \phi) \quad (34) \]

Each of the terms of (34) can be expressed in terms of multipoles situated at the center of the sphere by applying the formula given by Hobson (1931),

\[
\frac{1}{n+1} \text{P}_n^m(\mu) \text{ln} \phi = \frac{(-1)^n}{(n-m)!} \frac{3^{n-m}}{3x} \frac{3^m}{3y} \frac{1}{R} \quad (35)
\]

which gives

\[
\frac{u}{R} = -\frac{3}{3x R'} \frac{P_2(\mu)}{R} = \frac{3}{2} \frac{2}{3x} \frac{1}{R}
\]

\[
\frac{p_2^1(\mu) \cos \phi}{R^3} = \frac{3}{3x \cdot 2} \frac{1}{R'} \frac{p_2^1(\mu) \sin \phi}{R^3} = \frac{3}{3x \cdot 2} \frac{1}{R} \quad (36)
\]

\[
\frac{p_2^2(\mu) \cos 2\phi}{R^3} = \frac{3}{3y \cdot 1} \frac{1}{R'} \frac{p_2^2(\mu) \sin 2\phi}{R^3} = \frac{3}{3y \cdot 2} \frac{1}{R}
\]

The force on the sphere can now be obtained from the Lagally formula (Landweber, 1967)

\[
\overline{F} = -4\pi \rho \sum_s \frac{D_q}{Q_s} \sum_s \phi_s \quad (37)
\]

Here, by (1) and (36), the successive operators \(D_q \) are
Since \bar{v}, given in (32), is linear in x, y, z, the second derivatives D_{s}^{2} do not contribute to \bar{F}, and hence \bar{F} becomes

$$\bar{F} = -2\pi\rho Uc \left(\frac{\partial v}{\partial x} \right)_{o}$$

$$= -2\pi\rho Uc^{3}(2i\alpha_{o} + 3j\beta_{1} + 3k\gamma_{1})$$

(38)

We observe that $\frac{1}{2} Uc^{3}$ is the doublet strength at the center of the sphere in a uniform stream. The result in (38) is the well-known Lagally expression for the force on a doublet in a nonuniform stream, but, unexpectedly, with the doublet strength unaffected by the quadratic nonuniformity.

The foregoing procedure can be readily extended to nonuniform flows of higher order. If the velocity potential contains a homogeneous harmonic of degree n, its contribution \bar{v}_{n-1} to the velocity would be of degree $n-1$. Then

$$(D_{s}^{9} \bar{v}_{n-1})_{o} = (D_{s}^{n-1} \bar{v}_{n-1})_{o}$$

(39)

since the terms with $q < n-1$ vanish at the origin. The force (37) would then become

$$\bar{F} = -4\pi\rho \sum_{n=1}^{\infty} M_{n} (D_{s}^{n-1} \bar{v}_{n-1})_{o}$$

(40)
REFERENCES

Appendix

An Alternative Procedure for Deriving the Multipole Integrals

The residues given in Table 1 may also be derived by applying a theorem due to Maxwell for the surface integral of the product of two harmonics of the same degree; see Hobson (1931, p. 157). This alternative procedure has the advantage that the singularity is located at the center of the sphere. It will be illustrated by rederiving residue (4).

Associated with the multipole potential (1) of degree \(-(q+1)\) we have the regular homogeneous harmonic of degree \(q\),

\[\Omega_q = R^{2q+1} \phi_p. \] \hspace{1cm} (40)

Then

\[\mathbf{u}_p = \nabla \Phi_p = \frac{1}{R^{2q+1}} \left[\nabla \Omega_q - (2q+1)\Omega_q \frac{n}{R} \right]. \] \hspace{1cm} (41)

The integral in (4) then becomes

\[\int_S \mathbf{n} \cdot \mathbf{u}_p \, dS = -\frac{1}{c^{2q+1}} \int_S \left[\mathbf{n} \cdot \nabla \Omega_q - \frac{1}{c} (2q+1)\Omega_q \right] \, dS \]

\[= -\frac{q+1}{c^{2q+2}} \int_S \Omega_q \, dS = -\frac{q+1}{c^{2q+2}} \int_S \Omega_q \, dS \] \hspace{1cm} (42)

by (17) and (16a), and the orthogonality of the harmonics. The Maxwell formula then gives

\[\int_S \Omega_q \, dS = \frac{4\pi M}{2q+1} c^{2q+2} \frac{\Omega_q}{D} \] \hspace{1cm} (43)

in which, in the limit as \(c \to 0 \), \(\Omega_q \) may be replaced by \(\Psi \), by (21). Substitution of (43) into (42) then gives the residue (4).
U.S. DISTRIBUTION LIST

Commander
David W. Taylor Naval Ship
R & D Center (ATTN: Code 1505)
Bldg. 19, Room 129B
Bethesda, Maryland 20084

Commander
Naval Sea Systems Command
Washington, D.C. 20362
ATTN: 05R22

Commander
Naval Sea Systems Command
Washington, D.C. 20362
ATTN: 55W (R. Keane, Jr.)

Commander
Naval Sea Systems Command
Washington, D.C. 20362
ATTN: 55W3 (W. Sandberg)

Commander
Naval Sea Systems Command
Washington, D.C. 20362
ATTN: 50151 (C. Kennell)

Commander
Naval Sea Systems Command
Washington, D.C. 20362
ATTN: 56X12 (C.R. Crockett)

Commander
Naval Sea Systems Command
Washington, D.C. 20362
ATTN: 63R31 (T. Pierce)

Commander
Naval Sea Systems Command
Washington, D.C. 20362
ATTN: 99612 (Library)

Director
Defense Documentation Center
5010 Duke Street
Alexandria, VA 22314

Library of Congress
Science & Technology Division
Washington, D.C. 20540

Naval Underwater Weapons Research
& Engineering Station (Library)
Newport, RI 02840

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217
ATTN: Dr. C.M. Lee, Code 432

Commanding Officer (L31)
Naval Civil Engineering Laboratory
Port Hueneme, CA 93043

Commander
Naval Ocean Systems Center
San Diego, CA 92152
ATTN: Library

Library
Naval Underwater Systems Center
Newport, RI 02840

Charleston Naval Shipyard
Technical Library
Naval Base
Charleston, SC 29408

Norfolk Naval Shipyard
Technical Library
Portsmouth, VA 23709

Puget Sound Naval Shipyard
Engineering Library
Bremerton, WA 98314

Long Beach Naval Shipyard
Technical Library (246L)
Long Beach, CA 90801

Mare Island Naval Shipyard
Shipyard Technical Library (202.3)
Vallejo, CA 94592

Assistant Chief Design Engineer
for Naval Architecture (Code 250)
Mare Island Naval Shipyard
Vallejo, CA 94592
U.S. Naval Academy
Annapolis, MD 21402
ATTN: Technical Library

Naval Postgraduate School
Monterey, CA 93940
ATTN: Library (2124)

Study Center
National Maritime Research Center
U.S. Merchant Marine Academy
Kings Point, LI, New York 11024

The Pennsylvania State University
Applied Research Laboratory (Library)
P.O. Box 30
State College, PA 16801

Dr. B. Parkin, Director
Garfield Thomas Water Tunnel
Applied Research Laboratory
P.O. Box 30
State College, PA 16801

Bolt, Beranek & Newman (Library)
50 Moulton Street
Cambridge, MA 02138

Cambridge Acoustical Associates, Inc.
54 Rindge Ave Extension
Cambridge, MA 02140

R & D Manager
Electric Boat Division
General Dynamics Corporation
Groton, Conn 06340

Gibbs & Cox, Inc. (Tech. Info. Control)
21 West Street
New York, NY 10006

Tracor Hydronautics, Inc. (Library)
Pindell School Rd.
Laurel, MD 20810

Newport New Shipbuilding and Dry Dock Co. (Tech. Library)
4101 Washington Ave.
Newport News, VA 23607

Society of Naval Architects and Marine Engineers (Tech. Library)
One World Trade Center, Suite 1369
New York, NY 10048

Sperry Systems Management Division
Sperry Rand Corporation (Library)
Great Neck, NY 10020

Stanford Research Institute
Menlo Park, CA 94025
ATTN: Library

Southwest Research Institute
P.O. Drawer 28510
San Antonio, TX 78284
ATTN: Dr. H. Abramson

Mr. Robert Taggart
9411 Lee Highway, Suite P
Fairfax, VA 22031

Ocean Engr. Department
Woods Hole Oceanographic Inc.
Woods Hole, Mass 02543

Worcester Polytechnic Inst.
Alden Research Lab (Tech Library)
Worcester, MA 01609

Applied Physics Laboratory
University of Washington (Tech. Library)
1013 N. E. 40th Street
Seattle, WA 98105

University of California
Naval Architecture Department
Berkeley, CA 94720
ATTN: Profs. Webster, Paulling, Wehausen & Library

California Institute of Technology
Pasadena, CA 91109
ATTN: Library

Engineering Research Center
Reading Room
Colorado State University
Foothills Campus
Fort Collins, CO 80521

Florida Atlantic University
Ocean Engineering Department
Boca Raton, Florida 33432
ATTN: Technical Library
Gordon McKay Library
Harvard University
Pierce Hall
Cambridge, MA 02138

Department of Ocean Engineering
University of Hawaii (Library)
2565 The Mall
Honolulu, Hawaii 96822

Institute of Hydraulic Research
The University of Iowa
Iowa City, Iowa 52242
ATTN: Library, Landweber, Patel

Prof. O. Phillips
Mechanics Department
The John Hopkins University
Baltimore, MD 21218

Kansas State University
Engineering Experiment Station
Seaton Hall
Manhattan, Kansas 66502
ATTN: Prof. D. Nesmith

University of Kansas
Chm Civil Engr Department Library
Lawrence, Kansas 60644

Fritz Engr. Laboratory Library
Department of Civil Engr
Lehigh University
Bethelehem, Pa 18015

Department of Ocean Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139
ATTN: Profs. Leehey & Kerwin

Engineering Technical Reports
Room 10-500
Massachusetts Institute of Technology
Cambridge, MA 02139

St. Anthony Falls Hydraulic Laboratory
University of Minnesota
Mississippi River at 3rd Av., SE
Minneapolis, MN 55414
ATTN: Dr. Arndt & Library

Department of Naval Architecture
and Marine Engineering-North Campus
University of Michigan
Ann Arbor, Michigan 48109
ATTN: Library

Davidson Laboratory
Stevens Institute of Technology
711 Hudson Street
Hoboken, NJ 07030
ATTN: Library

Applied Research Laboratory
University of Texas
P.O. Box 8029
Austin, TX 78712

Stanford University
Stanford, CA 94305
ATTN: Engineering Library, Dr. Street

Webb Institute of Naval Architecture
Crescent Beach Road
Glen Cove, LI, NY 11542
ATTN: Library

National Science Foundation
Engineering Division Library
1800 G Street NW
Washington, DC 20550

Mr. John L. Hess
4338 Vista Street
Long Beach, CA 90803

Dr. Tuncer Cebeci
Mechanical Engineering Dept.
California State University
Long Beach, CA 90840

Science Applications, Inc.
134 Holiday Court, Suite 318
Annapolis, MD 21401