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CODON CONSTRAINTS RICHAADS &..HOFFMAN

Figure 1 An ellipse, square. cardiod, lemniscate and epicycloid. The cardiod has the simplest
(lowest order) equation; the square is the highest order polynomial equation.

1.0 Introduction

2 An important task for object recognition is the description of the shape of a bounding

contour, such as a silhouette that outlines an object. Although recognition need require *'='=

only partial segments of such contours, the internal canonical description, against which

the image contour is compared, is very likely a closed ring. Our concept of most objctst

should lead us to expect SL ;n a closed contour. The description of clQs-d, 2DQcontours

thus is an important ingredient of a system for object recognition. First '0present such

a scheme, described in more detail elsewhere)(Hoffman, 1983; Hoffman & Richards, 1982)

. -nd th-enshow -how the scheme leads to a hierarchical taxonomy of closed, 2D shapes. - ,

2.0 The Representation

When we view shapes such as those in Fig. 1, we immediately see the ellipse and square

as being "simpler" (in some psychological sense) than the lemniscate or epicycloid. Why?

If we were to "measure" the simplicity of a shape contour by the degree of its polynomial

equation, then the cardiod in the middle would have the simplest form, and the square

the most complex, being the highest order polynomial. Clearly a polynomial representation

seems quite inappropriate for our visual system, because it does not make explicit the

meaningful properties of the shapes.

If we asked a child why the ellipse is "simpler" than the lemniscate, he would

probably reply "because the latter has two parts, whereas the ellipse has only one". This

2,
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Figure 2 Joining parts generally provides concavities in the resulting silhouette.

simple observation is the basis for our representation for shapes: namely a shape should

be described in terms of its natural "parts". Fortunately, the rule for finding "parts"

is conceptually simple, for when 3D entities are joined to create complex objects, then

concavities almost always are created at the join, as indicated by the small arrows in Fig.

2.

This regularity of natural objects follows a principal of transversality treated more fully

elsewhere (Hoffman & Richards, 1984). In the silhouette, these concavities appear as cusps,

or as places of maximum negative curvature. Natural parts thus lie between concave cusps.

In Fig. 1, the rule specifies that the ellipse and the square have no parts, whereas the

lemniscate has two and the epicycloid has three. (The cardiod can not be broken simply

into two parts, hence must be "simpler" than the two figures on its right.) Our first rule for

representing (2D) shapes is thus as follows:

Segment a curve at concave cusps (or minima of negative curvature)

in order to break the shape into its "parts".
-4

3.0 Part Descriptors: Codons

Having now broken a curve into "parts" our next task is to describe the part. Again, we

wish that our description capture some natural property of shapes, rather than an arbitrary

mathematical formula, such as a polynomial equation. For example, at some stage In our

representation, we would like to know whether it is round or polygonal. But even before

such descriptors, is there a still simpler, more abstract, representation? Perhaps first we

3
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Figure 3 Minima of curvature are indicated in slashes. Arrows indicate direction of traversal of
curve. "Figure" is taken to be to the left of the direction of traversal.

should represent the "sides" of the part, or its "tip". As a step in this direction, we propose

a very primitive representation based upon the singular points of curvature, namely the

maxima, minima and zeroes of curvature along the curve. An important property of these

descriptors is that their ordinal relations remain invariant under translations, rotations and

dilations. Thus, regardless of the 3D orientation and size of a part to its whole, a relation

between these descriptors is preserved in the 2D image. This property follows because

the inflection of a 3D curve is preserved under projection, guaranteeing that at least the

ordinal relations between minima, maxima and zeroes of curvature will be preserved under

projection. Our scheme thus provides a very primitive representation for a part, simply in

terms of the ordinal relations of the extrema of curvature. This approach yields six different

basic primitive shapes, or codons (see Fig. 4).

In order to define the codon types, it is first necessary to define maxima and minima of

curvature. These definitions require that a convention be adopted for the sign of curvature.

Consider Fig. 3. There are two directions along which the profile of the face may be

traversed. In the upward direction (left) the minima of curvature (slashes) correspond to the

points where the curve rotates at the greatest rate in the clockwise direction. If the same

curve is traversed in the opposite direction, however, then the maxima and minima reverse.

Our convention thus places "figure" to the left of the direction of traversal. When the figure

is on the left, then the profile indeed looks like a face because the minima of curvature

divide the curve into the natural parts-namely forehead, nose, mouth and chin. [Note

that the opposite view yields the "vase" of Rubin's famous figure-ground illusion observed

as erly as 1819 by Turton.] Thus, knowing which side is figure determines the choice of

4
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Figure 4 The primitive codon types. Zeroes of curvature are indicated by dots, minima by slashes.
The straight line (oo) is a degenerate case included for completeness, although it is not treated in the

text.

orientation on a curve, or, conversely, choosing an orientation determines which side is

figure by convention. Minima are then typically associated with the concavities of the figure,

whereas maxima are convexities.

To define our basic primitive codons, we first note that all curve segments lying between

minima of curvature must have zero, one, or two points of zero curvature. If there are no

zeroes (i.e., inflections), then the segment is designated as a type 0 codon (see Fig. 4).

Those with two zeroes are called type 2 codons. If a segment has exactly one zero, then the

zero may be encountered either before (type I-) or after (type I-) reaching the maximum

point of the segment during traversal in the chosen orientation.

The type 0 codons may be further subdivided into 0+, 0- and (oo) to yield six

basic codon types. Consider Fig. 3 once again. Note that as the ellipse is traversed in
different directions, the minima of curvature change as expected. In the lower ellipse, which

corresponds to a "hole" with figure outside, the minima have negative curvature, because

the direction of rotation is clockwise. (Thus, the slashes suggest a part boundary by our

rule, which will be repaired later when we discuss "holes".) In the upper ellipse, however,
S,

'p, the minima have positive curvature (the rotation is always counter.clockwise). Thus, the

type 0 codon can be subdivided into O+and 0-with the superscript indicating the sign

of curvature. Note that the O-codon can constitute a part boundary, whereas the type

•. *..,, O4 codon must appear only as a shape descriptor. Finally, the type 00 codon simply is the

degenerate case of a straight line that has an oo of zeroes.
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TABLE U TABLE 1b ,

O)_ON SIGNAT.URES ZndDQN_.aB)

CODON TAIL HEAD 1stCODON (head) 0"1-) 0'(+) 11-) 14(+) 2(-)

- - o-(-) + - + - +4
0- + + 0(+) - + - + -
'- - + -1+1 - + - + -
+ + - 1 (-) + - + - +

2 - - 21-) + - + - +

Figure 5 Codon signatures (Table la) and legal smooth codon pairs (Table ib).

4.0 Constraints On Smooth Codon Strings

Not all sequences of codons are possible if the curve is smooth. Referring to Fig. 4 once

again, note that a I- can not follow a I- codon unless a cusp is allowed. Similarly, a 1+

can not follow a I+, because if such a join is attempted either a cusp will be created or,

if the curve is indeed smooth, the 1+ codon would have to be transformed into a type 2.

To specify all legal smooth codon strings, we will first enumerate all pairs, and then show

what pair substitutions are legal for one element in a sequence of pairs, thereby creating

all possible triples.

Define the "tail" of a codon as the region about the first minima encountered when

traversing the curve. The "head" of the codon is the subsequent minima. A smooth string

of two codons is then allowable only if the head of the first codon has the same sign of

curvature as the tail of the second codon in the string. Table la shows the sign of curvature

for each codon type (excluding the degenerate type oo). Table lb is constructed simply by

multiplying the sign of curvature of the "head" of the first codon (the left-most column) by

the "tail" of the second (given in the second row). If the signs agree, then a (+) is entered,

indicating a legal smooth join, otherwise the (-) product is an illegal smooth join. Thus, for

these five codons, there are 13 legal joins out of a possible 25 combinations.

To enumerate the possible codon triples for a smooth contour, we now require that

the curvature of both the head and tail of a middle codon match the tail of its successor

or the head of its predecessor in the string. Figure 6 provides a table showing the signs

of the heads (and tails) of the legal pairs (left column) which must match the tail (or head)

of the third codon in the string. For each column under the third codon, the legal triplets

8
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CODON CONSTRAINTS RICHARDS & HOFFMAN

TABLE 2

THIRDORfO

LEGA"&OQQtN_ P I 0- 0 1 - 2
,-+4 +- - +4 -+ -- -

TAIL HEAD TAIL HEAD TAI1HEAD TAIL HEAD TAIL HEAD TAIL HEAR

0-0- - - [+ +] + + 1+ +1
0-1- - + + + 1+ +1 +
0-2 - - + +1 + + J+ +]
040 + + [+ +] + +

0+1+ + - + + [+ +1 +
--0+ + + + [+ +1 +

1-1+ - - 1+ +1 + + 1+ +1
1+0- + - + + 1+ +1 +
,+1- + + [+ +1 + +
1+2 + - + 1+ +1 +

1 0- "[+ +1 + + (+ +1
2- + + + 1+ +] +
2 2 1+ +] + + 1+ +]

NUMBER OF LEGAL 5 2 3 3 5

PAIR SUBSTITUTIONS

NUMBER OF 0 4 66

PAIR SUBSTITUTIONS

Figure 6 Table 2. Legal smooth codon tripiet. The third codon can either follow o precede the
pair. A (+) indicates a proper join. Because of symmetry, there are an equal number of total plume
in the head and tail columns.

are indicated by a (+). If two pluses appear in brackets, then the third codon can either

precede or follow the pair. Consider first the case where the third codon follows the pair

(these are given in the columns headed "tail".) There are 34 legal smooth triplets of this

, type. Symmetry arguments yield a similar number of triplets when the third codon precedes

the pairs (these are given in the columns headed "head".) Thus, there are only 34 legal

codon triplets out of a possible 5' - 125.

Of the 34 possible triplets, there are eighteen cases where the same codon can be

attached to either end of the codon pair, indicated by [+ +]. This subset is particularly

*- useful for establishing legal smooth codon strings of order higher than three. For example,

consider a codon sequence C -n, C,, C ,+ . We now desire to expand the sequence. This

can be done simply by replacing Cy by C,(C, where C.C' is one of the pairs that will accept

C, at either end. To extend the string, we thus have the following rewrite rule:

7
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" Any individual codon in a smooth string may be replaced by any pair

yielding a 1+ .+] for the (third) codon in Table 2.

Thus, an O-codon may be replaced by any one of the following pairs: 0-0-, 0-2, 1- 1+,

20-, 22 ; etc.

To calculate the number of possible quadruplets we can determine from Table 2 how

many times any given codon type appears in the middle portion of the string. Then we

can multiply this number of occurrences by the number of possible pair substitutions. For

example, the type O-codon appears as the middle codon in rows 1, 8 and 11. In each row,

the only legal third codons whose tail curvature matches that of the head of 0-are 0-, l-

and 2 (see Table 1). Thus the 0-codon appears as the middle codon in 9 of all the possible

triplets. Similarly we find the following number of occurrences of the other codon types in

the middle position of the string:

0-= 9;O=4; 1- I6; 1+  6;2=9. E=34

Thus the total number of possible smooth codon quadruples will simply be the sum of

each of these numbers times the number of possible pair substitutions for each type (next

to last row of Table 2), less any duplicate strings. The total substitutions are 134, but the

0- and 2's duplicate each other, reducing the total quadruples by 45. The answer is the

difference of 89 out of a possible 625. Table 3 shows how the number of possible open

strings increases with the number of codon elements. In general there will be less than
5. 7 (N-)/2 possible smooth strings of N codons compared with 5 N possible (see Appendix

II).

5.0 Closed Codons

Because most objects have closed bounding contours, matching to closed codon sequences

is of greater interest for shape recognition than representing open strings. Clearly this

r.onstraint on the codon sequence will further reduce the number of allowable smooth

shapes. Indeed, this constraint is so powerful that all closed shapes containing up to four

codons will be enumerated shortly.

First, let us examine the generating rules. Closed codon pairs can be noted simply by

inspecting Table 2 (Fig. 6). Here, the signs of the heads and tails of the pairs in the first

column must agree. The only cases are 0-0-, 0+0 + , 0-2, 1-1 1 and 22. These shapes

are depicted in Fig. 7, with figure indicated by cross-hatching. Note that there are only

three basic outlines, if figure and ground are ignored. Later, we will address the problem

of indexing identical codon descriptors that have different figure-ground relations ( e.g., the

8



CODON CONSTRAINTS RICHARDS & HOFFMAN

0+ 0+ +

NOV/

0-0" 0-2 22

Figure 7 Legal smooth, closed codon pairs. Figure is indicated by cross hatching. Part boundaries

are noted by the slashes. The dots indicate positive minima, which are used for shape descriptions
but are not part bouhdaries.

22 pair) and also the observation that the part boundaries (slashes) for the "holes" do not

seem appropriate.

- From these four legal codon pairs, we can now easily generate the legal closed triples.

Simply consider the pair as a string of three elements and then replace each "middle"

*.. element by a pair according to Table 2 (Fig. 6). Thus, the closed pair 1-1+ may be

. re-written as 1-1+1 - (or 1+1-i + ) and the 1+ (or I-) can then be replaced by O-1-, 1-0+,

21- (or 0+1+, 1+0- , 1+2). Such substitutions yield a total of 10 different codon triplets, or

*only 5 different outlines out of a possible 125 if figure and ground are ignored. These shapes

*- are shown in Fig. 8, with their codon labels. Figure 9 shows the result of applying the same

*" rewrite rules to the triples to enumerate all possible codon quadruples. Here there are only

*9 outlines out of a total possible combination of 54 or 825 sequences. Appendix III shows

that the upper bound on the number of closed smooth codons is 2N-1 + I where N is the

a number of codons in the ring. The compression is thus about 2N- / 5 N, or over 101 for a ten

element ring. The reduction comes in part from a propagation of constraints through the

closed string, very analogous to the constraint propagation used by Waltz (1975) to solve

_ for "blocks-world" shapes using constraints on legal trihedral joins.

6.0 Mirror Reversal, Holes and Figure-ground

In Fig. 7, three pairs of codon shapes are possible for a two element ring. For each pair,

the outline is the same, but the figure-ground relation is reversed. The situation is similar

9
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Codon Triples (5)

000 0 t; 01 1; 1 1,2,1 2,2,2,

Figure 8 Legal smooth, closed codon triplu.

Codon Quads (9)

Figure 9 Legal smooth, closed codon quadruples.

to a lock-key arrangement, where the shapes in the upper row fit snugly into their "hole"

complements in the lower row.

Two problems arise in representing these mirror shapes: First, a lock-key pair may

have the same codon description, such as "22" on the right. This is easily rectified by

adding an extra index. The second problem is perceptual. For each of the shapes in the
lower row, although "figure" is outside, we strongly prefer the "hole" as the figure. Why?

Some insight into why "holes" are preferred as figure can be obtained by noting that

10
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CODON CONSTRAINTS RICHARDS & HOFFMAN

TABLE 3

NUMBER OF CODONS NUMBER OF:

IN STRING COMBINATIONS OPEN STRINGS CLOSED STRINGS

1 5 5 (2)

2 25 13 3

3 125 34 5

4 625 89 9

5 3,125 233 17

6 15,625 610 33

7 78,125 1,597 65

8 390,625 4,181 129

9 1,953,125 10,946 257

10 9,765,625 28,657 513

Figure 10 (Table 3) A comparison showing how the number of possible strings of codon elements
is reduced as first smoothness (open strings) and then closure are imposed as constraints on a curve.

all the shapes in the lower row consist of two parts by our rule. (The slashes indicate the

points of maximum negative curvature.) On the other hand, the "ellipse" and "peanut" in

the upper row are single entitities without parts. Certainly a single entity is "simpler" in
some very basic sense than one with parts. Thus, it makes sense to describe the "hole" as

the complementary figure if that complement has fewer parts. Note that for the 22 dumbbell

shapes, the preference between the hole and its "key" is less strong. In fact, it is not

too difficult to regard each "bump" in the hole as a part of the hole, whereas it is almost

impossible to view the 0-0-elliptical hole as having two parts. Our rule for representing

"holes" is thus:
2'

Represent a "hole" by its figure-ground complement if that comple-

ment has fewer "parts".

Note that there are many linguistic examples where this rule has been applied. For example,

"key-hole", "screw-hole", "oval window", etc., are all descriptions of a hole in terms of

the figure-ground complement. (Appendix I shows how a figure-ground complement can be

computed easily using a binary representation.)

°I
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7.0 Index Development

The shapes of closed codon rings shown in Figs. 7, 8, 9 have all been drawn to preserve

-. symmetry. Furthermore the axes of elongation tend to be straight, and the "parts" are
neither too "thin" nor too "thick" for most peoples' taste. What are the rules that underly

the canonical representation of these primitive shapes? What regularities of the world are

captured here?

ft" Clearly any time a rule is applied to put a codon ring in canonical form, then we have
an implicit shape index which is being defaulted. An interesting extension of the abstract

codon description is thus to develop indices that are meaningful. The fact that the codon
hierarchy is small provides an opportunity for a rational development of such indices--at
least for a start. (A more complete and useful set should relate each index to a desired

real-world property.)

To give the flavor of this approach, consider the first three primitive codon shapes in

Fig. 7: the "ellipse" (= 00); the "peanut" (= lI) and the "dumbbell" (= 22). What

useful properties can now be assigned to an ellipse outline? We have already mentioned the
need to specify figure-ground. What about the orientation of the ellipse, or its eccentricity,

or even perhaps its size? These four parameters will completely specify the elliptical shape
relative to a reference frame. However, if we encounter an ovoidal shape having the same -

00 codon description, then still another index may be required. For our single, most primitive
closed shape we thus have already the following possible indioes:

FIGURE-GROUND 0, 1

ORIENTATION (OF AXIS) 0

ECCENTRICITY (ASPECT RATIO) p

SIZE

SKEW

As we proceed to the next more complex shape, the "peanut", the axis is now curved,

and the left and right portions need not have identical size. Two more parameters thus must

be added:

RELATION LEFT AXIS TO RIGHT AXIS: a

RELATIVE SIZE, LEFT TO RIGHT "PART": ',t

These indices suffice for the dumbbell.

12
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In a similar vein we may proceed up the closed codon hierarchy, adding additional

indices. This procedure automatically provides an ordinal order to the indices (whether this

order is perceptually appropriate is a separate issue!). Note that left-right "handedness"

does not appear until we encounter four-element codon rings. For codon rings greater than

four or five, the complexity of the shape undoubtedly prohibits practical use. In sum, the

codon hierarchy can thus be used to develop an ordered set of indices to the more metrical

properties of shapes.1

8.0 Mapping 3D <=>2D

Codons are descriptors for 2D plane curves, and hence of necessity are an image-based

representation. In Marr's (1976; 1982) terminology, they are part of the data structure of

a primal sketch. An important aspect of the motivation for the codon description comes

from the nature of the 3D world, however, namely the rule for locating part boundaries

at minima of negative curvature. This rule for partitioning a curve captures the concavity

regularity created when two 3D parts are joined (see Fig. 2), as seen in the 213 image. Thus,

the presence of a concavity in silhouette is used to infer a part boundary in the 313 world.

S .. (See Hoffman & Richards, 1984, for a more rigorous treatment of this inference.) Can other

inferences about the properties of 3D objects also be made from the codon descriptors?

To explore the kinds of inferences possible about 3D shape from 2D contours, we will

consider some of the canonical, primitive shapes generated by codons shown in Figs. 7-9.

Our aim is not to exhaust all possible inferences, but rather to indicate a profitable direction

for future study.

There are two kinds of inferences to consider: (1) those that lead to the acceptance

of a particular 3D shape and (2) those that reject a possible 3D shape (Rubin & Richards,
1982; Richards, Rubin & Hoffman, 1983). Consider the first three primitive outlines given In

Fig. 7: the ellipse, the peanut and the dumbbell. An example of the rejection strategy is that

the 2D peanut contour can not arise from a surface of revolution about a straight axis, for

if it did, then the concavity in the outline would be eliminated. Similarly, the dumbbell can

not be the projection of a 3D surface of revolution about a vertical axis, although it could

be a 3D shape created by revolving the outline about the horizontal axis (i.e., a dumbbell in

30).

An example of the accept strategy is the Inference that the elliptical outline represents

a 3D ellipsoid. But of course although it is true that a 3D ellipsoid will generate a 2D

'It is expected that a mapping between our codon-based and axial.based (or "grassfire") repre-
.-.. sentations for shapes can be made with a suitable list of indexed parameters. We see the advantage

of the codon scheme boing that crude part descriptions appear at the top level, allowing immediate
access.

13
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(A) (8) (C)

Figure I I Internal contours may draticWsa dier U'f 3D irnrprtation we as hse Codon
description.

elliptical contour, so will any planar 2D ellipse or more awkwardly any shape whatsoever

that has at least one elliptical cross-section.

To infer the 3D shape from the 2D contour thus requires assumptions about (1) what

the hidden 3D surface looks like, (2) whether the shape is 20 or 31), and (3) whether the

silhouette arises from a plane curve, etc. [Stevens (1983)]. Clearly, then the accept mode

of inference is much more fragile than the rejection strategy. In one case the inference

rests on assumptions, whereas in the other, possible assumptions are rejected.

What kinds of 3D properties then can be tested from 2D codons? We have already

mentioned the surface of revolution constraint, which is a particularly popular basis for

modelling shapes (Binford, 1971; Agin, 1972; Marr, 1977). But still deeper insights into 3D

-- shape can be obtained if the part boundaries are reinforced by spines and cusps which

appear in the image (Koenderink and Van Doom, 1982). For example, in Fig. 11 the

silhouette of all three figures is the same. However, their interpretation is quite different.

Assuming general position, outline (A) is seen as planar, (B) as three dimensional, whereas

(C) suggests a 20 fin on a 3D ball, otherwise it would be an impossible object (Huffman,

*' 1971). It is clear that as the codon representation is developed, the internal contours must

play an important role. Their presence may force (or exclude) a particular 3D interpretation.

These differences in interpretation should be reflected in the codon description. For example,

the description of (B) should include three separate codon strings rather than just one for

the silhouette. Thus the silhouette (A) = < 2002 > whereas (B) is more correctly depicted

as < [21 [0001 [21 >, with the two [21 being the "ears" of the head [000]. In this case the

transformation from A to B is a simple restructuring of the string. Other cases with similar

14
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silhouettes will not be so simple. Yet, just as 3D shapes constrain the 2D codon descriptors

and vice versa, so will there be constraints on the transformation of strings of type B into

those of type A (and vice versa). Here is an exciting but difficult area for future study.

9.0 Summary

Codons are simple primitives for describing planar curves. They thus are principally image-

based descriptors. Yet they have the power to capture important information about the 30

world, such as making part boundaries explicit. The codon description is highly redundant

(useful for error.correction). This redundancy can be viewed as a constraint on the number

of possible codon strings. For smooth closed strings that represent the bounding contour

(silhouette) of many smooth 3D objects, the constraints are so strong that sequences

containing 6 elements yield only 33 generic shapes as compared with a possible number

of 15,625 combinations. An intriguing and important question for image understanding is

to explore the constraints on the possible 3D configurations that can project into these 33

generic 2D shapes.
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Appendix I

A Binary Mapping for Codon Strings*

1. Mapping Rule: Five basic codon types would normally require at least three bits for a

binary encoding. However, there are sufficient constraints on codon joins that the 0-and

0 codons can be distinguished, provided at least one member of the string is not a type

0 codon. By inspecting Tables 1 or 2, we see that if a type 0 codon follows a 1 -codon,

then it must be an 0+, whereas if the type 0 follows a I+ or 2 type codon, then it must be

an 0- Similarly if a type 0 precedes a I-or 2, it must be type 0-, but if it precedes a

IV codon, then it is type 0-. Because adjacent type 0 codons must have the same sign,

the designation of the 0 codon type will be completely specified by its neighbors. This

redundancy is also reflected in the number of legal codon pairs, which is thirteen and can

be mapped into 4 bits or 2 bits per codon.

Our mapping scheme utilizes the constraint that between every minima there is at least

one maxima (provided the positive minima of O+are noted.) Thus, given the location of a

minima in a binary string we only need to encode the position and number of inflections in

relation to the maxima. [This was the basis for the codon definitions.] Let "I" represent an

inflection and "0" represent no inflection. Then the mapping rule will be as follows:

CODON TYPE BINARY CODE

0- -

1+

1- -.

2 ". U

Note that in this mapping, the position of both the maximum and minimum is implicit. Namely

the minima lie at the beginning and end of a binary pair whereas the maximum lies between

the pair. This property will be seen to be useful in depicting figure-ground reversals where

maxima and minima exchange places. The exchange can be brought about simply by phase

shifting the starting point on a string by one element.

2. Mirror Transform: A mirror transform in a codon string occurs most frequently when a

shape is symmetric. The rule for effecting a mirror transform is to read the string backwards

and change the signs of the I+and l-codons (see Hoffman and Richards, 1982). The binary

rule is simpler: "Read the string backwards".

*This mapping and its properties wore first noted by Chris Fitch and Steve Schad in WR's law,
"Natural Computation" in the Fall of 1983
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. ExampOo:

ORIGINAL STRING: 1+ 2 1- 1+ 0 1-
BINARY MAPPING: 01 11 10 01 00 10
REVERSAL BINARY: 01 00 10 01 11 10

MIRROR STRING: 1+ 0 1- 1+ 2 1-

Note that the mirror codon is simply the original read backwards with the signs changed.

3. Lock-key or Figure-ground Transform: The basic idea underlying a figure-ground

reversal is that the maxima and minima must be exchanged. This can be accomplished by

rotating the binary string by one element. However, because a figure-ground exchange also

entails a reversal in the direction of traversing the curve, the order of the binary string must

also be reversed. Hence the figure-ground rule is: "Rotate the binary string by one element

and read the string backwards".

Example:

ORIGINAL STRING (FIGURE): 1+ 2 1- 1+ 0 1- .--

BINARY MAPPING: 01 11 10 01 00 10
ROTATE ONE ELEMENT: 00 11 11 00 10 01
REVERSED BINARY: 10 01 00 11 11 00

COMPLEMENTARY STRING (GROUND): 1 1+ 0 2 2 0

*18
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- Appendix II

Numbers of Possible Open, Smooth Codon Strings

1. Strategy of proof: An upper bound on the number of legal codon strings with smooth

joins, but which are not closed, will be obtained by induction. First we will determine the

number of possible strings of length N - I given the number of strings of length N. This

relation will then lead to an obvious sequential pattern for even and odd N's of low numbers.

The sequence will be bounded by 5 7 (N-)/ 

2. Two types of strings: Referring to Table 1 (Fig. 5), we note that a codon string may

be extended in only two ways: (a) by adding either a 0-, I-or 2 or by adding either a

O+or I+. If the string ends in a 0-, 1+, or 2, then there are three choices, namely (a), for

the addition, but if the string ends in a OWor I-, then there are only two choices, namely

(b). Let us designate the 0-, I+and 2 codons as type A and the 0", -as type B. (A

and B simply specify whether the head of the codon has positive or negative curvature,

respectively.) Then if there are AN strings of length N ending in O-, I'or 2, there will be

3AN possible strings of length N + 1 that are constructed from these AN codons. Similarly

there will be 21BN possible strings of length N + I constructed from these /1 N codons. The

total number E(N + 1) of strings of length N + I will then be

E(N + 1) = 3AN+2BN (1).

Let us now consider a string of length N ending in a type A codon (0-, 1-, 2) How did

each of these codon types arise from the string of length N - I? Again referring to Table 1,

we see that the next-to-last codon must have been either an 0-, 1+or 2. Thus we have two

instances of type A (namely 0-, 2) and one instance of type B (namely 1+). The number of

AN codon strings is then simply

AN = 2AN-1 + BN-I (2).

Similarly, we find that the last type B codon in a string (namely O + , 1-) must be preceded

by either an 0 + , which is type B, or a 1-, which is type A. Hence we have

BN = AN-I + BN-1 (3).

We now can solve for AN and BN in terms of E. But first note that adding (2) and (3)

.: gives us the relation

AN +RN = 3AN-1 + 2BN_ -E(N) (4a)
,

01 or
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BN = E(N) - AN (4b).

Now if the right hand terms of (4b) are replaced by the appropriate forms of equations (1)

and (2), we find that

BN E(N - 1) (5a).

Thus from (4a)

AN E(N) -E(N -1) (5b).

Finally, by substitution in (1) and changing the index by one, we obtain

E(N) = 3E(N - 1) - E(N - 2) (6).

These totals for N are given in column 3 of Table 3 (Fig. 10).

3. Upper Bound: An upper bound on these totals can be set by making the negative

right.hand term of equation (6) smaller and then approximating the sums by the positive

term. For example, by algebraic manipulation, the negative term can be reduced to E(N-4),.

giving

E(N) = 7. E(N - 2) - E(N - 4) (7).

An upper bound on the possible number of open codon strings is thus 7. 1 (N - 2). We then

observe the following pattern:

. CORRECT

E:(3) <7-5 =35 34
E(4) < 7.13 91 89

E(5) < 7.7 -5 245 233
E(6)<7.7.13=- 637 610

Note that for all odd sums the factor other than 7 is 5, whereas for the even sums, the factor

is 13. Thus If N is odd, E.dd <S5" 7 (N - I)/ whereas if Nis even, E.... < 13 . 7(N- 2)/R . Now

note that 13 may be approximated by 5.71, or more especially 13 < 5 71. Thus the factor

13 may be replaced to yield the single equation for the upper bound on E

.4-
E(N) < 5.7

:;20
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Appendix III
- V ..

Number of Smooth, Closed Codon Strings

1. Strategy of Proof. We will use the binary representation presented in Appendix I.

Furthermore, we will count only the basic closed shapes without regard to whether figure

or ground is specified. The counting proceeds by constructing a binomial tree, subject to

three constraining rules:

(I) The sum of the l's must be even.

(i) There must be an even number of adjacent binary O's in any sequence.

(il) Only the 1111... string can end in a 1.

The first rule says that the total number of inflections in a closed string must be even (or

zero). If there were an odd number of inflections then the string can not close on itself

because the sign of curvature at the beginning and end of the string would be different.

The second rule follows indirectly from the first. A type 2 codon is represented by

"11" because it has two inflections. Thus taking all "2" 's from the string will still leave an

even number of "1" 's. For each remaining "I" there will be an equal number of O's. This

number will be even. The total number of O's in the binary string remains even because all

other O's in the binary string will come from the type 0 codon, which is represented by a pair

of binary 0's. The requirement that there must be an even number of adjacent O's follows

from the legal joins shown in Table 1. For example, a 1' 11 sequence, corresponding to a

1-2 string is illegal. The third digit must be a .0, changing the string to a 11 + , etc.

The third rule simply forces the end position in the string to be a zero to prevent

duplication of strings. The exception is a codon string made up only of type "2" codons,

which must be included in the count. Otherwise the string is rotated to remove a final binary
idly$.

o" 1. The Construction. We wish to count all possibilities for the binary 0 and I in any

a position of the string of codon length N. This will be accomplished by constructing a tree,

with two binary positions added at each new level, N, of the tree. The binary positions,

of course, represent the five basic codons plus the constraint that allows both the 0-and

0 +codons to be represented by the binary pair 0.4 [see Appendix 1.

Table 4 shows the construction of the binary tree. The tree is initiated by the pair of

l's In the first row at level 0. This pair of l's then branches to a pair of 0's and l's at level

1, corresponding to a single codon.

21
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STRING POSTION LEGAL
(or LEVEL. N) BINARY TREE POSSIBILITIES

o ()

.... 1 * . l 3

0 ---1 .--- ""°f

~ 1 0.-,1 1

' 4 i1 01 41 01 01 0.1 01 019
01 01 01 01 Oi 0.1 01 01

(U) (p) (a) (,,)

FIgure 6 Table 4. Tree structure of binary codon strings of length N.

At this level the possible legal binary pairs according to our rules would be 00 and 11,

corresponding to the type 0 and 2 codons. However neither of these single codons can

close on itself without introducing a maxima. Hence the first legal closed binary sequences

begin at Level 2.

Reading down from the top through Level 2 (and ignoring the initializing l's), we have

only three possibilities: 00, 110, 0, and 1 11 1 (see Fig. 7). The sequences 0011 and 1001

are illegal because a sequence can not end in a "1" unless all members of the sequence

are "I" (Rule iii). Hence there are only 3 possible closed strings made of two codons.

Moving to the third level, we now need explore only those branchings (and cross-

branchings) that end in 0. There are five legal strings obtained by directly moving down

the branches without crossing over. These are 000, 01 100, 110000, 111100, and

- 11 1 111. However, note that the second and third strings are simply a rotation of one

22
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another and hence are duplicates. Indeed, any right-branching sequence from a qS4 to a I 1

on the left side of the tree must be duplicated on the right side of the tree, because a simple

leftward rotation of the binary string can move the I I pair into the first position. The initial

pair 1 1 will now correspond to the I I pair at level one on the right side of the tree, and the

preceding pair of binary 00's will have moved into the last position, corresponding to the

00's at the highest level being considered. Hence all direct strings on the left side of the

tree can be ignored in the direct string count, with the exception of the sequence ...€0...

consisting solely of binary O's. Thus, the number of legal "direct" strings constructed by

moving down the tree without "crossovers" (dashed lines) will be:

Number of Direct Strings: = 2 + 2N-2 (1).

3. Cross-over Strings: The above count does not include "crossings" between branches

similar to those indicated by the dashed lines. Given that a "crossing" is made at one level,

we are then required by Rule (ii) to cross back at the next or later level in such a manner

that the number of adjacent O's is even, and such that the string ends in 0. Thus the first

crossing 1001I is illegal because it ends in a "1". However this sequence can be extended

at level 3 into a legal string, namely 100100. [Note that the other crossing 10i 144, is illegal

*e because there is a single "0".] We thus see that there are no legal crossover strings of

codon length two, and only one of codon length three, namely 10010#.

Moving to level four, we may continue to use the 1001 crossover as a "header". Now a

I I at level three may be used to extend the string, for we have a pair of binary O's available

at level four. This gives us the two crossover strings ending in columns "y" and "z", as

indicated in the last row of Table 4. In addition, we may now also create a new crossover

header, namely 100001, which becomes legal because of the binary O's available at level

four. Thus new sequence, 100#014' ends in column "x". By considering cross-overs on

the left side of the tree we have thus added three more strings of codon length four.

Now consider the right-half of the tree. At level two, we may add another crossover at

the "1" followed by a period. Crossing over here and back again at level three, we obtain

the following sequence ending in column (w): I1 1010. But this sequence is the mirror

transform of a previous string found by an earlier crossover to the left side of the tree,

namely 10011146. (The mirror transform is the same string read in reverse, and in this

case rotated by two to place the two binary O's at the end.] It should be obvious that the

symmetry of the crossover header, namely 14.. .41, allows one to read it backwards to get

S'-the same result. Hence all crossovers on the right half of the tree will be the "mirrors" of

strings obtained on the left half.
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We are now in a position to count the cross-over strings. At each new level, we add

one string of the form 100 ... 00. This sequence doubles at each successive level, giving

us 2 N - 3I possible strings from the first possible crossover, 2 N4 from the second, etc.

N
Number of Cross-over Strings: E 2N-' (2).

J-=

4. Final Count: Adding the counts for the direct (1) and crossover (2) strings, we obtain

N
Number of Closed Strings: 2 + 2N - 2 + 2' -

' (3).
J,==

By algebraic manipulation, it can be shown that the above reduces to

Number of Closed Strings: 2N-' + 1. (N > 2) (4).
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