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VARYING BOUNDARY CONDITIONS
WITH LARGE DIFFUSIVITY

by

Jack K. Hale and Carlos Rocha

ABSTRACT

For systems of semilinear parabolic partial differential equations
on bounded domains with large diffusivity and homogeneous boundary
conditions close to the Neumann conditions, we associate a system of
ordinary differential equations (ode‘s) from which the dynamics of the
original system can be inferred. Small perturbations of the Neumann
case produce large perturbations in the ode's with corresponding effects
on the dynamics of the system. The same theory is valid for functional
differential equations. Applications are considered in models for

control by genetic repression of biological material in cells.




1. Introduction.

Consider the system of parabolic partial differential

equations (PDE)

(1.1) au/at = Dau + f(u); x€Q

(1.2) 3u/an = E(x)u; X € 3Q
: where u € RN, Qc R", n < 3, is a bounded open set with 3aqQ
b
B smooth, D = diag(d],...,dN), E = diag(e],...,eN) where each
i dj > 0 1is constant and each ej: 30 - R 1is continuous. Also,
L suppose that f: RN > RN is a C1’1-function; that is, is con-
‘i tinuous and has a Lipschitz continuous first derivative.

Our objective is to study the behavior of solutions of (1.1),

Ef (1.2) when D'1, E are small; that is, the boundary conditions

are close to‘homogeneous Neumann conditions and the diffusivity
is large.

To state the results, we need some terminology. If X = LZ(Q,RN),
D(A) = {6 € W 2(a,RY): ae/3n = E: on aq)

then As = -Dae 1is a sectorial operator and one can define the
fractional powers A® of A, 0 < o and the space X* = D(A®) with

the graph norm. If 3/4 <o <1, then X’ c w1'2(Q,RN) n Lx(c,RN)

-------- MR
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with continuous inclusion. One can then show that (1.1), (1.2)

defines a local C]’]

-semigroup TD,E(t) on X* for 3/4 <a <1
(see, for example, Henry [9,p.75]).

For any set B c X%, the «-limit set w(B) of B is defined
as w(B) = nsz ce UtgyTD.E(t)B' A set B c X* 1is said to be in-
variant if, for any ¢ € B, one can define TD,E(t)¢ for t € R
and T e(t)s €B for teR. Aset Ac X® is said to be a
compact attractor for (1.1), (1.2) if A dis compact, invariant and

there is a neighborhood B of A such that wu(B) < A.

Under the assumption that the ordinary differential equation
(1.3) du/dt = f(u)

has a compact attractor A, it was shown in Hale [5] that A is a
compact attractor for (1.1), (1.2) if E = 0 provided that d» is
sufficiently large, where d = min(d],...,dN) and ) is the first
eigenvalue of -a with homogeneous Neumann conditions. In other words,
(1.1), (1.2) with E = 0 behaves qualitatively as the ODE (1.3) if
dx is large.

We will obtain an appropriate generalization of this result when
D'], E are small; that is, the qualitative properties of the flow for
(1.1), (1.2) can be determined from an ODE under certain hypotheses.

At first, it is instructive to quess the appropriate ODE. If

- =11
u(t) = o’ 1:1u(t,x)dx and u(t,x) is a solution of (1.1), (1.2),

/
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then, by integrating (1.1) and using the boundary conditions (1.2),

one obtains

du -1 -1
=D E t,x)d f(u(t,x))dx.
It = Dlel Iag (x)u(t,x)dx + |g] JQ (u(t,x))dx

If we assume that

E(x) = E(x,D),

(1.4) Do) YE(x) » E(x), E(x) continuous,
I E(x)dx = z
a0

and u(t,x) - u(t) >0 as d = min(d],...,dN) > o, then v = lim
u satisfies the (ODE)

(1.5) e ov s f(v) % g(v,0)
The "perturbation" E(x,D) in the boundary conditions leads to the
perturbation zv in the vector field f(v) in (1.3).
Under the assumption (1.4), there are N eigenvalues x1(D),
..,xN(D) of Da with boundary conditions (1.2) and corresponding

unit eigenfunctions Q](D),-..,¢N(D) such that

hp = diag(D),...,0(D)) » ¢

do

-1 .
¢p = (¢q(D),...ep(D)) > 10771, I = identity
B e e L Y A A e A e et




as d - «. Decompose X* as

x(’l

usu
Q
U { : N
= {¢ = QDV. v ER)

v,

{v € X*: <y,e>=0 for all ¢ € U}

where <y,d> = J uT(x)¢(x)dx.
Q
If u(t,x) is a solution of (1.1), (1.2) and

(1.6) u(t,x) = epv + wlt,x), w(t,-) € u;
then
(1.7a) dv/dt = Ap v + J op Flop viw)

f

(1.76)  aw/at = Daw + f(ep viu) - @DJQ¢D Flop viw) on &

aw/3n Ew on 32

The main result of the paper is the followinag.

Theorem 1.1.

Supoose D,E(-,D) satisfy (1.4) and the ODE (1.5) has a compact

attractor A, £ with Ve RN being a neighborhood of A £ such that
.9 ~ 9
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;
\ w(V) € A, ¢. Then, for any neighborhood W of A, ¢ With Cai eV,
. there is a constant dy >0 and a ¢'-function h: W x {D: d > dg}
5 > ui such that h(v,D) »0 as d >~ and the set
’ (1.8) My = {u = o v + h(v,D), v € W}
a is an exnonentially asymptotically stable invariant manifold for
(1.1), (1.2). Furthermore, the flow on this manifold is given by
: u(t,x) = ¢D(x)v(t) + h(v(t),D)(x) where v(t) 15 a solution of
o the ODE
(1.9)  dv/dt = Ay v + | oy (e v + h(v,D)) 967 A v + 6{D,v)
‘ D 9 D D D

The proof of this theorem is given in Section 2. It is

interesting to note some implications of this result.

21
Since Ap >z, op - 2] "%1,h(v,0) > 0 as d -+ =, relation (1.6)
shows that the average u of u approaches |QT%V and v satisfies

the ode

= 5 -4
(1.10) dv/dt = ¢v + |a| *f(|a] ?v)
A rescaling of v » ]QI%V yields (1.5).

The compact attractor A; f is upper semicontinuous in the
b}

Hausdorff metric with respect to C]-perturbations of the vector

‘.
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field zv + f(v) (see, for example, Hale [6]). The flow defined

by (1.9) is equivalent to the flow defined by rescalina v » IQ!%V.
The new vector field ayv + lsz.ll"‘G(D,lszl;5 approaches the vector
field g(v,z) = ¢v + f(v) in the C' topology in W as d » .
Thus, (1.9) has a compact attractor A oo f in W and 1imd+mAD,;,f
c A;.f as d > =, If the flow of (1.5) on Ac.f is structurally

= A

stable in W, then Timd*QAD nd the fiow defined by

5T f 2, f 2
(1.9) is equivalent to the flow defined by (1.5) in W. This is

summarized in

Corollary 1.2. For d > dO’ equation (1.9) kas a compact attractor

AD,:,f in W, ]imd»«AD,;,f c A;,f. If the flow defined by (1.5)

is structurally stable on Ac f in W, then_the flow defined by

(1.9) is structurally stable on AD,c,f jn W and is equivalent
to (1.5) in W.

The followina observation is also important. Although the
perturbation E(-,D) > 0 as d - =, the behavior of the flow de-
fined by (1.1) cannot be considered as a small perturbation of the
flow defined by Neumann boundary conditions. In fact, the matrix
¢ can be very large and therefore the flows defined by (1.3) and
(1.5) can be very different. An jllustration will be given in

Section 3. The flow defined by (1.1) is close to the flow defined

by the equation
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du
3t Dau + f(u), x€Q

. Vallsel™ cu=0, x€oa0

for d large. The similarity with Neumann boundary conditions is
that the eigenfunctions corresponding to the eigenvalues close to
r are approximately constant functions for d 1large and so the
average of u satisfies (1.5).

Equation (1.1) may also contain other physical parameters which
vary over some set. In such a case, equation (1.5) would also contain
these parameters and the flow may undergo various types of bifurcations
as the parameters vary. It would then be of interest to relate these
bifurcations for the 1imit equation to bifurcation of (1.9) for the
flow of (1.1) on the attractor. For example, suppose f = f(u,r);

r € R, and the limit equation (1.5) with f replaced by f(u,r) has

an attractor Ac,r which is a point Vo for r <0 and there is a
generic supercritical Hopf bifurcation at r = 0; that is, the attractor
Ac’r js a disk for r > 0 with the boundary of Aa,r being a stable
periodic orbit which attracts all points on Ag,r except the equilibrium

point. Equation (1.9) will also contain r,
(I.Q)r dv/dt = Agv * G(D,v,r)

where hy = s G(D,v,r) » f(v,r) as d - = uniformly for |r; <r

and v €V for some fixed ry > 0 and neighborhood Voof U,
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This convergence will be in the K topology if f is c*l.

. Furthermore, the attractor AD,;,r satisfies ]imd*«AD,;,r c Ag,r’
N [r] < ro- These remarks are immediate consequences of the proof of
) Theorem 1.1 below. Therefore, if we fix d > d,, with d, sufficiently

large, the one parameter family of flows defined by the vector fields
in (1.9)r. Ir| < ro» have the property that there is an (D), |r(D)]|

< Tos r(D) 0 as d -+ =, such that the attractor AD is a point

20T
for -ry <r < r(D) and is a disk for (D) < r < ry with a generic
Hopf bifurcation occuring at r = #(D). The same remark applies to
other elementary bifurcations that occur in one parameter families.
It will be apparent below that the proof of Theorem 1.1 is easily
- adapted to the following situation. Let A = A(x) be a positive
definite, continuous nxn matrix function uniformly for x € @ and

T

let u be the transpose of an N-dimensional column vector. Consider

the equation

= D[div A'7uT]T + f(x,u) in Q

- (1.10)
: [A%']'n = E(u) in 20

where n s the outward unit normal vector to 3Q, f € c"‘(n x RN, RN)

and

E(u) = ( e(x,y)u(y)dy

‘el

(1.1) e(x,y) = diag(e;(x,y),...,ey(x,y))

b e e “ats A Al

.,
"
]

D{ﬁf']e - e, f

f
Jae )

~ ~nre
I

g
i
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where e, e are continuous on 3 x 3n. Let

(1.12) Flu) = |o|”! I £(x,u)dx.
Q
Then Theorem 1.1 is valid with (1.4) replaced by (1.11), (1.1),
(1.2) replaced by (1.10) and (1.5) replaced by

(1.13) u=cu+ F(u)

It will be clear also form the proofs given below that Theorem 1.1
remains valid even if the equation (1.1), (1.2) is a functional dif-

N where r > 0 is

ferential equation; that is, f: C([-r.O],RN) + R
a given constant. Also, one can consider the equation (1.1), (1.2)
coupled with an ordinary differential equation, and obtain the version
of (1.5) coupled with the same ordinary differential equation. This
is illustrated in Section 4 for a problem in genetics of Busenberg

and Mahaffy, [1]. One could also have a functional differential

equation in (1.10).
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L 2. Proof of Theorem 1.1.

We will use the notation introduced in Section 1. For a

: fixed constant b > 0 and a given continuous function a: 32 + R,
‘ .

consider the eigenvalue problem

ba¢ = a in

(2.1)
- 3¢/3n = -a(x)s on 2q.
f Suppose a(x) = a(x,b) and
y b a(x,b) » 8y(x) as b+«
> ' (2.2)
- 8,(x) continuous IQI'.I By = o.
3 1 1
- 30

The smallest eigenvalue A1(b,a) of this problem is characterized
by the variational principle (see Courant and Hilbert [2 ,p. 398])
. 112 2, [ 2,
(2.3) -A](b,a) = min{| blv¢|®dx + b| az%dx: | ¢“dx = 1}
Q 1) Q

é Also, if ¢ (b,a) minimizes this functional, then c,(b,a) fis an
- eigenfunction corresponding to 2,(b,a).

Lemma 2.1. If (2.3) is satisfied, and )k(b), k = 1,2,... are the
i eigenvalues of (2.1), then there are constants b0 >0, v >0 such that,
N
N
e

cw, e mc. "a o™ e e A e AT e e z‘-.'.-“ e W W

.t
LS 1)
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M(B) < -wb, k >2, for b > by

Also, there is a normalized eigenfunction ¢1(b) such that

o7(b) > |2]™ as b » w.

Proof: For any ¢ > 0 there is a bO >0 such that b > b0 implies

sup [ba(x) - 8,(x)| <
X

Taking u(x) = |2]™%, it follows from (2.2) that

"y 2 |9|-1J ba = |9|-1J (Ba-s,) + g < o+eK
19} )

)
where K = [9|'1|39|.
The trace theorem for N]’Z(Q) implies there is a constant o

such that

[ .2 2 2.
Jané "CO[JQ‘V¢I ) JQ¢ ]

If we let § = supxle](x)l and ¢](b,x) be an eigenfunction for

M) [ e¥(b,e) = 1, then
2




c+ek>b I |V¢]|2 + bj a¢$
Q an

2 | 2 2
b I |vey |€ + I (ba - By)¢q + I Bq¢
0 % N Ll (Y ™

v

b [ 112 - (1 0)f o

1Y)

v

[b - o] + c)]Jq|V¢1|2 - (Y +e) COI %

¢
Q

b - co(; + e)]JQ|V¢]|2 - (; +¢e) Co

Thus, for b > ¢o(] + ), we have

o el g 6
J 94y 1" < b - COQ + ¢) b-c,

{ Thus, [Q|V¢1(b")!2 +0 as b+« Since the eigenfunction :,(b,x)

js a C°-function of x (see, for example, [3 ,4 ]), it follows that
¢1(b,x) - \g!°% as b » o uniformly in x € . From this, we con-
clude that Jan ba:f >c 8 b= Thus, =3y >0 3 b«
This proves the first part of the lemma.

The second eigenvalue xz(b) is characterized by the minimization
problem (2.2) with the additional restriction fq¢:] = 0. Let ;z(b)
= -2,(b)/b. Then

;2(b) = lﬂ'in-'-r !T:fz + [ a;23 { :2 =1, ( ciq = 07
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Suppose now there is a sequence bj »>w as j - o such that
”z(bj) +0 as j-» = If ¢2(bj,-) is the corresponding eigen-
function, ¢§ = 1, then, as above, one concludes that I |V¢2|2 >0
and lnl'] 9¢2 +0 as b+ -~ Thus, ¢5(b,+) » 0 as bQ+ « which
contradictsnthe fact that j ¢§ = 1. Thus, there is a b0 > 0 and
a u >0 such that uz(b) z?u for b > by. This implies that
-3y(b) > ub for b > by. This completes the proof of the lemma.

Now let us consider the parabolic PDE

2u/3t = bau in

(2.4)
au/an = -a(x,b)u in 23Q

Let Y = L2(a,R), D(A) = {s € W*2(a,R): a¢/an = -a(x,b)e on ag)
and Ao = -ba¢, ¢ € D(A). Then

J(munwnu=ijwnwwnu+bj a(x,b)u(x)v(x)dx
Q Q 30
for u € D(A), ve W 2(a,R) and A is formally self-adjoint.
It has a self-adjoint extension to N1’2(Q,R). Furthermore,
o(-A) consists of the eigenvalues of (2.1).

Let Y*, 0 < a < 1, denote the Banach spaces associated with

the fractional powers of A. Then (2.4) generates an analytic semi-
At

group e~ in Y% For t >0,

¢
N
:
b
3
S
%
o
R

ISR e R O )




.
&
¢

A]J.‘).

Lt ‘.

a0 4

where T 1is a contour inthe resolvent set o(-A) with arg
+ 16 as |r| + = for some constant 6 € (n/2,n).

Let x1(b) be the first eigenvalue of (2.1) and let ¢,(x)
= ¢](b’X)1 be the corresponding normalized eigenfunction. Let

<hyy> = I ¢(x)v(x)dx and let
0
a _ v vd v -
Y=Y% Ya, Y = sp[¢]].

If ueY* let u= Vep + W, v = <¢qus. If u o is a solution of

(2.4), then

dv/dt

11(b)v

aw/at = baw in Q@

and w satisfies the boundary conditions

(2.5) oaw/at = -a(x,b)w on 3¢

Let us define A = b']Al?i as Aw = aw with the boundary conditions

(2.5) for weE€ D(ﬂ) = D(A) n ?i. Then A is sectorial in ?f, and,
by Lemma 2.1, :(A) > .. Using [9 ,Theorem 1.5.4] we have for w € Y+

---------




where k can be chosen to be independent of b > bo. Then,
making the transformation t -+ bt, we obtain:
Ie'Atwl <K t™® e'“bt|w| 9r t>0
Y L

(2.6)

-Atwl

le
YQ

with k; > kb™, for we Y. and 0 <o <1, b > by
Let us now return to the full equations (1.1), (1.2) and

consider first the linear case f = 0. We are assuming that

-'] ~ ~
11 Vs, (4500 + 240x), Jmej -

J
for j =1,2,...,N.

Let x1(dj) be the first eigenvalue of (2.1) with (b,-a(b,-))
= (dj,ej(dj,-) and ¢](dj,x) be a normalized eigenfunction and
u > 0 such that the second eigenvalue xz(dj) < -udj if dj > dg-
If d-= min(d],...,dN), then

e Tt Mt ht . T aata e am g N e e e e B T TS - .
SRR ; L N R A e S B S S R LI IR I T LSRR
b 2. A0 ) PLSIOR WA NIR 1% L i SR O O N A AR AT NS ASEAC AT C ARG RENEN
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1\D->; as d » o
(2.7) Ay = diag(xy(d))s .. o3y (dy))

z = diag(gys-..,y)

Let
- - 'T
Q](d]) 0 0
0 ¢1(dp) 0 def
(2.8) QD = ‘ = [C] (d])so-°95](dN)]
x® = (v

and decompose X° as

x¢ = yeyt
(2.9) U = {¢ = op Vi v € RN }

Ul = (g € X*: <> = 0 forall : €U

where < ,:> = { ;T(x):(x)dx.
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If u(t,x) is a solution of (1.1), (1.2) written as (1.6),
then v, w satisfy (1.7). The equation

ow/ot

Daw

aw/an

Ew on 23Q

generates an analytic semigroup TD(t) on Ui which from (2.6)

satisfies the estimates

Tyl < k= el b0,
U ke
a 0

-udt
ITy(thw| | < ke MO W)
v,
Under the hypothesis of the theorem, the equation (1.5) has

a compact attractor AC Py As in [ 5], there is a Lipschitz continuous
9

Liapunov function V: FNa-R such that, for any v € R and Ag = A

(i) V(v) =0 if veE Ag

_ (i1) a(d(v,Ag)) < V{v) :_b(d(V,Ag)) where a(r) is
3
E continuous, nondecreasing, a(r) >0 if r >0 and b(r)

is continuous, b(0) = 0.

(iii) V(1.5)(v) < =V(v) where
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.lltl'

-18-

Uq.5) (%) = Ti,o+h™ [V(v(h,vg)) = Vlvp)]

with v(t,vo) being the solution (1.5) through vo at t=0.

For any ¢ > 0, let Vo= (ve RN : V(v) <cl, V; = C2 V.
From (ii), VE is compact for any ¢ > 0. Assume now that 3/4 < o
<1 so that Lm(g,RN) is continuously embedded in X2. As in
Hale [5 ], we will show that, for any ¢ < ¢, there are ¢, n,
n>6>0 and by such that v, € Vc], lwolxol <& b >by imply
that the solution (v(t),w(t)) of (1.7) through Vor Yo satisfies
u(t) = ¢Dv(t) + w(t) € NC for t > 0, where

1

def

W

¢ lug = 9pvp * ¥p» Vg € Vc]' ""o‘xa < nh

Let u(t,*) be a solution of (1.1), (1.2) and let u(t,:) = cD(-)v(t)
+w(t,), v(t) € RV, w(t,?) €U Then:

dv/dt = P(v,w)
(2.10) dw/53t = Dtw + Q(v,w) in @
aw/an = EW on a7
where
P{v,w) = KDV + [~¢D(x)f(¢0(x)v + w(x))dx

Qv (x) = Fag(x)v + w(x)) = ¢o(x)] o (nIFERlV + wiy))ey.




1
Transforming v - lQI’v, and using the variation of constants

formula, we rewrite this as

dv/dt = cv + £(v) + [[o] P ([e]%v,u) - v - F(V)1, v(0) = vy

(2.11) t
w(t) = T(thuy + Jo To(t-s)Q(affv w)ds

Since o > 3/8, ¢ € X* implies & € L°(a,R") and there is a

Hence, there is an n >0

¥

constant k such that [o¢| _ < k¢
L - .
such that v, € Vc] and lwolxa <n imply vy + wo(x) eV. for

all x € g. Next, observe that

]le'%P(]QI%v,w) - zv - f(v)]| = |(AD - v
+ 180 LopfCaplal™ + ) - ol ()]
Q
+ oe i f <y M
El JQ[ (viw) - F(V)]] <y + chle

iMck,WIXG + Y-

where M. = sup{!f'(v)]: v e VE} and g = u](d) +0 as d - .

In the same way, we obtain

0C]aFv,m(x))] < [F(ep(x) o] ?vm(x)) = Flvu(x))]

-

+ |f(vtw(x)) - f(v)| + |¢D(x)J epflogven) - l?i']f fvtw)
0




WM

- _; - .:_.I...’

-20-
v 1ol ftm) < FO] < uplal™ e 2M ]
Q L
.|
i ZM(:klwlx(x + uZlQl E
and
IO(InI*v,w)lx 5,2Mck|g|*|w|xa +

where vy = uz(d) +0 as d - =,
Then, for v(t), w(t) satisfying (2.10), if v(s) € Ve

1
[w(s)| . <n for 0 <s <t, relations (2.11) imply that
X\

V(v(t)) < -V(v(t)) + ky|lal"P(]a|v,w) - v - F(V)]

< -Vlv(t)) + k2kMC|w}X3 + kpuq

1 t o i

2() < kye”%2(0) + 20k kg (o) 7en (g 505
0

(nd

+ k];zedct{ (t-s) e vd(t-s)gq

o

< kye(v0)et 0y 4 Z!Ql%k]koL(;d)°'1y(t) + kqugl (:d) g%t

[ gmagm(1-21)s
o

1 -

Choosing d > dy such that = =1 - 2|n;ﬁk]k MCL(ud )? 1, 0, we have

where k, is the Lipschitz constant for V on Vé, 0« ¢:

2(t) = [w(t)] e%9%, y(t) = suprz(s), 0 <s <t} and L ds -
X -~

y(t) < k1{'][z(0) + ;ZeCdt]

................................
............................

-‘\. e
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where 3, = L(ud)® \u,. This implies
(2.12a) lw(t) 'xa < k]e'][e'cdtlwolxa + ]
If v(s) € Vc] and |w(s)|Xu <n for 0 <s <t, we also have:
(2.12b) V(v(t)) < -V(v(t)) + ky(kMon + u).

Let V(v) >p>0 for veV~V_ ., and choose n>0 and dj so

1
that:

Then choosing & and d > dy so that
k c'](a + .) <
1° Uz N

relations (2.12) imnly that, if v, € V_ , |wq] < &, then v(t) e V_,
lw(t)| L < for all1 t > 0. This finishes the proof of the claim.
X

Now let A denote the following subset of U:
A= {ogv i VE A:,f}'

Then B d&f fug = ¢pVg * %o+ Vg € VC], Wy , <8 isa bounded

neighborhood of A and the positive semiorbit 3+(B) is in NC
]




and is precompact. Moreover, the estimate (2.12a) implies that,

if d is sufficiently large, there exists a neighborhood N(A)

such that B < N(A) and the «-limit set w(B) of B satisfies w(B)cX{A),

w(B) = +0p Ct TD,E(t)B' Then, by the results in [7 , theorem 5.3],
we obtai;-the existence of a compact attractor A, in N(A).

We want to prove that AD is a manifold which is essentially
thesame as Ac,f' To do this, we construct a local integral manifold
w=h(v,D), v € Vc] of (1.7). 1If one extends f|Vk: VE - RN to
all RN in such a way as to obtain a uniformly C]’](RN, RN) function,

the referred to integra) manifold must satisfy the differential integral

equation
(2.13) dv/dt = P(v,h(v,D)), v(0) = vq
0
(2.14) n(vg:D) = [ Tp(-5)(v(s),h(v(s),D))ds

where v(s) = v(s,vo,h) is the solution of (2.13) through Vo In

a more or less standard but technical way (see, for example, Henry
[9] for PDE's and Hale [8 ] for ODE's), one uses the contraction
mapping on an anbropriate set of C]’](RN ,U‘OL') functions h(.,D) to
show that d0 may be chosen large enough so that (2.13), (2.14) has
a solution h(v,D) for d > d,. Restricting to v € V_, we obtain

]
the positively invariant manifold

My = {u = gV * h(v,D), v € Vc1}
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Moreover, h(v,D) and its derivative approach zero as d + «, the
manifold MD is exponentially asymptotically stable and the flow
on it is given by (v(t),h(v(t),D)) where v(t), v(0) = Vo € Voo
is a solution of the ODE (1.9). Since Ay+ ¢ and oy - IQl'%I,
it follows that the vector field in (1.9) appropriately rescaled
(v » lnl%v) uniformly approaches g(v,z) = ¢v + f(v) 1in (1.5).

Thus, equation (1.9)has an attractor BD in Vv The attractor

.
1
A ¢ of (1.5) isupper semicontinuous (see [ 7]) and so 1lim By
Zs dooo

c Ac ¢ The attractor Ay for (1.7) is given by

AD = {u: u = opv + h(v,D), v € BD}

Since h(v,D) - 0 as d -+ «, this completes the proof of Theorem 1.1.

A f.‘f.'-".. .

'v‘-\..'b.-\ ALY




3. A scalar example in one dimension.

Consider the scalar equation
(3.1) u/at = du,, + flu), 0 <x <1,
with the boundary conditions

0 at x=0

U, - €0u

(3.2)
0 at x =1

u_ + E]u

where d >0 and «.

j cj(d) are constants such that

(3.3) d ej(d) +> ., j=0,1, as d -+ =
The equation corresponding to (1.5) is
(3.4) dv/dt =-(r,0 + ;])v + f(v)

Theorem 1.1 asserts that, if (3.4) has a compact attractor

Ac g» then (3.1) has a compact attractor Ay if d > dg» 9 suf-
ficiently large. Furthermore, if the flow for the scalar equation is
structurally stable, then the flow on Ad is structurally stable and

is equivalent to the one on A .. The attractors A and A p

--: ..' '.'-: _..'-.". '.u.' .a.‘ .'...'_-‘ ...... RPN .. _-.:_- ".‘ "'-.'_.-’_-"_ ----- .‘ K .'_.".-"...'..."-- ............. et e RERCRCRRIIN N -.. Q'- ~-‘ -.‘ ‘, !'. - .-)\ ) _“.\ S
A T S S T R T A I R, T S DR O T a0 T S A A VA A A A, A A SR,
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are close after Ac.f is appropriately embedded inthe function
space.

The purpose of this section is to indicate how the perturbed
boundary conditions affect the flow on the attractor. To do this,
let us impose some additional conditions on f which will ensure
that (3.4) has an attractor for all Zgs &y- More precisely, suppose

that there is a v0 > 0 such that

vf(v) <0 for |v| > Yo

(3.5)
f(v)/v > -= as |v] >«

For any Zgs &p» Equation (3.4) has a compact attractor A;,f which
is an interval Ic,f = [«,8] where a, 8 are the extreme zeros of
“(zg + gydv + fv).

As a particular illustration suppose f(v) has five simple zeros

as shown in Figure 1.
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)
-:
¥ :
) For Neumann boundary conditions and d > d,, the attractor A, .
i is the segment [a],aS] and the flow on the attractor is the one
:ﬁ indicated in Figure 1. By varying ¢z, it is clear that one can
Sj obtain each of the attractors shown in Figure 2. The perturbatiens
in the boundary conditions induce large changes in the dynamical
ﬁ properties of the system.
v
-
! r—— > ———p— °
Figure 2
-
o
f? ‘The flow on the attractor in the function space for (3.1), (3.2)
is the same as the ones indicated. However, the equilibrium points
are not constant functions. The exact equilibrium points are not easy
- to compute since one must solve a nonlinear boundary value problem.
' Fiqure 3 in the (u,ux)-plane indicates the approximate location of
these equilibria for the case ¢y > 0, ¢y > 0. The line Ly = {(u,ux):
- Ux - €gu = 0} and the Tine Ly = {(u,u.): u, + equ = 0},
LY
-
A
o
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4. Two examples in genetic repression.

A simple model for genetic repression for control of biosynthetic
pathways in cells is to consider two compartments within the cell wall
separated by a permeable membrane (motivated by the work of Jacob and

~ Monod [10]). The first compartment « {s regarded as a well mixed

: compartment (the nucleus) where mRNA is produced. The second compart-
ment ™ consists of the celi in 2 minus the nucleus w and rep-
resents the cytoplasm in which the ribosomes are randomly dispersed.

It is in this region that

E Figure 4

occurs the process of translation and consequent production of the re-
pressor. The communication between the ribosome sites where translation

occurs and the nucleus uses the process of diffusion in the cytoplasm

<
.

L4
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and transfer through the membrane bounding . This model was dis-

cussed in the one dimensional case by Mahaffy and Pao [11] and in the
general case by Busenberg and Mahaffy [1].
Let Uy and Vis i =1,2 be respectively the concentrations of

the mRNA and repressor protein in compartments w and o~w. The

RO | civieae
[}

nucleus w is considered as a well mixed compartment containing mRNA

TR,

whose concentration Uy is transcribed from the gene at a rate depending
on the repressor protein vy The mRNA leaves « and enters the cyto-
plasm o~ where it diffuses and interacts with the ribosomes. Through
the delayed process of translation, a sequence of enzymes is produced
which in turn produces a repressor V). This end product diffuses back
to « where it inhibits the production of Uy- The cell wall is a bar-
rier through which neither biochemical substance can pass (see Figure 4).
Llet wy = co](u],v1), Wy = co](uz.vz), B = diag (b],bz), A=
diag(a],az), D= diag(d],dz), C-= (cij)’ Ca1 = Cp» €45 = 0 otherwise,
8 = diag(81,82), F(w]) = co](f(v]),o), where bj, T dj, Bj, ¢y are
positive constants and f(v) 1is a decreasing function of v of the
form []+vo]-1 where o > 2 1is a constant and v € R. Also, let

" >0, ro > 0, be given constants. With this notation the two com-

partment model is

dw, (t)
S () - Big(e) + A [ Dugltay) = wy(0)]ay

(4.7) ‘
sz(t,x) ‘i
—5 = Diwy(t,x) - Bwy(t,x) + Cwp(t-ryux), x € o~ |

W
E
..
\
~
N
5
D
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with the boundary conditions

awz(t,x)

(4.2) —5— = -e[wz(t,x) - w1(t)] on
w,(t,

(4.3) wzin ) =0 on 0.

where n denotes the outward normal to ar with I = o~.

The flow defined by these equations leaves the region Rﬁ =
{uj > 0,vj >0, j = 1,2} positively invariant (see Mahaffy and Pao
(mJ.

To apply the methods in the proof of Theorem 1.1, it is conveniert

to make a transformation of variables in (4.1), (4.2), (4.3):

w](t) - N](t) wz(t,x) - Hz(t,x) + N](t).

The new equations are

dN](t)
(8.8)  —g— = F(try)) - B (t) + A Lw Wy (t,y)dy
My (t,x) |

+ sz(t'rz,X) + CN](t-f‘] ,X) - A J wz(ts.Y)dy

Ou

with the boundary conditions

SRRSO R T I S R TEIS T '*

TR XL TS XY
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awz(t,x)

= = ~ew2(t,x) on 3w

(4.6)
aW,(t,x)
2
=0

on Q.
We also need the space in which we will consider (4.4), (4.5), (4.6).
Let X = L2(9~M.R2) and X%, 0 < a <1 be the usual fractional power
space discussed before and associated with the Laplacian with boundary
conditions du/an = -gu on 3w, 3u/an = 0 on 0. Llet X, , X be
the restrictions to the positive functions. Equations (4.4), (4.5),
(4.6) then define a Cz-semigroup on C([-r.O],RE) x C([-r,o],xi).
As remarked earlier, the method of proof of Theorem 1.1 applies
to this set of equations when d = min(d].dz) is large and the g.

J
are functions of dj, ‘j so that

(4.7) |n\w|']|aw|djej sg e dyee

! The resulting set of ordinary differential difference equations which
[
. are the analogue of equation (1.5) are
i aw, (t)
N‘ —at_ g F(H](t-r])) - 8“1(t) + A]Hz(t)
5 (4.8)
5 di,(t)
4t = -CNz(t) - BHz(t) + Cuz(t-rz)

+ CH](t-rz) - A]Hz(t) - F(N1(t-r1)

where : = diag('1.-2). Ay = Ay




oy

e b A4

PSS S A N

-32-

Mahaffy and Pao [11] have shown that, for certain values of the
parameters in (4.8), there is a globally attracting stable equilibrium
point. Therefore, the attractor is a single point. They show also
that a stable generic Hopf bifurcation occurs at this equilibrium point
with the delays being used as the bifurcation parameter. Busenberg and
Mahaffy [1] show that (4.4), (4.5), (4.6), for the diffusion coefficients
large enough, must also have a generic Hopf bifurcation at approximately
the same value of the delay parameters. This is proved by comparing the
characteristic equations of the linear variational equations of (4.8)
and (4.4), (4.5), (4.6) near their respective equilibria.

Let us now discuss the implications of our theory to this situation.
Suppose ¢ is fixed and that (4.8) has a compact attractor Qé,r],rz
in C([-r,0],R}). Under this assumption and, if (4.7) is satisfied,
one can conclude that (4.4), (4.5), (4.6) has a compact attractor

‘”B,c,r],rz in C([-r,0],X]) if 3/8<a<1 and d> dy where d

is sufficiently large. Furthermore, the flows on the two attractors

are equivalent if the one on Agé ryrs is structurally stable. Moreover,
» P
from the remarks made in the introduction, the Hopf bifurcation with
respect to the delays referred to above occurs onJ#b - if d is
59 ]i 2

sufficiently large.
The following fact is also true even though it will neither be used
here nor proved in detail. Since the only nonlinearity F(v) in the

equation is bounded together with its first and second derivatives, one

can choose a global Liapunov function V:C([-r,O].Rf) > R for the

iy LT Tt
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attractor J}é r..p, s quadratic form outside a large ball. This
’]92

permits one to obtain a global attractor for (4.4), (4.5), (4.6).

The second example that we are going to consider is again a model
in genetic repression with the same features as the one above, except
that now the process of production of the repressor takes place in the
membrane bounding the cell, looked upon as a third compartment &. This
model is also discussed in the one dimensional case by Busenberg and
Mahaffy [1]. We need some new notation. Llet UjsVis i=1,2,3 denote
the concentrations of mRNA and repressor respectively in the compart-

-~

ments w, ™ and the outside membrane . The compartments w and

-~

@ are considered well mixed. Let w, = co](ui,vi), i=1,2,3, and

B, A, D, C, 8, F be the same as above. Let also A = diag(Ei;Ez),

B = diag(8,8,) with 53, 53 positive constants. Then the three com-

partment model is

5t F(w](t-r])) - Bw](t) + A Jaw[wz(t,x) - w](t)]dx
awz(t,x)
(4.9) 57— ° Dsz(t,x) -B wz(t,x), X € ™
dw3(t). -
—— = B wy(t) + Cugltory.x) + 7 Lg[wz(t,x) - wy(t)]dx

with the boundary conditions

awz(t,x)
an

-8lwy(t,x) - wy(t)]  on o
(4.10)

awz(t,x)
—5n " 'E[Wz(tgx) - W3(t)] on 90
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W

& The flow defined by these equations leaves the region RE =

LV {"i > 0, Vi > 0, i =1,2,3} positively invariant. Again, it is

23 convenient to make a transformation of variables in (4.9), (4.10)

& in order to obtain homogeneous boundary conditions. Let H =
co](h1,h2,ﬁ ,Fé) be the solution of the following boundary value
problem with nonhomogeneous boundary conditions:

BH=0, in T = o

y

- H .- -

» %ﬁ +BH =y, On ar = 38 U 3u

~ where 6 = diag(s).8,:61.8,), v = €01(81,6,,0,0) on 3. and =

:.:. d1ag(§~| 952951 952)5 '; = CO](O:O;B_] ’EZ) on 3Q. Then, let H = d'lag(h] ,hz),

" H = diag(ﬁa,ﬁé) and introduce in (4.9), (4.10) the change of variables

‘E w1(t) - w](t), wz(t,x) -> wz(t,x) + H(x)w](t) + F(x)w3(t), w3(t) - w3(t)

N

twelet 6 = Hoo=[ WE e[ KG=| a-luh
(1Y i A ~ L
_ _ Yo 30 Sw a0
and A, = |32!A, the new equations are

oW, (t,x)
3t = D;Nz(t,x) -B wz(t,x)

- H(x){F(w](t-r]))-(A]-AGu)N](t)+Afa Nz(t,y)dy + Aﬁ;w3(t)}

(4.11)
- ﬁ(x){cw3(t-r2)-(5}-§G§)w3(t)+iferw2(t,y)dy + AG W, (t):
dw3(t) _ T 3R = Y
RGN o 0 X Aoy A A A SRS C LG U AR L S LT B AYRRLNA TS iy 35,5 Rl 15 PR Gy |
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with the boundary conditions

awz(t,x)

— 5 — = -8 Nz(t,x), on 3w
(84.12)

W (t,x)

_a—n__ = -B wz(t’x), on aQn

These equations define a C2 semigroup on C([-r,O},Rf) x Xi and
we can apply again the method of proof of Theorem 1.1 when d =
m1n(d1,d2) is large and Bj,Bj are functions of dj.;j so that

-1 _
(4.13) |1": dj(IBwIBJ' + lQQlBJ) > gj as d + =

If we denote by ¢ = diag(ilscz), G = ‘r|-1J H and G = |r|'1J H,
r

T
the resulting set of ordinary differential difference equations are

du, (t) _
— - F(Wy(t-ry)) - (B+A;-AG )W, (t) + AW, (t) + AG Wa(t)
di, (t) .
T -(z +B + GA, + GA])wz(t)
(4.14) - GF(N1(t-r1)) + [GA, - GAG - GI\GQ]w](t)
- Ecw3(t-r2) + [EA—] - E;AEQ - GAG'u]N3(t)
dw3(t - __ _ _
T CHy(t-r,) - (B+A]-AGQ)N3(t) + AW, (t) + ABoW, (t)

(RS ..--.'-‘. O ST LR AL R N ..-,.\-’$- ‘?‘ ot oo .'}.'- . o SN -

- v
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z-semigroup on C([-r.O],Rs) and

This set of equations define a C
it is this flowthat should be compared to the one defined by the
equations (4.9), (4.10).

As remarked earlier, Busenberg and Mahaffy [1] considered (4.9),
(4.10) in one space variable and made a comparison to a set of equations
which they claimed would correspond to a well mixed model. These equa-
tions were analogous to but not the same as (4.14).

For equations (4.9) and (4.10) to correspond to the physical problem,
there must be some conservation laws and this imposes relationships be-
tween the constants A, A, 8, 8. Once these conditions are imposed,
equations (4.14) in the one dimensional case take a simpler form. For
special values of the parameters, one obtains the equations of Busenberg
and Mahaffy [1]. The higher dimensional case always contains terms that

- depend on the shape of the region in a significant way. It is obvious

N that these equations need to be investigated in more detail.
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