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STEFAN'S PROBLEM IN A FINITE DOMAIN WITH CONSTANT
BOUNDARY AND INTITIAL CONDITIONS: ANALYSIS

Shunsuke Takagi

INTRODUCTION

Under any initial and boundary conditions that are given by appro-
priate infinite series, Stefan's problem in a semi-infinite domain can be
solved by utilizing the two infinite series of the elemental temperature
functions, i.e., a general solution for heat conduction in a semi-infinite
domain [1, 2, 3, 4]. Their solution method was brought to completion in
1978 by Tao {4]. He introduced a formula expressing the higher derivatives
of a function. The conditions at the moving boundary can be rewritten by
. this formula to a set of simultaneous linear equations of the unknown
parameters. Further progress in the analysis in a semi-infinite domain has
been made by Tao; I mention a few that may be interesting to us. The
density jump that may occur at the moving boundary can be introduced into
the analysis [5]. Analyticity of the interfacial coordinate as a function
of t1/2 ig proved [6].

In spite of the progress that has been made so far, difficulties in a
finite domain are yet outstanding. Analysis in a finite domain must be
understood for practical applications. The heart of the difficulties seems
to be in analytically formulating the well-established practice in numeric-
al studies (for example [7]), i.e., that the solution of a Stefan's
i problem in a finite domain is initially close to that in a semi-infinite
E domain but eventually arrives at a final stationary state. In this paper,

we demonstrate how the solution in a finite domain, obtained under the
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simplest boundary and initial conditions, transits from the semi-infinite
domain solution to the finite domain solution.

The breakthrough is achieved by use of three essential tools. The
first is the conversion of a pair of well-used series solutions [1, 2, 3,
4] of heat conduction in a semi-infinite domain to a pair of integral ex-—
pressions. One of the expressions enable us to rewrite Duhamel's time in-
tegral [8] to a space integral. The second is Widder's [9] integral solu-
tion for heat conduction in a finite domain. 1Its use enables us to impose
an embedding boundary temperature at the stationary boundary of the new
phase in order to formulate the temperature in the old phase. We determine
the embedding temperature so as to satisfy the interfacial conditions. The
third is an inverse-Laplace-integral type expression of ilerfc x that is
valid for any integer n, positive, zero, or negative. This formula is
applicable in the neighborhood of an exponential singularity,

We take a partial sum of the infinite series solution for the tempera-
ture in the old phase, and reinterpret the second summand contained in the
last term of the partial sum in the following way: This second summand is
numerically null initially, but becomes numerically significant at an
appropriate time and continues to be so indefinitely after this time. If
the last term in the partial sum is the Nth term of the infinite series, we
call the time introduced above the Nth lead time. Prior to the Oth lead
time, the first term approximates the solution in a semi-infinite domain.
At the final stage, where the infinitely many lead times have entered, the
temperatures are stationary and linear in both the new and old phases,

terminating the phase change.

The first part of this paper consists of the mathematical prelimi-
naries in three sections. In Section 1, four features are presented with

regard to the elemental functions. First, the ranges of the indexes of the

2
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elemental functions are extended to negative integers so that the formula
for the series development of a function of a series may be smoothly
applied in Section 3. Second, the elemental temperature functions are
expressed with integrals so that the solution for heat conduction in a
semi-infinite domain may be given an integral expression in Section 2.
Third, an inverse-Laplace-integral type expression of iflerfc x, valid for
any integer n, negative, zero, or positive, is derived. This is used in
Sections 7 and 9 for the transformation in the neighborhood of the
exponential singularities located at the finite terminal. Fourth, a con-
nection with Dirac's delta function [10], although well-known, is presented
so that it may be smoothly applied in this paper.

In Section 2, two series constituting the general solution for heat
conduction in a semi-infinite domain [1, 2, 3, 4] are transformed into two
integrals. One of them is the space-integral expression of Duhamel's time
integral [8, p. 30] for solving the boundary-value problem. The other is
the well-known integral expressing evolution from the initial value. In
Section 3, a formula for obtaining a serial development of a function of a
series is presented. The elemental functions defined on the moving bound-
ary are developed into a series of ¢l/2 by this formula. The formula is
applicable at a nonsingular point.

The second part of this paper is the solution of Ste“an's problem in a
finite domain. The problem we solve is stated in Section 4. 1In Section 5,
Widder's [9] solution for heat conduction in a finite domain is transformed
into a form suitable for solving the problem in this paper. In Section 6,
the embedding boundary temperature with unknown coefficients 1is introduced
at the stationary boundary of the new phase in order to formulate the

temperature in the encroached old phase. In Section 7, the infinite series

e
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formulating the unknown temperature in the old phase is interpreted as an
infinite sequence. Lead times are introduced.

In Section 8, the boundary-value problem during the Nth lead time is
solved, where N > O. It is proved that, similarly to the Neuman's solution
[8, p. 30], each of the solution temperatures consists of a single term.
Prior to the entrance of the Oth lead time, this solution is numerically
equal to the semi-infinite domain solution. In Section 9, the final stage
is analyzed. It is shown that the temperatures in both phases are station-
ary and linear in space at the final stage. Phase change therefore finally

stops.

}ATHEMATICAL PRELIMINARIES

1. Elerental Functions

We define ilerfc x for a nonnegative irteger n by

- 2 % ) AZ 1.1

N —

- ilerfe ¥ = -::f X di (.1
/n ¥

where = ® < x < » . For ar integer 0 { ¥ < n, this definition yields

dk iTerfe x/dxp = (—l)k in_yerfc X . (1.2)

rrrtv‘—-’. g
AT RERERE AN AT

Index r ray, tberefore, he extended to negative integers ty defining

i Terfe x = (—1)n a"erfe x/(’xn . (1.3)

PPy T e
. e e DA
R .
. PR ol

Then, (1.2) holds true for any positive integer k. Using the Herrite

polynomial, Hy(x), defined by
2 2
¢ e /ax" = -1 e w0, (1.4)

we transforr (1.3) to
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i-nerfc ¥ = —2---e_X H (x) .
m r-]

Tao [4] defines (,(¥) by

{inerfc(—x) + (-l)n inerfc x} .

: s
cn(x) T2

Substituting fror (l.1), we trarsforr (1.6) to

~ (x-2)" e ax ,
n!/n ~e

Gn(w) =

which integrates to an nth degree prolynorial,

{n/2] n-2k
G (x) = 2x) __
n PR k! (n-2k)!

The derivatives of the polynomials G,(x) are:

K K

d°G _(x)/dx" = Gn_k(x) for k <n
=1 for k =n
=0 for k>n.

i Py

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

Index n may, therefore, be extended to negative integers by defining

G_n(x) =0 for n>l.
We rewrite

-2 -
k(x,xt) = e X /(QKt)/léwKt ,

to an inverse-Laplace-integral type expression,

ctim 2
k(x,xt) = 7'}1_1 L / exp(%- - -&(—)d)‘ R
vYakt c-iw vhkt

(1.10)

(1.11)

(1.12)

where ¢ is a complex number whose real part is finite. The right side of

(1.12) transforms to the right side of (1.11), when the former is

integrated with regard to u, defined by

5
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With two phases in Stefan's problem, we use «kt in place of t, where « is

the thermal diffusivity of a phase and t is time.
We derive the formula

n cHie -n~1 A2
i“erfc x = = / . A expfz— - xx)da , (1.13)
c-iw

valid for any integer n, — © < n < «, For a nonnegative integer n, we keep

the real part of c¢ positive, so that the integral is convergent.

To prove
(1.13) for such an integer n, we begin by transforming (1.1) to
2 1 7
o i"erfe (x/Vbkt) == —— / yn k(x+y, kt)dy . (1.14)
b . n: TN
L (/lmt) 0
i: Substituting k(x+y, xt) from (1.12) and evaluating the integral with regard
- ]
p =" to y, we obtain
$
ctiee 2
i"erfc = =-%I J y1 exp(%— - AE—)dA , (1.15)
Y4t cie Yaxt

which is equivalent to (l.13). To prove (1.13) for a negative integer 2,

we begin by noting that (1.3) is equivalent to

1-nerfc(x//Z;E) = 2(_1)n-1 (/Z;E)n a7t k(x,|<t)/dxn—l

Substituting k(x,xt) from (1.12), we find (1.15) for a negative n.

In a
finite domain 0 < x < &, we revise (l.15) to a nondimensional form,
/% 1S e £, x
(55)" 1lerfe 2= = — f £ exp(e? - g 2)de . (1.16)
Yart ™ Temim 22

Equation (1,12) may transform to an alternative form [9, p. 36],

k(x,kt) = i—" [ exp(ix) - xtA?) da .

. . . . o N .. .‘.'.'-‘n'.‘
~ '8 2 a“a’ 4 « Ty el

RO
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Letting t = 0, the above becomes
K(x,0) = [ o gy
’ 2w

o«
Tterefore we find
F(x,0) = 6(x) ,

where 8(x) is lNirac's delta function [10, p. 3&]}.

2. 1Integral Forrulas
Tre leat ecvation,
aT/dt = « 3%T/3x?

bas a gereral sclution,

oo

L (Vaxe)" (a6 (=
r=0 LA pors

] .

T ¥
i erfe

T(x,kt) = R
Yht

)+ B

4].

We ray uvse keat functiors,

u (x,kt) = n! (Vaxt )" inerfc(r//z;?)
anrd

Vn(Y,Kt)

The latter is

(1.14) und (1.
v (x,xt)
n
and

Vn(X,Kt)

- e tw “. s - S .
- - - - » » - - - T - R AT N T. T~ .t - A
PRI O AT W YRl L vl AR W R R DR R W PR T ROy

= n!(/212j" Cn(x/lzz?) .

called tte teat polvromial bv Vidder [9, p. &-9]. P,

7), (2.3) and (2.4) rav be given integral expressions,

[ ]

" k(r+v, Kt)dy

o
= f yr F(x=-v, xt)dv .
00

= IR IR I e
FRES . N

(1.17)

(2.1)

(2.2)

This was used to solve Stefan's probler in a seri-infirite dorain |1, 2, 3,

(2.3)

(2.4)

vsing

(2.5)

(2.6)
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Trerefore, by defining, in the infinite dorair - © < x < » | furctiors

o T
AN 'l'l'
AP A

LY
~
L]

- _ s 1 n .
b £(x) = § S+ A x (2.7)
; n=0
- and

gx) =27 =B " for 0 <x< o (2.8a)
n! n

y n=0
&

- =0 for - o< x <0, (2.8b)

(2.2) transforms to an integral expression

c .

T(x,xt) = [ £(y) k(x-y, kt)dy + | 8(y) k(x+y, «t)dy . (2.9)

-0 -00
Use of the delta function (l.17) shows that (2.9) determines the

initial value f(x) in the semi-infinite domain 0 < x < = , because g(-x) is

.fftrii"nj"

null for x in this domain. The initial value f(x} in the integral form

(2.9) may be discontinuous and is more general than the serial form (2.2).

ﬁ"'.'
S e

We assume f(x) to be odd,

f(-x) = - f(x) . (2.10)

Vo

e
Ty

Then (2.9) transforms to

’.','-". .
S St
- PRI

T(x,xt) = f f(y)[k(x—y, Kt) - k(x+y,<t)]dy + f g(y) k(xt+y, kt)dy . (2.11)
0 0

The first integral becomes zero at x = 0 for any t in the domain 0 < t < =

Vr.f; IR
. . l’

and the second integral becomes zero at t = O for any x in the domain 0 < x
{ », Therefore, the first and second integrals describe the evolutions
from the initial and boundary conditions, respectively, in a semi-infinite

domain.

Py
Dl AR
. ‘ .

Particularly, we have an expression of the boundary value,

Lan and
¢ 2
o

T(0,xt) = [ g(y) k(y,«t)dy . (2,12)
0




If

n

B (V4ct) ilerfco , (2.13)

T(0,xkt) = N

It~ 8

n=0
then the solution g(y) of the integral equation (2.12) is (2.8a).
The solution of the boundary-value problem by use of the integral
A equation (2.12) is consistent with Duhamel's theorem [8, p. 30]. To show
this, we refer to Widder's [9, p.l27] solution for heat conduction in a

semi-infinite domain. In our notation, it is

8

T(x,kt) = [ [k(x-y,xt) = k(x+y,«t)] T(y,0)dy +

o

+ [ h(x,x(e-1)) T(O,kt)dT , (2.14)

O

- where

h(x,kt) = =2 3k(x,kt)/dx = (x/Cxt)) k(x,kt) . (2.15)

The first integral in (2.14) is the one in (2.11). By substituting

DO AN

T(0,xt) from (2.12), the second integral in (2.14), a product of Duhamel's

theorem, becomes the repeated integrals,

t
[ gly)dy | n(x,x(t-1)) k(y,kt)dT1 .
0 0

N The convolution integral in the above simplifies to,

Os—rr

h(x,x(t-r)) k(y,kt)dT = k(x+y,«ct) , (2.16)

e DN e et dendoibet,

because both sides yleld the same Laplace transform, i

(1//%s) exp(-(x+y)/¥s) .
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To derive this, we employ kt in place of t in the usual Laplace trans-

forms. Widder's solution is, therefore, the same as ours.

3. Functions Of A Series

At the interface,

IO MRy . aGioe e

S(t) = z s t(n+1)/2

(3.1)
b

n=0 "
b the temperatures of the new and old phases need to be expressed as func-
i tions of t1/2, so that the interfacial conditions may be expressed as

3 functions of el/2, We use a revised version of Faa de Bruno's formula

[11, p. 33]: Let functions z = z(y) be analytic and y = y(x) be an infinite

series,
y= ) a X . (3.2)

Then the power series expressing the composite function z(y(x)) is given by

2[y(0)] = z[y(a )] + ) 5 (a) (ﬁ%)-) : (3.3)
n=l v=1 dy~ x=0
where
1 A An-v+l :
sn\)(aj) - ; A1! ses An-\)"’l! all tee an_\r"]. ’ (3.4)

i

for n > 1 and > z v > 1, where the summation is over all the sets of
at least one nonzero and all nonnegative integers A}, Az, ..., Ay that .
simultaneously satisfy the two equations,

LN ] + = L]
Al + Xz + A3 + Xn"\)“"l v (3 Sa)

and

Ay + 223 + 400 (n—v)An_V+l =n-v, (3.5b)

10
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for every integer v in the range,

1<v<n. (3.5¢)
The solutions are tabulated in [12, p. 83l}. The argument a of Snv(aj)
stands for n - v + 1 arguments aj ,==, ap-ytle

Substituting s(t) from (3.1) for x in G“(x/lékt) and i"erfc(x//4xt),

we find the series of T,

© S,
o (=8) ~ 7 o{mM (L) (3.62)
Y4kt k=0 vax
and
o S-
iMerfe (1) = 7 MWLk . (3.6b)
Yaxt k=0 Yh

The coefficients in (3.6a) and (3.6b), which we call G-derivatives and

I-derivatives, respectively, are given for k = 0 by

cé“)(sj/fzz) = 6_(5y/74%) (3.7a)
and
13“’(53././&) = 1%erfc(s /Vhx) , (3.7b)
and for k > 1 by
s k s S,
G‘En) [ —j ) = z G _ (-_0 ) . Sk\) (_J—-_ ) (3.8a)
Yix vel ™Y i vhk
and
(n) s, k -v S0 S,
1 n (._.J—-) = z (_1)\) 1“ erfe¢c —— « § (——-J-) . (3.8‘))
k — r— kv o
vix v=1 Yax Yax

The index n - v can be negative. Due to (1.10), therefore, the number of

components of a G-derivative, shown on the right of (3.8a), may be less

11
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than k or possibly zero. The argument sj//ZE in the G-derivatives and the

I-derivatives stands for k arguments sl//Z: y sese sk//Z: .

Substituting x in (2.2) with s(t) from (3.1), we find a series of r,

T(s(t), «t) = ) T(S) P, (3.9a)
p=0 P
where
P _n s s,
1 - ] (vE) [a () v s 1)) (3.9b)
P n=0 nOPTR Rk noPT ke

Differentiating (2.2) with x, substituting x with s(t) from (3.1), we find

another series of T,

a oD
T a—: (s(e), «t) = pZo Tf)DS)rp , (3.10a)
where
n-1 S, _ s
I N () B Tl & B S A R ERTIS
P n=0 P Yk P Vi

Multiplication of T by 3T/3x on the left side of (3.10a) makes the series
of T on the right side of (3.10a) conform with the series of T on the right
side of (3.9a).

We call (3.9b) and (3.10b) level-p coefficients of the series (3.9a)
and (3.10a), respectively. The highest index of the parameters in the
level-p coefficients are p, which we call level-p parameters. Three level-
p parameters are contained in the level-p coefficients. Two of them are A

and B . The third is s , hidden in 1;0)(33.//47) in (3.9b) and in

I;—l)(s /Y4x) in (3.10b), as may be found by use of the formula,

A
Sou(ap) = a (3.11) 1
which is a particular case of (3.4). In the equations for the determina- :
tion of them, which we discuss subsequently, the higher—than-level-0 param— :
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eters are all linear terms. Only sg, one of the level-O parameters, is

nonlinear.

STEFAN'S PROBLEM IN A FINITE DOMAIN
4, Problem

We consider the simplest Stefan's problem in a finite domain 0 < x <

b 2. We assume freezing starts at x = 0 on t = 0, The boundary temperature

Tp at x = 0 is a constant that is lower than the freezing temperature g

e

Tg and the initial temperature Tg is a constant that is higher than R
Tr. The boundary temperature at x = % is a constant Tg. We have

TA<TF <TB . (4.1)

| PP RS

At t = 0, a new phase emerges at x = 0, whose temperature we express

by Ty(x, xyt), where xy is the thermal diffusivity of the new phase.

The domain of the new phase is 0 < x < s(t), where s(t) is given by (3.1).
The temperature of the old phase is given by Trr(x,xryt), where «x1

is the thermal diffusivity of the old phase. The domain of the old phase
is s(t) { x < L. The quantities of the new and old phases are designated
by the roman numerals I and II, respectively, used as a sub- or superindex.

We extend the domain

CAEAEMENAGad  EANDE N o mn pe

s(t) < x< 2

of the old phase at time t to
0<x< 2%

by introducing the embedding boundary temperature at x = O. It shall be

determined so as to satisfy the two interfacial conditions at the freezing

front x = s(t),

T AT T e T Y

o~ TF
aT 3T
1 _ I _ ds
T - TR (4.2)
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where K; and Kyy are the thermal conductivities of the new and old
phases, respectively, p is the assumedly equal density of the two phases,
and L is the latent heat.

The embedding technique was initiated by Boley [13]. Using elemental

functions, ours is much simpler than his.

5. Widder's Solution of Heat Conduction

With unrestricted initial and boundary conditions, Widder's (9, p.
131] solution of heat conduction in a finite domain is applicable to
solving the problem of embedding posed in the previous section. In our

notation, his solution is
L
TII(x,KIIt) =£ [B(X—y,KIIt) - 6(x+y,<IIt)] TII(y’O) dy +

t
+ [ ¢(x,k(t-1)) T_(0,k_T)dT + (5.1)
0 has S ¢

t
+ ¢(£—x,|<n(t—r)) Tn(z,ncnr)d'r s
¢

where

] k(x + 2n&,x

n =-00

G(X,KIIt) IIt) (5.2a)

and

Z b(x + 2n&,x

n=-—o

) . (5.2b)

¢(X,K )

t
ot o
Function h(x,KIIt) is given in (2.15). We call the three integrals on
the right side of (5.1) the parts due to initial distribution, erbedding

boundary, and terrinal boundary.

14
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The first integral in (5.1) describes the evolution fror the initial
distribution TII(x, 0). To sbow this, we use function f(x), which is
odd, as shown in (2.10), ard is periodic with pericd 2&%., We find a rela-

tion,

® L
[ £(y) k(x-y,KIIt)dy = é f(y) [e(x-y,KIIt) - 6(x+y,KIIt)]dy .

—
Ve assure that TII(X,O) is extended to the infinite dorain in tte sare
ranrer as f(x) is. Letting t = 0 or tte left side of the atove equation
and using the delta function (l1.17), and roting that hy letting t = 0 on
the right side of (5.1) tte second and third integrals hotbt disaprear, we
find ttat TII(X, 0) is the initial value.

The second and third integrals on thte right side of (5.1) describe the
evolutions from the toundary conditions at x = 0 and &, respectively. Ve
clarify this staterert in two parts: The forrer or latter becores
TII(O,KIIt) or TII(z,KIIt) by letting x = 0 or £, respectively.

The forrer or latter reduces to zero by letting x = £ or 0O, resrectively.
Note that the first integral bhecomes 0 at x = (0 and x = £ becavse of its
periodic distritution.

We start tte proof by forrulating tte boundary corditions at x = 0 and

£,

TII(O,KIIt) = é g1(y) k(y,KIIt)dy (5.3a)
and

Tn(l,xnt) = é g,(y) k(y,xnt)dy , (5.3b)

by applying (2.12) to two seri-infinite domains, 0 < x < ® and £ > x > - o,
respectively, where y ir (5.3a) and (5.3b) stands for x and 2£-x, respec-
tively, and functiors g;(y) and g,(y) are defined to be zero for regative

15
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values of y. The delta functior (1.17) ray, therefore, be applied to find

the initial terperature.

We substitute (5.3a) or (5.3F) into the second or ttird integral,
respectively, on the right side of (5.1), divide the range of surmation on
the right side of (5.2b) into tbe ronnegative integers and the negative
integers, and use in tte latter tte oddity of the k-function, shown by
(2.15), so that (2.16), in which the arguments rust be positive, may be

applied. Thus we find

¢(X,KII(C-T)) TII(O,KIIT)dT

Ot

nZO {k(2na+x+y, kpt) ~ k(2(n+l) g-x+y, kppt) }dy (5.4a)

[ g1(y)
0

and

o(2-x, KII(C"T)) TII(l,KIIT)dT

Ot

[ 82(y) ] {k((2n+1)£—x+y,KIIt) - k((20+1) gx+y, KIIt)dy . (5.4Db)
0 n=0

If we let x = 0 or £ on the right side of (5.4a) or (5.4b), we find
that, after the cancellation, only the n = 0 term remains, which is equal
to Tr3(0,xrgt) by (5.3a) or Tg(&,xrxt) by (5.3b), respectively.

The first part of the statement is thus proved. The second part

immediately follows.

6. Temperature with Embedding Unknowns
We now apply our initial and boundary conditions to Widder's unre-
stricted solution. To find the part due to the terminal boundary, we let

g2(y) = 2 Tg in (5.4b) and use (1.14) with n = 0. We find thus

16
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{ (2n+1)2-x (2n+1) 2+x Y

= erfo—m@mm™@ — - erfc—————————] 4

- 4

— . (6.1a)
n=0 /émnt va Knt

To integrate the part due to the initial distribution, we let Tpg(y,0) = 4
Ty in the first integral on the right side of (5.1), substitute the
8-functions from (5.2a), change the range of integration from 0 to % to the

difference of the one from O to = and the one from % to « , carry out the

[N TIR VY ks T TN PP

thus defined integrations by use of (l.14) with n = 0, and change those y
with negative argument to those with positive argument by use of (1.6). We

find thus I

= T {1 -] (<D erfe + § (-1)erfe MX )} | (6.11)

n=0 JAKIIt n=1 /AKIIt

nA+x

PO G VPP )

Adding (6.la) and (6.1h), we get

o oo
TR + ID = TB{l - ) erfe Znitx ) erfc 22&:{} . (6.1c)
n=0

/4KIIt n=1} /AKIIt

PR T

Usirg g(y) in (2.8) for g;(y) in (5.4a), rewriting n and B, in tbte

initial condition (2.13) to ¥ and R /Zk , respectively, and using (l.14),

k

we integrate the part due to tte embedding boundary condition.

s Al as s s

Surring tte results, we obtain

t) = T_+

TII(x,K R

o

SV S )

i erf —
/4KIIt JAKIIt

Yk __t o )
Bil (;__EE_ 2 {ikerfc 22&11 - k cgiﬂilli_i} . (f.2)
=0

Tre coefficients PgI , PfI see are to be deterrined. Included ir thbe sur-

rand for k = 0 in (6.2), the forrula in the pair of braces in (6.1c) need

rot be listed. It is easy to directly check that (6.2) satisfies all the

conditions thus far imposed. Differentiation yields
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| i At S g e e Pt g g e s L nee— Tex

T
I
- T % (X’KIIt) B
»‘ H
o B Yak _t v o
-- 7 2 ( 211 > (1 terse ZEY gl 2t Emxy g g
k=C v/(H(n n=0 /loKHt MKnt
7. lead Tires
We rewrite (6.2) to a secuence
T_(x, ket) = 1lir T8 (x, k_t) (7.1)
o™ "o O = SRR = S )
where
) . ]
TII (x,KIIt) = TB +
© Yde__t k N ‘
+ z BHN ( I ) 2 {ikerfc 2ngtx  _ ikerf 2(nt+1) 2 X} , (7.2)
k=0 X 7 ne0 Vit Vit ]
pmg I ]
y

which satisfies the terminal boundary condition and the initial condition.
If coefficients BiIN are chosen to satisfy the interfacial conditions
(4.2), we call (7.2) the Nth stage solution.

To understand the successive emergence of infinitely many stages in

SR S )

(7.1), we introduce a lead time in the Nth stage solution. We define it in

IOIN
3

that makes iKerfc[(Z(N+l)l - s(t))//AKIIt] numerically effective will be

a special case such that B = 0 for all the integers k > K+ 1 . Time t

P Gy I

called the Nth lead time. Note that this is the least of the values that
iKerfc[(2(N+1)£—x)//4n<nt] in the last pair of braces in (7.2) can take for

k = K in the domain s(t) < x < & at time t.

1

This definition is appropriate to the problem we are solving in this

paper, where, as we shall show, all the coefficients B:IN

N
l and therefore only BéI is nonzero. A lead time is a semi-infinite time

are zero for k 2>

a8 Mam af L .t aa

interval. Prior to the Oth lead time in our problem, the Oth stage solu-

18
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tion is the semi-infinite domain solution. When the Oth lead time is
effective, the second summand exists in the Oth stage. The final stage is
arrived at in the infinite stage.

Although not a constant but a time interval, a lead time must be
dealt with like a constant in the time differentiation. Except prior to
the Oth lead time in the Oth stage, the transcendental equation for the
determination of s, at the Nth stage includes the lead time, as we shall
show, and therefore the root sg is a function of a lead time. We express
s(t) at the Nth stage by

sSM ey =

n

s(N) (n+1)/2 (7.3)

n »

e 2Z

0

where coefficients siN) are in general functions of the Nth lead time.

Similarly to (7.2), we rewrite (6.3) to the expression at the Nth stage,

a7V
T (X,Knt) =
ION ——
B Ykt k N _ _ _
- - E k zI:I ) X {ik 1erfc 2nitx + ik lerf 2(n+l) & X}. (7.4)

To find the series of T at the interface, we use the formula (1.13) to
obtain the integral expression

ctio _

- 2
ikerfc( 2ok, n) = %I I k=1 exp&%— - _2nk_, An)da , (7.5)
v’lucnt c—i= /Zmn.t
where
n= 1} L (M) e
p=0 Yoo P

Use of the development (3.3) yields the expansion

- 3As(N) ®© s(N)
e o expl —2—] § <P E (¥ s (—1— ), (7.6)
V4 =0 =0 PTG
11 p v 1T
19
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where the convention,

Soo(aj) =]

and

]
o

S (a,)
]

0 for n>1

is used. Substituting (7.6) in (7.5) and using (1.13), we obtain the

series development,

(N) (N) =
(N) ® p s, _ 2ng * s "Vt
Ferfe 2t ts (0) Y P YmYs v ) K Verte . .
/lmnt p=0 v=0 P /4n<n /lncut

(7.7)

Letting x = s(N)(t) in (7.2) and (7.4) and using (7.7), we find series

of T:
(N) % .(TON,s) p
Tn(s (t), Knt) = pZO Tp ’ T o, (7.8a)
and
= (™M (o), x_t) = E T{TN,Ds) .p (7.8b)
9x O ¢ p=0 p *
We neea only the first terms,
(IIN,S) _
TO TB +
oy Y 2ng + s(()N)v’_t- 2(n+1) g - séN)v’?
+ B, y {erfc —————— - erfc (7.9a)
n=0 /lmnt /lmnt
and
(TOIN,Ds) _
To
BODN N 2ng + séN)/-t_ 2(n+l) 2 - s(()N)
- T {1~ erfc + i~ lerfe } . (7.9b)
v’lmn n=0 Mtnt /Axnt
20
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Because the coefficients B§IN for p > 1 are, as we shall show, all equal to

zero, the higher terms need not be made explicit.

8. The Ntk Stage

The general solution (2.2) gives the Ntk stage terperature of the new

phase,
(~ o PN IN
1 G pt) = T (Vegr) [V 6 (2=) ¢ BIY 1Merse( )] . (8.1)
n=0 JAKIt JAKIt
Substituting x with s(N)(t) from (7.3), and expanding tte elerental func-

(N)

tions by use of (3.6a) and (3.6b), we rewrite T (s(N)

(t), KIt) to a
series of T,

k=0
where

n

. k . : S,
TﬁI“’S)= I (V) R fn) + IV 153) —1 1. (8.2h)
=0 n -n /lm n n ;———-4.(]

Differentiating (8.1) with x, substitutirg x with s(N)(t) frorm (7.3), and

using (3.6a) and (3.6b), we find

T

T e s;l'(S(N)(t), KIt] = 3 TéIN’DS)Tk s (8.3a)
k=0
where
k n-1 s (b) s, (N)
D) -7 (/o) >< IN (- ”( . (83D)
n=0 r JQKI
Rewriting the boundary conditions,
(N)(o, kt) =T (8.4a)

A

- G ol s
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- rw‘ .

(N)_(N)
T (st ), k) = Ty (8.4b)
. . . . N N . (™)
into series of 1, we can successively determrine Ap ard BP as furctions Sa
I\T
se s sé ). The first pair of this seouence is:
IN _ _ (X), 7— \N\), —
A0 = TF TA erfc(so //4KI%/grf(sO //4KI) (8.5a)
and
N _ _ (X)), 77—
RN - - (1 TA)/Erf(sO W) (8.5b)

P )

Ve write Frf with capital E lest it be confused vith erfc x. The bigher
pairs of the sequence need not be descrited in our protler, where they are,

as we shall stow, all equal to zero.

.
éIIh’S) fror (7.9a), the coefficient of TO in equation

N
(4.2a) yields the evaluation of PgI s

Substituting T

oN _ _
BO = (TB TF)/RN, (8.6a)
where
N 2ng + séN)/F 2(n+1) g - séN)/?
Ry = ! [erfe————— - erfc ] . (8.6b)
p=0 JAKIIt JAKIIt
Substituting T(()I“’DS) found fror (R.3b) with k = O and T(()m"DS)

from (7.9b), the coefficiert of 1% in eauation (4.2b) yields the transcen-

dental equation for the deterrination of séN),
K (T =~ T,) i‘lerfc(e(N)/JAK ) Ky (T, = T_.) O
1"°F A 0 I IoO'‘'B F/ "N _ 1 (N)
— ™ - —— & -2 P s (8.7)
JAKI Erf(so //AKI) /4KII N

vbere
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N 2ng + séN)/E ! 2(n+1) R - séN)fE
Q = ¥ [i’lerfL + i"‘erfc [ (8.8)
n=0 /lmnt /lucnt
. (N) | . IN
Thus determined, S0 is a function of the Nth lead time. Then, A0 .

éN, and BgIN are also functions of the Nth lead time.

B
We have thus evaluated the level-0 parameters. We call the equation

for determining the level-n parameters level-n equations. For n > 1, the

level-n parameters are linear in the level-n equations. The level-l equa-

tions are homogeneous with respect to the level-l1 parameters, which are

therefore all equal to zero. Proceeding this way, we find that the higher-

b than-level-0 parameters are all equal to zero.
q Thus we find
s
E (M)
. TiN)(x,KIt) =T, + (TF - TA) Erf //Erf 0 (8.9a)
. Yax_t vk
b I I
: and
! aTN 1
. Toe o (X,KIt) = - [i'lerfc | (8.9b)
Vb Yk t
- 1 1
; for the new phase. Also we find
(N) N 2ni+x 2(n+1) 4-x
T (x,KIIt) = TB + BO 2 [erfc LLLAZ, S erfc——IL-———-] (8.10a)
n=0 Yot Vit
I I
and
3TN BIIN
+ +1) 8-
T b (x,kt) = - 0 Z [i‘lerfc Anftx + i"lerfc—————-z(n D x]
ax o /i n=0 Vort Ve
I ju I

(8.10b)
for the old phase.
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9. The Final Stage

To formulate the final stage, we transform the infinite series,

Lk - (/4<t ) Z [1 2n£ X _ ikerf 2(n+l)z-x] 9.1)
n=0 ¢4Kt Vbt
and
Mk - (llizt )k z [ikerf 2nft+x + 1kerf 2(n+l)L-x ] , (9.2)
n=0 Yakt Yaxt

contained in (6.2) and (6.3), respectively. We drop the subscript II in
this computation. Although our problem is concerned with Ly and M-;, we
transform the general cases Ly and M, at this stage of the exposition.

We begin with the transformation of the infinite series,

(/4:t )k 2 1kerfc 2-1'\_2_":)( .
n=0 Yhkt

Using formula (1.16), this becomes

1 M Kt X o -
I k= 2 X -2ng

= E exp(E — -k ) Z e
" e 22 Y a0 g
AR (25, A e
2mi ) e 3 exp( & 2 E ) Cosechg d& .

We write Cosech x with capital C, lest it be confused with cosec x.

Similarly,
Yot k= k 2(n+1) #-x
( T) z i erfc ™
n=0 Y4t
transforms to
1 M ) Kt 2-x,
® 2t g exp(E° — - ¢ . - Cosech& dE .
" c-i» Lz
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Thus we find

T |

L L 2 Kt A=

L =1 £ exp(E —3) Sinh(g . ) Cosechg dg . (9.3a)
L

C—ie

Expanding tiie Sinh function by use of the addition formula, and using

(1.16) and (1.6), we may give (9.3a) another form,

Vit X x -CDF Kk x
L = ) ) Gk + i erfc -

AT

k ey vy
g ctiw
L R (22 KL sinn(B2) cothe dE . (9.3b)
i c—iw 22 L

When x is substituted for s(t) from (3.1), the latter transforms to a

series of 1, but the former does not. Similarly, we find

ctim

1 “k-1 Kt £2-x
M =1 ) & exp(£? =) Cosh(g 77) CosechE dg (9.4a)
c—ie 2
and
(/Z:E)k . < x > 1+(-1)* ik PR .
==\ - erfc—
e ' k\vaxe 2 Jiet
1 ctico k-1 .
* 1 g exp(£? %) Coth& Cosh -Eﬁ dg . (9.4b)
c—ic L

In our problem, the temperatures at the final stage are stationary and

linear in space. To show this, we begin by letting

t -
(&) = exp(£? f—,;) Sinh(E Tx)/smh £ (9.5a)
L

in (9.3a) and

Kt 2-x
$(E) = exp(E? — | Cosh|& =77 J(&/51nhE) (9.5b)
2

in (9.4a). Noting that the ¢(E)'s are even functions, we find that Lg
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and M-) are given by the respective residues at £ = 0. Thus we find

Ly = 1 - x/4% (9.6a)

and

To formulate the final temperature, we first note that

1im s(N) = 0

Naw O

and that the final interface coordinate, s(=), is given by

s(») = 1lim S0 . 9.7)

N+

Note that as N + ® , also t + =, Taking the limit in (8.9a), and noting

that

Erf(x) =

4 ., (9.8)
- e

for a small x, we find that the final temperature in the new phase is given
.: by
T(m)(x ket) =T, + (T~ T, )x/s(=) . (9.9)
I e | A F A *

Using M-} in (9.6b) and Ly in (9.6a), we find

lim Q. = /4x__t/2 (9.10a)
Now N I
and
lim R = 1 - s(»)/8% . (9.10b)
N+

Dividing all the terms in (8.7) bty tl/z, and letting t + », we find that
the limit of (8.7) is stationary, given by

l; Ky (Tp = Ty) KT = Tp)

0. (9.11)

s(®) - L - s(=)
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The phase change therefore finally stops. Using (9.10t) in (8.6a), we find

that the limit of (8.10a) is given by

Tg)(x,nnt) = TB - (TB - TF)(ﬂ.—x)/(z - s(w)). (9.12)

CONCLUSIONS
By using the sirplest boundary and initial corditions we have shown
that Stefan's problem ir a finite domain can be solved. To solve the

probler, we bave erployed tte solution for beat conduction in a finite

dorain whose elerental temperature functions are merbers of the famrily of

the error function. The effect of tke finite terminal is the introduction
of singularities. Starting at a solution in the sermi-infinite dorain and

passing through infinitely many lead times, the solution ir the finite

dorain arrives at the fipal stationary stage.
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