Under Approximation for an Elliptic Boundary Value Problem

Karl Kunisch and L. W. White

Galerkin approximations, output least squares

Necessary and sufficient conditions for identifiability of the diffusion coefficient in Galerkin approximations to a two-point boundary value problem are derived for various choices of Galerkin subspaces. The results are further used to investigate output least squares identifiability and output least squares stability of the diffusion coefficient.
IDENTIFIABILITY UNDER APPROXIMATION FOR AN
ELLIPTIC BOUNDARY VALUE PROBLEM

by

Karl Kunisch and L. W. White

April 1985

LCDS #85-13

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited
IDENTIFIABILITY UNDER APPROXIMATION FOR AN
ELLiptIC BOUNDARY VALUE PROBLEM

by
Karl Kunisch*
Division of Applied Mathematics
Brown University
Providence, Rhode Island

and

Institut für Mathematik
Technische Universität Graz
A-8010 GRAZ, AUSTRIA

and

L. W. White**
Department of Mathematics
The University of Oklahoma
Norman, Oklahoma 73019

April 1985

*Research in part supported by the Fonds zur Förderung der Wissenschaftlichen Forschung, Austria, No. S3206, and by Air Force Office of Scientific Research under contract No. AF-AFOSR 84-0398 (5-28393).

**Research in part supported by the Air Force Office of Scientific Research under contract No. AF-AFOSR 84-0271.
Abstract

Necessary and sufficient conditions for identifiability of the diffusion coefficient in Galerkin approximations to a two point boundary value problem are derived for various choices of Galerkin subspaces. The results are further used to investigate output least squares identifiability and output least squares stability of the diffusion coefficient.

Key Words: Parameter estimation; stability of output least squares problem, boundary value problem.
Identifiability Under Approximation for an Elliptic Boundary Value Problem

1. Introduction

In this note we study the following boundary value problems:

\[-(a u_x)_x + cu = f \text{ in } (0,1)\]

\[u_x(0) - u_x(1) = 0.\]

Let \(I = (0,1) \) and \(f \in L^2(I) \). Recall that if \(a \in H^1(I) \) with \(a(x) > \alpha > 0 \) and \(c \in L^2(I) \) with \(c(x) > c_0 > 0 \) a.e., then there exists a unique solution \(u = u(a) \) of (1.1) in \(H^2(I) \). We are concerned with the identification of the coefficient \(a \), given information of the solution \(u(a) \) and in particular we will study the injectivity of the mapping \(a^M + u^N(a^M) \) where \(a^M \) is some approximation to \(a \) and \(u^N \) an approximation to \(u \). At first we describe the problem in a more general context.

Let \(\mathcal{L}: H^2(I) \to Z \) be a continuous linear operator from the solution space to the observation space \(Z \) describing the type of available information of the state \(u \). To determine the coefficient corresponding to an observation \(z \in Z \) of the system that is modelled by (1.1) the following output least squares formulation is used frequently:

\[(1.2) \quad \text{minimize } |\mathcal{L}u(a) - z|^2_Z.\]

Here the set \(Q_{ad} \) of admissible parameters is chosen such that the existence of a solution of (1.2) is guaranteed.
For example, if \(n \) observations \(\{z_k\}_{k=1}^n \) taken at the points \(\{x_k\}_{k=1}^n \) are available, we may take \(Z = \mathbb{R}^n \) with \(\mathcal{L}: H^2(I) \rightarrow \mathbb{R}^n \) defined by \(\mathcal{L}u = \{u(x_k)\}_{k=1}^n \). In this case (1.2) becomes

\[
(1.3) \quad \minimize_{Q_{ad}} \sum_{k=1}^n |u(x_k; a) - z_k|^2.
\]

Alternatively one might have distributed observations \(z \in L^2(I) \), or using the data \(\{z_k\}_k \) at \(\{x_k\}_{k=1}^n \) one might want to obtain a function \(z \in L^2(I) \) either by interpolation or least squares regression; for \(\mathcal{L} \) we would then take \(\mathcal{L}u = u \) and the optimization problem becomes

\[
(1.4) \quad \minimize_{Q_{ad}} |u(a) - z|^2.
\]

In either case an appropriate choice for \(Q_{ad} \) would be

\[
Q_{ad} = \{a \in H^1: a(x) \geq \alpha > 0, \ |a|_{H^1} \leq \delta \},
\]

with \(\gamma > \alpha, [6] \).

Defining the attainable set \(\mathcal{V} = \{\mathcal{L}u(a): a \in Q_{ad}\} \) one may view the optimization problem (1.2) as having two parts:

(i) given \(z \in \mathcal{V} \) find \(z_{\text{proj}} \), the projection of \(z \) on \(\mathcal{V} \),

(ii) given \(z_{\text{proj}} \) find \(\bar{a} \in Q_{ad} \) such that \(\mathcal{L}u(\bar{a}) = z_{\text{proj}} \).

Assuming the existence of \(z_{\text{proj}} \), the uniqueness of \(z_{\text{proj}} \) depends on the geometry of \(\mathcal{V} \). In (ii) there exists an \(\bar{a} \) such that \(\mathcal{L}u(\bar{a}) = z_{\text{proj}} \) by definition of \(Q_{ad} \). The question of uniqueness of such an \(\bar{a} \) arises and it is guaranteed if \(\phi: a \rightarrow \mathcal{L}u(a) \) is injective at \(\bar{a} \).
Injectivity of ϕ at \tilde{a} is called identifiability of a at \tilde{a}. The above mentioned uniqueness problems are rather involved in general, see, e.g., [2; 7, Appendix], and [11] for a hyperbolic equation.

When solving (1.2) on a computer it is necessary to replace (1.1)–(1.2) by a finite dimensional problem. This is done by approximating both the solutions of (1.1) and the set Q_a by functions from finite dimensional function spaces. A finite dimensional version of the minimization problem (1.2) is then solved to obtain an estimate for the unknown coefficient a (compare e.g., [1], [5]). Again the existence and uniqueness questions analogous to the two steps (i) and (ii) above can be considered.

The main purpose of this investigation is the study of the uniqueness for the finite dimensional analog of (ii). If for a chosen approximation of a by a^M the mappings $a^M \rightarrow u^N(a^M)$ is injective at \tilde{a}^M, then a is called identifiability under approximation at \tilde{a}^M. The related question for parabolic equations in dimension one has been treated in [4].

Our results below indicate that the injectivity of a^M depends upon certain rank conditions that imply compatibility conditions upon the spaces used to approximate the coefficient a and the solution $u(a)$. It will be seen that a may be identifiable under approximation without the known sufficient conditions for identifiability of a in (1.1) being satisfied [9]. The results here, although depending on the choice of Neumann boundary conditions can easily be adapted to different boundary conditions.

In section 2 we formulate the discrete problems and give general conditions for identifiability under approximation. In section 3 we examine several concrete examples and obtain necessary and sufficient conditions
for identifiability under approximation for these cases. Identifiability will be guaranteed if there is a sufficient amount of movement in the observations. On the other hand, if the coefficient is assumed to be known at points where the observations are stationary, then it can still be identifiable at the remaining parts of the domain (0,1). Section 4 is devoted to the problem of continuous dependence of the solution of the discretized version of (1.3) or (1.4) on the observation z and Q_{ad}. Sufficient conditions for output least squares identifiability (OLSI) [2] and output least squares stability (OLSS) [3] are given. Finally, in section 5 we report the findings of a numerical experiment that supports the practical relevance of our results.
2. **Basic Results**

To approximate (1.2) by the standard finite element method [10] let \(\{B_i\}_{i=0}^{N} \) and \(\{\phi_j\}_{j=1}^{M} \) be sets of linearly independent functions defined on \(I \) with \(B_i \in H^1(I) \) and \(\phi_j \) piecewise continuous. Let \(A^M = \text{span}\{\phi_j: j = 1, \ldots, M\} \) and \(H^N = \text{span}\{B_i: i = 0, \ldots, N\} \). Setting

\[
\hat{u}^N = \sum_{i=0}^{N} \mu_i B_i \quad \text{and} \quad a_j^M = \sum_{j=1}^{M} a_j^M \phi_j
\]

we have upon integration by parts of (1.1) with \(u \) replaced by \(\hat{u}^N \):

\[
\sum_{i=0}^{N} \mu_i \langle \phi_i, B_k, x \rangle + \sum_{i=0}^{N} \mu_i \langle cB_i, B_k \rangle = \langle f, B_k \rangle \quad \text{for} \quad k = 0, \ldots, N,
\]

where \(\langle \cdot, \cdot \rangle \) denotes the inner product in \(L^2 \). Replacing \(a^N \) by \(a^M \) it follows that

\[
\sum_{i=0}^{N} \mu_i \sum_{j=1}^{M} a_j^M \langle \phi_j, B_i, x \rangle = \sum_{i=0}^{N} \mu_i \langle cB_i, B_k \rangle = \langle f, B_k \rangle,
\]

for \(k = 0, \ldots, N \).

Rearranging the summations in this last expression we arrive at

\[
(2.1) \quad \sum_{j=1}^{M} a_j \sum_{i=0}^{N} \langle \phi_j B_i, x \rangle B_k, x \rangle \mu_i + \sum_{i=0}^{N} \langle cB_i, B_k \rangle \mu_i = \langle f, B_k \rangle
\]

for \(k = 0, \ldots, N \).

We now make the following definitions: \(H_j \) and \(K \) are \((N+1) \times (N+1)\) matrices with the \((i,k)-th\) elements given by
\((H_j)_{i,k} = \langle \phi_j B_i, x, B_k, x \rangle \) and \((K)_{i,k} = \langle c B_i, B_k \rangle\),

for \(i, k = 0, \ldots, N; j = 1, \ldots, M\). Similarly \(\tilde{\tau} \in \mathbb{R}^{N+1}, \tilde{\mu} \in \mathbb{R}^{N+1}\) and \(a^M \in \mathbb{R}^M\) are given by

\[
(\tilde{\tau})_k = \langle \tau, B_k \rangle, \quad (\tilde{\mu})_i = \mu_i \quad \text{and} \quad (a^M)_j = a_j^M.
\]

With this notation (2.1) becomes

\[
(2.2) \quad \sum_{j=1}^{M} a_j^M H_j \tilde{\mu} + K \tilde{\mu} = \tilde{\tau},
\]

where we used the symmetry of \(H_j\) and \(K\). Thus we obtain a mapping \(a^M \mapsto \tilde{\mu}(a^M)\) from \(\mathbb{R}^M\) into \(\mathbb{R}^{N+1}\) or, equivalently, \(a^M \mapsto u^N(a^M)\),

\[
a^M = \sum_{j=1}^{M} a_j^M \phi_j, \quad \text{from } A^M \text{ to } H^N,
\]

that is well defined as long as \(\sum_{j=1}^{M} a_j^M H_j + K\) is invertible. For example, if \(c \geq 0\) and \(\{B_i, x\}_{i=1}^{N}\) are linearly independent, then \(\sum_{j=1}^{M} a_j^M H_j + K\) is invertible for all \(a^M \in A = \{a^M \in \mathbb{R}^M : \sum_{j=1}^{M} (a^M)_j \phi_j > 0 \text{ on } I\}\).
Similarly, if $c \geq \gamma > 0$ as assumed throughout, then again $\sum a_j H_j + K$ is invertible for all $a^M \in A$.

We now define identifiability of $a^M = \text{col}(a_1^M, \ldots, a_k^M)$ in (2.2).

Definition 2.1. The parameter $a^M \in A$ in (2.2) is called identifiable if $\tilde{u}(a^M) = \tilde{u}(b^M)$ implies $a^M = b^M$ for all $b^M \in A$.

For a specific choice of approximation of a in (1.1) by a^M, we say that a is identifiable under approximation at a^M if a^M is identifiable.

Theorem 2.1. Let $\{\phi_j\}_{j=0}^M$ and $\{B_j\}_{j=0}^N$ be linearly independent, $c(x) \geq c > 0$ and $\tilde{a}^M \in A$. Then $a^M \in A$ is identifiable if and only if the vectors $\{H_j \tilde{u}(\tilde{a}^M)\}_{j=1}^M$ are linearly independent.

Proof. Using (2.2), linear independence of $H_j \tilde{u}(\tilde{a}^M)$ clearly implies identifiability of \tilde{a}^M. Conversely assume that there exists a nontrivial vector $(a_1, \ldots, a_M) \in \mathbb{R}^M$ with

\[(2.3) \quad \sum_{j=1}^M a_j H_j \tilde{u}(\tilde{a}^M) = 0.\]

Then $\sum_{j=1}^M (a_j^M - \varepsilon a_j) \phi_j > 0$ for some sufficiently small $\varepsilon > 0$ and \tilde{a}_1^M given by $(\tilde{a}_1^M)_j = a_j^M - \varepsilon a_j$ satisfies $\tilde{a}_1^M \in A$. Multiplying (2.3) by ε and subtracting it from (2.2) we find that $\tilde{u}(\tilde{a}^M) = \tilde{u}(\tilde{a}_1^M)$. This ends the proof.

Since $H_j : \mathbb{R}^{N+1} \to \mathbb{R}^{N+1}$, for $j = 1, \ldots, M$, we have the following:

Corollary 2.1. If $M > N+1$, then \tilde{a}^M in (2.2) is not identifiable.
Corollary 2.2. If \(\tilde{u}(\tilde{a}^M) \in \text{Ker}(H_j) \) for some \(j = 1, \ldots, M \), then \(\tilde{a}^M \) is not identifiable.

Proof. If \(\tilde{u}(\tilde{a}^M) \in \text{Ker}(H_j) \) then the set \(\{H_j \tilde{u}(\tilde{a}^M)\}_{j=1}^M \) is linearly dependent and the result follows from Theorem 2.1.

Remark 2.1. Corollary 2.2 should be compared with the condition \(|u_j| \geq k_1 > 0 \) which is known to be a sufficient condition for identifiability of \(a \) in the infinite dimensional problem (1.1) [9].

Definition 2.2. The coordinates \(\{\hat{a}_{j_1}^{M_1}, \ldots, \hat{a}_{j_M}^{M_M}\} \) of the parameter vector \(\hat{a}^M \in A \) are called identifiable if \(\tilde{u}(\hat{a}^M) = \tilde{u}(\tilde{b}^M) \) and \(\hat{a}_{j_k}^M = \tilde{b}_{j_k}^M \) for all \(j \neq j_k, k = 1, \ldots, M \) imply \(\hat{a}^M = \tilde{b}^M \), for all \(\tilde{b}^M \in A \).

Proposition 2.1. The coordinates \(\{\hat{a}_{j_1}^{M_1}, \ldots, \hat{a}_{j_M}^{M_M}\} \) of \(\hat{a}^M \in A \) are identifiable if and only if the vectors \(\{H_j \tilde{u}(\hat{a}^M)\}_{j=1}^M \) are linearly independent.

The proof is obvious from that of Theorem 2.1.
3. Several Examples

In this section we consider several concrete examples and determine their identifiability properties. We point out that here we use \(N \) to denote the number of subintervals of \(I \) and \(N \) and \(M \) of the previous section are a function of this \(N \).

Case 1. Let \(I \) be partitioned into \(N \) subintervals of length \(1/N \).

For \(i = 0, \ldots, N \) define the linear spline basis functions

\[
B_i(x) = \begin{cases}
\frac{i-1}{N} \leq x < \frac{i}{N}, & \text{if } i \leq N-1 \\
-Nx+i+1, & \text{if } \frac{i}{N} \leq x < \frac{i+1}{N}, \\
0 & \text{otherwise,}
\end{cases}
\]

and for \(j = 1, \ldots, N \) the 0-th order splines

\[
\phi_j(x) = \begin{cases}
1, & \frac{i-1}{N} \leq x < \frac{i}{N}, \\
0 & \text{otherwise.}
\end{cases}
\]

Thus \(N \) and \(M \) of the previous section are both \(N \) here.

We approximate the solution \(u \) of (1.1) by linear splines and the coefficient \(a \) by constant splines. It is straightforward to compute the \((N+1) \times (N+1)\) matrices \(H_j \), \(j = 1, \ldots, N \):
Let \(\tilde{u} = \tilde{u}(\hat{a}^M) = \text{col}(\mu_0, \ldots, \mu_N) \) with \(\hat{a}^M \in A \). Then

\[
H_j \tilde{u} = N \begin{pmatrix}
0 \\
\vdots \\
0 \\
0 \\
0
\end{pmatrix}
= N \begin{pmatrix}
\mu_{j-1} - \mu_j \\
\mu_{j-1} + \mu_j \\
\mu_{j-1} - \mu_j \\
\mu_{j-1} + \mu_j
\end{pmatrix}
\]

Now set \(\delta_j = \mu_j - \mu_{j-1} \) for \(j = 1, \ldots, N \). To study the linear independence of the vectors \(\{H_j \tilde{u}\}_{j=1}^N \), note that

\[
(H_1 \tilde{u}, \ldots, H_N \tilde{u}) = NB
\]

where \(B \) is the \((N+1) \times N\) matrix.
Lemma 3.1. The vectors \(\{H_j\}_{j=1}^N \) are linearly independent if and only if \(\beta_i \neq 0 \) for all \(i = 1, \ldots, N \).

Proof. It is easily shown that \(B \) is row equivalent [8] to

\[
B = \begin{pmatrix}
-\beta_1 & 0 & \cdots & 0 \\
0 & -\beta_2 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
& & 0 & -\beta_{N-1} \\
& & & \beta_{N-1} & -\beta_N \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & \beta_N
\end{pmatrix}
\]

provided \(\beta_i \neq 0 \) for all \(i \) and \(\{H_j\}_{j=1}^N \) are linearly independent in this case. Conversely, if \(\beta_i = 0 \) for some \(i \), then the column rank of \(B \) is less than \(N \) and linear dependence of \(\{H_j\}_{j=1}^N \) follows.

Theorem 3.1. In Case 1, \(\hat{\alpha}_M \) is identifiable, if and only if \(\mu_i(\hat{\alpha}_M) \neq \mu_{i-1}(\hat{\alpha}_M) \) for all \(i = 1, \ldots, N \).

Proposition 3.1. The coordinates \(\{\hat{\alpha}_{M,j}\}_{j=1}^{\hat{M}} \) of \(\hat{\alpha}_M \) are identifiable if and only if \(\mu_{i,k}(\hat{\alpha}_M) \neq \mu_{i,k-1}(\hat{\alpha}_M) \) for all \(k = 1, \ldots, \hat{M} \).

The interpretation of this result is that the parameter \(\hat{\alpha}_M \) can only be identified at coordinates where the corresponding observations are non-stationary.
Case 2. Let N be even and let I be partitioned into subintervals of length $\frac{1}{N}$. The functions B_i, $i = 0, \ldots, N$, are taken as in (3.1).

Here, however, we define the functions ϕ_j for $j = 1, \ldots, \frac{N}{2}$ by

$$
\phi_j(x) = \begin{cases}
1, & \frac{2(j-1)}{N} \leq x \leq \frac{2j}{N}, \\
0 & \text{otherwise.}
\end{cases}
$$

Thus M of section 2 is now. We find in this case that the $(N+1) \times (N+1)$ matrices H_j, for $j = 1, \ldots, \frac{N}{2}$ are given by

$$
H_j = N \begin{bmatrix}
0 & \vdots & \vdots & \vdots \\
\vdots & 1 & -1 & 0 \\
\vdots & -1 & 2 & -1 \\
0 & -1 & 1 & \vdots \\
\vdots & \vdots & \vdots & 0
\end{bmatrix},
$$

where the first entry of the nontrivial submatrix is in the $2j-2, 2j-2$ position of H_j. With $\tilde{\mu} = \tilde{\mu}(a^M) = \text{col}(\mu_0, \ldots, \mu_N)$ as before we have

$$
H_j \tilde{\mu} = N \begin{bmatrix}
0 \\
\vdots \\
0 \\
\mu_{2j-2} - \mu_{2j-1} \\
\mu_{2j-2} + 2\mu_{2j-1} - \mu_{2j} \\
-\mu_{2j-1} + \mu_{2j} \\
0 \\
\vdots \\
0
\end{bmatrix}.
$$
where the first nonzero entry occurs in the $2j-2$ coordinate. Setting $\beta_i = u_i - u_{i-1}$ for $i = 1, \ldots, N$ we thus have

$$H_j \vec{u} = N \begin{pmatrix} 0 \\ \vdots \\ 0 \\ -\beta_{2j-1} \\ \beta_{2j} \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

for $j = 1, \ldots, \frac{N}{2}$. To investigate the linear independence of $\{H_j \vec{u}\}_{j=1}^{N/2}$, note that

$$(H_1 \vec{u}, \ldots, H_{N/2} \vec{u}) = NB$$

where the $(N+1) \times \frac{N}{2}$ matrix B is given by

$$B = \begin{pmatrix} -\beta_1 & 0 & 0 \\ \beta_1 - \beta_2 & 0 & 0 \\ \beta_2 - \beta_3 & 0 & 0 \\ \vdots & \ddots & \ddots \\ \beta_{N-1} - \beta_N & 0 & 0 \\ 0 & \beta_N & 0 \end{pmatrix}.$$
and the collection of vectors \(\{H_j\}_{j=1}^{N/2} \) is linearly independent if and only if \(\text{rank}(B) = \frac{N}{2} \).

Lemma 3.2. In the Case 2 the vectors \(\{H_j\}_{j=1}^{N/2} \) are linearly independent if and only if \(\beta_{2i-1} \neq 0 \) or \(\beta_{2i} \neq 0 \) for \(i = 1, \ldots, \frac{N}{2} \).

Proof. The matrix \(B \) is row equivalent to

\[
B = \begin{pmatrix}
\beta_1 & 0 & 0 \\
\beta_2 & 0 & 0 \\
0 & \beta_3 & 0 \\
\vdots & \ddots & \ddots \\
0 & \beta_{N-1} & 0 \\
0 & 0 & \beta_N
\end{pmatrix}.
\]

From this and the fact that the dimension of the column space of a matrix is equal to the rank of that matrix, the result follows.

Theorem 3.2. In Case 2, \(a^M \) is identifiable if and only if \(u_{2i-1} \neq u_{2i-2} \) or \(u_{2i} \neq u_{2i-1} \) for \(i = 1, \ldots, \frac{N}{2} \).

Case 3. Let \(I \) be partitioned into \(N \) subintervals of length \(\frac{1}{N} \). Again we take the functions \(B_i, i = 0, \ldots, N \) to be those defined in (3.1). Further we set \(\phi_i = B_i, i = 0, \ldots, N \). Thus \(M \) of section 2 is \(N+1 \) here and both \(\phi_j \) and \(B_i \) are linear splines defined on the same mesh. In this case the structure of the \((N+1) \times (N+1) \) matrices \(\{H_j\}_{j=0}^{N} \).
is slightly more complicated than in Cases 1 and 2. These matrices are now given as follows:

\[H_0 = \frac{N}{2} \begin{pmatrix} 1 & -1 & & & \\
 & 1 & -1 & & \\
 & & 1 & -1 & \\
 & & & & 1 \\
 & & & & 1 \\
\end{pmatrix} \]

with the first entry in the \((0,0)\)-element. For \(j = 1, \ldots, N-1\) we have

\[H_j = \frac{N}{2} \begin{pmatrix} 0 & 0 & & & \\
 & 1 & -1 & & \\
 & -1 & 2 & -1 & \\
 & 0 & -1 & 0 & \\
 & & & & 0 \\
\end{pmatrix} \]

where the first entry of the nontrivial submatrix appears in the \((j-1, j-1)\) position of \(H_j\). Finally

\[H_N = \frac{N}{2} \begin{pmatrix} 0 & & & \\
 & 1 & -1 & \\
 & & 1 & -1 & \\
 & & & & 1 \\
\end{pmatrix} \]

where the first nonzero entry occurs in the \(N-1, N-1\) element. The vectors \(\{H_j \hat{u}\}_{j=0}^{N}\) are given by
\[
H_0 \hat{\mu} = \frac{N}{2} \begin{pmatrix}
-\mu_1 - \mu_0 \\
\mu_1 - \mu_0 \\
0 \\
\vdots \\
0
\end{pmatrix}, \quad H_N \hat{\mu} = \frac{N}{2} \begin{pmatrix}
0 \\
\vdots \\
0 \\
-\mu_N - \mu_{N-1} \\
\mu_N - \mu_{N-1}
\end{pmatrix}
\]

\[
H_j \hat{\mu} = \frac{N}{2} \begin{pmatrix}
0 \\
\vdots \\
0 \\
\mu_{j-1} - \mu_j \\
-\mu_{j-1} + 2\mu_j - \mu_{j+1} \\
-\mu_j + \mu_{j+1} \\
0 \\
\vdots \\
0
\end{pmatrix}
\]

where for \(j = 1, \ldots, N-1 \) the first entry occurs in row \(j-1 \). Setting \(\beta_i = \mu_i - \mu_{i-1} \) for \(i = 1, \ldots, N \) we have

\[
H_0 \hat{\mu} = \frac{N}{2} \begin{pmatrix}
-\beta_1 \\
\beta_1 \\
0 \\
\vdots \\
0
\end{pmatrix}, \quad H_N \hat{\mu} = \frac{N}{2} \begin{pmatrix}
0 \\
\vdots \\
0 \\
-\beta_N \\
\beta_N
\end{pmatrix}, \quad H_j \hat{\mu} = \frac{N}{2} \begin{pmatrix}
0 \\
\vdots \\
0 \\
-\beta_j \\
\beta_j - \beta_{j+1} \\
\beta_{j+1} \\
0 \\
\vdots \\
0
\end{pmatrix}
\]
for $j = 1, \ldots, N-1$. To investigate the linear independence of $\{H_j \tilde{u}\}_{j=0}^N$, note that

$$(H_0 \tilde{u}, \ldots, H_N \tilde{u}) = \frac{N}{2} B,$$

where the $(N+1) \times (N+1)$ matrix B is given by

$$B = \begin{bmatrix}
-\beta_1 & -\beta_1 & 0 & 0 \\
\beta_1 & \beta_1 - \beta_2 & 0 & 0 \\
0 & \beta_2 & \beta_3 & 0 \\
\vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & \beta_N \\
\end{bmatrix}.$$

Performing row operations on B we find the B is equivalent to

$$\tilde{B} = \begin{bmatrix}
\beta_1 & \beta_1 & 0 & 0 & 0 \\
0 & \beta_2 & \beta_2 & 0 & 0 \\
0 & 0 & \beta_3 & \beta_3 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & \beta_N \\
\end{bmatrix}.$$
We then see that B has rank less or equal to N and therefore we have

Theorem 3.3. In case 3, $\hat{a}^M \notin A$ is not identifiable.

If one decreases the number of ϕ_j's in Case 3 then it is reasonable to expect that sufficient and necessary conditions for the identifiability of \hat{a}^M in the spirit of Cases 1 and 2 can be obtained. We verify this next for a particular choice of N and M. Moreover, in Section 5 we present a numerical experiment which tends to support this contention.

Case 4. Let I be partitioned into $2N$ subintervals of length $1/2N$. We choose the functions B_i for $i = 0, \ldots, 2N$ as

$$B_i(x) = \begin{cases} 2Nx - i + 1, & \frac{i-1}{2N} \leq x < \frac{i}{N}, \\ -2Nx + i + 1, & \frac{i}{2N} \leq x < \frac{i+1}{2N}, \\ 0 & \text{otherwise}. \end{cases}$$

For the functions ϕ_j we take

$$\phi_j(x) = \begin{cases} Nx - j + 1, & \frac{j-1}{N} \leq x < \frac{j}{N}, \\ -Nx + j + 1, & \frac{j}{N} \leq x < \frac{j+1}{N}, \\ 0 & \text{otherwise}, \end{cases}$$

for $j = 0, \ldots, N$; thus M of section 2 is $N+1$. The $(2N+1) \times (2N+1)$-matrices $\{H_j\}_{j=0}^N$ are given as follows:
with 3 in the \((0,0)\) element,

\[
H_0 = \frac{N}{2}
\begin{bmatrix}
3 & -3 & 0 & \cdots & \cdots & \cdots \\
-3 & 4 & -1 & \cdots & \cdots & \cdots \\
0 & -1 & 1 & \cdots & \cdots & \cdots \\
\end{bmatrix},
\]

where the first entry of the nontrivial submatrix occurs in the \(2(i-1)\), \(2(i-1)\)-element and

\[
H_j = \frac{N}{2}
\begin{bmatrix}
\vdots & \vdots & \vdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix},
\]

Let \(\tilde{u} = \tilde{u}(\tilde{a}^M) = \text{col}(\mu_0, \ldots, \mu_{2N})\). Then we see that
\[H_0 \vec{\mu} = \frac{N}{2} \begin{pmatrix} 3\mu_0 - 3\mu_1 \\ -3\mu_0 + 4\mu_1 - \mu_2 \\ -\mu_1 + \mu_2 \\ 0 \\ 0 \end{pmatrix}, \quad H_N \vec{\mu} = \frac{N}{2} \begin{pmatrix} 0 \\ \mu_2N-2 - \mu_{2N-1} \\ -\mu_{2N-2} + 4\mu_{2N-1} - 3\mu_{2N} \\ -3\mu_{2N-1} + 3\mu_{2N} \\ 0 \end{pmatrix} \]

and for \(j = 1, \ldots, N-1 \)

\[H_j \vec{\mu} = \frac{N}{2} \begin{pmatrix} 0 \\ \mu_{2i-2} - \mu_{2i-1} \\ -\mu_{2i-2} + 4\mu_{2i-1} - 3\mu_{2i} \\ -3\mu_{2i-1} + 6\mu_{2i} - 3\mu_{2i+1} \\ -3\mu_{2i} + 4\mu_{2i+1} - \mu_{2i+2} \\ -\mu_{2i+1} + \mu_{2i+2} \\ 0 \\ 0 \end{pmatrix} \]

where the first nonzero entry occurs in row \(2(i-1) \). To investigate the linear independence of \(\{H_j \vec{\mu}\}_{j=0}^N \) we put \(\varepsilon_i = \mu_i - \mu_{i-1} \) for \(i = 1, \ldots, 2N \) and observe that

\[(H_0 \vec{\mu}, \ldots, H_N \vec{\mu}) = \frac{N}{2} B \]
where the $(2N+1) \times (N+1)$ matrix B is given by

$$B = \begin{bmatrix}
-3\beta_1 & -\beta_1 & 0 \\
3\beta_1-\beta_2 & \beta_1-3\beta_2 & 0 \\
\beta_2 & 3\beta_2-3\beta_3 & -\beta_3 \\
0 & 3\beta_3-3\beta_4 & \beta_3-3\beta_3 \\
\beta_4 & 3\beta_4-3\beta_5 & \ddots \\
0 & 3\beta_5-\beta_b & \ddots \\
\beta_6 & 0 & -\beta_{2N-3} \\
0 & \beta_{2N-3}-3\beta_{2N-2} & 0 \\
\beta_{2N-2}-3\beta_{2N-1} & \beta_{2N-1}-3\beta_{2N} & \beta_{2N} & 3\beta_{2N} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}$$

Performing row operations on B we obtain an equivalent matrix \bar{B}:

$$\bar{B} = \begin{bmatrix}
3\beta_1 & \beta_1 & 0 & 0 & 0 \\
\beta_2 & 3\beta_2 & 0 & 0 & 0 \\
0 & 3\beta_3 & \beta_3 & 0 & 0 \\
\beta_4 & 3\beta_4 & 3\beta_4 & 0 & 0 \\
0 & 3\beta_5 & 3\beta_5 & 0 & 0 \\
\beta_6 & \ddots & \ddots & \ddots & \ddots \\
0 & \beta_{2N-3} & \beta_{2N-3} & \ddots & \ddots \\
0 & 0 & \beta_{2N-2} & \beta_{2N-2} & \ddots \\
0 & 0 & 0 & \beta_{2N-1} & \beta_{2N-1} \\
0 & 0 & 0 & 0 & \beta_{2N} \\
0 & 0 & 0 & 0 & 3\beta_{2N} \\
\end{bmatrix}$$
which is of dimension \(2N \times (N+1)\). The vectors \(H_j \bar{u}\) are linearly independent if \(\text{rank}(\bar{B}) = N+1\).

Theorem 3.4. In Case 4, if \(\mu_{2i-1} \neq \mu_{2i-2}\) or \(\mu_{2i} \neq \mu_{2i-1}\) for all \(i = 1, \ldots, N\) and \((\mu_{2i-1} - \mu_{2i-2})(\mu_{2i} - \mu_{2i-1}) \neq 0\) for some \(i = 1, \ldots, N\), where \(\bar{u} = \tilde{u}(\bar{u}^M)\), then \(\bar{a}^M \in A\) is identifiable.

Proof. Let \(\tilde{\alpha} = \text{col}(\tilde{\alpha}_0, \ldots, \tilde{\alpha}_N) \in \mathbb{R}^{N+1}\) and \(\bar{B} \tilde{\alpha} = 0\). Choose \(i_1\) such that \(\beta_{2i_1-1} \cdot \beta_{2i_1} \neq 0\). Then \(\alpha_{i_1-1} = \alpha_{i_1} = 0\). Further \(\alpha_i = 0\) for all other \(i\), since \(\beta_{2i_1-1} \neq 0\) or \(\beta_{2i} \neq 0\). This implies linear independence of the columns of \(\bar{B}\) and thus of \(B\). Theorem 3.1 then implies the result.

Theorem 3.5. In Case 4, if \(\mu_1 - \mu_0 = \mu_2 - \mu_1 = 0\) or \(\mu_{N-1} - \mu_{N-2} = \mu_N - \mu_{N-1} = 0\) or \(\mu_{2i-1} - \mu_{2i-2} = \mu_{2i} - \mu_{2i-1} = \mu_{2i+1} - \mu_{2i} = \mu_{2i+2} - \mu_{2i+1} = 0\) for some \(i = 2, \ldots, N-2\), where \(\bar{u} = \tilde{u}(\tilde{a})\) then \(\bar{a}^M \in A\) is not identifiable.

Proof. Under the assumptions of the theorem the column-rank of \(\bar{B}\) is not maximal and this implies the result.

Remark 3.1. Four consecutive zeros in the \(\beta_i\)'s do not necessarily imply nonidentifiability, provided the zeros start with an even index and are not at the "beginning" or "end" of the sequence \(\{\beta_i\}\); in particular \(\beta_{2i} = \beta_{2i+1} = \beta_{2i+2} = \beta_{2i+3} = 0\) with \(2 \leq i \leq N-2\) does not imply nonidentifiability. For example let \(N = 5\), \(\beta_1 = \beta_2 = \beta_3 = \beta_8 = \beta_9 = \beta_{10} = 1\) and \(\beta_4 = \beta_5 = \beta_6 = \beta_7 = 0\). Then \(\{H_j \tilde{u}\}, j = 0, \ldots, N\), with \(\beta_i = \mu_i - \mu_{i-1}\), are linearly independent. Choosing \(\mu_0\) and \(\tilde{a}^M\), we can thus calculate \(\mu_i, i = 1, \ldots, 2N\) and \(\bar{f}\) such that \(\bar{a}^M\) is identifiable and \(\beta_{2i} = \ldots = \beta_{2i+3} = 0\).
Remark 3.2. The conditions of Theorems 3.1 - 3.4 are conditions on the variation of adjacent $\mu_i(^M\tilde{a})$-values. If this variation is sufficient, the identifiability of $^M\tilde{a}$ is guaranteed. The results indicate that the larger the difference between the dimension of the state space approximation and the dimension of the parameter space approximation is, the more likely it is that identifiability of the approximated coefficient holds. In [9] identifiability of a in (1.1) is studied under various conditions on the sign of u_x and u_{xx}. The most general condition implying identifiability of a is $\inf \left(\max \{ |u_x|, u_{xx} \} \right) > 0$. Clearly one can construct examples where this condition is not met but identifiability under approximation, e.g., according to one of the cases 1 - 4, of $^M\tilde{a}$ holds.
4. Two Stability Concepts

In this section we discuss the application of two concepts of stability to the finite dimensional output least squares problem

\[(P^N_M) \text{ minimize } |u^N(a^M) - z|^2 \text{ over } C,\]

where \(C\) is a convex and closed subset of

\[Q_{ad} = \{a^M = \sum_{j=1}^{M} a_j \phi_j : a_j \in \mathbb{R}, a^M(x) \geq \alpha > 0, |a^M|_{H^1} \leq \gamma\},\]

and \(u^N(a^M) = \sum_{i=0}^{N} v_i b_i\), with \(\text{col}(v_0, \ldots, v_N) = \tilde{u}\) satisfying (2.2). The existence of a minimum \(a^*_M\) of \((P^N_M)\) can easily be argued. The reason for introducing the set \(C \subset Q_{ad}\) here is that for the first stability concept, uniqueness of solutions of \((P^N_M)\) is required and this cannot be guaranteed over all of \(Q_{ad}\). Here we consider \(H^1\)-smooth approximating coefficients, some remarks on \(L^\infty\) approximations are given further below. We investigate the continuous dependence of \(a^*_M\) on \(z\) and also on \(Q_{ad}\) when dealing with the second stability concept. For \(C \subset Q_{ad}\) let \(\mathcal{V}(C) = \{u^N(a^M) : a^M \in C\}\) denote the attainable set.

Definition 4.1. [2] The parameter \(a^M\) in (2.2) is called output least squares identifiable (OLSI) by \((P^N_M)\) over \(C \subset Q_{ad}\), if there exists a neighborhood \(\mathcal{V}\) of \(\mathcal{V}(C)\) such that for every \(z \in \mathcal{V}\) the problem \((P^N_M)\) has a unique solution \(a^*_M\) depending continuously on \(z\).

Let \(A_{inj} \subset Q_{ad}\) be such that \(\{H_j \tilde{u}(\tilde{a}^M)\}\) is linearly independent for every \(a^M = \sum_{j=1}^{M} (\tilde{a}^M_j) \phi_j \in A_{inj}\). As examples for such sets we can
take neighborhoods in Q_{ad} of points of identifiability in the sense of section 2.

Theorem 4.1. Let A_{inj} be as just described. Then \tilde{a}^M in (2.2) is OLSI by (P^N_M) over every closed convex subset C of A_{inj}, provided that $\text{diam } C$ is sufficiently small and z is sufficiently close to the $\mathcal{Y}(C)$. More precisely, (P^N_M) has a unique solution a^*_M depending Lipschitz-continuously on z as long as $\text{dist}(z, \mathcal{Y}(C))$ is sufficiently small.

Proof. By ([2], Theorem 4) it suffices to show that $a^M \rightarrow u^N(a^M)$ is twice continuously Fréchet differentiable with $a^M \rightarrow u^N(a^M)$ injective on C. This is equivalent to the existence of continuous first and second order derivatives of $\tilde{a}^M \rightarrow \tilde{u}^N(\tilde{a}^M)$ with \tilde{a}^M such that

\[
\sum_{j=1}^{M} (\tilde{a}^M)^j \phi_j = a^M \in A_{inj} \quad \text{and injectivity of } \tilde{u}_{a^M}(\tilde{a}^M) \quad \text{for every } a^M \in C.
\]

Let $\tilde{u}_{a^M}(\tilde{a}^M, \hat{h}) = \tilde{\eta}$ and $\tilde{u}_{a^M}(\tilde{a}^M, \hat{h}, \hat{k}) = \tilde{\xi}$ be the first, resp. second, derivative in directions \hat{h} and (\hat{h}, \hat{k}). Then

\[
(4.1) \quad \tilde{\eta} = -L^{-1}(\Sigma h_j H_j \tilde{u}(\tilde{a}^M))
\]

and

\[
(4.2) \quad \tilde{\xi} = -L^{-1}(\Sigma k_j H_j \tilde{h} \tilde{u}(\tilde{a}^M) \tilde{\eta} + \Sigma h_j H_j \tilde{u}_{a^M}(\tilde{a}^M; \tilde{k}))
\]

where $L = \Sigma a_j H_j + K$ and $\tilde{\eta} = \text{col}(h_1, \ldots, h_M)$, $\tilde{\eta} = \text{col}(k_1, \ldots, k_M)$, and the continuity assumptions follow. The injectivity of $\tilde{u}_{a^M}(\tilde{a}^M)$ is guaranteed by linear independence of $\{H_j \tilde{u}(\tilde{a}^M)\}$; this ends the proof.

To describe the second notion of stability we consider the case $C = Q^M_{ad}$.
We study continuous dependence of local solutions of \((P^N_M)_w\) on \(w = (z, \alpha, \delta) \in W\), where \(W = H^0 \times \mathbb{R} \times \mathbb{R}\). Here \(W\) is endowed with the Hilbert-space product norm. We always assume \(0 < \alpha < \gamma\), so that \(Q^M_{ad}\) is not empty and solutions of (2.2) and \((P^N_M)_w\) exist.

Definition 4.2. [2] The parameter \(a^M_M\) is called output least squares (OLS)-stable in \(Q^M_{ad}\) at the local solution \(a^M_0\) of \((P^N_M)_w\), \(w^0 \in W\), if there exists a neighborhood \(V(w^0)\) of \(w^0\) in \(W\), a neighborhood \(V(a^0_0)\) of \(a^0\) in \(H^1\) and a constant \(\kappa\), such that for all \(w = (z, \alpha, \gamma) \in V(w^0)\) there exists a local solution \(a^M_w\) of \((P^N_M)_w\) with \(a^M_w \in V(a^0_0)\) and for all local solutions \(a^M_w \in V(a^0_0)\) of \((P^N_M)_w\) we have

\[
|a^M_w - a^M_0|_{H^1} \leq \kappa |w-w^0|_W^{1/2}.
\]

Remark 4.1. In comparing OLSI to OLS-stability we observe the following differences: OLSI requires uniqueness of the solutions of the minimization problem, whereas for OLS-stability, uniqueness is not required, with continuity being checked at each local solution. If OLSI holds, then the solutions depend on the observations in a Lipschitz continuous way, whereas OLS-stability only guarantees Hölder continuous dependence. Further, OLSI requires continuous dependence of the solutions on the observation only, whereas OLS-stability involves continuous dependence on the observations as well as on the admissible set \(Q_{ad}\).
Output least squares stability is proved by techniques that guarantee stability of solutions of abstract optimization problems with respect to perturbations in the problem data, see [2] and the references given there. Let \(A^M = \text{span} \{ \phi_j \}_{j=1}^M \) and let \(F(a^M) \) be the Lagrange functional associated with \((P^N_M)\):

\[
F(a^M) = |u^N(a^M) - z|^2 - \lambda^* g(a^M),
\]

where \(\lambda^* \in C^* \times \mathbb{R} \) and

\[
g: A^M \times W \rightarrow C^* \times \mathbb{R} \text{ is given by}
\]

\[
g(a^M, w) = (a-a^M, |a|^2_{H^1} - \gamma^2), \ w = (z,a,\gamma).
\]

Note that \(a^M \in \mathcal{Q}_{ad}(w) \) if and only if \(g(a^M, w) \in \mathcal{K} = C_- \times \mathbb{R}_- \), with \(C_- \) and \(\mathbb{R}_- \) the natural negative cones in \(C(I) \) and \(\mathbb{R} \). We shall frequently drop the index \(w \) and write \(g(a^M) \) and \(\mathcal{Q}_{ad}^M \) for \(g(a^M, w) \) and \(\mathcal{Q}_{ad}^M(w) \).

Theorem 4.2. Let \(A^M = \text{span} \{ \phi_j \}_{j=1}^M \) be such that it contains the constant functions, let \((z^0, a^0, \gamma^0) = w^0 \in W \) with \(0 < a^0 < \gamma^0 \) and let \(a^M_0 = \sum_{j=1}^M (a^M_0)^j \phi_j \) be a local solution of \((P^N_M)_{0^*}\). If \(\{ H_j \tilde{g}(a^M_0) \}_{j=1}^M \) are linearly independent vectors in \(\mathbb{R}^{N+1} \) and \(|u^N(a^M_0) - z| \) is sufficiently small, then \(a^M \) is OLS-stable in \(\mathcal{Q}_{ad}^M(w^0) \) at the local solution \(a^M_0 \) of \((P^N_M)_{0^*}\).

For the proof of this theorem the following lemma on the regularity of the constraint set \(\mathcal{Q}_{ad}^M \) will be required; its proof is quite similar to that of Lemma 4.2 in [2] but will be included for the sake of completeness.
Lemma 4.1. Let A^M contain the constant functions. Then every $a^M \in Q_{ad}^M$ is a regular point, i.e., $0 \in \text{int}\{g(a^M) + \mathcal{R}(g_{a^M}(a^M)) - \hat{k} \} \subset C \times \mathbb{R}$, where \mathcal{R} denotes the range of the mapping $g_{a^M}(a^M)$.

Proof of Lemma 4.1. We need to show that

$$0 \in \text{int}\{g(a^M) + g_{a^M}(a^M)A^M - C_- \times \mathbb{R}_-\}$$

(4.3)

$$= \text{int}\{\alpha - a^M - h^M + C_+, \ |a^M|_H^1 - \gamma^2 + 2<a^M, h^M>_{H^1} + \mathbb{R}_+: h^M \in A^M\},$$

where we used that $g_{a^M}(a^M) = (-h^M, 2<a^M, h^M>_{H^1})$. Let $(\phi, r) \in C \times \mathbb{R}$ with $|\langle \phi, r \rangle|_{C \times \mathbb{R}} < \delta$ and $\delta > 0$ to be chosen sufficiently small.

Note that $\phi - \min \phi \in C_+$, and $\min \phi \in A^M$. In view of the first component in (4.3) we decompose ϕ as

$$\phi = \alpha - a^M - (\alpha - a^M - \min \phi) + \phi - \min \phi$$

and therefore $\phi \in \alpha - a^M - A^M + C_+$. As for the second component in (4.3) observe that

$$|a^M|_H^1 - \gamma^2 + 2\langle a^M, a^M - \min \phi \rangle_{H^1} = -|a^M|_H^1 + 2\langle a^M, \alpha - \min \phi \rangle_{H^1} - \gamma^2$$

$$\leq \alpha^2 - \gamma^2 + 2\delta |a^M|_H^1.$$

Thus, for δ sufficiently small one can choose $\hat{r} \in \mathbb{R}_+$ such that

$$r = |a^M|_H^1 - \gamma^2 + 2\langle a^M, \alpha - a^M - \min \phi \rangle_{H^1} + \hat{r}$$

and, since (ϕ, r) was arbitrary, a^M is shown to be a regular point.
Proof of Theorem 4.2. We apply results on the stability of abstract optimization problems as summarized in section 3 of [2]. Due to the fact that $a^M + |u^N(a^M) - z|^2$ and $a^M + g(a^M, w')$ are twice continuously at a^M_0 and since the point $a^M_0 \in Q^M_{ad}$ is a regular point, it suffices to establish a lower bound on the second derivative of F at a^M. Let $\eta = u^N_M(a^M_0, h^M)$ and $\xi = u^N_M(a^M_0, h^M, h^M)$ for $h^M \in A^M$. Then

$$F^M_{a^M, a^M(a^M_0, h^M, h^M)} = \langle u^N_M(a^M_0) - z, \xi \rangle_{H^0} + |\eta|^2_{H^0} + 2\lambda |h^M|^2_{H^1}$$

$$\geq -|u^N(a^M_0) - z|_{H^0} |\xi|_{H^0} + |\eta|^2_{H^0} + 2\lambda |h^M|^2_{H^1},$$

where $\lambda \leq 0$ is the Lagrange multiplier associated with the norm constraint. In view of (4.1), (4.2), the finite dimensionality of A^M, and the linear independence of $\{H_j u(a^M_0)\}_{j=1}^M$ it follows that there exist constants c_1 and c_2 such that

$$F^M_{a^M, a^M(a^M_0, h^M, h^M)} \geq -c_1 |u^N(a^M_0) - z|_{H^0} |h^M|^2_{H^1} + c_2 |h^M|^2_{H^1},$$

so that for $|u^N(a^M_0) - z|$ sufficiently small there exists a constant c_3 with

$$F^M_{a^M, a^M(a^M_0, h^M, h^M)} \geq c_3 |h^M|^2_{H^1},$$

from which the result follows [2; Theorem 3.2, 3.3].
Remark 4.2. If $Q_{ad}^M \subset L^\infty$ only and $|a^M|_{H^1} \leq \gamma$ is replaced by

$|a^M|_\infty \leq \gamma$ in the definition of Q_{ad}^M, then again one can show existence of solutions of (P^N_M) and Theorem 4.1 holds with obvious modifications.

The results leading to Theorem 4.2 need yet to be generalized to handle the nondifferentiable L^∞-norm constraint.
5. Numerical Results

In this section we present some results of a numerical experiment to estimate the coefficient a in (1.1) given observations z of u. To solve (1.2) with $C = I$ we consider (2.2) which defines a mapping $\tilde{a}^M + \tilde{\mu}(\tilde{a}^M)$ for $\tilde{a}^M \in A$, and the finite dimensional minimization problems

\[
\minimize_{\tilde{a}^M} \int_0^1 \left(\sum_{i=0}^N u_i(\tilde{a}^M)B_i - z \right)^2 dx.
\]

For our experiments we imposed no constraints on $\tilde{a}^M \in \mathbb{R}^M$, although $\tilde{\mu}(\tilde{a}^M)$ is not well defined for some \tilde{a}^M. The basis functions ϕ_j and B_i were chosen as linear spline functions with equidistant grid on $(0,1)$. As data z we took the values of a solution of (1.1) by choosing the coefficient a and the observation $z(x) = u(x) = x^2(1-x)^2$, and calculating $f = u - (au_x)_x$ from it. Using this f we then compute $\tilde{\mu}$ from (2.2) as we solve (5.1). For the minimization the Newton-Raphson algorithm was used.

In our calculations $N = 10$ represents the number of subintervals used in the linear spline approximation for the solution of (1.1). Thus the dimension of the approximation space for the solution is 11. Further NBI is the number of subintervals of I that determine the linear spline approximation of a; the dimension of the approximation space for a is $\text{NBI} + 1$. A necessary condition for identifiability of \tilde{a}^M is thus $\text{NBI} + 1 \leq 11$, see Corollary 2.1. We show calculations for $\text{NBI} = 4, 5, 6, 8 - 11$, for the choice of $a(x) = 1 + x$. In the first five cases good results are obtained. Note that $\text{NBI} = 5$ and $N = 10$ is a special
case of Theorem 3.4. In the case $NBI = 10$, a^M is not identifiable by Theorem 3.3. Numerically this is reflected by the appearance of oscillations as NBI approaches 10 from below, see the graphs for $NBI = 9, 10, 11$. The start-up value for the minimization routine was chosen as $a^M_0 = 2$. We point out that a different scaling of the axes in the various graphs was utilized. We also show the graphs for $u^N(a^M)$, when $N = 10$ and $NBI = 9, 10, 11$. The graphs for the approximating solutions for $NBI = 4, 5, 6, 8$ are indistinguishable from $NBI = 9$.
FIGURE 5

ID FLOW - NEUMAN B.C.S
A=1+X, U=X*[(1.0-X)**2]
N=10, NBI=9

--- A ESTIMATE
--- A TRUE VALUE

FIGURE 6

ID FLOW - NEUMAN B.C.S
A=1+X, U=X*[(1.0-X)**2]
N=10, NBI=10

--- A ESTIMATE
--- A TRUE VALUE

FIGURE 7

ID FLOW - NEUMAN B.C.S
A=1+X, U=X*[(1.0-X)**2]
N=10, NBI=11

--- A ESTIMATE
--- A TRUE VALUE
FIGURE 8

1D FLOW - NEUMAN B.C.S
A=1+X, U=X*X*(1-X)**2
N=10, NBI=9

FIGURE 9

1D FLOW - NEUMAN B.C.S
A=1+X, U=X*X*(1-X)**2
N=10, NBI=10

FIGURE 10

1D FLOW - NEUMAN B.C.S
A=1+X, U=X*X*(1-X)**2
N=10, NBI=11
References

