THEORY SUPPORT OF PULSED POWER EXPERIMENTS
Volume III—E-Beam Chamber Design

S-CUBED
A Division of Maxwell Laboratories, Inc.
P.O. Box 1620
La Jolla, CA 92038-1620

1 July 1984

Technical Report

CONTRACT No. DNA 001-79-C-0027

Approved for public release; distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B323082466 T99QAXLA00022 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000

85 06 14 034
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, DC 20305-1000, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
The progress made in understanding the physics of x-ray simulators is presented. The work includes sections on diode power flow, plasma stability and dynamics, e-beam test chambers and the DNA BACCARAT program.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Appendix

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>8</td>
</tr>
<tr>
<td>A-2</td>
<td>9</td>
</tr>
<tr>
<td>A-3</td>
<td>10</td>
</tr>
<tr>
<td>A-4</td>
<td>11</td>
</tr>
<tr>
<td>A-5</td>
<td>12</td>
</tr>
<tr>
<td>A-6</td>
<td>13</td>
</tr>
<tr>
<td>A-7</td>
<td>14</td>
</tr>
<tr>
<td>A-8</td>
<td>15</td>
</tr>
<tr>
<td>A-9</td>
<td>16</td>
</tr>
<tr>
<td>A-10</td>
<td>17</td>
</tr>
<tr>
<td>A-11</td>
<td>18</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>A-12</td>
<td>Potential contours after ten minute exposure to 6 keV beams</td>
</tr>
<tr>
<td>A-13</td>
<td>Potential contours after ten minute exposure to 6 keV beams</td>
</tr>
</tbody>
</table>
SECTION 1
E-BEAM TEST CHAMBER DESIGN

In an SXTF-related effort, the charging of a satellite by multiple electron beams in a test chamber was examined (Appendix A1). The NASCAP 3-D computer model was used to simulate the dynamic charging of the test object for up to ten minutes. The effects of the earth's magnetic field were relatively small in the SXTF test chamber because of its relatively modest dimensions. However, the effects of enhanced backscatter and secondary electrons lead to substantial differential charging and electric field reversal.
APPENDIX
MULTIGUN TEST TANK SIMULATION WITH MAGNETIC FIELD
(TOPICAL REPORT SSS-R-81-5028, JUNE 1981)

A-1 INTRODUCTION

The simulation of spacecraft charging in ground based facilities is of importance both for the study of electrostatic discharges and for precharge enhanced SGEMP. Since it is not possible to recreate the high temperature, low density plasmas of a magnetospheric substorm experimentally, the charging environment usually consists of several electron guns which spray a test satellite with charged particles. Important questions are what charging results from these guns and how does it relate to natural spacecraft charging.

In order to answer these questions we have developed a tank multigun capability for the NASA Charging Analyzer Program. NASCAP has already been shown valid for predicting satellite potentials in space and is now able to model up to ten multi-energy electron or ion guns, each of which may arbitrarily be located and point in an arbitrary direction. Also, the angular width of each beam may be specified. One feature of the NASCAP algorithms is that they account for finite Larmor radius effects on the charged particle beams. The new multigun facility in NASCAP is both flexible and fast running.

We have used NASCAP to model the electron irradiation of SCATSAT, a test object built to examine the charging and electromagnetic response of the SCATHA satellite. Experiments are presently being performed at NASA/LeRC during which four 6 keV electron guns are directed at SCATSAT. In a dark isotropic space environment this object would have charged relatively uniformly. However, during the
laboratory experiments there developed differential potentials of over a thousand volts which led to spontaneous discharges. The NASCAP calculations presented here show clearly what led to the differential charging in these experiments: Electrons obliquely incident on surfaces have high secondary electron yields. This new NASCAP capability may be used to explore questions of optimal beam placement, number and species of particle sources, and photoeffects for optimal design of laboratory simulations of spacecraft charging.
The geometry considered is a one meter electrically floating octagonal object in a 3.2 m cubical tank. The object was covered with 0.005 inch thick kapton, and was illuminated by four monoenergetic flood guns. Each gun emitted 5 mA of electrons distributed as $\cos(\pi \theta/2 \theta_0)$, where θ is the angle from the gun axis and θ_0 was set to 30 degrees. The magnetic field, when applied, was parallel to two of the gun axes and normal to the other two.
Figure A-1. Geometry of a one meter electrically floating octagonal object in a 3.2 m cubical tank.
<table>
<thead>
<tr>
<th>Beam Energy</th>
<th>10 keV</th>
<th>10 keV</th>
<th>6 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (gauss)</td>
<td>0</td>
<td>(0.,-3.3)</td>
<td>(0.,-3.3)</td>
</tr>
<tr>
<td>Cyclotron Radius</td>
<td>7.9 m</td>
<td>7.9 m</td>
<td>6.2 m</td>
</tr>
<tr>
<td>Distance from Gun to Nearest Surface</td>
<td>1.9 m</td>
<td>1.9 m</td>
<td>1.9 m</td>
</tr>
<tr>
<td>Peak Potential: O1T Surface</td>
<td>-8540</td>
<td>-8540</td>
<td>-4790</td>
</tr>
<tr>
<td>360 sec at x =</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak Potential: O1I Surface</td>
<td>-8540</td>
<td>-8540</td>
<td>-4700</td>
</tr>
<tr>
<td>360 sec at x =</td>
<td>0</td>
<td>0.10</td>
<td>0</td>
</tr>
<tr>
<td>Peak Potential: O1O Surface</td>
<td>-6260</td>
<td>-6340</td>
<td>-2920</td>
</tr>
<tr>
<td>360 sec at x =</td>
<td>0</td>
<td>0.35</td>
<td>0.45</td>
</tr>
<tr>
<td>Minimum Potential: O1O Surface</td>
<td>-6200</td>
<td>-5950</td>
<td>-2580</td>
</tr>
<tr>
<td>360 sec at x =</td>
<td>±0.45</td>
<td>-0.45</td>
<td>-0.45</td>
</tr>
</tbody>
</table>

Figure A-2. The three simulations performed were 10 keV beams with and without magnetic field, and 6 keV beams with magnetic field. In all cases, differential charging in excess of 2 kV developed within six minutes. As the gun-object distance was a modest fraction of a cyclotron radius, magnetic field effects, though definitely noticeable, were correspondingly modest.
Figure A-3. Potential for two cells near the spacecraft belly, exposed to 10 keV electrons. The object charges uniformly to about -7200 V in about one second. Over the next several minutes the surfaces receiving normally incident electrons continue to charge negatively, while those receiving obliquely incident electrons charge positively due to increased secondary emission. With exposure to 6 keV beams, the plateau voltage was -3600 volts. Magnetic fields, for the strength and geometry considered here, do not greatly alter this behavior.
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Aerospace Corp
ATTN: Library Acquisition M1/199
ATTN: V. Josephson
ATTN: S. Bower

BDM Corp
ATTN: L. Shaefier
ATTN: L. Hoefl

BDM Corp
ATTN: Corporate Lib

Berkeley Rsch Associates, Inc
ATTN: E. Alcaraz

Boeing Co
ATTN: Aerospace Library

Dekwood Corp
ATTN: Tech Lib for D. Pirio

ES&G Wash Analytical Svc Ctr, Inc
ATTN: Library

FPS Technologies, Inc
ATTN: P. Sabbard

General Electric Co
ATTN: J. Peden
ATTN: W. O'Donnell

IBM Corp
ATTN: P. Mertz
ATTN: G. Rusie

JAYCO
ATTN: E. Wenaas

JAYCO
ATTN: L. Rogers

JAYCO
ATTN: R. Sullivan
ATTN: E. Alcaraz

Kaman Sciences Corp
ATTN: S. Face

Kaman Sciences Corp
ATTN: E. Conrad

Kaman Tempo
ATTN: DASIAC

Kaman Tempo
ATTN: DASIAC

Lockheed Missiles & Space Co, Inc
ATTN: S. Taihuty

Lockheed Missiles & Space Co, Inc
ATTN: L. Chase

Martin Marietta Denver Aerospace
ATTN: H. Peel

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Maxwell Labs, Inc
ATTN: A. Kolb
ATTN: D. Tanimoto
ATTN: A. Miller
ATTN: O. Cole

McDonnell Douglas Corp
ATTN: S. Schneider

Mission Research Corp
ATTN: C. Longmire

Mission Research Corp
ATTN: B. Godfrey

Mission Research Corp
ATTN: V. Van Lint

Pacific-Sierra Research Corp
ATTN: H. Brode, Chairman SAGE
ATTN: L. Schiessinger

Physics International Co
ATTN: C. Stallings
ATTN: C. Gilman
ATTN: G. Frazier

Pulse Sciences, Inc
ATTN: L. Smith
ATTN: P. Spence
ATTN: S. Putnam

R&D Associates
ATTN: C. Knowles
ATTN: A. Latter
ATTN: P. Haas

R&D Associates
ATTN: P. Turchi

Rand Corp
ATTN: P. Davis

Rand Corp
ATTN: B. Bennett

S-CUBED
ATTN: A. Wilson
ATTN: D. Parks
ATTN: E. Waisman
ATTN: M. Friedman
ATTN: P. Steen
ATTN: M. Chapman

Science Applications Intl Corp
ATTN: K. Sites

Science Applications Intl Corp
ATTN: W. Chadsey
ATTN: M. Schmidt

TRW Electronics & Defense Sector
ATTN: D. Kingsland
ATTN: D. Clement
ATTN: Tech Info Ctr
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Asst to the Secy of Defense, Atomic Energy
ATTN: Exec Asst
ATTN: J. Rubell

Defense Intelligence Agency
ATTN: DT-IB, R. Rubenstein

Defense Nuclear Agency
ATTN: RAAE
ATTN: STNA
ATTN: RAE
2 cy ATTN: RAEV
4 cy ATTN: STTI/CA

Defense Tech Info Ctr
12 cy ATTN: DD

Field Command/DNA, Det I
Lawrence Livermore National Lab
ATTN: FC-I

Field Command, Defense Nuclear Agency
ATTN: FCPR
ATTN: FCIT
ATTN: FCTE
ATTN: FCTT, W. Summa

Under Secy of Def for Rsch & Engrg
ATTN: Strat & Space Sys (OS)

DEPARTMENT OF THE ARMY

Harry Diamond Laboratories
ATTN: DELHD-NW-P, 20240
ATTN: DELHD-NW-RA, 22100
ATTN: DELHD-NW-RI, Kervis, 22900
ATTN: DELHD-TA-L, 81100, Tech Lib

US Army Nuclear & Chemical Agency
ATTN: Library

US Army Test and Evaluation Command
ATTN: DRSTE-CT-C

USA Missile Command
ATTN: Documents Section

DEPARTMENT OF THE NAVY

Naval Research Laboratory
ATTN: Code 2000, J. Brown
ATTN: Code 4720, J. Davis
ATTN: Code 4770, S. Issakov
ATTN: Code 4770, G. Cooperstein
ATTN: Code 4701, I. Vitkovitsky

Naval Surface Weapons Ctr
ATTN: Code 940
ATTN: Code 131
ATTN: Code 540

Naval Weapons Ctr
ATTN: Code 343, FA642, Tech Svcs

DEPARTMENT OF THE AIR FORCE

Air Force Weapons Laboratory
ATTN: CA
ATTN: NT
ATTN: SUL
ATTN: NYP

Ballistic Missile Office
ATTN: ENSN

Deputy Chief of Staff, Research, Dev, & Acq
ATTN: AF/ROQI

Space Division
ATTN: XR, Plans
ATTN: YEZ
ATTN: YGJ
ATTN: YKF
ATTN: YKM
ATTN: YKS, P. Stadler
ATTN: YNW

Strategic Air Command
ATTN: DOTP
ATTN: XPFS

DEPARTMENT OF ENERGY

Office of Military Application, OTN
ATTN: Ofc of Inert Fusion, T. Godlove
ATTN: Ofc of Inert Fusion, C. Hilland
ATTN: Ofc of Inert Fusion, S. Kahalas

OTHER GOVERNMENT AGENCY

Central Intelligence Agency
ATTN: OSWR/NEQ

DEPARTMENT OF ENERGY CONTRACTORS

University of California
Lawrence Livermore National Lab
ATTN: L-47, L. Wouters
ATTN: L-153
ATTN: L-13, D. Meeker
ATTN: L-545, J. Nuckolls
ATTN: Technical Info Dept Library
ATTN: W. Pickles, L-401

Los Alamos National Laboratory
ATTN: MS222, J. Brownell

Sandia National Laboratories
ATTN: Tech Lib 3141
ATTN: G. Yonas
ATTN: G. Kuswa, Org 5240
ATTN: M. Clauser, Org 5241
ATTN: Org 9336, D. Allen
ATTN: J. Powell

Advanced Research & Applications Corp
ATTN: R. Amistead

23
NASCAP now has the computational capability for modeling this type of experiment. This capability should be used for facility design, experimental design, and experiment analysis.
A-3 CONCLUSIONS

Experimental simulation of spacecraft charging in a three-dimensional, multigun facility is an extremely complex process. Even for the relatively simple geometry considered in this report, the combined effects of beam spreading, angular dependence of emission coefficient, magnetic deflection, and potential barrier formation produce effects not anticipated in the experimental design, and require three-dimensional analysis. The added complexities of realistic spacecraft and more elaborate simulation facilities further underline the need for a computational modeling capability.

The magnetic field effects seen in these calculations, though visible, are surprisingly small. This may not be the case in a facility which is an order of magnitude larger, unless the earth's magnetic field is substantially attenuated. However, the reduction by a factor of three or more is probably sufficient, and reduction by an order of magnitude not necessary.

The most dramatic effects seen here are those caused by the anisotropy of the beam environment. When we take into account the enhanced backscatter and secondary electron production for obliquely incident electrons, we see substantial differential charging and large regions of electric field reversal. These conditions will lead to surface flashovers and greatly enhanced SGEMP. While here this charge state is attributable to beam anisotropy, the discharges observed experimentally are similar to those seen on board spacecraft.
Figure A-13. Potential contours after ten minute exposure to 6 keV beams.
Figure A-12. Potential contours after ten minute exposure to 6 keV beams. Regions of very low external electric field near regions of high differential charging are apparent. An object charged in this manner will exhibit strong SGEMP enhancement with high probability of synergistic surface flashover.
Figure A-11. Electric field for two neighboring cells near the object belly. After six minutes of exposure there is nearly two kilovolts of differential charging, and the electric field near the more positive cell changes sign. Its secondary electrons are now trapped. This is a likely region for a surface flashover discharge, either spontaneous or synergistically to an x-ray burst.
Figure A-10. Resolution of paradox presented in previous figure. The dashed curve presents the angle (relative to gun axis) at which electrons must leave the gun to hit a given point on the object, taking into account magnetic deflection. The node of this curve, representing the densest part of the beam, is at $x < 0$. This is the main determinant of the early time flux curve, since secondary emission is fairly small. The solid curve represents the angle of incidence of electrons on the object surface. Its node (at $x > 0$) represents minimum secondary emission. The solid curve is the main determinant of the final fluxes and potentials.
Net Flux at $t = 0.029$ Seconds

Figure A-9. Fluxes as a function of height for the 10 keV cases at short time. This figure presents an apparent paradox, as the flux anisotropy is in the opposite sense from the final potentials.
Figure A-8. Side view of potential contours for the 6 keV case. The contours have the symmetry of the magnetic field.
Figure A-7. Final (6 minute exposure) potentials for the 6 keV case. For lower energy the magnetic field has a greater effect.
Figure A-6. Final (6 minute exposure) potentials for the 10 keV cases as a function of distance from the plane of the guns. The anisotropy caused by the magnetic field is apparent.
Figure A-5. Same as previous plot, but for the 6 keV case. Here we have drawn two curves to illustrate the range of fluxes on the 011 face.
Figure A-4. Net flux to faces indicated versus time for the 10 keV runs, illustrating the same points as the previous potential plot. Note the reduction in differential flux as equilibrium is approached.
END

FILMED

10-85

DTIC