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A Projected Newton Barricr Method 1

1. Introduction

Interest in linear programming methods arises in at least two different contexts: theoretical and
practical. The long-established simplex method, developed by G. B. Dantsig in the late 1940’s,
has been known from the beginning to be of combinatorial complexity in the worst case. However,
in practice it tends to require a number of iterations that is approximately linear in the problem
dimension. Furthermore, a typical iteration of the simplex method involves relatively little work.
After computing an initial factorization of a square matrix (the basis), each subsequent simplex
iteration requires only a rank-one update of this square matrix. Although linear programs are
often very large, the constraint matrix is normally very sparse. Sparse-matrix techniques have
developed to the point where the factorization and updates required in the simplex method can be
performed not only rapidly, but also with assured numerical stability (see the survey by Gill et al.,
1984). From a practical viewpoint, these two features — a typically linear number of iterations,
and fast methods for performing each iteration — imply that the simplex method is an effective
and reliable algorithm for linear programming, despite its seemingly unfavorable complexity.

Many researchers, beginning with Dantzig himself, have observed the seemingly unsatisfac-
tory feature that the simplex method traverses the boundary of the feasible region. From the
outset, attempts have been made to develop practical linear programming methods that cross
the interior of the feasible region — for example, von Neumann (1947), Hoffman et al. (1953),
Tompkins (1955, 1957) and Frisch (1957). Such methods have sometimes involved the application
of nonlinear techniques to linear programs. However, none of these methods has previously been
claimed, even by its developers, to be competitive in speed with the simplex method for general
linear programs. '

On the theoretical side, researchers attempted for many years to develop a linear program-
ming algorithm with only polynomial complexity. In 1979, to the accompaniment of wide pub-
licity, this issue was resolved when Khachiyan (1979) presented a worst-case polynomial-time
method based on a nonlinear geometry of shrinking ellipsoids. Although initially it was thought
that the ellipsoid methods might be as fast in practice as the simplex method, these hopes have
not been realized. Broadly speaking, there are two major difficulties: first, the number of itera-
tions tends to be very large; second, the computation associated with each iteration is much more
costly than a simplex iteration because sparse-matrix techniques are not applicable.

Within the past year, interest in linear programming has been intensified by the publication
(Karmarkar, 1984) and discussion of a linear programming algorithm that is not only polynomial
in complexity, but also is claimed to be much faster than the simplex method for practical
problems.

In Section 2, we first examine the well known barrier-function approach to solving optimiza-
tion problems with inequality constraints, and derive a representation for the Newton search
direction associated with the subproblem. In Section 3, we show a formal equivalence between
the Newton search direction and the direction associated with Karmarkar’s (1984) algorithm.
Section 4 describes a complete interior-point method for linear programming based on the barrier
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I
‘Z transformation, and Section 5§ gives some numerical results obtained with a preliminary imple-

mentation of that method. The implications of these results and directions for future research

"~ are discussed in Section 6.

'~

A 1.3. Notation. The term projective method will denote the algorithm given by Karmarkar

_.: (1984) for the linear program (3.1); see below. The term barrier method will often be used as an
abbreviation for projected Newton barrier method. The vector norm | - || will always denote the

5 Euclidean norm ||v|jz = (v7v)}/3.

" 2. A Barrier-Function Approach

3.1. Applying a barrier transformation to a linear program. Barrier-function methods
-. treat inequality constraints by creating a barrier function, which is a combination of the original
, objective function and a weighted sum of functions with a positive singularity at the constraint
boundary. (Many barrier functions have been proposed; we consider only the logarithmic barrier

* function, first suggested by Frisch, 1955.) As the weight assigned to the singularities approaches
- zero, the minimum of the barrier function approaches the minimum of the original constrained
problem. Barrier-function methods require a strictly feasible starting point for each minimization,
':j and generate a sequence of strictly feasible iterates. (The definitive work on barrier functions
’ remains Fiacco and McCormick, 1968; overviews are given by Fletcher, 1981, and Gill, Muirray
; and Wright, 1981.)

: Consider applying a barrier-function method to the following linear program:

_k minimize Tz

N 2ER" (2.1)

subject to Az =), 220,

where A is an m x n matrix with m < n. The subproblem to be solved within a barrier-function
. method is:

. minimize F(z)=cTz - u’z_:llnz; 2.2)

subject to Az =),

where the scalar u (p > 0) is known as the barrier parameter and is specified for each subproblem.
The equality constraints cannot be treated by a barrier transformation, and thus are handled
directly. If 2 (u) is the solution of (2.2), then 2’ (u) — z as 4 — 0, where 2 is a solution of (2.1)
(see, e.g., Fiacco and McCormick, 1968). Very strong order relations can be derived concerning

z (u) and Iy (p) (see, e.g., Miflin, 1972a, b; Jittorntrum, 1978; Jittorntrum and Osborne, 1978).

R OO O
A
- PEPRFSESI NI

. In particular, when (2.1) is nondegenerate,

g Ia*(s) = 21l = O(w) (2.30)
X for sufficiently small 4. When (2.1) is degenerate, the corresponding relation is

I () = £'l| = O(/)- (2.38)

R RNR AR
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A Projected Newton Barrier Method s

2.2. Solution of the subproblem. Given a linearly constrained problem of the form
minimize F(z) subject to Az =), (2.4)

a standard approach is to use a feasible-point descent method (see, e.g., Gill, Murray and Wright,
1981). The current iterate z always satisfies Az = b, and the next iterate Z is defined as

Z=2z+ap, (2.5)

where p is an n-vector (the search direction), and a is a positive scalar (the steplength). The
computation of p and @ must ensure that Az = b and F(z) < F(z).

The Newton search direction associated with (2.4) is defined as the step to the minimum of
the quadratic approximation to F(z) derived from the local Taylor series, subject to retaining
feasibility. Thus, the Newton search direction is the solution of the following quadratic program:

minimize ¢7p + ;"TH" (2.6)
subject to Ap =0,

where g = VF(z) and H = V2F(z). If x is the vector of Lagrange multipliers for the constraints
in (2.6), then the required solution satisfies the linear system

H AT\ (-p ’
(A o)(r)'(O)‘ @1
Note that x converges to the Lagrange multipliers for the constraints Az = b in the original
problem (2.4).

2.3. The projected Newton search direction. When F(z) is the barrier function in (2.2),
its derivatives are

g(z)=c—uD"'¢ and H(z)=puD?,

where
D =diag(z;), 5=1,...,n, (2.8)

and e = (1,1,...,1)7. Note that g and H are well defined only if z; # 0 for all 5.

Let pp (the projected Newton barrier direction) denote the Newton search direction defined
by (2.6) when F is the barrier function of (2.2). The associated Lagrange multipliers will be
denoted by xp. Since H(z) is positive definite when z > 0, p, is finite and unique, and is a
descent direction for F(z), i.e., (¢ — pD1e)Tp, < 0.

It follows from (2.7) that p, and x, satisfy the equation

(T @A) e
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4 A Projected Newton Barrier Method

Rewriting (2.9) in terms of a vector r, defined by Dry = —pup,, we see that r, and r, satisfy

(AID D:r) (::) - (m;w)- (2.10)

It follows that x, is the solution and ry the optimal residual of the following linear least-squares

problem:
minimise [|De - pe - DATx]. (2.11)

The projected Newton barrier direction is then
P = -(l/“)D'.o (2.12)

For a given positive s, Newton’s method will eventually reach a domain in which unit steps
along the directions p, will be feasible. The iterates can then be expected to converge quadrat-
ically. In general, the smaller p, the smaller the attractive domain. The algorithm remains well
defined as p tends to zero, and the limiting case can be safely simulated (in practice) by using a
very small value such as p = 1015, .

Note that feasible-direction methods are independent of the scaling of the search direction,
if the steplength algorithm is chosen appropriately. We could therefore define the barrier search
direction to be

ps =—Drs (2.13)

for any p > 0. The ideal Newton step would then be @ = 1/a.
The barrier search direction (2.13) with s = 0 is used in an algorithm proposed by Vanderbei,
Meketon and Freedman (1985). We see that such an algorithm has no domain of quadratic

convergence.

2.4. Upper bounds. The barrier transformation and the associated Newton search direction
can also be defined for linear programs with upper and lower bounds on the variables, of the
form:
minimize ¢Tz
sER"
subject to Az =), (<z<w

The subproblem analogous to (2.2) is

minimize Tz - pz.:ln(z,- -4) - pz.:ln(u, - ;)
sER" j=1 Jrt
subject to Az = ).

The Hessian of the associated barrier function will be positive definite only if at least one of ¢;
or u; is finite for every 5. In this case, the least-squares problem analogous to (2.11) is

minimise iDe — pDe - DATx].
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A Projected Newton Barrier Method 5

Here, the matrices D and D are defined by D = diag(§;) and D = diag(5;), where
6 =1/(1/a3 +1/3)} and §; = 8;(1/s; - 1/t)),

with s, z;—¢; and ¢; = u;—z;. For simplicity, the remainder of the discussion will assume that
the bounds are of the form in (2.1), i.e., 0 < 2; < 0o, except for the artificial variable discussed
in Section 4.2.

8. Relationship with Karmarkar’s Projective Method

In this section, we show the connection between the barrier and projective methods. We assume
that the reader is familiar with the projective method; a good description is given in Todd and
Burrell (1985).

8.1. Summary of the projective method. In the projective method, the linear program is
assumed to be of the special form

minimize ¢’z
sER" (3.1)

subject to Cz=0, e¢Tz=1, z>0.

Let Zx denote a solution of (3.1). It is also assumed that
¢T2x =0, (3.2)

and that Ce = 0. (These assumptions can always be assured by transforming the problem.)
The optimality conditions for (3.1) imply that

e=CThc+ed, +n, (3.3)

where 7 is the Lagrange multiplier vector for the bound constraints of (3.1). The complementarity
conditions at z imply that
Zmi=0, j=1,...,n, (3.4)
where z’;' denotes the j-th component of zx. Taking the inner product of ¢ and = and using
(3.2)-(3.4), we obtain A, eTzy = 0. Since ¢Tzy = 1, it follows that A, = 0.
Any strictly positive diagonal matrix D defines the following projective transformations,
which relate any strictly feasible point z and the transformed point 2':

1 1
eTD-1z eTDz!
In the projective method, given an iterate z, D is defined as diag(z;,...,2,). (Note that D is the
same as the diagonal matrix (2.8) associated with the barrier method, and that De = £.) The
next iterate in the transformed space is given by

2 = D'z, =z=

D<'. (35)

2 =2 -a'ry, : (3.6)

e

---------
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A Projected Newion Barrier Method

where ry = De — DCTx, — e is the optimal residual of the linear least-squares problem
. x
minimize |1De — (DCT e) (‘) I (3.7

The steplength a' in (3.6) is chosen to ensure strict feasibility of 2’ as well as descent in the
transformed “potential function” (see Karmarkar, 1984, for details).

The new iterate 2, in the original parameter space is obtained by applying the transformation
(3.5) to #, so that

1

2 = eTD(z' - a'r.)D

(2' - a'ry) = 9(z - aDry),

where 7 is chosen to make ¢T2, = 1.

8.2. Properties of the projective method. Let x be defined as the solution of the least-
squares problem
mini:nize |De - DCTx|,

and let
flc=¢— Cr’c:

be = zTDng.
For reference, we state some properties of various quantities appearing in the projective method.

Lemma 8.1. The solution of (3.7) is xx = xc and ¢ = cTz/n.
Lemma 3.2. In the projective method,
rx = Dnc - ée,
@ = na',
v =1/(1+d(¢ - uc)),
and the new iterate may be written as
Px = Bz ~ D?nc,
2‘ =z+ a."p‘.

3.3. Relationship with the barrier search direction. When the barrier method is applied
to problem (3.1), we obtain x, and # as the solution of the least-squares problem

mix:i'l}ixe |De — pe - D(CT e)(:) I, (3.8)

and take

rs = De — pe — DCTxy — 0D,
ps = —(1/p)Dr,,
!. =2+ apy,
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A Projected Newton Barrier Method 7

for some p and a. We assume that the matrices ( DCT ¢) and (CT ¢) have full rank, so that
the solutions of (3.7) and (3.8) are unique.

Lemma 3.3. If the barrier parameter is chosen to be p = p., then 8§ =0 and x5 = 7.

Lemma 8.4. If up = pc, then

ra = Dnc - pce,
ps = (1/pc)(pcz — D*nc),
‘. =2 + ap..

Comparing Lemmas 3.2 and 3.4, the main result now follows.

Theorem 3.1. Suppose the projective method and the barrier method are applied to problem
(3.1). If the barrier parameter is 4 = pc, the search directions ps and py are parallel. Further,
if the steplengths satisfy a = avypc, the iterates 2, and Z, are identical.

Theorem 3.1 is an existence result, showing that a special case of the barrier method would follow
the same path as the projective method. This does not mean that the barrier method should
be specialized. For example, the value p = pc is admissible in the barrier method only if it is
positive. As it happens, pc tends to zero and is likely to be positive in a neighborhood of the
solution. It could therefore be a satisfactory choice as the solution is approached.

Similarly, whatever the choice of u, as the barrier method converges to a solution of the
original problem, # must converge to A., which is zero. This is consistent with the choice g = p,
which gives # = 0 directly.

Vf'-'- -( '.' - SRRy AN y ) VA WP IS A T T T
N N O




N Al

8 ' A Projected Newton Barrier Method

4. A Projected Newton Barrier Algorithm

In this section, we give details of the barrier algorithm used to obtain the numerical results
of Section 5. Each iteration is of the form 2 = z + ap (2.5), where the search direction is
the barrier direction pp defined by (2.11)-(2.12), and the barrier parameter may be changed at
every iteration. Any tolerances described are intended to be suitable for machines whose relative
precision is about 10715,

Alternative approaches to certain parts of the algorithm are discussed in Section 6.

4.1. The main steps. At the start of each iteration, the quantities 4, z, * and n are known,
where 4 > 0, z > 0, Az = b, and = ¢c— ATx. For computational reasons we compute a correction
' to x at each stage, since a good estimate is available from the previous iteration. The main steps
of the iteration then take the following form.

. Define D = diag(z;) and compute r = Dn — pe.

1
2. Terminate if s and ||r|| are sufficiently small.

3. If appropriate, reduce u and recompute r = Dn — pe.
4. Solve the least-squares problem

minimize Ir — DAT éx|. (4.1)

5. Update x — x + 6x, n ~— n — AT 5x, and set r = Dn — pe, p = —(1/p)Dr.
6. Find a,, the maximum step a such that z + ap > 0.

7. Determine a steplength a € (0, @) at which the barrier function F(z + ap) is suitably less
than F(z).

8. Update z «— z + ap.

All iterates satisfy Az = b, z > 0, and the vectors x and n approximate the dual variables and
reduced costs for the original linear program.

The vector r serves two purposes. In step 4, r is the right-hand side for the least-squares
problem, and in step 5 it becomes the residual vector at the least-squares solution. In either
case, r — 0 as convergence occurs, so that Dy — pe. Hence, the reduced-cost estimates should
ultimately satisfy n > 0, as one might expect.

4.2. The feasibility phase. In order to apply the barrier algorithm to (2.1), a strictly feasible
starting point is necessary. Such a point may be found by the following “phase 1° procedure
in which a barrier method is applied to a modified linear program. For any given initial point
Zg > 0, we define §os = b ~ Azg with ||s|| = 1, and solve the modified linear program

.’.".u ¢

subject to (A a)(:)=6, 220, £20,

(4.2)
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A Projected Newton Barrier Method 9

using the feasible starting point zo > 0, §o = ||b — Azo||. (Note that, even if A is sparse, the
additional column s in (4.2) will in general be dense.) In our experiments we have used z¢ = ||bfe.

When ¢ = 0, a suitable point has been found. Since the barrier transformation will not
allow £ to reach the desired value of zero, £ must be treated differently from the other variables
in solving (4.1) with a barrier algorithm. In our implementation, the search direction p and the
maximum step a are computed as if the variable { were subject to the bound § > —1. If the step
a causes { to become negative, an appropriate shorter step is taken and phase 1 is terminated.
The original linear program is presumed to be infeasible if the final § is positive for a sufficiently
small value of u.

As an alternative, we note that the convergence of the barrier method appears to be moder-
ately insensitive to the choice of linear objective function. This suggests a single-phase algorithm
in which an objective function of the form wcTz + £ is used in (4.2), for some positive value of
the scalar w. When ¢ reaches zero, it can thereafter be excluded from the problem. If a single
value of w can be retained at every iteration, only a slight change in the definition of the linear
program is required after a feasible point is found. Some preliminary results with w fixed at
0.01/|l¢|l seem promising; see Section 5. In general, a sequence of decreasing values of w may be
needed to ensure that a feasible point is always obtained if one exists.

4.3. Solution of the least-squares subproblems. For problems of even moderate size, the
time required to perform an iteration will be dominated by solution of the least-squares problem
(4.1). The widespread interest in interior-point methods has arisen because of their reported speed
on large-scale linear programs. Consequently, problem (4.1) must be solved when A is large and
sparse. Fortunately, methods for sparse least-squares problems have improved dramatically in
the past decade. (For a recent survey, see Heath, 1984.)

An obvious approach to minimizing ||r — DAT x| is to solve the associated normal equations

AD?AT6x = ADr (4.3)

using the Cholesky factorization AD2AT = RTR with R upper triangular. Reliable software
exists for factorizing symmetric definite systems, notably SPARSPAK-A (George and Liu, 1981;
George and Ng, 1984). If the original LP (2.1) is non-degenerate, the matrix AD2AT will be non-
singular even at the solution. However, for a degenerate problem, AD3AT becomes increasingly
ill-conditioned as the solution is approached, and the accuracy of the computed version of AD3AT
correspondingly deteriorates. Furthermore, any dense columns in A (such as s in phase 1) degrade
the sparsity of R.

To alleviate these difficulties, we have used a “hybrid” method in which the least-squares
problems are solved by a conjugate-gradient method (LSQR; Paige and Saunders, 1982) with a
triangular preconditioner R. Thus, an iterative method is applied to

minimize lr — (DATR™Y)z|,

...................................................................................
.....................................................................
-----------

...........................................
...................
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10 A Projected Newton Barrier Method

and the correction éx is recovered by solving R éx = 2.
The preconditioner R comes from the Cholesky factorization of a sparse matrix that approx-
imates AD?A”. Thus,
AD?AT & AD?AT = RR, (4.5)

where A and R are obtained as follows.

1. Before beginning the barrier algorithm, a preliminary row permutation is obtained from the
symbolic factorization of a matrix AAT, where A is A with certain columns replaced by zero.
For the results of Section 5, we excluded the artificial vector s in (4.2) and any columns
of A containing 50 or more nonzeros. Subroutines Gengmd and Smbfct of George and Liu
(1981) were then used to obtain a minimum-degree ordering P and to set up appropriate
data structures for the subsequent numerical factorizations.

2. At each iteration of the barrier algorithm, further columns and/or rows of A may be replaced
by zero: columns for which z; < 10™%, and rows that have been marked for exclusion during
earlier iterations. Subroutine Gsfct of George and Liu (1981) is then used to obtain the
Cholesky factorization '

PAD?ATPT = Uy, U upper triangular,

with the proviso that if a diagonal element of U satisfies u?; < 10~12 then the s-th row of
U is replaced by T, and the i-th row of PA is marked for exclusion in later iterations. The

preconditioner for (4.4) is then R = UP.

3. After each iteration, any variables satisfying z; < 10~1? are changed to zero for the remaining
iterations. This (conservative) test is unlikely to remove the “wrong” variables from the
problem, but it allows some economy in computing R and solving the least-squares problems.

The performance of LSQR is strongly affected by the quality of the preconditioner, and by
the specified convergence tolerance ATOL (see Paige and Saunders, 1982). With the present
implementation, we have AD3AT = RTR + E; + E;, where E, has low rank and || E;|| is small;
the value of ATOL is taken as 10~!2. In this situation, LSQR typically requires only one or two
iterations to achieve acceptable accuracy in phase 2, and only two or three iterations in phase 1.
There is scope in future work for degrading the approximation (4.5) to obtain a sparser R
more quickly, at the expense of further iterations in LSQR. In fact, Gay (1985) has reported
considerable success in the analogous task of preconditioning the symmetric conjugate-gradient
method in order to solve the normal equations (4.3). We discuss this further in Section 6.1.

4.4. Determination of the steplength. The steplength a in (2.5) is intended to ensure a
reduction in the barrier function F(z) in (2.2) at every iteration. Let f(a) denote F(z + ap),
treated as a function of a, and let a, be the largest positive feasible step along p. When
P = pa, f'(0) < O; by construction of a positive singularity at the boundary of the feasible
region, f'(an) = +00. Thus, there must exist a point @ in the interval (0,a,) such that
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A Projected Newton Barrier Method 11

f'(a’) = 0. Because of the special form of f, o is unique and is the univariate minimizer of f(c)
for a € [0, an].

In our algorithm, a is an approximation to a zero of the function f'(a). In order to obtain a
“sufficient decrease” in F (in the sense of Ortega and Rheinboldt, 1970), an acceptable a is any
member of the set

r={a:|f'(a)l<-BS'(0)},

where 8 is a number satisfying 0 < # < 1. (The smaller the value of 8, the closer the approxi-
mation of a to a zero of f'.)

The computation of an acceptable steplength involves an iterative procedure for finding
a zero of f'. Many efficient algorithms have been developed for finding the zero of a general
univariate function (see, e.g., Brent, 1973), based on iterative approximation by a low-order
polynomial. However, such methods tend to perform poorly in the presence of singularities.
In order to overcome this difficulty, special steplength algorithms have been devised for the
logarithmic barrier function (e.g., Fletcher and McCann, 1969; Murray and Wright, 1976). These
special procedures are based on approximating f(a) by a function with a similar singularity.

Given an interval I such that & € 7 and I’ C I, a new interval I (I C I) is generated using
a,, the zero of a simple monotonic function ¢(a) that approximates f'(a). Let a, € I be the
current best estimate of @ . Define the function ¢(a) to be

T2

¢(a)='h+an-a’

where the coefficients v; and v, are chosen such that ¢(a,) = f'(ap) and ¢'(ap) = f"(as). The
new estimate of the zero of f'(a) is then given by

a, = ay +72/M.

Using this prescription, a sequence of intervals {I;} is generated such that Iy = [0,a.],
I; c Ij_y and T C I;. (For additional details, see Murray and Wright, 1976.) The first point a,
that lies in T is taken as a.

In practice, we find that a close approximation to the minimum of F(z+ ap) can be obtained
after very few estimates a, (typically 1, 2 or 3). However, the minimum is usually very close to
a,. Thus, if an accurate search is performed, at least one variable will become very near to its
bound. Sometimes this may be beneficial, but in phase 1 particularly, the danger exists that the
optimal value of that variable could be well away from its bound. Although convergence is still
assured, the rate of convergence may temporarily be poor.

To guard against this, we set 8 = 0.999 and use 0.9a,, as an initial step, which is normally
accepted. If necessary, we compute the sequence of estimates a, as described.

4.5. Choice of the barrier parameter. In a “classical® barrier-function method (e.g., as
described in Fiacco and McCormick, 1968), the usual procedure is to choose an initial value of p,
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12 A Projected Newton Barrier Method

solve the subproblem (2.2), and then decrease u (say, by multiplying by a constant). In order for
2 () to converge to Z , it is essential that s — 0. If the barrier search direction and a steplength
as defined in Section 4.4 are used to solve (2.2) with a fixed u, standard proofs for descent methods
(see, e.g., Ortega and Rheinboldt, 1970) can be applied to guarantee convergence to z (s). When
(2.1) is non-degenerate and p is “sufficiently small® (say, p = puia) it follows from (2.3a) that
the final iterate of the barrier method will approximate the solution of the linear program (2.1) to
within the accuracy specified by pmin for a non-degenerate problem. If the problem is degenerate,
(2.3b) implies that the solution will be less accurate.

Various strategies for changing s can be devised. The main aim is to reduce u as quickly
as possible, subject to ensuring steady progress toward the solution. For example, only a single
step of Newton’s method could be performed for each of a decreasing sequence of u-values.
Alternatively, each value of s could be retained until the new iterate satisfies some convergence
criterion for the subproblem.

The vector r = Dy — pe = D(g — ATx) may be used to measure convergence for the current
subproblem, since it is a scaled form of g — ATx (the reduced gradient for the subproblem), which
must tend to zero for any fixed p. The size of ||r|| is monitored in our implementation, and the
reduction of u is controlled by two parameters as follows.

1. An initial “target level” for ||r]| is defined to be r = ||ro|| #+ RGFAC.

2. Whenever ||r]] < r, the barrier parameter is reduced to p * NUFAC, r is recomputed, and a
new target level is defined to be r = ||r|| * RGFAC.

The parameters RCFAC and NUFAC should lie in the range (0, 1) to be meaningful. For example,
the values RGFAC = 0.99, NUFAC = 0.25 allow a moderate reduction in p almost every iteration,
while RGFAC = NUFAC = 0.001 requests more discernible progress towards optimality for each
subproblem, with a substantial reduction in u on rare occasions.

4.6. Convergence tests. Three other parameters are needed to define the initial and final
values of the barrier parameter, and the degree of optimality required for the final subproblem.
In an effort to allow for poor scaling in the data, we initialize u to

#o(1+ leTzo])/ (nIn(1 + ll2oll))

for some pug, and whenever a newly reduced p is smaller than

Puia(1 + |e7z])/ (nln(1 + |211))

for the current z, p is fixed at the latter value for the remaining iterations. At the same time,
the target level for the reduced gradient is fixed at

Tuinl|2l|*(l/n

and termination occurs when ||r]] subsequently falls below that value.

------------
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In our experiments we have used po = 0.1, ptmia = 107, and ruja = 10~7. If po is too large
a danger exists on problems for which the feasible region Az = §, 2 > 0 is unbounded; since the
barrier function is then unbounded below, the iterates can diverge in phase 1 before the artificial
variable £ reaches zero.

P D el o

5. Numerical Results

5.1. Performance of the barrier method on a standard test set. In this section we
summarize the performance of the barrier algorithm described in Section 4 on problems from an
LP test set in use at the Systems Optimization Laboratory. All problems are in the form (2.1).
To obtain constraints of the form Az = §, any general inequality constraints are converted to
equalities using slack variables. Details of the problems are summarized in Table 1. The value
of “rows” refers to the number of general constraints, and “columns® to the number of variables,
excluding slacks. The number “slacks” is defined above. The column “A” gives the number of
nonzeros in the problem. This figure includes one for each slack but excludes the nonzeros in §
and e.

" The runs summarized in Tables 2-6 were made in double precision on an IBM 3081K (relative
precision 2.2 x 1071%). The source code was compiled with the IBM Fortran 77 compiler VS
Fortran, using NOSDUMP, NOSYN and OPT(3).

Table 2 gives the number of iterations and CPU-seconds required by the the primal simplex
method, as implemented in the Fortran code MINOS 5.0 (May 1985). The default values of the
parameters were used throughout (see Murtagh and Saunders, 1983). Results are also given in the
case where the constraints are scaled by an iterative procedure that makes the matrix coeficients
as close as possible to one.

Many runs were made incorporating different choices for the parameters RGFAC and NUFAC,
which specify the accuracy of a given subproblem and the rate at which the barrier parameter is
reduced. One aim was to find a set of values that could be used reliably on all problems. It was
found that RGFAC = 0.1 and NUFAC = 0.1 gave the most consistent results. Table 3 summarizses
the performance of the barrier method with these values. The second and third columns of the
table give the number of iterations to obtain a feasible point and the total iterations required
to satisfy the convergence tests of Section 4.6. The fourth column gives the total CPU time (in
seconds) to solve the problem. The values of the optimal objective function found by MINOS 5.0
were used to judge the accuracy of the final objective in the barrier runs. The underlined digits
in the fifth column show the correct figures in the objective function on termination. The final
two columns indicate the degree of feasibility and optimality of the final point.

Table 4 gives the results of applying the barrier algorithm with the same scaling procedure
o as in MINOS 5.0. Note that scaling alters the starting point ||b]le, but otherwise its effect was
substantial only on Share1b.
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. Table 5 illustrates the performance of a single-phase method in which a composite objective
- function of the form weTz + £ was used throughout (see Section 4.2). The number of phase 1
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14 A Projected Newton Barrier Method
iterations is sometimes greater than that for w = 0 (cf. Table 4), but the total number of iterations
is generally less.

Some statistics concerning the matrix factorisations used in MINOS 5.0 and the barrier
method are provided in Table 6. As in Table 1, column “A® gives the number of nonseros in
the problem. The columns “B” and “L + U” give the number of nonzercs in the simplex basis
and its LU factors after the last refactorisation (this is typically the most dense factorisation of
all those performed). Finally, the column “R” contains the number of nonseros in the Cholesky
factorisation (4.5) required by the barrier method.

Table 1
Problem Statisti

Problem Rows | Slacks | Columns A i<l T4 ]

Afiro 27 19 32 102 9.710% 3910t
ADLittle 56 41 o7 424 6.110? 6210
Share2b 96 83 79 77 1810 3810
Share1b 117 28 225 1179 1.31¢* 7.710%
Beaconfd 173 33 262 3408 1.610* 1.210%
Ierael 174 174 142 2443 9.11¢* §.6102
BrandY 220 54 249 2202 681¢¢ 8.710!

E226 223 190 282 2768 9.610? 4110
BandM 308 0 4 2494 151¢® 3.010!
Table 3
Results from the primal simplex code MINOS 5.0

Optimal No scaling With scaling

Objective Phase 1  Total Time | Phasel Total Time
Afiro -4.6475314 2 6 06 2 6 0.6
ADLittle 226494.96 28 128 13 30 08 1.1
Share2d -415.73224 89 91 1.3 4 121 14
Share1d -76589.319 135 206 34 144 260 28
Beaconfd 33592.486 8 38 1.9 6 39 18
lorael -806644.82 109 345 5.0 41 31 3.7
BrandY 1618.6099 17¢ 202 49 216 377 59
Eege -~18.751929 109 §70 9.4 101 47 15
BandM -158.62802 167 362 7¢ 280 834 10.0

~ v.A.' ,. ‘s ._A ', YN RN IE \-.}-. . ~.' NS I AN ST - PN *w..:.’. OO 3




A Projected Newton Barrier Method 15

Table 8
No scaling, RGFAC = 0.1, NUFAC = 0.1
Problem |Phase 1| Total | Time Objective = 1ol
Afiro 4 20 0.4 —464.75314 3610713 1.910°°
ADLittle 13 36 1.1 225494.96 8.810-1° 2410710
Share2b 7 22 1.5 —415.73224 2.110°8 9.310~11
Sharelb 11 66 49 —76589.319 98108 45101
Beaconfd 20 40 9.9 33592.486 8.410°° 4510711
Israel 17 54 22.6 —896644.82 8.610°° 9.410°13
BrandY 19 40 8.5 1518.5009 3810~ 3.710—1
E226 18 45 0.8 —18.751929 8.010°% 1.410°1°
BandM 19 41 - 0.3 —158.62802 3.7107* 5610711
Table 4
With scaling, RGFAC = 0.1, NUFAC = 0.1

Problem Phase 1| Total Time Objective ”—Eﬁﬂ D :":"
Afiro 4 20 0.4 —464.75314 6.310~12 9.610~1°
ADLsttle 13 34 1.1 225494.96 6.010~10 2.210°10
Share2b 8 24 1.6 —415.73224 4910°° 5.410~11
Shareld 7 33 2.8 —76589.319 4.710°° 471013
Beaconfd 22 42 11.1 33592.486 1910”7 1.510"10
Israel 11 58 2¢.1 —896644.82 1.610°¢ 501013
BrandY 18 42 9.2 1518.5099 1.310°7 1.810°1¢
E226 18 46 10.2 —18.751929 111077 1410712
BandM 20 43 9.8 —168.62802 1.710~% 431071

il
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N Table §
) Composite objective function
o With scaling, RGFAC = 0.1, NUFAC = 0.1, w = 0.01/||¢]|
AN
v
’ . e g b—A Die—ATw
N Problem |Phase I| Total | Time Objective B I—i;“;'-)-l
) Afiro 4 20 0.4 —464.75314 5.510-13 9.310-10
- ADLittle 17 31 1.0 225494.96 6310°8 9.710~ 11
':: Share2d 8 24 1.6 ~415.73224 4.410°10 541012
Share1b 7 33 2.8 —76589.319 441070 4.610°13
- Beaconfd 24 32 9.6 33592.486 2.210~7 25101
Israel 1 62 25.1 —896644 .82 6.210°° 4810-1
> BrandY 25 35 8.1 1518.5099 6.710"7 9.810-12
3 E226 21 40 9.4 —18.751029 65108 1.610~1
X BandM 23 35 8.9 —168.62802 1410°° 3.210-1
Table 6
Factorization Statistics
Problem A B L+U R
. Afiro 102 67 67 80
. ADLittle 424 261 278 365
S Share2b 7 564 s97 925
) Share1b 1179 579 636 1345
":: Beaconfd 3408 1546 1546 2727
% Israel 2443 1644 1664 3533¢
- BrandY 2202 1318 1488 3261
i Eg26 2768 1440 1620 16
- BandM 2494 2016 2373 4385
$11259 if six dense columns are included.
c 6.3. Obtaining an optimal basic solution. By its very nature, a barrier method can at best
- terminate somewhere “close” to an optimum. We must then ask: how close is “close”, and wluch
- of the several characterisations of LP optimality are we close to achieving?
;: In practice, LP users (and their report-writing programs) expect alleged optimal solutions to
be both primal and dual feasible, thus exhibiting complementary slackness. The last column in
Tables 3-5 show that the barrier algorithm can attain complementary slackness to high precision.
X However, LP users also expect their solutions to be basic. This can be achieved by taking the
N final solution from the barrier algorithm and processing it through the BASIC procedure common
~
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A Projected Newton Barrier Method

to most mathematical programming systems.

The BASIC procedure (sometimes known as INSERT by value; see Benichou et al., 1977)
takes a set of variable names and values and produces a basic solution that has at least as good
an objective value or sum of infeasibilities. The simplex method may then be applied to reach
optimality. The time required by BASIC and the simplex method together, compared to the
time required by the simplex method alone, provides another practical measure of closeness to
optimality.

Some experiments of this kind were performed to test the quality of the solutions obtained by
the barrier algorithm. An early implementation of the barrier algorithm was used, with a slightly
different starting point for phase 1 and a different strategy for controlling p. This strategy
initialized s to 10|jc[|/n and multiplied s by 0.25 every iteration if s was still larger than 10~8.
The algorithm was terminated when max, |z;n;| < 10~7||c]l|lz]|, i.c., when complementarity was
approximately achieved. '

These experiments were carried out on an IBM 3033N, except for one problem Degen$ that
was run on an IBM 3081K. The problems used were an available subset of those in Table 1, plus
a graduated set of three models from a single application, ranging from small to medium in size
(see Table 7) and notable for their severe degeneracy.

Initially, all problems were solved from scratch by Ketron’s WHIZARD optimizer, which was
called from MPSIII in all cases except for Degen3, where the host was MPSX/370. The first
three columns of Table 8 give the number of columns selected for the initial basis by CRASH,
the number of simplex iterations required to reach optimality, and the CPU time in seconds.
(Al times in this section are for a complete MVS job step, including model input and solution
output.)

The next three columns of Table 8 give results for the barrier algorithm. For the smaller
problems, there is about 10 percent overhead for input, output, symbolic ordering (subroutine
Gengmd) and symbolic factorization (subroutine Smbfct). For the larger problems, the cost of
the single call to Gengmd became significant: 2.4 seconds for BandM, 13.4 seconds for Degen®,
and 237 seconds for Degen$. Clearly some more efficient means of preprocessing must be found
for large problems.

Table 7 compares the number of nonzeros in a typical WHIZARD basis factorization with
the number of nonzeros in the Cholesky factors R, again indicating the high cost of solving large
least-squares problems.

The last two columns of Table 8 show the work required by BASIC and the simplex method
to reach optimality, starting from the point obtained by the barrier algorithm. With ¢ denoting
the basic solution obtained by BASIC, the quantities [|b — AZ||/||5]] were observed to be less than
10~% in all cases, and the values of |cT — ¢Tz'|/|cT2’| were all less than 10~3. The number of
subsequent simplex iterations appears to be a function of sise and degeneracy, the two being
closely related in this sample. Clearly, the primary effect of the post-BASIC iterations is to
remove dual infeasibilities.
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18 A Projected Newton Barrier Method

The problems BrandY, E£26 and BandM have 23, 20 and 21 structurally degenerate variables
respectively. Ideally, these should be removed by the PRESOLVE procedure before entering the
barrier (or simplex) method. They can be restored and dual feasibility attained at trivial cost by
the POSTSOLVE procedure (see Tomlin and Welch, 1983). At present there is no obvicus way
of circumventing extreme degeneracy of the ordinary type, such as that displayed by the Degen
problems. However, the relative number of post-BASIC simplex iterations required for these
problems appears to decline with problem size, compared to the number required when starting
from scratch. It may well be that non-simplex methods such as the projective and barrier methods
will prove most valuable for dealing with very degenerate LPs.

SN, QAR GO R AN £ G 0%

Table 7
Model statistics — degenerate problem set
Problem Rows Slacks | Columns A B L+U R
Degent 66 18 2 296 249 261 514
Degen? 444 223 534 4894 3076 - 3718 16243
Degens 1503 786 1818 25432 18468 20322 119373
Table 8
Results from the BASIC procedure
Whizard Barrier BASIC
Crash Simplex Time |Phasel Total Time |Simplex Time
Afiro 18 4 0.6 3 14 03 0 0.2
ADLittle 18 80 1.0 8 23 1.2 1 03
Share2b 13 84 1.1 6 17 18 2 04
BrandY 85 168 2.7 12 29 10.8 6 23
E226 80 350 39 15 29 130 6 2.2
BandM 114 263 35 15 28 13.0 s 28
Degent as 23 0.7 2 15 0.9 18 0.7
Degen? 187 2650 31.2 13 26 549 300 73
Degens $90 8889 2260 11 25 528.0 §93 60.0

6. Future Developments and Conclusions

6.1. Solving the least-squares subproblem. The present implementation, as in Gay (1985),
uses a preconditioned conjugate-gradient method to solve the relevant least-squares subproblems.
This approach allows the use of existing software for computing Cholesky factors, and provides a
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convenient way of dealing with & few dense columns of A that would degrade the sparsity of those
factors. Perhaps further efficiency could be gained by discarding small nonzeros in the product
AD?AT (not just rows and columns of A) before computing its Cholesky factors. However, a new
symbolic factorization would then be required at every stage, not just once.

Unfortunately, it seems that the quality of the preconditioner must remain rather high
throughout, since an iteration of LSQR or the conjugate-gradient method requires two matrix-
vector products involving A and two solves with the preconditioner R, and is therefore as ex-
pensive (typically) as two iterations of the simplex method. If the average number of iterations
required by LSQR were 20, say, then the barrier algorithm would have to terminate in about
1/50th the number of iterations in order to be competitive with the simplex method, even if
minimal effort were required to obtain R each iteration.

To illustrate, the test problem Jsrael has six dense columns in A. With these excluded
from the computation of R, LSQR required an average of 12 iterations, and the run time was
correspondingly high. (On the other hand, retaining all columns gave an R with three times as
many nonzeros and a run-time twice as great.)

For reasons such as these, we remain doubtful that good preconditioners can be computed
with adequate efciency for arbitrary matrices DA7, i.c., for arbitrary linear programs. Only for
special classes of problem does there seem to be room for optimism; for example, those exhibiting
a block-triangular structure with many small diagonal blocks.

In place of the iterative methods just described, one can employ a sparse orthogonal factor-
ization of the form

DAT=Q (:) , QTQ=1I R upper triangular (6.1)

to solve the least-squares problems directly, where R is analytically the same as the Cholesky
factor of AD3AT. General-purpose software exists for this computation, in particular SPARSPAK-
B (George and Ng, 1984), which has excellent numerical properties and is able to treat dense
rows of D AT specially in order to preserve the sparsity of R. Its use in this context merits future
investigation.

A further direct approach is to apply a sparse indefinite solver to the symmetric system (2.10).
The MA£7 package of Duff and Reid (1982) is applicable, and we believe it shows considerable
promise. As with the sparse QR (6.1), a single symbolic factorization would serve all iterations.
In addition, dense columns in A would not drastically affect the sparsity of the factors.

6.2. Adjusting the barrier parameter. Numerous authors have suggested extrapolation
techniques in connection with barrier functions. We have conducted some limited experiments,
as follows. The barrier function was minimized reasonably accurately for two quite large values
of s (llefl/n and 0.1]|¢]|/n), and extrapolation was then performed. The resulting solution was
accurate to about five figures. However, it is difficult to evaluate the practical merits of this

g DTN G T 2 "*;.‘p A




20 A Projected Newion Barrier Method

approach without further study. Recall that such a strategy would need to be applied to both

phases.

A number of suggestions have been made for automating the choice of . The method of
centers (see Fiacco and McCormick, 1968; Huard, 1967) is in essence a barrier-function method
in which a transformation is also applied to the objective function, thereby negating the need for
a barrier parameter. See also Todd and Burrell (1985) for a discussion of this approach.

It should be stressed, however, that the freedom to choose 4 may well be an asset, especially
in the case of linear programs. This is confirmed by our experience with the conservative strategy
of allowing g to be reduced only occasionally. Considerable progress is then often achieved before
the least-squares problems become unduly ill-conditioned.

6.3. Use of the entropy function. Because of the similarities, we note the work of many
authors on incorporating the entropy function into linear programming models. In place of
subproblem (2.2), one can consider the subproblem

»n
. o e r . .
minimize ¢"z + ”,-E-; z;In=z;
subject to Az =),

where the scalar p (p > 0) is again specified for each subproblem. Erlander (1977) reviews
problems of this kind and suggests Newton-type methods for their solution. Computational
algorithms have been developed by Eriksson (1980, 1981).

If a feasible-point descent method is applied as in Section 2, the Newton search direction and
Lagrange-multiplier estimates satisfy the system

D=t AT\ (-p\ (fec+pv
(% ) ()-(%")
in place of (2.9), where D = diag(z;) and v has components v; = 1 + Inz;. A least-squares
subproblem follows as before. In terms of the algorithm of Section 4.1, r would be defined as
r = DY3(n + pv) in steps 1, 3 and 5, and D would be changed to D'/2 in the least-squares
problem (4.1). Finally, we would have p = —(1/p)D"/?r in step 5.

The entropy function is convex and (unlike the logarithmic barrier function) it is bounded
below. Also, since its Hessian is pD~? rather than uD~2, the least-squares problems should be
better conditioned as the LP solution is approached. Further computational work therefore seems
to be justified, either as in Eriksson (1980, 1981) or along the lines suggested here.

6.4. Conclusions. Most qualitative aspects of Karmarkar’s projective method can be found in
the projected Newton barrier algorithm described here. The nonlinear programming viewpoint
has provided us with an armory of known theoretical and practical techniques, to be applied
to convergence analysis and computer implementation. To date, a casualty appears to be the
proof of polynomial complexity. While this may seem a serious loss, the number of iterations
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P EXLIIEF

required by the barrier algorithm appears to be similar in practice to that reported for various
projective methods (cf. Tomlin, 1985, and Lustig, 1985), and our implementation has proved to
be competitive with the simplex method on some of a limited class of moderate-sised problems
(all of which are degenerate and poorly scaled).
Two facts remain:
o large-scale least-squares problems can be very expensive to solve (compared to square systems
Bz =),
. e interior-point methods are inescapably minimizing a highly nonlinear function.
. In view of the second point, poor performance can be expected if variables migrate prematurely
> towards the singularities at their bounds. It has been difficult to develop a robust algorithm for
this reason. The same dificulty arises if a “good” starting point is available from an earlier run
on a similar problem (by far the most common situation), since such a solution will have many
variables on or close to their bounds.
From the computational evidence to date, the future for interior-point methods seems bright-
est in the context of cold-start solution of very large, specially structured problems.
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