MRC Technical Summary Report # 2833

TWO RESULTS ON DENSE IMBEDDINGS

Michael Renardy

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705

June 1985

(Received May 10, 1985)

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

National Science Foundation
Washington, DC 20550
In a recent paper [1], J. U. Kim studied the Cauchy problem for a Bingham fluid in \mathbb{R}^2. He points out that the extension of his results to \mathbb{R}^3 depends on two lemmas concerning dense imbedding of C^m_0-functions in certain spaces. In this note, these lemmas are proved.

Abstract

In a recent paper [1], J. U. Kim studied the Cauchy problem for a Bingham fluid in \mathbb{R}^2. He points out that the extension of his results to \mathbb{R}^3 depends on two lemmas concerning dense imbedding of C^m_0-functions in certain spaces. In this note, these lemmas are proved.

AMS(MOS) Subject Classification: 46E35

Key Words: Sobolev spaces, approximation by test functions

Work Unit Number 1 - Applied Analysis

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National Science Foundation under Grant No. MCS-8215064.
TWO RESULTS ON DENSE IMBEDDINGS

Michael Renardy

Following Kim's notation, we define

\[\tilde{F}_p = \{ u \in W^{1,2}(\mathbb{R}^n) \mid \forall \varepsilon \in L^p(\mathbb{R}^n) \} \]

Our first result is the following.

Lemma 1:

\[C_0^\infty(\mathbb{R}^n) \text{ is dense in } \tilde{F}_p \text{ for } 1 \leq p < \infty. \]

Proof:

Clearly it suffices to show that functions of compact support are dense; \(C^\infty \)-regularity can easily be achieved by using the Friedrichs mollifier. If we know that \(u \in L^p(\mathbb{R}^n) \) or even that \(u \in L^{p+\varepsilon}(\mathbb{R}^n) \) for sufficiently small \(\varepsilon > 0 \), then we can use the standard cut-off procedure to approximate \(u \) by functions of compact support. I.e., if we set \(u_m(x) = u(x)\psi_m(x) \), where, for example,

\[
\psi_m(x) = \begin{cases}
1 & , |x| \leq m \\
2 - \frac{|x|}{m} & , m \leq |x| \leq 2m \\
0 & , |x| \geq 2m
\end{cases}
\]

then it can easily be shown that \(u_m + u \) in \(\tilde{F}_p \). Therefore it suffices to show that \(\tilde{F}_p \cap L^{p+\varepsilon} (\varepsilon > 0 \text{ small}) \) is dense in \(\tilde{F}_p \). If \(p \geq 2 \), it follows from the Sobolev imbedding theorem that \(\tilde{F}_p \subset L^p \), and there is nothing left to prove.

Sponsored by the United States Army under Contract No. DAAG29-80-C0041 and the National Science Foundation under Grant No. MCS-8215064.
In the following, we assume \(p < 2 \). We set
\[
\varphi_N(x) = \begin{cases}
\frac{1}{n^n \Omega_n}, & |x| \leq N, \\
0, & |x| > N.
\end{cases}
\]
Here \(\Omega_n \) is the volume of the unit ball in \(\mathbb{R}^n \). For \(u \in \mathcal{F}_p \), let \(u_N = u - \varphi_N^* u \), where \(* \) denotes convolution. Clearly, \(u_N \) is in \(\mathcal{F}_p \), and we want to show \(u_N + u \) in \(\mathcal{F}_p \). We have \(Vu_N = Vu - \varphi_N^* Vu \), and, if \(p = 1 \), then \(\int_{\mathbb{R}^n} Vu = 0 \), since \(u \in L^2(\mathbb{R}^n) \). Therefore, it suffices to show the following: Let \(1 \leq r < \infty \), and \(v \in L^r \), for \(r = 1 \), assume in addition that \(\int_{\mathbb{R}^n} v = 0 \). Then \(v_N = v - \varphi_N^* v + v \) in \(L^r \).

To see this, note first that \(\|v_N\|_{L^1} = 1 \), and hence \(\|v_N\|_{L^r} \leq 2\|v\|_{L^r} \), hence it suffices to show \(v_N + v \) for \(v \) in a dense subset of \(L^r \). If \(r > 1 \), take \(v \in L^1 \cap L^r \). Then \(\|v_N^* v\|_{L^r} \leq \|v_N\|_{L^1} \|v\|_{L^r} \), which tends to zero. For \(r = 1 \), let \(v \) have compact support, contained in, say \(\{ |x| \leq R \} \), and assume \(\int_{\mathbb{R}^n} v = 0 \). Then
\[
\begin{aligned}
\|\varphi_N^* v\|_{L^1} &= \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} \varphi_N(x-y)v(y)dy \right| dx \\
&= \int_{-R}^{R} \int_{-R}^{R} |\varphi_N(x-y)v(y)| dy dx \\
&\leq \int_{-R}^{R} \int_{-R}^{R} |\varphi_N(x-y)| |v(y)| dy dx \\
&\leq \int_{-2R}^{2R} |\varphi_N(z)| dz \int_{-R}^{R} |v(y)| dy .
\end{aligned}
\]
This tends to zero as \(N \to \infty \).

It remains to be shown that \(u_N \) lies in \(L^{p+\epsilon}(\mathbb{R}^n) \) for small \(\epsilon > 0 \).

Let \(g \) denote the fundamental solution of the Laplacian. Then an explicit calculation shows that \(g - \varphi_N^* g \) lies in \(L^{1+\delta}(\mathbb{R}^n) \) for small positive \(\delta \), and so do its derivatives. Hence it follows that \(w_N := g^* Vu_N = (g - \varphi_N^* g)^* Vu \) lies in \(L^{p+\epsilon}(\mathbb{R}^n) \) and so does \(u_N = \text{div} w_N \). This completes the proof.
Again following Kim's notation, we now define the following spaces of vector-valued functions.

\[G_1(\mathbb{R}^3) = \{ f \in (W^{1,2}(\mathbb{R}^3))^3 \mid \epsilon_{ij}(f) := \frac{\partial f_i}{\partial x_j} + \frac{\partial f_j}{\partial x_i} \in L^1(\mathbb{R}^3) \text{ for } i,j = 1,2,3, \text{ div } f = 0 \} \]

\[S(\mathbb{R}^3) = \{ f \in (C_0^\infty(\mathbb{R}^3))^3 \mid \text{ div } f = 0 \} . \]

The lemma required for Kim's result is the following.

Lemma 2:

\[S(\mathbb{R}^3) \text{ is dense in } G_1(\mathbb{R}^3). \]

Proof:

Obviously, \(G_1 \) is contained in

\[G_p = \{ f \in (W^{1,2}(\mathbb{R}^3))^3 \mid \epsilon_{ij}(f) \in L^p(\mathbb{R}^3), \text{ div } f = 0 \} \]

for any \(p \in (1,2] \). Moreover, lemma 1.9 in [1] says that

\[G_p = F_p = \{ f \in (W^{1,2}(\mathbb{R}^3))^3 \mid \nabla f \in L^p(\mathbb{R}^3), \text{ div } f = 0 \} . \]

for \(p > 1 \). Let \(f_N = f - \varphi_N^*f \) with \(\varphi_N \) as in the proof of lemma 1. Then it follows as before that \(f_N + f \) in \(G_1 \). Let \(a \) be defined by

\[a = g^*\text{curl} f, \]

where \(g \) is again the fundamental solution of the Laplacian. The convolution makes sense, since we can write \(g = g_1 + g_2 \), where \(g_1 \in L^1(\mathbb{R}^3) \), \(g_2 \in L^2(\mathbb{R}^3) \), and we define \(g_2^*\text{curl} f \) by putting the derivative on \(g_2 \). Clearly, we have \(\text{div } a = 0, \text{curl } a = f \). Now let

\[a_N = a - \varphi_N^*a \]

so that \(\text{curl } a_N = f_N \), and \(\Delta a_N = \text{curl } f_N \). Since

\[a_N = (g - \varphi_N^*g)^*\text{curl} f \]

and \(\text{curl } f \in L^{1+\epsilon}(\mathbb{R}^3) \) for \(\epsilon \) small, we conclude as in the proof of lemma 1 that \(a_N \in L^{1+\epsilon}(\mathbb{R}^3) \). From \(a_N \in L^{1+\epsilon}(\mathbb{R}^3) \), \(\Delta a_N \in L^{1+\epsilon}(\mathbb{R}^3) \), it follows that \(a_N \in W^{2,1+\epsilon}(\mathbb{R}^3) \).
It thus remain to be shown that every \(f \in G_1 \) which has the form \(f = \text{curl } a \) with \(a \in W^{2,1+\epsilon}(\mathbb{R}^3) \) can be approximated by functions of compact support. This is easily achieved by multiplying \(a \) with an appropriate cut-off function.
REFERENCES

MR/jvs
In a recent paper [1], J. U. Kim studies the Cauchy problem for a Bingham fluid in \mathbb{R}^2. He points out that the extension of his results to \mathbb{R}^3 depends on two lemmas concerning dense imbedding of C^0-functions in certain spaces. In this note, these lemmas are proved.