UNCLASSIFIED

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

ELECTRONICS RESEARCH LABORATORY

TECHNICAL REPORT

ERL-0330-TR

DIESS - A PROLOG IMPLEMENTATION OF A
DOMAIN-INDEPENDENT EXPERT SYSTEM SHELL

R.F. Dancer

SUMMARY

A software environment suitable for the expression of
expert knowledge in a variety of domains has been designed
and implemented in the Prolog computer language. This
‘shell’ is intended to be capable of containing expert
systems whose object is the proof of goal symbols in
domains of categorical single-valued facts.

An example is given of a non-trivial expert system to
programme in the IBM Job Control Language. Some
conclusions are reached and recommendations given for
future developments.

AR-004-140

POSTAL ADDRESS: Director, Electronics Research Laboratory,
Box 2151, GPO, Adelaide, South Australia, 5001.

UNCLASSIFIED

TABLE OF CONTENTS

INTRODUCTION

IMPLEMENTATION

THE KNCWLEDGE BASE

3.1 Rules and facts

3.2 Defaults

3.3 Logical<functions allowed in an antecedent

3.4 Declaration of allowable facts

THE REASONING MACHINE

4.1 Initiation of reasoning

4.2 Evaluation of antecedents, chaining and the data source

1 The preview stage
.2 The chaining stage

4.3 The use of defaults

OPERATION

5.1 The examine command

5.2 Other commands

EXPERT JCL PROGRAMMER

6.1 Rationale

6.2 JCL programming knowledge base
Top level objective

A first level sub goal
JCL programme structure
JCL statement construction

Data collection
Special-purpose code

[e 23K+ 20 ¢ AN e WK e W0
NN NDNDNDDND
[o XNV, I S R UV R

EXAMPLE TAPE EXAMINATIONS
RECOMMENDATIONS
CONCLUSION

REFERENCES

ERL-0330-TR

Page

11
12

13

ERL-0330-TR

Page

LIST OF APPENDICES
I DIESSL SYNTAX 15
IT EXTRACTS OF JCL PROGRAMMER EXPERT SYSTEM KNOWLEDGE BASE 20

III THREE EXAMPLE TAPE EXAMINATIONS 25

-1- ERL-0330-TR

1. INTRODUCTION

This report describes the first version of a Domain-Independent Expert System
Shell (DIESS Version 1) and initial experiences with its application to a
'real world' problem.

DIESS was built as an experimental tool mneeded (in lieu of other suitable
software) as an essential part of a programme of research into the application
of Artificial Intelligence (AI) to defence systems, and, in particular the use
of 'Knowledge-Based' and "Expert' systems for signal processing in Electromic
Warfare systems. However, before entirely novel applications of the expert
system technology to the arena of military operations (typically involving
time-critical problems having outcomes with intrinsically high values) could
be attempted it was thought wise to gain experience with applications having
lower attendant technical and other risks. Nevertheless, the problem to be
attempted should be of sufficient size and complexity to fully explore the
expressive powers of the shell. The experimental expert system to programme
in IBM Job Control Language (JCL) described below represents an attempt to
apply the established expert system technology to one such area.

Expert systems are computer-based mechanisms concerned with the representation
and application of the knowledge of human experts in specialised fields.
Systems such as MYCIN (advising on diagnosis and therapy in cases of bacterial
infection(ref.1)) and PROSPECTOR {(consulting in Geology(ref.2)) have reached
significant levels of performance - rivalling those of individual human
specialists.

Experiences gained in these, and other, projects indicated the usefulness of
strictly partitioning systems into two compartments; one containing knowledge
specific to the domain of current interest and the other comprising
essentially constant general-purpose reasoning machinery. This machinery,
being independent of any field of specialisation, can then (it is theorised)
be used to implement systems expert in any area by interpreting an appropriate
knowledge base. The attractiveness of this concept was instrumental in the
development of Essential MYCIN - known as EMYCIN(ref.3) and AL/X(ref.4) which
are expert system 'shells' (ie systems emptied of their knowledge) ancestrally
related to MYCIN and PROSPECTOR respectively. Additional confirmation of the
utility of factoring systems in this way is supplied by (amongst others) the
Rl system, used for planning configurations for computer hardware(ref.5). Rl
was constructed from its inception as a specialised knowledge base utilising a
pre-existing shell called OPS5(ref.6).

Due to various difficulties, in part- related to the need to conserve
resources, it has not, to date, been possible for the author to obtain and
utilise any of the existing expert system shells to which reference has been
made above. One pre-existing shell - the ASWE Expert System Support
Programme(ref.7) - using the PROSPECTOR approach has been obtained and will be
the subject of a later report.

The DIESS interpreter is conceptually related to EMYCIN in the structure of
its facts and reasoning. The DIESS is intended to be a software shell forming
a highly productive containing environment for rapid construction of
backward-chaining expert systems which use categorical reasoning about
single-valued facts.

- ERL-0330-TR -2 -

Insofar as DIESS is concerned facts about an 'entity' (the subject of an
examination) are established either by asking questions of the user (a human
operator) or by deducing them from rules. The structure and content of the
expert system knowledge base is rigorously defined by a domain expert, in
conjunction with a knowledge engineer. This fund of knowledge is interpreted
by DIESS to reason about the domain and produce facts in the data base
relevant to a defined goal.

The work described herein was carried out under Task DST 82/251 -
"Knowledge-Based ESM Processing’; and Task DST 83/213 - "Expert Systems
Research".

2. IMPLEMENTATION

DIESS Version 1 is implemented in Portable Prolog(ref.8,9) - a language with

powerful in-built pattern-matching and inference features. The DIESS
interpreter and the expert system knowledge base are treated as sets of Prolog
clauses. Protection against inadvertent corruption is afforded the entire

expert system by auditing subsequent user commands to DIESS with an alternate
interactive top level for Prolog called the 'Audited Command Shell
Interpreter' (ACSI(ref.10)). This extra shell acts in a sentinel-like manner
by allowing to pass through (for evaluation) only that user input which falls
within a set of particular pre-defined forms. This auditing mechanism also
guides the user as to the form of allowable input whilst, as is its primary
function, securing the expert system shell and its knowledge and facts from
accidental alteration.

3. THE KNOWLEDGE BASE

The domain-specific knowledge in an expert system is said to form a 'Knowledge
Base'. So that the knowledge base together with the expert system shell form a
complete expert system. The main component of the expert system shell is a
'reasoning machine' which "thinks' about the knowledge base and user responses
in order to solve the particular problem at hand. The human expert and the
knowledge engineer thus have the task of expressing the domain expertise (or
knowledge) in a language which can also be be understood by the reasoning
. machine. The syntax of the DIESS language (DIESSL) is formally defined using
the Backus-Naur Form (BNF) in Appendix I. Following below is a brief
description of the DIESS semantics attached to DIESSL knowledge forms.

3.1 Rules and facts

The fundamental units of information in DIESSL are (i) 'rules' and (ii)
"facts'. Facts may be true (ie established) either because the user knows
them to be true (and communicates this knowledge to the expert system) or
because their truth can be deduced from the combination of rules and

previously established facts.

A rule expressed as a DIESSL statement has the general form:

RN : if ANTECEDENT
then

CONSEQUENT-FACT.

-3 - ERL-0330-TR

where ANTECEDENT is a single fact (or a logical function of a fact) or -a
conjunction of several facts (and/or of some logical functions of facts);
CONSEQUENT-FACT is a hypothetical fact which is held to be true if the
ANTECEDENT is true; and RN is a unique name for the rule. The rule name is
used to identify the knowledge for administrative purposes: as a reference
for editing, during explanation of chains of reasoning and in the detection
and disqualification of circular reasoning. For the latter two uses, when
a rule is invoked its name is pushed onto a stack of active rule names.

Facts in DIESSL all have the general form:
same (VARIABLE, VALUE)

where VARIABLE is a unique name for a means of classifying knowledge in the
domain (it is often suitable to think of this as an attribute of a case in
the domain); and VALUE is one of a set of (mutually exclusive) values which
may be assigned to (ie made the same as) the VARIABLE. This form is used
to convey the meaning that VARIABLE is the same as VALUE. The VARIABLE may
be either non-numeric (ie have values which are members of a set of
arbitrary objects called terms) or numeric (ie have values which are
integers within a specified range).

3.2 Defaults

DIESSL also provides a means to define a default fact as:
DN : DEFAULT-FACT.

where DEFAULT-FACT is a hypothetical fact which is held to be true if mno
other value can be ascribed to its variable. The item DN is a unique name
to identify the knowledge.

3.3 Logical functions allowed in an antecedent

The logical functions of facts, to which reference was made above, allowed
to be incorporated in DIESSL antecedents are:

*® not same(VARIABLE, VALUE)

* unknown (VARIABLE)

* not unknown(VARIABLE)

% ask(VARIABLE, VALUE)

% ‘greater(N-VARIABLE, N-VALUE)

% not greater(N-VARIABLE, N-VALUE)

% lesser(N-VARIABLE, N-~VALUE)

* not lesser (N-VARIABLE, N-~VALUE)

* between(N-VARIABLE, LOWER-N-VALUE, UPPER-N-VALUE)

* not between(N-VARIABLE, LOWER-N-VALUE, UPPER-N-VALUE)

ERL-0330-TR -4 -

where VARIABLE and VALUE have the meanings given above; and N-VARIABLE,
N-VALUE, LOWER-N-VALUE and UPPER-N-VALUE are connected exclusively with
numeric facts.

3.4 Declaration of allowable facts

FEach variable involved in a domain (ie in facts within the domain) must be
declared in a DIESSL statement together with the criterion defining its
value membership and its source. Such declarations have the form:

variable (VARIABLE, MEMBERSHIP, SOURCE).

where " (i) VARIABLE is the (unique) name of the variable being declared;
(ii) MEMBERSHIP is either: "members ({val-1, val-2, ... })" - for
non-numeric variables, or "limits(low, high)" - for numeric variables and
(iii) SOURCE defines the ordinary source of the wvalue for the variable.
Variables involved in facts concluded by rules have the SOURCE "deduce'",
whilst others have the SOURCE "ask(TEXT)" - where TEXT is a literal
character string (or a list of literal character strings) printed as a
prompt to the user when a value is needed.

Variables having values to be obtained by deduction may be supplied with a
value by the user, but only if the logical function "ask'" appears in an
antecedent of a rule executed before an attempt is made to conclude a value
for the variable.

4. THE REASONING MACHINE

The reasoning machine interpreter - sometimes called an inference
engine - is a vital component of the DIESS. It performs all logical processing
by operating on the rules and auxiliary variable declarations in the knowledge
base. A complete description of its functioning: how reasoning is initiated,
how it is 'chained' to evaluate complex rules and how defaults are used
follows below.

4.1 Initiation of reasoning

The operation of the reasoning machine is initiated by the user instructing
it to evaluate a goal hypothesis - a putative fact comprising a goal
variable and value (normally an unknown value). The reasoning machine has
the task of attempting to ascribe a value to the variable. In so doing it
firstly checks to see if a value is already known for the variable by
looking in its data base for an established fact of the form it was
instructed to prove. If there is already a value for the goal variable
this occurrence is announced and the process finishes. If not, the
reasoning machine attempts to deduce a value. In deducing a value the
knowledge base is searched for rules which have any value of the goal
variable in their consequent parts. Each such rule is evaluated in turn by
attempting to prove its antecedent part. If the antecedent of a rule cannot
be proven the rule is said to have 'failed' and the next rule is evaluated.
If the antecedent is proven the rule and the goal are said to have
'succeeded'. Further rules (if any) for the goal are ignored, the
conclusion of the rule is announced, and is added to the data base as an
established fact before the process finishes. If no rule succeeds no

conclusion is reached, the goal is said to have 'failed' and the process
finishes.

-5 - ERL-0330-TR

4.2 Evaluation of antecedents, chaining and the data source

In evaluating the antecedent part of a rule - a conjunction of
clauses - the reasoning machine will encounter clauses which are facts or
are functions of facts. These clauses are evaluated as read, from left to
right. Rules with antecedents which are single facts succeed if the
antecedent is, or can be, established as true. Other rules require all
antecedent clauses (ie the conjunction of clauses) to be established before
they can succeed.

Antecedents are evaluated in two stages; firstly a 'preview' stage and
secondly a 'chaining' stage.

4.2.1 The preview stage

Antecedent clauses may be either; (i) known to be true, or (ii) known to
be false or (iii) neither known to be true nor known to be false. It is
clear that rules having antecedents with at least one clause belonging
to the second of these categories must fail, whilst those with all
clauses belonging to the first must succeed. As the first stage of
processing a rule which satisfies its current goal the reasoning machine
therefore 'previews' each clause in the rule to see if it can be
entirely disproven on the basis of existing internal knowledge; and duly
fails the rule if so disproven. This feature prevents unnecessary
processing and gathering of irrelevant information from the user. This
is because, without it, a rule which is certain to fail at its second or
any subsequent antecedent clause may, in evaluating a preceding clause,
set itself a sub goal or require user response - both redundant actions.
During the preview stage the reasoning machine constructs an edited
antecedent by excluding those clauses which belong to category (i)
above, hence only leaving the uncertain clauses - those belonging to
category (iii). If it should happen that all clauses are edited out of
the antecedent then the antecedent and the rule are deemed to have
succeeded.

4.2.2 The chaining stage

If a rule passes the preview stage each clause in the edited antecedent
is individually evaluated by the reasoning machine (in a chaining stage)
by establishing such sub goals (ie new goals) as are necessary and
referring these back to itself for examination - thereby re-initiating
the reasoning machine. This recursive process is termed
'"backward chaining'. If a sub goal of a rule fails then the antecedent
cannot be proven and the rule fails. The reasoning machine examines the
rules in a special order when a particular literal value is involved in
a sub goal. Rules (if any) which conclude the particular literal value
are the first to be examined. Other rules which include in their
CONSEQUENT-FACT an unknown value (ie a variable value for the
'Variable') are examined subsequently. When the reasoning machine
encounters a clause with a variable having the source "ask(TEXT)", if
the variable has no known value, the reasoning machine prompts the
expert system user to supply a value or to respond with the word

"unknown". The latter response causes the clause involving "ask" to
fail.

ERL-0330-TR -6 -

4.3 The use of defaults

In attempting to prove a clause of an antecedent; if all rules fail (or if
a question designed to ascribe a value to a variable is answered "unknown")
then the reasoning machine will look for and use the value in any default
fact it may find in the knowledge base involving the current goal (or sub
goal) variable.

5. OPERATION

An expert system (comprising DIESS and a knowledge base) is operated by
running Prolog and 'consulting' files which contain the Prolog source for ACSI
and DIESS, and the DIESSL source for the knowledge base.

The ACSI is an integrated top level interpreter which runs in either ' PROLOG'
or 'ACSI' mode. The current implementation of DIESS utilises the ACSI mode
for its top level. In this mode any prompt from the top level to the user may
only be answered with one of the valid commands to which the user has access.
(The command '"help'" is built into ACSI to assist users to establish which
commands ..they may use). Access to the '"PROLOG' mode is available from ACSI
only at the highest level of accreditation.

All DIESS operations are designed to occur through the ACSI after the user has
been identified to the system during a login process (to ensure that

individuals have appropriate levels of access to functions). Subsequent
transactions at the top level of ACSI begin with the prompt:

**% ACSI >
to which the user responds:

<command>.

where <command> is one of the commands defined to ACSI which allow user access
to DIESS facilities. Explanations of these commands, including the 'examine'
command, by which the DIESS reasoning machine is initiated, follow below.
5.1 The examine command
To commence operation of the expert system the user enters one of the
following forms of the examine command:
examine IDENT.
examine IDENT for VALUE.

examine IDENT attribute VARIABLE for VALUE.

where IDENT is a unique name used to identify the results of the
examination for later reference; VALUE is one of the members of the set of
values of the goal variable; and VARIABLE is an alternative goal variable.

-7 - . ERL-0330-TR

The first form of the examine command would mostly be employed to obtain a
full examination of a case. However, partial examinations deducing any
.legal value of any defined variable as temporary goal, can be conducted
using the second and third forms above. Examinations proceed in the form
of question and answer sessions in which the expert system poses questions
and the user answers them (with deductions normally being announced as they

are made). The user may exercise close control over these sessions by
entering a special command of a type specific to DIESS, a so-called
"internal directive', given in place of an answer to any question. A

description of all internal DIESS directives, with their abbreviations in
parentheses, is given below:

(a) why (w) - gives reasons why information is needed.

(b) suspend (s) - suspends the current examination.

(¢} tracing (t) - institutes tracing of rules in use.

(d) mnotracing (nt) - discontinues rule tracing.

(e) annunciate (an) - institutes announcement of deductions.

(f) noannunciate (nan) - discontinues deduction announcement.

(g) explain (x) - lists availéble internal directives.
5.2 Other commands
Control of the rule execution trace and announcement of deductions is
allowed from the top level by special ACSI commands. Tracing (which is

normally off by default) and annunciation (normally on) can be turned on or .
off by the following commands:

trace_on.
trace_off.
annunciate_on.
annunciate_off.

Other commands can be defined to ACSI which operate on the fixed knowledge
and on facts established by examine in useful ways. Such commands could for
instance: summarise facts, explain how a deduction was made, and/or allow
information to be volunteered. However, time constraints precluded the
addition of these functionms.

6. EXPERT JCL PROGRAMMER

This section describes the expert system which writes the JCL for an IBM 370
Job to read the first file of an unlabelled magnetic tape and copy it to a
file. The expert system encompasses the full range of tape forms physically
acceptable at the DRC Computing Centre installation. It was chosen for
implementation as an expert system because it has a domain of reasonable size
and complexity and the expertise to build it was close at hand.

ERL-0330-TR -8 -

6.1 Rationale

The system was built primarily to explore the capacity of DIESS to express
and process expertise at a non-trivial level in ‘a narrow gquasi-static
domain. However the possibility of ultimately providing a useful working
system was not overlooked. .

Composing the JCL code to instruct the reading of a magnetic tape at a

large time-sharing computer installation is an oft-repeated and
time-consuming task. It requires that the programmer have a moderate
amount of knowledge which may only be gleaned from a wide variety of
approximately static discrete sources. Such a feat of memory is difficult

and unnecessary for clients who have only a small requirement to read tapes
and and whose main professional interest is other than in computer
'housekeeping'.

The composition of such special-purpose JCL would thus seem to be a prime
candidate for automation as an expert system. It could then, if suitably
efficient, be made available to usefully advise a large community of
computer users who occasionally need to import non-indigenous information
by tape to an IBM 370 host computer (eg special-purpose software
applications or experimental data). _

6.2 JCL programming knowledge base

The JCL knowledge base, expressed in DIESSL was compiled substantially by
the author, acting as both knowledge engineer and as domain expert. In
this latter capacity reference was made to published material of varying
degrees of formality (detailed in references 11 to 14 below) and to
memories of some sparse personal experience with similar problems.

The kﬁowledge base initially took some 3 days to write, followed by
5-or so days of intensive debugging to perfect: changes made in response to
criticisms mentioned below took another 2 days to incorporate.

A total of 50 rules, 14 default facts and 54 variable declarations are
included in the knowledge base. Of the 54 variables used, 41 relate to
deduced facts and 13 to asked facts.

The authority for discrete items of knowledge is given in comment preceding
that knowledge. Reference is made therein to: definitive IBM
publications(ref.11,12) concerning facilities of the IBM OS operating
system; a fixed local installation standard - promulgated in reference 13;
and to a somewhat more fluid installation standard given in reference 14,

The knowledge base was written with the aim of being self-explanatory and
to this end included copious comment text. Taking approximately 850 lines
of DIESSL code, it was considered too voluminous to reproduce in full in
this document. Certain extracts of the knowledge base for the JCL
programming expert system (given in Appendix II) have been selected for
particular comment.

The extracts, comprising some 240 lines of code, have been selected to
illustrate typical, as well as notable, uses of DIESSL, with examples of
major features of the language. They include; a full explanation of the
top level goal, general illustrative features of the domain knowledge and
examples of special-purpose native Prolog code.

-9 - ERL-0330-TR

6.2.1 Top level objective

As a basic knowledge engineering objective it was decided that the
expert system should at all material times give the user the maximum
amount of pertinent information about each tape examination. This
requirement implied production of:

(a) explanation of when the task was impossible,

(b) indication of when essential primitive data was not available
and

(c) output of JCL in a form suitable for submission to JES2 (the Job
Entry Subsystem of 0S) for execution.

This analysis of objectives is, in fact, a prescription for the top
level goal of the JCL expert system given in Appendix II.1.

The DIESSL text defining the top level goal comprises a declaration for
variable 'result' and three rules 'cl', 'c2', and 'c3'. These rules
each have an 'action' clause to execute the functions outlined above.
The actions required to be taken by rule 'cl' include a reference to
'make_fn', a predicate containing some special-purpose Prolog code to
construct a unique file name. "Rule 'c2' contains an example of a fact
with an incompletely 'instantiated' (ie partially unformed) variable
'missing(P)' (in which P would contain the name of any missing parameter
designated as essential). The use of these structured variables is
discussed below in more detail. Rule 'c3' gives an example of the use
of the logical function 'unknown'.

6.2.2 A first level sub goal

One of the sub goals in rule 'cl' above is that the tape being examined
is 'physically standard' - ie is physically compatible with the
available tape unit hardware. The knowledge which defines this aspect
is given in Appendix II.2. This knowledge comprises declarations for
three variables and two rules in DIESSL.

Values for the variable 'physically_standard_tape', are deduced by each
of the rules 'pl' and 'p2a'. The variables 'ordinary_looking tape' and
'visually_checked_ok' relate to primitive data, values for which are
acquired directly from the operator, after posing the appropriate
question. The antecedent of rule 'p2a' contains another example of the
use of .the logical function, 'unknown'.

6.2.3 JCL programme structure

Another of the sub goals in rule 'cl' transmits the JCL programme
produced by the expert system to its action clause as the variable term
'JCL'. The knowledge which defines this programme structure is given in
Appendix II1.3. This information divides the complete job naturally into
its various statements in their correct order.

The variables 'jcl_prog' and 'prog body' are deduced by the rules 'jcl0'
and 'jcll' respectively. Each of the rules builds up a collection of
programme parts and uses the ad hoc predicate 'join' to concatenate them
as the last subgoal of its antecedent.

ERL-0330-TR - 10 -

6.2.4 JCL statement construction

The knowledge about how to construct a JCL statement (used in rules
'jcl0' or 'jcll' as discussed above) is exemplified by that given in
Appendix II.4 for the SYSUT1 DD statement of the IEBGENR IBM utility. A
prototype form of the statement (with symbolic parameters preceded by
dollar signs) together with a list associating the parameter names with
their actual (deduced or asked) values is processed by an ad hoc Prolog
predicate 'symb_subs', to give the completed form of the statement.

Two rules, 'dal' and 'da2' conclude the completed statement and build
the association 1list (as the values of the variables, 'sysutl' and
"jcl_sysutl_parms') respectively. A third variable declaration serves
to convey knowledge about the logical record length of the file on the
input tape, which is the subject of one of the sub goals in rule 'da2'.
This primitive data is passed via the structured variable 'p(_)'
discussed below. o

6.2.5 Data collection

There are many items of information which are vital to the successful
completion of the JCL programme. If any one of these is missing it
should be notified to the top level. This was accomplished by passing
all vital parameter values via structured variables of the form 'p(Y)'
for numeric parameters and 'q(Y)' for non-numeric parameters, where Y
carries the parameter name. If no value can be assigned to a parameter
so treated the fact that 'missing(Y)' is true is recorded. The three
rules ('uua’', 'uub' and ‘'uuc') and three variable declarations (for
'p(Y)', 'q(Y)' and 'missing(Y)') shown in Appendix II.5 give the
knowledge to perform these functions.

6.2.6 Special-purpose code

A few additional ad hoc (ie non-DIESS) Prolog predicates were needed to
cope with the JCL writing domain. Amongst these were predicates to
accomplish symbolic parameter substitution in prototype JCL code
("symb_subs') and the efficient concatenation of more than two lists
('join"). The Prolog definition of 'symb_subs' is given in
Appendix I1.6 below. A test on the operation of this predicate showed
that it consumed 1.09 s CPU time for the 'sysutl' example referred to
above.

Criticism of the JCL writing expert system (in terms of the contents of its
knowledge base and its operation) was invited from persons(ref.15) with
more experience in this use of JCL than the author. Some suggestions were
subsequently incorporated in the knowledge base, and others repeated (in
general terms) in recommendations below.

Further refinements would be needed to develop the knowledge base to a
suitable standard for production use. One refinement, to increase
efficiency, could be to relegate the symbolic substitution of parameters in
prototype JCL to a TSO command list.

7. EXAMPLE TAPE EXAMINATIONS

The JCL expert system was run to demonstrate its operation for the three
possible goal conclusions:

- (1) same(result, task_impossible),

- 11 - 7 ERL-0330-TR

(ii) same (result, task_incomplete), and
(iii) same(result, task_complete)
which correspond with the basic objectives given above.

The examination output for each of these conditions is given in Appendix III.
The third examination successfully constructed a JCL programme, printing it
and copying it to an external file.

As can be seen these examples took 0.82 s, 1.80 s and 35.13 s of host CPU time
respectively on the IBM 370/3033, one of the larger and faster computers in
common use. This level of resource consumption is currently unacceptable for
other than highly experimental applications. The reasons for such a large CPU
time appetite are several, the foremost being that a great deal of processing
is unavoidably incurred on each occasion that a Prolog goal is established and
there is a large database to search. The second significant cause is that
Portable Prolog is itself implemented in Pascal. Despite optimised compilation
with the IBM Pascal/VS compiler execution of the Portable Prolog object code
programme is very slow.

Storage statistics displayed indicate that storage used by the reasoning
machine to make temporary associations during the operation of DIESS (the
"heap" space) grew irreversibly. This space was not recovered after control
was returned to the top level of the Audited Command Shell Interpreter. In any
practical application of this system occupied storage would thus continue to
grow until the maximum available storage was exceeded. Experience with this
knowledge base has shown that an attempt to make a second successful
examination in the DIESS run listed in Appendix III would have caused Prolog
to 'crash' due to requests for excessive amounts of main storage. (DIESS was
operating with Prolog and TSO in a region of 2 Mbytes!) The problem of
exhausting available storage is primarily caused by the lack of a 'garbage
collector' routine within the Version 1 Portable Prolog implementation - a
facility which would reclaim discarded heap space and make it available for
re-use.

8. RECOMMENDATIONS

Before DIESS (or the DIESS/JCL expert system) could be qualified for general
use action would be needed to:

(a) decrease consumption of CPU time,
(b decréase main storage use and
(¢) increase 'user friendliness'.
These areas could, in part, be fruitfully addressed by:

(a) Acquiring a faster version of Prolog for the DRC IBM 370 - such as
Waterloo Prolog(ref.16);

(b) Investigating the possibility of re-coding DIESS in Standard
LISP(ref.17) to take advantage of higher execution speeds obtained with
compiled code;

(¢) Re-designing DIESS to decrease non-essential run-time syntax checking
and/or allow pre-compilation of DIESSL rules into clauses directly
executable by Prolog;

ERL-0330-TR - 12 -

(d) In-house modification (or acquisition of a later version) of Portable
Prolog implementing garbage collection;

(e) Ihplement ACSI/DIESS commands to allow inquiries to be made about what
existing knowledge there is about a particular case;

(f) Implement an ACSI/DIESS 'how' command to answer queries about how
certain deductions were made;

(g) Implement an ACSI/DIESS command to allow the user to volunteer facts.

9. (CONCLUSION

A domain-independent expert system shell has been written in the Prolog
computer language. This shell preserves the generality of Prolog expressions
for use in extreme cases whilst providing a standard framework for rapid
construction of goal-directed expert systems using categorical reasoning.

It has been demonstrated that DIESS is well capable of expressing the
knowledge of a non-trivial domain, with very little special-purpose Prolog
code. '

No.

10

11

Author

Davis, R.
Buchanan, B.G. and
Shortliffe, E.H.

Duda, R.O.

van Melle, W.

McDermott, J.

Forgy, C.L.

Miles, J.A.H.

Clocksin, W.F. and
Mellish, C.S.

Spivéy, J.M.

Dancér” R.F.

- 13 -

ERL-0330-TR

REFERENCES

Title

"Production-rules as a Representation
of a Knowledge-based Consultation
Program'.

Artificial Intelligence, 8, 15-45, 1977

"The PRGSPECTOR System for Mineral

Exploration'. '

Final Report, SRI Project 8172, SRI
International, 1980

"A Domain Independent System that Aids
in Constructing Knowledge-based
Consultation Programs".

Stanford University STAN-CS-80-820,
1980

"AL/X Computer Software Description".
Intelligent Terminals Ltd.,
15 Canal St., Jericho, Oxford, 1983

"R1: A Rule-Based Configurer of
Computer Systems'.
Artificial Intelligence 19, 39-88, 1982

"OPS5 User's Manual”.

Report CMU-CS-81-135, Department of
Computer Science, Carnegie Mellon
University, July 1981

"Preliminary Report on Expert Systems
and the User's Guide for the ASWE
Expert System Support Programme'.
Admiralty Surface Weapons
Establishment, Memorandum XCC 82006,
March 1982

"Programming in Prolog".
Springer-Verlag, 1981

"University of York Portable Prolog
System, Release 1, User's Guide".
Software Technology Research Centre,
University of York, March 1983

"An Audited Command Shell Interpreter
for Prolog Programmes'.

Systems Studies Group Working Paper.
ES-03, September 1984

"0S VS/2 JCL VS2 Release 3 - Second
Edition".

International Business Machines
Corporation. GC28-0692-1,

February 1975

ERL-0330-TR

No.

12

13

14

15

16

17

18

Author

Shaw, P.

Willcocks, P.J.

Roberts

Marti,
Hearn,
Griss,.
Griss,

Gries,

s, G.

J.B.
A.C.,
M.L
C

D.

- 14 -

Title

"0S VS/2 MVS Utilities Release 3.8 -
First Edition".

International Business Machines
Corporation. GC26-3902-0,

December 1977

"UNIT Names for Tape Units".

Weapons Research Establishment,
Computing Services Group. Computer
Bulletin No. 87, May 1977

"TSO HELP CLASSES Interactive Command".
DRCS IBM370 Installation Standard,
July 1984

Personal communication, August 1984

"Waterloo PROLOG User's Manual -
Version 1.4".

Department of Computer Science,
University of Waterloo, 1983

_ "'Standard Lisp Report'.

University of Utah, UUCS-78-101, 1978

"Compiler Construction for Digital
Computers'.
Wiley, 1971

- 15 - ERL-0330-TR

APPENDIX I
DIESSL SYNTAX

The formal definition of a language syntax (ie its grammar) can be expressed
conveniently in the so-called Backus-Naur Form (BNF). Legal constructs in a
language are defined with BNF by associating 'non-terminal' symbols with
collections of other 'non-terminal' symbols and 'terminal' symbols by the
'meta-symbols' "::='" and "|" to form 'productiomns'. A hierarchical
non-circular structure of these productions is usually defined so that a top
or goal symbol (not appearing on the right hand side of any production) is
ultimately defined only in terms of terminal symbols (by substituting for
lower level non terminals in the right hand sides of higher level productions)
A more complete dissertation on the BNF method may be found in reference 18.

Following below are definitions of the grammar and vocabulary of DIESSL and
the form of comments.

I.1 BNF grammar productions for DIESSL

DIESSL is a free form language in which the parser only recognises a stream

of symbols separated by spaces and other characters (including the
'end-of-line' tokemn).

<Expert System> ::= <System Id> <Knowledge List>

<System 1d> <System Name> <Goal>

<System Name> ::= signature(<Signature> , <Domain Name>).
<Signature> = <Text>

<Domain Name> ::= <Constant>

<Goal> ::= goal(<Variable Name>).

<Knowledge List> ::= <Knowledge Element> <Knowledge List>

| <Knowledge Element>

<Knowledge Element> = <Variable Declaration>
| <Rule Declaration>
| <Default Declaration>

<Variable Declaration> ::= variable(<Variable Name> ,
<Values> ,
<Information Source>).

<Rule Declaration> ::= <Rule Name> : if <Antecedent Term>
’ then
<Consequent Term> .

<Default Declaration> ::= <Rule Name> : <Consequent Term> .
<Variable Name> ::= <atom>

: | <structure>
<Values> ::= members({ <Member List> })

| limits(<Lower Limit> , <Upper Limit>)

<Member List> ::= <Member> , <Member List>

ERL-0330-TR - 16 -

| <Member>

<Member> = <atom>
| <structure>
| <list>

<variable>

<Lower Limit> <Number>

<Upper Limit> <Number>

<Number> ::= <integer>
| <variable>

<Information Source> ask(<Text Specification>)

deduce

<Text>
| { <Text List> }

<Text Specification>

<Text List> ::= <Text> , <Text List>
| <Text>
<Text> ::= <atom>
<Rule Name> ::= <atom>
<Antecedent Term> ::= { <Antecedent Clause List> }
<Antecedent Clause Li;t> ::= <Antecedent Clause> ,

<Antecedent Clause List>
| <Antecedent Clause>

<Antecedent Clause> ::= <'same' Clause>

| <'unknown' Clause>
| <'greater' Clause>
| <'lesser' Clause>

| <'between' Clause>
| <'ask' Clause>

|

<clause>

<'same' Clause> ::= <Same Function>
not <Same Function>

<Same Function> ::= same(<Variable Name> , <Value Symbol>)

<Unknown Function>
| not <Unknown Function>

<'unknown' Clause>

"

<Unknown Function> unknown(<Variable Name>)

<Greater Function>
| not <Greater Function>

<'greater' Clause> ::

<Greater Function> ::= greater(<Variable Name> , <Number>)

<'lesser' Clause> ::= <Lesser Function>
| not <Lesser Function>

<Lesser Function> ::= lesser(<Variable Name> , <Number>)

- 17 - . ERL-0330-TR

e

<Between Function>
not <Between Function>

<'between' Clause>

<Between Function> between(<Variable Name> ,

<Number> , <Number>)

<'ask' Clause> ::= ask(<Variable Name> , <Value Symbol>)
<Value Symbol> ::= <Member>

| <Number>
<Consequent Term> ::= <Same Function>

| <Same Function> <Consequent Action>

<Consequent Action> ::= action { <Consequent Action list> }

<Consequent Action list> ::= <clause> , <Consequent Action list>
| <clause>

<Constant> ::= <atom>

| <integer>
<Term> <Constant>
<structure>
<list>
<yvariable>

.

I.2 Vocabulary

The vocabulary of a grammar comprises the sets of non-terminal symbols and
terminal symbols. These two sets for DIESSL are enumerated and discussed
below.

I.2.1 Non-terminal symbols

Non-terminal symbols of the DIESSL vocabulary are those which appear in
productions on the left hand side of the 'replacement' (ie "::=") BNF
meta symbol. Their syntactic content is defined by the BNF grammar. The
non-terminal symbols in DIESSL are listed below:

<Expert System> <Rule Name>

<Sys£em Id> <Antecedent Term>
<System Name> <Antecedent Clause List>
<Signature> <Antecedent Clause>
<Domain Name> <'same' Clause>

<Goal> <Same Function>
<Knowledge List> <'unknown' Clause>
<Knowledge Element> ‘<Unknown Function>
<Variable Declaration> <'greater' Clause>

<Rule Declaration> <Greater Function>

ERL-0330-TR ‘ - 18 -

<Default Declaration> <'lesser' Clause>
<Variable Name> <Lesser Function>
<Values> <'between' Clause>
<Member List> <Between Function>
<Member> <'ask' Clause>
<Lower Limit> <Value Symbol>
<Upper Limit> <Consequent Term>
<Number> <Consequent Action>
<Information Source> <Consequent Action list>
<Text Specification> <Constant>

<Text List> <Term>

<Text>

1.2.2 Terminal symbols

Terminal symbols in the DIESSL syntax are those symbols which do not

appear on the left hand side of productions. They are (i) literal
characters and (ii) composite symbols appearing within angular brackets
"<" and ">". Brief descriptions of the six terminal symbols in this

latter category (viz <atom>, <integer>, <list>, <variable>, <structure>
and <clause>) appear immediately below. These objects are native to
Prolog and are more fully described in references & and 9.

I1.2.2.1 <atom>

The symbol <atom> stands for one, or a sequence of, non-blank
alphamerics (including underscores) commencing with a lower case
alphabetic; or any sequence of characters enclosed in single quotes
(with a single quote character embedded in the string being
represented by two quotes in sequence).

I1.2.2.2 <integer>

The symbol <integer> is composed of one, or a sequence of, numeric
characters, optionally preceded by a sign (+ for a positive
number - the default, and ~ for a negative number).

I.2.2.3 <list>

The symbol <list> stands for a Term, or a sequence of Terms separated
by commas (or head and tail Terms separated by |) enclosed in braces

(ie {}).
1.2.2.4 <variable>
The symbol <variable> stands for one, or a sequence of, non-blank

alphamerics commencing with an upper case alphabetic or underscore
character.

- 19 - ERL-0330-TR

1.2.2.5 <structure>

The symbol <structure> stands for an atom (called the principal
functor) followed by a sequence of of arguments contained in
parentheses and separated by commas, where each argument is in its
most general sense a Term (ie <Term>). Although <structure> is thus
not a truly terminal symbol, no substantive difficulties are incurred
by this minor inconsistency.

1.2.2.6 <clause>

The symbol <clause> stands for an expression to be established as a
Prolog geoal.

1.3 Comments

Comments in DIESSL may appear anywhere between terminal symbols. Comment
text commences with the "/*" and ends with the "*/" composite symbols.

ERL-0330-TR - 20 -

APPENDIX II
EXTRACTS OF JCL PROGRAMMER EXPERT SYSTEM KNOWLEDGE BASE

IT.1 Top level knowledge

g g S % /
;* Knowledge to establish top-level goals */
/:’: <% /
/* Author : RFD */
/* Ref : July'84, amended Sept '84. %/
/ B e r e cm e e e cc e m e mmmm e = = = - k] /
variable(result,

members ({task_complete,
task_incomplete,
task_impossible}),
deduce).

cl: if { same(physically_standard_tape, yes),
same(jcl_prog, JCL),
same(q(volser), VOLSER) }
then

same(result, task_complete)

action {nl,
write(' I have written the following JCL programme '),
writeln('to read your tape:'),
nl,
writelist (JCL),
make_fn(VOLSER, FN),
tell(FN),
writelist(JCL),
told,
nl,
write(' This code has been copied to file '),
write(FN),
writeln('."),
nl}.

¢2: if { same(physically_standard_tape, yes),
same(missing(P), true) }
then

same (result, task_incomplete)

action {nl,
write(' You will need to discover'),
writeln(' and supply me with the value of'),
write(' '), writeln(P),
writeln(' before I can write the JCL to read your tape.'),
writeln(' I will generally need to know the tape recording demsity,'),
writeln(' number of tracks,-recording mode, record format, block '),
writeln(' size and record length in order to write the JCL.'),
writeln(’® The TSO command ''tapemap'' may be useful for getting'),
writeln(' some of these values.'),

nl}.

- 21 - ERL-0330-TR

c3: if { unknown(physically _standard_tape) }
then

same (result, task_impossible)

action {nl,
writeln(' It seems that your tape is not physically compatible'),
writeln(' with the IBM tape drives. You should check with'),
writeln(' CS group to positively confirm this conclusion.'),
writeln(' Sorry I can''t help further.'),

nl}.

I1.2 Some first level knowledge

I LT T T I RIS RS L *
/* Knowledge to establish tape is physically amenable */
/% %/
/* Author : RFD - July, 1984. */
/* Ref : July'8s */
/-.‘: ... -,':/

variable(physically_standard_tape,
members ({yes}),
deduce).

pl: if {same(ordinary_looking tape, yes)}
then
same (physically_standard_tape, ves).

p2a: if { unknown(ordinary_looking tape),
same(visually_checked_ok, yes) }
then
same(physically_standard_tape, ves).

variable(ordinary_looking tape,

members ({yes, no}),

ask('Is it an ordinary-looking tape')).
variable(visually_checked_ok,

members ({yes, no}),

ask({
'Is it a single reel of tape 0.5 in. wide with an external diameter of',
"between 7.0 and 10.5 in. and an internal diameter of about 3.75 in.'

).

II.3 jCL,programme structure

/:‘r e e e e = e e e e = = e ——————— = 7’:/
/* Knowledge to build JCL programme */
/% */
/% Author : RFD - July, 1984. *
/* Ref : 0S/VS2 JCL (Rel 3), pl9 */
e T T e e e LT */

variable(jcl_prog, members({{{_}|_}}), deduce).

jelO0: if { same(prog body, B),
same(job_stmt, J),
same (comment, C),
join({J, C, B}, JCB) }
then
same(jcl_prog, JCB).

ERL-0330-TR

/¥ Knowl
/¥ Author
* Ref :
variable(

jell: if

then
s

II.4 JCL

/* Knowl

/¥ Author :

/* Ref :

W eemma-

prototype_
"'//SYSUT1
"I/

variable(
dal: if {

then
s

- 922 -
--- ki /
edge to build body of programme */
% /
: RFD - July, 1984. */
0S/VS2 MVS Utilities, p 9-5, p9-15 */
___ ¥ /
prog_body, members({{{_}|_}}), deduce).
{ same(sysutl, D1),
same(sysut2, D2),
same(exec_stmt, E),
same(sysprint, D3),
same(sysin, D&4),
same(terminator, TE),
join({E, D1, D2, D3, D&, TE}, B) }
ame (prog _body, B).
DD statement construction
--- % /
edge to establish DD stmts for IEBGENER exec */
% /
RFD - July, 1984, */
0S/VS2 MVS Utilities, p 9-15 & */
0S/VS2 (Rel 3) JCL. */
___ */

sysutl({
DD UNIT=$unit, VOL—SER‘svolser DISP=0LD,"
DCB=(RECFM= Srecfm,LRECL—Slrec1$b1k51ze_p,
DEN=S$denS$optcd_pStrtch_p),"”,
LABEL=(,NL)"
3.

L)

sysutl, members({{{_}|_}}), deduce).

same(jcl_sysutl_parms, Parms),
(prototype_sysut1(Syp), symb_subs(Parms, Syp, Sy)) }

ame (sysutl, Sy).

- 23 -

variable(jcl_sysutl_parms, members({{H|T}}), deduce).

da2: if { same(unit, UNIT),

same(q(volser), VOLSER),

same(p(logical_record_length), LRECL),

same(recfm, RECFM),

same(blksize_p, BLKSIZE_P),

same(den, DEN),

same (optcd_p, OPTCD_P),

same(trtch_p, TRTCH_P) }

then e
same(jcl_sysutl_parms, { unit(UNIT),

volser(VOLSER),
recfm(RECFM),
lrecl(LRECL),
blksize_p(BLKSIZE_P),
den(DEN),
optcd_p(OPTCD_P),
trtch_p(TRTCH_P)
.

variable(logical_record_length, limits{l, 32768),
ask('What is the record length (in bytes)')).

IT.5 The collection of vital parameters

J¥ mmmmmmma M e M m R m e e mmmmemmmasesescumesacscaemaam—————— *
/* Rules to supply parameters and record unknowns */
/7’: #*
/* Author : RFD - July, 1984. */
/-,': ... mm—-————- 7’:/

variable(p(_), limits(_, _), deduce).

uua: if { unknown(missing(Y¥)),
same(Y, 2) }
then
same(p(Y), 2).

variable(q(_), members({ _ }), deduce).

uub: if { unknown(missing(Y)),
same(Y, Z) }
then
same(q(Y), Z).

variable(missing(_), members({ true }), deduce).

uuc: if { unknown(Y) }
then

same(missing(Y), true)

action {nl,
write(' The value of essential parameter: '),
write(Y),
writeln(' is missing.'),
nl}.

ERL-0330-TR

ERL-0330-TR - 24 -

I1.6 Prolog code for symbolic substitution
/% substitution for parameters in Spec */

symb_subs(Pms, Lines, Procd_Lines) :-
Stc is "$",
symb_subst({Stc|Pms}, Lines, Procd_Lines).

symb_subst (Specs, {Line_l|Lines}, {Procd_Line_1|Procd_Lines}) :-
symb(Specs, Line_1, Procd_Line_1),
symb_subst(Specs, Lines, Procd_Lines), !.

symb_subst(_, {}, {}).

symb(Specs, Line, Procd_Line) :-
found_start_char(Specs, Line, Procd_Line), .
symb (Specs, {C1|Cs}, {C1|PCs}) :-
symb(Specs, Cs, PCs), !.
symb(_, {}, {}).

found_start_char({Stc|Pms}, {Stc|Line}, Procd_Line) :-
word_in_string head(Line, Residue, W_input_string),
replacement (W_input_string, Pms, Word_string),
symb({Stc|Pms}, Residue, Procd_Residue),
append (Word_string, Procd_Residue, Procd_Line), !.

word_in_string head({C1|Cs}, Res, {Cl|Ws}) :-
not delim(C1l), 1!,
word_in_string head(Cs, Res, Ws).
word_in_string head({}, {3}, {}) :- t.
word_in_string head(Cs, Cs, {}) :- !.

delim(C) :-
dim(Cs),
C is Cs.

replacement(Wins, Pms, Wouts) :-
name{Wm, Wins),
rv(Wm, Pms, Wouts).

rv(Wm, {WIO|_}, Wouts) :-
WIO =.. {Wm, Watomic}, !,
xname (Watomic, Wouts).
rv(Wm, {_|WIOs}, Wouts) :-
rv{Wm, WIOs, Wouts).
rv(Wm, {}’ nn) .
write(' Symbolic parameter :'),
write(Wm),
writeln(' is unknown.').

- 25 - ERL-0330-TR

APPENDIX III
THREE EXAMPLE TAPE EXAMINATIONS

READY
prolog preload(rootjecl3) sees(test)
Portable Prolog Release 1.

DIESS Version 1.0 R2/JCL programmer (tape reading) V1.1

DATE: 09/18/84 TIME: 13:50:06.

enter login(userid, pwd) or end.
login(rfd,xxx).

#%% User rfd is logged in to ACSI for access at level: admin.
yes

>
call(stats).

Prolog Execution Statistics:
Local Frames: 14, Variables: 10
Global Nodes: 11

Heap Nodes: 12241

Trail Entries: 2

Atoms: 863, Chars: 9411

yes

III1.1 Examination of a 'Bad' Tape

>
/¥ Example No. 1. Bad Tape */

examine tO0.

“%% Tnitiating examination for "'t0".
EXPERT SYSTEM: JCL programmer (tape reading) V1.1
DATE: 09/18/84 TIME: 13:51:55.

Is it an ordinary-looking tape
(Give one of: yes, no, or unknown).?
unknown.

Is it a single reel of tape 0.5 in. wide with an external diameter of
between 7.0 and 10.5 in. and an internal diameter of about 3.75 in.
(Give one of: yes, no, or unknown).?
no. .

ERL-0330-TR - 26 -

It seems that your tape is not physically compatible
with the IBM tape drives. You should check with
CS group to positively confirm this conclusion.
Sorry I can't help further.
#*%% Concluded "tO" result task_impossible using rule c3.
“*%% Terminating examination for "t0".

yes
>
dt. ;
%*%¥% Execution time was 817 mS.
yes
>
call(stats).

Prolog Execution Statistics:
Local Frames: 14, Variables: 10
Global Nodes: 11

Heap Nodes: 12425

Trail Entries: 2

Atoms: 865, Chars: 9421

yes

II1.2 Examination with insufficient information

>
/¥ Example No. 2. . Insufficient information */

examine tl.

wlealents
I

Initiating examination for "t1".
EXPERT SYSTEM: JCL programmer (tape reading) V1.1
DATE: 09/18/84 TIME: 13:53:09.

Is it an ordinary-looking tape
(Give one of: yes, no, or unknown).?
yes.

*%% Deduced "t1" physically_standard_tape yes using rule pl.

Is it a 7- or 9-track tape
(Give one of: 7, 9, or unknown).?
unknown.

The value of essential parameter: number_of_tracks is missing.

wleatoata
W

*% Deduced "t1" missing(number_of_tracks) true using rule uuc.

You will need to discover and supply me with the value of
number_of_tracks
before I can write the JCL to read your tape.

I will generally need to know the tape recording demsity,
number of tracks, recording mode, record format, block
size and record length in order to write the JCL.

The TSO command 'tapemap' may be useful for getting
some of these values.

- 27 -

*%% Concluded "t1" result task_incomplete using rule c2.
Terminating examination for "t1".

whY
yes
>
dt.
#%*% Execution time was 1798 mS.
yes
>

call(stats).

Prolog Execution Statistics:
Local Frames: 14, Variables: 10
Global Nodes: 11

Heap Nodes: 12906

Trail Entries: 2

Atoms: 867, Chars: 9431

yes

III.3 Successful examination

>

/* Example No. 3. Completes JCL

examine t2.

“*%% Initiating examination for "t2".

EXPERT SYSTEM: JCL programmer (tape reading) V1.1

DATE: 09/18/84 TIME: 13:54:48.

Is it an ordinary-looking tape

(Give one of: yes, no, or unknown).?

yes.

Sleataats
WICES

Is it a 7- or 9-track tape
(Give one of: 7, 9, or unknown).?
x

Is it a 7- or 9-track tape

(Give one of: 7, 9, or unknown).?
nan.

*%% The Goal Annunciator is now off.

Is it a 7- or 9-track tape

(Give one of: 7, 9, or unknown).?
9.

Deduced "t2" physically_standard_tape yes using rule pl.

#*#%% Valid responses are members of either;
the ;set of variable values: {7, 9},
or the set of keywords: {u, w, s, t, nt, an, nan, X}.

ERL-0330-TR

ERL-0330-TR - 28 -

What

is the recording density (in cpi)

(Give one of: 800, 1600, 6250, or unknown).?

1600.
What is the record length (in bytes)
(Give an integer between 1 and 32768 or unknown).?
80.
Are the records blocked
(Give one of: yes, no, or unknown).?
yes.
Are the records of fixed or variable length
(Give one of: variable, fixed, or unknown).?
fixed.
What is the block size (in bytes)
(Give an integer between 18 and 32768 or unknown).?
1600.
What is the character code
(Give one of: ebecdic, ascii, becdic, or unknown).?
ascii.
What is the estimated CPU time (s)
(Give an integer between 1 and 600 or unknown).?
unknown.
I have written the following JCL programme to read your tape:
//ABCC JOB ,,
// NOTIFY=ABC,
// TYPRUN=HOLD,
// MSGCLASS=T,
// CLASS=1
//% JedededodedodedodedoTededede vt T de R e A Y de e e e S e Ve oo A Yo de Yo de e et de e e e e e Yoo fe e
//* *%% JCL GENERATED BY TAPE-READING EXPERT SYSTEM wEE
//* *%% ON 09/18/84 AT 14:03:42 ok
J/* FEE R. F. DANCER, Feid
//7’.‘ whn E.R.L. , e
//:’: Tekeds SEPT 1984. e
/] FiedeRdeRdedode R el dedeledede et de e St T dedede fedede e dede dededed Ve de e dede e e et e Yo vt e
//COPY EXEC PGM=IEBGENER)
//SYSUT1 DD UNIT=TAPE1600,VOL=SER=ABCT20,DISP=0LD,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600,
7/ DEN=3,0PTCD=Q),
// LABEL=(,NL)
//SYSUT2 DD UNIT=SYSDA,DISP=(NEW,CATLG),
// DSN=ABC.LOOKSEE .DATA,
// SPACE=(1600, (50,150),RLSE)
//SYSPRINT DD SYSOQUT=*
//SYSIN DD DUMMY

1/

- 29 - ERL-0330~TR

This code has been copied to file abct20aa.

#%% Concluded "t2" result task_complete using rule cl.
**% Terminating examination for "t2".
yes
>
dt.
*%% Execution time was 35129 mS.
yes
>
call(stats).

Prolog Execution Statistics:
Local Frames: 14, Variables: 10
Global Nodes: 11

Heap Nodes: 23954

Trail Entries: 2

Atoms: 897, Chars: 10257

yes
>

end.

**% Leaving ACSI.
{Leaving Prolog}
READY

DOCUMENT CONTROL DATA SHEET

Security classification of this page

UNCLASSIFIED

1 DOCUMENT NUMBERS

2 SECURITY CLASSIFICATION

AR a. Complete

Number: AR-004-140 Document: Unclassified
Series b. Title in

Number: ERL-0330-TR [solation: Unclassified
Other c. Summary in

Numbers: Isolation: Unclassified
3| TITLE

DIESS - A PROLOG IMPLEMENTATION OF A DOMAIN INDEPENDENT EXPERT SYSTEM SHELL

4 | PERSONAL AUTHOR(S):

R.F. Dancer

S| DOCUMENT DATE:
May 1985
6| 6.1 TOTALNUMBER
OF PAGES 29

6.2 NUMBEROF
REFERENCES: 18§

71 7.1

CORPORATE AUTHOR(S):

8] REFERENCE NUMBERS

Electronics Research Laboratory

a. Task: DST 83/213

b. Sponsoring
Agency:

7.2 DOCUMENT SERIES
AND NUMBER

Electronics Research Laboratory
0330-TR

9| COST CODE:

10| IMPRINT (Publishing organisation)

Defence Research Centre Salisbury

11| COMPUTER PROGRAM(S)
(Title(s) and language(s))

12| RELEASE LIMITATIONS (of the document):

Approved for Public Release

Security classification of this page: [

UNCLASSIFIED]

Security classification of this page: UNCLASSIFIED

13} ANNOUNCEMENT LIMITATIONS (of the information on these pages):
No limitation
14 | DESCRIPTORS: 15| COSATI CODES:

a. EJC Thesaurus
Terms

Computer programming 09020

b. Non-Thesaurus
Terms--

DIESS Version 1

16

SUMMARY OR ABSTRACT:
(if this is security classified, the announcement of this report will be similarly classified)

A software environment suitable for the expression of expert knowledge
in a variety of domains has been designed and implemented in the Prolog
computer language. This 'shell' is intended to be capable of containing
expert systems whose object is the proof of goal symbols in domains of
categorical single-valued facts.

An example is given of a non-trivial expert system to programme in the
IBM Job Control Language. Some conclusions are reached and recommend-
ations given for future developments.

Security classification of this page: UNCLASSIFIED.

	Summary
	Contents
	1. Introduction
	2. Implementation
	3. The knowledge base
	4. The reasoning machine
	5. Operation
	6. Expert JCL programmer
	7. Example tape examinations
	8. Recommendations
	9. Conclusion
	References
	Appendix I: DIESSL syntax
	Appendix II: Extracts of JCL programmer expert system knowledge base
	Appendix III: Three example tape examinations
	Document Control Data

