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1. INTRODUCTION AND LITERATURE SURVEY
1.1 INTRODUCTORY COMMENTS ON THE UPSTREAN TRAVELING WAVE

In s gpatial boundary-value problem with vorticity introduced along a
grid in the freestream, Rogler and Reshotko (Ref. 1) found an explosively
growing solution that represents yorticity diffusing upstream. The solution
is not an eigemmode. It oscillates neutrally in the direction perpendicular
to the freestream rather than vanishing far—away.

The counterpart to this solution appears in the spatial boundary-value
analyses of Refs. 2~7 (for 2-D fluctvations) and Ref. 8 (for 3-D fluctuations)
as a branch line. The corresponding Fourier—Laplace solution for the velocity
of form O(y)expliax—iwt] has a complex wavenumber, a=a_+ia; (with a; very
large and negative, indicating rapid growth), and a real frequency, ©, It
represents a third class of growing solutions of the Orr—Sommerfeld equation.
This solution appears to have no counterpart im the viscous te T
initial-value formulations (Refs., 9 and 10) with a real and o complex.
Neither does it appear in the inviscid spatial solution of Ref. 11,

The other two classes of growing, spatial solutions include the
Tolimien—Schlichting (T-S) wave, which is the fundamentai eigemmode that can
be unstable or stable depending on the parametcrs and boundary layer.
Although there are other eigemmodes, Mack (Ref. 12) demonstrated that the
higher temporal eigemmodes are finite in numbder and heavily damped for the
Blasius layer.

Another growing soluticn is a standing wave. It does mnot travel, but
grovs exponentially in the streamwise direction and oscillates in time as
exp[+px—int] with B real. The phase speed is pure imaginary. The stranding
wave has been described in Refs. 13 and 14; a movie was made to visualize i:s
behavior. The broader picture of the five spatial classes of solutioms is
presented in the next section.

For high Reynolds numbers, the upstream traveling wave is very difficalt
to calculate because of extremely high frequency oscillations im the
solutions. The high frequemcy oscillation for th7 upstream traveling wave has
8 y-wvavenumber O(RS)' as compared with O(R; ) for the T-S wave. At
R& = 2500, this wavenumber is fifty times greater than for the T-S wave.

Also, these oscillations 0l7 decay very slowly away from the wall, with a
decay rate O(w) rather than O(Rg *) for the instability wave. That means that
the high frequency oscillation can survive far from the wall for the upstream
traveling wave. In contrast, the viscous solution for the T-S wave is
significant only near the wall (where it represents the viscous sublayer) and
the critical layer.

For these reasons, the present calculations have been restricted to low
Reynolds numbers. At high Reynolds numbers, this solution will be a challenge
for future developments in numerical solutions of differential equations.

Our objectives here are to describe solutions of the Orr-Sommerfeld
equation for upstream traveling vorticity. Three cases are described:

7 PREVIOUS PAGE
IS BLANK




hd Lirrn i S e A AL AN & *4 A L AN N A st b og he - Samh e v - Ibale Jhate S fhun s an g o b an e T le - Rate® R Slie b SaCib -t i i i Aale

AEDC TR 83 7
(1) Analytical solutions for vorticity in a uniform
flow far from any wall (Sections 1.3,1.4)

(2) Analytical solutions for vorticity in a uniform
flow near a wall (Section 1.5)

(3) Numerical solutions of the Orr—-Sommerfeld
equation for boundary layers (Chapters 2 and 3)

We believe that closely related waves traveling upstream also appear in
free—shear layers, jets, wakes and other shear layers.

1.2 WHY STUDY THE FOURIER-LAPLACE SOLUTIONS OF THE ORR-SOMMERFELD EQUATION?

To accurately simulate boundary layer transition in test facilities, the
processe: leading to transition must be known and controlled. To understand,
cal~nlatr., measure and control boundary layer transition and mixing in shear
layeis, it is important to identify all possible Fourier—Laplace solutions of
the viscous, parallel-flow, linear equations. More sophisticated equations
exist, but the importance of these equations cannot be denied. They can
describe many basic phenomena in shear layers. To have a mathematically
complete set of solutions which could be superimposed to satisfy appropriate
opstream and downstream boundary conditions would be a practically useful
accomplishment, Perhaps most importantly, even after more than 70 years since
the original derivations by Orr and Sommerfeld, and after more than 50 years
since the first solution by Tollmien, basic features continue to be discovered
from the equations for viscous, linear, parallel-flows,

Apart from the nsefulness of a complete set of solutions in initial-value
problems, it is also important to be aware of physical phenomena, to be able
to categorize them, and to be =able to describe them physically. The
Fourier-Laplace solutions help sort out these basic features.

¥hile reasons for seeking the Fourier—-Laplace solutions are summarized
above, a few statements concerning what these solutions are NOT are also
warranted. In many cases, a superposition of members of one family of waves
or several families of waves is required. The behavior observed can be unlike
that of any one Fourier component, even though that Fourier component is
imbedded within the observed behavior. Secondly, nonparallelism and
nonlinearity can introduce other significant features into the problems. Yot
even for these cases, the Fourier~Laplace solutions based on the viscous,
parallel-flow equations provide (1) the solutions which can be superimposed
and (2) sclutions serving as a point of departure for weak nonparallelism and
weak nonlinearity.

Section 1 of Ref. 3 surveys the temporal and spatial initial-value and
boundary-value problems. Section 1.6 of Ref. 14 lists the known
Fourier—Laplace solutions of the Orr-Sommerfeld equation and the other
viscous, parallel-flow, linear equations for incompressible flow,

The five classes of 2-D spatial solutions, including decaying omnes, are
tabulated in Table I below. For simplicity, the table has been restricted to
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2-D fluctoations (with uw and v velocities, but no w velocity) and a flat
plate. However, the pattern of solutions appears to generally repeat itself
for 3-D fluctuations, i.e., the poles and branch lines from 2-D formulations
appear to have generalized counterparts for 3-D studies, These
generalizations include 1longitudinal vortices and at 1least three other
structures.

Table I has three columns: for decaying, neutral, and growing solutionms
in the streamwise direction. Row 1 is composed of the set of eigensolutions
which vanish far away from the boundary layer. The fundamental instability
wave (the Tollmien-Schlichting wave) can be unstable. As indicated by the
arrows, it also can be neutral or stable depending on the parameters and
boundary layer.

Row 1.2 is a pair of solutions which are vortical fluctuations in the
freestream. However, 1.2a consists of vortical disturbances propagating
downstream. They are summarized in Section 1,6 of Ref. 14 and will not be
surveyed here. Although the details of the solutions depend on the problem
considered, these vortical solutions appear in uniform flows, shearing flows,
inviscid and viscous flows, and in both spatial and temporal analyses.

Solution 1.2b consists of vortical disturbances propagating upstream and
growing very rapidly in the streamwise direction. Fluctuations 1.2b are

described in this report.

The last row also consists of a pair of solutions, one which decays and
another which grows. These two solutions are standing waves (they do not
travel in the streamwise direction) and are irrotational fluctuations far away
from the boundary layer. These two standing wave solutions are described in
Refs. 13 and 14.

Table I
SPATIAL, FOURIER/LAPLACE SOLUTIONS FOR A BOUNDARY LAYER
of form fct(y)exp(iax — iot)
for viscous, incompressible, constant transport property, parallel-flow
over a stationary flat plate

Decaying in the Neutral in the Growing in the
downstream direction streamwise direction downstream direction
- - (1.1a) Tollmien—Schlichting
wave

(1.1b) Higher discrete modes

- (1.2a) Downstream propagating (1.2b) Upstream propagating

:; freestream vortices vorticity (described

* in this report)

q

Tﬁ (1,38) Decaying standing waves (1.3b) Growing standing wave
»t 3
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1.3 2-D VAVES DIFFUSING UPSTREAM IN THE FREESTREAM

The Rogler—Reshotko analysis of Ref. 1 is an boundary~value problem for
vorticity fluctuvations in the freestream, Since this analysis illustrates
four classes of solutions in Table I (but not the eigemmodes) with elementary
mathematics, this analysis is summarized in this section.

.

i, A S
PR hat

.
s

*.

GG

The two-dimensional equation for vorticity fluctuations in a uniform flow

N is
:;;" Et + §x - 8(§xx + Ey'y) =0 (1.1)
S )
.\\
Y where ¢ is the inverse Reynolds number. A gemeralized Fourier transform in
o the y-direction and time yields the following equation describing the
evolution of vorticity in the streamwise direction
{:? d’g( ) 2 A
e € ) _dix) (io - ep®)E =0 (1.2)
- ax? dx
;‘j Seeking a solution of form ((x)=exp(mx), then the characteristic equation is
b
f;? em® - m + (iv - ep®)E =0 (1.3)
iiﬂ with solutions
W
- my,, = {15 [1- 4e(io - ep*)1*/* /2, (1.4)
oo
‘}}; Hence the complementary solution is
- A
(o ¢(x,B,0) = Ciexp(myx) + Cyexp(m,yx) (1,5)
) The first solution represents fluctuating vorticity which convects and decays
s in the streamwise direction. The second solution grows exponentially in the
o streamwise direction. Both solutions can be physically meaningful,
AN
A

it If an initial-value problem were solved for the region gupstream of the
-¢: y—axis, then the first solution would be discarded and the second solution
retained. For the region downstream of the y—axis where the vorticity is
specified, then the first solution would be retained and the second solution

"{} is discarded. If a rectangular strip were considered, then both solutions

. could exist in the same domain. e
A0 IS
e The inviscid and viscous solutions are sketched in Figure 1.1. Without : }j-:,
. < yiscosity, vorticity cannot diffuse upstream. The solution is identically R

-
b
’

. ) zero until the fluid crosses the y—axis where the vorticity is introduced.
The vorticity is convected downstream without decay.

2: ¥Vith viscosity, however, vorticity can diffuse in the upstream direction.
e Instead of the (inviscid) Heaviside distribution, two exponential functions
:
£
e 10
i
'- . " Ty W AT W W, T L e e R W, WL e
2SS W 'ﬁ;#:ﬁ:f:if ‘fxm"é\i‘r.

B AT
.h"::::g:‘ ?':-‘:5. \
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characteristic decay length
2 3 2
1/e(p +u +y )

downstream characteristic decay length is infinite

l.1la Inviscid case with a uniform mean flow
1l.1b Viscous case with a uniform mean flow

envelope of fluctuating vorticity

| envelope of fluctuating vorticity
{ envelope of fluctuating vorticity

vorticity input along the y-axis.

T WU T

l.1c Effects of reducing the mean velocity while holding the
dimensional frequency and y- and z-wavenumbers constant.

Up—>

Figure 1.1 Envelopes for the inviscid and viscous cases of fluctuating

upstream
decay length
vanishes
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S
join at the y—axis. The decay in the upstream direction is "very rapid”, t\: .‘~,..:
since the vorticity must diffuse upstream against the mean flow. In the
downstream direction, the decay is “slow” as the vortices are comvected @
downstream and diffuse. :éi{t;;;
e,
Both viscous solutions may be relevant in both regions, if both positive SENSEN
and negative mean flows arise in both regions. An example is the case of ;1513?;
reversed flows. Another example is the region between the 1leading and x:%}};‘
trailing edges of a finite—length plate. :
.':-.' '.':-.‘:
Generalizations of the second solution to account for a boundary layer Q"i”;”}
are an objective of this research, DASANE
n__\ .\.“'.;_
SRR
Sataint
A A
1.4 3-D WAVES DIFFUSING UPSTREAM IN A UNIFORM FLOW k‘-:_‘,
o
The equstion describing the evolution of small-amplitude disturbances in :::w‘}:c
s uniform flow (U=1) reduces to :{é{ft$ﬁ
i “:'h_ 1_;:3.;
DAy
@+ 1Ay =0 (1.6) o
at x K .'
o " 4
N
Letting v=0(y)expliax+iyz-int], .

then the Orr—Sommerfeld equation for a uniform mean flow reduces to

1-2-1 @ -a®-yHI0* -a® -y =0 (1.7 A

a iafg };“ >

The characteristic length & in the nondimensionalizations is a dummy parameter ‘H;ﬂ;u

for this uniform flow case. While that 1length could be defined as the &}ﬂuli;
characteristic viscous length, the same nondimensionalizations will be used 'MQ
here as defined in Chapter 2 so that our analytical results can be compared g’

with the numerical solutions. e _

I -.4;‘.:‘

For solutions which oscillate sinusoidally in the y direction }té;*:$

[ 3 _h“- )

oy

A

P(y) = CcosPy + Dsinfy (1.8) BNt

the Orr-Sommerfeld equation reduces to .

'.'.#“:x':

Y

LR

(1-924+ 1 (o +p* +y)la® +8* +¢*) =0 (1.9) hhe

s T B Y B Y _‘:_\:_\?

This equation has four solutions for the x~wavenumber, a. Two solutions are FOEAAYS

irrotational standing waves which grow and decay in the streamwise direction

* ot
[ AN

. e .. ey oy . . . . R R AR AT A R R &l e MRS » Y “.\.‘._ _\‘_\ _'--°
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a = 2i(p® + ¢H)/? (1.10)
These waves are described in Ref. 13 and 14,
Two other solutions are rotational, traveling waves

a="18501 _ [1+ 4 (p* +y* - iukg)]1?) (1.11a)

3

R8

= —iRg 4 3 3 _ 1/3
a= 1+ [1+ + iaR } (1.110)
T{ [ _z(B 4 5) 1]

Solution (1.,11a) with the minus sign corresponds to vortical fluctuations
decaying in the streamwise direction. These waves correspond to those of 1.2a
in Table I. Solution (1.11b) with the positive sign is the one of interest in
this report.

For large values of the Reynolds number, the series representation of the
square root can be found. The results for the x—wavenumber are

a, = wl1 - 2¢*(p*+y +u®)

+ 2e* (B 4y 2+03) (3824372 +70®) + 0(e®)) (1.12a)

Gi = —%_ - e(p’-l-y’-m’)

+ e? (B2 +u?) (B2 2450®) + O(e?) (1.12b)
where & = 1/86. Based on the first term of the expansion for a;, the wave
grows in the streamwise direction as

exp(-a;x) = exp(Rgx) (1.13)
To lowest ordez, this growth rate is independent of the wavenumbers and
frequency. The solution for the fluctuations can be written as

v = 0(y) e 8iT elor(x-coptleirz (1.14)

where the equi-phase speed, a real quantity, is

Cop = w/a, = -1 - 22 (B 4y 2+u?)
+ 28 (B2 2 +0? ) (B2 4y 450 ) + O(e*) (1.15)
This quantity is the speed of a point of constant phase on the wave, such as a

local maximum or minimum, a point of zero value, etc. This speed is negative,
indicating that the waves propagate upstream.

T:Y"-“‘-"“;‘_I.".'-“.‘v-~? g 71‘?_"._11"-_\4' LA . g
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Table II tabulates a few values of wavenumber and equi-paase speed for
various Reynolds numbers. In the limit as Ry > w, the waves propagate at a
speed equal to the freestream speed, U,, in the upstream direction.

Table IX

x~-Wavenumbers and Phase Speeds for Upstream Traveling Waves
p=w=05,7v=0

Ry ey a; c°p=u/ut
1.0 -0.3217971 -1.2768869 -1.553774
10.0 -0.4951209 -10.049272 -1.0098543
100.0 -0.4999500 -100,00500 -1.0000999
1000.0 -0.4999995 ~-1000,0005 -1,0000010
» -0.5 B, -1.0

1.5 WAVES PROPAGATING UPSTREAM IN A UNIFORM MEAN FLOW NEAR A WALL

Some features of waves propagating upstream near a wall can be extracted
from the uniform—flow version of the Orr-Sommerfeld equation. The
x-wavenumber is given by eqn. (1.11b). Seeking solutions of form exp(my), the
four independent solutions are

® = Ae™TY + Be'TY + Ccospy + DsinBy (1.16a)

with B=0,C=1, and m = (a® + y»)*/? (1.16b)

]

Introducing the impermeability and no—slip conditions, then A = -1, D = -m/§,
and

P(y) = —e™ + cosPy - .Esinﬂy (1.17)

This velocity fluctuation is plotted im Figure 1.2, Note the high
frequency oscillation which decays slowly away from the wall. Also note the
undamped sinusoidal oscillation in the freestream.

In eqn.(1.16a), the velocity has been nondimensionalized by setting the
constant C=1, In retrospect, the choice D=1 would be a better choice for
large Reynolds numbers. If the right-hand side of eqn.(1.17) were multiplied
by —-f/m, the solution with this alternate nondimensionalization would result.

Expressions (1.16 and 1.17) are for 3-D disturbances. To obtain
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relations useful for comparison with the 2-D calculations in Chapter 2, the

following formulase are for 2-D fluctuations.

With a positive frequency, the value of the exponment m is

m=-a =0+ iR (for y = 0) (1.18)
The term exp{(-my) has the following approximate value for 1large Reynolds
numbers

e MY = o~iRgy - wy (for y = 0) (1.19)
Hence, the term exp(-my) can be a high y-wavenumber wave which decays slowly
in the y—direction, as shown in Figure 1.,2.

The longitudinal velocity

u = f(y)eiax-iut (for v = 0) (1.20a)

can be found from the continuity equation, oy + vy = 0,

£(y) = +ie™™ - iBgingy — jcospy (for y = 0) (1.20b)
[ 3

This amplitude is plotted in Figure 1.3 for R6=10. The high frequency
oscillation in f£f(y) is proportionately much stronger than for 0. Note,
however, that the scale of the abscissa has been changed. To illustrate the
effect of changing Reynolds number, the amplitude f£(y) is plotted in
Figure 1.8 for R5=20. This figure clearly shows the higher frequencies
associated with the term exp(-iRgsy). While the explicit solutions of this
chapter can be evaluated for much igher Reynolds numbers, the numerical
solutions of the Orr-Sommerfeld equation presented in the next two chapters
cannot be found for large Reynolds numbers because of the high frequency
oscillation exp(-iRgy) which dampens slowly as exp(-wy) if the frequency is
small. For this reason, all plots and the numerical calculations have been
restricted to low Reynolds numbers.

From the definition of vorticity,

= Z(y)elax—iut (for vy = 0) (1.21a)

§ =vg -y
the amplitude is
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f:'

T 303 3,03

o~ Z(y) = ~(% P )oospy + 2@ B ) ip (for y = 0) (1.21b)
o b randab A ‘G Y
:u{ This amplitude is plotted in Figure 1.4. Note that there are no high
15 frequency oscillations; the term exp(-my) is irrotational. Also note that
{:: there is no evidence of large amplitude spikes of vorticity at the wall
;xj associated with viscous sublayers. The sinusoidal oscillations are undamped
::- and represent one part of the vortical freestream disturbances.,

A
. . The fluctuating pressure
‘ﬁ\' p = n(y)eiox — iut (for vy = 0) (1.22)
" Y
5!3 can be found from the x-momentum equation
_J. 1

. B, + uy, = + =
;;1 t x = "Px Rs(“xx+“yy) (for v = 0) (1.23)
- Substituting for u, then
L n( = [ a 1
et y=[L-1- 218y + (for y = 0) (1.24)
@ ARG © 44 Y

g The pressure is plotted in Figure 1.5. The presence of the wall stromgly
L irfluences the pressure through the term exp(-my).

The streamlines and iso-vorticity contours are plotted in Figures 1.6 and
1.7. The influence of the wall, through the high frequency term exp(iksy) can
be clearly seen in the streamline pattern. A more subtle influence of the
boundary conditions at the wall is that they dictate the value of the comstant
D in eqn.(1.16a). This influence of the wall does not vanish far away from
the wall. Only this effect on the phasing of the oscillation remains in the
iso-vorticity contours of Figure 1.7.
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2. FORMULATION OF THE MATHENATICAL SYSTEN FOR 3-D FLUCTUATIONS
INTERACTING WITH BOUNDARY LAYERS

The linearized, parallel-flow, viscous momentum equations can be combined
into the following equation in terms of the fluctuvating velocity, v(x,y.z,t),
in the direction normal to the plate

@ + Ty

3 _1g3 -F
7t . v Kiv yy(y)

=

where the Laplacian is V*=0/3x*+3%/9y*+3%/92z>. The Reynolds number based
upon the freestream velocity and characteristic thickness of the boundary

layer is Ry = pUyd/p. For Blasius boundary layers, the characteristic
thickness is

v =0 .1
o (2.1)

& = (2ux/p¥,)*/? (2.2)
The lengths in eqn. 2.1 are nondimensionalized against & and the time is
nondimensionalized against 5/U,. We now seek solutions of form

vix,y,z,t) = O(ylexpliax+iyz—int] (2.3)
where the wavenumbers and the frequency are related by egn., (1.11), The
z-wavonumber is complex, while the z-wavenumber and frequency are real.

Substituting eqm. (2.3) into (2.1), then after some rearrangement, the
Orr-Sommerfeld equation results

(-9 -a* -y -T__ - T_at -y =0  (2.4)
a

1
vy g(D
where D = d/dy. This equation is subject to impermeability and no—slip at the
wall and boundedness far away
O =DP =0aty=0and @ is bounded as y=wm (2.5)
When U = 1 outside the boundary layer, the system reduces to

n-o- T}m_(n’ —a® -1 - -yHe =0 (2.6)
a
.3

Seeking solutions of form exp(my), then the four solutions are

oxp(£ipy) or cosfy and sinfy (which oscillate neutrally)

and exp(imy) (which oscillate and grow or decay) (2.7)

where m is the root with positive real part
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1/a

2= (a® +y?) (2.8)

Hence the solution outside of the boundary layer is

O(y) = Ae™™Y + Be'WY + Ccospy + Dsiny (for y > ve) (2.9)

where B = 0 in the present problem and we mnormalize by setting C =1, Ve
require that the exterior solution and the first three derivatives agree with

the interior solution and the corresponding derivatives at the "edge” of the
boundary layer, Y=Y,

D*8(y,) = D?@(y}) for n = 0,1,2,3 (2.10)

With the normal velocity found as a solution of the Orr-Sommerfeld
equation, then the longitudinal velocity is found from the continmuity
equation. The vorticity is calculated from the derivatives of the velocities,
and the pressure is found from the x-momentum equation. rms quantities and

other correlations such as the Reynolds stress and emergy production are

also
found.

Our objective now is to solve the mathematical system composed of the
Orr—Sommerfeld equmation (2.6a,b), the two wall conditions (2.8), and the four
conditions at the boundary layer edge (2.10).
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3. NUMERICAL SOLUTIONS FOR WAVES TRAVELING UPSTREAM IN BOUNDARY LAYERS

3.1 SUMMARY OF THE NUMERICAL TECHNIQUES

The numerical techniques for calculating both the mean flow and the
unsteady flow are the same as used in Refs. 13 and 14, The numerical
techniques are summarized in this section.

To obtain the coefficients U(y) and U (y) of the mean flow, numerical
solutions of the Falkner-Skan equation” "are obtained by the method of
Nachtsheim and Swigert (Ref. 15. The equation is solved by shooting from the
wall outward, using 4th-order Runge-Kutta integration in double-precision
arithmetic. The exterior boundary condition, F =1 as n =, is not specified
at the boundary layer edge, y = Yo+ but rather the error is minimized in a
least square sense.

The Orr—Sommerfeld system of equations (2.6b, 2.8, 2.13, 2.14) is solved
by an expansion in Chebyshev polynomials

o(H) = Nf:l-_r,(a) (3.1)
=0

with polynomials defined as

Tn(a) = cos[l(nrccosa)] (3.2)
and where the variable ﬁ is related to the dimensionless y by the linear
transformation

¢l=2—y-—1 (3.3)

Ve

A set of linear, algebraic equations results from the Orr-Sommerfeld equation,
the two wall boundary conditions, and the four matching conditions at the
boundary layer edge. The matrix of coefficients for this system is reduced by
Gauss-Jordan elimination with maximom pivoting by column and rows. With the
coefficients known, the expansion 3.1 is carried out for O(y), and identities
used to obtain the y—derivatives of P(y). With P and its derivatives known,
the longitudinal velocity, vorticity, and vorticity production are calculated.
From the x-momentum equation, the pressure fluctuations are found, and then
the correlations are calculated for the rms quantities., The streamlines and
iso—vorticity contours are also drawn,

" o

v

The numerical checks include numerical experiments to determime the

Se 9w
P

- effects of number of terms in the expansion, precision of arithmetic for the
- matrix reduction, and influence of the y-value where the edge boundary
9. conditions are imposed. Comparisons are made between analytical and numerical
- - solutions for a uniform mean flow., The same computer program used to obtain
vt" solutions for the traveling waves, except with different patching conditions
b, st the boundary layer edge, was also used to recover the Tollmien-Schlichting

waves, the two standing waves, decaying vortical fluctuations in the
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freestream, and decaying longitudinal vortices.

3.2 NUMERICAL RESULTS FOR UPSTREAM TRAVELING WAVES IN A BLASIUS BOUNDARY LAYER

The velocity profile and derivatives for the Blasius boundary layer are
plotted in Figure 3.1 with the same y—scale as the other figures,

To aid in the interpretation of these calculations, since

v = [0.(y)+ip,(y)1eiorx-10ts=a;x
= 0 cos(apx—wt)e %i* - D sin(a x-wt)e ®if (3.4)
then for ax-wt =0, v= O.y))e %X
a.x-wt = n/2, v =-~P;i(y))e %i*
a x-wt = n, v = -P.(y))e %k
a.x-wt = 3n/2, v = 0;(y))e %i* (3.52-4d)

The vertical lines a x-wt=0, n/2, =, and 3n/2 travel to the left at speed c,

= 0/¢r (slightly 1less than —-1), Hence the real and imaginary parts of the
complex amplitude (when multiplied by the factor exp(—aix)) are the velocity
profiles along those vertical lines a_x-wt = 0 and 3n/2 respectively. With a
reversal of sign, they are the velocity profiles along the lines a_x-wt = n/2
and n, Analogous interpretations also apply for the other complex amplitudes.

Figures 3.2 through 3.15 are plots for a wave with y-wavenumber and
frequency, f=w= 0.5, and Reynolds number Ry= 10, These calculstions are for
2-D fluctuations, although the computer program for 0(y) is applicable for 3-D
floctuations.

In Figure 3.2 for the normal velocity, note that the impermeability
condition is satisfied at the wall. Also note the dual oscillatory behavior
of the solution. Far from the boundary

O(y) = cosBy + Dsinpy (3.6)

This figure (with a Blasius layer) can be compared with Figure 1.2 (with a
uniform mean flow). Note the substantial influence of the boundary layer on
both the magnitude of the high-frequency oscillations and the phasing of the
low-frequency oscillations (sinfy and cosfy) which survive into the
freestreanm,

Figure 3.3 is a plot of the rms normal velocity fluctuation which shows
that impermeability is satisfied and illustrates the slow dampening of the
high—frequency oscillation in the y-direction.

In Figure 3.4 for the 1longitudinal velocity, note that the no-slip

condition is satisfied and again note the genmeral oscillatory behavior of the
solution. This figure (with a Blasius layer) can be compared with Figure 1.3
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(for a uniform mean flow). While both figures illustrate the dual oscillatory
behavior, the details of the flows are quite differenat., The y—-wavenumber,
frequency, and Reynolds number are the same for both figures.

Figure 3.5 is the rmas version of the previous figure which illustrates
the slow dampening of the high-frequency oscillation.

The streamlines for the fluctuating flow at time =zero are plotted in
Figure 3.6. Again note the dmal oscillatory patterns in the y—direction and
the effects of the exponential growth in the streamwise direction, behaving
approximately as exp(+Ryx). When comparing Figure 3.6 (with a Blasius layer)
and Figure 1.6 (with a uniform mean flovg, note the much stronger high
frequency oscillations in Figure 3.6.

The fluctoating vorticity, &=v ~uy, is plotted in Figure 3.7; the rms
vorticity is plotted in Figure 3.5. In contrast to Figure 1.4 where no high
frequency oscillations are present, Figores 3.7 and 3.8 clearly show that such
oscillations arise when the boundary layer is present.

The source of the high frequency gotatjonal fluctuations when the
boundary layer is present is shown in Figure 3.9, which is a plot of the
vorticity production term in the equation describing the evolution of vortical
fluctuations in the boundary layer

Se + 08y + vEy = e(Ey; + &yy) (3.7)

where VEY = - D(y)ﬁ;y(y)exp(iax-iut)

This term is analogous to the term describing the production of disturbance
energy in shear layers, -uvdU/dy. The term -PU__ is plotted as Figure 3.9
which shows that the high—-frequency velocity produces high frequency
vorticity. The vorticity which has been produced appears in Figures 3.7 and
3.8 as the high frequency vortical fluctuations mnear the wall. This
production vanishes at the wall (since v=0 there) and in the freestream (since
Uyy=° outside of the boundary layer).

The iso-vorticity contours are plotted in Figure 3.10, This pattern |is
substantially simplier than the streamline pattern of Figure 3.6, but coantains
the high~frequency oscillation which Figure 1.7 does not have when the mean
flow is uniform.

The complex amplitudes and the rms amplitude of the fluctuating pressure
are plotted in Figures 3.11 and 3.12, Much of the high-frequency
characteristics of the instantaneous pressure is lost by the rms version, at
least for this particular case. Note that the pressure is not constant across
the boundary layer.

The Reynolds stress, —uv, and the kinetic energy productionm, —i?dﬁ/dy.
are plotted in Figures 3.13 and 3.14, The Reynolds stress again reflects the
slowly decaying, high-frequency oscillation, The energy production is
confined to the boundary layer. It vanishes at the wall where v = 0 and in
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the freestroam where ﬁy = 0,

The aversged kinetic emergy (3*+v3)/2 of the unsteady flow is plotted in
Figure 3.15, which illustrates that a regiom exists in the boundary layer
where the kinetic energy is larger than in the freestream. This region

roughly corresponds to the region where the energy production is positive in
Figure 3.14.
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- 4. SUMMARY, DISCUSSION AND CONCLUSIONS

4.1 INTRODUCTORY COMMENTS

This report describes a fluctuation which propagates upstream in a
boundary layer. This fluctustion diffuses in the upstream direction, sgainst
the mean flow, and dampens very rapidly in the upstream direction,. The
propagation speed is always more negative than -Uy (i,e. the absolute value
of the speed is slways greater than U, and is directed upstream). As the
Reynolds number increases, the The speed approaches U, as the Reynolds number
becomes infinite,

These fluctuvations oscillate sinusoidally in time. Far from the boundary
layer, they oscillate sinusoidally in the y—direction.

Evidence of the existence of those waves is based on numerical solutions
of the Orr-Sommerfeld equetion, anslytical solutions of simplified forms of
the Orr-Sommerfeld equation, and an asymptotic solution of the Orr—Sommerfeld
equation. The asymptotic solution is not summarized in this report, but a
similiar solution was used by Shunichi Tsuge’ (Ref. 16) for the
Tollmien—Schlichting wave. The use of that asymptotic solution in the spatial
initial-value problem is summarized in Refs. 2—4.

It is instructive to outline three equations:

(1) The viscous equation

@ +T(p? - 1gigty - T () = )
e y)a.x Et’v W'y yy(y)a.; 0 (4.1)

has a 4th-order derivative in x
4th-order derivative in y
1st—order derivative in t

This equation yields four basic solutions far from the boundary
layer: The decaying and growing vortical fluctuwations (which
propagate downstream and upstresam respectively) and the decaying and
growing standing waves which are irrotational., The family of
eigenmodes vanish far from the wall.

(2) The inviscid form of the above equation
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has a 3rd-order derivative in x {.
2nd-order derivative in y
1st—order derivative in t
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Far from the boundary layer, this equation yields only three basic
solutions: A nondecaying traveling wave of vorticity (representing
vortices boing convected downstream), and 8 pair of decaying and
growing standing waves. The solution corresponding to the present
work is missing.

(3) The viscous equation for the case of no mean flow reduces to
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and has the same order of derivatives as case (1), with three
solutions corresponding to vorticity diffusing downstream and
upstream, and two standing waves. In this case, the exponential
decay of the two viscous solutions are symmetric; the asymmetry
introduced by the mean flow and x—dependence through the term Ud/dx

is 1lost. A similar case arises for spanwise fluctuations for the
special case of vanishing x-wavenumber.

4.2 SUMMARY OF THE FORMULATION AND NUMERICAL TECHNIQUE

For small-amplitude disturbances in shear layers which develop
sufficiently slowly such that the parallel-flow representation is adequate,
the objective is to obtain solutions of the equation
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which are of the Fourier-Laplace form

vix,y,z,t) = O(y)expliax+iyz-int] (4.5)
where the frequency w is real, and the x—wavenumber is complex ~T
R
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The motivations for seeking numerical solutions of this form are that such ‘
waves appear in analytical solutions where the mean flow is uniform, as shown RN
in Chapter 1. Furthermore, in an asymptotic analysis of an initial-value LN
problem with a boundary layer, a branch line indicated that waves of this form RO
would exist in boundary layers. For solutions of this form, the equi-phase d}ixf‘
speed is %:3}}
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The impermeability and no-slip boundary conditions at the wall, and the
boundedness condition of the solution far—away, are

®=DP =0 aty=0 and § is bounded as y » ® (4.8a,b,c)
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When U = 1, the Orr—Sommerfeld equation has the solutions

#(y) = Ae™®Y + Be*®Y + Ccosfy + DsinBy (for ¥>¥,) (4.92)

or equivalently

B(y) = Ae™™ + Be™™ + C,exp(~ify) + Dyexp(iBy) (for y > y,) (4.9b)

where the exponent is n = (a® + ¢33 (4.10)

For a boundary layer, B = 0, For most cases, solution (4.9a) is normalized by
setting C=1,

Far—away from the boundary layer edge where the term Aexp(-my) is
negligible, the flowfield varies sinusoidally

P(y) = Ccosfy + Dsinpy (for y > v,) (4.11)

This freestream distorbance is zotatiopsl. The constant D is obtsined

numerically.

In general, the constants A and D and the solution O(y) of the
Orr-Sommerfeld equation depend on the frequency, y-wavenummber, Reynolds
number, and the mean velocity profile.

Numerical solutions of the Orr-Sommerfeld equation at low Reynolds
numbers are obteined by an expansion in a series of (typically 48) Chebyshev
polynomials. The coefficients of those polynomials are obtained as solutions
of a set of 1linear, salgebraic egquations. The matrix of coefficients is
reduced by Gauss-Jordan elimination. Calculations are carried out on a
Digital Equipment Corporation PDP-11/23 computer using 64K bytes of memory and
snother 64K bytes of extended memory for virtual arrays. The disk-overlayed
FORTRAN IV program executes in about 145 seconds when using the KEF11-AA
floating point chip, beginning with data for the mean velocity profile, and
oending with the coefficients of the polynomials and the amplitude #(y). The
program executes in about 80 seconds when accessing the FPF-11 floating point
board.
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4.3 SUMMARY OF RESULTS, DISCUSSION AND CONCLUSIONS

The analyses and calculations indicate that a very rapidly growing
solution of the Orr-Sommerfeld equation exists which differs in form and
behavior from the Tollmien—Schlichting wave (the fundamental eigensolution).
The wave has the usual Fourier—Laplace form, eqn.(4.5). The oscillation grows
very rapidly as exp(+Rsx) in the streamwise direction. The solution is a
traveling wave which propagates upstream with a speed greater than the
freestream speed, Uy, i.e. co,<~1. In the inviscid limit, the growth rate
becomes infinite. This result reflects the idea that diffusion upstream
cannot occur without viscosity. The rapid decay in the upstream direction
arisos because the vorticity must diffuse upstream against the mean flow.
This growing, upstream—traveling wave also differs in form from the growing
standing wave of Refs. 13 and 14,

In the uniform mean flow outside of the boundary layer, the solutions
oscillate as a superposition of neutral sinusoidal waves, cosfy and sinPy, as
well as another high-frequency oscillation. Because this high—frequency
oscillation may decay very slowly, it can survive into the freestream. In the
freestream, this high-frequency oscillation is irrotational. Inside the
boundary layer, high-frequency gotational fluctuations are generated.

Since the solutions admit oscillations of the form exp(-iRgy), the
calculations have been restricted to low Reynolds numbers where evidence
exists of convergence. By increasing the number of terms in the series
expansion, and perhaps also the precision of the calculation, higher Reynolds
number cases could be calculated. The author notes that the computer program
which has calculated Tollmien—Schlichting waves at R;=4000 has only marginal
convergence at R5=10 for the present wave with 48 terms in the series
expansion, For this reason, the numerical solutions plotted in Chapter 3 are
preliminary.

In Refs. 13 and 14, the role of the growing standing wave in numerical
solutions of the partial differential equations was discussed. That
discussion is repeated below, since the growing, rotational solutions
documented in this report will also arise in numerical solutions.

Refs, 17-24 are examples of numerical solutions which have been obtained
for nunsteady boundary layer problems with finite difference, vortex filament,
and spectral techniques. These investigators have been faced with the
difficulty of properly posing the boundary conditions on the downstream,
outer, and upstream boundaries of the calculational regions. This problem
with boundary conditions will become more severe as the disturbances adopt the
characteristics of freestream turbulence and its interaction with the 1leading
edge, as the amplitudes increase, and as 3-D and other significant features
are included,

The growing vortical wave could be a factor in obtaining numerical
solutions in a rectangular domain, since those waves are a mechanisam by which
the downstream boundary condition can influence the flow elliptically.
Improperly formulated boundary conditions can excite extraneous fluctuations
in the calculational domain. Numerical errors from roundoff and truncation
could grow extremely rapidly if a marching scheme in the downstream direction
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were employed and if this solution were excited and uncontrolled. Elimination
of these dangerous waves may be necessary.

In other cases as suggested by the paragraphs above, the proper boundary
conditions should incorporate vortical waves which naturally enter into the
calculational region across the upstream boundary. This wave is a viscous
mechanism for upstream communication in this elliptic problem.

Analogous waves also appear in 3-D cases. For at least one of the cases
of spanwise fluctuvations in a boundary layer, the analogous diffusive wave
decays away from a vorticity source much less rapidly than the streamwise case
documented here.
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NOMENCLATURE
English
a coefficient of the mth Chebyshev polynomial
A,B,C,D constants in the uniform—flow solution of the
Orr-Sommerfeld equation
c=cr+ici=u/a complex phase speed
cep=m/ar equi-phase speed
D=d/dy ordinary derivative in the y-direction
DR=4%/4y2 nth ordinary derivative (D°P=p)

E(y)=(;1¥;r)/2 averaged disturbance kinetic emergy per unit mass

f(y)=fr+ifi complex amplitude of the longitudinal velocity

i (-1/?

m exponent; index on Chebyshev polynomial

N number of terms in the series expansion

P disturbance pressure

Ry Reynolds number based on characteristic thickness of the

boundary layer

t time

Th mth Chebyshev polynomial

u,v,vw disturbance velocities in the x,y and z directions

U mean x-velocity in the streamwise direction

Uy, mean velocity in the freestream

x coordinate parallel to plate and in streamwise direction
_ y cordinate normal to the plate
t Ve y-value of the boundary layer "edge”
L. z lateral or spanwise coordinate

p.-
= Z(Y)“Zr+izi complex amplitude of the fluctuating vorticity
P',
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: Greek and Script

p’ a x-wavenumber

E:::_ B y-wavenumber

_ v z-wavenumber

. v 9*/0x*+3%/3y*+9*/32* 3-D Laplacian operator f~
E}: ] characteristic thickness of the boundary layer :'
:'_'.:E e=1/Rg inverse of Reynolds number .L:
.- n (Zy/ye)-l -
:- 24 kinematic viscosity

_ 13 disturbance vorticity in the z-direction

nly)=n_+iny complex amplitude of pressure disturbance

'-* 8(y)=B_+ip; complex amplitude of the normal velocity disturbance

- ¥ streamfunction

-.:_'. o frequency

: Superscripts, Subscripts, and Miscellaneous Notation

:‘E:: ) the time average over ome time period

e boundary layer edge

v r,i real and imaginary parts of a complex variable

"_C ()x partial derivative with respect to x

::: A double generalized Fourier transform
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