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ABSTRACT ~ ~ w

io!!i

-'Dynamic extension of Sih's fracture criterion based on strain energy
density factor, *c(dW/dV), is used to analyze dynamic crack propagation and
branching. Influence of the nonsingular components, which are known as the
higher order terms (HOT) in the crack tip stress field, on the strain energy
density distribution at a critical distance,surrounding the crack tip moving at
constant crack velocity is examined. This r'-( dW/dV) fracture criterion is then
used to analyze available dynamic photoelasbic results of crack branching and
of engineering materials
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* INTRODUCTION

The mechanics associated with the curved crack paths or bifurcation events
received continuous attention in the literature. Comprehensive reviews on

crack curving and branching were published by the authors Ell and Daily E2].
* Literature on crack branching during rapid fracture discusses its correlation

with either the dynamic crack tip stress field, initiation of secondary cracks*

or with stress wave loading. These studies deal primarily with the stress
* intensity factor, the strain energy release rate at the instant of branching
*and the branching crack velocity. The crack branching angle as well as the

crack curving angle can also be determined by a crack directional stability
criteri a under combined tension and shear loadings* i.e.# for a mixed mode

* .stress field. This crack stability criterion is governed by either the maximum

* circumferential stress at the crack tip [33 or at a specified distance from the

* crack tip [4-6), the maximum energy release rate [7,8], and the minimum strain
energy. density factor surrounding the crack tip (9*10] or at a specified

*distance from the crack tip 111]. Sih £12] extended the minimum strain energy

* density factor criteria to rapidly propagating cracks for predicting the crack

* branching angle with a singular stress field.

Rossmanith £13) and the authors [14-16] have shown that the nonsingular
component in the stress acting parallel to the crack path has considerable
influence on the directional stability of a moving crack and incorporated this
component for estimating the curving and bifurcation angles. The additional

*higher order terms in the crack tip stresses, which are used to account for
* the spread of advanced cracks, are the cause of incipient branching in brittle
* materials, and enlarge the fracture process zone which results in roughening of

the fracture surface. The presence of unsuccessful multiple cracks or crack
interaction with the stress waves [17-193 under mode I loading are often
associated with the slight unsymmetry in the fringe patterns of the dynamic
photoelastic experiments of rapidly propagating cracks. This unsymmetry in the

fringe pattern was modeled by Rossmanith [17] and the authors [19) by adding
the higher order terms of mode I and mode II stress components to the mode I
singular crack tip stress field. This inevitable involvement of the higher
order terms forms the basis of the dynamic fracture analysis in this paper and



the prediction of crack-growth direction of a constant crack velocity using the
strain energy density factor, rc(dW/dV)s criterion.

DYNAMIC MIXED MODE CRACK TIP STRESS FIELDS

The crack tip dynamic state of stresses under mixed mode conditions was
given by Nishioka and Atluri [20] in terms of the local rectangular (xvy) and
polar (r.*e) coordinates. The three rectangular stress components under mode I
and mode II conditions are given as:

OXX ~ (1+2Sl -S) cs( C ~ 1-2h(n)r 2 T 2
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r22 2 22 tanO 2  S2 tane

r2 = x2 +y

h(n) = h(n+l) r2  = X2 y

r and e are the polar coordinates with the origin at the moving crack tip, C,
CI  and C2  are the crack velocity, dilatational and distortional wave

velocities, respectively.

The general solution expressed in Equation (1) yields the singular

stresses when n = 1, i.e., A 1 = K1 and Am11 = KI# which are stress Intensity

factors of mode I and mode II, respectively. The constant stress, ox, is

related to the higher order term (HOT) for n = 2.

6B (c)(S-)

°ox= s A12  (2)

A112 0

DYNAMIC STRAIN ENERGY DENSITY FACTOR CRITERION

The strain energy density factor, rc (dW/dV)s criterion developed by Sih

£9) is based on the local density of the strain energy field at a core radius

rc from the crack tip. It assumes that fracture initiates when r c(dW/dV)

reaches a critical value of [rc (dW/dV)co

3
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The elastic strain energy density, Wo per unit volume, V. of the material

is:

dJ +V 2 -2)  +z 2 2
d, 2E (G +0 2+0 2). xx yy+ 0 ZZ) +20 3 (3),V 21 yy z + +y

for plane strain condition:

0 =V(G + )y (4)zz xx yy

and thus

[(1-v)(aOx 2+ a2) - 2v(oxx0.) + 2ax 2 (5)dV 2E (5)y

where E and v are the modulus of elasticity and Poisson's ratio, respectively.

As discussed earlier, for n = 2 the first nonsingular term exists only in

a ox stress component of mode I loading and is zero in all other components of

mode I and mode II crack tip stress fields. These and other higher order terms

for n 2 2, on the strain energy density factor surrounding the crack tip are

believed to influence the spreading of advanced cracks which turn leads to

crack curving and branching. By denoting the energy density function (dW/dV)

in the presence of higher order terms as (dW/dV) no the intensity of the strain

energy density factor for the state of plane strain at a critical distance, rcs

can be written for as: rc(dW/dV)no The subscript index, n, indicates the

number of the terms considered in determining the strain energy density factor.

By using Equations (1) through (5) and evaluating for n=l, the strain energy

density factor, So became:

S ClA 2 + 2a12 A lAIi+ a2AI112]3 (6)S = (allA1 AI+AII 2 2
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The coefficients aij depend upon C, C1 , C2 and Poisson's ratio, V The
%C2

.* fracture criterion based on the minimum strain energy density factor notes that

* the crack will extend to the location of the minimum strain energy density

factor, [rc(dW/dV)]min. In the presence of higher order terms, strain energy

*" density factor, criterion can be written as:

d~r (A)3
d 0 at = c (7)

The half crack branching angle, ec, at which ErcdW/dV]n possesses
stationary values, can be obtained from Equation (7). As a check on the

accuracy of Equation (5) and (7), the dynamic rc(dW/dV) should coincide with
its static value in Reference [12], when the crack velocity c--> 0 for n=l.

NUMERICAL RESULTS

In order to study the variation of the strain energy density factor with

angular orientation, the theoretical (dW/dV) values were computed for each 0.25
degrees, using a Poisson's ratio, V = 0.36, Youngs Modulus, E = 3.74 GPa,
critical radius rc = 1.3m, Ai1 = KI a 1 MPa/m, and KII/Ki = 0 value. Static
strain energy density factor was approximated by setting C = 0.01C2  in

Equations (1) and (7) where the results agreed well with that of References

* [12,133.

Crack velocities of C/C2 = 0.01 to 0.8 were chosen to generate the dynamic

strain energy density factor in the vicinity of the crack tip. The

representative static and dynamic strain energy density factor distributions in

• the vicinity of the crack tip at a distance rc a 1.3 mm are shown in Figure 1
" for A12<0, A12 - O, and A12 >0 under mode I loading.

Figure 2 shows the angular variation of static and dynamic (rcdW/dV) with

the third higher order term A13 which is compressive in nature, in addition to

remote stress under pure mode I loading (i.e, K1 I - 0). Figure 2(a) shows the
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-strain energy density factor distribution for A 12 -- 0.25 and A 13  -0. 3 for

* v = 0.36 and Figure 2(b) represents the distribution of strain energy density

f factor for A 2 =0.25 and A1213 ' -0. 3. The minimum value of strain energy

*density factor Is almost constant within ±100 for A 2C 0 at l over crack

velocities. Howevert the minimum strain energy density factor for A12 > 0 at

* lower crack velocities yields minimum r (dW/dV) at greater than A± 300 when
crack velocity C/C2  .S0.. This is not surprising since the compressive remote

stress stabilizes the crack path and the tensile stress enhances the

directional instability of a propagating crack.

Figure 3 shows the angular distribution of dilatational and distortional

* strain energy density factors for the strain energy density factors in Figure 1
for A 11= 1.0. It can be observed that the energy is constant between 113

* degrees for lower crack velocities and the maximum magnitudes of the

* distortional energy and corresponding dilatational energy are minimum at C/C 2
O .5. The minimum or maximum spread of dilational and distortional energy is

constant within the ±13 degrees angular region# respectively. A similar

observation was made when we added A13 term to the stress field.

Figure 4 shows the branching angle versus crack velocity corresponding to

*a singular stress field with varying Poisson's ratio. The minimum strain

- energy density occured at angle 0-0 for crack velocities C/Cl 1  0.46; it
* becomes non-zero for C/C1 > 0.46. Note that the branching angle increased with

increasing crack velocities. However, at higher velocities# the difference in

branching angle is very small regardless of the difference in magnitudes of

*Poi sson's rati o.

Table 1 shows the predicted crack branching angles using only the singular

stress field with critical crack velocities of various materials represented by

Poisson's5 ratio. These results suggest that the branching angle is very

sensitive to the Poisson's ratio, v. Note that the branching angle of ±11 to

±23 degrees occurred in these materials within the crack velocity range of
C/C2 = 0.47 to 0.64, which is higher than the experimentally observed crack

velocities [1l irrespective of the material used. The discrepancy between the

* experimental observation and theory can be partly attributed to the finite

geometry and boundary effects which influences all singular and higher order

6



terms fn the crack tip stress f eld. In the following, some representative

values of the higher order terms (HOT) are used to show the difference in the

predicted branching angles with HOT and without HOT in the stress field.

Figure 5 shows the branching angle versus the crack velocities for v =

0.33, in the presence of higher order terms under the pure mode I loading

. condition. The addition of positive higher order terms enhanced the branching

angle while negative higher order terms suppressed branching. The crack is

directionally stable even at higher crack velocities of C/C2 = 0.6 in the

presence of negative HOT terms. Also, at higher crack velocities, the

resulting branching angle is not influenced by the higher order termst with

* differences of nearly 8 degrees.

Quite often the dynamic photoelastic fringe patterns associated with a

propagating curved crack exhibits a slight unsymmetry in isochromatics under

I mode I loading. This unsymmetry in isochromatics is modeled by adding the mode

II higher order terms, without the model II singular term. Since the applied

*remote load is only mode I loading, it is appropriate to disregard the singular

term and add only A113 term as was demonstrated previously in References

118,19).

Figure 6(a) shows the angular distribution of the strain energy density

" factor for crack velocities of C/C2 = 0.01 to 0.8 and A12 a -0.25P A 3 ' 0.3P
and A = -0.3 for V = 0.36. The rc (dW/dV)3 distribution is slightly

A113 '(d0.3V)
unsymmetric at lower crack velocity and increased at higher crack velocities.

- For a crack velocity of 0.4 < C/C2 Z 0.7, the minimum strain energy density

- factor is located at about 200 but at C/C2 = 0.8, the minimum strain energy

density factor occurs assymmetrically at about 55 and 600. Reversing the sign

*. of A113 from negative to positive in Figure 6(b) simply reverses the peaks in

the strain energy density factor distribution. At lower crack velocities the

" positive higher order terms of mode II stress field enhances crack kinking and

unsymmetric crack branching could occur at higher crack velocities. Therefore,

for A1i 3  O, a positive kinking angle is obtained while for AII3 > 0, a

. negative kinking angle results. This effect is similar to the presence of

. positive and negative mode II stress intensity factors, respectively. The

7



series of experimentation shows that branching could occur even in the presence

of KII at higher crack velocities.

Qualitative results of crack branching angles are presented in the

following for Poisson's ratio of v = 0.25, 0.29, and 0.33 for A 1  1.0, A12 1

-0.25, A13 = 0.3 and higher order terms involving mode II nonsingular terms of

AI 1 = O, A112 = O, and A113 = 0.3. Table 2 shows the effect of HOT on crack

branching angles for varying crack velocities. At lower crack velocities of

* C/C2 < 0.6, the mode II higher order terms contributed to crack kinking and

branched asummetrically at higher velocities. This observation is consistent

with the present results in that the HOT effect is negligible at higher crack

velocities. An enhanced branching angle also is clearly observed at higher

velocities irrespective of the number of higher order terms present. Positive

higher order terms enhanced magnitudes of the branching angle at all crack

velocities. However, the crack branching angle was always 0 degree when C/C2 <

0.4 for all compressive or negative higher order terms.

Representative experimental crack branching data associated with running

cracks in Homalite-100, polycarbonate, steel, aluminum [213 and glass were

evaluated and presented in Table 3. There is good agreement between measured

and predicted angles using higher order terms, whereas significant differences

are observed when HOT terms were not used.

CONCLUSIONS

(1) The minimum value of r c(dW/dV) strongly depends on the first nonsingular

stress, o for a given Poisson's ratio under any mode of deformation.

It.also depends strongly on the crack velocity and varies systematically

with the nonsingular stresses.

(2) For small values of C/C2 < 0.4, the fracture angle e, is found to be 0

for all negative higher order terms of mode I loading and e L 0 for allc
positive values of HOT, irrespective of crack velocity. Negative higher

order terms suppresses the crack extension angle 0 whereas positive HOTc
always enhances the 0 c' regardless of the Poisson's ratio.

8
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(3) Depending on the test conditions and the shape of the fractured specimens,

theoretically predicted angle could deviate from experimentally measured

fracture angles when the second order term is neglected.
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Tabl e 1

CRACK BRANOIN VELOCITY AND INITIAL CRACK BRANHING ANGLE FOR
VARIOUS MATERIALS

i c 1]/C2 C/C2  ) Remarks

0.22 1.669 0.470 17
0.23 1.688 0.480 16
0.24 1.709 0.490 15
0.25 1.732 0.500 15
0.26 1.756 0.510 15
0.27 1.782 0.520 15 Glass (heavy flint)
0.28 1.809 0.540 22
0.29 1.838 0.550 23
0.30 1.870 0.560 23
0.31 1.905 0.555 11
0.32 1.944 0.570 17
0.33 1.985 0.575 13
0.34 2.031 0.590 19 Homallte-100j, aluminum
0.35 2.082 0.600 19 Polycarbonate
0.36 2.138 0.605 16
0.37 2.201 0.610 13
0.38 2.273 0.620 14
0.40 2.449 0.636 13
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TABLE 2

EFFECT OF MODE II HIGHER ORDER TERMS ON CRACK
EXTENSION ANGLE

A 1 Ii 1.0v A 12 ' 0.25P A13 -0.3 AND A 113 = 0.3*

Poissonts Crack Velocity Crack Extension Remarks
Ratio v C/C 2  Angle Oc

0.50 2.50 Crack kinking

0.54 11.75 Crack kinking

0.58 33.25 Crack kinking
0.*25

0.62 .± 44.25 Branching

0.66 -± 51.00 Branching

0.72 .±57.75 Branching

0.56 5.25 Crack kinking

0.60 27.00 Crack kinking
0.29

0.64 .±40.75 Branching

0.70 .±52.00 Branching

0.58 3.0 Crack kinking

0.33 0.64 30.25 Crack kinking

0.70 .± 47.00 Branching

*Crack extension angles are negative for A11  < 0.

. . . . . . . . . . . ..13'



TABLE 3

MEASURED AND CALCULATED VALUES OF BRANCH ANGLE

Material Crack r Measured Predicted Remarks
Velocity mi Branch Angle Angle 2 Q
""c2 2 Without Hot With Hot

Steel 0.44 1.0 66 0 64 Pressurized
pipe

* Aluminum 0.14 1.3 88 0 84 Pressurized
pipe

HOMALITE-IO0 0.10 1.3 52 0 52 WL-RDCB
specimen

0.46 1.3 50 0 47 Biaxially
loaded
Centrally
notched
specimen

0.38 1.3 28 0 0 SEN
specimen

Polycarbonate O.45 0.75 34 0 0 SEN
specimen

* ... . . ...
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