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AND DYNAMIC CRACK BRANCHING

M. Ramulu and A.S. Kobayashf
Department of Mechanical Engineering
University of Washington, FU-10
Seattle, Washington 98195

ABSTRACT T 2ubs ok T
3

‘"T)ynamic extension of Sih's fracture criterion based on strain energy
density factor, ¥ _(dW/dV), is used to analyze dynamic crack propagation and
branching. Influence of the nonsingular components, which are known as the
higher order terms (HOT) in the crack tip stress field, on the strain energy
density distribution at a critical distance surrounding the crack tip moving at
constant crack velocity is examined. Thiser\'(dW/dV) fracture criterfon is then
used to analyze available dynamic photoe]asiic results of crack branching and
of engineering materials/Y
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INTRODUCTION

The mechanics associated with the curved crack paths or bifurcation events
received continuous attention in the literature. Comprehensive reviews on
crack curving and branching were published by the authors (1] and Dally ([2].
Literature on crack branching during rapid fracture discusses 1ts correlation
with either the dynamic crack tip stress ffeld, initiation of secondary cracks,
or with stress wave loading. These studies deal primarfly with the stress
intensity factor, the strain energy release rate at the instant of branching
and the branching crack velocity. The crack branching angle as well as the
crack curving angle can also be determined by a crack directional stability
criteria under combined tensfon and shear loadings, i.e., for a mixed mode
'stress field. This crack stabtlity criterion is governed by either the maximum
circumferential stress at the crack tip [3] or at a specified distance from the
crack tip [4-6]1, the maximum energy release rate [7,8], and the minimum strain
energy density factor surrounding the crack tip [9,10]1 or at a specified
distance from the crack tip [111. Sih [12] extended the minimum strain energy
density factor criteria to rapidly propagating cracks for predicting the crack
branching angle with a singular stress field.

Rossmanith ([13] and the authors [14~16] have shown that the nonsingular
component 1in the stress acting paha'lle1 to the crack path has considerable
influence on the directional stability of a moving crack and {incorporated this
component for estimating the curving and bifurcation angles. The additional
higher order terms 1{n the crack tip stresses, which are used to account for
the spread of advanced cracks, are the cause of {incipient branching in brittle
materials, and enlarge the fracture process zone which results in roughening of
the fracture surface. The presence of unsuccessful multiple cracks or crack
interaction with the stress waves [17-19] under mode I 1loading are often
associated with the slight unsymmetry in the fringe patterns of the dynhamic
photoelastic experiments of rapidly propagating cracks. This unsymmetry in the
fringe pattern was modeled by Rossmanith [17] and the authors [19] by adding
the higher order terms of mode I and mode II stress components to the mode I
singular crack tip stress field. This fnevitable {involvement of the higher
order terms forms the basis of the dynamic fracture analysis in this paper and
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the prediction of crack-growth direction of a constant crack velocity using the
strain energy density factor, rc(dW/dV). criterfon.

DYNAMIC MIXED MODE CRACK TIP STRESS FIELDS

The crack tip dynamic state of stresses under mixed mode conditions was
given by Nishioka and Atlur{ [20] in terms of the local rectangular (x,y) and

polar (r,9) coordinates. The three rectangular stress components under mode I
and mode II conditions are given as:

- [ G -1 z-1) 1
5 (1+2$f-5§)r‘1 cos(g- =1)8,-2h(n)r, cos(g- -1 )92
" (7 -1) (F-1)
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r and © are the polar coordinates with the origin at the moving crack tip, C,

Clo and C2' are the crack velocity, dflatational and distortional wave
velocities, respectively.

The general solution expressed {n Equation (1) yields the singular
stresses when n = 1, {.e., AI1 = KI and AIIl = KII' which are stress intensity
factors of mode I and mode II, respectively. The constant stress, ¢__, fs

ox
related to the higher order term (HOT) for n = 2.
6B, (c) (52-52)
ox = 2 A1z (2)
Atrz = 0

DYNAMIC STRAIN ENERGY DENSITY FACTOR CRITERION

The strain energy density factor, e (dw/dV), criterion developed by Sih
(9] 1s based on the local density of the strain energy field at a core radius
ro from the crack tip. It assumes that fracture initiates when rc(dW/dV)
reaches a critical value of [rc(dWIdV]c.




The elastic strain energy density, W, per unit volume, V, of the material

is:

a1y 2 2 2, _ Y (o o g 2 2

v =2 [0 +0yy t0,.) 1+\,(xx+w+ 22) +20xy1(3)
for plane strain condition:

ozz = V( OXX + oyy) (4)
and thus

a1y 2 2 2

& 2E [(1=-v)(o "+ Oyy ) - Zv(oxxoyy) + Zoxy ] (5)

where E and v are the modulus of elasticity and Poisson's ratio, respectively.

As discussed earlier, for n = 2 the first nonsingular term exists only in
Oy x* Stress component of mode I loading and 1s zero in all other components of
mode I and mode II crack tip stress fields. These and other higher order terms
for n 2 2, on the strain energy density factor surrounding the crack tip are
believed to influence the spreading of advanced cracks which turn leads to
crack curving and branching. By denoting the energy density function (dW/dV)
in the presence of higher order terms as (dw/dV)n. the intensity of the strain
energy density factor for the state of plane strain at a critical distance, ree
can be written for as: rc(dW/dV)n. The subscript {index, n, {ndicates the

number of the terms considered in determining the strain energy density factor.

By using Equations (1) through (5) and evaluating for n=l, the strain energy

density factor, S, became:

S = [a, A2 +2a 2,

1 M 12 M1 At 222 Ain (6)

----------------------




The coefficients a"1 depend upon C, G 02 and Pofsson's ratio, V. The
fracture criterion based on the minimum strain energy density factor notes that
the crack will extend to the location of the minimum strain energy density

factor, [rc(dWIdV)]m1n. In the presence of higher order terms, strain energy

density factor, criterion can be written as:

drr ()3
_G...d.y_.._n.. = o at e = ec

do n

The half crack branching angle, Sc, at which [rcdw/dV]n possesses
statfonary values, can be obtained from Equatfon (7). As a check on the
accuracy of Equation (5) and (7), the dynamic rc(dWIdV) should coincide with

its static value in Reference [12], when the crack velocity c--> 0 for n=l.

NUMERICAL RESULTS

In order to study the variation of the strain energy density factor with
angular orientation, the theoretical (dW/dV) values were computed for each 0.25
degrees, using a Poisson's ratio, V = 0.36, Youngs Modulus, E = 3.74 GPa,
critical radius r_ = 1.3mm, Ay, = K; = 1 MPa/m, and K;;/K; = 0 value. Static
strain energy density factor was approximated by setting C = 0.01C2 in
Equations (1) and (7) where the results agreed well with that of References

(12,131.

Crack velocities of C/C2 = 0.01 to 0.8 were chosen to generate the dynamic
strain energy density factor in the vicinity of the crack tip. The
representative static and dynamic strain energy density factor distributions in
the vicinity of the crack tip at a distance re = 1.3 mm are shown in Figure l
for A12<0. AIZ = 0, and A12>0 under mode I loading.

Figure 2 shows the angular varfatfon of static and dynamic (rch/dV) with
the third higher order term AIB which 1s compressive in nature, in addition to
remote stress under pure mode I loading (i.e., KII = 0). Figure 2(a) shows the




strain energy density factor distribution for AIZ = -0,25 and AI3 = -0,3 for
v = 0.36 and Figure 2(b) represents the distribution of strain energy density
factor for A12 = 0.25 and A13 = =0,3., The minimum value of strain energy
density factor is almost constant within +10° for A12 < 0 at lower crack
velocities. However, the minimum strain energy density factor for A12 > 0 at
lower crack velocities yields minimum rc(dw/dV) at greater than £ 30° when
crack velocity C/C2 2 0.5. This is not surprising since the compressive remote
stress stabilizes the crack path and the tensile stress enhances the
directional instability of a propagating crack.

Figure 3 shows the angular distribution of dilatatfonal and distortional
strain energy density factors for the strain energy densfty factors in Figure 1l
for An= 1.0. It can be observed that the energy 1s constant between t13
degrees for lower crack velocities and the maximum magnitudes of the
distortional energy and corresponding dilatational energy are minimum at C/C2 <
0.5. The minimum or maximum spread of dilational and distortional energy {s
constant within the 13 degrees angular region, respectively. A simflar
observation was made when we added A13 term to the stress field.

Figure 4 shows the branching angle versus crack velocity corresponding to
a singular stress field with varyjng Poisson's ratfo. The minimum strain
energy density occured at angle © = 0 for crack velocities C/C1 S 0.46; 1t
becomes non-zero for C/C1 > 0.46. Note that the branching angle increased with
increasing crack velocities. However, at higher velocities, the difference in

branching angle is very small regardless of the difference in magnitudes of
Poisson's ratio.

Table 1 shows the predicted crack branching angles using only the singular
stress field with critical crack velocities of varfous materials represented by
Poisson's ratio. These results suggest that the branching angle 1s very
sensitive to the Poisson's ratio, V. Note that the branching angle of +ll1 to
323 degrees occurred in these materfals within the crack velocity range of
C/Cz = 0.47 to 0.64, which fs higher than the experimentally observed crack
velocities [1] irrespective of the materfal used. The discrepancy between the
experimental observation and theory can be partly attributed to the finite
geometry and boundary effects which {influences all singular and higher order
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termms in the crack tip stress field. In the following, some representative
values of the higher order terms (HOT) are used to show the difference in the
predicted branching angles with HOT and without HOT in the stress field.

Figure 5 shows the branching angle versus the crack velocities for v =
0.33, in the presence of higher order terms under the pure mode I loading
condition, The addition of positive higher order terms enhanced the branching
angle while negative higher order terms suppressed branching. The crack f{s
directionally stable even at higher crack velocities of C/C2 = 0.6 in the
presence of negative HOT terms. Also, at higher crack velocities, the
resulting branching angle is not 1influenced by the higher order terms, with
differences of nearly 8 degrees.

Quite often the dynamic photoelastic fringe patterns associated with a
propagating curved crack exhibits a slight unsymmetry {in {sochromatics under
mode I loading. This unsymmetry in {sochromatics is modeled by adding the mode
II higher order terms, without the model II singular term. Since the applied
remote 1oad 1s only mode I loading, it is appropriate to disregard the singular

term and add only AII3 term as was demonstrated previously in References
[18’19]o

Figure 6(a) shows the angu'lar'bdistribution of the strain energy density
factor for crack velocities of C/C2 = 0.01 to 0.8 and AIZ = =0.25, AIB = 0.3,
and AII3 = =0.3 for VvV = 0.36. The r‘c(deV)3 distribution 1{s slightly
unsymmetric at lower crack velocity and increased at higher crack velocities.
For a crack velocity of 0.4 £ C/C2 2 0.7, the minimum straln energy density
factor is located at about 20° but at C/C2 = 0.8, the minimum strain energy
density factor occurs assymmetrically at about 55 and 60°. Reversing the sign
of AIIB from negative to positive in Figure 6(b) simply reverses the peaks in
the strain energy density factor distribution. At lower crack velocities the
positive higher order terms of mode II stress field enhances crack kinking and
unsymmetric crack branching could occur at higher crack velocities. Therefore,
for AII3 < 0, a posftive kinking angle is obtained while for AIIB > 0, a
negative kinking angle results. This effect is similar to the presence of
positive and negative mode II stress {intensity factors, respectively. The
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series of experimentation shows that branching could occur even in the presence
of KII at higher crack velocities.

Qualitative results of crack branching angles are presented in the
following for Poisson's ratio of v = 0.25, 0.29, and 0.33 for AIl = 1.0, AIZ =
-0.25, AI3 = 0.3 and higher order terms involving mode II nonsingular terms of
AIIl =0, Arpp = 0, and AII3 = 0.3. Table 2 shows the effect of HOT on crack
branching angles for varying crack velocities. At lower crack velocities of
C/C2 £ 0.6, the mode II higher order terms contributed to crack kinking and
branched asummetrically at higher velocities. This observation {is consistent
with the present results in that the HOT effect is negligible at higher crack
velocities. An enhanced branching angle also 1s clearly observed at higher
velocities irrespective of the number of higher order terms present. Positive
higher order terms enhanced magnitudes of the branching angle at all crack
velocities. However, the crack branching angle was always O degree when C/C2 £
0.4 for all compressive or negative higher order terms.

Representative experimental crack branching data assocfated with running
cracks in Homalite-100, polycarbonate, steel, aluminum [21] and glass were
evaluated and presented in Table 3. There is goed agreement between measured

and predicted angles using higher order terms, whereas significant differences
are observed when HOT terms were not used.

CONCLUSIONS

(1) The minimum value of rc(dW/dV) strongly depends on the first nonsingular
stress, O » for a given Poisson's ratio under any mode of deformation.

It _also depends strongly on the crack velocity and varies systematically
with the nonsingular stresses.

(2) For small values of C/C2 £ 0.4, the fracture angle Qc. is found to be 0
for all negative higher order terms of mode I loading and ec E 0 for all
positive values of HOT, frrespective of crack velocity. Negative higher
order terms suppresses the crack extension angle 0 whereas positive HOT

c
always enhances the ec. regardless of the Poisson's ratio.
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(3) Depending on the test conditions and the shape of the fractured specimens,
theoretically predicted angle could deviate from experimentally measured
fracture angles when the second order term {s neglected.
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Table 1

CRACK BRANCHING VELOCITY AND INITIAL CRACK BRANCHING ANGLE FOR
VARIOUS MATERIALS

v c,/C c/C 8, % Remarks
1/%2 2 €
0.22 1.669 0.470 17
0.23 1.688 0.480 16
0.24 1.709 0.490 15
0.25 1.732 0.500 15
0.26 1.756 0.510 15
0.27 1.782 0.520 15 Glass (heavy flint)
0.28 1.809 0.540 22
0.29 1.838 0.550 23
0.30 1.870 0.560 23 |
0.31 1.905 0.555 11
0.32 1. 944 0.570 17
0.33 1.985 0.575 13
0.34 2,031 0.590 19 Homal1te~100, aluminum
0.35 2,082 0.600 19 Polycarbonate
0.36 2.138 0.605 16
0.37 2.201 0.610 13
0.38 2.273 0.620 14
0.40 2.449 0.636 13

1dk:232
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TABLE 2

EFFECT OF MODE II HIGHER ORDER TERMS ON CRACK
EXTENSION ANGLE

AIl = 1.0, Ap, = 0.25, AIB = 0.3 AND AIIB = (0,3%

Poisson's Crack Velocity Crack Extension Remarks

Ratio C/C2 Angle O c
0.50 2.50 Crack kinking
0.54 11,75 Crack kinking
0.58 . 33.25 Crack kinking
0.25
0.62 X 44.25 Branching
0.66 1 51.00 Branching
0.72 X 57.75 Branching
0.56 5.25 Crack kinking
0.60 . 27.00 Crack kinking
0.29
0.64 + 40.75 Branching
0.70 + 52.00 Branching
0.58 3.0 Crack kinking
0.33 0.64 30.25 Crack kinking
0.70 * 47.00 Branching

*¥ Crack extension angles are negative for A‘\I13 < 0.




TABLE 3

MEASURED AND CALCULATED VALUES OF BRANCH ANGLE

it i .o e Fa— " it Pt PO

Materfal Crack r Measured Predicted Remarks
Velocity ot Branch Angle Angle 2 Q
c/c, 2 q Without Hot WYth Hot
Steel 0.44 1.0 66 0 64 Pressurized
pipe
Aluminum 0.14 1.3 88 0 84 Pressurized
pipe
HOMALITE-100 0.10 1.3 82 0 52 WL-RDCB
specimen
0.46 1.3 50 0 47 Biaxfally
‘ Toaded
Centrally
notched
specimen
0.38 1.3 28 0 0 SEN
: specimen
Polycarbonate 0.45 0.75 34 0 0 SEN

specimen
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