BUG DISTRIBUTION
AND
PATTERN CLASSIFICATION

KIKUMI K. TATSUOKA
MAURICE M. TATSUOKA

Approved for public release; distribution unlimited,
Reproduction in whole or in part permitted for any purpose
of the United States Government.

This research was sponsored by the Personnel and Training
Research Program, Psychological Science Division, Office
of Naval Research, under Contract No. NO0014-82-K-0604,
Contract Authority Identification Number NR 150-495.

University of Illinois at Urbana-Champaign
Title: Bug distribution and Pattern Classification

Author(s): Kikumi K. Tatsuoka and Maurice M. Tatsuoka

Abstract:
A model (called rule space) which permits measuring cognitive skill acquisition, diagnosing cognitive errors, detecting the weaknesses and strengths of knowledge possessed by individuals was introduced earlier. This study further discusses the theoretical foundation of the model by introducing "Bug Distribution" and hypothesis testing (Bayes' decision rules for minimum errors) for classifying an individual into his/her most plausible latent state of knowledge. The model is illustrated with the domain of fraction arithmetic and compared with the results obtained from a conventional Artificial Intelligence approach.
Footnotes

The authors would like to acknowledge Mr. Robert Baillie for developing several computer programs and for useful discussions concerning this research.

This research was sponsored by the Personnel and Training Research Program, Psychological Sciences Division, Office of Naval Research.

Some of the analyses presented in this report were performed on the PLATO® system. The PLATO® system is a development of the University of Illinois, and PLATO® is a service mark of Control Data Corporation.

Copies of this report may be requested from Kikumi H. Hatusho, Computer-based Education Research Laboratory, University of Illinois, 103 S. Mathews St., Rm. 262, Urbana, IL 61801.
Introduction

Several deterministic methods commonly used in Artificial Intelligence have been applied to develop problem-solving programs, or error-diagnostic systems. These methods have successfully diagnosed many erroneous rules of operation in arithmetic, algebra, and some science domains. The results of such error analyses have contributed to our current understanding of human thinking and reasoning.

These approaches, however, lack taking the variability of response errors into account, and they also depend on a specific model of problem solving. Therefore, they often cannot diagnose responses affected by random errors (sometimes called "slips") or produced by innovative thinking that is not taken into account by the current models. It is very difficult to develop a computer program whose underlying algorithms for solving a problem represents a wide range of individual differences. Yet, when these diagnostic systems are used in educational practice, they must be capable of evaluating any responses on test-items, inconsistent performances as well as those yielded by creative thinking. Therefore, we need a model that is capable of diagnosing non-systematic cognitive errors and is also capable of evaluating non-conventional problem-solving activities.

Tatsuoka and her associates (Tatsuoka, 1985, 1984a; Tatsuoka & Linn, 1983; Tatsuoka & Tatsuoka, 1983, 1982) have developed such a model called rule space and have successfully applied it to diagnose misconceptions possessed by students in signed-number and fraction arithmetic. The model maps all response patterns into a set of ordered pairs, the latent ability variable θ and one of the IRT based caution indices (\(\xi\)) introduced by Tatsuoka (1984a). However, the approach used in their model lacks, somehow, a sound statistical foundation in expressing
random errors when a specific rule is applied for solving a problem.

The simulation study by Tatsuoka and Baillie (1982) showed that
the response patterns yielded by not-perfect-applications of a specific
erroneous rule of operation in a procedural domain form a cluster around the
rule. Moreover, they found empirically that the two random variables,
\(\theta \) and \(\xi \) obtained from those response patterns in the cluster follow a
multivariate normal distribution. This cluster around a rule is called
a "bug distribution" hereafter. The theoretical foundation of this
empirical evidence will be discussed in this study. First, a brief
description of the probabilistic model introduced in Tatsuoka (1985)
will be given. Then the connection of each "bug distribution" to the model
will be discussed in the conjunction with the theory of statistical pattern
classification and recognition.

Distribution of Responses around an Erroneous Rule

The responses around a particular rule of operation in a procedural
domain which are produced by not-perfectly-consistent applications of the
rule to the test items form a cluster. They include responses which
deviate, in various degrees of remoteness, from the response generated
by the rule. When these discrepancies are observed, they are considered as
response errors. These response errors are called "slips" by cognitive
scientists (Brown & VanLehn, 1980). The properties of such responses
around a given erroneous rule will be investigated in this section.

First, the probability of having a "slip" on item \(j \) (\(j=1, 2, \ldots , n \))
is assumed to be the same value, \(p \) for all items and it will be called
"slip probability" in this paper. Let us denote an arbitrary rule for which the
total score is \(r \) by Rule R and let the corresponding response pattern be:
(1) \[R = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_r \\ x_{r+1} \\ \vdots \\ x_n \end{bmatrix}, \quad x_1 = x_2 = \ldots = x_r = 1, \text{ and } x_{r+1} = \ldots = x_n = 0. \]

The response patterns existing one slip away from Rule R are of two kinds: a slip of "one to zero" occurring at \(1 \leq j \leq r \) and "zero to one" at \(r < j \leq n \). The number of response patterns having one slip is therefore \((r) \binom{n-r}{r} + (r) \binom{n-r}{0} \), and the probability of having one slip on items \(j=1, \ldots, n \) is given by \((r) p^r (1-p)^{n-r} \binom{n-r}{0} (1-p)^{n-r} + (r) p^0 (1-p)^r \binom{n-r}{1} (1-p)^{n-r-1} \) if the probability \(p \) is the same for all items, \(j=1, \ldots, n \). Therefore the following equation (2) is obtained:

\[
(2) \quad \text{Prob} (x_j - 1 \text{ for some } j=1, \ldots, r \text{ or } x_j + 1 \text{ for some } j=r+1, \ldots, n) = (r) \binom{n-r}{r} + (r) \binom{n-r}{0} p^r (1-p)^{n-r} + (r) p^0 (1-p)^r \binom{n-r}{1} (1-p)^{n-r-1} .
\]

Similarly, the probability of having two slips on the items is given by Equation (3) as follows:

\[
(3) \quad \text{Prob} (\text{having two slips on the items}) = (r) \binom{n-r}{r} + (r) \binom{n-r}{0} p^2 (1-p)^{n-r} + (r) p^0 (1-p)^r \binom{n-r}{2} (1-p)^{n-r-2} .
\]

In general, the probability of having \(k \) slips on the items is given by:
4

(4) \(\text{Prob (having } k \text{ slips on the items)} \)

\[\left(\sum_{k_1 + k_2 = k} \binom{n-r}{k_1} \right) p^{k_1} (1-p)^{n-k_1} \]

The generating function of the distribution of frequencies up to \(k \) slips
will be given by Equation (5) as follows:

(5) \[\sum \text{Prob (having s slips)} = \sum_{s \leq k} \left(\sum_{s_1 + s_2 = s} \binom{n-r}{s_1} \right) p^{s_1} (1-p)^{n-s} \]

Since the coefficient term inside the braces equals \(\binom{n}{s} \), Equation (5)
will be simply a binomial distribution, given by Equation (6).

(6) \[\sum \text{Prob (having s slips)} = \sum_{s \leq k} \binom{n}{s} p^s (1-p)^{n-s} \]

Therefore, a cluster around Rule R which consists of response patterns
including various numbers of slips (not-perfectly-consistent application of
Rule R) has a frequency distribution of a binomial form with the equal slip
probability \(p \) for the items. One weakness in Equation (6) is that the
value of \(p \) is not known and it is very unlikely that the value of \(p \) is
constant over the test items. If we assume each item has an unique slip
probability, then the binomial distribution expressed by Equation (6) will
be a compound binomial distribution. Equation (7) is the generating
function of the compound binomial distribution.

(7) \[\sum \text{prob (having s slips)} = \sum_{s \leq k} \left(\sum_{j=1}^{k} \binom{k}{j} (p_j + q_j) \right) \]
Before an approximation of the slip probabilities p_j is discussed, the rule-space concept will be briefly introduced in the next section.

A Brief Summary of the Probabilistic model Rule Space

One of the purposes of the model, the rule space, is to interpret semantically the relationships among various erroneous rules and the right rule, and compare the characteristic of each rule to the right rule or other rules. An analogy for the underlying motivation of seeking a norm-referenced characteristic of "bug behavior" may be found in the theory and practice of norm-referenced tests. This starts by selecting the right rule as a norm and then comparing the other erroneous rules to the characteristic of the norm. By doing so, the psychometric behavior of "bugs" as compared with the right rule, understanding why and how various misconceptions are related and transformed from one to another will be explained more clearly than by just describing the list of bugs.

The rule space model begins by mapping all possible binary response patterns into a vector space of $\{(\theta, \xi)\}$, where θ is the latent ability variable in Item Response Theory (IRT) and ξ (or $\xi(\xi_{ij})$) is one of the IRT-based caution indices (Tatsuoka, 1984a; Tatsuoka & Linn, 1983). The mapping function $f(x)$ is expressed as an inner product of two residual vectors, $\xi(\theta) - x$ and $\gamma(\theta) - \bar{T}(\theta)$ where $P_j(\theta)$, $j=1,...,\pi$ are the one- or two-parameter logistic-model probabilities, x is a binary response vector and $\bar{T}(\theta)$ is the mean vector of the logistic probabilities. $f(x)$ is a linear mapping function between x and θ at a given level of θ, and the response patterns having the same sufficient statistics for the maximum likelihood estimate $\hat{\theta}$ of θ are dispersed into different locations on the line of $\theta = \hat{\theta}$. For example, on a 100-item test, there are 4950 different response patterns.
having the total score of 2. The \(\zeta \)'s for the 4950 binary patterns will be
distributed between \(\zeta_{\text{min}} \) and \(\zeta_{\text{max}} \), where \(\zeta_{\text{min}} \) is obtained from the pattern
having 1 for the two easiest items and zeros elsewhere, and \(\zeta_{\text{max}} \) is from
the pattern having 1 for the two most difficult items. \(f(x) \) has the
expectation zero and variance \(\sum_{j=1}^{n} P_j(\theta)Q_j(\theta)(P_j(\theta) - T(\theta))^2 \)
(Tatsuoka, 1985). Since the expectation of the random variable \(x_j \) is \(P_j(\theta) \), the expectation of a vector \(x \) is \(P(\theta) \) whose \(j \)th component
is \(P_j(\theta) \). The vector \(P(\theta) \) will be mapped to zero as shown in (8), thus the
pattern corresponds to \((0,0) \) in the rule space.

(8) \(f(P(\theta)) = 0 \)

As for an erroneous rule \(R \), the response vector \(\tilde{R} \) given by (1) will be
mapped onto \((\Theta, f(\tilde{R}, \Theta)) \), where the \(\zeta \) value is \(\sum_{j=1}^{n} (P_j(\theta) - R_j)(P_j(\theta) - T(\theta)) \),
and is given by (9). That is,

(9) \(f(R) = - \sum_{j=1}^{r} Q_j(\Theta_R)(P_j(\Theta_R) - T(\Theta_R)) + \sum_{j=r+1}^{n} P_j(\Theta_R)(P_j(\Theta_R) - T(\Theta_R)) \).

Similarly, all the response vectors resulting from several slips
around rule \(R \) will be mapped into the vicinity of \((\Theta_R, f(\tilde{R})) \) in the
rule space and form a cluster (called the cluster around \(R \) hereafter).
Figure 1 shows computer-simulated examples of such clusters done on the
PLATO system.

Insert Figure 1 about here
Figure 1: Two Clusters of Groups 1 and 8 with Two Slips. n=631
The two variables θ and $f(x)$ are mutually uncorrelated so their covariance matrix has a diagonal form as follows:

$$
\begin{bmatrix}
\text{var}(\theta) & 0 \\
0 & \text{var}(f(x))
\end{bmatrix} =
\begin{bmatrix}
1/I(\theta) \\
0 & \Sigma P_j(\theta)Q_j(\theta)(P_j(\theta) - T(\theta))^2
\end{bmatrix}
$$

where $I(\theta)$ is the information function of the test and is given by

$$
\Sigma a_j^2 P_j(\theta)Q_j(\theta)
$$

where the a_j ($j=1,\ldots,n$) are item discriminating powers.

Let us map all response patterns of the test, including clusters around various rules into the Cartesian product space of θ and $f(x)$, where

$$
f(x) = (P(\theta), P(\theta) - T(\theta)) - (x, P(\theta) - T(\theta))
$$

or

$$
f(x) = K(\theta) - \sum_{j=1}^n x_j(P_j(\theta) - T(\theta))
$$

In particular, Rule R itself will be mapped as

$$
\tilde{R} = R \rightarrow (\hat{\theta}_R, f(R))
$$

where $f(R)$ is given by Equation (9). The variance of the cluster around R will be expressed by using the slip probability of item j, p_j as follows:

$$
\text{Var}(\text{the cluster around } R) = \Sigma p_j q_j (P_j(\theta_R) - T(\theta_R))^2.
$$

The quantities p_j and q_j are associated with Rule R as well as with item j, and their values are unknown. However, if the ordered pair (θ_R, ξ_R) in the rule space falls close to the θ axis, then p_j and q_j may be approximated by the logistic probability $P_j(\theta_R)$ and its complement $Q_j(\theta_R) = 1 - P_j(\theta_R)$.
respectively, without too much loss of accuracy. If p_j and q_j are thus approximated, then the variance of Equation (12) will be the same as the variance of the mapping function $f(x)$; that is

\begin{equation}
\text{Var}(\xi \text{ in the cluster around } R) = \sum P_j(\theta)Q_j(\theta)(P_j(\theta) - T(\theta))^2
\end{equation}

The variance of θ in any cluster, on the other hand, is given by the reciprocal $1/I(\theta)$ of the information function, which can be computed as

\begin{equation}
\text{Var}(\theta \text{ in the cluster around } R) = 1/I(\theta_R) = 1/\sum a_j^2 P_j(\theta_R)Q_j(\theta_R)
\end{equation}

where $a_j = 1$ for the one-parameter logistic model.

The above two variances, along with the fact that ξ and $\hat{\theta}$ are uncorrelated, plus the reasonable assumption that they have a bivariate normal distribution, allow us to construct any desired percent ellipse around each rule point R. The upshot is that, if all erroneous rules (and the correct one) were to be mapped into the rule space along with their neighboring response patterns representing random slips from them, the resulting topography would be something like what is seen in Figure 2. That is, the population of points would exhibit modal densities at many rule points that each forms the center of an enveloping ellipse with the density of points getting rarer as we depart farther from the center in any direction. Furthermore, the major and minor axes of these
ellipses would -- by virtue of the uncorrelatedness of \(\xi \) and \(\hat{\theta} \) -- be parallel to the vertical (\(\xi \)) and horizontal (\(\hat{\theta} \)) reference axes of the rule space, respectively.

Recalling that for any given percentage ellipse, the lengths of the major and minor diameters are fixed multiples of the respective standard deviations

\[
\left[\sum_{j=1}^{n} P_j(\theta) Q_j(\theta) (P_j(\theta) - T(\theta))^2 \right]^{1/2} \text{ and } I(\hat{\theta}) = \frac{1}{2}
\]

we may assert that the set of ellipses gives a complete characterization of the rule space. By this is meant that, once these ellipses are given, any response-pattern point can be classified as most likely being a random slip from one or another of the erroneous rules (or the correct one). We have only to determine, for a suitable percent value, which one of the several ellipses uniquely includes the given point.

Operational Classification Scheme

The geometrics scheme outlined above for classifying any given response-pattern point as being a "perturbation" from one or another of the rule points has a certain intuitive appeal (especially to those with high spatial ability!). However, it is obviously difficult if not infeasible to put it into practice. We, therefore, now describe the algebraic equivalent of the foregoing geometric classification-decision rule, which is none other than the well-known minimum-\(D^2 \) rule, where \(D^2 \) is Mahalanobis' generalized squared-distance (Fukunaga, 1972; Tatsuoka, 1971). Then the
Figure 2: Fifteen Ellipses Representing Fifteen Error Types Randomly Chosen From Forty Sets of Ellipses
Bayes' decision rule for minimum error will be introduced.

Without loss of generality, we may suppose that a given response-pattern point \(x \) has to be classified as representing a random slip from one of two rule points \(R_1 \) and \(R_2 \). Let \(y \) be a point in the rule space corresponding to \(x \),

\[
\begin{bmatrix}
\hat{\theta}_x \\
\hat{f}(x)
\end{bmatrix}
\]

The Mahalanobis distance of \(x \) from each of the two rule points is

\[
D^2_{xj} = (x - R_j)' \Sigma^{-1} (x - R_j) \quad (j=1,2)
\]

where \(R_1 = \begin{bmatrix} \hat{\theta}_{R_1} \\ f(R_1) \end{bmatrix} \) and \(R_2 = \begin{bmatrix} \hat{\theta}_{R_2} \\ f(R_2) \end{bmatrix} \), and the variance-covariance matrix \(\Sigma \) will be,

\[
\Sigma = \begin{bmatrix}
1/I(\hat{\theta}) & 0 \\
0 & \text{var}(f(x))
\end{bmatrix}
\]

The decision rule is, of course, to classify \(x \) as a perturbation from \(R_1 \) if \(D^2_{x1} < D^2_{x2} \) and otherwise as a perturbation from \(R_2 \). However, the decision based on the Mahalanobis distances, \(D^2_{x1} \) and \(D^2_{x2} \) does not provide error probabilities of misclassification. The next section will discuss them.
The Bayes Decision Rule for Minimum Error

Suppose \(R_1 \) and \(R_2 \) are two clusters of points corresponding to Rules 1 and 2, respectively. Let \(\gamma \) be a vector \((\hat{\theta}, \xi)\) corresponding to an observed response pattern \(x \), and \(\xi \) be the standardized value of \(f(x) \), IRT-based caution index. Then the variance-covariance matrix \(\Sigma \) will be

\[
\Sigma = \begin{bmatrix}
1/I(\hat{\theta}) & 0 \\
0 & 1
\end{bmatrix}
\]

A decision rule based on probabilities may be summarized as follows:

(16) If \(\text{Prob}(R_1 \mid \gamma) > \text{Prob}(R_2 \mid \gamma) \) then \(\gamma \in R_1 \) and

if \(\text{Prob}(R_1 \mid \gamma) < \text{Prob}(R_2 \mid \gamma) \) then \(\gamma \in R_2 \).

These posterior probabilities can be obtained from prior probabilities, \(\text{Prob}(R_i) \) and \(\text{Prob}(R_2) \), and the conditional density function \(p(Y \mid R_i) \), \(i=1,2 \) as follows:

(17) \[\text{Prob}(R_i \mid \gamma) = \frac{p(Y \mid R_i) \text{Prob}(R_i)}{p(\gamma)} \]
Therefore, the decision rule can be expressed as follows:

(18) If \(p(Y \mid R_1) \Prob(R_1) > p(Y \mid R_2) \Prob(R_2) \) then \(Y \in R_1 \), otherwise, \(Y \in R_2 \).

This rule will be rewritten by using the likelihood ratio \(L(Y) \),

(19) If \(\frac{p(Y \mid R_1)}{p(Y \mid R_2)} \Prob(R_2) > \Prob(R_1) \) then \(Y \in R_1 \), otherwise, \(Y \in R_2 \).

Sometimes, it is convenient to take the negative log of the likelihood ratio in Expression (19), and rewrite it as Expression (20).

(20) If \(h(Y) = -\ln L(Y) = -\ln(p(Y \mid R_1)) + \ln(p(Y \mid R_2)) \leq \ln \left(\frac{\Prob(R_1)}{\Prob(R_2)} \right) \) then \(Y \) belongs to \(R_1 \).

However, the decision rule (20) does not lead to a perfect classification.

As Overall (1972) states (p. 330)

"Statistical classification decisions, like clinical diagnostic decisions, are only probabilistically correct. The clinician realizes this when he lists a secondary diagnosis. The statistician recognizes it more explicitly when he is able to assign a probability estimate to each classification alternative."

The probability of error is the probability of \(Y \) to be assigned to the wrong group, \(R_1 \).
Let us denote the posterior density function by \(P(R_i | Y) \), prior density function of \(R_i \) by \(P(R_i) \) and let \(\Gamma_1 \) and \(\Gamma_2 \) be the regions such that if
\(\sim \in \Gamma_1 \) then \(P(R_1 | \sim) > P(R_2 | \sim) \) and
if \(\sim \in \Gamma_2 \) then \(P(R_1 | \sim) < P(R_2 | \sim) \).

The probability of error is given by the following equations:

\[
(21) \quad \epsilon = \text{Prob}(\sim \in \Gamma_2 | R_1) \cdot P(R_1) + \text{Prob}(\sim \in \Gamma_1 | R_2) \cdot P(R_2).
\]

Let us denote the probability of \(\sim \) belonging to \(\Gamma_2 \) when \(\sim \) is from \(R_1 \) by \(\epsilon_1 \) then
\[
\epsilon_1 = \text{Prob}(\sim \in \Gamma_2 | R_1) = \int_{\Gamma_2} p(\sim | R_1) d\sim.
\]

Similarly, the probability of \(\sim \) belonging to \(\Gamma_1 \) when \(\sim \) is from \(R_2 \), \(\epsilon_2 \) will be
\[
\epsilon_2 = \text{Prob}(\sim \in \Gamma_1 | R_2) = \int_{\Gamma_1} p(\sim | R_2) d\sim.
\]

Then expression (21) can be rewritten by \(\epsilon = \epsilon_1 P(R_1) + \epsilon_2 P(R_2) \), or more precisely

\[
(22) \quad \epsilon = P(R_1) \int_{\Gamma_2} p(\sim | R_1) d\sim + P(R_2) \int_{\Gamma_1} p(\sim | R_2) d\sim.
\]
That is, the total probability of errors is a weighted sum of the
misclassification of samples from R_1 and R_2 into R_2 and R_1, respectively.

The integration of the conditional density function is necessary to get
the error probability E. The dimensionality of the conditional density
function is often more than one, while the density function $p(\xi | R_i)$ of the
likelihood ratio is one dimensional, so it is sometimes convenient to integrate
the latter (Fukunaga, 1972). Hence, Equations (23) and (24) are used to
obtain the error probabilities, E_1 and E_2.

\begin{equation}
E_1 = \int_0^{P(R_2)/P(R_1)} p(\xi | R_1) d\xi
\end{equation}

\begin{equation}
E_2 = \int_{P(R_2)/P(R_1)}^{\infty} p(\xi | R_2) d\xi
\end{equation}

If the density function $p(Y | R_i)$ is normal with expectations μ_i and
covariance matrices Σ_i, the decision rule is summarized by the following
statements:

\begin{equation}
\begin{aligned}
\text{If } h(Y) &= -\ln p(Y) \\
&= \frac{1}{2} (Y - \mu_1)' \Sigma^{-1}_1 (Y - \mu_1) - \frac{1}{2}(Y - \mu_2)' \Sigma^{-1}_2 (Y - \mu_2) \\
&+ \frac{1}{2} \ln \frac{|\Sigma_1|}{|\Sigma_2|} + \ln \frac{P(R_1)}{P(R_2)} + \frac{E R_1}{E R_2}
\end{aligned}
\end{equation}
If \(\Sigma_1 = \Sigma_2 = \Sigma \), then \(h(Y) \) becomes a linear function of \(Y \) and the decision rule has the following form if \(Y \) follows a normal distribution:

\[
(26) \quad h(Y) = \frac{1}{2} (Y - M_1)' \Sigma^{-1} (Y - M_1) - \frac{1}{2} (Y - M_2)' \Sigma^{-1} (Y - M_2)
\]

\[
= \frac{1}{2} \left((M_2' - M_1') \Sigma^{-1} Y - Y' \Sigma^{-1} (M_2 - M_1) + M_1' \Sigma^{-1} M_1 - M_2' \Sigma^{-1} M_2 \right)
\]

\[
= (M_2' - M_1') \Sigma^{-1} Y + \frac{1}{2} (M_1' \Sigma^{-1} M_1 - M_2' \Sigma^{-1} M_2) \left\{ \ln(p(R_1)/p(R_2)) \right. = t.
\]

then, \(Y \in \begin{cases} R_1 \\ R_2 \end{cases} \)

The error probability \(\varepsilon_1 \) is given by,

\[
(27) \quad \varepsilon_1 = \int_{-\infty}^{\infty} p(h(Y) \mid R_1) dh(Y) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{z^2}{2}\right) dz
\]

\[
= 1 - \Phi\left(\frac{t + h}{\sigma} \right).
\]

where \(t = \ln[p(R_1)/p(R_2)] \) and \(\Phi(.) \) is the unit normal distribution.

The conditional expectation of the likelihood function \(h(Y) \) is given by (28) and (29),

\[
(28) \quad E(h(Y) \mid R_1) = -\frac{1}{2} (M_2' - M_1') \Sigma^{-1} (M_2 - M_1) = -h
\]

\[
(29) \quad E(h(Y) \mid R_2) = +\frac{1}{2} (M_2' - M_1') \Sigma^{-1} (M_2 - M_1) = +h
\]

and, the variance of \(h(Y) \) is given by Equation (30):
Illustration of the model with an example

A 40-item fraction subtraction test was given to 535 students at a local junior high school. A computer program adopting a deterministic strategy for diagnosing erroneous rules of operation in subtracting two fractions was developed on the PLATO system. The students' performances on the test were analyzed by the error-diagnostic program and summarized by Tatsuoka (1964a). In order to illustrate the rule space model and the decision rule described in the previous section, two very common erroneous rules (Tatsuoka, 1964a) are chosen to explain the model.

Rule 9. This rule is applicable to any fraction or mixed number. A student subtracts the smaller from the larger number in unequal corresponding parts and keeps corresponding equal parts as is in the answer. Examples are,

1. 4 4/12 - 2 7/12 = 2 3/12 = 2 1/4
2. 7 3/5 - 4/5 = 7 1/5
3. 3/4 - 3/8 = 3/4
Rule 30. This rule is applicable to the subtraction of mixed numbers where the first numerator is smaller than the second numerator. A student reduces the whole-number part of the minuend by one and adds one to the tens digit of the numerator.

1. \[4 \frac{4}{12} - 2 \frac{7}{12} = 3 \frac{14}{12} - 2 \frac{7}{12} = 1 \frac{7}{12} \]
2. \[3 \frac{3}{8} - 2 \frac{5}{6} = 2 \frac{13}{8} - 2 \frac{5}{6} = 19/24 \]
3. \[7 \frac{3}{5} - 4/5 = 6 \frac{13}{5} - 4/5 = 2 \frac{9}{5} \]

These two rules are applied to 40 items and two sets of responses are scored by "right or wrong" scoring procedure. The binary score pattern made by Rule 8 is denoted by \(R_8 \) and the other made by Rule 30 is denoted by \(R_{30} \).

Besides the two rules mentioned above, 38 different error types are identified by a task analysis. However, these error types do not necessarily represent microlevels of cognitive processes such as erroneous rules of operation. They are somehow, defined more coarsely, like borrowing errors are grouped as a single error type, or the combination of borrowing and getting the least common multiple of two denominators is counted as one error type. In other words, 38 binary response patterns representing 38 error types are obtained.

The 535 students' responses on the 40 items are scored and used for estimating item parameters \(a_j \) and \(b_j \) by the maximum likelihood procedure. By using these \(a \)- and \(b \)-values, \(\theta \)-values associated with the two rules and 38 error types are computed. Then corresponding \(\zeta \)-values are calculated. Thus, 40 points, \((\hat{\theta}_k, \zeta_k) \), \(k=1,\ldots,40 \) are plotted in the rule space (Rule 8 is renumbered to 39 and Rule 30 to 40. It is only coincidence that the number of rules equals the number.

Insert Table 1 about here

Table 1
The 40 Centroids Representing 40 different error types in Fraction Subtraction Tests \((N = 535, n = 40)\)

<table>
<thead>
<tr>
<th>Group</th>
<th>(\theta)</th>
<th>(\xi)</th>
<th>No. of Items</th>
<th>Group</th>
<th>(\theta)</th>
<th>(\xi)</th>
<th>No. of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.69</td>
<td>-.80</td>
<td>1</td>
<td>21</td>
<td>.24</td>
<td>-.89</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>-1.22</td>
<td>-.69</td>
<td>4</td>
<td>22</td>
<td>-.22</td>
<td>-1.23</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>-.75</td>
<td>-.68</td>
<td>8</td>
<td>23</td>
<td>.62</td>
<td>-1.55</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>-.46</td>
<td>.75</td>
<td>10</td>
<td>24</td>
<td>1.04</td>
<td>-.61</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>.11</td>
<td>.91</td>
<td>18</td>
<td>25</td>
<td>.75</td>
<td>-.05</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>.64</td>
<td>1.74</td>
<td>30</td>
<td>26</td>
<td>-.51</td>
<td>-1.62</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>-.17</td>
<td>1.48</td>
<td>13</td>
<td>27</td>
<td>-.87</td>
<td>-.56</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>.40</td>
<td>-.16</td>
<td>25</td>
<td>28</td>
<td>-1.99</td>
<td>1.01</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>.60</td>
<td>-.43</td>
<td>31</td>
<td>29</td>
<td>-.19</td>
<td>1.53</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>.57</td>
<td>-.24</td>
<td>29</td>
<td>30</td>
<td>-.24</td>
<td>2.74</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>.99</td>
<td>.72</td>
<td>37</td>
<td>31</td>
<td>-1.18</td>
<td>1.46</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>1.19</td>
<td>.86</td>
<td>39</td>
<td>32</td>
<td>-1.45</td>
<td>.58</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>-.60</td>
<td>-1.58</td>
<td>10</td>
<td>33</td>
<td>.64</td>
<td>1.74</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>-.44</td>
<td>-2.31</td>
<td>12</td>
<td>34</td>
<td>.57</td>
<td>-.66</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>-.18</td>
<td>.67</td>
<td>14</td>
<td>35</td>
<td>.59</td>
<td>-1.39</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>-.08</td>
<td>-1.81</td>
<td>16</td>
<td>36</td>
<td>-1.66</td>
<td>-1.96</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>.16</td>
<td>-.86</td>
<td>20</td>
<td>37</td>
<td>-.52</td>
<td>-.94</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>-.01</td>
<td>-2.12</td>
<td>18</td>
<td>38</td>
<td>-.32</td>
<td>-1.26</td>
<td>14</td>
</tr>
<tr>
<td>19</td>
<td>.09</td>
<td>-2.26</td>
<td>20</td>
<td>39</td>
<td>-.41</td>
<td>-2.57</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>.29</td>
<td>-1.51</td>
<td>24</td>
<td>40</td>
<td>.17</td>
<td>-2.34</td>
<td>22</td>
</tr>
</tbody>
</table>

These items will have the score of 1, otherwise the score will be 0.
Now, two students A and B who used Rules 8 and 30 for a subset of 40 items are selected. This was possible because their performances are diagnosed independently by the error-diagnostic system SPFBUG mentioned in Tatsuoka (1984b). The circles shown in Figure 3 represent A and B. Their Mahalanobis distances, D^2, to the 40 centroids are calculated respectively and the smallest values of two distances, D^2, are selected to compute probabilities of errors. Table 2 summarizes the results.

The D^2 values of Student A to Sets 40 and 19 are 0.008 and 0.119, respectively, and both the values are small enough to judge that A may be classified to either of the sets. Since D^2 follows the χ^2-distribution with two degrees of freedom (Tatsuoka, 1971), the null hypotheses that $D(A, \text{Set 40}) = 0$ and $D(A, \text{Set 19}) = 0$ cannot be rejected at, say $\alpha = .25$. The error probabilities ϵ_1 and ϵ_2 are .581, .266, respectively. Therefore, we conclude A belongs to Set 19 although $D^2(A, \text{Set 40})$ is smaller than $D^2(A, \text{Set 19})$. This happened because the prior probability of Prob(Set 40) is smaller than that of Prob(Set 19), where the threshold value, t, is determined as follows:

$$ t = -\ln \left(\text{Prob(Set 40)} / \text{Prob(Set 19)} \right) $$

and $\text{Prob(Set k)} \propto (1/2\pi)^{J/2} \exp \left(-\left(\hat{\theta}_k, \xi_k \right)' \Sigma_k^{-1} \left(\hat{\theta}_k, \xi_k \right) / 2 \right)$.
Table 2
Summary of Classification Results of Students A and B

<table>
<thead>
<tr>
<th></th>
<th>Student A</th>
<th>Student B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^2)</td>
<td>(D^A, \text{Set 40}.008)</td>
<td>(D^B, \text{Set 39}.021)</td>
</tr>
<tr>
<td></td>
<td>(D^A, \text{Set 19}.119)</td>
<td>(D^B, \text{Set 14}.135)</td>
</tr>
<tr>
<td>(\varepsilon_1)</td>
<td>.581</td>
<td>.979</td>
</tr>
<tr>
<td>(\varepsilon_2)</td>
<td>.266</td>
<td>.010</td>
</tr>
<tr>
<td>(\eta)</td>
<td>.088</td>
<td>.040</td>
</tr>
<tr>
<td>(t)</td>
<td>-.174</td>
<td>-.613</td>
</tr>
</tbody>
</table>
Figure 3: Forty Centroids (+) Representing Different Error Types Determined by a Detailed Task Analysis and Students A and B (θ).
Discussion

A new probabilistic model that is capable of measuring cognitive-skill acquisition, and of diagnosing erroneous rules of operation in a procedural domain was introduced by Tatsuoka and her associates (Tatsuoka, 1985; Tatsuoka & Baillie, 1982; Tatsuoka & Tatsuoka, 1982; Tatsuoka, 1983; Tatsuoka, 1984a). The model, called rule space, involves two important components: 1) determination of a set of bug distributions, or in other words, bug density functions representing clusters around the rules, and 2) establishment of decision rules for classifying an observed response pattern into one of the clusters around the rules and computing error probabilities. If each cluster around a rule can be described by a bivariate normal distribution of θ and ξ, then application of the techniques available in the theory of statistical classification and pattern recognition is fairly straightforward and easy.

This study introduces the fact that the cluster around the rule consisting of the response patterns resulting from one, two, ..., several slips away from perfect application of the rule indeed follows a compound binomial distribution with centroid (Θ_R, ξ_R) and variance $\sum_{j=1}^{n} p_j q_j$, where p_j $(j=1,...,n)$ is the probability of having a slip from Rule R for item j. The values of p_j and q_j are approximated by the logistic probabilities $P_j(\theta_R)$ and $Q_j(\theta_R)$, $j=1,...,n$, in this study instead of estimating them from the dataset. Plausibility of the approximation of the slip probabilities associated with each erroneous rule by the logistic function is left as a future topic of investigation, although the fit with data seems to be good.
The determination of a set of ellipses representing clusters around the rules can be automatic after all the erroneous rules are discovered. Many researchers in cognitive science and artificial intelligence have started constructing error diagnostic systems in various domains in this decade. Expert teachers usually know their students' errors, as well as the weaknesses and strengths of each child's knowledge structure. Since the model does not require a large-scale computation such as strategies commonly used in the area of artificial intelligence do, the rule-space model is helpful in more general areas of research and teaching, and for those who have microcomputers for testing their hypotheses, validating their data with probabilistically-sound information, and evaluating their teaching methods and materials. Moreover, the model can be "intelligent" in the sense that the researcher can improve and modify the information for the cluster ellipses as they get more new students whose performances they can study.

The set of ellipses can represent many things besides erroneous rules. They can represent specific contents of some domain, usage errors in the language arts, or processes required in algebra. However, further research is necessary to develop methods for determining the set of ellipses other than relying on an expert teacher. The method must be efficient and compatible with the recent theories of human cognition and learning.
References

Personnel Analysis Division
AF/MPSX
5C360, The Pentagon
Washington, DC 20330

Air Force Human Resources Lab
AFHRL/HFD
Brooks AFB, TX 78235

Air Force Office of Scientific Research
Life Sciences Directorate
Building Air Force Base
Washington, DC 20332

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
NAVTRAQEPFEN
Orlando, FL 32813

Dr. Ed Alken
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1955 Copenhagen
DENMARK

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08540

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
Israel

Dr. Werner Birke
Personalsstammt.(der Bundeswehr
D-5000 Koeln 90
WEST GERMANY

Code N711
Attg: Arthur S. Blaiswes
Naval Training Equipment Center
Orlando, FL 32813

Dr. R. Darrell Bock
University of Chicago
Department of Education
Chicago, IL 60637

Mr. Arnold Bohrer
Psychological Research Section
Caserne Petits Chateau
CRS
1000 Brussels
BELGIUM

Dr. Nick Bond
Office of Naval Research
Liaison Office, Far East
APO San Francisco, CA 96503

Dr. Robert Brenau
Code N-095R
NAVTRAQEPFEN
Orlando, FL 32813

Dr. Robert Brennan
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

Dr. Glenn Bryan
6208 Poe Road
Bethesda, MD 20817

CBR/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

COD Mike Curran
Office of Naval Research
800 N. Quincy St.
Code 270
Arlington, VA 22217-5000

Mr. Timothy Davey
University of Illinois
Educational Psychology
Urbana, IL 61801

Dr. Dattphased Divgi
Syracuse University
Department of Psychology
Syracuse, NY 13210

Dr. Hei-KI Dong
Ball Foundation
800 Roosevelt Road
Building C, Suite 206
Glen Ellyn, IL 60137

Dr. Fritz Dragaw
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC
(12 Copies)

Dr. Stephen Dunbar
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. John H. Edelma
University of Illinois
252 Engineering Research Laboratory
103 South Mathews Street
Urbana, IL 61801

Dr. Patricia A. Butler
WIE Mall Stop 1800
1200 19th St., NW
Washington, DC 20208

Dr. James Carlson
American College Testing Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll
NAVP (R-6)
Chapel Hill, NC 27514

Dr. Robert Carroll
NAVP 0187
Washington, DC 20370

Director
Manpower Support and Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

19 April 1985

Chief of Naval Education and Training
Liaison Office
AFNRL
Operations Training Division
Williams AFB, AZ 85224

Chief of Naval Education and Training
Liaison Office
Air Force Human Resource Laboratory
Operations Training Division
Williams AFB, AZ 85224

Assistant Chief of Staff Research, Development, Test, and Evaluation
Navy Education and Training Command (K-5)
NAS Pensacola, FL 32508

Dr. Hans Crombag
University of Leyden
Education Research Center
Boernavelaan 2
2534 EN Leyden
The NETHERLANDS

Dr. John Ellis
Navy Personnel R&D Center
San Diego, CA 92252

Dr. Richard Elster
Deputy Assistant Secretary of the Navy (Manpower)
Washington, DC 20350

Dr. Susan Emsteross
University of Kansas
Psychology Department
Lawrence, KS 66045

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. Benjamin A. Fairbank
Performance Metrics, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

Dr. Marshall J. Farr
2520 North Vernon Street
Arlington, VA 22207

Dr. Richard L. Ferguson
American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA

Dr. Byron Fischl
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Dr. Dexter Fletcher
University of Oregon
Computer Science Department
Eugene, OR 97403
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. John R. Frederiksen</td>
<td>Bolt Bennett & Newman 50 Moulton Street Cambridge, MA 02138</td>
</tr>
<tr>
<td>Dr. Rob Frey</td>
<td>Commandant (G-P-1/2) USCG HQ Washington, DC 20593</td>
</tr>
<tr>
<td>Dr. Janice Gifford</td>
<td>University of Massachusetts School of Education Amherst, MA 01002</td>
</tr>
<tr>
<td>Dr. Robert Glaser</td>
<td>Learning Research & Development Center University of Pittsburgh 3939 O'Hara Street Pittsburgh, PA 15260</td>
</tr>
<tr>
<td>Dr. Bert Green</td>
<td>Johns Hopkins University Department of Psychology Charles & 34th Street Baltimore, MD 21218</td>
</tr>
<tr>
<td>H. William Greenup</td>
<td>Education Advisor (EO31) Education Center, MCDEC Quantico, VA 22134</td>
</tr>
<tr>
<td>Dipl. Pad. Michael W. Habon</td>
<td>Universitat Dusseldorf Erziehungswissenschaftliches Universitatstr. 1 D-4000 Dusseldorf 1 WEST GERMANY</td>
</tr>
<tr>
<td>Dr. Ron Hambledon</td>
<td>School of Education University of Massachusetts Amherst, MA 01002</td>
</tr>
<tr>
<td>Dr. Delwyn Harnisch</td>
<td>University of Illinois 51 Gerty Drive Champaign, IL 61820</td>
</tr>
<tr>
<td>Ms. Rebecca Hatter</td>
<td>Navy Personnel R&D Center Code 62 San Diego, CA 92152</td>
</tr>
<tr>
<td>Prof. Lutz F. Horkne</td>
<td>Universitat Dusseldorf Erziehungswissenschaftliches Universitatstr. 1 Dusseldorf 1 WEST GERMANY</td>
</tr>
<tr>
<td>Dr. Paul Horst</td>
<td>677 G Street. #184 Chula Vista, CA 90010</td>
</tr>
<tr>
<td>Dr. Lloyd Humphreys</td>
<td>University of Illinois Department of Psychology 603 East Daniel Street Champaign, IL 61820</td>
</tr>
<tr>
<td>Dr. Steven Hunka</td>
<td>Department of Education University of Alberta Edmonton, Alberta CANADA</td>
</tr>
<tr>
<td>Dr. Earl Hunt</td>
<td>Department of Psychology University of Washington Seattle, WA 98105</td>
</tr>
<tr>
<td>Dr. Hyunh Hyunh</td>
<td>College of Education Univ. of South Carolina Columbia, SC 29008</td>
</tr>
<tr>
<td>Dr. Isachy Jacobson</td>
<td>Bureau of Management Consulting 365 Laurier Avenue West Ottawa, Ontario K1A 0G5 CANADA</td>
</tr>
<tr>
<td>Dr. Douglas H. Jones</td>
<td>Advanced Statistical Technologies Corporation 10 Trafalgar Court Lawrenceville, NJ 08648</td>
</tr>
<tr>
<td>Prof. John A. Keats</td>
<td>Department of Psychology University of Newcastle N.W.S. 2308 AUSTRALIA</td>
</tr>
<tr>
<td>Dr. Norman J. Kerr</td>
<td>Chief of Naval Education and Training Code 0042 Naval Air Station Pensacola, FL 32508</td>
</tr>
<tr>
<td>Dr. William Koch</td>
<td>University of Texas-Austin Measurement and Evaluation Center Austin, TX 78703</td>
</tr>
<tr>
<td>Dr. Leonard Kroeker</td>
<td>Navy Personnel R&D Center San Diego, CA 92152</td>
</tr>
<tr>
<td>Dr. Anita Lancaster</td>
<td>Accession Policy OASD/NAVAL/MC/PMAP/WAP Pentagon Washington, DC 20301</td>
</tr>
<tr>
<td>Dr. Daryll Lang</td>
<td>Navy Personnel R&D Center San Diego, CA 92152</td>
</tr>
<tr>
<td>Dr. Jerry Lehman</td>
<td>OASD (M&A) Washington, DC 20301</td>
</tr>
<tr>
<td>Dr. Thomas Leonard</td>
<td>University of Wisconsin Department of Statistics 1210 West Dayton Street Madison, WI 53705</td>
</tr>
<tr>
<td>Dr. Alan M. Lesgold</td>
<td>Learning R&D Center University of Pittsburgh Pittsburgh, PA 15260</td>
</tr>
<tr>
<td>Dr. Michael Levine</td>
<td>Educational Psychology 210 Education Bldg. University of Illinois Champaign, IL 61801</td>
</tr>
<tr>
<td>Dr. Charles Lewis</td>
<td>Faculte Sociale Wetenschappen Rijksuniversiteit Groningen Oude Boteringestraat 23 9712GC Groningen The NETHERLANDS</td>
</tr>
<tr>
<td>Dr. Robert Linn</td>
<td>College of Education University of Illinois Urbana, IL 61801</td>
</tr>
<tr>
<td>Dr. Robert Lockman</td>
<td>Center for Naval Analysis 200 North Beauvoir Rd. Alexandria, VA 22311</td>
</tr>
<tr>
<td>Dr. Frederic M. Lord</td>
<td>Educational Testing Service Princeton, NJ 08540</td>
</tr>
<tr>
<td>Dr. James Lumsden</td>
<td>Department of Psychology University of Western Australia Medlands W.A. 6009 AUSTRALIA</td>
</tr>
<tr>
<td>Dr. William L. Maloy</td>
<td>Chief of Naval Education and Training Naval Air Station Pensacola, FL 32508</td>
</tr>
<tr>
<td>Dr. Gary Marco</td>
<td>Stop 31-E Educational Testing Service Princeton, NJ 08541</td>
</tr>
<tr>
<td>Dr. Kneale Marshall</td>
<td>Operations Research Department Naval Post Graduate School Monterey, CA 93940</td>
</tr>
<tr>
<td>Dr. Cisselin Martin</td>
<td>Army Research Institute 5001 Eisenhower Blvd. Alexandria, VA 22333</td>
</tr>
<tr>
<td>Dr. James McBride</td>
<td>Psychological Corporation O/o Harcourt, Brace, Javanovich Inc. 1250 West 6th Street San Diego, CA 92101</td>
</tr>
<tr>
<td>Dr. Clarence McCormick</td>
<td>HQ. MSEPCT-F 2500 Green Bay Road North Chicago, IL 60664</td>
</tr>
<tr>
<td>Dr. Robert McKinley</td>
<td>University of Toledo Department of Educational Psychology Toledo, OH 43605</td>
</tr>
<tr>
<td>Dr. Barbara Mennis</td>
<td>Human Resources Research Organization 1100 South Washington Alexandria, VA 22314</td>
</tr>
<tr>
<td>Dr. Arthur Melmed</td>
<td>724 Brown U. S. Department of Education Washington, DC 20208</td>
</tr>
<tr>
<td>Dr. Robert Malsey</td>
<td>Educational Testing Service Princeton, NJ 08540</td>
</tr>
<tr>
<td>Dr. William Montague</td>
<td>NPPC Code 13 San Diego, CA 92152</td>
</tr>
<tr>
<td>Ms. Kathleen Moreno</td>
<td>Navy Personnel R&D Center Code 62 San Diego, CA 92152</td>
</tr>
<tr>
<td>Headquarters, Marine Corps Code MFR-20 Washington, DC 20380</td>
<td></td>
</tr>
<tr>
<td>Program Manager for Manpower, Personnel, and Training NAVMRT 0722 Arlington, VA 22217-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. W. Alan Nocewander</td>
<td>University of Oklahoma Department of Psychology Oklahoma City, OK 73169</td>
</tr>
<tr>
<td>Dr. William E. Wordbrock</td>
<td>FMC-ADCO Box 25 APO, NY 09110</td>
</tr>
</tbody>
</table>
END

FILMED

9-85

DTIC