STRESS INTENSITY FACTORS AT RADIAL CRACKS OF UNEQUAL DEPTH IN PARTIALLY AUTOFRETTAGED, PRESSURIZED CYLINDERS

S. L. PU

JUNE 1985

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
LARGE CALIBER WEAPON SYSTEMS LABORATORY
BENÉT WEAPONS LABORATORY
WATERVLIET N.Y. 12189

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.
STRESS INTENSITY FACTORS AT RADIAL CRACKS OF UNEQUAL DEPTH IN PARTIALLY AUTOFRETTAGED, PRESSURIZED CYLINDERS

AUTHORS:
S. L. Pu

PERFORMING ORGANIZATION NAME AND ADDRESS
US Army Armament Research & Development Center
Benet Weapons Laboratory, SMCAR-LCB-TL
Watervliet, NY 12189-5000

CONTROLING OFFICE NAME AND ADDRESS
US Army Armament Research & Development Center
Large Caliber Weapon Systems Laboratory
Dover, NJ 07801-5001

ABSTRACT
Stress intensity factors are estimated for radial cracks of unequal depths emanating from the inner surface of a partially autofrettaged cylinder subjected to various bore pressures. The approximate method developed for uneven radial cracks in a non-autofrettaged cylinder is applied to functional stress intensities. Linear superposition is then used to obtain the final stress intensity factors of uneven cracks due to a stress field which varies (CONT'D ON REVERSE)
20. ABSTRACT (CONT'D)

with the magnitude of bore pressure, the degree of autofrettage, and the elastic-plastic behavior of the cylinder material. The autofrettage residual stress reduces the level of stress intensity factors at inner radial cracks due to internal pressure, but has little effect on variations in stress intensity factors caused by changes in crack depths.
TABLE OF CONTENTS

INTRODUCTION .. 1
RESIDUAL STRESSES IN AN AUTOFRETTAGED CYLINDER 2
FUNCTIONAL STRESS INTENSITIES 4
RADIAL CRACKS OF UNEQUAL DEPTHS 7
NUMERICAL RESULTS AND DISCUSSIONS 8
REFERENCES .. 12

TABLES

I. APPROXIMATE VS. FINITE ELEMENT RESULTS OF $K_i(p_c)/K_e(p_c)$
 FOR $W = 2$, $n = 2$, $c = 0.2$, $p_1 = 0.7$, and $p_1 = 1.4$ 9
II. APPROXIMATE VS. FINITE ELEMENT RESULTS OF $K_i(c)/\sigma_{0R1^{1/2}}$
 FOR $W = 2$, $n = 2$, $c = 0.2$, $p_1 = 0.7$, and $p_1 = 1.4$ 10

LIST OF ILLUSTRATIONS

1. Stress intensity factors as a function of crack depth for a
 pressurized, non-autofrettaged cylinder of $W = 2$ with n cracks
 of equal depths. ... 13
2. Changes in stress intensity ratio as a function of relative
 change in one of the crack depths for pressurized cylinder with
 two diametrically opposite cracks. 14
3. Functional stress intensity factors as a function of crack
 depth for two equal cracks under three types of basic crack
 face loading. ... 15
4. Changes in stress intensity ratio as a function of relative
 change in one of the crack depths for a two-crack configuration
 due to a constant crack face loading. 16
5. Changes in stress intensity ratio as a function of relative
 change in one of the crack depths for a two-crack configuration
 due to a crack face loading of pr^{-2}. 17
6. Changes in stress intensity ratio as a function of relative change in one of the crack depths for a two-crack configuration due to a crack face loading of $p \ln(r)$.

7. Normalized stress intensity factors as a function of relative change in one of the crack depths, with the other crack fixed at a depth $c = 0.1$, in a diametrically opposite cracked cylinder which is autofrettaged to a degree of ε and is subjected to an internal pressure $p = \sigma_0/f$.

8. Normalized stress intensity factors as a function of relative change in one of the crack depths, with the other crack fixed at a depth $c = 0.2$, in a diametrically opposite cracked cylinder which is autofrettaged to a degree of ε and is subjected to an internal pressure $p = \sigma_0/f$.

9. Normalized stress intensity factors as a function of relative change in one of the crack depths, with the other crack fixed at a depth $c = 0.3$, in a diametrically opposite cracked cylinder which is autofrettaged to a degree of ε and is subjected to an internal pressure $p = \sigma_0/f$.

10. Comparison of normalized stress intensity factors for strain-hardening materials having $E_t = 0.1E$ with corresponding values for elastic-perfectly plastic materials.
INTRODUCTION

The linear fracture mechanics problem of a pressurized cylinder with many radial cracks has been extensively studied in recent years by a number of investigators. In earlier works, cracks were assumed to be uniformly distributed and of equal depths so the problem remained axisymmetric. In a recent report (ref 1), radial cracks of unequal depths were considered. It was found that the variation in stress intensity factor at a crack tip due to crack depth change of the same crack or another crack is approximately linear. A simple numerical method was used in Reference 1 to accurately estimate stress intensity factors at radial cracks of unequal depths in a pressurized, non-autofrettaged cylinder.

For a partially autofrettaged cylinder, the functional stress intensity approach was developed (ref 2) for equal depth radial cracks. The same approach can be extended to radial cracks of unequal depths. The functional stress intensity factors for uneven cracks must be first obtained by the numerical method developed in Reference 1. A combination of methods described in References 1 and 2 can be used to estimate stress intensity factors at uneven radial cracks in a pressurized, partially autofrettaged cylinder. Numerical results are given for two diametrically opposite cracks with crack length ratio varying from 0.7 to 1.4 for a thick-walled cylinder of wall ratio W = 2. The method, however, is general for a multi-crack configuration.

It is now a routine procedure to autofrettage a cannon tube to introduce residual compressive stress in the circumferential direction near the bore to slow the growth of radial cracks which occur after repeated firing. The residual stress distribution is difficult to measure and can only be estimated by theoretical prediction based on various assumptions of material models. From a recent paper (ref 3), it is assumed that the residual stresses can be closely approximated by the following expressions:

\[
\frac{\sigma_r(r)}{\sigma_0} = \begin{cases}
A_r + \frac{B_r}{r^2} + C_r \ln r & 1 < r < 1 + \epsilon t \\
D_r + \frac{E_r}{r^2} & 1 + \epsilon t < r < W
\end{cases}
\]

\[
\frac{\sigma_\theta(r)}{\sigma_0} = \begin{cases}
A_\theta + \frac{B_\theta}{r^2} + C_\theta \ln r & 1 < r < 1 + \epsilon t \\
D_\theta + \frac{E_\theta}{r^2} & 1 + \epsilon t < r < W
\end{cases}
\]

where \((r, \theta)\) are polar coordinates with origin at the center of the cylinder. The inner radius is taken as the length unit. The outer radius is then equal to the wall ratio \(W\). The wall thickness \(t\) equals \(W-1\). The degree of autofrettage \(\epsilon\) is defined by \(\epsilon = \frac{(r_p-1)}{t}\) where \(r_p\) is the radius of elastic-plastic interface during pressurization in an autofrettage procedure. \(\sigma_0\) is the yield stress of the material and \(\sigma_r, \sigma_\theta\) are stress components in \(r\) and \(\theta\)-directions, respectively. The superposition coefficients \(A_r, \ldots, E_r\), and \(A_\theta, \ldots, E_\theta\), vary with \(W, \epsilon\), and the material model used. For a highly idealized material which obeys von Mises' criterion and is incompressible and elastic-perfectly plastic, and for the cylinder which is under a state of

plane strain, we conclude from Reference 4 that:

\[A_\theta = \frac{1}{\sqrt{3}} \left[2 - P_1(\varepsilon) \right], \quad B_\theta = \frac{-1}{\sqrt{3}} P_1(\varepsilon), \quad C_\theta = \frac{2}{\sqrt{3}} \] (5)

\[D_\theta = \frac{1}{\sqrt{3} w^2} [(1+\varepsilon t)^2 - P_1(\varepsilon)], \quad E_\theta = \frac{1}{\sqrt{3}} \left[(1+\varepsilon t)^2 - P_1(\varepsilon) \right] \] (6)

where

\[P_1(\varepsilon) = \frac{w^2}{w^2-1} \left[1 - \frac{(1+\varepsilon t)^2}{w^2} + 2ln(1+\varepsilon t) \right] \] (7)

For a less restrictive material model which behaves more closely to high strength steels of pressure vessels, residual stresses are usually obtained by numerical methods and are given by numerical values at discrete points. The superposition coefficients are a set of constants found by the least squares method. In a specific example (ref 3), the material is assumed to have \(\nu = 0.3, \ v = 0.1 \) where \(E_t/E \) is the tangent-modulus of a strain-hardening material, and the material follows the incremental plastic stress-strain relation of Prandtl-Reuss and the yield criterion of von Mises in the plastic region. The numerical residual stresses obtained by Chen (ref 5) using the finite difference method for a cylinder of \(W = 2 \) can be closely approximated by \(A_\theta = 0.170, \ B_\theta = 1.030, \) and \(C_\theta = 0.890 \) for \(\varepsilon = 1 \) and by a different set of superposition coefficients for a different value of \(\varepsilon \). The corresponding coefficients from Eqs. (5) and (7) for idealized materials for \(W = 2, \varepsilon = 1 \)

are \(A_0 = 0.0875 \), \(B_0 = -1.067 \), and \(C_0 = 1.155 \) which are quite different from the coefficients for the strain-hardening material given previously.

The underlying concept here is that the residual stresses in a partially autofrettaged cylinder, without reverse yielding during elastic unloading, can be closely approximated by expressions of Eqs. (1) through (4). Once the superposition coefficients are found, then the effect of such residual stresses on stress intensity factors at radial cracks in the cylinder can be estimated.

FUNCTIONAL STRESS INTENSITIES

According to the weight function method (refs 6,7), the mode I stress intensity factor due to a symmetrical load system 2 can be found if the mode I stress intensity factor \(K^* \) and displacement field \(u^* \) associated with the symmetric load system 1 for the same cracked geometry are known. For radially cracked rings, this method gives:

\[
K = \frac{H}{K^*} \int_0^a p_c(x) \frac{\partial u^*}{\partial a} \, dx
\]

where \(a \) is the crack length, \(x \) is a distance measured along the crack from the base toward the tip, \(u^* \) is the normal component of crack face displacement, \(H = E \) for plane stress and \(H = E/(1-\nu^2) \) for plane strain, and \(p_c(x) \) is the crack face pressure which can be found from the hoop stress in an uncracked ring subjected to the symmetric load of interest.

Taking the right side of Eq. (3) as \(p_c(x) \) into Eq. (8) with \(r = 1+x \), we

have:

\[
\frac{K(\epsilon)}{\sigma_0} = A_0 K(1) + B_0 K(r^{-2}) + C_0 K(\ln r)
\]

(9)

where \(K(\epsilon)\) is the mode I stress intensity factor at a radial crack emanating from the bore with crack length \(c < \epsilon t\) in a stress field given by the residual stress, Eq. (3), and \(K(1), K(r^{-2}), \) and \(K(\ln r)\) are integrals given by Eq. (8) with \(p_c(x) = 1, (1+x)^{-2}\) and \(\ln(1+x),\) respectively. These integrals are stress intensity factors associated with the specific crack face loadings. They are basic quantities and are named functional stress intensities.

One way to find functional stress intensity factors is to assume \(\psi^*\) as a function of \(a\) and \(x\) and perform the integration of Eq. (8). An approximation by assuming \(\psi^*\) as a conic section is given by Grandt (ref 8). A way to deviate from this approach is given in Reference 2 by using finite element computations of stress intensity factors of the cracked cylinder subjected to the following three loadings. The hook stress in an uncracked cylinder under internal pressure \(p_I\) is:

\[
-\frac{\sigma_0}{p_I} = \frac{1}{W_{2-1}^2} \left(1 + \frac{W^2}{r^2}\right)
\]

(10)

The stress intensity factor produced by this stress acting on the crack face is:

\[
\frac{K(p_I)}{p_I} = \frac{1}{W^2_{2-1}} K(1) + \frac{W^2}{W^2_{2-1}} K(r^{-2})
\]

(11)

Similarly, the stress intensity factor due to a uniform tension p_0 on the outer cylindrical surface is:

$$\frac{K(p_0)}{p_0} = \frac{W^2}{W^2-1} K(1) + \frac{W^2}{W^2-1} K(r^{-2})$$ \hspace{1cm} (12)

The left-hand sides of Eqs. (11) and (12) are calculated from two separate finite element computations. The functional stress intensity factors $K(1)$ and $K(r^{-2})$ are solved from Eqs. (11) and (12). The third finite element computation which supplies values to the left-hand side of Eq. (9) is obtained by applying an axisymmetrical thermal loading to the cylinder.

$$T(r) = T_0 - (T_0 - T_W) \frac{\ln \left(\frac{r}{W} \right)}{\ln W} \quad 1 < r < W$$ \hspace{1cm} (13)

where T_0 is the temperature at the bore and T_W is the temperature at the outer cylindrical surface. Temperature gradient is related to material constants by:

$$\Delta T = \frac{4\sigma_0 (1-\nu) \ln W}{\sqrt{3} \ E \alpha}$$ \hspace{1cm} (14)

where E and α are Young's modulus and the coefficient of linear thermal expansion, respectively. The thermal stresses produced by the loading given by Eq. (13) are identical to the fully autofrettaged residual stresses in Eqs. (1) through (4) with superposition coefficients given by Eqs. (5) and (6); see Reference 9. The only unknown $K(\ln r)$ in Eq. (9) can be easily solved.

RADIAL CRACKS OF UNEQUAL DEPTHS

For non-autofrettaged cylinders, an approximate method is described in Reference 1 to estimate stress intensity factors at radial cracks of uneven depths. Finite element code APES is used to obtain changes in stress intensity factors at different crack tips due to a systematic change in crack length of a radial crack. The total change in stress intensity factor at a particular crack due to simultaneous changes in crack lengths of all radial cracks is approximately the sum of changes in stress intensity factor at that crack due to crack length changes, one at a time.

For partially autofrettaged cylinders with radial cracks of equal depth, we use functional stress intensities defined previously as basic quantities. The final stress intensity factor is given by a linear superposition of functional stress intensities such as Eq. (9). The superposition coefficients are known from the residual stress solution and the Lamé solution. For radial cracks of unequal depths, the approximate method developed in Reference 1 is applied to each functional stress intensity factor. Once changes in all functional stress intensity factors are known due to simultaneous changes in crack lengths of radial cracks, the superposition formula can be used to estimate the final stress intensity factor at each crack tip in a partially autofrettaged and pressurized cylinder with uniform array of radial cracks of unequal depths.

NUMERICAL RESULTS AND DISCUSSIONS

Using two diametrically opposite cracks as an example, the stress intensity factor is plotted as a function of crack depth in Figure 1 for an equal crack configuration of a non-autofrettaged cylinder of \(W = 2 \) subjected to a uniform tension \(p \) on the outer cylindrical surface. In the same figure, results of \(n = 1, 3, 4, 6 \) are also shown to indicate that stress intensity factor for \(n = 2 \) is the highest at a given crack depth \(c \). The subscript \(e \) is used to emphasize that the quantity is of equal crack depth configuration. In Figure 2, the change in stress intensity ratio is plotted as a function of change in crack depth when one of the cracks is growing from the equal depth to an unequal depth configuration. To distinguish one crack from other cracks in an unequal depth configuration, an arbitrary numbering system is used. Quantities with a subscript \(1 \), such as \(K_1 \) and \(c_1 \), are the ones associated with crack \(1 \). Dimensionless stress intensity factor and crack depth are defined by \(N_1 = K_1/K_e \) and \(\rho_1 = c_1/c \). The changes in \(N \) and \(\rho \) are designated by \(\Delta N_1 = (K_1-K_e)/K_e \) and \(\Delta \rho_1 = (c_1-c)/c \).

For partially autofrettaged cylinders, functional stress intensity factors are studied as basic quantities. Figure 3 shows functional stress intensity factors as functions of crack depth when two radial cracks are of equal depths. Results in Figure 3 are used to normalize functional stress intensities when radial cracks are of unequal depths. Figures 4 through 6, similar to Figure 2 of non-autofrettaged cylinders, are graphs of \(\Delta N_1 \) versus \(\Delta \rho_1 \) for the three basic functional stress intensities corresponding to normal crack face loadings \(p_C = 1, 1/r^2, \) and \(\&nr \), respectively.
Using the approximate method described in Reference 1 and the results in Figures 4 through 6, functional stress intensity factors can be estimated for unequal depth radial cracks. The approximate results agree well with results directly calculated from finite element computations. For instance, for \(n = 2, c_2 = c = 0.2 \) and \(c_1 \) varies from 0.14 to 0.28. A comparison of approximate and finite element results of functional stress intensities is given in Table I.

TABLE I. APPROXIMATE VS. FINITE ELEMENT RESULTS OF \(K_i(p_c)/K_e(p_c) \)

<table>
<thead>
<tr>
<th>(c_2 = 0.2, p_1 = 0.7)</th>
<th>(c_2 = 0.2, p_1 = 1.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r^{-2})</td>
<td>(r^{-2})</td>
</tr>
<tr>
<td>(\ln r)</td>
<td>(\ln r)</td>
</tr>
</tbody>
</table>

Knowing \(K_i(p_c)/K_e(p_c) \) and \(K_e(p_c) \), Figure 3, then Eq. (9) can be used to compute stress intensity factors at radial cracks of unequal depths corresponding to a residual stress distribution of Eq. (3). The superposition coefficients are known from the residual stress distribution. For the

idealized material model, they are given by Eq. (5). Let $e = 1.0$ and 0.6; then numerical values of $K_i(e)/(\sigma_0 R_1)$ are obtained by the approximate method and the finite element method. The results are compared in Table II. The negative sign indicates that the effect of autofrettage residual stress on inner cracks is to resist crack opening due to internal pressure or other loadings. The resistance varies and never exceeds the crack opening force. The values in Table II are the maximum resistance. The stress intensity factor at a crack remains zero unless the crack opening force is larger than the maximum resistance given by the residual stress distribution.

TABLE II. APPROXIMATE VS. FINITE ELEMENT RESULTS OF $K_i(e)/(\sigma_0 R_1^{1/2})$

<table>
<thead>
<tr>
<th>i</th>
<th>e</th>
<th>Approximate</th>
<th>F.E.</th>
<th>Approximate</th>
<th>F.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>-0.6201</td>
<td>-0.6001</td>
<td>-0.6938</td>
<td>-0.6879</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
<td>-0.5236</td>
<td>-0.5040</td>
<td>-0.5545</td>
<td>-0.5486</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>-0.6294</td>
<td>-0.6320</td>
<td>-0.6814</td>
<td>-0.6822</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>-0.5187</td>
<td>-0.5205</td>
<td>-0.5610</td>
<td>-0.5615</td>
</tr>
</tbody>
</table>

For an inner cracked, partially autofrettaged cylinder subject to an internal pressure p, the resultant stress intensity factor is the sum of Eqs. (9) and (12). If p is σ_0/f where f is a constant, the resultant stress intensity factor at crack i is given in terms of functional stress intensity factors by:
\[
\frac{K_1(p, \varepsilon)}{\sigma_0 R_1} = \left(A_\theta(\varepsilon) + \frac{w^2}{f(W^2 - 1)} \right) \frac{K_1(1)}{\sqrt{R_1}} + \left(B_\theta(\varepsilon) + \frac{w^2}{f(W^2 - 1)} \right) \frac{K_1(r^{-2})}{\sqrt{R_1}} + C_\theta(\varepsilon) \frac{K_1(lnr)}{\sqrt{R_1}}
\]

Normalizing \(K_1(p, \varepsilon)\) by \(K_e(p, \varepsilon=0)\), numerical results for \(i = 1\) or \(2\), \(\varepsilon = 0.5\) or 1, and \(f = 1.5\) or 3 are shown in Figures 7 through 9 for \(c = 0.1\), 0.2, and 0.3, respectively. In these figures, the superposition coefficients \(A_\theta\), \(B_\theta\), and \(C_\theta\) are given by Eq. (5). For a strain-hardening material with tangent modulus \(E_t = 0.1E\), the residual stress distributions obtained by Chen (ref 5) were closely approximated by various sets of superposition coefficients in Reference 3. Using those, the final stress intensity factors ratios are shown in solid lines in Figure 10 in comparison with broken lines for idealized materials.

In Figures 7 through 9, all lines with the same \(i\) are nearly parallel, which indicates that the effect of autofrettage residual stress is simply a proportional reduction of stress intensity factor. The same trend is true in Figure 10 for strain-hardening material. The resistance to crack opening due to autofrettage is slightly reduced in strain-hardening material than in the idealized material (ref 3). This reduction is in proportion to the change in crack depths so the solid lines remain parallel to the broken lines in Figure 10.

REFERENCES

Figure 1. Stress intensity factors as a function of crack depth for a pressurized, non-autofrettaged cylinder of $W = 2$ with n cracks of equal depths. Dots are finite element results.
Figure 2. Changes in stress intensity ratio as a function of relative change in one of the crack depths for pressurized cylinder with two diametrically opposite cracks. Dots are finite element results.
Figure 3. Functional stress intensity factors as a function of crack depth for two equal cracks under three types of basic crack face loadings. Dots are finite element results.
Figure 4. Changes in stress intensity ratio as a function of relative change in one of the crack depths for a two-crack configuration due to a constant crack face loading. Dots are finite element results.
Figure 5. Changes in stress intensity ratio as a function of relative change in one of the crack depths for a two-crack configuration due to a crack face loading of \(pr^{-2} \).
Figure 6. Changes in stress intensity ratio as a function of relative change in one of the crack depths for a two-crack configuration due to a crack face loading of $p\ln(r)$.

\[\Delta N_i(p_c) \]

\[p_c = p\ln(r) \]
Figure 7. Normalized stress intensity factors as a function of relative change in one of the crack depths, with the other crack fixed at a depth $c = 0.1$, in a diametrically opposite cracked cylinder which is autofrettaged to a degree of ε and is subjected to an internal pressure $p = \sigma_0 / f$.
Figure 8. Normalized stress intensity factors as a function of relative change in one of the crack depths, with the other crack fixed at a depth \(c = 0.2 \), in a diametrically opposite cracked cylinder which is autofrettaged to a degree of \(\varepsilon \) and is subjected to an internal pressure \(p = \sigma_0/f \).
Figure 9. Normalized stress intensity factors as a function of relative change in one of the crack depths, with the other crack fixed at a depth \(c = 0.3 \), in a diametrically opposite cracked cylinder which is autofrettaged to a degree of \(\varepsilon \) and is subjected to an internal pressure \(p = \sigma_0/f \).
Figure 10. Comparison of normalized stress intensity factors for strain-hardening materials having $E_t = 0.1E$ with corresponding values for elastic-perfectly plastic materials.
<table>
<thead>
<tr>
<th>Technical Report Internal Distribution List</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief, Development Engineering Branch</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCAR-LCB-D</td>
<td></td>
</tr>
<tr>
<td>- DA</td>
<td>1</td>
</tr>
<tr>
<td>- DP</td>
<td>1</td>
</tr>
<tr>
<td>- DR</td>
<td>1</td>
</tr>
<tr>
<td>- DS (Systems)</td>
<td>1</td>
</tr>
<tr>
<td>- DS (ICAS Group)</td>
<td>1</td>
</tr>
<tr>
<td>- DC</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Engineering Support Branch</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCAR-LCB-S</td>
<td></td>
</tr>
<tr>
<td>- SE</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Research Branch</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: SMCAR-LCB-R</td>
<td></td>
</tr>
<tr>
<td>- R (Ellen Fogarty)</td>
<td>1</td>
</tr>
<tr>
<td>- RA</td>
<td>1</td>
</tr>
<tr>
<td>- RM</td>
<td>2</td>
</tr>
<tr>
<td>- RP</td>
<td>1</td>
</tr>
<tr>
<td>- RT</td>
<td>1</td>
</tr>
<tr>
<td>Technical Library</td>
<td>5</td>
</tr>
<tr>
<td>ATTN: SMCAR-LCB-TL</td>
<td></td>
</tr>
<tr>
<td>Technical Publications & Editing Unit</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: SMCAR-LCB-TL</td>
<td></td>
</tr>
<tr>
<td>Director, Operations Directorate</td>
<td>1</td>
</tr>
<tr>
<td>Director, Procurement Directorate</td>
<td>1</td>
</tr>
<tr>
<td>Director, Product Assurance Directorate</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Please notify Director, BENET Weapons Laboratory, ATTN: SMCAR-LCB-TL, of any address changes.
Technical Report External Distribution List

<table>
<thead>
<tr>
<th>Organization</th>
<th>Contact Person</th>
<th>Address</th>
<th>Number of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Secretary of the Army Research & Development</td>
<td>Commander</td>
<td>DEP FOR SCI & TECH, THE PENTAGON, WASHINGTON, D.C. 20315</td>
<td>1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>Commander</td>
<td>DTIC-DDA, ALEXANDRIA, VA 22314</td>
<td>12</td>
</tr>
<tr>
<td>US Army Materiel Development & Readiness Command</td>
<td>Commander</td>
<td>DRCDE-SG, 5001 EISENHOWER AVE, ALEXANDRIA, VA 22333</td>
<td>1</td>
</tr>
<tr>
<td>Armament Research & Development Center</td>
<td>Commander</td>
<td>SMCAR-LC, SMCAR-LCE, SMCAR-LCM (BLDG 321), SMCAR-LCS, SMCAR-LCU, SMCAR-LCW, SMCAR-SCM-O (PLASTICS TECH EVAL CTR, BLDG. 351N), SMCAR-TSS (STINFO), DOVER, NJ 07801</td>
<td>1</td>
</tr>
<tr>
<td>Ballistic Research Laboratory</td>
<td>Director</td>
<td>AMXBR-TSB-S (STINFO), ABERDEEN PROVING GROUND, MD 21005</td>
<td>1</td>
</tr>
<tr>
<td>Materiel Systems Analysis Activity</td>
<td></td>
<td>DRXSY-MP, ABERDEEN PROVING GROUND, MD 21005</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organization</th>
<th>Contact Person</th>
<th>Address</th>
<th>Number of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army Armament Research and Development Center, BENET WEAPONS LABORATORY, SMCAR-LCB-TL, WATERVLIET, NY 12189</td>
<td>Commander</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>US Army Industrial Base Engineering Activity</td>
<td>Commander</td>
<td>DRXIB-M, ROCK ISLAND ARSENAL, IL 61299</td>
<td>1</td>
</tr>
<tr>
<td>US Army Tank-Automotive R&D Command</td>
<td>Commander</td>
<td>SMCFI-ESP-L (MAT SCI DIV), ROCK ISLAND, IL 61299</td>
<td>1</td>
</tr>
<tr>
<td>US Army Tank-Automotive Command</td>
<td>Commander</td>
<td>DRXST-SD, DOVER, NJ 07801</td>
<td>1</td>
</tr>
<tr>
<td>US Army Military Academy</td>
<td>Commander</td>
<td>CHMN, MECH ENGR DEPT, WEST POINT, NY 10996</td>
<td>1</td>
</tr>
<tr>
<td>US Army Missile Command</td>
<td>Commander</td>
<td>DOCUMENTS SECT, BLDG. 4484, REDSTONE ARSENAL, AL 35898</td>
<td>1</td>
</tr>
<tr>
<td>US Army Foreign Science & Technology Center</td>
<td>Commander</td>
<td>DRXST-SD, 220 7TH STREET, N.E., CHARLOTTESVILLE, VA 22901</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Please notify Commander, Armament Research and Development Center, US Army Armament Research and Development Center, BENET WEAPONS LABORATORY, SMCAR-LCB-TL, WATERVLIET, NY 12189, of any address changes.
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER, US ARMY AMCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL, WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.