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A PIT KITAC SYSTK DESIGN HODIL

by

Ronald V. Soling' and Trederick S. Rillier

ABSTRACT

A general model for the design of fleet maintenance systems Involving

several crews working in sequence is developed. Emphasis is placed an

optimixing the system for scheduled periodic maintenance activities. Results

are given for the case where crew service times are exponentially distri-

buted. When man service times for ail crew are equal, an optimal system

configuration Is determined as a function of the umber of crews, cost of

crew activities and cost of a fleet unit's Idle time.
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A M= IUTVIANCZ SYSTEM DESIGN IDIL

INTIODUCONO

Fleet maintenance systems typically are designed to service fleet units,

such as trucks, airplanes, ears, etc., on a scheduled maintenance progrem as

well as emergency repair basis. Basic system design variables include the

division of work between service crews, level of service provided by such

crews and a limit on the number of fleet umits idle at one time.

A general model for the design of such systems Is developed and described

in this article. Since In a given fleet enviroomn: the cost and offect of

emergency repairs tend to be independent of system design, emphasis is placed

on optimizing the system for scheduled maintenance activities.

Typical fleet maintenance system are ade up of multiple crew and

skills obich mast be scheduled In a fixed sequence to complete specific

maintenance tasks on each unit* Task times usualy vary considerably from one

unit to the next. Studying such system is Important because of the large

number of organisations confronted with this problem and the magnitude of

Investment and expense consumed by such systems.

The particular model developed here considers a fleet of arbitrary size

and a service facility consisting of a finite ember of crews working in a

fixed sequence on each fleet unit removed from operation. A limit is placed

on the number of units which can be removed from the operating fleet at any

one time. Once the limit is reached, the next scheduled fleet unit must wait

until another unit Is released from the maintenance system before it can

enter. In Its general form, system costs are a function of scheduled

maintenance, emrgency repairs and opportunity or capital costs associated
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with idle eperating wite. Capital Costs sad operating expenses associated

with bemmin the ffetem are not considered. In the general model, crow

service tim me meidered to be independent random variables with a general

distribmtiem. Neusue the analysis bere in restricted to the case where

*wiee tim e m peeehiy distributed. Whken "as service times for all

crem aoe equalo sm epsimel system configuration is determined as a function

of the rn" er of u -ve the eanst of crew activities,. and the cost of a fleet

mnit's Idle time Soe configurations are described in term of the limit on

the smber of aite which cm be removed from the operating fleet at my one

time ad the level of service rate necessary for each crew.

GENZtAL OST OEL

Consider the following model.

Z B [F(l(P-,Y)) + TELUP-00) + k I CNu)

where

Z expected total systee cost per unit ties (in steady state)

3(-) e xpected cost associated with eargeucy repairs per unit tie

*~e expected cost associated with fleet units idle during their
remoival from the operating fleet per unit tim

C(%) *expected cost associated with maintenance crew k per unit tims

and

F(9) *expected number of units requiring emergency repairs per unit time

W() *expected production rate (rate of copleting maintenance of units)
of maintenance system

Ik a(2[6kJ)-1  the service rate for crew k

2



z * k the expected service time for crew k

- the vector whose components are the I~k(k a1,2,3,..., N)

N - the number of crows in system

Y - maxinum. numiber of fleet unaits removed from operating fleet at any
point in time which are available to maintenance crew

L( *) - expected number of fleet vaits In the maintenance system.

Components of cost considered here relate to emergency repair,

opportunity costs of idle units ad crew coets associated with scheduled

maintenance activities. It io recognised that actions can be taken, and, Vine

possible, should be taken, to reduce S(-); however, for our purposes z(-)

is considered to be constant and so does not influence the design of the

maintenance system required to service scheduled maintenance activities.

SNQEUiUTLAL CIO MODEL

The problem amw become that of solving for the vales of 1&,, 1&2, soat

IKand y that minimize total system cost, where the chosen value of each

ikthen would be (approximately) realised by adjusting the sian, composition,

and mode of operation of crew k appropriately. for those system which are

kept operating at as close to capacity as possible, given the values of these

design variables, the Sequential Crew Model [11 can be used to provide system

production rates an a function of the nber of crews, crew service rates, and

the limit on the number of fleet units available to the maintenance system.

3
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The eSumptious se by this model are the following:

(1) The system of N crewi is available continuously-

(2) These y crew always perform their tasks on each unit in the same

fixed order, where the next crew begins (if not already occupied on

another unit) as soon as the preceding crew ends*

(3) For crew k,,the service time for the respective unite are

independent and Identically distributed according to an expoential

distribution with parmter W~k

(4) No more than y units can he win the system" (already begun by at

least the first crow but not yet finished by the last crew) at one

tim.

4 (5) Except when the system is at this upper limit, the first crew always

starts work on another unit as soon as it completes its work on Its

current unit,

The following results thee are obtained from the Sequential Crew Model.

Les
and

Li

Where

P stationary probability of being In state I of the

underlying tMarkov chain.

a number of units in the system in state 1.

S *the $at of PIwith the first crew busy.
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A more complete description of this model and its characteristic behavior

ca be found in (2).

It can be readily observed that this model can be formulated as a

continuous time parameter Marko chain; hence, the P can be obtained from

the solution of a set of linear equations. Since most practical systems

require large sets of equations, the reader may wish to refer to [51 and [61

for procedures for simplifying solution msethods.

Means are now available to determine an optimal design by calculating

I(e) and L(e) and using an appropriate nmertical search routine. An

example using a direct numerical approach is given in Appendix A for

illustrative purposes.

BEHAVIOR OF BALANCED SYSTEMS

A very useful and frequently observed case of this system occurs when

expected service times of all crew are equal, ioe., p&k - p& for all k . An

examination of the transition intensity satrix for this case reveals that it

is doubly stochastic. Hence,

Pi " for all i

where m is the number of states in the Parkov Chain and P is the

stationary probability of the system being in state i (see (4]).

This fortunate relationship makes it possible to calculate Pi by

counting the number of states in the Markov Chain representing a particular

system. Such systems and respective Karkov Chains are defined by a given

number of crews, crew service rates, and a limit on the number of units

allowed in the system.



OPTIIUZING BALANCED SYSTEMS

Derivatious of R(.) and L(.) for balanced system are given in

Appendix B. For such system

Sy

N(Y+N-I)

where p is the common value of the Pk (k -

N
Now assume that C(J) - I C(jk ) is an increasing linear function

k-I

of i,

C() - c where c > ,

and that Y(L(e)) is an increasing linear function of L(.) ,

Y(L(.)) - .(.) where H > 0

Further assume that, for a fixed integer N > 1, the objective is to select a

(positive integer) value of y so as to

minimize Z - cp + 1L(A, y)

-: (P) subject to

R(p , y) - 1*

Thus, * is the preestablished mean rate at which routine maintenance of

fleet units would be scheduled. (Note that 3* is the man rate rather thanI. the actual rate over any short period of time, since the actual rate at which

.* units enter the system is p when the number already in the system is less

than y, whereas this rate become zero while this number equals y.) Given
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the umber of uiLes in the fleetp the value chosen for P' normally would be

based on the desired maintenance cycle (tim between scheduled maintenance

events) for the individual units.

For any given choice of y, satisfying the conseraint of the problem

mounts to choosing the value of Ik that equates (k,y) vith i*, namely,

Therefore, Lhe problem (M) can be restated as selecting a (positive integer)

value of y so as to

(P') minimize Z - cR* II 4. ] + l[y - I(y 0) 1

To begin solving this problem (P'),.the inteSer restriction shall be

dropped temporarily in order to treat y as a continuous variable. Call this

relaxed problem (). After considerable algebra, the first tvo derivatives

can be expressed as

6z cl* ,-1) +N + (1-1)
" Y 2 + (y+N-)2

82Z ci' N2(1-i) -
6Y Y (Yel-i)T

The coa approach now to finding a global minimim would be to set the first

derivative to zero sad solve. However, since Z is not a convex function

of y in general (note that the second derivative becomes negative for

sufficiently large y if N is large relative to ci*), further analysis is

needed to show that this necessary condition for optimality also is

sufficient. This is done by proving the folloving theorem.

~7

0J Y W~** ~ . '



Theorem 1: For problem (), there exists a unique positive y * y* such

that

< 0, if 0< Y< Y*

-Z0, if Y -y*

>0, ifY

so y = y* achieves the global minimum.

Proof: Since N > 2, it is clear that

'6Z 82
< 0, > 0 for sufficiently small y > 0

, Also note that

8U Z M > 0.

Since 6- Is a continuous function, it thereby assumes the value zero at

some point by the Intermediate Value Theorem. The proof nov reduces to

* showing that

8Z 0 2 Z

6Y

8Zsince this implies that - can never return to zero (or less) as y

6Z 62 Z
increases beyond the first zero point of 1, because i is a

6Zcontinuous function and so must be strictly positive when W is strictly

positive but sufficiently close to zero.



More generally, note that

6z < 0 - cR*(N-1) + (N-)M < 0
2 (.+N-1)2

2 cR*(N-1) (N-O)M
2 (+N-1) 2 ] > 0

2cR*(N-1).- (N-I) >
3

, (y+N-1)3

, 2 > 0
2

6Y

wehich completes the proof.

Corollary: If y* is integer, it is the optimal solution for (P') or

(P). If y* is not integer, then this optimal solution is obtained by

rounding y* up or down to an integer and selecting the one with the smaller

value of Z for (P')

Unfortunately, solving directly for y* is not easy because it involves

solving a quartic equation. However, the following theorem gives an upper

bound on y* that is relatively tight when M is small relative to cR*

This bound then provides the basis for an efficient algorithm for solving

(P') or (P) , as summarized in the corollary to Theorem 2.

Theorem 2: The value y - y* identified in Theorem 1 satisfies the

inequality,

Y* < A

where

9
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AmlC, i,

Proof: Since

N 2
N>(-1)[ - -]- for all ,>0.

it iimdiately follows from Theorem 1 that y* is bounded above by the

positive root of the equation,

N cR*
N y2

which yields the desired result.

Corollary: Let A* be the least integer greater than or equal to A, and

let Z(u) be the value of Z for (?') when y - n . An optimal solution

for (P') or (P) then is identified by the following simple algorithm:

.(0) Set n A*

(1) If n- 1, then y a is optimal so stop.

(2) Calculate Z(a) and Z(n-1).

(3) If Z(n) < Z(-l), then y - n is optimal so stop. Otherwise,
reset n - n-I and return to Step I for another iteration.

Once the optimal value of y has been obtained, the corresponding optimal

value of p is obtained by pluggiag this value of y into equation (*).

A numerical example illustrating this algorithm is presented in

Appendix A.
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It has been assumed so far that the number of crows N has been f ixed in

advance. If N actually Is a design variable in addition to Y, then an

overall optimal solution f or both N and y can be obtained by repeating the

above algoritbm f or each of the several possible values of N, and then

choosing the one (along with its optimal y) that yields the overall minimum

for ZO

Conclusions

The use of the sequential crew model makes it possible to analyze and

evaluate system performing maintenance on fleet units. Mhen snch sequential

crew, system are balanced, then it is relatively straightforward to calculate

optimal "loe for the limit on the number of units allowed in the maintenance

system at any one tim and optimal crew service rates*
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APPUDUZ A

Zzample Illustrating Solution Procedure

for Optimizing Balanced Systems

Consider a fleet of 200 units, each requiring programed maintenance

every six months. This establishes I* at 33t units to be scheduled per

month on the average. Assume it has been determined that the cost for keeping

a fleet unit idle would be $600 per month, and experience or work standards

indicate that total crew costs would be $10,000 per month if the service rate

for each crew vere 331 units per month and each crew could work

independently full time and without interference from other crews. Also

consider that the skills involved necessitate three crem working in sequence.

Thus, using notation defined previously and one month as the unit of

time,

3 - 3, l* - 331, c - $300, N - $600 .

Applying Theorem 2,

y* n 3 j(3)(3),,' v*< A -_ _o "_ ,M

so that AP - Be Now applying the algorLtm outlined in the corollary to

Theorem 2 yields the following results:

Iteration Is Z(8) - $16,180 and Z(7) - $16,124.

Since Z(8) > Z(7), do another iteration.

Iteration 2: Z(6) - $16,183.

Since Z(7) < Z(6), stop.

y - 7 is optimel.

13



The mmexical calculation of these Z(y) is sumrsed below.

y p L(I,y) cs .(PaY) Z(v)

2 48 416k $12,500 $3,680 $16,'180

: - -

jj,4 4 $12,657 $3,267 $1,24

A

L 42

.4 46 6 4. $13,333 $2,850 $16,183

lencep the optiml deeigu allow a maximm of 7 fleet unite idle at any

one tim (y a 7) and Provides. sufficient smpoimr, etc., in each crew to

6achieve a crew service rate of 4Of uits per math. Such a eye tei will

process an average of 3tfleet mnite per muth at the lowest expected total

cost*

14
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AIPPIUDIX A

Derivation of RC.) and L(O)

for Balanced Systems

To determine the expected systan service rate, IC e), for a balanced system,

one mest first determine *, the total amber of states In the Narkov chain.

These states indicate how many of the y units are with each of the

respective crew, where ay number larger then one for the first crew

indicates that these extra units are not yet In the system because the first

crew has' t started on them yet. Therefore, a is e"ua to the number of ways

y indistimguishable objects can be partitioned among N cells, which

elementary coubinatorial analysis (e.g., ame [3, p. 361) gives se

(Note that having more than one object at the first cell corresponds to having

those units not yet in the system becaue the first crew hasn't started work

on them yet.) The aumber of states in which the first crew :is busy is equal

to the number of ways (y - 1) indistinguishable objects can be partitioned

* among N cells (since one additional object has been preassigned to the first

Cell), or

y +( N ) 2

13
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Since the Ylaro chain tis doubly stochastic, the expected system service rats

then cam be calculated as

The expected amber of fleet units in the maintenance syste, L(o), ca.m

be determined in the following manner. Trivally, this expected nmber would

be y 'if y units were in the system at all times. owever, there are time

When "empty spaces" (les than y unite) exist in the system. Fram the

cyclic queues equivalent of the sequenmlal crew model (see [7, pp. 174-177J),

it can be shown that the total number of empty spe e which occur in all the

states of the Narkov chain is equal to the nmber of ways V LndLstinguLsh-

able objects can be partitioned among (y - 1) cells, or

16 N(y + 1

16
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