. RAD-A157 662 GENERIC SOFTWARE FOR EMULATING MULTIPROCESSOR
ARCHITECTURES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE
. LAB FOR COMPUTER SCIENCE R M SOLEY MAY 8
UNCLASSIFIED MIT/LCS/TR-339 NO@@14-75-C-8661 F/G 972

- *

L

Y

LA

AN)

o RN

R

.

o~
o

-

]
-

P PO

I oz

3.6

o

N

I
I

I

FEFEREER

40 m" _2_29
fle

s

(423
3
13

I

N
(&
I

I

l
I

MICROCOPY RESOLUTION TEST CHART
NATIONAI RIIRFAIL NF STANDARNS.1963-A

LABOR ATORY FOR MASSACHUSETTS

INSTITUTE OF

COMPUTER @SCIENCE '-: _ - TECHNOLOGY

r_' I s g R T T e e v R T —— N W VTV I W I T VN NS v v Wl

IInclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF Ot O O JRM
1. REPORT NUMBER 2. GRVT AC 1ON N. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TR-339 ,4&7éé
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Generic Software for Emulating Master's thesis
Multiprocessor Architectures May 1985

6. PERFORMING ORG. REPORT NUMBER
MIT/LCS/TR~339
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(a2)
Richard Mark Soley DARPA/DOD
N00014-75-C-0661

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, MA 02139

OGRAM ELEMENT, PROJECT, TASK
EA& W UNIT NUMBERS

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA/DOD May 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 a6

14, MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Office) 15. SECURITY CLASS. (of this report)

ONR/Department of the Navy Unclassified
Information Systems Program
Arlington, VA 22217

15a, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release, distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i{ different from Report)

Unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and ldentify by block number)
Computer architecture, emulation, simulation, dataflow

20, ABSTRACT (Continue on reverse side if necessary and identify by block number)
The expensc of designing. prototypirg, and testing a new computer architecture (particularly
non-traditional supercomputer architectures, such as the dataflow maching) is enormous. The
refative inflexibility of hardware to experimental changes increases the need to fully test a new

architectural idea.

DD 'rom 1473 E0i 1cn OF 1 NOV 68 13 OBSOLETE

IaN 7 S/N 0104-014-66C1 UnCIaSSifled ——
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
'A_"-“" ‘-'-".'-‘."’-'-’.'-4'\'.'. N ALY . . s - - EER
et e e A.‘:IL' P, L(‘_’J‘_ PP L.L{L as JL -'J;A}! gt e PEI

i Sina A Breit g i A Acu B it M

Unclassified
LLLURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

A software architecture for prototyping and testing single- and multiprocessor computer

architectures is outiined. An overall design is discussed. noting the need for such a system,

TR N
0

how it would be used to model and test various architectares. and possible implementation
paths,

N
LI T T
AP

'l

v

Various oxtensions and uses of such a generic proto; ping system ate also discossed. including
extensions lor mododling shared reource systems, centrally svnchronized systems, and
Jistributed timing simulation systems. In addiion, two uses of the system are presented, in
particidar the Tageed Tolon DataBlow Architeeture, noting verious methods in which such 4

machine may be simulated under a geiieric emulation package.

Al

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entared)

N N N T T T I Iy e~ T T YT TV Y

Generic Software for mulating
Multiprocessor Architectures

N
e loa

by
Richard Mark Solcy P
May. 1985

Copyright ® 1985, Richard Mark Soley.
The author hereby grants to the Massachusetts Institute of Technology
permission to reproduce and distribute copies of this document in whole or in part.

This research was supported in part by the Advanced Research
Projects Agency under contract N00014-75-0661 and in part by various Iy
grants from the Intcrnational Business Machines Corporation., .

MASSACHUSETTS INSTITUTE OF TECHNOLOGY :_
Laboratory for Computer Science -
Cambridge Massachusctts T
e e G e e e e e L S e

T T T e——— pT—— . R T T T Wy e

- 2 -
Generic Software for Emulating Multiprocessor Architectures
by Richard Mark Soley

Arvind, Associate Professor of Computer Science and Enginecring, Thesis Supervisor

Abstract

—~ The expensc of designing, prototyping, and testing a ncw computer architecture (particularly
non-traditional supercomputer architectures, such as the dataflow machine) is enormous. The
relative inflexibility of hardware to experimental changes increases the need to fully test a new

architectural idea.

A softwarc architecture for prototyping and testing single- and multiprocessor computer
architectures is outlined. An overall design is discussed, noting the nced for such a system,
how it would be used to model and test various architectures, and possible implementation

paths.

Various extensions and uses of such a generic prototyping system are also discussed, including
extensions for modelling shared-resource systems, centrally synchronized systems, and
distributed timing simulation systems. In addition, two uses of the system are presented, in

particular the Tagged Token Dataflow Architecture, noting various methods in WhiC!l such a

. . o B -y /
lated under a generic cmulation package. 4/ 0w ol gt e

machine may be simu =

& ; ; s . ’ - oo R . - - 4 '
c [- 4 c et [',' g FP AN

" / et ——
-~ C e— e -) PN ! 1

SR ST R

o
D)

s

-
s

Keywords: computer architccture, emulation, simulation, dataflow

LR

T
P
E R A A

ettt et

Lo

R T O T e T T S T T T U T O P PPN VR S
T T T e T T e S S L UL S L R T A S P A U S e e T e N S
N e T e, B TP S .
PSPPI AP U SN PP PR XN

3

Acknowledgments =

First and foremost, I must thank Professor Arvind, my thesis superviser, for his
continued support and ideas for this project and thesis.

Many thanks go also to the other members of the Functional Languagucs and
Architectures group, past and present, who provided a stimulating environment in which to .
work and contributed greatly to the finished product this paper presents. ‘Thanks particularly
to Gregory Papadopoulos, Robert lannucci, Paul Fuqua, and Poh Chuan Lim.

A milfion thanks to my (now much larger) family: Joseph, David, Tim, Jack, Zoltan, i
Maria Eugenia, Bernardo, and Clarita Inés,

Most important, 1 thank my wife and friend, Isabel Thérése Szabo, for helping with
the ideas and exccution of this thesis, and for her infinite support and love.

lo
Barbara Lee &
Micheline Miriam Monique Veronique

c e e

o« e -
UL B

P Ca e e PR T MR
R A A TR e e e et T e e e
LU N L L S L I P AT S
PRI, T, TS RS S TR WA PR T U W T YA

- _! A 0 i e ek e

- 4 -
CONTENTS
1. Introduction: Goals of a General Emulation Facility vereesnesersesassssesenssronene e 7
1.1 The Multiprocessor Problemveeveeeierieceeieseeeesaesesesreseesense 7
1.2 "The Multiprocessor SOIULONcccivicrcrinieinie e ssaesesssses 8
1.3 WhHY EMUIALONT ...ooceieeieereeeinicteseriesnsnessotssees s ssessosssestesessassosaanes 10
1.4 A General EMulation Facility ... invesesessvenees 12
LS A Real MLEF. Implementationcceecncvicnceesseccsnese s 16
2. Structure of a Multiprocessor Emulation Facilitynocniucncsccrvniscrerernsisenns 19
2.1 The M.E.F.’s Abstract Model of a Target Architecturecccoceevvverennene 22
2.2 MLE.F. Softwarc Design DECISIONSocvoeiveeiriviernreniiieeireseceereseessesssens 28
2.3 Program OULHNec.oco ittt s 40
3. Using an M.E.F. as an Interpreter seeeeaesesreserererseneasettsensesnessessteerartons vaenanee 44
3.1 An Educational Experiment: The von Neumann Machine Interpreter .. 44 e
3.2 A Multiprocessor Experiment: The Tagged Token Dataflow Emulator . 46 *"_g
3.3 TTDA Implementation under the MIT MEF ..o 49 e
3.4 Levels OF INEIPIELAtIONcoovvviresie it ssesssssss s asesssssssasessssessenss 52 ‘_:';j:
4. Using an M.E.F. as an Emulatoreeeeeerveens. rrersares reerereresesessesssersrinsressarasases 56 ‘:ﬁ
. vh- 1
4.1 Interpretation, Simulation, and Emulation ... 56 2
4.2 Scheduling as an Approach 10 Emulationccevevneciennnnneeinicssnnennnns 58 T
5. Using an M.E.F. as a Simulator venmesaesnenersssertorreReresa e e saesersesebtsenerarers 61 '
5.1 A Globally Synchronized ArchitCCtureoovoveveeeccieieenvieneeeceeennnene 62
5.2 Distributed Simulation Approach to Synchronizationccvveeevennnne. 67
e T """.".".".:.'f.("\":-"’ S
- h ';": IR ..x':r-:p~;£;-:u ; AT P VRPN -L.‘;\.‘a s .n-zlx_;;' RN . __g

6. Conclusions: FULUPE DIFECHIONSvccrverniveveressssnscsissasesssssassssisessesssssnssassssssssens 7l
6.1 Other Uses of an MLEF. et 71
6.2 Message Passing Computationil Models ... 71
0.3 PrOtOCOI TESIETS ...ttt s sire s 72
6.4 FAUCAUON L.ovitiiieiiieccrercete et tebe s e ab e bbbt st s aas s e tasaanes 73
6.5 Other Distributed SYSEnt USESvevivveieiiiniseeiersensvereresssessisssseessennes 74
6.6 Human Networks and Oher SYSICMSvveeevceecveeieisreeieresnnees e 14
0.7 CONCIUSION ..vvieieietitcrrerreeie et sasas e sbe e er e tebe bbb nneseanisssasreses 75
6.8 Impact on Future Maching DESIEN ..o.ovccvevineccrvennesecnneiecieenae 75
ROJOPENCES ...veeaveiririsrssecirciriscrsiesisi s sssss st s bbb s s snssen 76
Appendix. Reference Manual: The MIT Multiprocessor Emulation Facility 80
1. Emulation Experiment DESCriptionvvicenerensmmieisnensnesisessnens 80
2. Communication and Mctering FUNCHONSovovevvevivieinicnnnnierensies 83
3. Usc ol the Control Pancl ... 84
4. Functional Interfaces to the Control Panel ... 87
S, EXQMIPIE o 88

-6-
FIGURLS

1. Architecture Design Path With EMUIGHORNuceeucrenercrecverssesesesssessssersasssssssssssssssenns 11 e
2. Target (Application) versus Physical (M.E.F) ArcRItecturesucvuuvercnrencressosisseenesans 4 1
3. SWILCR SPOCUICAUORSnoennevenerencncrerinnsiersrisinssssssasssssssnsssssssisssssnsstsssosssssssessssssessesssiene 18

4. General Abstract Structure to be Emulated by an MLEF.oonrerinenenenennnnn. 20

5. Opcrational View of an M.E.F. Emulation EXperimentevrevoivesvecsessossescsesians 27

6. Logical Structure of the MIT MUEF ... ceveeeeeeteveevesssssasasssesssssssnssssssssssansssosssssens 29

7. Multiple Processor Dynamic Structure of the MIT MEFununvennirecersncensacraes 39

8. A Siinple von INCUMARI PrOCESSOF ... eeeceaeovieceerecrrcreissisesisssassisesossssistosasnssnsnissssssssssessssnes 45

9. Structure of the Tagged-Token Dataflow Machineouvcevonnniininecnncvicenniensennes 48

10. Three Different Approaches To TTDA SimulQtioneoeneencccsrcriarnnsoseensencnseessrenaes 55
11. Types of System Interpretation/ E:mulation/SiMul@Uioneoneeeoscevnncnceennniconainessennnas 57

12. Scheduling Stages of a Balanced Pipelifecoroncenneenvcriincseinissctsssecsissesssssssserssin 59
13. General Emulation Scheme for a Clocked ArCRIteCtUreooeivnneincncovisenecsnensnenne 63

14. Emulation of a Physically Separated Two-Domain SYStemvevevvvnnvicsrerinssssscssenenns 65

15. Validation of a Test Protocol Implementationuccveervissesosecssisiinseesisesssssessessesans 73

16. The MEF COMPOI PARELnaeeeeeerevevevriersreeeversreresseossssersorassssssrsesssssssssssssssssssosssassossssssssss 85

...
....................................

........................

T T T e N S e M S R RN T AU Rt

Chapter 1

Introduction:

Goals of a General Emulation Facility

1.1 The Multiprocessor Problem

The world is full of large, complex systems made up entircly of very small, simple
compornients. Many of the interesting problems faced by scientists, engincers, and managers
today are some of these large-scale computation-intensive problems, composed of highly
interacting ccllular parts. Unfortunately, the dimensions of these problems are generally such
that no computer in existence today can begin to supply the needed computational power.
This does not climinate the need for solutions to such problems, however, In a 1983
rcporl,l the National Science Foundation noted a wide array of applications, both algorithmic
and inherently heuristic (i.c., cither NP-complete or with unknown solutions) which cannot be

solved in a rcasonable time using the fastest computational engines available today. Their

summary included:

® Simulation of large-scale biological systems on the cetlular molecular level. ,;‘

® Simulation of chemical reactions and other materials and electrical

rescarch at the quantum mechanical level, where classical (and
simpler) physical methods fail.

alndendhond

® Simulation of cnormous fluid problems (i.e., global atmospheric modeling)

in order to forecast fluid movement. Immediate applications would
include accurate weat* or forecasting. :

® Modeling of large-scale astrophysical events, such as supernovae and star
births.

L ae e a a LBNIR B 2 ey SR R it g Bt B s Jinset: St Mt it Ringeiupe Sge T

® Modeling of global cconomic systems.

¢ Simulation engines for large collections of logic-level or transistor-level
clectronic cireuits of VI.ST proportions.

The list can include applications which have much less algorithmic solutions, such as:

¢ Control of large and complex robotic systems.

® Diagnosis of machine and system malfunctions, and suggestions for
corrective action,

¢ Diagnosis and treatment plans for human diseases.

[]

Knowledge-based expert artificial intelligence programs for more
widely-based areas. including real-time machine understanding of
connected human speech.

Fach of these apphications demands far more computational power and speed than the
fastest and Lrgest computers available today. The amazing speeds of today's supercomputers,
such as the Cray-1S (eycle time: 12 nanoscconds, maximum sustained computation speed
approximately 80 mcguﬂnps)2 or the Cyber 205 (cycle time: 20 nanoscconds, about 50
mcg:lﬂup\)‘ pale in comparison to the combinatorial explosion of problem size promised by
the problems above. In addition. the prohibitive cost of the supercomputers of today also
limits their usctulness. Clearly some departure from the architectures of today is caltled for, as
Iimcar scaling of current computational power will not handle the problems of today, and even

less those of tomorrow,
1.2 The Multinrocessor Solution

Since the carly days of computer technology. the possibility of interconnection of
mulhiple computers inorder 1o form a farger, faster unit has been considered. Many
architectral expertment such as Hlinois™ Hliac IV s’)xlch and Carnigie Mcllon's (‘.mmp5
wenspred o address this possibility without resorting o a great departure from the basic

computer system rchitecture envisioned in 1946 by John von Newmann and his cnllc.ngucs.(’

Since the inception of the von Neumann flow-of-control design computcer, single-processor
design has pervaded all commercial, and most experimental, computational structures. Even
multiprocessor designs have sulfered the ill effects of the von Neumann bottleneck, the
problem of limited access between processor (or processors) and mcmory.7~ 8.9 Some modern
supercomputers attempt to overcome this problem by means of extensive pipelining within a
single proccssor:lo though this avoids any problem of memory contention among multiple
processors, it introduces cither the nced to re-code applications in a specially tuncd
pipcelined/vectorized language, or to use high-powered program compilation lcchniqucs.11

This “brutc force™ approach to multiprocessing, including contended memory, poorly
or o closely synchronized processors, and a reliance on programmer-specified parallelism
has not even approached the nced for a scaluble multiprocessor. In a scalable system,
doubling the number of processors in the system should double the system’s performance; no
machine to date hus' yet come close 1o this clearly uscful goal.

What we need. then, are protocols for connecting multiple processors into a scalable
system, and methods of programming which timit hardware idle time and minimize the need
for programmer specification of parallelism. Rescarch into exactly these issues is well under
way: possible architectures range from the dataflow systems of Dennis'? and Arvind!3 to
Intel's Ada-based iAPX-432'% 10 the Connection Machine!® to Xerox' l:‘merprise16
distributed computing environment, to M.LT.'s Apiary syslcm.]7 However, this increasing
body of litcrature almost never reaches any consensus, except in one arca: construction of an
experimental supercomputer. they all agree, is costly.

Amassing the hardware and software necessary for implementing an entire
mudtiprocessor machine can be expensive and time consuming, particularly for a one-shot
statistics gathering evaluation of a proposed architecture. Projects generally spend well over

I'and often need to completely overhaul their designs halfway

one million dollars to get going,.
through the work of iniplementation.

An anonymous corollary to Murphy's law goes: “You will only be able to do it properly
if you have to do it more than once.” Given the prohibitive construction costs for
supercomputers. the need to redesign midstream, and the difficulty of performing mathematic
analyses on proposed arcitectures before construction, we nced an casy-to-use, high

performance. low cost, and highly accessible tool for constructing. running, and testing

-. -. ——— -.. l.. - .. - .. —— II-. —— ...I-. - N ——— MUaNL ANt L AN AL anih ahil S -

-23-

Debugging tools provide a good example of these “false state variables.” For
cxample, programmer-invisible machine registers, or other “spy™ devices for tracing the

exccution of the emulated machine, fall into this category.
2.1.2 Communications

The basic communication abstraction provided by the M.E.F. is quite simplc; at the
lowest level, it provides two interfaces. ‘The first, “receive, " simply guarantees to pick up and
return an message bound for the current T.E. No guarantee as to ordering of messages is
madce or implied: this sitiple function only guarantees to wail for any available input and
return any one of the pending inputs. (There are non-blocking interfaces to check for
pending input as well),

The more interesting primitive is “send.” Given an outgoing message and a
destination T.E. identifier, the send function must forward the message to the proper
destination over the fastest available path (since there are generally multiple paths available),
choosing the path based on mesage length and destination. In addition, this primitive also
guarantees that by the time it returns to its caller, no further interaction with M.E.F. primitives
is necessary to forward the particular message with which send wus called. In other words, this
primitive must provide for any queucing, backout and retry, or other paradigms for scnding
messages over multiple-access channels, and must not block the calling process except when
absolutely necessary (i.c.. if some pending output queue is full).

In addition to this simple abstraction, the M.E.F. provides a mcthodology for
metering network delays and forwarding node usage. based on a static or dynamic simulated
network map. which atlows run-time calculation of the list of T.E.’s through which a message

must pass to travel from some T.E. i to some other T.E. J.

-22 -

2.1 The M.L.F.’s Abstract Model of a Target Architecture

In order to emulate a proposed machine architecture, the emulation facility requires a
general modcl of such a system. With such a model, it can mirror the overall structure of a
system symbolically. The ecmulation facitity’s machine model consists of several atomic

objects, which arc outlined in this chapter.
2.1.1 Processors and Processor State

The “hearts™ of any multiprocessor system are, of course, the processors themsclves.
The M.EE. supports an abstraction, called a target element, which maps to a real
multiprocessor’s single processors. The representation of an instance of this abstraction is a
body of code that mirrors the functionality of the proposed “black box,” depending on
communication primitives proved by the M.EF. The implemented M.E.F. system, as it
resides in the Lisp Machine environment, expects target element definitions to be expressed in
groups of Lisp statements (called “forms™ or -expressiorlls” by Lisp programmers). These
“processors” may hold local state, much as a CLU cluster definition has local state.?2

In order to correctly imitate real machinery, the M.E.F. must supply a related
abstraction to the processor, called processor state. This abstraction allows the M.E.F. user to
model registers, rcal memory, and all other hardware state via the natural programming
language analog, the variable, The MLEF. enforces inter-processor scparation of variables, so
that the experimenting user may use global state within all processors of the same type
without any naming conflicts. In other words, two processors may cach have a register
abstraction with the same name (for instance, R0) without any accidental (or intentional)
overlap.

In practice. we have found that most writers of [E. implementations include in their
T.E. model “state variables™ that are not really part of the state of the processor being
modeled (i.e.. do not represent a latched value in the final hardware of the T.E)), but are
included only to simplify coding of an implementation. These include temporarics used in
computation of a T E’s final state. or any other artifact of the functional simalation of the
I"E. hardware. These “false state variabies™ are represented in the same way as other state

variables by a MUELE. system.

- - e e - LT e

e L T i S SR S
Lot olm A EIRUT SPE \PRE U T PR LS S S WP SO R Y Y

-21-

The basic abstraction of a multiprocessor which the M.E.F. enforces"is a single
amorphous packet-switched communications medium surrounded by independently
functioning, asynchronous processing clements (7.E.’s) with no shared statec between the
T.E.’s. This seems to be the most general case for a multiprocessor configuration, An M.EF,,
in addition to this overall system abstraction, supports lower-level objects which correspond to
the parts of a multiprocessor system. These include the amorphous interconnection network
supplicd by the MEF and the simulated topology enforced on it: morc important, however, is
the abstraction of a T.E. This is the basic unit of work in a multiprocessor emulation, a
state-containing proccdural definition of a single unit of a paralicl processor. In software
terminology, this T.E. abstraction is an abstract datatype akin to a flavor objcct in the Zetalisp
Ianguage,21 or a cluster in CLU.22 These procedural definitions, taken with an
interconnection network and a communication protocol over that network, comprise a
complete definition of a multiprocessor computer architecture.

In support of these basic abstractions are a set of primitive functions, including

® A method of simulating the functionality of the target elements to be
modeled in the user's design.
® A method of recording, updating, and sensing local state inside cach target
element.
® Some way of transferring state between two target elements, along the lines
of a packet-switched (or message-passing) or circuit-switched network,
or via local physical processing element channels,
® A method of recording, statistics while programs are executed on an
emulated architecture.
® A simple control interface for starting up, stopping, and examining the o
running and stopped states of the target machine. ﬁ
® Tools for developing and debugging the emulation experiment code itself. l;:l'-
°

Tools for sctting M.E.F. (physical processor) hardware and software

characteristics and paramecters (c.g., network topology, error rccovery : J
schema, etc.).

L P R K P P T S A U SR TGN
NP PRV L AL WK SN) Ol ISP E PP DR ULPRy Ui L Gy U WS UP P T Wy WY TS TP D W T UAP I P S 1P e

-20 -

T.L.

LE TE

Control Panel

Communications

Network

TE.

T.E.

Figure 4: General Abstract Structure to be Emulated by an M.E.F.

B " 3 > L T N R =
Tt e AL, K T T
e T e T S et R I I R S A AT Tty
P B B BBt LW et e oAyl LaNal gt g a8 o3

T T T T PN r———w" T— B At e]

-19-

Chapter 2

Structure of a Multiprocessor Emulation Facility

For cxperimental prototyping of a proposed multiprocessor machine architecture, an
M.EF. software must provide a basic system abstraction, composed of lower-lcvel
abstractions closely coupled to the designs of systems architects, but far enough from actual
design decisions to support many diffcrent multiprocessor designs. A good gencral abstract

structure may be found in figure 4.

AN T

v
Fa]

el T R TI R N S S PR SCIILIIENE
FOE N c - P T T T T T O e L
e e e T T e T e, el
P T TP I S S P PSP N O T A T U e R D -
AL AL W SRC RS SPIATNE AP WA AR WAL AR YL W SR W WPy T S W S WU S| wiE" Y & U W SR S W W W LI LI i

T ————— " ARG § L e g St - s et gl U L g b AL B o Mt AL Al Seh aet . aalLaad ool ates auel - it el SN ANl Lol N)

-18 -

Ethernet Specifications
Raw Link Bandwidthcooivirieiiercc s 1.25 Mbyles/sec
Switch NOAC CONNECUONS ...ttt rer e saesseiesensanene I1x1
Useful portion of bandwidth ... 10%

Maximum total aggregate bandwidth
10% (1 processor x 1 connection x 1.25) ...cocvennnnee. 125 Mbytes/second
= 1 Mbit/sccond

Circuit Switch Specifications .
Raw Link BandWidth ... scsssesssessessenssesssess 3 Mbytes/sec 5
SWCh NOUC CONNECUONS .ovviivereeeecsicve e isesiessesssesssssessessassss s srssnns 4x4 .
Useful portion of bandwidth ... 20%

Maximum total aggregate bandwidth

20% (64 processors x 3 connections X 3) .oveercennnn. 115 Mbytes/second TZ._
= 920 Mbits/sccond -

Packet Switch Specifications -
Raw Link Bandwidth ..o erererene s 4 Mbytes/sec s
SWitch NOUC CONNCCUONS ..oiiiiirerirnr ettt sesss s e ean s ssesssstssesssasseses 8§x8 w1
Usctul portion of Dandwidth ... s 80% g
Maximum total aggregate bandwidth -

80% (64 processors X 7 connections X 4) .oevevenen. 1,433 Mbytes/sccond
= 11.5 Gbits/sccond

Useful Portion of Bandwidth
* Maximum Simultancously Cononunicating Processors
* Maximum Active Communication Links per Processor

*Raw Per- -1 ink Bandwidth

OOP ST
O B

v
.

=
)

‘¥
g0,

= Maxinum Total Aggregate Bandwidih

Figure 3: Switch Specifications

P T T CadCRs T UL et eI A A

-17 -

The first available local interconnection network, for both machines, was ten
mcgabit/sccond nominal standard Ethernet, using the M.LT. Chaos network protocols. This
simple bus-topology nctwork is still in use in the prototype, but severcly limits
communications between the P.P.’s of the system.

At this writing, a high-bandwidth circuit switch based on the Bolt, Baranck, &
Newman Butterfly machine is ncaring completion. The development of this hyper-cube
topology switch included an implementation of a genceral network channel adapter (NuCA)

for the Texas Instruments Explorer20

, in order that this processor could utilize the circuit
switch and future intcrconnection strategies.

Planning is also well under way for a high-speed packet-switched network to replace
this circuit switched network. The proposed packet switch will also utilize a hyper-cube
topology, though with bidirectional communication along each link. Dcvelopment of the
packet switch is prdcecding using custom and semi-custom VLSI design techniques. Current
target specifications for both the circuit and packet switches, and a comparison with the

available Ethernet technology, are noted in figure 3, below.

L T S e T S N S S T S T P ST S e S S ML
R LT e e PR IR K . P I IR A s o PR S S LA
BT T T N TS T B i IS S Nt

P JAPJRP P SR SIS PSPPI Sl SR WP U PR R VI VU S PN SV 1 S W WS DR D RIS PR IP R PR W R T, S IR PR AT

-16 -

bottlencck could make it difTicult to diagnosc bottlenecks in the prototype architecture under
evaluation on a facility.

We also would like to have some flexibility in network configuration to support an
M.E.F. Flexibility in connection topology not only supports fault tolerance (via
compartmentalization of a facility), but also supports the above-mentioned goal of a
reconfigurable overall computation structure, in which an M.E.F. could be broken up into
simultancously functioning separate parts working on different problems.

The last wish on our communications wish-list is traccability, i.c., the nced to support
diagnosis of failed communications nodes or media during execution of an M.E.F. Support in
this arca could also add to the understanding of an emulation via statistics of network traffic
and usage during execution of a real experiment.

1.5 A Real M.L.F. Implementation

An M_.E.F. attempting to mecet the above goals is in use and under further construction
at the M.LT. Laboratory for Computer Science. We will rcfer to this implementation of “an
M.E.F." as the “"MIT MEF,” or just “MEF."" In addition to support software (which is
described in the balance of this thesis), the M.E.F. is composed of the following elements:

A mix of Texas Instruments’ Explorer and Symbolics’ 3600 family Lisp machine
symbolic processors were used in the prototype M.E.F. implementation. These processors
were chosen for their gencral purpose high-performance architectures, designed for
multiprogramming symbolic processing (i.c., they are fully tagged architectures with
automated garbage collection). These machines also include productivity tools such as
bit-mapped graphic output and mouse-based graphic input, high-level networking support.
In addition, the open (non-proprietary) architecture and availability of microprogramming for
the Texas Instruments machine offered more support for the hardware work necessary to R
intcrconnect the P.P.’s of the prototype M.E.F. in a high-bandwidth manner. :v!

* In order, of course, to follow the universe's standard policy of confusion and tendency =
toward randomness. .

_15-

In order to gain more cmulation speed without astronomical prices, and to force
systems architects to begin thinking of computers in a distributed, multiprocessing way, an
emulation facility should be designed to cxccute on many parallel general purpose processors,
linked via a varicty of communications media. To enable the construction ol a parallel
processor such as the M.E.F., there arc several abilitics required of the physical processing
nodes which make up the computational power of the system. Since the M.E.F. must be able
to implement multiple general purpose architectures, it must itself be implemented on
rclatively gencral purpose hardware. In addition, ease of programming (particularly rapid
prototyping) in a wecll-integrated environment and support for multiple interproccssor
communications architectures simultancously are important, since they allow fast
devclopment of emulation experiments as well as room for experimentation with various
communications media and protocols.

All the node power in the world in an M.E.F. would be useless without some
interconnection scheme; a multiprocessor facility must have some linking mechanism.
Specific needs for a sufficiently general purpose facility to support many different
experiments arc outlined in this section.

The first requirement for a useful facility interprocessor communications interface is
that it bc multi-master. A network that supports only a single master (such as a simple
single-master bus structure) is useless in a facility that nceds to support several simultaneous
computations with free exchange of information initiated by any processor. Overhead to
support a single-master structure, with bus master intcrrupts from processor wishing to
initiate transfers, would probably render an M.E.F, unusable.

In addition, an M.E.F. should have a multi-path interface, to support multiple
simultaneous communications between processors. Without this ability, processors that are
relatively matched in performance could contend too much for the communications medium,
causing a thrashing cffect not unlike paging performance degradation on an overloaded
timesharing computer.

Of course, an M.E.F. conncction medium should be very high speed, with a
communications bandwidth on the order of the available processor bandwidth. A mismatch
in this rcgard could make the von Neumann bottleneck return in its usual form —

communications overhead between (in this case) processing clements. Such an imposing

v * e
P I

[N SUN SR S)

v
S N NN NP

"y e
(4 .." ;

-'l

..
Iy
1]

P N PR T o
AP
ol '-,".'.r M
v ’ ’
RO

L A M Al A e N

-14-

TE

TE|___

Target Elemnents

(T.E.s)

Communications

Target Architecture (Target Machine)

T.E.

Network

TE.

Physical Processors

(r.r.s)

Physical Architecture (Physical Machine)

Figure 2: Target (Application) versus Physical (M.E.F.) Architectures

T T T I T N T Ty T Y T Ty W ¥ vy T W%~ W~ w~s = >~

T r———r LOhh T LB Saen i an Ave S sed can o

-13 -

ottt

.

RPN
- '
Dol)

constructed M.E.F. should be capablc of exccuting with any number of available P.P.'s using

ey
L]
()
¢
’Le,

any numbecr of available intcrconnection networks of the same or dilferent hardware and

.
L, Y
v o

LTI
)

protocol type. This ability also aids in a form of “fault tolerance,” wherein experimentation
can continue through a loss of some or all of the facility’s cquipment.

An M.E.I. design must itself be a multiprocessor in order to force systems architects :';_’_ -

- to think in a distributed, multiprocessing way when he or she begins work on a new S

i architecture. Without the multiprocessing frame of mind. time can be wasted in fiuitless

research into dead ends. Ancedotes about major systems that worked in simulation on single

N processors and then failed while running in a multiprocessor environment are many. A good

< example is a Multics experimental system which executed without flaw on a (single processor) ;:I-‘j

development machine, but failed quickly while running on a (multiprocessor) user machine.1? " 4

We therefore add confusion to the differentiation of a multiprocessor system under

simulation or cmulation, and the M.E.F. multiprocessor architecture itself. When we speak of
simulating or cmulating a particular architecture using an M.E.F. as the construction lool,* o
there is a constant confusion between the (1) architecture being tested and the architecture of -

the particular M.E.F. implementation and (2) the elements of the architecture being tested and
the elements of the real MLEF. host system. Throughout this thesis we will use the terms
“target machine” (or architecture) and “M.E.F.” (or “host” or “physical” machine) to B

differentiatc between the emulated and real multiprocessors, and “target element” and ol
“physical processor” to differentiate between the computational elements of the two. Figure
2 displays this differentiation. Note that the phrase “target element™ does not apply only to
the purely computational clements of a target architecture, but to all clements (including "_ftj'
perhaps memory, network nodes, etc.). ‘
0
o

* Or, as the prototype MIT M.EF. has been called, a “Multiprocessor Sandbox” or - 58
“Multiprocessor Playground.” N

I ———_— —— — DSt AR SR M P P g Mt S M /A il e Aa

-12 -

1.4 A General Emulation Facility

The point of the Multiprocessor Emulation Facililyl8 (M.EF) is to allow
multiprocessor architecture proposals that are still in the initial states of design (o be evaluated
cheaply and quickly. by emufation and simulation. A

The basic abstraction of the M.E.F. must include a basic configurable multiprocessor
structure, with general purpose processors at cach node of a group of interconnection
networks. Fach target element of the proposed architecture is logically represented by
software, with all functional aspects represented. The user of the M.EF. will write a
functional description of cach different type of target element in his or her multiprocessor
system, which will be used (o detail the logical structure of the general machine,

We stress the phrase rarget processing element, or T.E., in order to differentiate
between T.E.’s (the computation elements of a proposed architecture to be emulated) and
physical processors, or P.P.'s, which denote the processing elements of the multiprocessor
system (M.E.F.) performing the cmulation.

Software tools to provide usage of this abstract structure with minimal overhead must
also be included, with primitives for the functional description of T.E. execution and
interconnection. This includes all of the structure necessary to allow the M.E.F. user to ignore
the physical interconnection structure of the M.EF., and instead concentrate on the
interconnection structure intended by his or her own rescarch. Thus, a researcher using the
M.E.F. could simulate widely variant coupling strategies, from a loosely-coupled
packet-switched network o a tightly-coupled central memory multiprocessor, simply by using
the interconnection primitives which interface dircctly with one of the available
interconnection nctworks of the facility.

Another important goal of an M.E.F. is ease of use, via local- or widc-area networks.
This goal establishes the intent of using an M.E.F. in a “batch mode™ as a processor of various
multiprocessor architecture proposals,

Reconfigurability and partitionability, or the ability to execute multiprocessor
cmulations using varying physical structures, are also necessary. Since we might wish to
process several emulation experiments concurrently, or at Icast to continuc experimentation
while some of the facility is down for repair or regular maintenance, it is of prime importance

for an M.E.F. to be insensitive to particular P.P. or intcrconnection availability. Thus, the

-11-

simulation effort or in lieu of a simulation cffort, depending on time constraints.

outlined in figure 1; instcad of a simplc nath of design, simulation, and finally

implementation, we add a new path, emulation, which can proceed in parallel with any

)

Initial Design

A . aueE
/
/

=\

Simulation < - >

Emulation

Implementation

Figure I: Architecture Design Path with Emulation

et ettt m e s . e e e s I
o T T L RN |

WP U R, S A L A

o sy 3o

.“

simulations (or emulations) of proposed architectures before a rescarcher commits o specific f;
hardware or silicon (VLSI chips). e
The remainder of this thesis outlines the goals, implementation, and uscs of the 1

{ Multiprocessor 'mulation Fucility, or M.E.F., under construction at the M.1L'T. Laboratory for
[Computer Science.'® The author designed the software for the M.EI-; specific design
32
-

dccisions from that work will be described here.

X 1.3 Why Emulation?

Upon recognition of the complexities involved in attempting construction of a new

computer architecture, the step usually taken is simulation of the architecture. In order to N

garner the important aspects of the target architecture, carcfully written (and well timed) code

is constructed to simulate the running new machine. The cffects (under simulation) of o
different values for parameters such as interconnection protocols, buffer sizes, and the like are
-
studied in order to ascertain the best structure for the machine to be built. o
The approaches o system prototyping that will be discussed in this thesis are called -
interpretation, emulation, and simulation. -
® Interpretation. the most general of the three, specifies that the prototype :1
mirrors the real architecture at some specified level. such as instruction -
sct or high-level language semantics. o

L

Simulation specifics the gencral scheme of cxecuting some functional

definition of a prototype (functional simulation) while gathering timing &
statistics eapected while running the real machine (timing simulation).

® Emulations mimic the actions of a system functionally without any explicit
gattiering of timing information. Instead. the timing of the modeled

architecwire is implied by the scheduling of the functional units
themselves.
Lacking the overhead of timing and synchronization to support timing. the emulation
route shows the greatest promise of getting simulated results in the smallest amount of time;

in addition, itis casy to map the architecture ol a multiprocessor system onto a multiprocessor

. XB S e Dl IR i RS P

emulation system. The new path along which architecture prototypers would follow is

PR —————m— g DA T TR T R R TR T T — B Rt ' T
« AR, - N I N PR A S e fEan . - .

-24 -

{

2.1.3 Resource Management T

Onc of the most important services provided by the M.E.F. is as an “abstraction wall” -
between the architectural experimenter and the actual MLE.F. implementation structure. This A
“wall™ implies automatic management of hardware and software resources within the facility
without the intervention of the experimenter. For example, though a user knows that a
certain target implementation contains certain state and related functionality, he or she does)
not need to be aware of: \

O How the M.E.F. represents the processor’s state.

© On which physical processing element of the M.E.F. configuration the N

target clement is executing (unless the uscr wishes to enforce some
- locality constraints for efficicncy’s sake).

O How inter-processor messages are actually routed between processors, and

on which of the (possibly numerous) interconnection networks the —
messages arc traveling, .

The above-listed services are walled off from the architecture designer, as they are <
artifacts of the M.E.F. structure itself, not the architecture under emulation. This frees the
experimenter from low-level emulation details, as well as creating a “clean™ development :'i
cnvironment in which the low-level details are kept from creeping into the high-level design. jl;I:
For example, details of how communications packets are routed between physical processors ::::_
on an M.E.F. should have no bearing on the design of an experimental processor using the
M.E.F. as a tool. &
2.1.4 Metering

An M.E.F. is useless if it does not allow some sort of metering functionality to the :.‘
emulation experimenter. ‘Thercfore, in addition to the T.E. execution and state models, an T'_
M.E.F. must support metering. An MLEF. system should implement two types of meters, -
which arc uscd in two scparate ways: \

&

N System-wide mcters provide a way to monitor some activity as it occurs on

every T.E. in the system. For cxample, if we are interpreting some
machinc’s instruction sct, we might want to meter how many emulated
instructions were exccuted during an entire cmulation cxperiment, -

Per-T.L. meters are much like T.E. state variables, in that they record ~-ij

activity within a single 'I'E. only. These are usclul, for instance, for
measuring memory faults on a per-emulated-processor basis.

Either of these metering abstractions is necessary to allow the user to store, interpret, and
display the vital statistics of an experiment. For instance, it might be important for the
designer to know exactly how much of his or her inter-processor buffering is being used, both B
dynamically (during emulation experimentation) and, more quantitatively, statically at the o
end of an experiment. The user should be able to clear, update. and check on the values of pay
meters both at run time and post-experimentation time, and display them dynamically in a

run-time console graph or statically via his or her own methods.
2.1.5 Control Panel -

The last, and most user visible portion, of the M.E.F. abstraction is the MEF Control
Panel. In fact, this provides the only user interface between the M.E.F. proper and the
architectural designer, as well as between the user of the emulated machine and the running -.
emulation experiment. Hosted on any available physical prucessor that is capable of
communicating with ¢very other P.P. of an M.E.F. syslem.* the Control Panel provides means
of configuring and partitioning the available M.E.F. physical processors into an M.E.F.
system, loading and initiating the sclected target architecture (emulation experiment) on those ' -
P.P.’s, and monitoring and dcbugging the running experiment.

* Under the MIT MEF system, the Control Panel is hosted on a Lisp Machine, just as any oy
other part of the MEF system.

Lt T T et

. - - - » . . - - - . - - .-‘-\~'.-’---~.'.'~'-‘,.'.'n‘.'.'~‘ T at.
e e e e e T e e e e e e T T e e REARAGS
NENSEEN Te 2t N

AT L L P PR
A G O W W U UL W0 W WU

et DR AR
DPRL PN ST N

- LY - - S " e e o T t. - LT N N '~. -~- .-. - R . “. R
R I A PRI IAOPOIL IR

L et et e S ue ot sy ares dret e s eds Sl g — P N W Y N T N T T T s T W YW AT v T W W
- WL VL TS W DS A RN T O PR - A 4 e e W N AN A w TR R B

-26_

Besides acting as a “bootstrap processor,” or “virtual front pancl,” for the M.E.F., the
Control Panel takes the place of the bootstrap processor for the target (or emulated) machine,
including primitives for initiating and booting the T.E.'s of an experiment as well as injecting
a starting message from “outside™ of the cmulated system.

Figure 5. below, gives a user's operational view of the structure of an MLEF., in terms

of what the user must implement and how it interfaces with the substrate.

G e e T e LI e T A A
PRI S S I AL IR IR IS PN -3 TRt P TPAL S Pk Wiy SR Ty R, ST Wi P P

Resource Management

& Bootstrap Control /

[M.L.E. Supplicd]

Control Pancl

Routing Network

Single
T.E.
Structure

[User supplicd]

Processor
State

Variables

Processor
[Functional

Specification

Processor

Mcters

@

Lisp
Valucs

Lisp
Functions

Figure 5: Operational View of an M. E.F. Emulation Experiment

'

, ’A ’-. '. '.r "

[P)
‘..l'l"

.
Ly

1
L%

DO
t e e
g

R R T R I I TrTEran—eye———-— L G Sl Sl B T S At et

AT .

- -28 -

LA

d

- 2.2 M.LE.F. Software Design Decisions

:- The abstract M.E.F. structure discussed above docs not necessarily translate directly to

I a rcal multiprocessor architecture. This section discusses a particular implementation of an
M.E.F. 10 which we alluded previously. The MIT MEF, developed at the M.LT. Laboratory
for Computer Science, was implemented under the Lisp Machine cnvironmcnl,z' connccted
via a collection of packet-swilched data nctworks. The Symbolics 3600 Lisp machine was

E used for development, while Texas Instruments Explorers were used for most of the facility's

processing. The soltware systems available on these two machines are both based on the work
of the M.LT. Attificial Intclligence Lisp Machine Project2l and are thus comparable; the
structure and design decisions of the MIT MEF are portablc across both as well.

2.2.1 Logical Structure

The MIT MEF, as it is implemented on general purpose Lisp Machines, is written in

|

Lisp Machine Lisp and structured in a hierarchical fashion, outlined in figure 6. On top of the

resident Lisp Machine system software are two basic portions of the MEF, the static section

and the dynamic section. One may think of these as the definitional and runtime support parts

of a modern computer language, since in essence an M.EF. implements a functional
description language for computer architectures. Above this, a MEF system user constructs
his or her functional model of an architecture, on top of which end users (architccture
cxplorers) conduct experimentation. Above the MEF system, as in any computer system, we
find two levels of “users:™ the application (or systems) programmer, and the end-user of the

application program cxecuting on the system.,

SO M N I A NGRS N T
. - + ‘,'.'.'.'. N

T T S P S S

~
s
o

.I

LI R S

Tt et .. LRSI P L T T R S i N e S P P AT
CORCLS JRCHMN SP S S il U GR I A P SR N YA AT AT U VR LI P IR W UL R YT WA WAL S DA I DA P Y D DAY DR WO

T T T Ty T oy s

-29 -

User of Emulated Machine

Application for Enudated (Target) Machine

Emulation I xperiment

(Programs to 'mulate the Target Architecture)

MEF MLF
Static Support Dynamic Support

Lisp System Software

Figure 6: Logical Structure of the MIT MEF

This level of the model is straightforward; however, many design choices necessary to

implement the M.E.F. abstract modcl in the MIT MEF were not so obvious. ;j-'?'_:
2.2.2 The Target Element State Abstraction e

In particular, the target element (T.E.) abstract model—a procedural box with an ﬂ
output strcam, an input stream, and some non-shared state—presented many choices for g

implementation under the Lisp Machine environment. First we must note the requirements

L3

of such an implementation.

First and foremost, the implementation of the T.E. abstraction must not require any
knowledge on the part of the emulation experimenter of whether his or her T.E. definitions
are to be exccuted on the same machine, or on multiple machines. In particular, an
implementation under a global-state machine (such as global variables in the Lisp Machine

sense) must provide a namespace “wall” between T.E's. As an example, multiple processes

-30-

under the Lisp Machinc operating system share global variable names (or static variables);
thus. implementation on a Lisp Machine using global variables for T.E. state storage would be
an incorrcct implementation. since T.E.’s exccuting on the same machine would overlap state,
while T.E.’s exccuting on different physical machines would not.

In addition, the architectural experimenter should not necd to know how many T.E’s
are exccuting on any given physical processor, or in particular which of his or her T.E. models
is exceuting on which processor. This mcans that the M.EF. system must automatically
choose connection paths, as well as decide any issues of code copving between physical
processors participating in an cmulation.

We must stress that an MLUE.F. should support any number of different kinds of T.E.’s,
and any number of cach kind of T.E. For example, we may wish to model a sharcd memory
processor as N memory units and M processing units; this would entail the description of two
diffcrent kinds of T.E.'s. One description would describe the activities of a memory units
while the seccond would functionally describe a processing unit. Then, an M.E.F. would be
directed to exccute a model composed of N of the first and M of the sccond.

‘The real issue is that care must be taken in implementation of an M.E.F. to prescrve
the abstraction of the T.E. model. The T.E. state model chosen for the MIT MEF system
allows the user to think of the state of a T.E. as global (static) variables which are local to each
T F. As was noted above, this model would not serve the purposes of an M.E.F. if T.E. state
were actually implemented in this way. but we felt that this abstraction was the simplest
possible model.

Below we discuss various possible implementation schemes for T.E. state under the
Lisp Machinc environment, addressing such issucs as code copy ing, complexity of the model
from the user's vicw’point. and performance. All of these schemes assume that the M.E.F.
user is required to list the names of all of the “T.E. state variables™ (or registers) used, so that

the M.E.F. can know what variable names a given T.E. model must be *“closed over.”

e o
S]

I
AR S

I
LA

T TV WO RITTE —w

-3]-

2.2.3 T.E. Abstraction via Flavors

e e
(AT

Readers familiar with the Lisp Machine architecture at this point invariably suggest

the use of flavors 10 implement T.E. state. Flavors!

arc a powerful object-oriented
programming concept, combining multiple inheritance and dynamically linked functionality
in a message-passing syntax. They implement a uscr-definable language type structure in
which types define function and state templates, much like the CLU language clusters,22
except that the functions allowed to opcerate on a given type may be dynamically altered, and
new functions added.

From the T.E. state model point of view, flavors are the perfect implementation
vehicle. They support a template view of programming that well fits the philosophy of a .
group of shared functions (e.g., a T.E. functional definition) operating on multiple similar
aggregates of state (e.g., T.E. registers). Unfortuantely, the dynamic feature of the Lisp
Machine flavor implementation introduces great function call overhead. Since the functions
that operate on a given flavor can be added to, deleted from, or otherwise altered at any time, s
calling a function to act on a particular instantiation of a flavor (an instance) requires a
hash-table lookup. Since all of the functions defined to operate on instances of a flavor are
not known at compile time, and since Lisp variables are not typed at compile time, calls on an
instance cannot be compiled down to a machine function call. Thus flavors were ruled out as -

an implementation mechanism for the T.E. abstraction.
2.2.4 T.E. Abstraction via Global Variables i

Another possibility was to use Lisp global (static) variables. Unfortunately, although
this would be a straightforward implementation scheme and would support very good j: '"..'
performance, due to the reasons outlined in the beginning of this section (overlap of variable
references between executing T.E. definitions) this scheme could not support more than one -
T.E. per physical processor. Since we need an MLEF. to potentially support any number of
T.E."s per physical processor, this idca was quickly scrapped.

-32-

2.2.5 T.E. Abstraction via Dynamic Variables

There is, however, an extension of the Lisp Machine global variable concept. Under
the Lisp Machine operating system, global variables may be “bound™ (0 different values
during exccution of a particular Lisp Machine process. Thus, T.E. functional models cach
could be exccuted inside its own process, with the values of its registers bound, and thus
separated from the registers of other T.E.'s exccuting on the same physical processor.

Unfortunately this scheme introduces an enormous performance penalty. It requires
that the Lisp Machine process scheduler must insure that bound variables for a blocked
process must be unbound when another process is awakened for exccution; in addition, of
course. the bound variables of the awakenced process must be made current at process-switch
time. This scheme was attempted as the T.E. abstraction implementation for the MIT" MEF,
with remarkably poor results duc to this process switching overhead (particularly with more

than three T.E.'s executing on a physical processor).
2.2.6 T.E. Abstraction via Packages

Another promising feature of the Lisp Machine that was considered was the package
model. This feature allows separation of variable namespaces at function definition or load
times, to provide some small amount of name separation under an operating system that is
basically supports a monolithic namespace and address space. We think of this scheme as a
“poor man’'s scgmentation,” as it solves some of the problems of naming that were addressed

by the Multics scgmentation scheme. 23

It must be noted that lLisp Machine packages are
completely unrelated to Ada packages,z4 which are closer in spirit to the flavor concept.

Using the Lisp Machinc package feature, each T.E. would be loaded into its own
separate namespace, and would simply address its registers as global variables inside that
namespace. Unfortunately, even T.E.’s of the same fype would be unable to share code (T.E.
function dcfinitions), since each T.E. would necd its code to address diffcrent namespaces.
The paging and virtual memory waste accompanying such unnecessary code copying ruled
out this concept for the MI'T MEF T.E. implementation.

A e e e

———

o
L

T ——— y - "uiua i v, v DA e . i Ml L R S A A

-33-

2.2.7 T.E. Abstraction via Arrays Referenced (Indexed) Off a Dynamic Variable

Finally, a hybrid scheme was choscn that used some of the concepts of flavors with a
dynamically bound global variable. The MIT MEF uscs a single bound global variable which
points to an array (state block) which contains the current valucs of all ‘I'.E. registers for the
currently-executing T.E. At process-switch time, this single variable is unbound and bound to
thce new context, a minor introduction of overhead. Accesses to T.E. registers are altered (via
macro expansion) o offsets into the current state block at compile time. This can be done
because users are required to list all of the registers to be used by cach T.E. modcl. Run-time

access to T.E. register values is then accomplished by adding an offsct (established at

compile-time) to a global variable—i.e., a one-memory-reference overhead.

This memory reference overhead is the only disadvantage of such a scheme.
Unfortunately, however, since T.E.’s are presumed to make constant access to their state, this
overhcad can be tremendous, as it introduces a 100% overhead in statc memory reference,
Fortunately, this overhead can be alleviated by a caching scheme, in which the current state
block pointer is saved (at process-switch time, or at the time of the first T.E. register access) in
the CPU. This scheme will be utilized with the Texas Instruments Lisp Machines with the
introduction of a small amount of microcode to support the caching of special virtual memory
pointers on the processor board of the machine. This method of “T.E. procedure switching”
is the analog of the standard operating systems approach to multiprogramming process

switching.
2.2.8 The T.E. Execution Abstraction

Besides modeling the state of exccuting T.E.’s, we must somehow model the actual
exccution of T.E.’s based on users’ functional descriptions. As we have alluded above, these
functional descriptions must be written in Lisp Machine Lisp for the MIT MEF; execution of
the descriptions, at first glance, simply entails the execution of interpreted or compiled Lisp

forms using references to T E. state as was discussed above.

e e e T Sl s A e e e
CAN STV RER AN % -_"-‘ﬁ'!_ CARMINE . | o

—

B T T e——— T T ——————————» Pl ks S Mt

-34 -

However, there is a choice for implementation of these T.E. exccution “threads,” or
“processes.” The most obvious choice, in the case of the Lisp Machine, is to use the Lisp
Machine scheduler and process abstraction, since it directly implements the T.E. execution
abstraction, running thrcads of Lisp code on scparate stacks, blocking on input/output
operations, cte. ‘Therefore, by default the MET MEF system calls the Lisp Machine system
software to create and run processes as the implementation of the T.E. abstraction. This
allows the emulation experiment writer to model T.ILs ina fully general way, as individual
machines that do 170 and computation in no pre-determined order.

Unfortunately, there is an overhead associated with process switching under the Lisp
Machine system, which rises lincarly with the number of processes (and thus emulated T E.'s).
This is caused by the need o flush and re-fill stack buffers and possible paging overhead to
reinstate a previously blocked process.

The MIT MEF allows users intercsted in maximum performance to use a slightly less
gencral model to attain some speedup by avoiding process switching. In this model, T.E.'s are
required to be functional blocks that take a single message as input, do some computation,
output zero or more messages. and then return to the caller. This allows the MEF system to do
its own “T.E. scheduling™ by directly cafling the Lisp implementation of a T.E. in the same
process as the MEF system, rescheduling another (or even the same) T.E. on return of the
model.

Although this system is not completely gencral, it does fill the needs of many
emulation experiments that can be modelled easily in this more restrictive manner. We must
note. however, that this method of T.E. implementation carrics another disadvantage: the
M.E.F. system will block forever until a T.E. abstraction rcturns, since there is no “block and
reschedule™ facility within MEF. Thus, crrors in T.E. implementation have the capacity to
halt execution of an entire emulation unless T.LE. definitions are not allowed to call potentially

blocking routines.

. R i RN Al S Y e e R e sont el asti Aedst med aeal Jetel S Al il AL St s Snsasil grell e ol b At g Al AN il geall Vs el grey

-35-

2.2.9 T.F. and System Metering

The implementation of the metering abstraction under the MIT MEF system is
two-fold, to support the two different types of meters. Per-T.E. meters are implemented
under the MI'T MEF system in much the same way as T.E. state registers, that is, as an array
of meter values stored with the state array. System-wide meters, however, present a range of
implementation choices.

The most obvious choice would be to simply ceatrally record the values of all
system-wide meters on onc of the physical processors taking part in an cmulation run.
However, this increases intcrconnection network overhead for no particular reason, since the
values do not nced to be centrally collected until the uscr actually asks for the value of a
system mcter.

Thercfore, the MI'T MEF implementation collects the values of system-wide meters in
a distributed manner, incrementing local copies of cach meter on each physical processor in

the MLE.F. When the user (via the system control pancl) asks for the value of a particular

meter, a meter read request is sent to each physical processor taking part in the current M.E.F. o

experiment; the results are then tabulated centrally and presented to the user.

2.2.10 Communications Software

This brings to light the issue of interconnection schemes for an M.E.F. The abstract
definition of an M.E.F. notes only that the details of packet communication between T.E.'s .

should be totally transparent. This means that:

® From the T.E. procedure’s point of view, the network send primitive must

return “immediately:” i.e.. no further work on the part of the T.E.
may be required in order to get the message to the destination T.E. .
This implics that the implementation of the send primitive must
automatically qucue messages. backoff and retry, acknowledge if
necessary. or perform any other network management functions
necessary Lo transmit messages.

el DI S L T e e Cte e e e e T
O N

P L P N I P R o S St v SN
I WATIPARCIPAL IR D Ui D DRI IR Wiy Wy U/ A, W iy W, . S L.

-36 -

® The actual interconnection network(s) should be accessed in a uniform
way, through a uniform send primitive (i.c.. there should not be a
send-via-Ithernet function as well as a send-via-11ypercube function,
just one generic send function),

®

Inter-T.E. messaging between T.E's executing on the same physical
processor should be accessed via the samie send primitive as network
messaging, as the experiment writer is not aware of the actual physical
processing configuration of an emulation,

® Network input must be via a single receive function, regardless of the
physical and/or logical locations of the sending T.E.

The MIT MEF actually implements simultancous access, via a single queueing send
primitive function. to four inter-T.E. communications media. The first is for T.E.’s residing
on the same physical processor. which communicate through a queucing mechanism much
like Unix pipcs.25 Ali communications requests, in both directions, are handled by the local
distributed portion of the M.EF. software system, called outposts. An outline of this
procedure is presented later in this chapter,

The other three network interfaces connect to three different high-specd
inter-processor media, including a ten-megabit per second ring-topology Fthernet (executing
Chaos?® protocols); a three-megabyte per sccond circuit switched hypercube-topology

. 9
network based on the Bolt, Beranek, & Newman Butterfly switch:2 and a four-megabyte per

second packet switched hypercube-tepology network developed at MLLT. in cooperation with
the International Business Machines (‘()rporation.*

Regardless of the communications path followed by the transmission of a single MEF "q
inter-T.E. message. the MEF sending and receiving functions provide a packet-switched

abstraction to all communicating T.E.'s. Thus, though a message might follow cn of four e

different types of routing based on the distance between the physical machines so, porting T
two commuunicating T.E.'s, and the size of the message being sent, the same functions are used

without retry 1o complete that communication,

* The last two of these networks are under development at this time.

-37 -

2.2.11 Main Control Panel

Tying the entirc MIT MEF system together is a Control Panel program that also
exceutes under the Lisp Machine operating system, either on one of the physical Lisp
Machine processors participating in an active cmulation experiment. or on another
(dedicated) processor. This “Control Pancl™ implements a bootstrap processor that oversces
the activities of the current M.E.F. configuration of physical processors. Users issuc this

program commands such as:

® CONFIGURE: Set up a certain group of physical processors as an M.E.F.
This command begins a small overseer program on cach P.P.
participating in the emulation, and e¢stablishes all necessary network
connections between each physical processor.,

START-EMULATION: Given an emulation name, loads and begins the

emulation named, instating T.E.'s described by that emulation on the
participating physical processors and establishing the logical
connectivity between the T.Es as described by the cmulation
cxperiment.

SET-TRACING: Enable a system-wide tracing facility to direct tracing
information (specified by T.E. function descriptions) to the screens of
cach participating physical processor, or to the Control Panel.

STATUS: Get the status of a running (or idle) T.E. on any physical
Processor.

DEBUG-TE: Temporarily halt a T.E.’s running Lisp code and allow the

experimenter 1o walk through that T E.’s active state, checking and/or
altering variable values and restarting computation at any point. 2

SHUTDOWN: Shutdown the current emulation experiment, much like a

bootstrap processor shutting down a mainframe machine. Halts all
T.E. s and returns their storage to the Lisp heap.,

) ., ! : . s : 3 Cea e L VT e e e Ty e
et et T LT SRR NP R I SO N Y PN 3 LIRS SNl Wil Wil WAl SRVUE NP GIEE WAt TS W S, S gy N o

AR AERS Jandh _afi aresh adul RGN o hen ngleh - g e

-51-

ocedure TTDA Resource Management Unit:
loop begin
Incoming_Token := Read_Message ();
case Incoming_Token.D_Type

if 0 then begin /* D=0, a system-manager token. Dispatch
on request type, reading system state
to find free resources for request. */

Outgoing_Tokens := System_Manager (Incoming_Token);
for each Outgoing_Token in Outgoing_Tokens
Write_Message (Outgoing_Token.Destination_Pe,
Outgoing_Token);
end begin;

if 2 then begin /* D=2, a PE-control token.
Perform local housekeeping function. */

Outgoing_Token := Pe_Control (Incoming_Token);
Write_Message (Outgoing_Token.Destination_PE,
Outgoing_Token);

end begin;

end case;
end loop;
1d procedure;

t emulation start-up time, some number of TTDA Processing Units are initialized along with
singie TTDA Resource Management Unit to control all system resources.

Some results that show the magnitude of emulation experimentation that can proceed
1 a particular MLE.F_ the MIT MEF, are documented below. It must be noted that the MIT
EF, at this writing, is still using low-speed (tcn megabits/second) bus communications (i.e.,

hernct with Chaos protocols).

". L \-—_-\-.I'l..'l -I-I-- ——— !.' LML A i SR P PR S e S

_50-
procedure TTDA Processing Unit:
loop begin
Incoming_Token := Read_Message ():

case Incoming_Token.D_Type

if 0 then begin /* D=0, an ALU token.
Try to match with token in wait_match.
If single input operation, or match found,
call ALU to dispatch on operation type. */
Match? := Wait_Match_Control (Incoming_Token);
if Match? begin
Alu_Operation := Fetch (Incoming_Token.Address);
Qutgoing_Tokens := Alu_Control (Alu_Operation);
for each Qutgoing_Token in Qutgoing_Tokens do
Write_Message (Outgoing_Token.Destination_PE,
Outgoing_Token);
end;
end begin;

if 1 then begin /* D=1, an I-structure token.

Dispatch on I-structure request type, satisfy
read/write request and return answer to
requesting P.E. */

Outgoing_Token := I_Structure_Control (Incoming_Token);

Write_Message (Outgoing_Token.Destination_PE, s
OQutgoing_Token); 2

end begin; %"

if 2 then begin /* D=2, a PE-control token.
Perform local housekeeping function, */
Outgoing_Token := Pe_Control (Incoming_Token);
Write_Message (Outgoing_Token.Destination_PE,
Outgoing_Token);

end begin;
end case;
end loop;
end procedure;

-49 -

3.3 TTDA Implementation under the MIT MEF

The TTDA machine was actually implemented under the MIT MEF system at the
MIT Laboratory for Computer Science, as the first major emulation experiment available,
Functional models of all levels of the TTDA were emulated, as well as interconnection
protocols as specilied by an agreed spcciﬁcnlion.”* 18 Early emulation runs with this modcl
pointed out a severe lack of deep understanding in the arca of decentralized processor cycle
and memory space resource altocation and deallocation, As a first curative step, an extra
processing clement was added to the architectural definition (and thus the cmulation
experiment) to support centralized resource control; to allocate or deallocate any system
resources, cach T.I. had to make a request of the resource management T.E. Obviously, this
became the main system bottleneck; at this writing, more cxperimentation is in progress to
solve the problem.

This solution is a good example of a “quick fix™ to an architecture used to circumvent
unknowns in the problem and concentrate on the parts of the architecture that need
immediate attention. In the case of the TTDA maching, the first question to be answered by a
M.E.F. was the validity of the processing approach; thercfore, the resource management
problem was bypassed for future study without slowing down work on the processing units of

the architecture. An overall sketch of the implementation functions for the TTDA looks like
this:

-48 -

3.2.3 Emulation of the Tagged-Token Machine

The basic system architecture of the TTDA machine matches quite closely the abstract
M.E.F. model. An N-dimensional hypercube network topology is used to interconnect any
number of processing clements, each of which is a rather general-purpose pipelined CPU and

memory management unit. Figure 9 outlines the overall structure of the TTDA,

P.E.

P.E.
P.E.

P.E.

@

P.E.

N-dimensional hypercube
with N = 3(8 P.E.s)

R L T
.AE_ RN

Figure 9: Structure of the Tagged-Token Dataflow Machine

PRI AN
PN L™ ISP O W

et - . . . - - - » . - - . . - . - - > - o . - . .
[S S L P S S ‘-é.' W P N
R AP PP PN PR R T AT SR R R E N AL LI PR VLSSV VI VL I PUIE YO U Wl P U . DU D S 1

T

"

Ty e

computation state, communications bandwidth compression, processor time-sharing, and so
on. Basically, daiaflow models engender more than their share of the problem of how and
whcre to apply computation storage and computational power, and how to communicate such
data among structurally and geographically separated machines. 30 31

Unfortunately, these huge problems never keep people from designing real hardware
to rcalize particular variants of the dataflow model, or even 1o use expensive (in monctary,
temporal, and human terms) siticon design technology in a quest for a parallel datallow
architecture. Scveral dataflow architectures have been shelved after great cxpcnditurcs,n' 33
cven though specialized simulatic . technigues were used before committing to hardware.

Obviously, a more flexible tool for dataflow machine experimentation is nceded to
avoid the financial and human expense: an MLE.F. exactly fits that nced. In fact, the work
reported in this paper was originally prompted by a need to quickly and flexibly emulate a
variant of the 'l‘uggéd-'l"okcn Dataflow Architecture, a machine realization of the Irvine/MIT

U-Interpreter abstract machine model. '8
3.2.2 The Tagged-Token Dataflow Machine

The Tagged-Token Dataflow Machine is an architectural realization of an abstract
machine model developed at the University of California at Irvine, named the U-Intcrprcler.8
This architecture utilizes an extremely low computational granularity, on the order of single
instructions on standard processors (i.c., addition and subtraction), to realizc the maximum
parallelism in general programs without programmer specification of parallelism. In addition,
the memory mode! of this architecturce inherently tolerates long memory latencics, as well as
multiple access to data memories without unduly constraining parallel execution. Both of
these capabilities are thought to bc unattainable within the von Ncumann machine

framework.ls' i

R IAT DRTIATIASIPAL ST, SPGr AP S T D e P U W P RSP, Yo PR Y (U UL A A A k. L

needs to generate an acknowledgment afier receiving a write request (i.c., it must write to the
MEF a message directed at the CPU).

From the standpoint of a systems architect (in this example, perhaps a bus/backplane

designer) the flexibility to quickly and simply change an interconnection strategy and
processor interface without touching a soldering iron is unparalleled. Validation of a
parallel-processing design can be performed in a manner much more like the excercise of
modern programming: a tight edit/compile/debug prototyping loop, followed by thorough
specification and implementation after the underlying structure is well understood.28

We began this chapter by discussing a supposcd “von Ncumann, single-processor”
machine, and ended the last section with a multiprocessor view. We must stress that a
Multiprocessor Emulation Facility is a general tool for architectural design with all types of
parallelism, such as pipcline stages, distributed concurrent databasce systems, or multiple
processing elements. The power in the idea is the inherent ability to emulate any complex

syslem.
3.2 A Multiprocessor Experiment: The Tagged Token Dataflow Emulator

The preceding example use of the emulation facility is indeed instructive, but it does
not exercisc the full abilitics of the M.E.F., nor does it represent a particularly new or

experimental design. The experiment discussed below fulfills both of these ends.
3.2.1 The Dataflow l1odel of Computation

Though the basic novel ideas (in comparison to the von Neumann machine structure) of the

2

dataflow model are rather old in computer science terms, 9 only lately have several different

18,

variations on the old theme shown great promise, 12 1n the dataflow computer model,

asynchrony and functionality form the key to a highly parallel computational model in which
programs can be run in a parallel fashion without programmer specification of parallelism.7
The major problems plaguing dataflow computation models today are the same twin
problems that have always plagued computer science and engineering, namely (1) where do
we put things, and (2) how do we get them from herc to there. These resource management

questions apply to program and data storage allocation, processor structure for maintaining

Cat e e - . B P DI

- " . e . . R Y Yet e m CE O T T T
DR AR I IR AP PR WA PR WAL DL P WAL W SRR Dy Sy e

T —— - ¢ R ———— DL et M MRS Shnt Saal St SAegh Sedh by Shuh Bage: sudi e Stmadh 1 QI N A S S i T VWY

-45-

cru MEMORY

Processor/Memory Bus

Figure 8: A Simple von Neumann Processor

As can be scen in this simple figure, we view the asynchronous communications
network of the Emulation Facility as a single, synchronous connection (i.e., a bus) between
the two parallel processors. We say synchronous because all messages between these two
processors are qucued by the communications medium; there is no “interrupt level™ activity.

For example, a “memory write cycle looks something like this:

CPU (messuge direction) MEMOQRY
WRITE — |
ADDRESS . T
- DATA i
o)
For testing purposes, we might alter this simple “protocol” by inserting an acknowledgment “”
by the memory:) ” *
CPU (message direction) MEMORY
WRITE —
— WRITE ACK
ADDRESS —
— DATA

This kind of modification is trivial to make within the framework of an Emulation Facility;
the CPU processor simply waits for an acknowledgment after transmitting a write request (i.e.,

reads from the MEF an incoming message from MEEMORY), and the MEMORY processor

o - » - - - - - 0 -
. o e LT L . L BRI K . . T e
- PP PP TS R BN S S0 el PN A TR R TR LA P AL L N T T L R PRSP UL S T TP TR UL WA S S L |

od o P p——— .

v N e 2 et et Ja
et T T LW TG TR LS R TLE

‘s
L
-

‘4
E
L
L
9

Chapter 3

Using an M.L.F. as an Interpreter

3.1 An Educational Experiment: The von Neumann Machine Interpreter

A multiprocessor emulation facility is fundamentally a tool for multiprocessor
prototyping. In this and the the following chapter, we present possible uses of an MEF to
show the need for such a tool, and the use of such a ol. These particular prototypical uses of
an MEF wcre actually written and exccuted on the MIT MEF;18 some results of those
interpretation & emulation experiments will also be presented.

The simplest multiprocessor configuration in use today is the von Neumann style
uniprocessor, composed of one central processing unit, and onc “memory buank.” Although this
is a uniprocessor in today’s sense. it is actually composed of two fully parallel processing units,
activating cach other via synchronous or asynchronous messages over some type of computer
bus. Although the parallel portions of this configuration (we will call them simply the CPU
and thc MEMORY) often lock, waiting for the completion of an opcration in the other
processor, there is generally no possibility of deadlock, and there can be some overlap of
operation if the datapaths of the CPU allow work to be done while a bus read or write cycle is
active.

Therefore we present a von Neumann style uniprocessor, viewed at the bus level, as
the world’s simplest multiprocessor architecture. Figure 8 shows a view of the the processing

clements and t.cir trivial connectivity.

DAR™RE S e SRa -Rran At e 2w g g A c A AL A S T ——re——————w P iy ™ w5

-43 -

/* Forward a message to a local or non-local T.E. */
procedure Forward_Message (From_Stream) begin

Destination_TE := Read_Byte (From_Stream);
Message_Length := Read_Word (From_Stream);

Message := Read_String (From_Stream, Message_Length);
TE_Descriptor := Lookup_TE (Destination_TE);

/¢ If local message, place in local T.E.'s incoming
message queue. Else forward to proper P.P. */

if Destination_TE element_of Local_TE List
then Queue (Message,
TE_Descriptor.Incoming_Messages);
e1se Send (Message_Length, Message, Destination_TE,

Routing_Table (TE_Descriptor.PP));
end Forward_Message;

/* Create and initialize a Target Element. */
procedure Create_TE (Experiment, Control_Stream) begin

TE_Type := Lookup_Experiment_TE (Expariment,
Read_String (Control_Stream);

TE := Create_TE (TE_Type, Experiment);

Add_TE_to_Running_Profile (TE, Experiment);

/* Call the usaer-specified initialization procedure. */
In_TE_Environment (TE_Type.Init ()):

end Create_TE;

...
....................
..............

''''''''''

T P N P N TN T e W e o wyywrw v
.y . ~ e s a2 e T ————— T rT N e b S S el - B R E i i A B

-42 -

/®* Communications are now set up. We can expect
commands to arrive from the Control Panel, as
well as requests for communications from local
and foreign T.E. models. */

do forever
Input_Stream := Await_Input (Command_Stream,
Routing_Table,
TE_Table);

if Input_Stream = Command_Stream begin
/* Input is from the Control Panel. */

case Read_Byte (Command_Stream)
if 'M' then Forward_Message (Command_Stream);
if 'E' then Experiment :=
Setup_Emulation (Command_Stream);
if 'K' then Shutdown_TE (Command_Stream);
if 'S' then Shutdown ();
if 'C' the Create_TE (Experiment,
Command_Stream);

/* Other local notification and control
functions are performed here as well. */
end case;
end;

/* Input is from a foreign or local T.E. model, */
else Forward_Message (Input_Stream);

/* Schedule any TE's that having pending input. This
will cause the procedural definition of an TE with
pending 1input to be invoked in the environment of
that particular TE. */

Experiment.Scheduling_Paradigm (Experiment);

end do forever;
end MEF_Outpost;

-4] -

/* Local M.E.F. Controller (OUTPOST), to be executed on each i
P.P. of an M.E.F. configuration. This routine manages o
the T.E. models executing on its local processor, while s
managing communication to and from these T.E.'s as wall -
as M.E.F. control messages from the M.E.F, Control Panel.

./
.

procedure MEF_Outpost (Command_Stream) hegin
X /* First, read local P.P. number (as allocated by .
i the Control Panel) and the total number of P.P.'s, ®/ s
ii Local_PP = Read_Byte (Command_Stream); .
) Total_PPs := Read_Byte (Command_Stream);

: /* Now set up communications with all other P.P.'s, 'fl
We use a "triangular matrix" technique: each Outpost o
simultaneously passively waits for contacts from each
lower-numbered P.P., while initiating contact with
each higher-numbered P.P. See above for details., */

cobegin 08
for Listen_PP from 0 below Local_PP
Routing _Table (Listen_PP) := s
Await_Contact (Listen_PP); -

for Talk_TE from Local_PP + 1 below Total_PPs
Routing_Table (Listen_PP) :=
Initiate_Contact (Listen_PP);

end;

" 4 PP W T TR v e e P
e T . CheC A A . - e e et i

gl
A A

2.3 Program Outline -

The MIT MEF software consists of three major parts, including (1) the Control Panel, l'_-".
(2) interfaces to the M.E.F. for usc by emulation experiment implementations, and (3) the
M.E.F. outposts, or overscers, cxecuting on cach P.P. of the M.E.F. This last portion is the
most interesting, as it represents the distributed “operating system™ portion of the M.EF.,
software, executing configuration and control commands emanating from the Control Panel
and the user.”

Onc particularly intcresting detail of the operation of the MEF outposts is the
paradigm for intcrconnection. ‘The Lisp Machine architecture presents the Ethernet
interconnection medium to the application programmer as a bidircctional strcam connected to
a listening process (another strcam) on the foreign physical host. Therefore, for
interconnection between outposts on the Ethernct medium, cach outpost nceds a stream
connccting to each other outpost.

It would scem that the simplest method to gain this array of interconncctions would

- be to simply have each outpost initiate a connection to each other outpost; however, the I8
bidirectional nature of the resuiting streams would make such a scheme quite wastcful.
Therefore, each outpost uses its own outpost identification number (which ranges from zero ifj
.- to one less than the number of outposts, or P.P.’s) as a sort of “quicksort comb,” passively ’
5 waiting for connection requests from lower-numbered outposts, and actively initiating -
. connection requests to all high-numbered outposts. '_:
h Besides simplifying the connection process, this scheme also insures that no outpost
- will issuc a connection request to a physical processor that is not yet executing the outpost 3

i code, since the outposts are initiated on the P.P.’s in ascending outpost-number order. .
Outpost opcrations are roughly outlined in the program below.,
5 5
o * Specifications for usc of the MEF Control Panel and emulation experiment interfaces to S

the MI'T MEF system arc presented in the appendix of this thesis.

T T T ———— INC ol afar atiirtad S e/l S ui

—rre v,

-39 -

Physical Processor 2 Physical Processor | :::

TE | Main Control Pancel

| (Bootstrap, Shutdown, cte.) s

MLELF. o o
l.ocal | N

Outpost l

T.F

M.E.F. .

_— = = = — — Communications [— — — — — — —
Core

T.E ' -
. | T.E T
MLE.F. ML.E.F. o
Local | Local . A
Outpost | Outpost e
I =

T.E T.F.

'I‘F -4
oI LT

Physical Processor 3 Physical Processor 4

Figure 7: Multiple Processor Dynamic Structure of the MIT MEF

T T Ty ey .f'r."~‘ﬁv‘m. o ey alre g D Ty

-38-

Figure 7 shows the overall multiple physical processor architecture of an cmulation
running under the MIT MEF system. In this example, there are four participating physical
processors, one of which is also hosting the Control Panel. The running cmulation

cxperiment is comprised of cight target clements.

e - -

S T T R T VU e S T
T P S ST S PO St e . ~ . @S - %
R ~ - . *

PR T I R S T I TR T - At o - . -
CRCIRCIPR IR IFRCIR, T I I IR T W W DA TS P W T W ety Y 1, . St i

e T . S .t e . - - ..
] Ldi‘L.\’L.)'LLL.:L.L'L FOTE WS WK VO D

.
v --
s‘_'-'
-~
FREN

-52-

Lines of Lisp code to implement the TTDA machine: 12420

Raw computation speed (dataflow operations/second): 600
Wait/match section buffer size (tokens/PE): 1024
Program memory size (words/PE): 16384
Maximum operations computed (at this writing): 800000

This first major emulation quickly pointed out the power of an ecmulation facility,

particularly the ease of alteration of a modcl experiment. This writer’s favorite example of

this ability centers on an anecdote: early in the project, the TTDA emulation did not support
64-bit IEEE standard floating point computation, although the TTDA definition demanded
such functionality. A ncw programmer was put to the task of adding this ability, with only a
day’s familiarity of the source code (though he already understood basic dataflow concepts).
He was able to add (and dcbug) the ALU functional code lor 64-bit floating point in one day

of work. Itis precisely this reconfigurability and flexibility that one wants from an M.E.F,
3.4 Levels of Interpretation

For the implementation of the TTDA Dataflow machine under the prototype MIT
MEF the author chose a level of emulation modelling each P.E. of the TTDA machine as a
single T.E. in the M.E.F. domain. Thercfore, each dataflow T.E. was modelled as a single
sequential process emulating the TTDA instruction set and commucating with other
processing elements of the emulated machines,

Obviously, this is not the only level of abstraction at which such a machine may be
modelled. For example, the author could have chosen an approach in which the entire
multiprocessor was modelled as a single sequential thread, with no communication necessary
between elements. The implementation of such a machine simulation might have looked
somcthing like this:

-53 -

procedure TTDA_Machine begin
Token := Head (Tokens_Awaiting_Processing):
Tokens_Awaiting_Processing :=
Tail (Tokens_Awaiting_Processing);
PE := Token.Destination_PE;

/* Here simulate the operattion of processing element
number PE, leaving any output tokens on the queue
Tokens_Awaiting_Processing. */

end procedure;

This program has no interesting properties from a multiprocessing point of vicw. Although it
will exhibit the behavior of a TTDA machine as viewed by a user, it simulates none of the
internal interfaces of the clements of the dataflow architecture, and is thercfore not
particularly useful -for prototypical implementations. However, the simple single-thread
approach to machine simulation is an acceptable input to an emulation facility.

Instead of going further away from the parallelism inherant in the dataflow design,
however, we can move toward it by modelling the internal pipelining of each processing
clement of the TTDA. A pipclined hardware implementation ol a TTDA processing clement
would include, for example:

An incoming token queue manager.

A Waiting/Matching associative token storage unit.
An instruction fetch/A LU processing unit.

A storage management unit.

A PE controller (system interface) unit.

An outgoing token qucue manager.

Each of these components may be modelled as an independant process, participating

states in the pipelined microarchitecture of a TTDA processing clement. Each of these T.E.’s

would actually represent only a small part of the overall machine being emulated.

T ————————wTT - iR i e B A A e A B e

-54 -

Again, this model may be used to prototype a TTDA machine under a M.EF.
architecture. Although it would require more communication (and probably processing)
overhead, it is closer to the true design of a TTDA machine, and therefore perhaps more
uscful for some studics of dataflow computation, Figure 10 outlines the three levels of
interpretation noted above, with some notes on the advantages and disadvantages of cach

approach.

. .

T

I T T T T

-55-

Tagged-Token
Dataflow

Machine

~_

Taking Advantage of Parallel Design

/ P. L

Communications Network

P E

P. L.

P L

~_

Taking Advantage of Pipelined Design

Yy

I-Structure

PE Control

v

Wait/Match

v

Fetch/ALU

Figure 10: Three Different Approaches To TTDA Simulation

A S 2 4 w'v,,"t"'.'.“.'*‘.'rf.f" M)

-56_

Chapter 4

Using an M.L.F. as an IEmulator

In the preceding chapters, we used the term “emulation™ quite loosely to represent
any use of an M.E.F. to interpret an architectural definition outlined by a machine designer.
In this and following chapters, we will narrow this definition to a particular method of

functional and time simulations of systems.
4.1 Interpretation, Simulation, and Emulation

As was noted in the fast chapter, a system may be in(erpreted at any level. In the case
of the Tagged-Token Dataflow Architecture, this means that we may (1) interpret the machine
code for each target element; or, at a higher level, we may (2) interpret the machine as a whole
by executing high-level dataflow languages such as Id:8 or, at a lower level. we may (3)
interpret the intra-machine flow of control and data between the pipeline stages of a dataflow
processing elcment. However, this choice docs not affect the scheduling of the simulated
activities of a system (i.c., the T.E.'s) during simulaticn; thus, it does not force such a
simulation to divulge timing information about a machine model executing under an M.E.F,
cnvironment.

In this and the succeeding chapter, we will discuss two different general methods for
garnering timing information from emulation experiments along with the simple functional

execution of the machine model. We divide the term “simulation” into three concepts:

® Interpretation, as outlined above, specifics only that a functional

specification of a machine is exccuted. No implicit timing information
collection is suggested.

® Simulation, as will be outlined in the following chapter, specifies a system
interpretation that explicitly keeps timing information about the

- 57 -
functional units of a simulated machine (1 E.'s) while the simulation is :
taking place. -

® Emulation, the topic of this chapter, specifics a system interpretation that -

keeps no explicit timing information, but gathers such information
implicitly through use the of explicit scheduling of "I E. activity.

Figure 11 outlines the hierarchy of simulation methods as this thesis views it.

;_-..‘

<
.l

* Implicit capture of timing information Explicit capture of timing information B
* Simple, easily debuggable model Caprure maximum parallelisim of simulation * ::'_:L'_"_
Figure 11: Types of System Interpretation/I:mulation/Simulation =
I:;Z:

The definition of cmulation that we use in this chapter is best observed in such o
systems as the Yorktown Simulation Engine (YSI-.).M I'his system, though it provided -~

architectural designers with exact timing amalyses of their logic circuit, had no explicit -

overhead involved in maintaining timing information during simulation. Instead, the YSE

R R R ST SR T ST

- . * e - . - a®a " e, . .
BRIL PRI AP 2P I NP SPSP A S Y YNPN % 441

e e e T e Nt e L e e e e e e e

T P T T oy T — T

-58-

relied on timing constraints “programmed into™ the circuit entered for simulation. Such
combinatorial logic circuits consisted of multiple stages of logic: a single stage would be
simulated before the next stage was begun. Thus, timing and inter-clement dependence
information was implicd by the structure of the circuit as it was described to the machine.
Likewise. an MLE.F. vicws ciulation as a simulation activity for which it nced keep no
timing inlbrmulion.* Instead, an exact schedule of events necessary for the emulation of a
system are specificd with the definition of an emulation experiment, along with the functional
definition of the target elements of the emulation. This simulation schedule can be as simple
as a round-robin operating system-like process scheduler. or as complex as a full
load-balancing priority scheduler. A complete M.E.F. implementation will allow any
user-specified schedule for T.E.’s cxccuting on a single physical processor, along with a

method of specifying which T.E.’s will execute on cach P.P.**
4.2 Scheduling as an Approach to Emulation

In fact, a simplc round-robin scheduling scheme is exactly the right model for the
emulation of certain systems. For cxample, emulation of a balanced pipeline, in which each
pipcline stage takes the same amount of real time (or at least a set amount of real time) to
exccute is a perfect target architecture for emulation-style modcling. Figure 12 outlines an
exccution schedule for a three-processor system, cach processor of which is composed of a
balanced three-stage pipeline. Representing each stage of the system as a T.E., a trivial
scheduler for cach wiplet of T.E.’s running on a P.P. would simply execute the functional
description of each stage onc after the other, and then repeat. The time that the real system
would have taken to cxecute the pipeline four times, for instance, is easily calculated as four

times the runtime of the pipeline: the time taken to emulate the pipeline is irrelcvant.

* Note, however. that scveral methodologies for maintaining simulated timing information
automatically will be advanced in the following chapter.

** Note that by this definition, at the current time the MIT MEF is not a complete M.E.F.
implementation,

- e et . RN T A T S .. S S R S A - .-
o . T, R T - . LR S
R

B . « St
.- . . < K - - . o . L. o - - - - - - c . PR . . . EERC T «® et e w LRSS
L ., M SR VA VT AT ST T S Sl W 3 TP Sdr A G AP TP WU WG LN AP AP PP S YUl DS TL UL DI A WS N P W

~

N - -, .
e e e e N .
WP SN T WL W R O V.

-59-

Stage 1 Stage 1
Processor | Stage 2 e
Stage 3
Stage 1 Stage 1
Processor 2 Stage 2
Stage 3
Stage 1 Stage 1
Processor 3 Stage 2
Stage 3
Time0o Time1l Time 2 Time 3 Time 4

Figure 12: Scheduling Stages of a Balanced Pipeline

The main disadvantage of this model of interpretation is the inherent mismatch
between the M.ILF. implementation mode! and any shared-resource (e.g., shared memory)
multiprocessor model. However, there are quite attractive reasons for using system emulation
as a simulation methodology. Emulation under the M.E.F. environment is a good
“impedance match™ between the architecture of an M.E.F. and the gencral emulation
architecture. The M.E.F. is composed of general-purpose multiprogramming processors
connected via some selection of high-speed networks; a real pipelined multiprocessor is also a
sct of multiprogramming (although space-division instead of time-division) processors

communicating via some (hopefully) high-speed network. Therefore we should be able to

A AN amn Rl 3

-60 -

keep the overhead of emulation rather low, allowing emulation of relatively complex
machines cxecuting large problems. This is exactly what is nccessary o make a
multiprocessor architecture successful; one must build the machine and convince cnough
applications programmers that the overhead of attempting their application on the machine is

worth the time necessary to rewrite their applications for the new environment.

-61 -

Chapter 5

Using an M.L.F. as a Simulator

The uses of a facility such as that outlined in this thesis continue far beyond the two
interpretation experiments presented in previous chaplers. As even the von Neumann
machine experiment showed, modeling of various quite different levels of parallclism can be
accomplished, including architectures that do not seem to map directly to the abstract
architecture of the facility itself.

The abstract structure outlined in this paper was chosen as the most general of
multiprocessor configurations, sort of the Turing machine of the multiprocessor world. The
skeptic will immediately note that it does not, however, dircctly support such multiprocessor
design ideas as synchronous processors (like the Connection Machine, or llliac IV)IS' 4ora
sharcd memory model (e.g., C.mmp).5 However, this model is abstract enough to allow
prototypical implementation of even these diverse models of parallel computation; generally,
another virtual processing clement is added to the emulation experiment definition to model
this shared resource (e.g., clock or memory) of the system. This is actually quite close to the
real hardware implementation of such a system, in which a central clock for synchronous
opcration or a central shared memory will actually be a separate subsystem of the architecture.
In addition, interconnection schemes other than packet-switching nctworks can be simulated
on top of our packet switch by using the packets as individual items in a continuous stream

communication scheme, and so on.

P
T T A TC R LIRS LN . S ST
Wt e T e T e e e s T - - cLT e

PR A I A s ST r L e -, g e s
P RN P P P S B SR L, a P B IET - S Y)

-62-

5.1 A Globally Synchronized Architecture

As an cxample of an extension, we present a particular method of simulating a
globally clocked architecture on top of an M.E.F. Other methods are possible, of course, but
the most obvious relics on excessive constraints on message passing between logical
processors. To alleviate the expense of this method, we present an design which corresponds
quite neatly to a globally clocked architecture on an intuitive level.

We first refer the reader back to figure 4, in which the genceral simulation or emulation
cxperiment schema is displayed. Below, in figure 13, is a modified copy of the schema, with a

new processing element, named clock, added.

-63-
T.E. T.E.
Control Panel
TE Communications
Network
T.E.
ﬂ
=~
\ ~
_ \
/ \
~
/ Clock - / T.E.
P)
\N © — ~“ TE.
N

Figure 13: General Emulation Scheme for a Clocked Architecture

...
........................
.............................
..........................

.........................

In figure 13, each T.E. corresponds to a processing clement in an cmulation
experiment’s definition, as usual. However, onc special-purpose processing clement, the
clock, is added for global synchronization of processing. The clock T.E. has a simple

functional definition:

do forever begin
for each TE in {all normal T.E.'s} do
send (pe, "Clock Pulse”);

{wWwait for each T.E. to acknowledge the pulse.}
end

Each normal T.E. in the emulation must then be sure to wait for a “Clock Pulse” message
before beginning any single synchronized computation, and then send an acknowledgment to
the Clock T.E. when the computation is complcte. As long as this protocol is adhered to, all
activity in the emulation experiment will occur in a globally synchronized manner.

In a similar manner, any prototypical architecture with central resource needs, such as
a global clock, may be emulated on an M.E.F. For instance, a central (shared) memory system
may be emulated by adding a single special T.E. (perhaps named memory) which emulates a
memory subsystem by receiving read/write requests and processing them in a synchronized
manner, much as the memory processing element in chapter 3.

Not to belabor the point, this scheme of virtual expansion of the basic M.E.F.
architecturc can be accomplished for arbitrarily centralized or synchronized systems. For
instance, figure 14 is a good emulated realization of a physically separated
teleccommunications system, with multiple indcpendent processing elements on each end (for
instance, for some complex image processing task), with each of the processor groups under

the control of a central synchronization clock.

PP RIS S I S I S - S - PP R S PN D L S S

Local Image Processor

FForeign Image Processor

Real Image Transmission System

- P.E.

P.E.

P.k.

Foreign
Clock

... M.EF. Protypical Realization

Figure 14: Emulation of a Physically Separated Two-Domain System

Emulation of systems such as that cursorily outlined in figure 14, with two physically
rate but cooperating multiprocessor systems operating in two independent clock domains,
help reveal (and thus solve) major skewing problems. For instance, the simple global

king emulation protocol mentioned above for a single time domain system certainly

PPV R R R AW W P W W W Y

— e TR e e

-79 -

S. Arvind & Robert A. lannucci, Instruction Set Definition for a Tagged-Token Data
Flow Machine, Computation Structure Group Memo 212-3, MIT Laboratory
for Computer Science, February 1983.

6. G. F. Pfister, The Yorktown Simulation Engine: Introduction, Proc. 19" Design
Automation Conference, Las Vegas, 1982.

7. Randal E. Bryant, Simulation on a Distributed System, Computation Structures
Group Memo 182, MIT Laboratory for Computer Science, July 1979.

R. Randal E. Bryant, Simulation of Pucket Communication Architecture Computer
Systems, M.LT. Lab. for Computer Science Technical Report 188, November
1977.

3. K. Mani Chandy. and Jayadev Misra. Distributed Simulation: A Case Study in
Desien and Verification of Distributed Programs, 1EEE Trans. Software Eng.,
Vol. SE-5, No. 5, September 1979,

). Louis Pousin & Hubert Zimmerman. A _Tutorial on Protocols, Proc. IEEE,
Volume 66, Number 11, November 1978.

1. F. Guterl, In Pursuit of the One-Month Chip. !FEFE Spectrum Magazine, Volume
21, Number 9. September 1984, New York, New York.

N \‘\'i "-". .". - - - .
LR SO L S i V. Wi, WL

-78-

23. A. Bensoussan, C.T. Clingen, and R.C. Daley, The Multics Virtual Memory;
Concepts and Design, Comm. of the ACM, Vol. 15, No. 5, May 1972,

24. Reference Manual for the Ada Programming Language, Proposed Standard
Document, United States Department of Defense, July 1980,

25. K. Thompson & D. M. Ritchie, The UNIX Time-sharing System,
Communications of the ACM, Vol. 17, July 1974,

26. Symbolics, Inc.. PROT: Networks und Protocols, Vol. 7 of Release 5.0
documentation set. March 1984,

27. Rettberg, R, C. Wyman, D. Hunt, M. Hoffman, P. Carvey. B. tHyde, W. Clark,
and M. Kraley, Development of a Voice Funnel System: Design Report, Tech,
Report 4098, Bolt Beranek and Newman, Inc., August, 1979,

28. G. L. Steele. The Definition and Implementation of a Computer Programming
Language Based on Constraints, M IT. Dept. of EE & CS Ph.D. Thesis,
August 1980.

29. J.E. Rodriguez, A Graph Model for Parallel Computations, MAC-TR-64,
Laboratory for Computer Science, MI'T, Cambridge, MA, September 1969,

30. David E. Culler, Resource Management for the Tagged-Token Dataflow
Architecture, S. M. Thesis, MI'T Dept. of EE & CS, Cambridge, MA,
December 1984,

31, AL Catto. & J. R. Gurd, Resource Management in Datallow, Proc. 1981 ACM
Conf. Functional Programming Lang. and Computer Arch., October 18-22,
1981.

32. Donald W, Oxley, Motivation for a Combined Data Flow - Control Flow
Processor, Proc. SPIE 25" Annual Symp., 1981,

o g R R
L St L, et

33. D. Comte, N. Hifdi. & J. C. Syre. The Data Driven LAU Multiprocessor System;
Results & Perspectives, Information Processing 80, S. H. Lavington (Ed.),
North-Holland, 1980,

L WSSO

LA
Ay e

‘.-__..

34. Arvind & Robert A. lunnucci, A Critique of Multiprocessing, von Neumann Style,
Proc. of the 10" Int’'l. Symp. on Computer Architecture, June, 1983.

YRR

...............................

.....................
..

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, Dependence
Graphs and Compiler Optimizations, Proc. 8" ACM Symp. Principles
Programming Languages, January 1981.

J. B. Dennis, Data Flow Supercomputers, Computer, November 1980,

Arvind, V. Kathail, and K. Pingali, A Data Flow Architecture with Tagged Tokens,
Laboratory for Computer Scicnce, Technical Memo 174, MITT, Cambridge,
MA, Scptember 1980.

J. Rattner, W. W, Latten. Ada determines architecture of 32-bit microprocessor,
Llectronics, February 24, 1981.

W. D. Hillis, The Connection Machine (Computer Architecture for the New Wave),
M.LT. Artificial Intelligence Lab Memo 646, September 1981. -

T. W. Malone, R. E. Fikes. M. T. Howard, Enterprise: A Market-like Task
Scheduler for Distributed Computing Environments, Working Papcr, Xerox
PARC, October 1983.

C. E. Hewitt, The Apiary Network Architecture for Knowledgeable Systems,
Conference Record of the 1980 Lisp Conference, Stanford, 1980,

Arvind. M. .. Dertouzos. and R. A. lannucci, A Multiprocessor Enmulation
Facility, TR-302, Laboratory for Computer Science, MIT, Cambridge, MA,
October 1983. -

Charles A. Hornig, private communication on the subjcct of failure ol a Honcywell
Multics development system in a multiprocessing environment for the first

time. 1
Gregory M. Papadopoulos, A NuBus Channel Adapter, Tanglewood Design Note f@
13. M.ILT. Laboratory for Computer Science, May 1985. -

D. Weinreb, and D. Moon, Lisp Machine Manual, M.1.'T, Artificial Intelligence ft::ﬁ:*
Laboratory, July 1981. N

Barbara Liskov, Alan Snyder, Russcl Atkinson., and Crai Schaffert, Abstraction
Mecchanisms in CLU, Communications of the ACM, Volume 20, Number 8,
August 1977,

-76 -

References

1. M. Bardon. et. al.. A National Computing Fnvironment for Academic Research,
National Science Foundation, July, 1983.

2. R. M. Russcll, The Cray-1 Computer System, Comm. of the ACM, Vol. 21, No. 1,
January 1978.

3. M. J. Kascic. Vector Processing on the Cyber 200, Control Data Corporation, 1979.

RS

. W.J. Bouknight. S. A. Denenberg, D. E. Mcintyre, J. M. Randall, A. H. Sameh, D.
1.. Slotnick. The Hliac [V System, Proc. of the IEEE, Vol. 60, No. 4, April
1972.

S. H i1 Mashburn, The C.mmp/tydra Project; An Architectural Overview, in
Computer Structures: Principles and Examples, D. P. Siewiorek, C. G. Bell, A.
Newell (Eds.). McGraw-Hill, New York, 1982.

6. A.W. Burks, H. 1. Goldsine, J. von Neumann, Preliminary discussion of the
logical design of an elecuronic computing instrument, from Collected Works of
John von Neumann, Volume 5, A. H. Taub (Ed.), MacMillan, New York, 1963,

~

T. Agerwala and Arvind, Data Flow Systems, Computer, February 1982,

8. Arvind. K. P. Gostclow, and W. E. Plouffe, An Asynchronous Programming
Langucge and Computing Machine, Dept. of Information and Computer
Science Report TR 1144, University of California, Irvine, December 1978.

O

. G. M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, Proc. 1967 AFIPS Spring Joint Computer Conf.,
March 1967.

10. J. E. Thornton, Design of a Computer, The Control Data 6600, Scott, Foresman
and Co., Glenview, lll., 1970.

......................................
.........................

PN ——pa——— T T T — T Ty

-75 -

6.7 Conclusion

The thesis of this work is that an advanced tool for thc cmulation of computer
architectures (particularly multiprocessor architectures) is an extremely helpful component of
an cffort in computer architectural design. Our examples of emulation experiments actually
designed for and executed on the MIT MEF clearly outline the successful application of fast
protyping mecthods and flexible dcbugging and testing fcatures to the design and
implementation of complex systems.

This work has alrecady led to the completion of a small, slow emulation facility; we
hope that it will also lead to larger facilities with more computational horsepower, enhanced
functionality, and more simple interfaces for architectural experimenters. Certainly the
extremely complex design demands in the realm of superfast multiprocessor computers call
for more wide-reaching tools for testing new ideas in a timely manner, and we belicve that the

M.E.F. idea is the foundation of such a sct of tools.
6.8 Impact on Future Machine Design

The September, 1984 issue of Spectrum magarzine included a feature series entitled, In
Pursuit of the One-Month Chip, which outlined the methods and hopes for the future in the
area of very fast prototyping of integrated circuits (VLSI) to implement various processor
architectures and other electronic designs.‘” Howevecr, it completely shrugged off the entire
higher-level design problem, stating merely that “a well-understood design must be used.” In
fact. the tools 1o accomplish such a highcr-level design do not exist at the level of complexity
needed to complement the other circuit and chip design tools presented in the article.

The MLE.F. described in this thesis performs exactly those functions, providing a

“multiprocessor sandbox™ in which ideas can be quickly invented, attempted, and either

discarded or completed in very littie time. Though more work, particularly in the arca of
user-controlled dynamic nctwork toad scheduting and other resource allocation issues, is
nceded to complete the ideas of M.E.F. structure, the structure outlined in this thesis provides
a strong basis for a uscful and viable alternative and addition to the architectural design
schemes of the present. The impact on future computer design projects is potentially great, as

the full capabilities of prototypical emulations are realized.

I T T R S L A S B T I
B T I A A R R . S -
- - - - - - - - - - - - . L) hd

« St . .t - B o
."-..‘-_...'..--_-‘. .‘_.‘._ R] . S
LU NS NN VY NS N\ e IR S AP S Y

-74 -

that instructors do not wish to sce in students” work, For cxample, a student can implement
the instruction fetch and effective address decode portion of an architecture to learn a
complex addressing scheme, while the instructor supplies a basic CPU function and a memory
processor that accepts only absolute addresscs. such as the one described in Chapter 3.

In addition, validation techniques similar to those mentioned in the section above can
be used to administer testing and grading of student projects. by watching and evaluating the
runtime behavior of architectural implementations. Since descriptions of machine
architectures can be given and debugged quickly and casily in an M.E.F. environment,

students can gain hands-on experience of the basic building blocks of computer science.
6.5 Other Distributed System Uses

Many other computer architectures, particularly distributed ones, can be emulated,
and thus evaluated, in an M.E.F. environment. These include distributed database systems,
fault tolerant systems, communications networks (such as telephone svstems). and so on. 'The
list is endless. Each can be described in terms of processes communicating via fixed or
alterable communications paths; this meta-architecture maps dircctly to the M.E.F. abstract

model of processing clements communicating via the M.E.F. substrate,
6.6 Human Networks and Other Systems

In fact, there is no rcason that the uses of an M.E.F. must be limited to high
technology applications. Many real-life situations in other sciences can be modelled in terms
of communicating processes. For instance, the asynchronous nature of an M.LE.F. lends itself
to studics of stochastic processes and other statistical studies.

Outside of the realm of the “hard sciences,” an M.E.F. can still be useful in such
studies as economic systems, geopolitical forecasting, and any other application rcquiring
large and granular modelling. The ability to alter emulations with little or no overhead

especially makes such a use of an M.E.F. desirable.

RS PR UAPP AT AT PR S A W W S DU TP TP A P R P

-73-

Test Protocol

Request —_—

<— Acknowledge
Message T'ype —_—

S Ready

Validation

Processor

Protocol \|/ Protocol

Test Processor Test Processor
A B

Figure 15: Validation of a Test Protocol Implementation

6.4 Education

An M.E.F. is also a perfect instructional tool for use by students of computer
architecture. It provides a cheap, fast tool for construction and test of architectures by
students of computer science. For cxample, students can be given example computer
architectures as projects o implemert under an M.E.F., thus gaining true undcrstanding of
architectural features such as addressing, microarchitecturcs, and so forth. Parts of such

architectures can be supplicd as separate T.E.’s in an ecmulation, supplying basic functionaility

6.3 Protocol Testers

Besides the obvious multiprocessor scheme noted, Chapter 3 hinted at another good
use for an MLE.F. In that chapter, we discussed a trivial computer architecture, viewing the
M.E.F. communications substrate as a interconnection bus. We introduced a simple protocol
for CPU/memory communication based on that substrate, and noted how expansion of such a
protocol could proceed.

In fact, an M.E.F. does not limit us to such a simplc interconnection scheme or
protocol, as could be clearly seen in the hypercube network topology presented for dataflow
experimentation in Chapter 3. In fact, arbitrary intcrconnection schemes transmitting via
arbitrary protocols can be cmulated under an M.EF. cnvironment, to allow objective
measurement of performance, simplicity. and leanness of a protocol design. It has been noted
that techniques for protocol specification and validation, though under development, are
currently quite primilivc:40 we believe that an MLE.F. can help alleviate this problem.

We envision use of an M.E.F. to emulate bus protocols, network protocols, and even
internet protocols, viewing processing nodes as communication hosts, bridges, gateways, or
even other networks in internet experimentation. In the simple host to host case, an M.EF.
can be used to test, validate, and evaluate protocol implementations at any network interface
layer.

Figure 15 shows a test configuration for validation of interconnection protocols. The
processing clement labeled “validation processor” watches a stream of commands and requests
passing between the processing elements implementing a protocol under test. This validation
processor architecture can be can be used as part of a standards specification, with competing
implementations executing as the processor under test, thus forming a fast, rcliable
checkpoint for standards validation without high implementation expenses for vendors
attempting to provide protocols.

} ['.'.,

Pl T I
.
y 'y St h

0

-
e

-‘71-

Chapter 6

Conclusions:

Future Directions

6.1 Other Uses of an M.E.F.

The ease with which emulation experiments can be altered and re-executed on an
M.E.F. hints at another, related, capability. Because of its mallcability, an M.E.F, can be used
to emulate any process or system that can be modeled as a group of communicating processes.
The scope of such systems is huge; we present here some examples, with some discussion of

implementation designs under an M.E.F. scheme.
6.2 Message Passing Computational Models

A common theme in much multiprocessor research today, particularly in the artificial
intelligence community, is representation of computation by message-passing “agents,” each
executing on scparatc processing clements and communicating via some interconnection
network. A good example of this approach is the Actor Il language and Apiary archicture of
Hewitt.!7 This model of computation is an excellent analog of the M.E.F. general model, as it
represents computation as a set of communicating scquential processors. A.l. applications
writlen as message passing activities with no shared state fit exactly the M.E.F. general

abstraction.

ML AL SBAt SR MUl e S et A Mus SEME M- Aran oy SAECIA AR Gl SRS M SRolh BN Jana) R anh CER SR e A i St e A e Jiba 0 Y SCNAS Mt Sadt Andh A it St et -

-70 -

The added clock delay apparent in the clock incrementation code for a regular
(non-sourcc) T.E. above is a symptom of a problem with this methodology for distributed
simulation. Given the cxistence of cycles in the interconnection of ‘I E.'s (which would
represent fecdback loops and the like in real systems), the local clock values in any two T.E.'s
of a cycle cannot difter be more than the sum of the event delays around the cycle, which
might unnccessarily reduce asynchrony and thus parallclism of the simulation. In addition,
given the possibility of zero-time simulation events, it might be possible that a cycle of T.E.'s
might get “stuck™ at a particular clock value if a pending event of zcro simulation time was
triggered in the cyciv. A scro-time simulation event would trigger no update of the local
clock. and therefore might not allow further event simulation in the local T.E. nor in other
. E.s in the cycle. Thus, an artificial delay may be introduced for any inter-T.E. connection
arc which “breaks™ this possible zero-length cycle. In other words, the artificial delay factors
are introduced so that the minmum delay around any given cycle in the network of simulated
T.E.'s is greater than zero, preventing deadlock.

This scheme. though it allows much more parallelism in the simulation of a timed
architecture, does have the disadvantage of adding communication overhead which can
become cumbersome, especially as the time skew between local T.E. valucs of the global clock
hecomes large. However, the scheme has the useful feature of provable deadlock avoidance,
given the assumptions that (1) processes only output messages at firing time, and then remain
silent until the next set of inputs are available; and (2) unbounded output buffering is

available. Given these assumptions, ii has been shown?33: 39

that such a simulation system can
only deadlock when all processes are waiting for input, which cannot happen. In addition,

there is a variant of this scheme, named Time Accelerulion,”‘ which requires static analysis of

the interconnections of T.E.'s in a system to be simulated and guarantees far more asynchrony

in the simulation of a system model.

P S A v vt Bt St AR 3 - v T T T T

-69 -

/* Standard simulation element definition ., */ -
procedure 7. Definition: o
static integer Clock initial 0, ﬁ;
integer 01d_Clock initial -1, -
integer Upstream_Clocks (Number_of_Upstream_TEs) N
initial 0,
1ist Pending_Events initial NIL;

while Clock < INFINITY begin oy

/* Process al! messages representing simulation
events which are now safe to simulate. */
while Pending_Events not equal NIL do begin e
Event := Pop_List (Pending_Events); -
Clock := Simulate_and_Send_Output_Messages (Event); L
end; R

/* If the simulation of pending events moved the clock,
send messages to all downstream TE's to notify. */

if Clock > 01d_Clock then begin Lo
for each TE in Downstream_TEs do tj\
Send_Message (TE, Message_Type=Increment_Clock, :i
Source_TE=Local_TE, ;E

[54

New_T1ime=Clock+Delay(TE));
01d_Clock := Clock
end;

/* Process any incoming messages from upstream TE's. */
for each Message in Receive_Messages () do begin
i1f Messageo.Message_Type = Event_Stimulus then
Add_to_List (Message, Pending_Events);
e1se begin
Upstream_Clocks(Message.Source_TE)
:= Message.New_Time; -
Clock := Max (Clock, e
Minimum_of_Array (Upstream_Clocks)) N
end :
end;
end while;
end procedure;

.............
.............
.......
.................

et ot
Ry R
LI IR I W ", L IR |

-68-

2. Calculates a new clock value for itself, which may also issued to T.E.’s
downstrcam.

The new clock value within a 'T.E. is the carlicst time that the global clock could have

counted to within that T.E.; in other words. it is the carliest possible simulation time for any
X unreceived messages to be simulated. "Vhus, it provides the time against which already-received
messages must be compared to decide if they are “safe” to simulatc. An cvent is “safe” to
i simulate if itis the next event that would have occurred in the real system.

Note that this methodology docs not provide a way to simulate cvents of a rcal system
out-of-order: that cannot be donc in the general case in which T.E.'s are non-functional (i.e.,
have local state). 1t does, however, provide a method of sequencing events in the T.E.’s in a
way that preserves time ordering but requires no system-wide communications or shared

resources (besides the communications network itself). Nevertheless, the method avoids

. . . . M N

dczidlockirlg.38 A definition of a T.E. which follows the basic schema of Bryant follows:

/* Definition of the initial source (bootstrap) T.E. */
procedure Source T.E. begin

/* Send out the initial messages. */
for each Message in Initial_Stimulus_Messages do
Send_Message (Message_Type=Event_Stimulus, Message);

/* Notify all TE's immediately downstream we're done. */
for each TE in Downstream_TEs do
Send_Message (TE, Message_Type=Increment_Clock,
Source_TE=Local_TE,
New_Time=INFINITY);

end procedure;

S TP SR ST SRS

B R B S

" Nt et ettt e e T e e .

R R A A PO R R I
WP T R AP T P W WP PP W W S

-67 -

The casc with which our earlier clocking cxample can be changed in the light of a new
situation, and the close mapping of that change to hardware realizations of solutions of like

problems, is the exact purpose of an M.E.F.
5.2 Distributed Simulation Approach to Synchronization

The last section presented a simple paradigm for modeling globally clocked
architectures. Though the presented system is easy to understand and implement, it obviously
wastes much of the paraliclism available in an M.E.F. Since some of the tasks performed by
simulated processes (T.F.'s) will be completed faster than others, some T.E.'s will remain idle,
waiting for clock pulses, which could in turn cause part of the M.E.F. substrate (physical
Processors) to idle.”

Anothier solution to the problem of simulation of system-wide clocking is available,
which can be used to potentially speed up simulations of architectures in an M.E.F. sctting.
There is of course a trade-off, namely the amount of communications overhead. This scheme
is used in distributed simulation systems o increase simulation throughput (not simulated
throughput, but the throughput of the simulation iteself) by distributing the clocking of the
simulated system,

Basically, the scheme as outlined by Bryanl37' 38

consists of a per-T.E. current view of
the global clock value, kept up-to-date by the local T.E. with no central control. In addition,
a per-T.E. queuc of simulation activities that the T.E. is not yet prepared to simulate is kept.
Fach data message transmitted from one T.E. to another carries cither a stimulus (event to be
simulated), or a timestamp, which records the earlicst time that that message could have been
transmitted in the real system which is being simulated. When a T.E. acts upon an incoming

message, it

1. Calculates the output stimulus message to be issued, and

* Again we must be carcful to separate the simulated machine from the real globally
clocked machine, the latter of which must idle some of its hardware if it is
implemented using standard clocking architectures.

M Ve 4t AR i B0 B A B S SMaL e St Jine Sa-dirhdl

_66-

applics to cach of the processor groupings (cach clock synchronizes the actions of its local
processing clements). However, it docs not solve the usual problems of multi-domain clock
skew that can be introduced by simulation speed differences between the two processor
groupings.

For example, suppose that the Local grouping of ligure 14, because of the nature of its
task or its particular implementation as an emulation experiment, acted far fuster than the
emulated computation spced of the Foreign grouping. An M...F. could quickly become
totally overrun by qucued messages pending for processing elements in the Foreign grouping;
this is essentially the cognate of clock skew in real multi-clocked hardware realizations.

As in the real hardware case, however, this can be solved; the solution that is simplest
for implementation in an M.E.F. environment suggests hardware implementations for system
clock skew. Basically, a new protocol is added between the local and foreign clock T.E.'s of
the emulation to cause each clock to temporarily stop pulsing whenever the other clock is
skewed by more than some arbitrary number of pulses, waiting for the forcign activity to

“catch up.” Our simple clock T.E. definition from above would be changed to:

integer local_pulse_number, foreign_pulse_number

when {Foreign Clock Pulse Received}
Foreign_Pulse_Number = {Clock Pulse Number Received}

Local_Pulse_Number = 1

do forever begin
for each TE in {all normal T.E.'s} do
Send (pe, "Clock Pulse");

{wait for each T.E. to acknowledge the pulse.}
send (foreign_clock_pe, Local_Pulse_Number)
Local_Pulse_Number = Local_Puise_Number + 1

wait until
Local_Pulse_Number - Foreign_Pulse_Number < Max_Skew

end

"

- e - i v ity P B aiut e Mot SR Sibe St Samic AndnShu Shub Alate S M Siebe s Mt Amsir s Sady 4

-80 -

| Appendix o
[Reference Manual: iii_::
i The MIT Multiprocessor t:mulation Facility ;-_':-'

This appendix is a reference manual for the M.E.F. implemcnted by the author at the
M.IT. Laboratory for Computer Science, in the Functional Languages and Architectures
group. as part of the MI'T MEF project. In the discussions below, we assume familiarity with o
the 1isp Machine opcerating system and the Lisp Machine dialect of Lisp. The abstraction and -
implementation of the MI'T MEF are discussed elsewhere in this document.

1. Emulation Experiment Description

In order to emulate a particular computer architecture, the MIT MEF must have some
static experiment definitions as well as some dynamic run-time communications support. The
Emulation FExperiment Description describes the toplevel block structure of an architecture to
be emulated. The following functions are defined:

(define-cmulation-experiment experiment-iame &rest keywords) .
This function gives the MEF all of the basic information about emulation experiment -
experiment-name. ‘The following alternating keyword/value pairs may be used: "

interactive <T' | NIL) — Specifies whether this experiment is '
to be interactively executed, or via remote batch facility. The number of processors in
an experiment may only be left for actual exccution time if this keyword is set to T. o

Along-name <name> — Specifies a “pretty name” for this 2
experiment, for use in output labelling.

~number-of-processo=s <number | :read> — Specifies the number of logical
(target) processing clements (T.E.s) that should be emulated by the MEF for this
experiment. ‘The value “:read™ specifies that this number should be prompted for at e
emulation execution time.

zconfiguration <config)> — Specifics a configuration map for N

@4 -

AT

¥

AT

-81-

this emulation cxperiment. The configuration map notes how many T.L.'s of each
T.E. type in the current experiment should be exccuted, and to what logical
“destination addresses™ they should respond. “The format of <configd is a list, cach
clement of which is a two-clement list. The first clement of this sublist should be
either a logical destination number, or a list of (from to), where from and to are
expressions denoting a range of logical destination numbers, These expressions may
be arithmetic capressions on the variable *:N™, which will be “bound™ to the total
number of T.E.’s that arc being cxecuted.

For example, a configuration map such as “((0 CPU) (1 MEMORY))” specifies that
there will be two T.1.s total: at logical address 0 is a T.E. of type CPU, while at logical
address 7 there will be a T.E. of type MEMORY. A morc advanced map is used by
the Tagged-Token Dataflow emulation; it uses

(€0 (- :n 2)) normal-process) ((- :n 1) manager-process))

which means, allocate :N — 2 “normal-process” T.E.’s at addresscs 0 through :N — 2,
and allocatc a single “manager-process” T.E. at address :N — 1.

:message-handler {function> — Specifies that control panel user
messages (defined below) should be handled by the function <functiond.

:shutdown-handler <function> — Specifies that the function
{function> should be called when the current emulation is completed, and the user
has requested that the MEF shutdown operations. This hook can be used to collect
statistics, etc., when an experiment is completed.

:left-graph (<label> <scale> {<nbars>}) —

cright-graph (<label) <scaled> {<nbars>}) — Requests that the left (right) bar
graph display area of the MEF control panel be reserved, with the label <label>, a
bottom-to-top scale of <scale>, and a number of bars to be displayed equal to <nbars>.
The default number of bars if not specified is equal to the number of T.E.’s emulated.

srouting-paradigm <type> — Notes that this emulation will follow
the given T.E. to T.E. routing paradigm. Thc MEF will simulate a particular
message-passing paradigm only to the extent of recording how many messages are
forwarded by each node of a simulated network, The <type> specification can be
:NONE, meaning hat routing will not be simulated: :STATIC, mcaning that the
routing table given by the :routing-map option should be used, or :DYNAMIC, which
notes that the routing information is not stable, and should be recomputed from the

a

.-

‘;... O "‘.'...Il'

,',"'l»')

g
e
L

N Y Y VY
s e
» e LI

x
»

¥

Y
o
*a

-82 -

:routing-map function at cach message-pass.

srouting-map <map> — Spccifics the map of T.E. to T.E.
routing to be simulated by this emulation experiment. The <map> may be a complete
route specification, such as:

(121232310233 1H312)

which specifies the routes from every T.E. to every other T.E. (for cxample, to get
from T.E. number two to T.E. number ong, the route is T.E. 2 —> T.E. 3 —> T.E. 1);
or it may bc a function. This function takes threc arguments (sending-T.E.,
destination-T.E., total number of T.E.’s in this cxperiment) and should return a list
noting the T.E.’s through which the messagce should travel.

:pe-implementation <type> — Specifics in which manner T.E.’s
should be executed. The :NORM AL option notes that T.E.’s should be represented as
Lisp Machinc processes. The faster, but less general, :FUNCTION AL option requests
that T.E.’s be implemented mcrely as calls to functions, which return aftcr processing
an incoming message (thereby bypassing process-switching overhead). The fastest
scheme, :ONE-PER-PROCESSOR, requests that T.E.’s be represented as direct calls
to functional definitions within the MEF overscer process, with state represented as
Lisp global variables. This last option, though it causes emulated machine execution
to proceed more quickly, requires that no more than one T.E. may be executed on any
physical processor.

(define-processor-variables variable-set-name &rest variables)
Defines a new set of T.E. state variables (registers) for use by T.E. functional
definitions. The variable-set-name may be specificd in following define-processor
forms to note what registers arc used by such T.E. definitions; in the Lisp code for
those T.E.’s. the register names noted in the accompanying define-processor-variables
form may be used frecly as Lisp global variables. The syntax of the variables portion
of this form are variable names or lists of the form (variable-name initialization).

(define-processor processor-type emulation-name variable-set stuart-function status-function
relative-load- fuctor &rest pe-meters)
Defines a o T.E. type for the emulation-name emulation experiment, named
processor-1» for which a functional definition will be specified. The T.E. registers to
be used by 1. < definition arc declared to be the set variable-set. The function called to
initiate this ty pe of T.E. is start-function; this function will be called with the logical
address of the T.E. being started and the total number of T.E.s in the running
emulation. ‘The status-function is called by the MEF 1o obtain the current status of a
running T.E. it is called in the scope of that T.E.'s registers, and must return a string
noting the status of the T.E. The relative-load-fuctor should be a number between

W e
. Nt

TR T R T PR S e
O SRS oY FUFEIre. e e

e Seak St athh aueic-aerl SN el Ui moela abile et

-83 -

zero and one noting the refative CPU load for this type of T.E.; this information is
used to do per-physical-processor load balancing. The pe-meters named will be noted
as per-T.E. meters for each T.E. of this type.

(define-meter meter-name emulation-name)
Defines a system-wide meter named meter-name accessable to (and shared by) all
T.E.’s in emulation experiment emulation-name. '

(defmef function-name experiment-name argument-list &body body)
Defines a funclion function-name as part of the functional definition of one of the T.E.
types of experiment-nume. The argument-list and body arguments are the Lisp
function dcfinition.

2. Communication and Metering Functions

In addition to the above purely static (definitional) support functions, the MEF
system includes many Lisp functions 10 interface to run-time communications and metering
facilities. These may be broken down into two classes: functions used by T.E. functional
definitions, and functions to interface to the MEF Control Panel. We begin by listing the
MEF functions available to T.E. function definitions.

(write-message destination-processor array &optional start end)
Sends a message to the logical T.E. numbered destination processor. The message to
be sent should be in array, an art-8b or art-string Lisp array. Start and end, if given,
should be an inclusive starting index of the message in array and an exclusive ending
index in array, in the standard Lisp Machine Lisp style. Note that the receiving T.E.
may be any logical T.E. in the current emulation, regardless of on which physical
processor such T.E. is executing or what interconnection schemes are necessary t0

transmit the message. The sender also nced not wait for message transmission Y
completion or retransmit requests, as all transmission details are handled by the MEF.]
It must be noted that the recciving T.E. does not get any information from the MEF as o
to which T.E. sent the message; if such information is necessary, the transmitting T.E. ‘d
should include its logical address in the message. s
(read-message-hyte)
Reads the next available incoming byte from any logical T.E. transmitting to the T

current T.E. This is useful to dispatch on packet types, ctc. This function will block
on pending input if there is no input available.

(read-message array &optional start end)
Read any available incoming message that the MEF has directed from another logical
T.E. to the current T.E. The message will be read intc array, which must be an art-8b
or art-string array. If start and end are given, the incoming message will be read into
array starting at the inclusive index start and ending at the exclusive index end

T, e e e PR A

M W ILPIPAL T I WA WP PRy S D | P WA PRI W S WA)

YT el Sad . S B A MM S S o Al s SR b e e Sl S) P anh Jenit A e St e i S i T e VT wmy T ey

-84 -

Othcrwise, any incoming message will be used to fill the entire array. This function
will hang until the enough incoming bytes arce received to fill the specified portion of
array.

(increment-meter meter-name)
increments (by onc) the system-wide or local-T.E. meter meter-name. Meter-name
must have been declared previously by define-emulation-experiment or
define-processor.

(decrement-meter meter-name)
Decrements (by one) the system-wide or local-T.E. meter meter-name. Meter-name
must have been declared previously by definc-emulation-experiment or
define-processor.

(clear-meter meter-name)
Clears (sets to zero) the system-wide or local-T.E. meter meter-name. Meter-name
must have been declared previously by definc-emulation-experiment or
define-proccessor.

3. Use of the Control Panel

In order to provide a “bootstrap processor” environment for configuring, starting up,
and shutting down emulated architectures, the MEF includes a Control Panel system,
available to Lisp Machine uscrs by selecting the MEF window (via <Select> — Period or the
System Menu). The frame that will be displayed looks like figure 16.

ORI ST U IR C TRt Sl T S S RN IR SCIPRC AT U et L A I it
LR N e A T e S . St e R T Lo
.‘.'_‘..\‘-"".'..' R '-‘_.'~‘~.‘.'~.- e, e e L e e T
- - . ™ - - . . - . - - - M

'_A\‘n.‘,. RN IR IR I T RSN

. _,~.'-.". P T T T T
T L. " . . . A A T T e T et e YT
PRI AL L A titatistior st oo S e VPRI N PN SO R TP

.
‘A ta

-85 -

Physical Processors Menu

User-Defined Dynamic Bar Graphs

CHERRY \ZL \Ev
FLAME

0AK
ORFED

76 16 28
Tokens Waiting (scale 100) I Structure Roads Deferred (scale 30)

Qutpost 0: Selected emulation experiment OF.

OQutpost 1: Selected emulation experiment DF,

OQutpost 1: Target element 0 (NORMAL-PROCESS) initiated.
Outpost 1: Target element 1 (MANAGER-PROCESS) initiated.
Processor 1: Boot program running.

Processor 1: Linking complete.

MEF Controller: Start-Emulation DF :Number-0Of-Processors 2
MEF Controlter: Boot-DF (1)

MEF Controller: Link OAK:>ID>invoke.df

NEF Controller: Run FACTORIAL 4\

User Command Input Windo

MEF & Target Element Output

Figure 16: The MEF Control Panel

Clear-Configuration
Clears any cached information about the physical configuration of the MEF system

Clicking on the physical processor names in the menu on the left side allows the user -
to list the real Lisp processes’ and emulated T.E. processes’ status on forcign physical o
processors, or to terminate such processes. In addition, the following commands may be N
typed to the Control Pancl's input window to use the MEF system: oo
e
‘k..

-86 -

(i.c., which physical processors the MEF system is currently using).

Configure Emulation {:Number-Of-Processors Integer}
Configures the physical description of a MEF system, allowing the user to specify the
physical Lisp Machine processors that are 1o take part in the current emulation
facility. This is the main interface for the support of the MEF's reconfigurability and
partitionability. I the system has not yet been configured, this command will first ask
for the source of a list of processors. Three answers are possible:

E (Enter List) — The names of physical processors to
take part in this usc of the MEF arc taken from the keyword, onc at a time. This list
should be terminated by pressing the <End> key.

R (Reud from File) — The names of physical p:ocessors to
take part in this usc of the MEF arc taken from a file; the MEF will prompt for the
pathname of the filc. The file should contain physical machine namces, onc on a line,
Lines beginning with semicolons are ignored, and may be used for comments.

F (Find Automatically) — All physical processors at the local
development site that are capable of running MEF are automatically found and used
as part of the current emulation facility configuration. This process takes a few
minutes.

After the physical processors to be used in the current configuration have been
specilicd. connections to each machine are made and a MEF system process is created
on cach participating machine. 1f an emulation name was specified in the command,
the Start-Emulation command is executed with that name,

Debug-Processor Address
The logical T.E. executing with destination address Address is halted und forced into
the Lisp debugger, with display routed automatically to the MEF Control Panel,
allowing the uscr to inspect and modify the internals of the T.E. as well as restart or
terminate its function.

More-Processing [:0n/ :Off]
Turns more processing in the (central) MEF output window of the Control Panel on
or off, to allow leisurcly inspcction of its output or to ignore it.

Outpost-l.ogin User-1d Host-Name
Prompts for a password (which is not cchoed), and causes all forcign processors
participating in the current emulation to log in to Host-Name with the login identifier
User-1d, so that forcign machines imay freely use file systems other than their own,

RPN
EE, R ~ ..'.-_"_.. e

. T P R R R Ot I A AT
PIRIUIIN WA PRt W Sy S W [Y R DR YA W W Sy Wl T NS TPy Wt TV 3 [O e P

S
LI

T R T arrT——w—rees MBS s R
- AN Rttt A A e - - P - . -

-87 -

Set-Bar-Graph [:0n [:Off]
Turns the Control Panel bar graph displays on or off, to allow faster operation of the
MEF.

Set-Tracing [:Off | : Local | :Central]
Reroutes all tracing messages sent by logical T.E.’s. If :Off is sclected, no tracing
messages are displayed anywhere; :Central specifics that all messages should appear in
the output window of the Control Panel, and :Local requests that tracing messages
appcar on the screens of originating physical processors.

Shutdown :Complete
Shuts down the current emulation experiment, terminating all communications and
T.E. implementations. If :Complete is specificd, all foreign MEF processes are also
destroyed and inter-machine communciations dropped.

Start-Emulation Emulation : Number-Of-Processors Integer
Begins the emulation experiment named Emulation, which must have becn defined
previously via define-emulation-experiment. [the :Number-Of-Processors option is
uscd, then the number of T.E.’s specified will be used; otherwise, if the emulation
does not specify a number of T.E.'s to be used in this emulation, the user is requested
to supply a number.

Status [Pe-Number| : All]
Sends status messages to the T.E. at logical address Pe-Number, or to all T.E.’s if - All
is specified. The MEF system actually handles this request by calling the
user-supplicd status function in the context of running T.E.’s.

4. Functional Interfaces to the Control Panel

The following Lisp functions may be used by T.E. implementation functions to
intcract with the MEF Control Panel functions:

(write-crror-message format-control-string &rest format-arguments)
Write a logical processor error message to the MEF controller for display. The
message, generated by the format arguments given, is displayed in the output window
of the Control Pancl prefixed by the sender’s T.E. logical address.

(write-display-message format-control-string &rest format-arguments)
Write a logical processor message, not denoting any error, (o the MEF controller for
display. The message, generated by the format arguments given, is displayed in the
output window of the Control Pancl prefixed by the sender’s T.E. logical address.

(write-user-message array &optional start end)
Write a “user message” to the cmulation experiment-defined message handler

ST IR A g R P S I T B S
PR A <. .
- . -, w
- o "wT .

AR S MU) - et aY.Y. N v
b PN R N NN S TN P P Y A W TR I W PR AN

-88-

residing in the controller. When this message is reccived by the Control Pancl, the
“user message” handler (dcfined by the :message-handler option to
definc-emulation-experiment) is invoked with the message as an argument. An
additional argument, a stream on which to do output, also is handed to the message
handler when it is invoked.

(send-tracing-message format-control-string &rest format-arguments)
Print a tracing message on the current tracing output stream, which is set via the
Set-Tracing Control Panel command.

(send-graph-message graph-display-select bar-number height)
Sends a message to the Control Pancl updating one of the bar graph displays.
Graph-displuy-select may be zcro or one, signifying the left and right bar graph
displays. Bar-number selccts the bar to update, while height specifies the rclative
height to which to set the bar. If the bar graph displays arc disabled (via the
Set-Bar-Graph Control Panel command), the bar graphs are not updated (and no
communications overhead is incurreg]). ’

(inject-message destination-processor array &optional start end)
Send a message to a logical processor., pretending to be from another logical processor.
This function may be used by the bootstrap functions of an emulation experinient to
start up an emulated machine,

(read-meter emulation-meter-name)
Reads the current value of the system-wide meter emulation-meter-name and returns it
as a Lisp integer.

(average-meter emulation-meter-name)
Reads the current value of the system-wide meter emulation-meter-name and averages
it over the number of logical T.E.’s executing in the current emulation experiment.

(read-processor-meter processor-meter-name)
Reads the current value of the per-T.E. meter processor-meter-name for each logical
T.E., and returns an array of values returns as well as the number of T.E.’s that
supplied values for that meter.

5. Example

The following pages contain an example of an cmulation experiment, named
SIMPLE since it defines a trivial two-T.E. von-Ncumann architecture comprised of a CPU
and a memory box.

-89 -

-%- Mode: Lisp; Package: (SIMPLE GLOBAL 1000.); Base: 10. -*-

Definition of the SIMPLE emulation experiment, which emulates
a standard von Neumann architecture consisting of a CPU and a
; MEMORY, connected via a "bus" simulated by the MEF.

i+: Definitional interfaces to the MEF.
;:: This form specifies the name of the experiment and its configuration.
(MEF :define-emulation-experiment
"SIMPLE" :interactive 't
:long-name "Simple CPU//Memory Machine"
:number-of-processors 2
:configuration '((0 cpu) (1 memory))
:left-graph ' ("Memory Accesses//Instruction” 30. 1)
:right-graph '("Stack Depth” 100. 1))

;33 Where the stack begins in memory. Stack grows upward.
(defconstant stack-base 2048.)

iss The CPU part of the system has all of the standard parts.

;:: Note that we "cache the stack on the processor board;" i.e., the stack
;i: s separate from the memory.

(MEF:define-processor-variables cpu

(pc 0) ; Program counter.
(cc 0) ; Condition code.
(fp stack-base) ; Frame pointer.
(sp stack-base) ; Stack pointer.

(registers (make-array 8. :type art-q :initial-value 0)))

;i: The MEMORY part of the system simply contains a small 32-bit wide memory.
(MEF :define-processor-variables memory
(memory (make-array 4096. :type art-q :initial-value 0)))

;:: Notify the MEF of these two new kinds of processor.
(MEFf :define-processor cpu simple cpu start-cpu cpu-status 1.0)
(MEF:define-processor memory simple memory start-memory memory-status 1.0)

; Definition of the INSTRUCTION abstraction; an instruction to the CPU
. stored in the MEMORY's memory. An INSTRUCTION is composed of

; 6 bits of opcode and two addresses, each composed of
; 3 bits of address code, and 10 bits of address.

v
’
'
'

(defmacro instruction-opcode (word) ‘(%logldb (byte 6. 26.) ,word))
(defmacro instruction-adcodel (word) '(%logldb (byte 3. 23.) ,word))
(defmacro instruction-addril (word) '(%#logldb (byte 10. 13.) ,word))
(defmacro instruction-adcode2 (word) '(%logldb (byte 3. 10.) .word);
(defmacro instruction-addr2 (word) '(%logldb (byte 10. 0.) ,word)

(defmacro make-instruction (opcode adcodel addrl adcode2 addr2)
‘(%logdpb ,opcode (byte 6. 26.)
(%#1ogdpb ,adcodel (byte 3. 23.)
(%¥1ogdpb ,addr1 (byte 10. 13.)
(%*1ogdpb ,adcode2 (byte 3. 10.) ,addr2)))))

:i: These are the defined address codes, or simple addressing modes.
(defconstant register-adcode 0) ; Address is register number.

(defconstant memory-adcode 1) ; Address is straight into memory.
(defconstant stack-adcode 2) ; Address is stack offset.
(defconstant immediate-adcode 3); Address is immediate.
(defconstant fp-adcoca 4) ; Address is frame offset.
(defconstant arg-adcode 5) ; Address is argument number.

::: Functions for defining and storing CPU ALU functions.
(defvar alu-functions (make-array 64. :type art-g :initial-value nil))

(defmacro define-alu-function (name number arglist &body body)
‘(progn ‘compile
(setf (aref alu-functions ,number) ', name)
(defun (:property ,name alu-function) ,arglist . ,body)
(defprop ,name ,number alu-function-number)))

-90 -

;3 Definition of the stack frame. A1l numbers are positive offsets frame ptr (FP).

defconstant old-fp 0) (defconstant old-sp 1) (defconstant oid-cc 2)
defconstant old-pc 3) (defconstant frame-size 4)

:: Constant PE numbers.
defconstant cpu-pe 0) (defconstant memory-pe 1)

;. Condition codes
defconstant cc-clear 0) (defconstant cc-overflow 1) (defconstant cc-negative 2)
defconstant cc-zero 3) (defconstant cc-positive 4)

. Memory requests.

defconstant memory-read-request #/R)
defconstant memory-write-request #/W)
defconstant memory-load-request #/L)

;: Standard message buffers for inter-processor interaction. These
;; message buffers by convention are two words {(eight bytes) long.
;3 Protocols are stored in the top byte, two byte fields in the

i+ low bytes of the first word, and word fields in the second word.
defmacro message-type (message-buffer) '(aref ,message-buffer 3))

defmacro put-two-byte-field (number message-buffer)
(once-only (number)
‘(progn (setf (aref ,message-buffer 0) (1db (tyte 8 0) ,number))
(setf (aref ,message-buffer 1) ()db (byte 8 8) ,number)))))

defmacro get-two-byte-field (message-buffer)
"(dpb (aref ,message-buffer 1) (byte 8 8) (aref ,message-buffer 0)))

;i The command interface for the controller screen while the emulation is running.

;i Array to assemble SIMPLE code into.

defresource assembly-array () :constructor (make-array 256. :type art-q)
rinitial-copies 1)

;. The message buffer (see above) for the command interface.
defvar inject-message-buffer (make-array 8 :type art-8b :initial-value 0))
defvar inject-message-word (make-array 2 :type art-q

:displaced-to inject-message-buffer))

;. Command to Tink/load a file of SIMPLE code.
define-command assemble simple "Assemble and load a Function in SIMPLE code."
({:arguments (file :pathname "File to assemble and load." :noise-string "file")))
(using-resource (array assembly-array)
(let ((end (assemble file array 0))
(bytes (make-array 1024. :type art-8b :displaced-to array)))

{setf (messagu-type inject-message-buffer) memory-load-request)

(put-two-byte-field 0 inject-message-buffer)

(setf (aref inject-message-word 1) end)

(MEF:inject-message memory-pe inject-message-buffer)

(MEF:inject-message memory-pe bytes 0 (* end 4)))))

;. Command to run the machine from a given PC with a set of arguments.
def ine-command run simple "Run the SIMPLE emulation."”
((:arguments (arguments :integer “"Arguments to the loaded function.”
:noise-string "arguments” :times (0 *)))
(:control-arguments (start :pc :integer "Initiate program counter."
:noise-string "starts at" :default 0)))
(format t "~&Starting at PC ~D, with ~D argument~:P.~%" start (length arguments))
(setf (aref inject-message-buffer 0) (length arguments))
(MEF:inject-message cpu-pe inject-message-buffer 0 1)
{loop for number in (reverse arguments) doing
(setf {aref inject-message-word 0) number)
(MEF:inject-message cpu-pe inject-message-buffer 0 4))
(setf (aref inject-message-buffer 0) start)
(MEF:inject-message cpu-pe inject-message-buffer 0 1))

PR T AP S T
e

- -'l"n.l.n'- b
S e e R R
RN S I PN PR V. FUPE. TN LIS el

b e e e SEb - e aren s L s s e A RN “ai- adel A M i St A N S T e L TE T bl

-9] -

;; Definition of the SIMPLE CPU processor.

;: The CPU's message buffer (see above).
defvar cpu-message-buffer (make-array 8 :type art-8b :initial-value 0))
defvar cpu-message-word

(make-array 2 :type art-q :displaced-to cpu-message-buffer))

:: Total number of imstructions/memory accesses
i, executed since last RUN command.

defvar total-instructions 0)

defvar memory-accesses 0)

:+ This is the toplevel of the CPU. It reads incoming messages,
;3 which at this level are assumed to be simply arguments and starting PC's.
defun start-cpu (ignore ignore)
(loop doing
(*catch 'abort-cpu
{setf sp stack-base fp stack-base cc 0 pc 0)
(loop doing
;: Clear instruction count and access count.
(setq total-instructions 1 memory-accesses 0)
;: Read in any arguments, push them on the stack.
(loop repeat (MEF:read-message-byte) doing
(MEF :read-message cpu-message-buffer 0 4)
{(stack-push (aref cpu-message-word 0)))
:: Read in the starting address, push phony stack frame.
(initiate-call (MEF:rea:i-message-byte))
;7 Run.
(*catch 'toplevel (run-cpu))
;s Pick up return value and display it.
(MEF :send-graph-message 0 0 0)
(MEF :send-graph-message 1 0 0)
(MEF:write-display-message "The aaswer is ~D."

(sta.*-pop))))))

;; Standard function for ascertaining the status of a CPU processor.
defun cpu-status ()
(format nil “CPU. PC = ~D, FP = ~D, SP = ~D, CC = ~D" pc fp sp cc))

i: Push a stack frame and update the PC if necessary.
defun initiate-call (&optional new-pc)

(memory-write (+ sp old-fp) fp)

(memory-write (+ sp old-sp) sp)

{(memory-write (+ sp old-cc) cc)

(memory-write (+ sp old-pc) pc)

(setf tp sp sp (+ sp frame-size) cc 0)

(and new-pc (setf pc new-pc)))

. Fetch a single word from memory.

defun memory-fetch (address)

{(incf memory-accesses)

(setf (message-type cpu-message-buffer) memory-read-request)
(put-two-byte-field address cpu-message-buffer)

(MEF :write-message memory-pe cpu-message-buffer 0 8)
(MEF:read-message cpu-message-buffer 0 4)

(aref cpu-message-word 0))

i: Write a single word to memory.
defun memory-write (address value)
(incf memory accesses)
(setf (message-type cpu-message-buffer) memory-write-request)
{put-two-byte-field address cpu-message-buffer)
(setf (aref cpu-message-word 1) value)
(MEF :write-message memory-pe cpu-message-buffer 0 8))

P '...'. " _-_-"_-_._ Te e f"."‘.' L ',.A .

-0 et P B O P s
PRSP S PPN PSR R S S

o
e s

o r

8 Ay

-92 -

Real instruction processor. Loops on instruction at PC doing execution.
Jn run-cpu (&aux instruction)
Jop doing
;; Update memory accesses/instruction and stack size bars.
(MEF:send-graph-message
G 0 (fixr (* 10.0 (// (float memory-accesses) total-instructions))))
(MEF:send-graph-message 1 0 (- sp stack-base))

;. Fetch instruction at PC.

(setq instruction (memory-fetch pc))
(incf total-instructions)

(incf pc) (decf memory-accesses)

;; Call the referenced function, bind results and branch if necessary.
;: We should get back an "answer" and a "disposition"” which specifies
the kind of instruction which got executed.
{multiple-value-bind (answer disposition)
(funcal) (get (aref alu-functions (instruction-opcode instruction))
‘alu-function)
(dereference (instruction-adcodel instruction)
(instruction-addrl instruction))
(dereference (instruction-adcode? instruction)
(instruction-addr2 instruction)))
(selectq disposition
(:store (store-value answer
(instruction-adcodet instruction)
(instruction-addrl instruction)))
(:branch (if (= answer 1)
(setf pc (instruction-addrl instruction))
(setf pc (instruction-addr2 instruction)))))})))

Jereference an address-code/address pair into a value.
Jan dereference (adcode addr)
glect adcode

(memory-udcode . Memory reference.

(memory-fetch addr))

(register-adcode ; Register reference.

(aref registers addr))

(stack-adcode ; Stack reference.

(memory-fetch (+ sp (sign-extend addr))))
(immediate-adcode ; Immediate value.

(sign-extend addr))

(fp-adcode : Stack reference offset from frame pointer.
(memory-fetch (+ fp (sign-extend addr))))
(arg-adcode ; Stack reference to an argument.

(memory-fetch (+ (- addr) fp -1)))
(T (ferror "Unknown address code ~D." adcode))))

Store a vaiue at a location specified by an address-code/address pair.
in store-value (value adcode addr)
glect adcode

(memory-adcode ; Memory reference.

(memory-write addr value)) B
(register-adcode ; Register reference. o
(setf (aref registers addr) value)) Oy
(stack-adcode . Stack reference. A
(memory-write (+ sp (sign-extend addr)) value)) o
(immediate-adcode . Illegal immediate value. vy'.
(ferror "You may not store into an immediate value.")) c
(fp-adcode . Stack reference offset from frame pointer. R
(memory-write (+ fp (sign-extend addr)) value)) .

(arg-adcode ; Stack reference to an argument.

(memory-write (+ (- addr) fp -1) vailue))
(T (ferror "Unknown address code ~D." adcode))))

Sign extend a ten hit address to a 32-bit LispMachine fixnum.

4n sign-extend (10hit-number)

f (zerop (1db (byte 1t 9.) 10bit-number)) 10bit-number
{%Vogdpb -1 {byte 22. 10.) 10bit-number)))

-93 -

'he ALU functions that are to be emulated.
.0AD and arithmetic functions.
ine-alu-function toad 0 (ignore value) (values value :store))

ine-alu-function add 1 (valuel value2)
*ithmetic-processor (+ valuel value2)))

ine-alu-function muit 2 (valuel value2)
ithmetic-processor (valuel value?)))

ine-alu-function sub 3 (valuel value2)
“ithmetic-processor (- valuel value2)))

ine-atu-function div 4 (valuel value2)
~ithmetic-processor (fix (// (float valuel) value2))))

in arithmetic-processor (number)

snd ((or (floatp number) (bigp number))
(setf cc cc-overflow) (setq number 0))
((minusp number) (setf cc cc-negative))
((zerop number) (setf cc cc-zero))
(T (setf cc cc-positive)))

ylues number :store))

stack operationé.
ine-alu-function push 10. (value ignore) (stack-push value))
ine-alu-function pop 11. (ignore ignore) (values (stack-pop) :store))
i stack-push (value) (memory-write sp value) (incf spj))
in stack-pop () (decf sp) (memory-fetch sp))
3ranching functions based on input values.
ine-alu-function bneg 20. (value ignore} (if (< value 0) (values 2 :branch)))
ine-alu-function bpos 21. (value ignore) (if (> value 0) (values 2 :branch)))
ine-alu-function bzero 22. (value ignore) (if (zerop value) (values 2 :branch)))
3ranching function based on condition code.
ine-alu-function bcc 23. (condition ignore)
(if (= condition cc) (values 2 :branch)))

all/Return and assorted.
ine-alu-function call 30. (ignore ignore) (initiate-call) (values 1 :branch))

ine-alu-function return 31. (value ignore)
2t ((new-fp (memory-fetch (+ fp old-fp)))

(new-sp (memory-fetch (+ fp old-sp))

(new-cc (memory-fetch (+ fp old-cc))

(new-pc (memory-fetch (+ fp old-pc))))
‘memory-write fp value)
"setf fp new-fp sp (1+ new-sp) cc new-cc pc new-pc)
"if (= new-fp stack-base) (*throw "toplevel nil})

1i1))

stop the machine (by aborting the CPU processor).
ine-alu-function stop 40. (ignore ignore) (*throw ‘abort-cpu nil))

-l L J T S S S S
M TP IR D S BN IS W St AP VI R TR P 0N PGP LD VI RIPE DA PO T G

AD-A157 662 GENERIC SOFTWARE FOR EMULATING MULTIPROCESSOR 272
ARCHITECTURES(CU) MASSACHUSETTS INST OF TECH CRAMBRIDGE
LAB FOR COMPUTER SCIENCE R M SOLEY MAY 8

UNCLASSIFIED MIT/LCS/TR-339 N@@@14-75-C-0661 F/G 972 NL

END
buen
one

Yl il Ml Nl St a \"-"‘.'\'_'—_'-\‘—_T.?-.. T e———y LA Aatn 200t TS e _.v:v*_-j

Ty

.’
!

F—
N
o

o

; [l

FFEEE R

rer
EEEE

T?F
o N

e
e

N
(8
1 Q

MICROCOPY RESOLUTION TEST CHART
NATIONAL RIIRFAU OF STANDARNS.1GAT 4

A I R L T L)

’
B
=

::: A character buffer,
(defvar string (make-array 32. :type art-string :leader-list '(0)))

PR)

::: Print out a character (or two).

(define-alu-function print 41. (charl char2) .
(array-push-extend string charl) s
(or (zerop char2) (array-push-extend string char2)) p
nil)

’

i;: Finish print, seading to the controller console. :
(define-alu-function terpri 42. (ignore ignore)
. (MEF:write-display-message string)

. (setf (array-leader string 0) 0)

nil)

e e

;+: Definition of the SIMPLE MEMORY processor.

:3; The memory processor’s message buffer.
(defvar memory-message-buffer (make-array 8 :type art-8b :imitial-vatue 0))
(defvar memory-message-word

(make-array 2 :type art-q :displaced-to memory-message-buffer))

;:; The toplevel function for the memory processor. Read memory requests,

;i process, and return values if necessary.
(defun start-memory (ignore ignore) s
: (loop doing K
- (MEF :read-message memory-message-buffer 0 8; -
- (select (message-type memory-message-buffer ‘-

(memory-write-request (handle-write-request

(memory-read-request (handle-read-request))
(memory-load-request (handle-load-request

; (T (ferror "I)legal memory request."))))

) ::: Standard function for ascertaining the status of a memory processor. Fe
. (defun memory-status () -
. (format nil "MEMORY. Word 0 = ~D" (aref memory 0))) -
- ;:: Handle a memory READ request. 5?
- (defun handle-read-request () .

(setf (aref memory-message-word 1)
(aref memory (get-two-byte-field memory-message-buffer)))
(MEF :write-message cpu-pe memory-message-buffer 4 8))

SN)
.

ii: Handle a memory WRITE request.

N (defun handle-write-request (&aux address) o
g (setq address (get-two-byte-field memory-message-buffer ; S
- (setf (aref memory address) (aref memory-message-word 1))) S

.
]
.
S,

::: Handle a memory bulk LOAD request.
(defun handle-load-request (&aux start length)

A (setq start (get-two-byte-field memory-message-buffer) - .
. length (aref memory-message-word 1)) 1
.- (loop repeat length for offset from start doing -
- (MEF :read-message memory-message-buffer 0 4) B
(setf (aref memory offset) (aref memory-message-word 0)))) BR

vy

- .3
- "
%
N S
. ‘;

RARAREINNG D CDaDel

+:: An assembler for SIMPLE code.

133 Read code from PATHNAME, output code into ARRAY (art-q).
133 Puts memory it uses after end of code.
(defun assemble (pathname array &optional (offset 0) &aux list tags)
(pkg-bind ‘'SIMPLE
(with-open-file (stream pathname :direction :in :characters 't)
(loop with token and index and arg and count = offset
as input = (send stream :line-in)
while (and input (not (zerop (string-length input)))) doing
(setq index (string-search-not-set '(#\space #\tab #\c-L) input))
(when (and index (neq (aref input index) #/;))
(multiple-value (token index)
(read-from-string input nil index
(string-search-char #/: input)))
(when (= (aref input index) #/:
(push (1ist token count) tags
(multipte-value (token index)
(read-from-string input nil (1+ index))))
(muitiple-value (arg index) (read-argument input index))
(incf count)
(push (1ist token arg (read-argument input index)) list))))
(loop for (inst addrl addr2) in (nreverse 1ist) and count from offset
finally (return (1+ count)) do
(setf (aref array count)
(%1ogdpb (instruction-name->number inst) (byte 6. 26.)
(%1ogdpb (clear-address addrl tags) (byte 13. 13.)
(clear-address addr2 tags)))))))

;:: Change an address that could not be computed at scan time into an address
:i: (i.e., branch and call targets and the like).
(defun clear-address (address tags &aux lookup
(cond ({null address) (dpb register-adcode (byte 3 10.) 0))
{((numberp address) address)
((setqg lookup (assq address tags))
(dpb memory-adcode (byte 3 10.) {second lookup)))
(T (ferror "Unknown address: ~S." address))))

i:: Find the opcode for a given instruction.
(defun instruction-name->number (name) (get name ‘'alu-function-number))

i+: Tools for disassembling assembled portions of memory.
(defun unassemble (array &optional (from 0) to)
(or to (setq to (array-length array)))
(toop with word for index from from to to doing
(or (setq word (aref array index)) (return))
(format t "~&~:4D: ~8A" index
(aref alu-functions (instruction-opcode word)))
{format-address (instruction-adcodel word) (instruction-addrl word))
(format t ", ")
(format-address (instruction-adcode2 word) (instruction-addr2 word))
(terpri)))

(defun format-address (adcode addr)
(select adcode
{memory-adcode (format t "~D" addr))
(register-adcode (format t "R~D" addr))
(stack-adcode (format t "SP|~D" (sign-extend addr));
{immediate-adcode (format t "#~D" (sign-extend addr)))
(fp-adcode (format t "FP|{~D" (sign-extend addr)))
(arg-adcode (format t "ARG|~D" addr))
(T (format t "UNKNOWN"))))

™ AL R A g S ey e o S et A AW I

-96 -

;i3 Translate a symbolic address into an address-code/address pair.
(defun read-argument (string index &aux end)
(setq index (string-search-not-set '(#\tab #\space) string index))
(setq end (or (string-search-set '(#\tab ¥\space #/, #/;) string index)
(string-length string)))
(cond ((mem #'string-equal (substring string index end)
*(r0 r1 r2 r3 rd4 r5 r6 7))
i+ A REGISTER specification.
(values (dpb register-adcode (byte 3 10.)
(- (aref string (1+ index)) #/0))
(1+ end)))
((string-equal "#CC" string 0 index 3 (+ index 3))
:: A CONDITION CODE specification.
(let ({word (substring string (1+ index) end)))
(values (dpb immediate-adcode (byte 3 10.)
(cond ((string-equal word "CC-NEGATIVE") cc-negative;
({string-equal word "CC-POSITIVE") cc-positive
((string-equal word "CC-ZERO") cc-zero)
((string-equal word "CC-OVERFLOW") cc-overflow
(T (ferror "Unrecognized condition: ~S" word))))
(1+ end))))
((= (aref string index) #/")
:+ A CHARACTER specification.
(values (dpb immediate-adcode (byte 3 10.)
(aref string {1+ index))) (1+ end)))
((= (aref string index) #/#)
;+ An IMMEDIATE specificiation.
(values (dpb immediate-adcode (byte 3 10.)
(read-from-string string nil (1+ index) end))
(1+ end)))
((string-equal "ARG|" string 0 index 4 (+ index 4))
;. An ARGUMENT specification.
(values (dpb arg-adcode (byte 3 10.)
(read-from-string string nil (+ index 4) end))
(1+ end)))
((string-equal "SP|" string 0 index 3 (+ index 3))
;v An STACK OFFSET specification.
(values (dpb stack-adcode (byte 3 10.)
(read-from-string string ai) (+ index 3) end))
(1+ end)))
((string-equal "FP}" string 0 index 3 (+ index 3))
i3 An STACK OFFSET FROM FRAME POINTER specification.
(values (dpb fp-adcode (byte 3 10.)
(read-from-string string nil (+ index 3) end))
(1+ end)))
(T

i: A SYMBOLIC ADDRESS (i.e., branch/call target).
(values (read-from-string string nil index end) (1+ end)))))

N N g ey apr gy eeYE YW TR T YA T Yy YT w Yy Wy v W Y YW, YR, Y e T e
- o WP YT VTR NI TR TR ST e T e T e V.

DA
~~~~~

o OFI'ICisl DISTRIBUTION LIST

1985
{ Director 2 Copies
: Infecrmation Processing Techniques Office
l Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Ariington, VA 22209

Copies

8]

Office of Naval Research

‘ 800 North Quincy Street
Arlinagton, VA 22217
Attn: Dr. R. Grafton, Code 433

; Director, Code 2627 6 Copies
Naval Research Labcratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

- v . - .
B R I

o 'l 'I

National Science Foundation 2 Cories
Office of Computincg Activities

1800 G. Street, N.W.

Washinagton, DC 20550

Attn: Program Director

AN A

>—¥ v
R

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department

Naval Weapons Center

China Lake, CA 93555

Dr. G. Hopper, USKR 1 Cory
NAVDAC-0O0H

Department of the Navy

wWashington, DC 20374




2 mg—

JRTL R
et adacatiad




