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I. INTRODUCTION

The work described in this report was motivated by the need to explain
observed inconsisteéncies between measured dynamic response data and response
predictions of various analytical and finite element models of certain rod-
like structures.

It was felt that a sufficiently general mathematical model of this class
of structures might illuminate hitherto uunoticed dynamic effects and
interactions caused by such phenomena as large displacements and rotations,
initial space curvature, variable shape and area of cross section, initial
twist of cross section principal coordinates along the rod axis, transverse
shear deformation and rotatory inertia.

Although the study of vibrations of rods and bars is one of the most
ancient in structural mechanics, a completely general formulation of the
problem is difficult to find in the literature,

One of the seminal treatments of the derivation of equations of motion of
rods with initial curvature appears in the text on Elasticity by A.E.H.
Love. Although restrictive forms of Love's equations are used directly, or
are re-derived, by subsequent investigators of small amplitude vibrations of
curved rods, there are deficiencies in Love's work which render his strain-
displacement equations unsuitgble as the starting point for a general
examination of the motion of rods with space curvature.

In Love's work, the final state of deformation is assumed to be such that
cross sections remain plane and normal to the centerline of the deformed
rod. By these assumptions not only is transverse shear deformation excluded
but, as will be shown, kinematical inconsistencies are introduced,

Love employs a two stage deformation process consisting of first the
imposition of twist and curvature o~n the initially straight rod centerline
followed by imposition of small displacements to points of the cross
section. This approach leads to confusion of local coordinate systems and of
displacement components which renders suspect his expression for the change in
length of line segment connecting adjacent points., The generality of the
strain-displacement equations presented is further limited by the assumptions
that displacements are small and that dimensions of the rod cross section are
small in comparison to the radius of curvature, Finally, strain-displacement
equations for an initially curved rod appear explicitly only in a restrictive,
plane curvature, form.

Equations governing both static and dynamic deformation of curved rods
are employed in such areas of structural mechanics as vibrations of curved
beams, large deflection and stability analysis of beams and columns and non-
linear dynamics, including stability of oscillations of beams and strings. A
bibliography of this literature with emphasis of curved beam vibrations is
included with this report.

A.E.H. Love, A Treatise On The Mathematical Theory of Elasticity, 4th Hd.,

Dover Publication, New York, 1927.
;




In spite of the large number of papers dealing with these subjects, there
does not appear to have been a re-examination of Love's strain-displacement
equations or a more general independent derivation. The equations of motion
employed by the various investigators are either those presented by Love or
are derived for each particular application on an "ad-hoc" basis.

In this report a derivation of the equilibrium equations for a rod with
general space curvature is presented in Section II. This derivasion is
similar to that presented by Love, or more recently by Kachanov.” although it
is somewhat more rigorous than those in its examination of the relative
importance of higher order terms in Taylor's series expansions.

A completely general set of small strain but large displacement and
rotation strain-displacement equations is then formulatad in Section III for a
rod with initial twist and arbitrary space curvature. In these equations the
displacement components are referred to the local tangent, principal normal
and bi-normal space curve coordinates rather than to fixed global
coordinates. No assumptions regarding the structural action or mode of
deformation of the rod are made so that the functional form of the
displacement components is left unspecified.

In Section IV a linearized form of the general strain-displacement
equations is first presented. A technical theory of rods with space curvature
is then developed based in the usual Leam theory assumptions that cross
sections remain plane and undeformed. The displacements are then expressed as
appropriate linear combinations of three central curve displacement components
and three rotation components.

Based upon these displacement functions, the inertia force and moment
terms appearing in the equilibrium equations can then be formulated in terms
of time derivatives of these six displacement variables.

The linearized strain displacement equations phrased in terms of the
central curve displacements and cross section rotations are then used to
derive force-moment-strain-curvature equations for a linear elastic rod. The
equations are then further simplified by elimination of transverse shear and
rotatory inertia effects. When these equations are combined the equilibrium
equations, a system of four coupled equilibrium equations in the four
displacement and rotation variables results,

The final section of the report is devoted to examination of the
displacement equilibrium equations for special cases in order to examine the
conditions under which various uncouplings of motions occur.

S L.M. Kachanov, "A Brief Course On The Theory of Buckling T&AM Report No.
441. University of Illinois Urbana-Champaign, 1980.
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IIl. EQUILIBRIUM EQUATIONS FOR A ROD ELEMENT

A. PForce and Mowent Equilibrium

A typical element of a rod with space curvature is shown in Figuie 1.

The line joining centroids of cross sections is a space curve whose
radius (p), cr curvature x=1/p, and torsion (\) "are arbitrary functions of
arc length (s). The shape of the cross sections is arbitrary but assumed to
be a continuous function of 8. At the centroid of any cross section an
orthogonal coordinate system (x,y,z) is constructed with corresponding unit
vectors i, j, k, such that k is the unit tangent vector to the space curve
determined by the line of centroids. Vector k therefore points in the
direction of increasing s. Unit vectors i and j are the principal normal and
bi-normal vectors respectively so that jxk = i.

The principal directions of the cross section area of the rod with
respect to the centroid are, in general, inclined with respect to the x, y

coordinates. The angle between these two sets of coordinate axes may vary
continuously with s for the case of a pre-twisted rod.

Figure 2 shows a section of curved rod of incremental length s lying
between points O and 0' of the space curve of centroids. By the usual
definition, the face at 0 is a negative face since its outward normal points
in the direction opposite to the local tangent vector while the face at 0' is
a positive face, The usual sign convention for stress components in positive
and negative faces will be employed.

The force and moment resultants of the stress components (oxz’ L ozz)
acting on a cross section of current area A are defined as y

v, = [, o d, (1a)™*
v, o= fA aysz , (1b)
vz B IA ozsz ? (1e)
Me ° fAy ozsz : (2a)
Mo - [, x0,4A , and (2b)

Appendix A presents a discussion of space curve geometry

Equations are numbered consecutively within each sectiom.

9
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Figure 6. Displacements of Points of Adjacent Cross Sections
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Figure 5. Adjacent Cross Sections Before Deformation
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L. fA {y Fi, — % FIy} dA = fA Yyu dA - fA yxv dA . (26¢)

III. STRAIN-DISPLACEMENT EQUATIONS

Equations relating the components of strain at a point in the rod to the
displacement field are derived by considering the change in length of a line
segment connecting to arbitrarily close points of the rod as the rod is
deformed.

Figure 5 shows two adjacent cross-sections of the rod before
deformation., The centroidal curve has initial curvature Ko and torsion Ao'

The centroid of one cross-section is point O and the other, at a small
distance 8s along the curve, is 0O'. The vector principal normal, binormal and
tangent at O are i, j and k respectively while the corresponding vectors
at 0' are denoted by i, j and k. Coordinates x, y, z directed along i, j and
k respectively comprise a local coordinate system with origin at O.

Corresponding coordinates at 0'are ;; ;'and z.

Point Q lies in the cross—section at O while Q' lies in that at 0'. It
is assumed that Q and Q' are initially arbitrarily close so that the position
vector of Q', r can be expressed as

r = 8xi + 8y j+ 6z k 6D

where 6x, 8y, and 6z are arbitrarily small distances,

If n is a unit vector parallel to r and directed from Q to Q', and r is
the magnitude of r . Then

r = rm = rf i + rmj + rak (2)

when £,m, and n are the direction cosines of n relation to i, j and k
respectively. Equations (1) and (2) imply the relationships

§x = rg, §y = rm, and &z = rn . (3)

The length of the position vector joining material points initially at Q
and Q' as the rod undergoes a deformation which carries these points
to Q and Q' respectively is next determined.

23
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For a discussion of various representations of the angular acceleration and
angxlar velocity vectors the reader is referred to a recent book by Kane, et.
al.

If

F,=F i+ F §+ F k

the scalar inertia forces become

FIx = - yu, _ (24a)
FIy = - yv , and (24b)
FIZ = - W . (24‘:)

Upon integrating over the area of the cross section, A, the inertia forces per
unit length of rod arising from the three body force components are next

obtained,
Ty, =/ Fpdh =- [x s da , (25a)
A A
Ty ™ fA Frgdd = - [y v dA , and (25b)
T, - fA F,dh =- [ v dA . (25¢)

Finally the inertia force couples are presented in terms of the three
acceleration components

m. = IA y Fr,dA =~ fA YywdA, (26a)

mp, fA x Fr_dA = fA Yxw dA , and (26b) .

T.R. Kane, P.W. Likins, and D.A. Levinson, "Spacecraft Dynamics,” McGraw
Hill, New York, 1963,

22




The reader is referred to a paper by E. Reissner3 for corresponding large
displacement curved beam equilibrium equations in which the force and moment
components are referred to the undeformed coordinates.

B. Inertia Forces and Couples

The inertia body force, F;, acting at any point, Q, in a cross section is
defined by

FI = - y uQ (22)

where Y is the mass density of the material of that point, u, is the
displacement vector associated with that point and supetacrigt "dot" indicates
differentiation with respect to time.

The displacement vector L) is expressed in terms of the local space curve
coordinates as

% =ui+vij+wk
where u, v, and w are the scalar displacement components in the x, y and z
directions respectively.

Bince the local coordinate system is moving in the fixed (inertial)
reference frame, the acceleration vector may be expressed in the form:

u. = a. . +axu+uxiu.) +2wxv (23)

Q Q Q Q Q

where

v.=uil+v j+ w k ,

.Q-l} ,

and @ and a are the angular velocity and angular acceleration vectors
regpectively of the local coordinates in the fixed reference frame., For
problems involving small rotations and/or small displacements of the rod cross
the non-linear terms in Eq. (23) may often be neglected in comparison with &

jrwk,

[N
+
<

Since this report will be concerned primarily with equations governing
small motions the non-linear terms in Eq. (23) will henceforth be neglected.

°  E. Reissner, "On One-Dimensional Large-Displacement Finite-Strain Beam

Theory," Studies in Applied Math, Vol 52, pp 87-95, 1973.

21




V(') = V. i + V_j + V kand
x y z

a(s) = m i + m j + m k,
x y z

Eq. (19) becomes

The three scalar equations representing the conditions of moment equilibrium
for the rod element become

oM

—a"-m + kM -V + m = 0, (21a)
8 y z y X

aM

-a—1+xu + V + m = 0, and (21b)
) x x y

am_

35 " X Mx + m = 0. (21c¢)

Although this manner of derivation of the equations of force and moment
equi}ibrium for a curved rod used above is different from that presented by
Love” the resulting equations are essentially identical. Differences in form
result from differences in force and moment sign conventions and because Love
employs local coordinate axes which are the principal directions of the area
of the local cross section of the rod rather than the natural space curve
coordinates.

In general, the local x, y, z, coordinates are the deformed coordinates
of the centroidal curve of the rod. The torsion and curvature terms appearing
in Eqs. (12) and (21) are the total values of these quantities comsisting of
the sums of their initial values and their respective changes due to
deformation of the centroidal curve. For small deformation analysis the
initial coordinates and initial values of A and x are employed.

20




R xV(s+8s) = [kés + /2 1 G xIvGH + 3D s
8

2
v 5], Y]
38 8

=kx V(" se+ [MpeixWe) + kx | ] G)?ana a1
8

- 2
(s + 6s) = M(s*) + M |s+63 + 12 % |s+(68)2, (18)

where again V(s*) and M(s*) indicate the force and moment resultants acting
on the positive face at s = 0 so that M(s*) = - M(s).

Finally, substitution of the result given by Eqs. (14) and (16) through
(18) into Eq. (13) and division by §s yields the following vector moment
equilibrium equations in the limit as §s+0,

%% |, + kxV(") + m(s) = 0 (19)

To obtain the scalar equations represented by Eq. (19), M(s*) is expressed in
terms of its vector components and the Serret-Frenet formulae are used to
transform the derivatives of the unit vectors

oM oM oM . .
oM - X . Y - z di 43 dk
9s + as * 3s 3 * 9s k o+ Mx s * My ds Mz ds
8
3Mx M aMz
= 35 it ng it gk v M (\j - xk) + My (=x) i
+ kM i. (20)
z

Also, since

19




In Figure 4, R, l'o and P are position vectors of points, at positions
ug Yg 4+ §g" and "s + " relative to a fixed point Q. If R'(s) is the
position vector of any point in the space curve relative to O we may write

R' = R’ - R
o

)
=R + dR/d 5 +l£3|(6s)2+ -R
o 8 ,s 8 2 2 s et o
ds
1 dZR 2
= dl/ds IBGB + 'i' -—_2' ls(ss) * eee
ds
- ks + xk/2i (68)?, (15a)
since by definition k = dR/4s and by Eq. (10a) dk/ds = x i.
In a similar way it is found that
R = P - R
)
. 2
= Kk + x/2ic¢"° . (15b)
Combining Eqs. (7) and (15b) yields
B . 9T .2
RxT = k(s8) xT(s)z + [k/2ixT + kx 3g 15+ oo
Therefore,
s+ls 8s §s
[ ExTds = kxT/ cdg + [x/2 ixT + k x 3T/3s] | 26
8 o s
1 2
= k(s) xT */ (§8)" . (16)
Next,
18
e e o




z X .
s KV ) k + (Vv _+ 38 A vy)l
+ (O v, * 3Vy/38)] + T i+ Ty] + Tzk = 0, (11)

Finally, Eq. (11) may be written as three scalar equations which express the
condition of force equilibrium for a beam element

~
3V /ag = AV. + xV_ + T = 0, (12a)
- x y z x _
9V /d3s +# AV. + T = 0, and (12b)
y X y
9V /es -~ xV. + T = 0. (12¢)
z x z
Next, the conditions for moment equilibrium are formulated from
consideration of the free-body diagram of Figure 4, Summing moments about
point 0 yields
M(s) + M(s + 8s8) + R'xV(s + 8s)
s+ls s+8s
+ [ BxT(s)ds + [ mds = 0 (13)
8 8
Again the terms appearing in Eq. (13) must be expressed in terms of their
values and those of their derivatives at "s"
om 82- 2
m(s +7) = m(s) + 3s ,s g ¢+ ;—7 ,s t“/2 + ,.. and
8
- 8+s §s on 8s . 32. 5s )
flds'm(s)fdl;*—lfcdc*————lf g dp + ...
as !sg 2 2 8
8 o o ds o
= m(s)ss + 22 50)°
n(s)ds 3 ,a 5 (14)




s+ds

T de

2
38 |a (63) /2 * coe

(8)
Returning to Eq. (7), we next express V(s + 6s) in terms of its value
and those of its derivatives at s = 0 using vector Taylor's series.

+ v
V(s +8s) = V(s) + o= |s+ 88 + ... (9)
The symbol "g*" is used in Eq. (9) as a reminder that this force acts on a
positive face of the element. Therefore,
vis') = v

X

i + V.3 + V kand
y 4

(9a)

v v v
-a—! = —l 3 —-l
] s+ 98 1

. z
98 J 3s k o+ vx

(9b)

Expressions for the rate of change of the unit tangent, principal normal
and binormal vectors with respect to arc length are given by the Serret -
Frenet formulae (Appendix A) as

dk/ds = 1l/pi = ki, (10a)
4 . . Ai , and (10b)
ds ’

di/ds = Aj - «k

(10¢)
where (= 1/p) is the local curvature of the line of centroids. Upon
substitution of Eq. (8) through Eq. (10) into (6) and division by 8s, the
following vector equation results in the limit as 6s approaches zero,

16
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The surface tractions and body forces may also contribute to a moment
resultant per unit length about the three coordinate axes. This moment
resultant is defined by

LA

)
-‘-

7ae
N

m * mi + mj + mk. (5b)
X y z

‘._l‘"f‘-l"_fl:“'

For problems involving motion of the rod element, the force T will
contain terms involving inertia forces while the moment m may contain moments
of inertia forces about the three axes.

€ 2

= A free-body diagram of a rod element is shown in Figure 4. 1In Figure 4,
- points 0 and O' are again points in the curve of centroids at positions "s"
and "s + 88" respectively. The force and moment resultants acting on the rod
cross sections of these positions are indicated as well as the surface

) traction vector and surface traction moment resultant at a typical point

8 + [ where 8 <8+ <8 + ¢ s.

— ]
R is the position vector of the point x + 7 relative to 0O while R is
- the position vector of 0 relative to O.

- The condition of force equilibrium applied to the rod element yields the
- following equation

s+8s

- V(s) + V(s +688) + [ Tds = 0. (6)
3 s
:: Now,

- 3T s S

-‘- T(s + ) = T(s) + — ; + - — [ RN (7
o s 8 2 3 2 8

v )
N
:a
™~ where

3 s (s + ) <(s + 88) and ds = dr .

‘ Therefore, .
~

~
N s+is 8s §s 9 8s
o - 9T 1 3°T 2
N | T ds 'r(s)fdc+—s-|sfz;d;+i——2|s | tfdz + ... or
> 8 o 0 ds o
et

3 14 |
v
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Figure 3. Force and Moment Resultants On Rod Element
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N M- [(x R o )dA . (2¢)
N
X9
N
Based on the above definitions, the vector force and moment resultant of
. the tractions acting on the face with centroid "0" at point "s" on the
- space curve of centroids is
b
% V() = -~ Vx(a)i(a) - Vy(s)j(s) - Vz(s)k(a) and (3a)
M(s) = - M (8)i(s) =~ M (8)j(s) - M (s)k(s) . (3b)
x y z v

Similarily, these vector quantities acting at s + 88 on the face with centroid
" 0' are

V(s + 8s) = Vx(s+Gs)i(s + 8s) + vy(s + 68)j(s + 8s)
+ V_(s + 8a)k(s + 88) and (4a)
; M(s + 63) = Mx(s + 88)i(s + 68) + My(s + 68)3(s + 6s)
'% + M (s + 8a)k(s + 8s) . (4b)

These quantities are illustrated in Figure 3.

; Note that the unit vectors used to describe the directions of the vector
forces and moments at s are different from those at s + 88 since the

directions of the space curve unit vectors are constantly changing along the
d curve.

The resultant per unit length of the tractions acting on the lateral
surface and of the body forces acting in the interior of the element is given
by

T = Ti + T j + Tk (5a)
x y z

where T , T , T, have the dimensions of force per unit length and i, j, k are
local unit vectors.
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N Figure 6 illustrates the initial and final positions of these material

& points as Q and Q' undergo displacements EQ and u.,. The magnitude of the

" position vector of Q' with respect to Q, r is fournd by use of the following
vector equation relating the initial and final relative position vectors of

A these points to their respective displacement vectors,

\.

o

P

T = r + %' T Y% (4)

.
wts
LI R

The displacement components u, v, and w at point Q are again given by

O
RS

1 feta
(M ]

u, = ui + v j + wk. (5)

Q

v The displacement vector at point Q', adjacent to point Q, can then be
o expressed as

. ] Ju du
.'- = j. _.& J
T Yo Wt Sxtay &yt %z (6)

s

where higher order terms in this Taylor's series expansion of the displacement

- vector about point Q have been dropped. The vector derivatives appearing in

:7 Eq. (6) are next presented in terms of their vector components,

iy

)

o

i R T (o)
e 9x Ix ax 3 ax ’ a

o

.

= i S VIR PR (7b)

dy dy ayJ oy i

2 .
A.:.:. _ﬂaugﬂi.;.a_‘_’.'.yﬂkq. ..a_j'.+ ii... E!

" 9z 9z 3z 3 9z Y 3z V %z vV 3z

>

< du v . ow ) . .
y 3z * Yz 1t % k+ou (Xo 17 % k) v)‘o Lhow oK, or
]

:

" 26
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du
9 (] . 9
3;2 - (3% - A+ Kow) i+ (33 + Aou) j+ (35-- uxo) k (7¢)

where the Serret-Frenet formulae have been used to express the rate of change
of the local coordinate unit vectors along the curve in terms of the local
curvature and torsion.

Substitution of Eqs. (5) through (7) into (4) and using Eqs. (3) yields

the following result for the position vector of Q' relative to Q:

T = a—u a—“ .a—u— 3
r rRQ+20) + m 5y *° ( A vtk W] i

v v oV .
+xle 5+ w1 +§) (xu+az)] j
+r[23"+m-ai+ (1—<u+—)]k. (8)
. ax dy
N If the magnitudes of r and r ave denoted by r and r respectively, then the

unit elongation, e, of the original line segment is defined by

T = (1l +e). (9)

If e is a small quantity, then

T2 = 220+ 2e) (10a)
or
. 2
. e=1 (5 -1). (10b)
= b o

Upon squaring the magnit.des of the vector r given by Eq. (8),
F substituting the result intc €q. (10b), and grouping the resulting terms as
) coefficients of the products of the direction cosines £, m and n, the
elongation, e, may be expressed in the following form,

N 27
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;: e=c__ 22 +e m2+e n? + 2 fm+2_  fn+2 mn (11)
N Xx yy zz Xy Xz yz
t where
:
- du 1 duy2 avy2 w42
\ = — — —_—
».' € xx x| h [(3x) + (31() + (ax) ] ’ (12)
v 1 du,2 vy 2 owy2
€ vl . + 53 + 3 (12b)
; vy > (G (35) 5y) 1 .
. A y (A2, (A2, (3w
€2z iz Kol + h [(az * (Bz * (Bz ]
g
: + 1y [« Zaah P eat Vet P -2 v
0 o o o 00
Ju v ow du
22,y 3z 7 2 Ao ¥ 3z 2Ko U3z 7 2 Ko ¥ 3z] ! (12¢,
L3, Ay, 3w du o, v odv , v
2 5y 3y * 3x ' 3x 3y T 9x 3y ' ax 3y’ (12d)
. 2w, dw qudu , dv v
2 €xz dz * ax Ao V¥ KW * x 3z * Ix dz
. dw Oow Jdu du ov ow
2 Y3x oz *oVax Y %oV Ik Y Mo% O ol 3x ° (12e)
., du du , Avdv , dwdw
2 €yz 2z dy todgu ¢ 9y 9dz * y 9z ¥ dy 9z
(12€) )
- + Au v K u w A v 2u + KW du .
o 9y o 9dy o 3y 0 y .

By definition, the quantities €ex® € g’ » Epvr Eyg? and € , are the normal
- and shear strains at Q referred to tze local cogrdinates at ¥. Eqs. (12)
therefore constitute the required strain-displacement equations.
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Clearly, various approximate forms of Eq. (12) may be formulated
depending upon the simplifying assumptions appropriate for a given problen.
These formulations may postulate small deformations with large displacements;
small deformation with small displacements but large curvatures and/or
torsions; small curvatures and torsions; or various other combinations of
simplifying assumptions. The reader may verify that the technical theory of
curved beams, in which the normal strain is a non-linear function of the
transverse coordinate, requires retention of terms involving squares of
curvatures and of displacements. It is also noted that consideration of
buckling or of stretch-stiffening effects requires retention of non-linear
terms in Eq. (12).

The simplest form of strain displacement equations which contains the
effect of initial curvature and torsion of the centroidal curve is obtained by
dropping all non-linear terms in displacements and displacement gradients.

The strain-displacement equations then become

Ju
€ xx ax (13a)
v
€ - (13b)
yy dy ’
a v _
€,y P K U (13¢)
- 1 (3u v,
s /o (ay + 30 (13d)
€ =1 (23+i!-kv+|<w) and (13e)
Xz 2 \3z ax o o ’ e
- 1 (3V v
€a h (57 + 3y ' o u) . . (13£)

At this point the functional form of the displacement components in terms of
the coordinates is completely unspecified. In the next section the strain-
displacement equations are put in a form which corresponds to the usual
technical beam theory.

IV. A TECHNICAL THEORY OF RODS WITH INITIAL CURVATURE AND TORSION

A. Displacement Functions

A linearized "engineering"” theory of curved rods is next developed on the
basis of assumptions employed in the strength of material formulations for
the bending and torsion of prismatic bars.
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The fundamental assumption of both technical beam theory and that of
torasion of straight rods is cross sections unchanged in size and shape after
the structure is bent or twisted. It is not necessary to initially postulate
that cross gections remain normal to the bent centerline.

A typical cross section is therefore assumed to undergo & small rotation
about each of the three coordinate axes while its centroid is displaced along
each of these axes. These assumptions imply the following form for the
displacenment functions,

wix,y,z) = wo(z) - x ay(z) +y ax(z) . (1a)
vix,y,z) = vo(z) + x ¢(z) , and (1b)
u(x,y,z) = uo(z) -y o(z) . (1e)

In Eq. (1), u,, v, and w, are the displacement components at a point on the
centroidal curve (the origin of the local x,y coordinates) while

a_, a and ¢ are small angles of rotation about the x, y and z axes in that
oréer,yas shown in Figure 7.

It is noted that theory of torsion of bars with non-circular cross
sections requires the addition to Eq. (1) of a term representing warping of
the cross section., Introduction of such a term would greatly complicate the
ensuing development with very little effect on the state of stress other than
near a fixed boundary. For this reason, the displacement functions of Eq. (1)
will be employed irrespective of the shape of the cross section of the bar,

Warping of compact cross sections increases as the ratio of the principal
second moments of area differs increasingly from unity. The warpin
phenomenon is thoroughly treated in texts by Timoshenko and Goodier” and by
Sokolnikoffd

B. Strain-Displacement Egquations

The linearized form of the strain-displacement equations derived in
Section III are used as the basis for the strain-displacement equations for
the technical theory.

5 5. Timoshenko and J.N. Goodier, Theory of Elasticity, 2nd Ed., MeGraw-
Hill, New York, 1951,

6 r.s. Sokolnikoff, Mathematical Theory of Elastieity, ond FEd., MeGraw-Hill,
New York, 1958.
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Figure 7. Displacement and Rotation (bmpounents
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Substitution of Eq. (1) into Eq. (III-13) yields the following
expressions for the components of strain,

€ =g =g =0, (2a)

awo da 3ax
€22 "3z = *%z YYV%: ° Ko(uo AN (2)
du
2 € a.__o-a-}‘v-p.(w +y(.<a-9i)-x(>\¢+n<a),and
Xz 9z y 0 o oo 0 X 9z 0 oy
(2¢)
v
=_9 3% _
2 eyz 5= + Ao u + a + x a2 y Xo¢ . (24)

Eq. (2a) represents the condition that cross sections do not deform and
thereby confirm the satisfaction of the initial displacement assumptions.

Eqs. (2¢) and (2d) show that transverse shear deformation cannot be made
to vanish for all values of x and y. Introduction of the angle ¢ to represent
torsional rotation would lead to this result even for & straight bar. For the
curved bar it is noted that the presence of initial torsion and curvature
prevent these strains from vanishing everywhere even with the omission of the
rotation ¢.

The condition that cross sections remain normal to the centroidal curve
can be invoked locally at x=0, y=0 or, alternatively, in an average sense by
integrating Eqs. (2c) and (2d) over the cross section. In either case, the
following equations expressing the vanishing of transverse shear deformation
(in the above meaning) result:

8u°
a = - AV +xw and (3a)
y oz oo oo
v -
a =-=2-2 u . (3b)
x dz o o

Another simplifying assumption often invoked is that the centroidal curve
(x*y=0) remains unchanged in length during the motion of the rod. From Eq.
(2b), this condition may be expressed as

[o)
—— - Ku =20 . (30)
oz oo
32
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C. Inertia Forces and Moments

The inertia force resultants and couples per unit length are obtained by
introducing the assumed displacement functions into Eqs. (II-25) and (II-26)
and carrying out the indicated integrations. It should be remembered that the
origin of the coordinate system is the area centroid of the cross section so
that integrals of the form f xdA and f ydA vanish ., The resulting

. . A . A . A .
expressions, assuming no varlation of mass density within a cross section, are
presented below,

Tie ™~ Yu, A, | (4a)
T, " W A, (4b)
T, =" Y;o A, (4¢)
m =Y Ixx;x +y Ixy ;y ) (5a)
me =y Ixy ;x -y Iyy ;y , and (5b)
mp, = <Y .Ip ¢ . (5¢)
whaere
1. = y2 da , (6a)
XX A
n

Iyy 2 jA x~ dA , (6b)
Ixy = fA xy dA , and (6c)
J =1 _+1 . (6d)
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Iex and Iy are the second moments of area of the cross section for the
centroid agout the x and y axes respectively; I _ is the product of area with
respect to the centroid for the x and y directions; and J_ is the polar moment

of area for the z direction with respect to the centroid,

The area and shape of the cross section of the rod may vary in an
arbitrary way along the rod. The orientation of the principal directions of
the cross section area with respect to the plan of curvature also may vary.
The quantities defined by Eq. (6) should therefore be considered to be
functions of the z coordinate.

D. Moment—Curvature and Force—-Displacement Equations

The stress—strain relations which will be used for the derivation of the
equations relating the force and moment resultants acting as a cross section
of the rod on one hand, to the displacement and rotation components, on the
other, are predicated on the assumptions that the rod is constructed from a
linear elastic material which is elastically homogeneous in each cross section
and that the normal stress components in the directions transverse to the
ceatroidal curve are small in comparison with the normal stress componeat
g .

z7

The applicable stress-strain equations then become

o =Ee (7a)
zZz Y AA

o =26¢€ , and (7b)
Xz X2

o =2G¢ . (7<)
yz yz

The raquirad equations are next obtained by combining Eqs. (2) and (3) with the
definitions of the various force and momeut cresultants given by Eq. (II-1),

M= [y o, dA

A
ow Ja aax
= B[ ylg oy, mxtt oy (5 v x0)] A
Ja Bax
= - F Ixy 3;1 + E Ixx(SZ_ + xo¢) , 8a)
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aa aax
L J xo,,dh = E L —132 - EL, (a_z" + oK ¢) , (8b)
M = (x 0 -y o ) dA
. fA 2y
(8¢c)
=2GJ 3 _ GI ¥ a +GI Kk a ,
iz xxX x oy
auo
v - IA o ., 94 = k AG (-5z— o - Ay v ¥ Kowo] , (8d)
Bvo
v, = onyz dA = k_ AG (57 + Au,* ), and (8e)
av0
Vz=onzsz=EA[a—z--Koo). (8£)

The coefficients k, and k  appearing in Eqs. (8d) and (8e) are called
Timoshenko shear coefficients., These are dimensionless quantities, dependent
upon the shape of the cross section, which are introduced to compensate for
the fact that not only is the shear stress non-uniform over the cross section
of the rod but its actual distribution is inconsistent with the function forms
describing the shear strain-displacement equations. Values of the Timoshenko
shear coefsicients are documented for various cross sections as, for example,
by Cowper.

The complete system of equations constituting the linear, technical,
theory of rods with space curvature is comprised of Eqs. (II-12) and II-21)
along with Eqs. (4), (5) and (8) of this section. For convenience of the
following exposition, Eqs. (II-12) and (1I-21) combined with (4) and (5) are
presented below where, in a manner consistent with the employment of
linearized strain-displacement equations, the torsion and curvature are taken
as those of the undeformed rod.

8Vx 32u°
3 - A Vy“‘ovz = YA 7 " Tee ? (9a)
ot
7 G.R. Cowper, "The Shear Coefficients in Timoshenko Beam Theory," ASME J.
Applied Mechanics, Vol 33, Series E, No. 2, pp 335-340, 1966.
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X - ° _
TR YA 2 Tye , ‘ (9b)
avz 32w°
37 - Kovx = YA ;t—z - Tzs , (9¢)
oM 2% aZa
32 " Ao M, t K MV =1 2 - YIxy ;:51 -m s (9d)
aM o%a a2a
5;1 + Xo M +V = - YIxy 7+ YIyy ——51 " Mg and (9e)
ot at
oM 2
—2 -« M = y] 3¢ _ m . (9f)
9z o x P .. 2 zs
at
In Eq. (9), the terms Tyg> Tys’ T,g represent the portion of the surface and

body forces acting which are not acceleration dependent while m

m,, and m,
are the corresponding parts of the couples of these forces.

xs’ “ys

To determine the motion of a rod with gpace curvature using this
linearized formulation, the system of twglve coupled equations consisting of
Eqs. (8) and (9) above must be solved for the six force and moment resultants
and the six displacement and rotation components subject to appropriate
initial and boundary conditions. This formulation retains the effects of
transverse shear deformation, rotatory inertia, and extension of the
centroidal curve. Since some or all of these effects can safely be neglected
for problems involving thin rods and low frequencies, more simplified
formulations will next be considered.

It is noted that no restrictions have yet been imposed on the shape of
the cross section, the orientation of the principal axes of the cross section
with respect to the local plane of curvature, or the change in these
quantities along the rod. The cross section area, the torsion and curvature,
and the tensile and shear moduli may also have arbitrary variation with z.
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E. Displacement Equations Of Equilibrium Neglecting Transverse Shear

Deformation And Rotatory Inertis

1. General Form

In this section the equilibrium equations for the rod are phrased in terms
of displacement functions. The effects of torsion, curvature and orientation
of the principal axes of the cross section areas as well as the variation of
these quantities along the rod are then examined.

In the following formulation transverse shear strains are neglected in
the sense defined by Eq. (3). Since rotatory inertia generally has less
effect upon predictions of frequency and motion than has trapsverse shear
deformation, it is consistent to set terms involving a_ and a_ equal to zero
in Eq. (9) although rotational inertia effects about the z axis are
retained. Equations (8d) and (8¢c) for V, and V_ respectively become
inconsistent because, although € s and € , are set equal to zero on the
average, equilibrium considerations requ{re non-zero transverse shear
forces. These forces are eliminated from the equilibrium equations by solving
for Vy and V_ in Eqs. (9d) and (9e) and substituting these results into the
remaining four equations, The equilibrium equations then become

M"—AZM +22M " +X2 M +A kM
y o'y o x o x 00 2z
(10a)
-k V ==-YAu +T -m' +Am ,
o z o X8 ys o xs
M'' - 2M <2 M «2A'"M + kM) =yAv -T +n +2Anm ,
x o x oy oy oz o ys X8 o ys
(10b)
t LI “_ -
KoMy tROA M+ V) YAw -~ T %, mog and (10¢)
. . .
M KM YJp ¢ -m (104)

In Eq. (10) superscript "prime" indicates differentiation with respect to z.
Eq. (9f) is repeated as Eq. (10d).
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To obtain the required displacement form of the equilibrium equations, the
functions a
resulting expreasigns for the moments and V, in terms of the four displacement
and rotation functions are then substituted into Eq. (10). The resulting
equations can be presented in the following form:

and a  are first eliminated from Eq. (8) by use of Eq. (3). The

A u;'+A u' + A u +B.,v'' +B . v' +B v

12

11 "o 10 "o 12 "o 11 "o 10 o

' 1 ' - "__
Ci11 % *Crlo ¥ * D12 ¢ *D ¢ * D¢ Yl ¢-m

zs
(11a)
A uIv Au """+ A Lu '+ A u '+ AL
24 o 23 22 21 20
B,, v W, B,.v """ +B,.v'" " +B,.v"'+B,v
24 23 22 o 21 20 o
" e ]
Ca3¥ *Cpavy GV * CpoV
" ] = - - '
D22¢ * D21¢ * D20¢ YAuo * sz m ys * >‘omxs !
(11b)
Ayu YV v A u '+ A +ALu' A
3470 337 327 3170 30 o
B,, v W, B,,v """ ¢+ B, v'" +B,.v'+B,v
3470 330 3270 310 3070
[ ] Tt L
C33wo * 032w° ¥ c31wo * C30wo
"o ' = - - - -
Dy,0 Dyy¢" + Dypd = YAV Tys m' . Aomys , and (llc)
38
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63% AUy Y Ay A%

"l* " + l+
+ Ba3v° B o B v° B vo

(N ] [}
*Cu¥% Gy * ¥

' ot
+ D, 9" + Db = YAW - T o+ KoMyg * (11d)

The fifty-eight coefficients appearing in Eq. (l1) are presented in
Appendix B. There it is seen that these coefficients depend upon the
geometric properties of the space curve described by the centroids of the
cross sections, the geometry of the cross section and its relationship to the
local vector principal normal and binormal, the elastic moduli of the
material, and the varia'ions of these quantities along the rod.

It is noted that in the general case described by Eq. (11), all motionms
are fully coupled since all variables appear in each equation. This means,
for instance, that any exciting force will cause motion involving all four
displacement and rotation variables. Also, solution of the free vibration
problem will yield mode shapes which will each have four corresponding natural
frequencies.

To aid in the understanding of how various geometric and stiffness
quantities interact to effect the rod motion, several more specialized cases
will next be examined.

2. Straight Rod With Variable Section Properties.

1f Xo and ko and their derivatives are set equal to zerc, the following
equations are obtained:

’ (128)

(GJP¢ ) =y I0 - m

(EI u '"")'"" + (EI v '"'")'"'" =~-yAu +T -m' s (12b)
yy o Xy o o xs ys
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P' x P''

8 TR x B

(A-5)

where superscript prime indicates differentiation of vector function P with

respect to z.
Proof:

Cl=P1—P hP'+—2TP"+...,

n?
1
N"U
|
o
"

3

q x G

[}

¢ xg)|

h™P'xP'' +

03] |erxert] + ...

-hP'+—2—!P"-.to,

Note that T and B are perpendicular to each other since P'«(P'xP'') = 0

*%1f 2 is the arc length s from a fixed point P, of C to point P, 8 is

then given by

2
a3
ds ds

B = —
| 45 |

d32
Proof: Since

dp

las! = 1

dP | dZP = Y d_

ds 2 2 ds
ds )

Therefore P'(s) is perpendicular to P''(s) so that

[Pr(s) x pr(s)| = |B'] |Rr| = [Pr(s)]

(A~6)

**The plane passing through P and normal to 8 is called the plane of
curvature or cscillating plane of C at P.

- PR -

e " e

s . e -
IOPL PP RO K P W P

AT AT T T e T e T T T e
* DICRE AT P AL OU S P
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Proof: If h is the length of arc between P and Pys Then
lim J_:I:J-:l =|g‘:’|o
h+0
The plane passing through P normal to ¥ is called the normal plane of ¢ at P.

2. Vector Binormal Of A Space Qurve (B)

Referring to Figure A-2, By and P, are points on C either side of point P
such that z increases by an amount h %rom P to P, and decreases by the same
amount from P to P,. 1+ and C, are position vectors of Py and P, with respect
to P respectively

Figure A-2.

A vector binormal, B , of C at P is defined as

B = lim 15 . (A-4)
o 16 X G

Again, the sense of B depends upon the choice of scalar variable z used to
describe the position of P.

If P 1s the position vector of a point P on C relative to a fixed point
0, the vector binormal can be expressed as
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A vector tangent, T , to C at point P is defined by

T = lim <5 (A-1)

h+0

where h is the increase in z from point P to P. Note that the sense of T is
not unique since it depends on the cholce of scalar variable z, It points in
the direction in which z increases along the curve,

#**The vector tangent can be expressed as:

Pl

T = TFTT (A-2)

where P' 1s the derivative of P with respect to 2z

Proof:

where

Pl = P(z+h)

By Taylor's series for vector functions,

P(z+h) = P + P'h + P"h2/2! + ...
su that
c P' +1/,h P+ ...
TEI_ ) [p’2 + h P'P"" + ,..] Vzand
T = lim <. .

h+0

*%*]f the scalar variable governing the position of P on C is the scalar
arc-length displacement of P relative to a fixed point Py of C then

- dr
T4 - (A-3)
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APPENDIX A
SPACE QURVE GEOMETRY

This appendix defines and presents relationships among various vector and
scalar quantities used to describe a line curved in three dimensional space.
These quantities include the vector tangent, vector principal normal, vector
binormal, the radius of curvature, and the curvature and the torsion of a
curve at a point.

Although the ensuing material may be found in many sources, this
particular exposition is abstracted from the book by T.R. Kane.* Rigorous
proofs, which have been omitted from this presentation in favor of intuitive
arguments, can be found in that book.

1. Vector Tangents Of A Space Qurve (T )

In Figure A-1, C is a curve in space, 0 is a point fixed In space while P
and P, are points on C whose position along C depends on a variable z.
Vectors P and P,, are position vectors of P and P1 respectively, with respect
to 0 while C is the position vector of 3] with respect to P.

C

Figure A-1.

» T.R. Kane, Analytical Elements of Mechanice: Vol. 2 Dynamics, Academic
Press, New York, 1981.
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V. CONCLUSIONS

This work was motivated by a requirement for a general analytical model of
a gun tube which could be used to examine the effects on tube motion of
centroidal axis curvature and twist, cross section eccentricity and variation
in cross section shape along the axis.

The model which has been formulated is based upon first principles of
mechanics and is sufficiently general to permit study of the above effects and
also of motions involving large displacements and rotations of the tube axis.

The model can provide useful information in its own right; both by
illustrating the manner in which the governing equations are coupled when
terms representing various affects are added or deleted, and by the free and
forced response solutions which may be obtained fur various special cases. It
can also be used to provide guidance for the development and use of more
approximate analytical techniques, such as finite element models, by
establishing the potential error associated with various approximatioms to the
actual structure. Since the derived equations show the coupling among the
displacement and rotation variables caused by axis curvature and cross section
non-uniformity effects, they can aid in the interpretation of physical
neasureneats of gun tube motion.
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even for a rod with symmetric cross section. It is also noted that although
the equations describing motion of a rod with constant cross sectional

!! . properties would have somewhat fewer and simpler coefficients, they would
retain the coupling among the motions described by the four variables.

+ « ZA EI $ =YAw -T + K m . (154)
o "0 "xx o zs o ys
tx - Introduction of torsion again causes coupling among all of the equations
ye,
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It is seen that while inclusion of effects of variable curvature somewhat
complicates the coefficients and increases their number, the equation with I,
equal to zero still describes two separate pairs of coupled motion involving
Yo and ¢ together and u_ and w_.

5 o o
3‘ 5. Rod With Constant Curvature And Torsion And With Variable Cross
2 Section
&
.' The final special case of Eq. (11) which will be considered is for a rod
- with constant torsion and curvature and variable but axisymmetric cross
_ section so that I, remains zero. The displacement equilibrium equations for
- this case are given below:
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2 ' - .. - _
(Elxy¢) YAw - T Komys . (134)

Eqs. (13) are seen to be fully coupled in the variables. If however, Ixy is
zero as, for example, for a circular cross section, then two pair of equations
result; one pair involving v, and ¢ only and the other u, and w,.

4. Rod Curved In A Plane With Variable Curvature But Comnstant Section
Progertlea.

The next special case is that of a rod for which Ao is zero but the
curvature completely variable. The principal normal and binormal directions
are assumed to be principal directions for the cross section. Eqs. (11)

become
2 o
+ e ] L ry - -
KO(G E)Ixxvo +k G v+ GJP¢ K, EL ¢ pr¢ moo o (14a)
EL u W, K 2 EAu + EI (¢ w )'' ~«< EAw ' =
yy o o o yy oo o o
- - - !
YAuo + sz m ys (14b)
3 Iv 2 [ ] \ [ 1) L
EL v +GI (xk “v ")" +k (EI_+ GJ )'' +«x "(2EI__ +GJ )¢
X O XKoo o XX p o XX P
[ X = - - |
+ K, EIxx¢ YAvo Tys m' e and (l4c)
« EI u '"''" - EA (cu)' + (EA +«x 2 T dw ''*'+ 2k ¢« 'EI w'
o yy o oo o yy o o o yy o
+ "R = - - - o
L FIyyvo YAwo Tzs s mys (144)
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= (BAw ') YAV - T, . (124)
- Eqs. (12) are seen to be the usual equations of motion of shafts, beams and

o bars. Equations involving u, and Vv, are uncoupled if the x and y axes are the

- principal axes of the cross section.
. 3. Rod Curved In A Plane With Constant Curvature And Varisble Section

. Properties.

3 In this case, the rod is initially in the form of an arc of a circle so
7.:- that Ko is constant and Ao is zero. The governing equations thus become
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o "Xy o ) Xy o o "xx o () XX 0
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3. The Vector Principal Normal Of A Space Curve ( v)

The unit vector given by

v=g@8xrT (A-7)

is called the vector principal normal of C of P, Contrary to the cases
of B and T , the sense of v is unique.

An alternative expression for v in terms of derivatives of position
vector P with respect to coordinate z is

- (P'xP'') x P’
I(P' x P'') x P'l *

v (A-8)

In terms of derivatives of P with respect to s. v is given by

P''(s)

v = m . (A-g)

This follows from the fact that P''(s) is perpendicular to P'(s) and
P'(s) is a unit vector. The plane passing through P and normal to v is
called the rectifying plane of C at P,

&. The Vector Radius Of Curvature Of A Space Curve (p)

C

Figure A-3.
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Referring to Figure A-3, P is a point on C and P; is the point of C with
which P coincides when scalar variable z is increaae& by an amount h. ¢, is
the position vector of P, relative to P, By definition, the center of
curvature of C at P is tﬁe point approached, as P, approaches P by the center
Q, of a circle which is tangent to the tangent line of C at P and passes
through Pl’ If r is the position vector of Q relative to P, the vector radius
of curvature, p , is defined by

O
PR

s a0

p =Lim r . (A-10)
. h+0

P4

»

**In terms of the derivatives with respect to coordinate z of the position
vector, P, of P relative to a point 0 fixed in space, the vector radius of
curvature is given by:

ey
P

_@n?

P 3 (P'xP'') x P' . (A-11)
(P'xP'"')

Proof: r(by construction) is perpendicular to both T and T x cl. Hence,
there exists some scalar, say § such that

r= 6t x (T x cl) . (a)

On the other hand, as Q lies in the perpendicular bisector of
line P P1 , T may be regarded as the sum of L& < and a vector perpendicular
to both 1 and 'l.’xcl + Hence, there exists some scalar, say u , such that

c

r= il- + uclx(T x cl) . (B)

Dot multiply each of Eqs. (A) and (B) with ¢; (to eliminate &), equate the
resulting expressions for re;, solve for & and substitute into Eq. (A) yields

2
. €T X (x x cl)
r’

y (c)

2¢ * Tx (T x c
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Next, use the relationships

P' 2l

T =-T57r : ¢c=hP' + 07y

and substitute Eq. C into Eq. A-10.

2 P'' + ...

5. The Radius Of Curvature.

The vector radius of curvature p can be expressed as
Pp=pPV (A-12)

where p is an intrinsically positive quantity called the radius of curvature
of C at P which is given by

NE
p = *gTiFTTT . (a-13)

Proof: Multiply the numerator and denominator of the expressions for P of Eq.
(A-11) with IP'l , giving

e @) x
p P'xP'" lPlenI Irlr .

By Eq. (A~8), Eq. (A-12) is an identity if p is defined by Eq. (A-13).

*%In terms of derivatives of P with respect to s, p and p are respectively
gziven by

P''(s)
'P"(s)l2

= and

(A-15)
1

R ey

58




Proof: IP'(3)|2 = | and

[P'(s) x P"(s)]2 - IP'(s) x P"(a)|2 = |P"(s)|2 .

Furthermore,

RERE S R
.

[

(P'(s) x P''(s)) x P'(s) = (B')2p'* — p'*ep' P' = P''(s) .

v +JEEES 2 s

6. The Serret-Frenet Formulae

! The derivatives of the vectors T, B and v with respect to s are given by
- dt

! e v/p , (A-16)
N

N a8 .. A v, and (A-17)

: s

~

~

' dw

b P B T/p (A-18)
D

N where p is the radius of curvature and A, called the torsion of the curve c¢ at
! point P is given by

5 A= p“[P'(s) ¢ P''(3) x P'''(s8)] . (A-19)
y .

N Eqs. (16), (17) and (18) are called the Serret-Frenet formulae.

::

e Proofs:

"

! oy

Py
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t = P'(s)

t'(s) =P'' =p'' = ,P", ve= v,

(a-9)

-1
B =P (s) x P'"(8)[(R'")2]" /2, and

8'(s

Eliminate

p' =

-1
) = prxp' U [(R' )2 R

- P'x?"[(?")zl- 3/2

PII.PI'U

the first and second derivatives of P by using

T and P'' = v/p ,

Then
B' =p tx (P''" =~ v wp''")
=p 1tx [vx (P"''xv)]
=p T (P''"'xV) V-p T v (P""'xv) .
Since,
Ver = 0,
B' =p1t « (P'"'"'" x V) ¥
= - A v,
where
A=-=-p 1T (P''"'xV)

pz [Pl - P"XP"'] .
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Finally,

v=f8x T, and

vi =8 x T+ Bx T

= - AvxT+ Bx vV

But »

v T= (Bxy) x T =~ B and

Bxw = Bx(BxT) = - 1 .,

Hence |
v =8 - 1/p .

**The torsion,)A, expressed in terms of derivatives of P with respect to a
variable z other than 8 is given by:

-6 (4-20)

A= o2 [P'(2) + P''(2) x P'''(2)][P'(2)|

Proof:

p(s)-p()d—z,

2
P'(e) = P (2) ($2)% ¢ p'(2) &L, and
8 ds
61

LI

W T TS - .‘ - "n' ""-‘ -------- e e e
GRSRNES LSS S Oh CG R SR O S G SR 6 O S A S SRR T W 1 T, XS TR M“I}}?},‘.x‘.-ﬁ;}.-‘.-‘j




RPN RO I MR S T Sy -4.' DAL S 00 S0 B St p Ol il el il gl gl W e B S e

Bt DN T AN A L AR AR 2N B SRl e SA0 e L e

2 3
P'''(8) = Pnc(z)(g_:)3 + 3 P''(z) %% Q__;_l_+ P’ a’z .
ds ds

Then,

P'(s) « P''(8)xP'"''(s) = P'(2) * P"(z)xl’"'(z)(%%)6 ’

also

(-35)2 P'(2)% = P(s)? =1 .

Therefore,

(£2)° = (p(%) 7 - |pr|

7. Example: The use of the Serret-Frenet formulas is illustrated by use of
the following example,

A straight line AC is drawn on a rectangular sheet of paper ABCD having
the dimensions shown in Figure A-4. The paper is then folded to form a right
cylinder of radius a/w, the line AC thereby being transformed into the
circular helix H shown.

a. Determine the cosine of the angle y between a unit vector k parallel
to the axis of the cylinder and the vector binormal of H at point P.

Solution: Let P' be a point on the cylinder base (Line AB) such
that PP' 18 parallel to k, Let z be the distance between P and P', O the
intersection of the axis of the cylinder with its base, m a unit vector
parallel to line OP', 6 the radian measure of angle AOP', and P the position
vector of P relative to 0.
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Pigure &_4.
cos w =k o 8,

g = P'(z) x P"(z)

[e'xp |

P=a/trn+zk,
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' - 40
P a/mT kxn dz + k,

6 =1 % (Since arc AP® = 2 % , and

Therefore,

P'(2) =§bm+k,

P (2) = £ tx(iocm)

2_ n (since kx(kxm) = - n) .

= -7
bZ
P'xP'' = i% [%-k + mx k) and

21
fprxet| = v &5 (1 + 35 A,
b b

Thus ,

a az -l
B=("k+nxk)(1+=) "2,

b b2

Finally,
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21
cos ¢ = kep= (1 +%) /
a

b. Determine The Radius Of Qurvature At P Of The Helix H.

p |’
N 2 T

P'=§-kxn+k,

2.1
[B'xpr| = na—2(1+a—2-) /Z,and
b b
2
a~ 13/2
[l+b2] 2
e 2 1/ - —(l+—2) *
a a
r = 1+ ]
b2 b2

Ce Determine the torsion A of the curve H.

A = pZ[ptepixpt )R]0

P'-%kxn*»k,

P o=~ 0,
b
2
a da a
P"'-—WT a-'--ﬂ-3 kxa ,
4
b b
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o] = (1 +29 "%, and

b2
2
P's(P''xP''') = % - .
b5

Then,

a“+b

8. Angular Velocity Of Space CQurve ordinates In A Fixed Reference Frame.

Let P be a point wmoving along a space curve c with speed %% where 8 1is
the distance to P along ¢ from some point of c¢. If R 18 a reference frame in
which the tangent (1), principal normal (v) and binormal (B) unit vectors to c¢
at P are fixed then the angular velocity of R in the reference frame R' in
which ¢ is fixed 1is given by

' - ds ‘ Ae
R' R (At+1/pﬁ)dt. {A-21)

Proof: Given two reference frames R and R' and any two non-parallel vectors a
and b fixed in R. The angular velocity of R in R' is defined by Kane as

da _db
dt = dt
' o ———— -
RNR d—"-b . (A-22)
dt

If a and b are taken as the vector principal normal, v , and the vector
binormal, B, respectively at P then Eq. (22) may be written as

dv _ d8
' . ds ~ ds ds -
R', R ———Q.s T (A-23)
ds
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Next, the Serret-Frenet formulas give

dv -

rr AB - 1/p t and
d8
ds

= -\ v,

Substitution of the above into Eq. (A-22) gives the desired result.
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APPENDIX B

APPENDIX B. COEFFICIENTS APPEARING IN EQUATIONS (IV-11)
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APPENDIX B

APPENDIX B. COEFFICIENTS APPEARING IN EQUATIONS (1Iv-11)
KO(G+E)Ixy

A K (GHE)T  + (KOGIxy)'

KOXO(GIXX) '+(KO'AO+KO)‘O' )GIXX-H(OAO' I‘:.[Xy

KO(G+E)Ixx
-
(KOGIXX) KOXO(G+E)Ixy

- LI ] - 1
noxo(clxy) Ky AOGIxy noxo (G+E)Ixy

2
Ko (G+E) Ixy

2 ' -
<, (GIxy) + 0% (2G+E) Ixy

2(EI _)' - x_ EI
yy o Xy

2
" ' -
(EIyy) + 2)\0 EIX)’ AO E(ZIXX+IYY)
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