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I. IETEOUCTIOI

The work described in this report was motivated by the need to explain
observed inconsistencies between measured dynamic response data and response
predictions of various analytical and finite element models of certain rod-
like structures.

It was felt that a sufficiently general mathematical model of this class
of structures might illuminate hitherto unnoticed dynamic effects and
interactions caused by such phenomena as large displacements and rotations,
initial space curvature, variable shape and area of cross section, initial
twist of cross section principal coordinates along the rod axis, transverse
shear deformation and rotatory inertia.

Although the study of vibrations of rods and bars is one of the most
ancient in structural mechanics, a completely general formulation of the
problem is difficult to find in the literature.

One of the seminal treatments of the derivation of equations of motion of
rods with initial curvature appears in the text on Elasticity by A.E.H.
Love.1 Although restrictive forms of Love's equations are used directly, or
are re-derived, by subsequent investigators of small amplitude vibrations of
curved rods, there are deficiencies in Love's work which render his strain-
displacement equations unsuitable as the starting point for a general
examination of the motion of rods with space curvature.

In Love's work, the final state of deformation is assumed to be such that
cross sections remain plane and normal to the centerline of the deformed
rod. By these assumptions not only is transverse shear deformation excluded
but, as will be shown, kinematical inconsistencies are introduced.

Love employs a two stage deformation process consisting of first the
imposition of twist and curvature nn the initially straight rod centerline
followed by imposition of small displacements to points of the cross
section. This approach leads to confusion of local coordinate systems and of
displacement components which renders suspect his expression for the change in
length of line segment connecting adjacent points. The generality of the
strain-displacement equations presented is further limited by the assumptions
that displacements are small and that dimensions of the rod cross section are
small in comparison to the radius of curvature. Finally, strain-displacement
equations for an initially curved rod appear explicitly only in a restrictive,
plane curvature, form.

Equations governing both static and dynamic deformation of curved rods
are employed in such areas of structural mechanics as vibrations of curved
beams, large deflection and stability analysis of beams and columns and non-
linear dynamics, including stability of oscillations of beams and strings. A
bibliography of this literature with emphasis of curved beam vibrations is
included with this report.

1 A.E.H. Love, A Treatise On The MAthematical Theory of Elastiity, 4th Ed.,

Dover PubZication, New York, 192?.
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In spite of the large number of papers dealing with these subjects, there
does not appear to have been a re-examination of Love's strain-displacement
equations or a more general independent derivation. The equations of motion
employed by the various investigators are either those presented by Love or
are derived for each particular application on an "ad-hoc" basis.

In this report a derivation of the equilibrium equations for a rod with
general space curvature is presented in Section II. This derivation is
similar to that presented by Love, or more recently by Kachanov. although it
is somewhat more rigorous than those in its examination of the relative
importance of higher order terms in Taylor's series expansions.

A completely general set of small strain but large displacement and
rotation strain-displacement equations is then formulated in Section III for a
rod with initial twist and arbitrary space curvature. In these equations the
displacement components are referred to the local tangent, principal normal
and bi-normal space curve coordinates rather than to fixed global
coordinates. No assumptions regarding the structural action or mode of
deformation of the rod are made so that the functional form of the
displacement components is left unspecified.

In Section IV a linearized form of the general strain-displacement
equations is first presented. A technical theory of rods with space curvature
is then developed based in the usual Leam theory assumptions that cross
sections remain plane and undeformed. The displacements are then expressed as
appropriate linear combinations of three central curve displacement components
and three rotation components.

Based upon these displacement functions, the inertia force and moment
terms appearing in the equilibrium equations can then be formulated in terms
of time derivatives of these six displacement variables.

The linearized strain displacement equations phrased in terms of the
central curve displacements and cross section rotations are then used to
derive force-moment-strain-curvature equations for a linear elastic rod. The
equations are then further simplified by elimination of transverse shear and
rotatory inertia effects. When these equations are combined the equilibrium
equations, a system of four coupled equilibrium equations in the four
displacement and rotation variables results.

The final section of the report is devoted to examination of the
displacement equilibrium equations for special cases in order to examine the
conditions under which various uncouplings of motions occur.

2 L.M. Kachanov, "A Brief Course On The Theory of Buckling" TAM Report No.
441. Univereity of Illinois Urbana-Champaign, 1980.
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II. EQUILIBRIUM EQUATIONS TOR A RD EUMKUT

A. Force and Moment quilibrium

A typical element of a rod with space curvature is shown in Figure 1.

The line joining centroids of cross sections is a space curve whose
radius (p), cr curvature K-l/p, and torsion (W) *are arbitrary functions of
arc length (a). The shape of the cross sections is arbitrary but assumed to
be a continuous function of s. At the centroid of any cross section an
orthogonal coordinate system (x,y,z) is constructed with corresponding unit
vectors i, j, k, such that k is the unit tangent vector to the space curve
determined by the line of centroids. Vector k therefore points in the
direction of increasing s. Unit vectors i and j are the principal normal and
bi-normal vectors respectively so that jxk - i.

The principal directions of the cross section area of the rod with
respect to the centroid are, in general, inclined with respect to the x, y

coordinates. The angle between these two sets of coordinate axes may vary

continuously with a for the case of a pre-twisted rod.

Figure 2 shows a section of curved rod of incremental length 6s lying
between points 0 and 0' of the space curve of centroids. By the usual
definition, the face at 0 is a negative face since its outward normal points
in the direction opposite to the local tangent vector while the face at 0' is
a positive face. The usual sign convention for stress components in positive

and negative faces will be employed.

The force and moment resultants of the stress components (axz, yz, a zz)
acting on a cross section of current area A are defined as

V = 1 0 dA , (la)**

V - f o dA , (lb)y fA yz '

V a f a dA , (lc)

?KAy a dA , (2a)

M - - fA x adA , and (2b)y A z

Appendix A presents a di sussion of space curve geometry

Equations are numbered consecutively within each section.

9
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m I f {y F - x FiyI dA f A yyu dA - A yxv dA . (26c)
A A A

II. STRAI-DISPIAKKNJT EDUQTIONS

Equations relating the components of strain at a point in the rod to the

displacement field are derived by considering the change in length of a line
segment connecting to arbitrarily close points of the rod as the rod is

deformed.

Figure 5 shows two adjacent cross-sections of the rod before

deformation. The centroidal curve has initial curvature K and torsion A
0 0

The centroid of one cross-section is point 0 and the other, at a small

distance 6s along the curve, is 0'. The vector principal normal, binormal and

tangent at 0 are i, j and k respectively while the corresponding vectors

at O' are denoted by i, j and k. Coordinates x, y, z directed along i, j and
k respectively comprise a local coordinate system with origin at 0.

Corresponding coordinates at 0'are x, y and z.

Point Q lies in the cross-section at 0 while Q' lies in that at 0'. It

is assumed that Q and Q' are initially arbitrarily close so that the position

vector of Q', r can be expressed as

r = 6x i + 6y j + 6z k (I)

where 6x, 6y, and 6z are arbitrarily small distances.

If n is a unit vector parallel to r and directed from Q to Q', and r is

the magnitude of r . Then

r - rn - r X i + rm j + r n k (2)

when £,m, and n are the direction cosines of n relation to i, j and k

respectively. Equations (1) and (2) imply the relationships

6x - rX, 6y = rm, and 6z = rn . (3)

The length of the position vector joining material points initially at Q

and Q' as the rod undergoes a deformation which carries these points

to Q and Q' respectively is next determined.

23
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For a discussion of various representations of the angular acceleration and
ang~lar velocity vectors the reader is referred to a recent book by Kane, et.
al.

if

7 1 iF Ix i + F Iy + F Izk

the scalar inertia forces become

Fi = - YU, (24a)

F -y=- yv and (24b)

Fi = - TV. (24c)

Upon integrating over the area of the cross section, A, the inertia forces per
unit length of rod arising from the three body force components are next
obtained,

T IX =f A F IdA - - fA-y udA , (25a)

T - f A F IydA - - f y vdA , and (25b)

T1 z = 1fA F IzdA -- fJy wdA. (25c)

Finally the inertia force couples are presented in terms of the three
acceleration components

m x f y F IdA A y ywvdA, (26a)

*Iy - f x F IzdA - f A yxwdA , and (26b)

4T.R. Kane, P.W. Likina, and D.A. Levinson0f, "Spacecraft Dynamics," McGraw
HillZ, New York, 1983.
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The reader is referred to a paper by E. Reissner3 for corresponding large
displacement curved beam equilibrium equations in which the force and moment
components are referred to the undeformed coordinates.

B. Ineztia Forces and Couples

The inertia body force, FI, acting at any point, Q, in a cross section is
defined by

S- Y U Q (22)

where y is the mass density of the material of that point, u is the
displacement vector associated with that point and superscript "dot" indicates
differentiation with respect to time.

The displacement vector uQ is expressed in terms of the local space curve
coordinates as

uQ-u i+v j +wk

where u, v, and w are the scalar displacement components in the x, y and z
directions respectively.

Since the local coordinate system is moving in the fixed (inertial)
reference frame, the acceleration vector may be expressed in the form:

UQ- aQ + a x uQ+ x )+ 2 x vQ (23)

where

v- ini+vJ k

aQ-u i+vj +wk

and i and a are the angular velocity and angular acceleration vectors
respectively of the local coordinates in the fixed reference frame. For
problems involving small rotations and/or small displacements of the rod cross
the non-linear terms in Eq. (23) may often be neglected in comparison with Q.

Since this report will be concerned primarily with equations governing
small motions the non-linear terms in Eq. (23) will henceforth be neglected.

E. Reisener, "On One-Dimensional Large-Displacement Finite-Strain Beam
Theory," Studies in Applied Math, Vol 52, pp 87-95, 1973.

21



V(s + ) V + + V j + V k andx y z

u(s) m x I + m j + M k

Eq. (19) becomes

aM
-Xm + K M -V + mi

y z y x

aM
+ ( -Y + XM + V + m )j

38 x x y

aM
+ (a-s - M + m )k = 0x z

The three scalar equations representing the conditions of moment equilibrium
for the rod element become

aM
X- XM + K M - V + m = 0, (21a)as y z y x

3M
+ )M + V + M = 0 , and (21b)38 x x y

aM
z _ KM + m 0. (21c)

3s x z

Although this manner of derivation of the equations of force and moment
equilibrium for a curved rod used above is different from that presented by
Love the resulting equations are essentially identical. Differences in form
result from differences in force and moment sign conventions and because Love
employs local coordinate axes which are the principal directions of the area
of the local cross section of the rod rather than the natural space curve
coordinates.

In general, the local x, y, z, coordinates are the deformed coordinates
of the centroidal curve of the rod. The torsion and curvature terms appearing
in Eqs. (12) and (21) are the total values of these quantities consisting of
the sums of their initial values and their respective changes due to
deformation of the centroidal curve. For small deformation analysis the
initial coordinates and initial values of X and K are employed.

20



I'z V (S + 62) - [k60 + K/2 i (6s) 2 x [V (a+ ) + L)l +6s

+ -2v a 2 (68)2]s2 s

kxV (s + ) 6s + [1/2K i x V(S + ) + k x V 1 +] (68)2 and (17)
as

as
Wo. + 6s) -M(s+) + 6s + 1/2 L2}/ 1 +(6)2 (18)

s 1 s 2  a

where again V(s+ ) and N(s+ ) indicate the force and moment resultants acting

on the positive face at 69 - 0 so that M(s+ ) = - m(s).

Finally, substitution of the result given by Eqs. (14) and (16) through
(18) into Eq. (13) and division by 6s yields the following vector moment
equilibrium equations in the limit as 6s+O.

a'( I + + k x V(s + ) + (s) - 0 (19)
s

To obtain the scalar equations represented by Eq. (19), N(s+) is expressed in
terms of its vector components and the Serret-Frenet formulae are used to

transform the derivatives of the unit vectors

da.i + j + M --

- a + j + a k + M x yd zd

3M + M 3M
a * + j J + a-i k + M (xj - Kk) + M (-A) i

+ M 1. (20)
z

Also, since

19



In Figure 4, Ra0 , R'o and P are position vectors of points, at positions
" 8" "a + 6s" and "a + i" relative to a fixed point Q. If R'(s) is the

position vector of any point in the space curve relative to 0 we may write

It# at R' -
0 0

R~ + d/ds 16. +1 d2R .(6s) 2  + - R

duds + 6/s *s 6s ~ 2 (ds
0-2 2 ds 2 ..

k 6s + K/2 i (6s)2 (15a)

since by definition k = dR/4s and by Eq. (10a) dk/ds K C i.

In a similar way it is found that

R =P - R
0

2kL + K/2 i C (15b)

Combining Eqs. (7) and (15b) yields

i x T - k(s) x T(s) C + [K/2 i x T + k x L I +

Therefore,

s+69s 6s 6s

fJ x T de - k x T f dC + [K/2 ixT + k x aT/as] f 2
50 s

" k(s) x T 1/2 (6)2 . (16)

Next,
18
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. -__ 4 - • . ' -- . . .. .-

av av
- + (.cV + - V,s X z as y

+ (XV + av /as)j + T i + T j + T k -0. (1I)

Finally, Eq. (11) may be written as three scalar equations which express the

condition of force equilibrium for a beam element

a V/ Ps - .V + KV + T - 0, (12a)
Ky z x

a V/ Ps + XV + T - 0 ,and (12b)

aV /as - KV + T - 0 (12c)
z x z

Next, the conditions for moment equilibrium are formulated from

consideration of the free-body diagram of Figure 4. Summing moments about

point 0 yields

M(s) + M(s + 6s) + K' xV(s + 6s)

s+6s s+6s

+ f xT(s)ds + f a ds 0 0 (13)

a 5

Again the terms appearing in Eq. (13) must be expressed in terms of their
values and those of their derivatives at "a"

*(s + - M(s) + s! + a.-. C2/2 + .. and

s+6s 68s 68 2  s 2

f ads = s(s) f d; + 2)"If d; +2 Is f d4 +8s 03 0as 2 0 '
as2

- ()2 + ... (14)

1.7



f Td T(0)s + I 1. (6s)2/2 + *.. (8)

sa

Returning to Eq. (7), we next express V(s + 6s) in terms of its value

and those of its derivatives at 6s - 0 using vector Taylor's series.

V(s + 68) - V(s+ ) + + 6+ + ... (9)
5

The symbol "s+11 is used in Eq. (9) as a reminder that this force acts on a

positive face of the element. Therefore,

Ws-+  V i + V j + V k and (9a)
x y z

v I av V aV di dk

3s+ as as as X ds y de z ds

(9b)

Expressions for the rate of change of the unit tangent, principal normal

and binormal vectors with respect to arc length are given by the Serret -
Frenet formulae (Appendix A) as

dk/ds = /p i - K i ,(10a)

d - Xi and (lOb)
ds

di/ds = Xj - Kk (10c)

where K(- l/p) is the local curvature of the line of centroids. Upon

substitution of Eq. (8) through Eq. (10) into (6) and division by 6s, the

following vector equation results in the limit as 6s approaches zero,

16
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The surface tractions and body forces may also contribute to a moment

resultant per unit length about the three coordinate axes. This moment

resultant is defined by

, - mxi + m j + m k. (5b)
x y z

For problems involving motion of the rod element, the force T will
contain terms involving inertia forces while the moment a may contain moments

. of inertia forces about the three axes.

A free-body diagram of a rod element is shown in Figure 4. In Figure 4,

points 0 and 0' are again points in the curve of centroids at positions "s"
and "s + 6s" respectively. The force and moment resultants acting on the rod

., cross sections of these positions are indicated as well as the surface
traction vector and surface traction moment resultant at a typical point

- s + 4 where s < s + C s + 6 s.

R is the position,vector of the point x + relative to 0 while R is
the position vector of 0 relative to 0.

The condition of force equilibrium applied to the rod element yields the

- following equation

s+t s
V(s) + V(s + 6s) + f T ds = 0. (6)

Now,

DT I; +_ 2jT 82+
T(s + =T(s) + - (7)

a + ' a2  + ..2 7

as

where

s <(s + ) <(a + 6S) and ds d•

Therefore,

f T ds = T(s) f d-2 f s s 2 s s "+ "or
aas

14
s o0

..



Mzz

44

m 

-



H - f(xz - y )dA (2c)
4bz yz xz

Based on the above definitions, the vector force and moment resultant of
the tractions acting on the face with centroid "0" at point "a" on the
space curve of centroids is

V(s) - - V (s)i(s) - V (s)j(s) - V (s)k(s) and (3a)
x y S-

M(s) = - M(s)i(s) - M (s)j(s) - M (s)k(s) . (3b)
x y z

Similarily, these vector quantities acting at a + 6s on the face with centroid
S0' are

V(s + 6s) = V (s+6s)i(s + 6s) + V (s + 6s)j(s + 6s)|x y

+ V (s + 6s)k(s + 6s) and (4 a)
z

N(s + 6s) = M (s + 6s)i(s + 6s) + M (s + 6s)j(s + 6s)x y

+ M (s + 6s)k(s + 6s). (4b)
z

These quantities are illustrated in Figure 3.

Note that the unit vectors used to describe the directions of the vector
forces and moments at s are different from those at s + 6s since the
directions of the space curve unit vectors are constantly changing along the

curve.

The resultant per unit length of the tractions acting on the lateral
surface and of the body forces acting in the interior of the element is given

by

T = T i + T j + T k (5a)x y z

where Tx, Ty, Tz have the dimensions of force per unit length and i, j, k are
local unit vectors.
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Figure 6 illustrates the initial and final positions of these material
points as Q and Q' undergo displacements and un,. The magnitude of the

position vector of Q' with respect to Q, r is fould by use of the following
vector equation relating the initial and final relative position vectors of
these points to their respective displacement vectors,

r + UQ, UQ (4)

, The displacement components u, v, and w at point Q are again given by

UQ W u i + v j + w k. (5)

The displacement vector at point Q', adjacent to point Q, can then be

expressed as

u, U. +- 6x + 6Y+ (6)QI Q ax ay az

where higher order terms in this Taylor's series expansion of the displacement
vector about point Q have been dropped. The vector derivatives appearing in

Eq. (6) are next presented in terms of their vector components,

au "x 3L + LvJ + 1- k (7a)

ax axa+ x ax

au au + v j + 1w k (7b)

By ay 8 a+

au au . v aw ki-"aik
L . T I + -1-v + .1w k u " +  v  + w

au . v . w
T . + I- + k + u (X - k) - vX i + w K or" z az 3z u o 0 0 o0 ,o

26
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au aak 7

L2 -a )v + K V) i + (- .!+. u) J + (2-w c~ (7c)az z 0 za 0

where the Serret-Frenet formulae have been used to express the rate of change

of the local coordinate unit vectors along the curve in terms of the local
curvature and torsion.

Substitution of Eqa. (5) through (7) into (4) and using Eqs. (3) yields

the following result for the position vector of Q' relative to Q:

[r(l +L2-l + m + n (2 - XV + Kow)] Ma az 0 0

+ v m(l + L) + n(Xu + L--)] j

aw aw
+r[ - + m y + n(l-iKu + -)L k. (8)

ax" 0 az

If the magnitudes of r and r se denoted by r and r respectively, then the
unit elongation, e, of the original line segment is defined by

r - r(l + e) . (9)

If e is a small quantity, then

-2 2
S r + 2e) (lOa)

or

-2
e "/2 (rO (b)

r

Upon squaring the magnitides of the vector r given by Eq. (8),

' substituting the result into Eq. (lOb), and grouping the resulting terms as

o coefficients of the products of the direction cosines X, m and n, the

*elongation, e, may be expressed in the following form,
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e + t2 + 2 C n+2 + 2m+2 In + 2e am (11)xx yy zz xy xx yz

where

ax +u [u 2 av 2 aw 2 (12)
xx ax X + V) x

£ - .Lv + "2 [ (2u 2 + (3 Vy2 + (4!y , (12b)

2 + ;( 2 ) + 2 + A 2 + (. 2XJ2  2 A3K3V]
+12[~ +A ) A v +~ vc - 2 A v

+/21( 0 0 0 0 0

3u 3v 3w 3-2 AV - + 2 A u - - 2o u 2- + 2 o w , (12c

0 z *0 a0 z0 z 1c

2 2-u + v + u + !W aw (12d)xy ay ax ax ay ax ay ax ay

2 e = U Bu+ -W v + K W + 2u 2u + Lv av
xz az ax 0 0 3x 3z ax az

_-+3w 3w 3u 3u 3v w+ 2x- z ov-x + o W-L-W + xO U ou- u (12e)

2 e 3v + 3w + u + 3u au + 2v_ +2W w

.z 0 ay az ay az ay az

(12f)

+ a v _w VLU + K W U
o y 0 ay 0 ay 0 ay

By definition, the quantities C £ C , £ , and e are the normal
and shear strains at Q referred to t ye local coordinates at K Eqs. (12)
therefore constitute the required strain-displacement equations.

28

• :,~~~~~~~~~~~~~~~.-.......:.,. _................;......................................-...'..'.-........................



Clearly, various approximate forms of Eq. (12) may be formulated

depending upon the simplifying assumptions appropriate for a given problem.

These formulations may postulate small deformations with large displacements;

small deformation with small displacements but large curvatures and/or

torsions; small curvatures and torsions; or various other combinations of

simplifying assumptions. The reader may verify that the technical theory of

curved beams, in which the normal strain is a non-linear function of the

transverse coordinate, requires retention of terms involving squares of
curvatures and of displacements. It is also noted that consideration of

buckling or of stretch-stiffening effects requires retention of non-linear

terms in Eq. (12).

The simplest form of strain displacement equations which contains the

effect of initial curvature and torsion of the centroidal curve is obtained by
dropping all non-linear terms in displacements and displacement gradients.

The strain-displacement equations then become

aue =x ax (13a)

xv
£ av -- (13b)

yy ay'

E aw . c - (13c)zz az 0

£xy 1 1/2 (r + )x, (13d)

1 -/2(- + !w- v + Iow) ,and (13e)
xz3z a00

1, /2 [ + w u) (13f)
yz z ay 0

* At this point the functional form of the displacement components in terms of

the coordinates is completely unspecified. In the next section the strain-
displacement equations are put in a form which corresponds to the usual

technical beam theory.

IV. A TECHNICAL THEORY OF M)DS ITH INITIAL CURVATURE AND TORSION

- A. Displacement Functions

A linearized "engineering" theory of curved rods is next developed on the
basis of assumptions employed in the strength of material formulations for

. the bending and torsion of prismatic bars.
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The fundamental assumption of both technical beam theory and that of

torsion of straight rods is cross sections unchanged in size and shape after

the structure is bent or twisted. It is not necessary to initially postulate

that cross sections remain normal to the bent centerline.

A typical cross section is therefore assumed to undergo a small rotation

about each of the three coordinate axes while its centroid is displaced along
each of these axes. These assumptions imply the following form for the
displacement functions,

w(x,yz) - w 0(z) - x a (z) + y a (z) , (la)o yx

v(x,yz) v 0(z) + x *(z) , and (ib)

u(x,y,z) - u (z) - y (z) • (1c)

In Eq. (1), U0, vo and wo are the displacement components at a point on the
centroidal curve (the origin of the local x,y coordinates) while
a , a and * are small angles of rotation about the x, y and z axes in that

orer, as shown in Figure 7.

It is noted that theory of torsion of bars with non-circular cross
sections requires the addition to Eq. (1) of a term representing warping of

the cross section. Introduction of such a term would greatly complicate the
ensuing development with very little effect on the state of stress other than
near a fixed boundary. For this reason, the displacement functions of Eq. (1)
will be employed irrespective of the shape of the cross section of the bar.

Warping of compact cross sections increases as the ratio of the principal

second moments of area differs increasingly from unity. The warpinf
phenomenon is thoroughly treated in texts by Timoshenko and Goodier and by
SokolnikoffO

B. Strain-Displacement Equations

The linearized form of the strain-displacement equations derived in
Section III are used as the basis for the strain-displacement equations for
the technical theory.

S. Ti oshenko and J.N. Goodier, Theory of Elasticity, 2nd Ed., McGraw-

Hill, New York, 1951.

6 I.S. Sokolnikoff, Atthematical Theory of Elasticity-, 2nd Ed., McGraw-Hill,

New York, 1956.
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Figure 7. Displacement and Rotation (baponents
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Substitution of Eq. (1) into Eq. (111-13) yields the following
expressions for the components of strain,

e - en M 0, (2a)xx yy xy

aw aa 3a
zz . az X z + y z - (u - y , (2b)

2c z a - X v + K w + y(K - - x(x + ) , andXZ Z Y .0 0 0 0 X Z 0 (2c)

av
2 X u + a + x -y X . (2d)ayz z o x z 0

Eq. (2a) represents the condition that cross sections do not deform and
thereby confirm the satisfaction of the initial displacement assumptions.

Eqs. (2c) and (2d) show that transverse shear deformation cannot be made
to vanish for all values of x and y. Introduction of the angle * to represent
torsional rotation would lead to this result even for a straight bar. For the
curved bar it is noted that the presence of initial torsion and curvature
prevent these strains from vanishing everywhere even with the omission of the

rotation *.

The condition that cross sections remain normal to the centroidal curve

can be invoked locally at x-0, y-0 or, alternatively, in an average sense by
integrating Eqs. (2c) and (2d) over the cross section. In either case, the
following equations expressing the vanishing of transverse shear deformation

(in the above meaning) result:

au
o- 0 X +Kw and (3a)y az 00 00

av
" u 3 (3b)

Another simplifying assumption often invoked is that the centroidal curve
(x-y=O) remains unchanged in length during the motion of the rod. From Eq.
(2b), this condition may be expressed as

aw
z0 ou 0o . (3c)
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C. Inertia Force. and Nomeato

The inertia force resultants and couples per unit length are obtained by
introducing the assumed displacement functions into Eqs. (11-25) and (11-26)
and carrying out the indicated integrations. It should be remembered that the
origin of the coordinate system is the area centroid of the cross section so
that integrals of the form f xdA and f ydA vanish . The resulting

A A
expressions, assuming no variation of mass density within a cross section, are
presented below.

TIx M - u° A0 , (4a)

Tiy -YV A, (4b)

TIz - yw A, (4c)

Mix Y + 1 xya (5a)

ly Iy a yy a ,and (5b)

mi= - Y J p (5c)

I a f y2 dA , (6a)

I f xdA, (6b)
YY A

I a f xy dA ,and (6c)
xy A

J I + [ . (6d)p xx yy
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l and I are the second moments of area of the cross section for the
centroid a out the x and y axes respectively; Ixy is the product of area with

respect to the centroid for the x and y directions; and J is the polar moment

of area for the z direction with respect 
to the centroid.

The area and shape of the cross section of the rod may vary in an

arbitrary way along the rod. The orientation of the principal directions of

the cross section area with respect to the plan of curvature also may vary.

The quantities defined by Eq. (6) should therefore be considered to be

functions of the z coordinate.

D. Moment-Curvature and Force-Displacement Equations

The stress-strain relations which will be used for the derivation of the

equations relating the force and moment resultants acting as a cross section

of the rod on one hand, to the displacement and rotation components, on the

other, are predicated on the assumptions that the rod is constructed from a

linear elastic material which is elastically homogeneous in each cross section

and that the normal stress components in the directions transverse to the

centroidal curve are small in comparison with the normal stress component

a

The applicable stress-strain equations then become

a ffi E c , (7a)

o = 2G e , and (7b)

G a 2G . (7c)
yz yz

Twe required equations are next obtained by combining Eqs. (2) and (3) with the

deFinitions of the various force and moment resultants given by Eq. (II-i),

M=f ya dA
A A

aw D +d
Ef y - - IU - X Y + y + K dA

A 3z

_EI -y-z y + E I -xx - - + K o o) , 8a)
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M- f xO dA - E I a - E I x  + K ), (8b)
y yyaz xy 0

M =f (x a-y ) dA

(8c)
- G J -- G I K a + GI K a

p az xxo0 x XYo0y

au
Vx=fA a xz dA - k AG& -5 a y - 0 V 0 + K W 0), (8d)

av

V - f a dA- k AG az + Xu+ ax) and (8e)

aw
V z dA - E A (- oUo ) .(8f)

A Zz0

The coefficients k and k appearing in Eqs. (8d) and (8e) are calledx. y
Timoshenko shear coefficients. These are dimensionless quantities, dependent
upon the shape of the cross section, which are introduced to compensate for
the fact that not only is the shear stress non-uniform over the cross section
of the rod but its actual distribution is inconsistent with the function forms
describing the shear strain-displacement equations. Values of the Timoshenko
shear coefficients are documented for various cross sections as, for example,
by Cowper.

The complete system of equations constituting the linear, technical,
theory of rods with space curvature is comprised of Eqs. (11-12) and 11-21)
along with Eqs. (4), (5) and (8) of this section. For convenience of the
following exposition, Eqs. (11-12) and (11-21) combined with (4) and (5) are
presented below where, in a manner consistent with the employment of
linearized strain-displacement equations, the torsion and curvature are taken
as those of the undeformed rod.

aV 82u

x5 X V y + V = yA o - T , (9a)a: o y o z at2 Ks

G.R. Cowper, "The Shear Coefficients in Timoshenko Beam Theory," ASME J.
Applied Mechanics, Vol 33, Series E, No. 2, pp 335-340, 1966.
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av a 2
+ X V =yA 0 T (9b)

az 0 x at2  ys

- K V = A --P - T , (9c)

az o x at 2  zs

am a2 a 2a
- zx - X M y + K °0 M z-V y - YI xx at2x - Yl xy at--y- m xe(9d)

ama 2a ac
Y+XM + Ha-V -yI -- M an (e

az oy o y at 2  at 2  xs (9d)

aM 2u 2

H-'-+AM + V =- y yIy -_.Lm ,and (9e)
az o X X t at 2

z K M - yJ - m • (9f)
z o x pat 2  zs

In Eq. (9), the terms Txs, Tys, Tzs represent the portion of the surface and
body forces acting which are not acceleration dependent while mxs, mys and zs

are the corresponding parts of the couples of these forces.

To determine the motion of a rod with space curvature using this
linearized formulation, the system of twglve coupled equations consisting of
Eqs. (8) and (9) above must be solved for the six force and moment resultants
and the six displacement and rotation components subject to appropriate

initial and boundary conditions. This formulation retains the effects of
transverse shear deformation, rotatory inertia, and extension of the

centroidal curve. Since some or all of these effects can safely be neglected
for problems involving thin rods and low frequencies, more simplified
formulations will next be considered.

It is noted that no restrictions have yet been imposed on the shape of
the cross section, the orientation of the principal axes of the cross section

with respect to the local plane of curvature, or the change in these
quantities along the rod. The cross section area, the torsion and curvature,

and the tensile and shear moduli may also have arbitrary variation with z.
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X. Dieplacement Equations Of Equilibrium Reglecting Transverse Shear
Deforaation And Rotatory Inertia

1. General Form

In this section the equilibrium equations for the rod are phrased in terms

of displacement functions. The effects of torsion, curvature and orientation
of the principal axes of the cross section areas as well as the variation of
these quantities along the rod are then examined.

In the following formulation transverse shear strains are neglected in

the sense defined by Eq. (3). Since rotatory inertia generally has less
effect upon predictions of frequency and motion than has transverse shear
deformation, it is consistent to set terms involving a and a equal to zero
in Eq. (9) although rotational inertia effects about t~e z ax~s are
retained. Equations (8d) and (8c) for Vx and Vy respectively become
inconsistent because, although e and e are set equal to zero on thexz y
average, equilibrium considerations require non-zero transverse shear

forces. These forces are eliminated from the equilibrium equations by solving

for V and Vx in Eqs. (9d) and (9e) and substituting these results into the
remaining four equations. The equilibrium equations then become

M X - 2M + 2X M ' + X 'M + . K M
y 0 y o X o x OOz

(lOa)

-K V -yAu + T - m' +Xm
o z o xs ye o xs

Mfg - 2X M' - ' M + (M)' yA v - T + m' + X m
x o x o y 0 y o z 0 ys xs o ys

(lOb)

K M' + K X M + V; - YAw - T - K m and (10c)o y 0 0 x z 0 zs o ys

M' - KoMx 11 YJ m (10d)
z ox p zs

In Eq. (10) superscript "prime" indicates differentiation with respect to z.
Eq. (9f) is repeated as Eq. (10d).
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To obtain the required displacement form of the equilibrium equations, the
functions O and a are first eliminated from Eq. (8) by use of Eq. (3). Thex
resulting expressigns for the moments and Vz in terms of the four displacement
and rotation functions are then substituted into Eq. (10). The resulting

equations can be presented in the following form:

12 + U t  A10 u + B1 2 v' + B11 V' 10

+ "' +C + D0 yJ
11 o 10 o D12  1  D10  zs

(1la)

IV

24 0 23 0 22o A21o A20uo

IV + B it + B 0 + B +S24Vo  23Vo 22vo B21v 20vo

" C23Wo o + C22Wo' + C21Wo0 + C20Wo

+ D22 '' + D2 1 ' + D20  = -yAu + T - m' + m ,0 Xe y8 oaxe

(11b)

A34uIV + A 33u A32u o  A 31u + A 30u

B IV + B3 + B + B3 vB34o + ,,33Vo 32Vo B31Vo B3Oo

C33w C32Wo C31o C30Wo

+ D32W D 31 + DAv - T - m' - X m and (l1c)
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A43o A42uo A41o A40uo

+ B4 3 v o + B4 2 v o + B41 v o ' + B40v o

+ + C41w

+ D4 1  ' + D4 0  f Aw - T + K m . (lid)

The fifty-eight coefficients appearing in Eq. (11) are presented in
Appendix B. There it is seen that these coefficients depend upon the
geometric properties of the space curve described by the centroids of the
cross sections, the geometry of the cross section and its relationship to the
local vector principal lormal and binormal, the elastic moduli of the
material, and the variat:ions of these quantities along the rod.

It is noted that iui the general case described by Eq. (11), all motions

are fully coupled since all variables appear in each equation. This means,
for instance, that any exciting force will cause motion involving all four
displacement and rotation variables. Also, solution of the free vibration
problem will yield mode shapes which will each have four corresponding natural

frequencies.

To aid in the understanding of how various geometric and stiffness

quantities interact to effect the rod motion, several more specialized cases

will next be examined.

2. Straight Rod With Variable Section Properties.

If X and k and their derivatives are set equal to zero, the following
0 0

equations are obtained:

(GJp P J p - zs (12a)

(El u '')'' + (El v '')'' = - yAu + T - m' , (12b)
yyo xyo 0 xs y
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P1 X p" (A-5)

where superscript prime indicates differentiation of vector function P with
respect to z.
Proof:

C, = P1 - P = h P' + L P'' +

2!

, = P2 - P = - h P ' +-T P '' - .

x = h3P'xP'' + ... , and

ICxC, = Ih3 1 Ip,'xPl + ...

Note that T and 0 are perpendicular to each other since P'.(P'xP'') = 0

**If z is the arc length s from a fixed point Po of C to point P, S is

then given by

d2

dP dP

ds x ds2 13 =  .(A-6)

I d 2"
ds

2

Proof: Since

dPI

dP d2P d dP2
ds 2 1/ ds

Therefore P'(s) is perpendicular to P''(s) so that

IP'(s) x P''(s)l = I'1 IP"l IP"(<sl 

**The plane passing through P and normal to 5 is called the plane of

curvature or oscillating plane of C at P.



Proof: If h is the length of arc between P and P; Then

l m LC - d
h+O

The plane passing through P normal to C is called the normal plane of c at P.

2. Vector Binormal Of A Space Girve (0)

Referring to Figure A-2, P1 and P, are points on C either side of point P
such that z increases by an amount h rom P to P1 and decreases by the same
amount from P to P2. C1 and C2 are position vectors of P1 and P2 with respect
to P respectively

C

P C2

Figure A-2.

A vector binormal, B , of C at P is defined as

lira . (A-4)
h O TCI x C

Agas[n, the sense of B depends upon the choice of scalar variable z used to
describe the position of P.

If P is the position vector of a point P on C relative to a fixed point
0, the vector binormal can be expressed as
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A vector tangent, T , to C at point P is defined by

T = lim(A-1)
h.O

where h is the increase in z from point P to P. Note that the sense of T is
not unique since it depends on the choice of scalar variable z. It points in
the direction in which z increases along the curve.

**The vector tangent can be expressed as:

p1
P = (A-2)

where P' is the derivative of P with respect to z

Proof:

C = P1 - P

where

P1  = P(z+h)

By Taylor's series for vector functions,

P(z+h) = P + P'h + P''h 2/2! +

so that

C = p' +1/h P + and
S[P 2 + h P''P'' + ... 1/2

C

**If the scalar variable governing the position of P on C is the scalar
arc-length displacement of P relative to a fixed point P0 of C then

T = dP 
(A-3)d -
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APPENDIX A

SPACZ CURVE GEOMETRY

This appendix defines and presents relationships among various vector and
scalar quantities used to describe a line curved in three dimensional space.
These quantities include the vector tangent, vector principal normal, vector
binormal, the radius of curvature, and the curvature and the torsion of a
curve at a point.

Although the ensuing material may be found in many sources, this
particular exposition is abstracted from the book by T.R. Kane.* Rigorous
proofs, which have been omitted from this presentation in favor of intuitive
arguments, can be found in that book.

1. Vector Tangents Of A Space Qirve (iT)

In Figure A-I, C is a curve in space, 0 is a point fixed in space while P
and P1 are points on C whose position along C depends on a variable z.
Vectors P and P1, are position vectors of P and P1 respectively, with respect
to 0 while C is the position vector of P1 with respect to P.

C

0 IP P

IF~ C

Figure A-1.

T.R. Kane, Analytical Elements of Mechanics: Vol. 2 Dynamics, Academic
Press, New York, 1981.
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APPENDIX A

SPACE CRVE GEOMETRY
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V. CONCLUSIONS

This work was motivated by a requirement for a general analytical model of

a gun tube which could be used to examine the effects on tube motion of

centroidal axis curvature and twist, cross section eccentricity and variation

in cross section shape along the axis.

The model which has been formulated is based upon first principles of

mechanics and is sufficiently general to permit study of the above effects and

also of motions involving large displacements and rotations of the tube axis.

The model can provide useful information in its own right; both by

illustrating the manner in which the governing equations are coupled when

terms representing various affects are added or deleted, and by the free and

forced response solutions which may be obtained fur various special cases. It

can also be used to provide guidance for the development and use of more

approximate analytical techniques, such as finite element models, by

establishing the potential error associated with various approximations to the

actual structure. Since the derived equations show the coupling among the

displacement and rotation variables caused by axis curvature and cross section

non-uniformity effects, they can aid in the interpretation of physical

measurements of gun tube motion.
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- A [EI + 2EI u ''' - Ao[2(EI )' + 2(EI )'I u
o xx yy 0 xx yy 0

2 2 2
-A [(El ), + A El + Ko2GIxx U 0 + K0oAo(GI x)' u - (EI v'')''

0 xx 0 XX 0 XX 0 00 XX 0

o (GI )' v '-2A0 K EI w '' - 2 K(EI )'w '

+ K0 (El + GJ ) ' + K [2 (El )'+(GJ )'] 'o xx p o) xx p

K(EI) 'A 2 K EI = + yA v- T + m' + A m , and (15c)o0 00 xx X oys

El u ''' + K (El ) u'' - 'I[A 2 + EA] u
0 yy 0 0 yy 0 0 0 xx 0

-K (EA)' u - EJ V ''- K (EI )'v'
0 o oa p 0 00 yy 0

+ (EA + K 2 El )w '' + [K 
2(EI )'+(EA)']w o0

0 yy0o 0 yy~

2 "" (15d)o + K 0 E l x = A y w 0 - T z S + K 0 M .y
!_o o xx 0 Zs 0 ys

Introduction of torsion again causes coupling among all of the equations

evern for a rod with symmetric cross section. It is also noted that although

the equations describing motion of a rod with constant cross sectional

properties would have somewhat fewer and simpler coefficients, they would

retain the coupling among the motions described by the four variables.
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It is seen that while inclusion of effects of variable curvature somewhat
complicates the coefficients and increases their number, the equation with I
equal to zero still describes two separate pairs of coupled motion involving

vo and * together and uo and wo .

5. Rod With Constant Curvature And Torsion And With Variable Cross
Section

The final special case of Eq. (11) which will be considered is for a rod
-* with constant torsion and curvature and variable but axisymmetric cross

section so that I remains zero. The displacement equilibrium equations forxy
* this case are given below:

X K (G+E)I u ' + K0 X (GI )' U0 + K (G+E)I v " + (K OI )'v '0 X0 0 0 X 00 XX 0

+ GJ p " + (GJ)'' - Ko 2 El x x  yJ p - m , (15a)

E" E IV + 2(EI )' u ''' + [(El )''-X 2 +21 )u - 2 (El)' u'

yy o yy 0 yy 0 yy xx 0 0 xx 0

+ [K + K Iu 0 - X (I + 21 )] v '

.

+ 2 X [(El )'+(EI )')V '+[X (El )''+X El +K X GI IV '+K El w '''
o yy XX 0 yy 0 yy 0 X 0 0 yy 0

422K(EI )' w '' + [K (l )'' - K E1 - K EA~w0 yy 0 0 yy 00o yy 0o

+ [. 2El + GJ ]lb' + 2K ), (El )'$
)oo xx p o o xx

u' =- A u + T -ian' + A m (15b)
-0 xs y85 0 XS
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p~. 2
K ( - K (EAu) K (EI v'')' + [(EA + KC EI)w ' 'o o x yy 0

K 0 2 (EI xy)' YAw - Tzs - Ko m ys (13d)

Eqs. (13) are seen to be fully coupled in the variables. If however, Ixy is
zero as, for example, for a circular cross section, then two pair of equations

result; one pair involving vo and 4 only and the other uo and wo .

4. Rod Curved In A Plane With Variable Curvature But Constant Section
Properties.

The next special case is that of a rod for which X is zero but the
curvature completely variable. The principal normal and binormal directions
are assumed to be principal directions for the cross section. Eqs. (11)
become

K 0o(G+E)IvxxVo0 + Ko0 GIXXv0' + Gp)' - 0 2 EI xx = yJ - m , (14a)

,1 IVu + K EAu + EI (w)'' - K EAw' 
yy o 0 0 yy 00 0 0

-Y~u + T -i' ,(14b)0 xs ys

E-." r v 0IV + GIX (KoV ')' +K 0 (El + GJ )4W'' +K 0 '(2EI +GJ )'.CXO xo o o xx p o xx p

+ K 0 EI 4 = yAv - T - m' , and (14 c)

SEI u ''' - EA (K u)' + (EA + K ZI )w 0 2 K 0 K 0 I w 0
0 yyO 00o 0 yy o 00o yy o

+ K K '' El w y YAw 0 T - K0 m . (14d)
0 0 yy o 0 Es o ye
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b - .

(El u ')'' + (El v 0 " yAv + T + m' , and (12c)-. xy o xxO 0 ys xs

(EAv')' - yAw°  T • (12d)

Eqs. (12) are seen to be the usual equations of motion of shafts, beams and
bars. Equations involving u0 and v are uncoupled if the x and y axes are the

principal axes of the cross section.

3. Rod Curved In A Plane With Constant Curvature And Variable Section
Properties.

In this case, the rod is initially in the form of an arc of a circle so
that K is constant and A is zero. The governing equations thus become

0 0

K0 El u '' + K (GI u ')' + K El v '' + K (GI v ')' +o xy o o xy o 0 xx o 0 XX o

2 2 2
K El w ' + K (GI yw)' + (GJp*')' - K EI * yJ mO xy 0 XYo p o xx p zE

(13a)

2.2

(EIyy U ')'' + K0 EAu + (EIxy v ")'' + Ko(EIyy W ')'' - KoEAw ' - 0o(EI xy)''

-yAu + T -i , (13b)0 xs ys

2 2 2

(El u0K0 (GI u') +(EIyU "( v 0GI ' u + K v(EI( w))0xy o o xy o xx o o xx o o xy o

- (GI w )' - K (EI xx)o - Ko(GJp4b')' = - yAv + T - m'

(13c)
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3. The Vector Principal Norml Of A Space Curve (v

The unit vector given by

V X T (A-7)

is called the vector principal normal of C oi P. Contrary to the cases
of 0 and ir , the sense of V is unique.

An alternative expression for v in terms of derivatives of position
vector P with respect to coordinate z is

V=(P'xP'') x P' (A-8)
I (P' x P'') x '

In terms of derivatives of P with respect to s. v is given by

- .(s (A-9)

This follows from the fact that P''(s) is perpendicular to P'(s) and
P'(s) is a unit vector. The plane passing through P and normal to v is

called the rectifying plane of C at P.

4. The Vector Radius Of Curvature Of A Space Curve (p)

C

P
Figure A-3.
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Referring to Figure A-3, P is a point on C and P is the point of C with
which P coincides when scalar variable z is increaseA by an amount h. C1 is
the position vector of P relative to P. By definition, the center of
curvature of C at P is the point approached, as P1 approaches P by the center
Q, of a circle which is tangent to the tangent line of C at P and passes
through Pie If r is the position vector of Q relative to P, the vector radius
of curvature, p , is defined by

P - Lim r . (A-10)
h O

**In terms of the derivatives with respect to coordinate z of the position
vector, P, of P relative to a point 0 fixed in space, the vector radius of
curvature is given by:

P M (P'xp'') x P' . (A-i)
(p'xP')2

Proof: r(by construction) is perpendicular to both T and T x C1. Hence,
*there exists some scalar, say 6 such that

r - 6T x (T xC 1 ) . (A)

On the other hand, as Q lies in the perpendicular bisector of
. line P P1 I r may be regarded as the sum ofl/2 c1 and a vector perpendicular

to both c1 and rxc 1 . Hence, there exists some scalar, say U , such that

r - + uC X(Txc) . (B)

Dot multiply each of Eqs. (A) and (B) with cI (to eliminate 6), equate the
resulting expressions for rcl, solve for 6 and substitute into Eq. (A) yields

C 1I 2 x 01 x C I

2 c • (* ) " ()
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Next, use the relationships

X =-R7 ; c - h P1 + h2/2 ]P" +

and substitute Eq. C into Eq. A-10.

5. The Radius Of Curvature.

The vector radius of curvature p can be expressed as

p p v (A-12)

where p is an intrinsically positive quantity called the radius of curvature
of C at P which is given by

Sl .(A-13)

Proof: Multiply the numerator and denominator of the expressions for P of Eq.

(A-Il) with I ' giving

"W lp'l 3  (P'xP") x P'

By Eq. (A-8), Eq. (A-12) is an identity if p is defined by Eq. (A-13).

**In terms of derivatives of P with respect to s, p and p are respectively

"" given by

p Pff) and

I pf(S)I2
(A-15)

1
P 

=
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Proof: - and

[P'(s) x P"()] 2 - 1" >x P,,(8)1 2 " I?"<(s8)2

Furthermore,

(P'(s) x P"(s)) x P'(s) - (P) 2 P'' - '".?' P' P"(s)

6. The Serret-Frenet Formulae

The derivatives of the vectors T, 0 and v with respect to s are given by

dr vp, (A-16)

-- = X v and (A-17)ds

O d-/p (A-18)
ds - ,an

'.5

where p is the radius of curvature and X, called the torsion of the curve c at
point P is given by

x = p"[P'(s) • P''(s) x P'''(s)] . (A-19)

p.
Eqs. (16), (17) and (18) are called the Serret-Frenet formulae.

'S Proofs:
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- P'(a)

T '( ) - P oo - p e - I "I v - v/p
g i J(A-9)

8 - P'(s) x P''()[(P'')2 ]1 /2 , and

O'() = 'xP' " [(PI ,)21- 1/2,

_ p'xP,[(P') 2]- 3/2 e,,.p,,

Eliminate the first and second derivatives of P by using

P = T and Poo - v/p

Then

8' = p T x (p''' - v v-P'')

= p T x [v x (P'" xv)]

= p T- .P'.xV) V - p T V (P''xv)

Since,

Vo 0,

8' = py • (P'' x V) V

=-x ,

X= - p T • P'.xv)

p2 [p fxpt ip P'' ]''I •
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Finally,

V I i x T , and

V' =' x T + 0 x T

= - X V x + is x V/p

But,

V x T - (OxT) x T - B and

0xV jIx(SxT) = - K

Hence,

V' = A- r/p

**The torsion,A, expressed in terms of derivatives of P with respect to a

variable z other than s is given by:

A a P2 [P'(z) * P'(z) x PI"'(z)1 P'(z)1 - 6  (A-20)

Proof:

dz

P'(s) = P'(z) d

d2 2fdz 2 d! dz

P''(s) - P''(z) d + F(z) and
ds

2
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dz 3 dz 2 3

Then,

P'(s) * P''(s)xP'" (s) = P'(z) . P '(z)xP'(z)(,-zs6

also

(dz)2 P,(z)2 = p,(5)2 1ds '( -- ( ) •

Therefore,

dz 6 [P(z)2  -3 -6

7. Example: The use of the Serret-Frenet formulas is illustrated by use of

the following example.

A straight line AC is drawn on a rectangular sheet of paper ABCD having
the dimensions shown in Figure A-4. The paper is then folded to form a right
cylinder of radius a/w, the line AC thereby being transformed into the
circular helix H shown.

a. Determine the cosine of the angle * between a unit vector k parallel
to the axis of the cylinder and the vector binormal of H at point P.

Solution: Let P' be a point on the cylinder base (Line AB) such
that PP' is parallel to k. Let z be the distance between P and P', 0 the
intersection of the axis of the cylinder with its base, n a unit vector
parallel to line OP', 0 the radian measure of angle AOP', and P the position
vector of P relative to 0.
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zp 

2b

Fl B

D

2 b

A 
PI

Figure A-4.

cos i k 8

*=P'(z) x p'"(z)

P a/it n + z k
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P' =a/w k x n de + k

e (Since arc AP z ,and
bb

dO 7F

dz b

Therefore,

P'(z) =bkxu + k

P"(z) = kx(kx-) d6

2-- u (Since kx(kxu) - n)

P'xP'' !a 2. k + n x k) and
b2 b

2

IP' I " + a 1/2
b b

Thus

2
B k + n x k) (I + --- - 2

b b2

Finally,

C!.



Cos , - k*.- (I + b)- 1/2
a

b. Determine The Radius Of Okrvature At P Of The Helix H.

P' xbkx n + k

2

P'xP - - (1 + a!12) 1/2 , and
b b

a 3/2

- b 2 a (1 + b)

7r A- [+ a~J 2 a
b 2b

c. Determine the torsion X of the curve H.

0 2[p'.p''xp''')[pt ]-6 ,

p' = b k x n + k

b2

,, , wa dal a2

'T"r - iT -3 lXl

b2  dz b3
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r r~r.. - :- .

2

P'*(PV'xP"'') a 2

J

Then,

a 2+b
2

8. Angular Velocity Of Space Ozrve O(ordinates In A Fixed Reference Frame.
ds

Let P be a point moving along a space curve c with speed where is

the distance to P along c from some point of c. If R is a reference frame in

which the tangent (T), principal normal (v) and binormal (0) unit vectors to c
at P are fixed then the angular velocity of R in the reference frame R' in

which c is fixed is given by

R'm R - (X T + 1/ p .) ds • A-21)

Proof: Given two reference frames R and R' and any two non-parallel vectors a

and b fixed in R. The angular velocity of R in R' is defined by Kane as

da db

R' R - t Xd t (A-22)
u dadt b

If a and b are taken as the vector principal normal, v , and the vector
binormal, 0, respectively at P then Eq. (22) may be written as

dv dO
d--sx ds de

R' R = i~ Ts . (A-23)
Ra dv dt

ds6
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Next, the Serret-Frenet formulas give

dvd- 4 - 1/p T and

d- - X V
ds

Substitution of the above into Eq. (A-22) gives the desired result.
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APPENDIX B

APPENDIX B. COEFFICIENTS APPEARING IN EQUATIONS (IV-11)
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APPENDIX B

APPENDIX B. COEFFICIENTS APPEARING IN EQUATIONS (IV-i 1)

A = K (G+E)Ixy

A 1 Xo 0K(O+E)Ixx +(KoGI xy)'

A Koo0Xo(GI xx)'+( o 'X o+K0 o ') GIx x+ K oX o' Elxy

B = K 0o(G+E)I xx

B = (K GI xx)' - K X (G+E)Ixy

B = - K X (GI xy)' - K 0 GI -K 0 '(G+E)I

C1 1 = 0 2 (G+E)Ixy

ClO =K 2(GI xy)' +K K ,(2G+E) Ixy

D12 =GJp

D = (GJ p)'

D10 - K 0 E1

A2 4 = Elyy

A3=2(EI )' - X El

yy 0 xy

A22 = (El yy) + 2Xo' Elxy - o2 E(21 xx+ yy)
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A - A0(EI X,)'' + 4 A 0 (EI, )' + (3),0 ''-A.0 ) EI ,y

+ K 0
2 XGIY 2X 0o2 (EIXX)' -5 X 0 0' EIx

A0- o
2 EA -2 X 0A '(El XX - (2 AL 0 X 0 1+0 2 )I

+ K GIX + Xo '(El x)'' + 2 XA '(El )'

+ -A 0 0 'A 02)EI

B24 ' Ixy

B '=2(EI P' - 2XEI -AX El
23 xy 0oxx 0 yy

B22 2X0oE yy P X0 EIyy 2X0oE xx )

X-I'EI + (EI )I'+X 2 El
0 xx xy 0 xy

B X (El ' 4 X '(El ) + (A 3 _3X '')EI
21 0 yy 0 yy 0 0 yy

+ K 0
2 x0GI x+ 2,X02 (EI)' + 5 A 'ElX

B20 x0 '(Iyy )-X0 " Iyy P+(L0 x0 Ix0.. yy

+2A AO '(El )' + (2AO A ''+A '2)EI x-K 0 
2 X 2 G1
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C23 K0 EIy)'

C2  2Kc (El )' + 3Kc0
1E1 2), K ElI

2 0 0 yy 0 0 Xy

C 21  K 0(EI )'' + 4K'(EI)'y + (3K 0 1''A 02K0)I

-2K 0 (El )' (4X 0c K + X 'K 0 )EI x-K 0 EA

C 20  K c0 (EI y)'' + 2K 0 
t (EI, ) ' + (KIll'-KIX 0A 2)EI y

-2A K% '(El )' (2X K ' + X0 'K ')EI00 xy 0 0 0 xy

* 3
+o 0 GIXy

D K- El
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