AD-R157-589 gﬂ{ ﬁ RY t“:r"gg’“ J 59'35“3?“(Wﬂsﬁ!smﬂ 1/4

UNCLASSIFIED F/G 9/2 ;8

! . [" -
"l"*m A 22
c e =

=

[

=

R

ez e e

—
———
———

rer
r

=

| N
O

_." MICROCOPY RESOLUTION TEST UHARI
NATIONAL BUREAU OF STANDARE i

AD-A157 589
NOTE: This draft, dated 31 January 1085, prepared PROPOSED
by the KAPSE Interface Team and KAPSE Interface MIL-STD-CAIS
Team from Industry and Academia CAIS Working 31 JANUARY 1885

Group for the Ada* Joint Program Office, has not
been approved and Is subject to modification.
DO NOT USE PRIOR TO APPROVAL.
(Project IPSC/ECRS 0208)

MILITARY STANDARD
COMMON APSE INTERFACE SET
(CAIS)

This drcument hen Rr-o 7 avived

for — el L : AREA ECRS

sdizttovtisn iz vl oo

NO DELIVERABLE DATA REQUIRED BY THIS DOCUMENT

*Ada Is a Registered Trademark of the U.S.Government (Ada Joint Program Office)

T

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

o

AD-A157 589

UNCLASSIFIED

SECUM TV CLASSIFIZATION OF Twiy BACE "Whon Dare Entersg

REPORT DOCUMENTATION PAGE i BEF Pl BT oRrN

12 GOVY ACCESSION NO.! 3 RECIPIENT'S CATALDOG NUMBER

AD-RIST75E7.

| REPORY muMmBE®:

4 TITLE rand Subtitie ' % YYPE OF REPORTYT & PERIOD COVERED

Military Standard Common Apse Interface Set (CAIS)I

6. PERFORMING ORG. REPORTY NUMBER

8 CONTRACT OR GRANT NUMBER/s,

MDASO3=83=C~0306

Y AUTHON,,

KAPSE Interface Team

¥ PERFOMMIN AGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECY TaASK
° co=c 2 ° ° AREA & WORK UNIT NUMBERS

IIT Research-Institute
1211 S. -Fern—S8t—RM.C-107 L ren

4317

Arlingeon—¥A—22202
' CONYROLLING OFFICE NAME AND ADDRESS
Ada Joint Program Office

12. REPORT DATE

January 1985

13 NUMBER OF PAGES

30139 (400 Army Navy) The Pentagon
Washington, D.C. 20301 pa 319

14 MONITORING AGENCTY NAME 8 ADDRESS/ 1! difterant trom Controliing Oltice) 15 SECURITY CLASS (of thie reporr)

unclassified

1%5¢ DECLASSIFICATION DOWNGRADING
SCHMEDULE

6 DISTRIBUTION STATEMENT (of thia Repory)

Approved for public release; distribution unlimited

'7T OISTRIBUTION STATEMENT (of the abetract entered In Block 20. 1 differenr froos Report)

Unclassified

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side (I necessary and identily by block number)

Facilitate interoperability and transportability between APSEs. Proposed
policy statement regarding appropriate application of CAIS version 1.

20 ABSTRACTY rConfinue on reverse side if necesesry and Identily by block number)
This Document has been prepared in response to the Memorandum of Agreement
signed by the Undersecretary of Defense and the Assistant Secretaries
of the Air Force, Army, and Navy. The memorandum established égreement
for defining a set of common interfaces for the Department of Defense (DoDJ
Ada Programming Support Environment (APSEs) to promote Ada tool transportability
and interoperability. The initial interfaces for the CAIS were derived from

LV the Ada Integrated Environment (AIE) and the Ada Language System (ALS). Since

rORM
DD, an 7 1473 u?nmu OF | HOV 63 (S OBSOLETE UNCLASSIFIED
$°N 0102 LF-014- 060" © SECUMITY CLASSIFICATION OF THIS PAGE (When Dats Enters

UNCLASSIFIED

SECURITY CLASSIFICATION DF Twis PAGE Then Davs Enrerved:

then the CAIS has been expanded to be implementablé as part of a wide variety

of APSEs. It is anticipated that the CAIS wil}l evolve to meet new needs.
Through the acceptance of this standard, it is anticipated that the source level
portability of Ada software tools will be enhanced for both DoD and non-DoD users.

it

1 The authors of this document include technical representatives from the two

APSE contractors, representatives from the DoD's Kernel Ada Programming Support
1 Environment (KAPSE) Interface Team (KIT), and volunteer representatives from the
KAPSE Interface Team from Industry and Academia (KITIA).

! The initial effort for definition of the CAIS was begun in September,1982.

This report should be processed. The con-
trolling office is seeking comments from
interested parties who use it. It is a pro-
| posed standard,

Per Mr, Burton Newlin, Ada Joint Program

Office '(/2?‘!9 /3-—7&2 /eqﬂ,) ‘/D e

$/N 0102 L& 814- 6600 UNCLASSIFIED

©, SHCURITY CLASSIFICATION OF THIS PAGE(When Date Eatered
/

OFFICE OF THE UNDER SECRETARY OF DEFENSE

WASHINGTON D C 20301

31 JANUARY 1985

RESEARCH AND
ENGINEERING

(REAT)

Dear CAIS Reviewer:

The Common APSE Interface Set (CAIS) has been developed to
facilitate interoperability and transportability between APSEs.
Its development was directed by a January 3, 1982 Memorandum of
Agreement between the three Services and the Deputy Under
Secretary of Defense for Research and Engineering (Acquisition
Management). In that memorandum, the Services agreed to
establish a set of interfaces upon which formal coordination as a
military standard could begin. However, the CAIS is new and
there is very little experience with it as yet. Therefore, its
establishment as a military standard must be accompanied by a
clear statement of the policy regarding its application to
projects and contracts.

The attached is a proposed policy statement regarding
appropriate application of CAIS Version 1 once it is approved as
a military standard. The community at large has expressed a
great deal of concern over the potential for misapplication of
this interface set when it becomes a military standard.
Therefore, we are submitting this draft policy statement for your
review in addition to the MIL-STD-CAIS document itself. It is
requested that you use the same comment procedures for returning
L feedback on this draft policy statement as for the CAIS document

itself.
1 Robert F. Mathis
Director
| STARS Joint Program Office
Attachment

PROPOSED CAIS POLICIES

Objective: The objective behind the creation of the Common
APSE Interface Set (CAIS) is to promote the gortability of

tools and data between APSEs. The CAIS has been formulated
to provide those interfaces most commonly required by tools
in the course of their normal operations. When the CAIS has

matured to the point of wide acceptance by industry, the DoD

will move to apply this standard to the DoD-funded
environments.

Purpose: This set of interfaces is being issued as a
military standard in order to allow its application to
government contracts. The principal purpose of such
application is to allow contracts to specify the use of the
CAIS in experimental implementations whose objective is to
learn about the viability, feasibility, implementability and
usability of the interface set as a component of a
programming support environment. Implementations of this
proposed interface set should provide knowledge about
implementation of its features and feedback to the CAIS
gesigners relevant to the development of Version 2 of the
AIS.

Proper Uses: Proper applications of this standard to
contracts include: (1§ prototype implementations of the
interface set, either wholly or in part; (2) prototype
implementations of tools written to run on top of a CAIS
implementation; (3) implementation/comparison studies
designed for such purposes as determining the probable ease
of implementing the CAIS on a new operating system or bare
machine or comparing the features available in the CAIS with
those considered essential in another operating system; and
(4) experimental studies designed to utilize a prototype
CAIS and/or tool implementation in order to gather
information regarding performance, usability, viability,
etc.

Improper Uses: It is not intended that the CAIS Version 1
military standard be imposed on any development or
maintenance project whose primary purpose is not explicitly
to experiment with its implementation or that would be
unnecessarily risking total project success on the
(unproven) viabilitg of the current CAIS. The CAIS should
not be imposed nonchalantly or arbitrarily or without a
clear understanding of the potential costs and risks
involved.

Feedback: All uses made of the CAIS should require at least
one report intended to provide feedback to the CAIS
designers regarding the pros and cons of its implementation
and use, ease or difficulty encountered with particular
features, and suggestions for improvements to either the
form or technical content of the military standard document.

P

-

NOTE.: This draft, dated 31 January 1985, prepared
by the KAPSE Interface Team and KAPSE Interface
Team from Industry and Academia CAIS Working
Group for the Ada® Joint Program Office, has not
been approved and Is subject to modification.
DO NOT USE PRIOR TO APPROVAL.
(Project IPSC/ECRS 0208)

PROPOSED
MIL-STD-CAlS
31 JANUARY 1985

MILITARY STANDARD
COMMON APSE INTERFACE SET
(CAIS)

NO DELIVERABLE DATA REQUIRED BY THIS DOCUMENT

AREA ECRS

*Ada Is & Registered Trademark of the U.S.Government (Ada Joint Program Office)

;'ll

P—-—-——-—f¢

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

DEPARTMENT of DEFENSE
Washington, DC 20302

Common APSE Interface Set

MI-STD-

1. This Military Standard s approved for use by all Departments and Agencies of the
Department of Defense.

2. Beneficial comments (recommendations, additions, deletlons) and any pertinent data which

may be of use in improving this document should be addressed to KIT/KITIA CAIS

Working Group and sent to Patricia Oberndorf, Naval Ocean Systems Center, Code 423,

San Dlego., CA, 92152-5000 by using the self addressed Standardization Document

4 Improvement Proposal (DD Form 1428) appearing at the end of this document or by letter.

y &

W p - —

-

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

FOREWORD

This document has been prepared In response to the Memorandum of Agreement signed by the
Undersecretary of Defense and the Assistant Secretaries of the Air Force, Army, and Navy. The
memorandum established agreement for defining a set of common Interfaces for the Department of
Defense (DoD) Ada Programming Support Environment (APSEs) to promote Ada tool transportability
and interoperability. The Initial interfaces for the CAIS were derived from the Ada Integrated
Environment (AIE) and the Ada Language System (ALS). Since then the CAIS has been expanded to
be implementable as part of a wide variety of APSEs. It is anticipated that the CAIS will evolve to
meet new needs. Through the acceptance of this standard. it is anticipated that the source level
portability of Ada software tools will be enhanced for both DoD and non-DoD users.

The authors of this document include technical representatives from the two DoD APSE contractors.
representatives from the DoD’'s Kernel Ada Programming Support Environment (KAPSE) Interface
Team (KIT), and volunteer representatives from the KAPSE Interface Team from Industry and
Academia (KITIA).

The initial effort for definition of the CAIS was begun in September 1882 by the following members of
the KAPSE Interface Team (KIT): J. Foidl (TRW), J. Kramer (Institute for Defense Analyses),
P. Oberndorf (Naval Ocean Systems Center), T. Taft (Intermetrics), R. Thall (SofTech) and
W. Wilder (NAVSEA PMS-408). In February 1983 the design team was expanded to include LCDR
B. Schaar (Ada Joint Program Office), T.Harrison (Texas Instruments) and KAPSE Interface Team
from Industry and Academia (KITIA) members: H. Fischer (Litton Data Systems), E. Lamb (Rell
Labs). T. Lyons (Software Sciences Ltd.. U.K.), D. McGonagle (General Electric), H. Morse (Frey
Federal Systems), E. Ploedereder (Tartan Laboratories), H. Willman (Raytheon), and L. Yelowitz
(Ford Aerospace). During 1984, the following people assisted in preparation of this document: F. Belz
(TRW) and the TRW prototype team, K. Connolly (TRW), S. Ferdman (Data General). G. Fitch
{Intermetrics), R. Gouw (TRW), B. Grant (Intermetrics), N. Lee (Institute for Defense Analyses),
J. Long (TRW), and R. Robinson (Institute for Defense Analyses). Additional constructive criticism
and direction was provided by G. Myers (Naval Ocean Systems Center), O. Roubine (Informatique
Internationale), and the general memberships of the KIT and KITIA, as well as many independent
reviewers. The Ada Joint Program Office is particularly grateful to these KITLA members and their
companies for providing the time and resources that significantly contributed to this document.

This document was prepared with the Unilogic Ltd. SCRIBE typeset tool on the TRW Software
Productivity Project development environment.

e~ P a T TR A

w v - - -

o

PROPOSED MIL-STD-(' Al
31 JANUARY 1085

FOREWORD

This document has been prepared in response to the Memorandum of Agreement signed by the
Undcrsecretary of Defcnse and the Assistant Secretaries of the Air Force, Army, and Navy. The
memorandum established agreement for defining a set of common Interfaces for the Department of
Defense (DoD) Ada Programming Support Environment (APSEs) to promote Ada ool transportability
and iInteroperability. The initial interfaces for the CAIS were derived from the Ada Integrated
Environment (AIE) and the Ada Language System (ALS). Since then the CAIS has been expanded to
be impiementable as part of a wide variety of APSEs. It is anticipated that the CAIS will evolve to
meet new needs. Through the acceptance of this standard, It Is anticipated that the source level
portabllity of Ada software tools will be enhanced for both DoD and non-DoD users.

The authors of this document include technical representatives from the two DoD APSE contractors,
representatives from the DoD's Kernel Ada Programming Support Environment (KAPSE) Interface
Team (KIT), and volunteer representatives from the KAPSE Interface Team from Industry and
Academia (KITIA).

The initial effort for definition of the CAIS was begun in September 1982 by the following members of
the KAPSE Interface Team (KIT): J. Foidl (TRW), J. Kramer (Institute for Defense Analyses),
P. Oberndorf (Naval Ocean Systems Center), T. Taft (Intermetrics), R. Thall (SofTech) and
W. Wiider (NAVSEA PMS-408). ln February 1983 the design team was expanded to include LCDR
B. Schaar (Ada Joint Program Office), T.Harrison (Texas Instruments) and KAPSE Interface Team
from Industry and Academia (KITIA) members: H. Fischer (Litton Data Systems), E. Lamb (Bell
Labs), T. Lyons (Software Sciences Ltd., U.K.), D. McGonagle (General Electric), H. Morse (Frey
Federal Systems), E. Ploedereder (Tartan Laboratories), H. Willman (Raytheon), and L. Yelowitz
(Ford Aerospace). During 1984, the following people assisted in preparation of this document: F. Belz
(TRW) and the TRW prototype team, K. Connolly (TRW), S. Ferdman (Data General), G. Fitch
(Intermetrics), R. Gouw (TRW), B. Grant (Intermetrics), N. Lee (Institute for Defense Analyses),
J. Long (TRW), and R. Robinson (Institute for Defense Analyses). Additional constructive criticism
and direction was provided by G. Myers (Naval Ocean Systems Center), O. Roubine (Informatique
Internationale), and the general memberships of the KIT and KITIA, as well as many independent
reviewers. The Ada Joint Program Office is particularly grateful to these KITIA members and their
companles for providing the time and resources that significantly contributed to this document.

This document was prepared with the Unilogic Ltd. SCRIBE typeset tool on the TRW Software
Productivity Project development environment.

Ih-w

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Contents

Paragraph
1. SCOPE

1.1. Purpose
1.2. Content
1.3. Excluded and deferred topics

2. REFERENCED DOCUMENTS

2.1. Issues of documents
2.2. Other publications

3. DEFINITIONS
4. GENERAL REQUIREMENTS

4.1. Introduction
4.2. Method of description
4.2.1. Allowable differences
4.2.2. Semantic descriptions
4.2.3. Typographical conventions
4.3. CAIS node model
4.3.1. Nodes
4.3.2. Processes
4.3.3. Input and output
4.3.4. Relationships and relations
4.3.4.1. Kinds of relationships
4.3.4.2. Basic predefined relations
4.3.5. Paths and pathnames
4.3.8. Attributes
4.4. Discretionary and mandatory access control
4.4.1. Node access
4.4.2. Discretionary access control
4.4.2.1. Establishing grantable access rights
4.4.2.2. Adopting a role
4.4.2.3. Evaluating access rights
4.4.2.4. Discretionary access checking
4.4.3. Mandatory access control
4.4.3.1. Labeling of CAIS nodes
4.4.3.2. Labeling of process nodes
4.4.3.3. Labeling of non-process nodes
4.4.3.4. Labeling of nodes for devices
4.4.3.5. Mandatory access checking
4.5. Pragmatics
4.5.1. Pragmatics for CAIS node mode!
4.5.2. Pragmatics for SEQUENTIAL _10
4.5.3. Pragmatics for DIRECT _10
4.5.4. Pragmatics for TEXT _ 10

5. DETAILED REQUIREMENTS

5.1. General node management
5.1.1. Package NODE _ DEFINITIONS
5.1.2. Package NODE _ MANAGEMENT

e
—
Lo -4 BV VY Y PR ol 1]

wwnwwngg—.—_—u-‘——-——-—.—_
DM Wk = e © =3 O e kLW NN e e

-3

E88ZIB3IRIY

(2]
[y

w W oW
3 -

Paragraph
5.1.2.1.
5.1.2.2.
5.1.2.3.
5.1.2.4.
5.1.2.5.
5.1.2.6.
5.1.2.7.
5.1.2.8.
5.1.2.9.
5.1.2.10
5.1.2.11
5.1.2.12
5.1.2.13
5.1.2.14
5.1.2.15
5.1.2.16
5.1.2.17
5.1.2.18
5.1.2.19
5.1.2.20

5.1.2.21.
5.1.2.22.
5.1.2.23.
5.1.2.24.
5.1.2.25.
5.1.2.28.
5.1.2.27.
5.1.2.28.
5.1.2.28.

5.1.2.30

PROPOSED MIL-<TIr- Al~

Contents

Opening a node handle

Closing a node handle

Changing the intention regarding node handle usage

Examining the open status of a node handle

Querying the intention of a node handle

Querying the kind of a node

Obtaining the unique primary pathname

Obtaining the relationship key of a primary relationship
Obtaining the relation name of a primary relationship

. Obtaining the refationship key of the last relationship traversed

. Obtaining the relation name of the last relationship traversed

. Obtaining a partial pathname

. Obtaining the name of the last relationship in & pathname
. Obtaining the key of the last relationship in a8 pathname
. Querying the existence of a node

. Querying sameness

. Obtaining an open node handie to the parent node
. Copying a node

. Copying trees

. Renaming the primary relationship of a node
Deleting the primary relationship to a node
Deleting the primary relationships of a tree
Creating secondary relationships

Deleting secondary relationships

Node iteratlon types and subtypes

Creating an lterator over nodes

Determining iteration statps

Getting the next node in an iteration
Setting the current node relationship

. Opening a node handie to the current node.

5.1.3. Package ATTRIBUTES

5.1.3.1.
5.1.3.2.
5.1.3.3.
5.1.3.4.
5.1.3.5.
5.1.3.6.
5.1.3.7.
5.1.38.
5.1.3.9.
5.1.3.10
5.1.3.11
5.1.3.12
5.1.3.13

Creating node attributes

Creating path attributes

Deleting node attributes

Deleting path attributes

Setting node attributes

Setting path attributes

Getting node attributes

Getting path attributes

Attribute iteration types and subtypes

. Creating an iterator over node attributes
. Creating an iterator over relationship attributes
. Determining iteration status

. Getting the next attribute

5.1.4. Package ACCESS _ CONTROL

5.1.4.1.
5.1.4.2.

Subtypes
Setting access control

31 JANU ARY 1985,

Page
38
39
40
41
41
41
42
42
43
44
44
44
45
45
45
46
47
48
50
51
53
54
55
56

-
‘

58
59
58
80
61
82
62
63
64
85
66
87
89
89
71
71
72
73
73
74
74
74

PROPOSED MIL-=TIx(Al~
31 JANUARY J6m5

descendant (of a node) - Any node "vhich is reachable from other nodes via primary relationships.

pragmatics - Constraints imposed by an implementation that are not defined by the syntax or
semantics of the CAIS.

primary relationship - The inltial relationship established from an existing node to a newly created
node during its creation. The existence of a node is determined by the existence of the primary
relationship of which it is the target.

process - The execution of an Ada program, including all its tasks.
process node - A node whose contents represent a CAIS process.

program - {LRM] A program Is composed of a number of compilation units, one of which is a
subprogram called the main program.

qualified area - A contiguous group of positions in a form that share a common set of
characteristics.

queue - [IEEE] A list that is accessed in a first-in, first-out manner.
relation - in the aode model, a class of relationships sharing the same n» ne.
relation name - The string that ldentifies a relation.

relationship - In the node model, an edge of the directed graph which emanates from i souree node
and terminates at a targel node. A relationship is an instance of a relation.

relationship key - The string that distinguishes a relationship from other relationships having the
same relation name and emanating from the same node.

relevant grant items - The items in values of GRANT attributes of relationships of the relation
ACCESS emanating from the object and pointing at any node representing a role which is an adopted
role of the subject or representing a group, one of whose permanent members is an adopted role of the
subject.

role - A set of access rights that a subject can acquire.

root process node - The Initial process node created when a user logs on to an APSE or when a new
Job Is created via the CREATE _ JOB interface.

secondary relationship - An arbitrary connection which is established between two existing nodes.

security level - [TCSEC] The combination of a hierarchical classification and a set of non-
hierarchical categories that represents the sensitivity ¢f information.

source node - The node from which a relationship emanates.

start position (of a form terminal) - The position of a form Identified by row one, column one.

_ﬂ

PROPONED MIL-STD-C Als
31 JANUARY 1085

latest key - The final part of a key that s automatically assigned lexicographically following all
previous keys for the same relation names and initial relationship key character sequence for a given

node.

list- IEEE] An ordered set of items of data; in the CAIS, an entity of type LIST _ TYPE whose value
I8 8 linearly ordered set of data elements.

list item - A data element in a list.

mandatory access control - See access control.

named item - a list item which has name associated with It.

named list - a list whose items are all named.

node - A representation within the CAIS of an catity relevant to the APSE.

node handle - An Ada object of type NODE _ TYPE which is used o identily a CAIS node: it is
internal Lo a process.

non-existing node - A node which has never been created.

object - [TCSEC] A passive entity that contains or receives information. In the CAIS, any node may
be an object.

obtainable - A node Is obtainable if it Is created and not deleted.
open node handle - A nodr handle that has been assigned (o a particular node.

parent - The source node of a primary relationship; also the target of a relationship of the predefned
relation PARENT.

path - A sequence of relationships connecting one node to another. Starting from a given node. a
path Is followed by traversing a sequence of relationships untll the desired node is reached.

path element - A portion of a pathname representing the traversal of a single relationship; a single
relation name and relationship key pair.

pathname - A name for a path consisting of the concatenation of the names of the traversed
relationships in the path in the same order in which they are traversed.

permanent member - A group member which Is Intrinsically related to the group via primary
relationships of the predefined relation PERMANENT _ MEMBER.

position (of a terminal) - A place in an output device in which a single, printable ASCII character
may be graphically displayed.

potential member - A group member that may dynamically acquire membership in the group;
represented by a node that Is the target of a secondary relationship of the predefined relation
POTENTIAL _MEMBER emanating from that group node or from any of that group nodes’
descendants.

T -

PROPOSED AHYE-ST o s
A1 PANY AKRY e

element (of a file) - A value of the generic data type with which the input and output package was
instantiated: see {LRM| for additional information.

end position - The position of a form identified by the highest row and column indices of the form

external file - [LRM 14.1.1 - Ada external flle] Values input from the external environment of the
progra=™. ot output to the environment, are considered to occupy external flles. An external file can
be anything external to the program that can produce a8 value to be recad or receive a value to he
written.

file - See external file.

file handle - An object of type FILE__ TYPE which is used to identify an internal file.

file node - A node whose contents are an Ada external file, e.g., a host system file, a device, or a
queue.

form - A form is a two-dimensional matrix of character positions.

group - A collection of nodes representing roles and identified by a structural node with emanating
relationships of the predefined relations POTENTIAL _MEMBER and PERMANENT_MEMRBER
identifying each of the group’'s members. A member may be a user top-level node, a node
representing the executable image of a program. or a node representing a group.

illegal identification - A node identfication in which the pathname or the relationship key or
relation name is syntactically illegal with respect Lo the syntax defined in Table 1.

inaccessible - The subject has not (adopted a role which has) been granted the access right of
EXISTENCE to the object.

’ initiate - To place a program into execution: in the CAIS. this means a process node is created. a
process is created as its contents, required resources are allocated, and execution is started.

initiated procesa - The process whose program has been placed Into execution.

initiating process - The process placing a program into execution.

interface - [DACS] A shared boundary.

internal file - A file which is internal to a CAIS process. Such a flle is \dentified by a file handle.

iterator - A variable which provides the bookkeeping Information necessary for iteration over nodes
(a node Iterator) or attributes (an attribute lterator).

job - A process node tree, spanned by primary relationships, which develops under a foot process
node as other (dependent) processes are Initiated for the user.

key - Sce relaticr thip key. The key of a node s the relationship key of the last element of the
node’s pathname.

labe! group (of a inagnetic tape) - One of the following: (1) a volume header and a file header label,
(il) a Tile header label, or (iti) an end-of-file label.

M‘“

ﬁ

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

granted by an object to adopters of that role; in the CAIS this is accomplished by establishing a
secondary relatlonship of the predefined relation ADOPTED _ROLE from the process node to the
node representing the role. '

adopted role of a process - The access rights associated with the node that Is the target of a
relationship of the predefined relation ADOPTED _ ROLE emanating from the process node or with
any group node one of whose permanent members Is the target of such a relationship.

advance (of an active position) - (1) Scroll or page terminal: Occurs whenever (i) the row number of a
new position Is greater than the row number of the old or (ii) the row number of the new poslition is
the same and the column number of the new position I8 greater than that of the old. (2) Form
terminal: Occurs whenever the indices of its position are incremented.

approved access rights - Access rights whose names appear in resuiting rights lists of relevant
grant items for which either (i) the necessary right is null or (ii) the neccessary right is an approved
access right.

area qualifier - A designator for the beginning of a qualified area.

attribute - A named value associated with a node or relationship which provides information about
that node or relationship.

closed node handle - A node handie which Is not associated with any node.
contents - A file or process associated with a CAIS node.

couple - To establish a correlation between a qucue file and a secondary storage file. If the queue file
is a copy queue file, its initial contents Is a copy of the secondary storage flle to which it is coupled; if
the queue file is a mimic queue file, its initial contents is a copy of the secondary storage file to which
it is coupied, and elements that are written to the mimic queue flle are appended to its coupied file.

current job - The root process node of the tree containing the current process node; represented by
the predefined relation CURRENT _ JOB.

current node - The node that is currently th focus or context for the activities of the current
process; represented by the predefined reiation CURRENT _ NODE.

current process - The currently executing process making the call to a CAIS operation. Pathnames
are interpreted in the context of the current process.

| current user - The user’s top-level node; represented by the secondary relationship of the predefined
relation CURRENT _ USER.

dependent. process - A process other than a root process.

device [WERBS] - A piece of equipment or a mechanism designed to serve a special purpose or perform
a special function.

device name - The keys of a primary relationship of the predefined relation DEVICE.

discretionary access control - Sce access control.

ﬁ

PROPOSED MIL-NTD-(AlS
31 JANUAR)Y 1085

3. DEFINITIONS

The following is an alphabetical listing of terms which are used in the description of the CAIS. Where
a document named In Section 2 was used 1o obtain the delinition, the definition Is preceded by a
bracketed reference to that document.

abort - [IEEFE| To terminate a process prior to completion.

access - [TCSEC] A specific type of interaction between a subject and an object that results in the
flow of information from one to the other.

access checking - The operation of checking sccess rights against those rights required for the
Intended operation, according to the access control rules, and either permitting or denying the
intended operation.

; access control - [TCSEC] (1) discretionary access control: A means of restricting aceess to objects
based on the identity of subjects and/or groups to which they belong. The controls are discretionary
In the sense that a subject with a certain access permission is capable of passing thal permission
{perhaps indirectly) on to any other subject. (2) mandatory access control: A means of restricting
access to objects based on the sensitivity (as represented by a label) of the information contained in
the objects and the formal authorization (lL.e., clearance) of subjects to access information of such
sensitivity. In the CAIS, this includes specification of access rights, sccess control rules and checking
of access rights in accordance with these rules.

access control constraints - The resulting restrictions placed on certain kinds of operations by
access control.

access control information - All the Information required to perform access checking.

access control rules - The rules describing the correlations between access rights and those rights
required for an intended operation.

access relationship - A relationship of the predefined relation ACCESS.

access rights - Descriptions of the kinds of operstions which can be performed.

sccess to a node - Reading or writing of the contents of the node, reading or writing of attributes of
the node, reading or writing of relationships emanating from a node or of their attributes, and

traversing a node as implied by a pathname.

accessible - The subject has (adopted a role which has) been granted the access right EXISTENCE
to the object.

active position - The position at which a terminal operation is to be performed.

Ada Programming Support Environment (APSE) - [UK Ada Study, STONEMAN] A set of
hardware and software facilities whose purpose I8 to support the development and maintenance of
Ada applications software throughout its life-cycle with particular emphasis on software for embedded

computer applications. The principal features are the database, the Interfaces and the tool set.

adopt a role - The actlon of a process Lo acquire the access rights which have been or will be

PROPOSED MIL-STD-C AlS
31 JANUAR)Y 1985

2. REFERENCED DOCUMENTS

2.1. Issues of documents

The following documents of the issue in effect on date of Invitation for bids or request for proposal
form a part of this standard to the extent specified herein.

[LRM]: Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A; United States
Department of Defense; January 1983.

(Copies of specifications, standards, drawings, and publications required by contractors in connection
with specific procurement functions should be obtained from the procuring activity or as directed by
the contracting officer.)

2.2. Other publications

The following documents form a part of the standard to the extent specified herein. Unless otherwise
indicated, the issue in effect on date of invitation for bids or request for proposal shall apply.

[ANSI 78]: American National Standards Institute, Magnetic Tape Labels and File Structure for
In formation Interchange (ANSI Standard 18.27-1978). (Application for copies shouid be addressed
to American National Standards Institute, Inc., 1430 Broadway, New York, NY 10018)

[DACS]: DACS Glossary, a Bibliography of Software Engineering Terms, GLOS-1, October 1979, Data
and Analysis Center for Software. (Application for copies should be addressed to Data and Analysis
Center for Software, RADC/ISISI, Griffiss AFB, NY 13441)

(IEEE]: IEEE Standard Glossary of Software Engineering Terminology, ANSI/IEEE Std. 729-1983.
(Application for copies shouid be addressed to Sales Department, American National Standards
Institute, 1430 Broadway, New York, NY 10018)

[STONEMAN;|: Requirements for Ada Programming Support Environments, STONEMAN:
Department of Defense; February 1980.

[TCSEC]: Department of Defense Trusted Computer System Evaluation Criteria. Department of
Defense Computer Security Center, CSC-STD-005-83, 15 August 1983. (Application for copies should
be addressed to Department of Defense, Computer Security Center, Office of Standards and Products,
Attention: Chief, Computer Security Standards, Fort George G. Meade, Maryland 20755.)

[UK Ada Study]: United Kingdom Ada Study Final Technical Report, Volume I, London, Department
of Industry, 1981. (Application for coples should be addressed to Scientific Information Office, British
Defence Staff, British Embassy, 3100 Massachusetits Avenue, NW, Washington, D.C. 20008.)

[WEBS): Webster's New Colleglate Dictionary, G.&£C. Merriam Company, Springfield, Massachusetts,
1979.

-

-~ -

PROPOSED MIL-~TD-C A~
31 JANUARY 1085

used by tool sets Lo constrain nodes. attributes, and relatlons, but It does not enforce a
particular methodology. Currently deferred is a decision whether or not the CAIS should
enforce a particular, more complete typing methodology and what kind of CAIS interfaces
should be made available to support it.

. Archiving. The current CAIS does not define facilities for archiving data. Currently

deferred Is a decision regarding the form that archiving interfaces should take.

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

b. Processes. This area covers program invocation and control.

1 c. Input and Output. This area covers file input and output, basic device input and output
support, speclal device control facllities, and interprocess communication.

d. Utilities. This area covers list operations useful for manipulation of parameters and
]' attribute values.

? 1.8. ‘Excluded and deferred topics

During the design of the CAIS it was determined that interfaces for environments which are not
software development environments (for example, interfaces on target systems) and interfaces for
multilingual environments should be explicitly excluded. It has been decided that backup facilities
will be supported transparently by the CAIS implementation. While the interface issues of most
aspects of environments were considered, the complete resolution of several arcas has becn deferred
{ until later revisions of the CAIS. These areas are:

a. Configuration management. The current CAIS supports facilities for configuration control
Including keeping versions, referencing the latest revision, identifying the state of an
object, etc.; but It does not impilement a particular methodology. Currently deferred is the
decision whether or not the CAIS should enforce a particular conflguration management
approach and, If so, what particular methodology should be chosen.

b. Device control and resource management. The current CAIS provides control facilities for
scroll. page and form terminals and magnetic tape drives. Currently deferred is the
decision as to what additional devices or resources must be supported by the CAIS. Such
resources and devices might include printers, disk drives, color terminals, vector- and bit-
addressable graphics devices, processor memorv, processor time, communication paths, etc.
Also deferred is a decision regarding which other American National Standards Institute or
International Standards Organization interfaces to adopt, such as the ISO/DIS 7942

$ Graphical Kernel System (GKS).

c. Distributed environments. The existing CAIS pickages are intended to be implementable
on a distributed set of processors, but in a manncr that is transparent to a tool. Currently
deferred Is the decision whether or not to provide to the user explicit CAIS interfaces o

l control the distribution of the environment, Including de-ignation of where nodes exist and

where execution takes place. Note that a set of distribut.d processors could include onc or
more target machines.

d. Inter-tool interfaces. The current CAIS does not define inter-tool calling sequences or data

formats such as the data format within the compliation/program library system, the text
[format within editing systems, the command processor language syntax, the message
formats of a mall system, or the Interaction between the run-time system and debugger
tools. Currently deferred are decisions regarding what inter-tool data should become part
of the standard, what form such interfaces should take, and whether or not to place
constraints on the run-time system to provide process execution information.

e. Interoperability. The current CAIS provides only a very primitive, text-oriented interface
for transferring files between a CAIS hnplementation and the operating system on which it
may reside. It does not dcfine external represcntations of data for transfer between
ceny lronments or between 8 host and target.

f. Typing methodology. The current CAIS provides atiributes and relations which can be

PROPOSED MIL-~TD-C Al~
31 JANUARY o>

1. SCOPE

1.1. Purpose

This document provides specifications for a sct of Ada packages, with their intended semantics, which
together form the set of common interfaces for Ada Programming Support Environments (APPSIs).
This set of interfaces is known as the Common APSE Interface Set (CAIS). This interface set is
designed to promote the source-level portability of Ada programs, particularly Ada software
development tools.

The CAIS applies to Ada Programming Support Environments which are to become the basic
software life-cycle environments for Department of Defense (DoD) mission critical computer systems
(MCCS). Those Ada programs that are used in support of software development are defined as tools.
This includes the spectrum of support software from project management through code development,
configuration management and life-cycle support. Tools are not restricted to only those software
items normally associated with program generation, such as editors, compilers, debuggers, and linker-
loaders. Groups of tools that are composed of a number of independent but interrelated programs
(such as a debugger which is related wo a specific compiler) are classed as tool sets' .

Since the goal of the CAIS is to promote it teroperability and transportability of Ada software across
DoD APSEs, the following definitions of these terms are provided.
Interoperability 1s defined as the abllity of APSEs to exchange data base objects and their
relationships in forms usable by tools and user programs without conversion. Transportability of
an APSE tool is defined as the abllity of the tool to be installed on a different KAPSE; the tool
must perform with the same functionality in both APSEs. Transportability Is measured in the
degree to which this installation can be accomplished without reprogramming. Portability and
transferability are commonly used synonyms.2
The CAIS is intended wo evolve as APSEs are implemented, as tools are transported. and as (ool
interoperability issues are encountered. Tools written In Ada, using only the packages described
herein, should be transportable between CAIS implementations. Where tools function as a set, the
CAIS facilitates transportability of the tool set as a whole; Lools might not be individually
transportabie becau . they depend on inputs from other tools in the set.

1.2. Content

The CAIS establishes Interface requirements for the transportability of Ada tool sets to be used in
Department of Defense (DoD) APSEs. Strict adherence to this interface set will ensure that Ada tool
sets will possess the highest degree of transportability across conforming APSEs.

The scope of the CAIS Includes interfaces to those services, traditionally provided by an operating
system, that affect tool transportability. Ideally, all APSE tools would be Impicmentable using only
the Ada language and the CAIS. The CAIS is intended to provide the transportability interfaces
most often required by common software development tools and includes four interface areas:

a. Node Model. This area presents a model for the CAIS in which contents, relationships and
attributes of nodes are defined. Also included are the foundations for access control and
access synchronization.

'Reqn irementa for Ada Programming Support Entvironmenta, STONEMAN: Department of Defense: February 1080,

21\'.4[’-\'5 Interface Team: Public Report, Volume I, 1 April 1082: p. C1.

PROPOSED MIL-STD-CAIS
31 JANUARY 1983

Contents

Paragraph
5.4.1.22.2 Extracting a flosting point item from a list
5.4.1.22.3 Replacing a floating point item into a list
5.4.1.22.4 Inserting a fNoating polnt item into a list
5.4.1.22.5 Identifying a floating point item by value within a list
5.4.1.23. Package STRING _ITEM
5.4.1.23.1 Extracting a string item from a list
5.4.1.23.2 Replacing & string item in a list
5.4.1.23.3 Inserting a string item into a list
5.4.1.23.4 ldentifying a string item by vslue within a list

6. NOTES
8.1. Keywords

Tables

Table I. Pathname BNF

Table I. GRANT attribute value BNF

Table IIl. Predefined access rights

Table IV. Classification attribute value BNF

Table V. Intents

Table V1. Process status transition table

Table VII. Created and Inherited reiationships
Table VIII. Input and output packages for file kinds
Table IX. Flle node predefined attributes, attribute values and relation
Table X. Modes and Intents

Table XI. Volume header label

Table XII. File header label

Table XIII. End of file label

Table XIV. List external representation BNF

Figures

Figure 1. Access relationships
Figure 2. Matrix of access synchronization constraints

Appendix A. PREDEFINED RELATIONS, ATTRIBUTES AND
ATTRIBUTE VALUES

Appendix B. CAIS Specification
Appendix C. CAIS Body

Appendix D. PACKAGE LISTING OF CAIS PROCEDURES AND
FUNCTIONS

210
211
212
212
213
213
214
214
215

217
217

19
23
24
28

81

82
101
103
103
184
186
187
192

24
37

218

222
249
298

Paragraph

5.3.8.12.
5.3.0.13.
5.3.0.14.
5.3.9.15.
5.3.9.18.
5.3.0.17.
5.3.9.18.

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Contents

Rewinding the tape

Skipping tape marks

Writing a tape mark

Writing a volume header label
Writing a file header label
Writing an end of flle label
Reading a label on a labeled tape

5.3.10. Package FILE_ IMPORT _ EXPORT
5.3.10.1. Importing a file
5.3.10.2. Exporting a file
5.4. CAIS Utllities
5.4.1. Package LIST _ UTILITIES

5.4.1.1.
5.4.1.2,
5.4.1.3.
5.4.1.4.
5.4.1.5.
5.4.1.6.
5.4.1.7.
5.4.18.
5.4.1.9.
5.4.1.10

5.4.1.20
5.4

Types and subtypes

Copying a list

Converting to an internal list representation
Converting to an external list representation
Determining the equality of two lists
Deleting an item from a list

Determining the kind of list

Determining the kind of list item

Inserting a sublist of items into a list

. Merging two lists
5.4.1.11.
5.4.1.12.
5.4.1.13.
5.4.1.14.
5.4.1.15.
5.4.1.18.
5.4.1.17.
5.4.1.18.
5.4.1.10.

Extracting a sublist of items from a list

Determining the length of a list

Determining the length of a string representing a list or a list item
Determining the name of a named item

Determining the position of a named item

Extracting a list-type Item from a list

Replacing a list-type item in a list

Inserting a list-type item into a list

Identifying a list-type item by value within a list

. Package IDENTIFIER __ITEM

.1.20.1 Converting an identifier to a token

5.4.1.20.2 Converting a token to an identifier
5.4.1.20.3 Determining the equality of two tokens
5.4.1.20.4 Extracting an identifier item from a list

5.4
5.4

.1.20.5 Replacing an identifler item In a list
.1.20.6 Inserting an identifier item into a list

5.4.1.20.7 Identifying an Identifler item by value within a list

5.4.1.21

5.4.1.21.1 Converting an integer item to Its canonical external representation

5.4
5.4
5.4
5.4
5.4.1.22
5.4

. Generic package INTEGER _ ITEM

.1.21.2 Extracting an integer item from a list
.1.21.3 Replacing an integer Item In a list

.1.21.4 Inserting an integer item into a list
.1.21.5 Identifying an Integer item by value within a list

- Generic package FLOAT _ITEM

.1.22.1 Converting a floating point item to Its canonical external

representation

vill

Page
182
182
183
183
185
187
188
1890
189
180
191
193
193
194
104
195

195

.

PROPOSED MIL-STD-CAIS

31 JANUARY 1985

Paragraph

5.3.7.10.
5.3.7.11.
5.3.7.12.
5.3.7.13.
5.3.7.14.
5.3.7.15.
5.3.7.186.
5.3.7.17.
5.3.7.18.
5.3.7.19.
5.3.7.20.
5.3.7.21.
5.3.7.22.
5.3.7.23.
5.3.7.24.
5.3.7.25.

5.3.7.26

Contents

Enabling echo on a terminal

Querying echo on a terminal

Determining the number of function keys
Reading a character frcm a terminal

Reading all avallable characters from a terminal
Determining the number of function keys that werc read
Determining function key usage

Determiring the name of s function key
Deleting characters

Deleting lines

Erasing characters in a line

Erasing characters in a display

Erasing characters in a line

Inserting space characters in a line

Inserting blank lines in the output terminal file
Determining graphic rendition support

. Selecting the graphic rendition

5.3.8. Package FORM _ TERMINAL

5.3.8.1.
5.3.8.2.
5.3.8.3.
5.3.8.4.
5.3.8.5.
5.3.8.8.
5.3.8.7.
5.3.8.8.
5.3.8.9.

5.3.8.10.
5.3.8.11.
5.3.8.12.
5.3.8.13.
5.3.8.14.
5.3.8.15.
5.3.8.16.
5.3.8.17.

Types and subtypes
Determining the number of function keys

Defining a qualified area
Removing an area quallifier
Changing the active position
Moving to the next qualified area
Writing to a form

Erasing a qualified area

Erasing a form

Activating a form on a terminal
Reading from a form
Determining changes to a form
Determining the termination key
Determining the size of a form
Determining the size of a terminal

5.3.9. Package MAGNETIC _ TAPE

5.3.0.1.
5.3.9.2.
5.3.0.3.
5.3.8.4.
5.3.9.5.
5.3.9.6.
5.3.0.7.
5.3.0.8.
5.3.9.9.
5.3.9.10
5.3.9.11

Types and subtypes

Mounting a tape

Loading an uniabeied tape
Initializing an uniabeled tape
Loading s labeled tape

Initializing a labeled tape

Unloading a tape

Dismounting a tape

Determining if the tape drive is loaded
. Determining if a tape is mounted

. Determining the position of the tape

vil

Determining If the area qualifler requires space in the form
Determining if the area qualifier requires space on a terminal

161
162
163
164
164
165
166
167
167
168
168
169
169
170
170
170
171
171
172
172
172
173
173
174
175
175
176
177
177
178
179
180
180
181
181

ol

PROPOSED MIL-STD-CAlS
31 JANUARY 1085

Contents
Paragraph Page
5.3.4.10. Setting the error file 119
5.3.4.11. Determining the standard error flle 120
5.3.4.12. Determining the current error flle 120
5.3.5. Package 10 _ CONTROL 120
5.3.5... Obtaining an open node handle from a flie handie 121
5.3.5.2. Synchronizing program flles with system flles 122
5.3.5.3. Establishing a log fle 122
5.3.5.4. Removing a log file 123
5.3.5.5. Determining whether logging is specified 123
5.3.5.8. Determining the log file 123
5.3.5.7. Determining the file size 124
5.3.5.8. Setting the prompt string 124
5.3.5.9. Determining the prompt string 125
5.3.5.10. Determining intercepted characters 125
5.3.5.11. Enabling and disabling function key usagc 126
5.3.5.12. Determining function key usage 1268
5.3.5.13. Creating a queue flie node 127
5.3.6. Package SCROLL _ TERMINAL 130
5.3.6.1. Suttypes 130
5.3.6.2. Setting the active position 130
5.3.6.3. Determining the active position 131
5.3.6.4. Determining the size of the terminal 132
5.3.8.5. Setting a tab stop 133
5.3.8.8. Clearing a tab stop 133
5.3.6.7. Advancing to the next tab position 134
5.3.6.8. Sounding a terminal beil 135
5.3.8.9. Writing to the terminal 138
5.3.6.10. Enabling echo on a terminal 137
5.3.8.11. Querying echo on a terminal 138
5.3.6.12. Determining the number of function keys 138
5.3.8.13. Reading a character from a terminal 139
5.3.6.14. Reading all avallable characters from a terminal 140
5.3.8.15. Determining the number of function keys that were read 141
5.3.6.16. Determining function key usage 141
5.3.6.17. Determining the name of a function key 142
5.3.6.18. Advancing the active position to the next line 143
5.3.6.19. Advancing the active position to the next page 144
5.3.7. Package PAGE _ TERMINAL 144
5.3.7.1. Types, subtypes and constants 145
5.3.7.2. Setting the active position 145
5.3.7.3. Determining the active position 146
5.3.7.4. Determining the size of the terminal 147
5.3.7.5. Setting a tab stop 148
5.3.7.8. Clearing a tab stop 148
5.3.7.7. Advancing to the next tab position 149
5.3.7.8. Sounding a terminal bell 150
5.3.7.9. Writing to the terminal 151
vi
P - a il St

PROPOQSED MIL-STD-CAIS

31 JANUARY 1985

Paragraph
5.1.4.3.
5.1.4.4.
5.1.4.5.

Contents

Examining access rights
Adopting s role
Unlinking an adopted role

5.1.5. Package STRUCTURAL _ NODES

5.1.5.1.

Creating structural nodes

5.2. CAIS process nodes
5.2.1. Package PROCESS _ DEFINITIONS
5.2.2. Package PROCESS __ CONTROL

5.2.2.1.
5.2.2.2.
5.2.2.3.
5.2.2.4.
5.2.2.5.
5.2.2.6.
5.2.2.7.
5.2.2.8.
5.2.2.9.

5.2.2.10.
5.2.2.11.
5.2.2.12.
5.2.2.13.
5.2.2.14.
5.2.2.15.
5.2.2.16.
5.2.2.17.

Spawning a process

Awalting termination or abortion of another process
Invoking a new process

Creating a new job

Appending resuits

Overwriting results

Gettling results from a process

Determining the status of a process

Getting the parameter list

Aborting a process

Suspending a process

Resuming 8 process

Determining the number of open node handies
Determining the number of input and output units used
Determining the time of activation

Determining the time of termination or abortion
Determining the time a process has been active

5.3. CAIS input and output
5.3.1. Package 10__ DEFINITIONS
5.3.2. Package DIRECT _10

5.3.2.1.
5.3.2.2.
5.3.2.3.
5.3.2.4.

Subtypes and constants

Creating a direct input or output file
Opening a direct input or output file
Deleting a direct input or output file

5.3.3. Package SEQUENTIAL 10

5.3.3.1.

Subtypes and constants

5.3.3.2. Creating a sequential input or output flle

5.3.3.3. Opening a sequential input or output file

5.3.3.4. Deleting a sequential input or output file
5.3.4. Package TEXT _IO

5.3.4.1. Subtypes and constants

5.3.4.2. Creating a text input or output flie

5.3.4.3. Opening » text input or output flle

5.3.4.4. Deleting a text Input or output flle

5.3.4.5. Resetting a text flle

5.3.4.6. Reading from a text flie

5.3.4.7. Writing to a text file

5.3.4.8. Setting the Input flle

5.3.4.9. Setting the output file

90

92
93
94
95

o7

29
100
100
104
104
104
105
107
108
109
109
109
111
112
113
113
113
115
118
117
118
118
118
119

F——————ﬁ N

PROPOSED MIL-STD-CAJS
31 JANUARY 1885

structural node - A node without contents. Structural nodes are used strictly as holders of
relationships and attributes.

subject - [TCSEC]} An active entity, generally in the form of a person, process, or device, that causes
information to flow among objects or changes the system state. In the CAIS, a subject Is always a

process.

system-level node - The root of the CAIS primsry relationship tree which spans the entire node
structure.

target node - The node at which a relationship terminates.
task - [LRM] A task operates in parallel with other parts of the program.

termination of a process - Termination (see [LRM)] 9.4) of the execution of the subprogram which
Is the main program (see [LRM] 10.1) of the process.

token - An internal representation of an identifler which can be manipulated as a list item.

tool - [IEEE - software tool] A computer program used to help develop, test, analyze, or maintain
another computer program or its documentation; for example, an automated design tool, compiler,
test tool, or maintenance tool.

top-level node - A structural node representing the user. Each user has a top-level node.

track - {1) An open node handle Is guaranteed always to refer to the same node, regardless of any
changes to relationships that could cause pathnames to become invalid or to refer to different nodes.
An open node handle is said to track the node to which it refers. (2) Secondary relationships.

traversal of a node - Traversal of a relationship emanating from the aode.

traversal of a relationship - The act of following a relationship from its source node to its target
node.

unique primary path - The path from the system-level node to a given node traversing only
primary relationships. Every node that is not unobtainable has a unique primary path.

unique primary pathname - The pathname associated with the unique primary path.
unnamed item - No name |s assoclated with a list item.

unnamed list - A list whose items are all unnamed.

unobtainable - A node Is unobtainabic If It is not the target of any primary relationship.

user - An individual, project, or other organizational entity. In the CAIS it Is associated with a top-
level node.

user name - The key of a primary relationship of the predefined relation USER.

10

PROPOSED MIL-STD-C Al
31 JANUARY 1885

4. GENERAL REQUIREMENTS

4.1. Introduction

The CAIS provides interfaces for data storage and retrieval, data transmission to and from external!
devices. and activation of programs and control of their execution. In order to achieve uniformity in
the interfaces, 8 single model is used Lo consistently describe general data storage, devices and
executing programs. This approach provides a single mode! for understanding the CAIS concepts; it
provides a uniform understanding of and emphasis on data storage and program control; and it
provides a consistent way of expressing interrelations both within and between data and executing
programs. This unified model Is referred to as the node model.

Section 4.2 discusses how the interfaces are described In the remainder of Section 4 and in Section 5.
Section 4.3 describes the node model. Section 4.4 describes the mandatory and discretionary access
control model incorporated in the CAIS. Section 4.5 describes limits and constralnts not defined by
the Interfaces. Section 5 provides detalled descriptions of the interfaces. Section 6 provides
information on the intended use of this document and relevant keywords for use by automated
document retrieval systems.

Appendix A provides descriptions of the entities predefined in the CAIS. This appendix constitutes a
mandatory part of this standard.

Appendix B provides a set of the Ada psackage specifications which have been organized for
compllation of the CAIS interfaces. Appendix C provides a set of the corresponding Ada package
bodies. Appendix D provides a list of ali CAIS procedures and functions organized by the packages in
which they appear.

4.2. Method of description

The specifications of the CAIS interfaces are divided into two parts:

a. the syntax as defined by a canonical Ada package specification. and

b. the semantics as defined by the descriptions both of the general node model and of the
particular packages and procedures.

The Ada package specifications glven in this document are te- med canonical because they are
representative of the form of the allowable actual Ada package sp-cifications in any particular CAIS
implementation. The packages which together provide an implementation of these specifications must
have indistinguishable syntax and semantics from those stated herein.

4.2.1. Allowable differences

The packages which together provide a particular Implementation of the CAIS must have the
following properties:

a. Any Ada program that Is legal and not erroneous in the presence of the canonical package
specifications as library units must be legal and not erroneous If the canonlcal packages are
replaced by the packages of a particular CAIS implementation and the names of additional
library units required for the Implicmentation of this particular CAIS are not in conflict
with the names of library units required by the Ada program. [Note: It Is recommended,

W—f N v ——

ﬁ PROPOSED MIL-STD-CAIS
31 JANUARY 1985

4 although not required, that any Ada program that is illegal In the presence of the
canonical package specifications as library units is also Illegal if the canonical packages are
replaced by the packages of a particular CAIS Implementation.]

b. The CAIS Interfaces provided by the subprograms declared In the packages of a particular
{' CAIS implementation must have the semantics described In this document for the
corresponding subprograms in the canonical package specifications.

The actual Ada package specifications of a particular implementation may differ from the canonical
specifications as long as properties (a) and (b) are preserved.

The interface semantics are described In most cases through narrative. These narratives are divided
into as many as (ive paragraphs. The Purpose paragraph describes the function of the interface. The
q Parameters paragraph briefly describes cach of the parameters, and the Ezceptions paragraph briefly
describes the conditions under which each exception is raised. Any relevant information that does not
fall under one of these three headings is included in a Notes paragraph. In cases where an interface is
overioaded and the additional versions can be described in terms of the basic form of the interface
and other CAIS interfaces, these versions are described in a paragraph, called Additional Interfaces.
using Ada. This method of presenting the semantics of the Additiona! Interfaces Is & conceptual
model. It does not imply that the Additional Interfaces must be implemented in terms of the existing
ones exactly as specified, merely that their behavior Is equivalent to such an implementation. The
semantics described In the Purpose, Parameters and Exceptions apply only to the principal interface;
the Additional Interfaces may have additional semantics as implied by the given package bodies.

; 4.2.2. Semantic descriptions

4.2.3. Typographical conventions

This document follows the typographical conventions of [LRM] where these are not in conflict with
those of a MIL-STD. In particular:

a. boldface type is used for Ada language reserved words,
b. UPPER CASE is used for Ada language identifiers which are not reserved words,

c. in the text, syntactic category names are written in normal typeface with any embedded
underscores removed,

d. in the text, where reference is made to the actual value of an Ada variabie (for example, a
f procedure parameter), the Ada name s used in normal typeface. However, where
reference Is made to the Ada object itself (see [LRM]| 3.2 for this use of the word object),
then the Ada name Is given in upper csase, including any embedded underscores. For
example, from [LRM| 14.2.1 paragraphs 17, 18 and 19

function MODE(FIL.E: in FILE_ TYPE) return FILE_ MODE;
Returns the current mode of the given flle.
but

The exception STATUS _ERROR Is raised if the flle
Is not open. .

12

PROPOSED MIL-STD-(o]«
31 JANUARY 1087

e. at the place where a technical term is first Introduced and defined in the text, the term is
given in an stalic typcface.

4.3. CAIS node model

The CAIS provides interfaces for administering eatitles relevant during the software life-cycle such as
- files, directories, processes and devices. These entities have various properties and may have a variety
-of Interrelations. The CAIS model uses the concept of a node as the carrier of information about an

entity. It uses the concept of a relationship for representing an interrelation between two entities

and the concept of an attribute for representing a property of an entity or of an interrelation.

The mode! of the structure underlying the CAIS and reflecting the interreiations of entities is a
directed graph of nodes, which form the vertices of the graph, and relationships, which form the edges
of the graph. This model is 8 conceptual model. It does not imply that an implementation of the
CAIS must use a directed graph to represent nodes and their relationships.

Both nodes and relationships possess attributes describing properties of the entitles represented by
nodes and of interrelations represented by relationships.

4.3.1. Nodes

The CAIS identifies three different kinds of nodes: structural nodes, flle nodes and process nodes. A
node may have contents, relationships and attributes. The contents vary with the kind of node. If a
node i8 a file node, the contents is an Ada external file. There are four types of CAIS supported Ada
external files: secondary storage, qucue, terminal, and magnetic tape. The Ada external flle may
represent 8 host flle, a device (sueh as a terminal or tape drive) or a queue (as used for process
intercommunication). If a node is a process node, the contents is a representation of the execution of
an Ada program. If a node Is a structural node, there is no contents and the node Is used strictly as a
holder of relationships and attributes. The kind of a node is a predeflined and implicitly established
attribute on every relationship which points to the node.

Nodes can be created, renamed, accessed (as part of other operations), and deleted.

4.3.2. Processes

A process is the CAIS mechanism used to represent the execution of an Ada program. A process is
represented as the contents of a process node. The process node and its attributes and relationships
are also used to bind to an execution the resources (such as flies and devices) required by the process.
Taken together, the process node, its attributes, relationships and contents are used in the CAIS to
manage the dynamics of the execution of a program. Each time execution of a program Is initiated, a
process node Is created, the process is created, the necessary resources to support the execution of the
program are allocated to the process, and execution Is started. The newly created process is called
the initiated process, while the process which caused the creation of that process Is called the
initiating process.

A single CAIS process rcpresents the execution of a single Ada program, even when that program
includes multiple taxks. Within the process, Ada tasks execute In parallel (proceed independently)
and synchronize In accordance with the rules in [LRM] 9, paragraph §:

Parallel tasks may be Implecmented on muiticomputers, multlprocessors, or with interlcaved
exccution on 8 singic physical processor. On the other hand. whenever an impiementation can

L

P

PROPOSED MIL-STD-C AIS
31 JANUARY 1985

detect that the same efTect can be guaranteed If paris of the actions of a given [Ada’ task are
executed by different physical processors acting in parallel, It may choose Lo execute them in this
way; in such a case several physical processors impiement a single logical processor.

When a task makes a8 CAIS call, execution of that task is blocked untll the CAIS call returns control
to the task. Other tasks in the same process may continue to execute in parallel, subject to the Ada
tasking rules. If calls on CAIS interfaces are enacted concurrently, the CAIS does not specify their
order of execution.

Processes are analogous to Ada tasks In that they execute logically in parallel, have mechanisms for
Interprocess synchronization, and can exchange data with other processes. However, processes and
Ada tasks are dissimilar In certain critical ways. Data, procedures or tasks In one process cannot be
directly referenced from another process. Also, while tasks in a program are bound together prior to
execution time (at compile or link time), processes are not bound together except by cooperation using
CALIS facilities at run time.

4.3.3. Input and output

Ada input and output in [LRM] 14 Involves the transfer of data to and from Ada external files. CAIS
input and output uses the same model and involves the transfer of data to and from the contents of
CALIS file nodes. These flle nodes may represent disk or other secondary storage files, magnetic tape
drives, terminals, or queues.

CAIS file nodes represent information about and contain Ada external files. The underlying model for
the contents of such & node is that of & file of data items, accessible either sequentially or directly by
some index. The packages specified In Section 5.3 provide facilities that operate on CAIS external
files.

Implementations of the standard Ada packages SEQUENTIAL_ 10, DIRECT_I10, and TEXT_IO
specified in the |[LRM)] that operate upon CAIS files are to be constructed such that they meet the
Ada standard and for CRI!ATE and OPEN procedures:

1. The semantics of th ' use of the default value of the FORM parameter FORM : IN string
;== "* |3 specified within the context of the node model.

2. The syntax and semantics of the non empty FORM parameter is specified within the
context of the NODI. model.

3. Nothing in the implementation can violate the concistancy of the CAIS NODE model.

The interfaces In the package MAGNETIC _TAPE have been modeled on the American National
Standards Institute standards in [ANSI 78).

4.3.4. Relationships and relations

The rclationships of CAIS nodes form the edu-s of a directed graph; they are used Lo build
conventional hierarchical directory and process strictures (see Section 5.1.5 STRUCTURAL _ NODES
snd Section 5.2.2 PROCESS _CONTROL) ax well as arbitrary directed-graph structures.
Relationships are unidirectional and are sald to emanate from a source node and to terminate at a
target node. A relationship may also have attributes describing properties of the relationshlp.

Beeause any node may have many relationships representing many different classes of connectlons,

14

PROPOSED MI-STD-¢ A~
33 JANUARY 1985

the concept of a relation is introduced to categorize the relationships. Relations identify the nature
of relationships, and relationships are instances of relations. Certain basic relations are predefined by
the CAIS. Their semantics are explained in the following sections. Additional predeflined relations are
introduced in Section 5 and are listed in Appendix A. Relations may also be deflned by a user. The
CAIS associates only the relation name with user-defined relations; no other semantics are supported.

Each relationship is identified by a relation name and a relationship key. The relation name

. identifies the relation, and the relationship key distinguishes between multiple relationships cach

bearing the same relation name and emanating from a given node.

Nodes in the environment are attainable by following relationships. Operations arc provided o
traverse a relationship, that is, to follow a relationship from its source node to its target node.

4.3.4.1. Kinds of relationships

There are two kinds of relationships: primary and secondary. When a node is created, an initial
relationship Is established from some other node to the newly created node. This initial relationship is
called the primary relationship to this new node, and the source node of this initlal relationship is
called the parent node. In addition, the new node will be connected back to this parent via a
relationship of the predefined relation PARENT. There Is no requirement that all primary
relationships emanating from a node have the same relation name. Primary relationships form a
strictly hierarchical tree; that is, for every node (except the root) there is one and only one sequence
of primary reiationships leading to it f[rom the node that is the root of the tree. No cycles can be
constructed using only primary relationships.

The primary relationship is broken by DELETE__NODE or DELETE _TREE operations. After
deletion of the primary refationship to a node, the node is said to be unobtainable. A non-existing
node is one which has pnever been created. RENAME operations may be used to make the primary
relationship to a node emanate from a different node which becomes the new parent of the node. The
operations DELETE _ NODE, DELETE_ TREE, RENAME., and the operations creating nodes are the
only operations that manipulate primary relationships. They maintain a state in which each node has
exactly one parent and a unique primary pathname (see Section 4.3.5).

Secondary reiationships are arbitrary connections which may be established between two existing
nodes; secondary relationships may form an arbitrary directed graph. User-defined secondary
relationships are created with the LINK procedure and broken with the UNLINK procedure.
Secondary relationships may exist to unobtainable nodes.

4.3.4.2. Basic predefined relations

The CAIS predefines certain relations. Relationships belonging to a predefined relation cannot be
created, modified, or deleted by means of the CAIS interfaces and thelr relationship keys are Lhe
empty string, except where explicitly noted. The semantics of the predefined relations which are basic
to the node mode!, as well as related concepts of the CAIS, are explained In this Section and Section
4.4. The basic predefined relatlons explained In this Section are USER, DEVICE, JOB,
CURRENT _JOB, CURRENT _ USER and CURRENT _ NODE.

The CAIS node model Incorporates the notion of a user. A user may be an individual, project, or
other organizational entity; this notion Is not equated with only an individual person. Each user has
one top-level node. This top-level node Is a structural node which represents the user and from It the
user can access other structural, file and process nodes.

15

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

The CAIS node model incorporates the notion of a system. This notlon provides the mcans of
administering all the entities represented within one CAIS imp' + ntatlon. This notion implies the
existence of a system-level node which acts as the root of the CA "~ primary relationship tree spanning
the entire node structure. Fach top-lcvel node Is reachable fror the system-level node along a primary
relationship of the predefined relation USER emanating from .e system-level node. The key of this
relationship Is the user name. Each user name has a top-lev.i node associated with it. The sysiem-
level node cannot be accessed explicitly by the user via the CAIS Interfaces. It may only be
manipulated by Interfaces outside the CAIS, e.g., to add new relationships of the predelined relation
USER emanating from the system-level node.

The CAIS node model Incorporates the notion of devices. Each device is described by a file nede. This
file node Is reachable from the system-level node along a primary relationship of the predefined
relation DEVICE emanating from the system-level node. The key of this relationship is the device
name. The CAIS does not define interfaces for creating nodes which represent devices; such interfaces
are to be provided outside the CAIS.

The CAIS node model incorporates the notion of a job. When a user logs onto the APSE or calls the
CREATE _JOB procedure, a roo! process node Is created which often represents a command
interpreter or other user-communication process. It I8 left to each CAIS implementation to set up
methodology for users to log onto the APSE and for enforcing any constraints that limit the top-leve,
nodes at which users may log on. After logging onto the APSE, the user will be regarded by the CAIS
as the user associated with the top-level node at which he logged on. A process node tree, spanned by
primary relationships. develops from the root process node as other processes (called dependent
processes) are Initiated for the user. A particular user may have several root processes nodes
concurrentiy. Each corresponding process nodc tree Is referred to as a job. The predefined JOB
relation Is provided for locating each of the rcot process nodes from the user's top-level node. A
primary relationship of the predefined relation /OB emanates from each user’s top-level node to the
root process node of each of the user's jobs. The key of this relationship is assigned by the mechanism
of interpreting the LATEST _ KEY constant (see Section 4.3.5) unless otherwise specified in the
CREATE _ JOB procedure call.

While the CAIS does not specify an Interface for creating the initial root process node when a user
logs onto the APSE, the effect is to be the same as a call to the CREATE _JOB procedure. The
secondary relationships which the Implementation must establish are found in TABLE VIL In
particular, secondary relationships of the predefined relations USER and DEVICE must be
established, with the appropriate user and device names as keys. These relationships emanate from
the root process node beling created to an implementation-defined subset of top-level nodes and file
nodes representing devices, respectively. Dependent process nodes in the job inherit these
relationships. File nodes representing devices and top-level nodes of other users can be reached from
a process nodc via a relationship of the relation DEVICE or USER and a relationship key which is
interpreted as the respective device or user name.

CURRENT _JOB, CURRENT_USER., and CURRENT _NODE are predefined relations which
provide a convenlent means for identifying other CAIS nodes. The relationship of the predefined
relation CURRENT _JOB always points to the root process node of a process node’s job. The
relationship of the predefined relation CURRENT _USER always points to the user's top-level node.
The relationship of the | redefined relation CURRENT _ NODE can be used to point to a node which
represents the process'c- current focus or context for Its activities. The process node can thus use the
CURRENT _NODE fo: a base node when specifying pathnames (see Section 4.3.5). The CAIS
requires that, when a root process node Is created. it has a relationship of the predefined relation
CURRENT _ NODE pointing to the top-level node for the user.

16

PP——

The node model makes use of the concept of a current process. This concept is implicit in all calls o
CAIS operations and refers to the process for the currently executing program making the ~ull. It
defines the context in which the parameters are to be Interpreted. In pafticular, pathnames are
determined in the context of the current process.

PROPOSED MIL-STD-(AlS
31 JANUARY 1085

4.3.5. Paths and pathnames

1 Every accessible node may be reached by following a sequence of relationships; this sequence is called
the path w the node. A path starts at a known (not necessarily top-level) node and follows a
sequence of reiationships to a desired node. The path from the sysiem-level node to a given node
traversing only primary relationships Is called the unique primary path to the given node.

Paths are specified using a pathname syntax. Starting from a given node, a path is followed by
traversing a sequence of relationships until the desired node is reached. The pathname for this path
Is made up of the concatenation of the names of the traversed relationships in the same order in
which they are traversed.

The syntax of s pathname is a sequence of path elements, each path element representing the
traversal of a single relationship. A path element Is an apostrophe (pronounced "tick”®) followed by a
relation name and a parenthesized relationship key.

Relation names and relationship keys foilow the syntax of Ada identifiers. Upper and lower case are
treated as equivalent within such identifiers. If the relationship key of a path element is the empty
string, the parentheses may be omitted. Thus, 'PARENT and 'PARENT() refer to the same node.

The CAIS predefines the relation DOT. If the relation name in a path element is DOT, then the path
element may be represented simply by a dot ('.') followed by the relationship key. Thus.
‘DOT(TRACKER) Is the same as .TRACKER. Relationship keys of relationships of the DOT ielation
may not be the empty string. Instances of the DOT relation may be manipuiated by the user within
access right constraints. Relationships of the DOT relation are not restricted to be primary
relationships and are not associated with any other CAIS-specific semantics.

The starting point for Interpretation of a pathname is always the current process node. A pathname
may begin simply with a relationship key, not prefixed by either an apostrophe or .’ . This Is taken
to mean interpretation following a relationship emanating from the current node with the relation
name DOT and with the given key. Thus LANDING _SYSTEM Is the same as
L 'CURRENT _ NODE.LANDING _SYSTEM.

For example, all of the following are legal node pathnames, and they would all refer to the same node
if the relationship of the predefined relation points to the same node as "USER(JONES). TRACKER
and the relationship of the predefined relation points to the same node as ‘USER(JONES):

| s. LANDING _SYSTEM'WITH_ UNIT(RADAR)

b. 'USER(JONES). TRACKER.LANDING _SYSTEM'WITH _ UNIT(RADAR)

¢. 'CURRENT _ USER. TRACKER.LANDING _ SYSTEM'WITH _UNIT(RADAR)
A pathname may also be 8 *:* . This Is Interpreted as referring to the current process node.

By convention, a relationship key ending in ‘#' Is taken to represent the LATEST_KEY
(lexicographically Iast). When creating a node or relationship, use of '#° to end the final reiationship

PROPOSED MIL-STD-C AIS
31 JANUARY 1085

-

key of a pathname will cause a relationship key t« be sulomatically assigned, lexicographically
following all previous relationship keys for the same -elation and Initial relationship key character
sequence of relationships emanating from that particuiar node.

Identi fication of a node Is provided by a pathname or by a given node and an Identification of a
{ relationship emanating from the given node by means of its relation name and relationship key. The
phrase to tdentify means to provide an identification for a node. A node identification Is considered
an illegal identification if either the pathname or the relationship key or the relation name Is
syntactically fllegal with respect to the syntax defined in Table 1. An illegal Identification is treated as
an identification for a non-existing node.

A pathname implies traversal of a node il a relationship emanating from the node Is traversed;
consequently all nodes on the path to a node are traversed, while the node at the end of the path is
not traversed. An identlfication that would require traversal of an unobtainable or inaccessible node is
treated as the identification for a non-existing node.

The pathname associated with the unique primary path Is called the unique primary pathname of the
node. The unique primary pathname of the node is syntactically identical to, and therefore can be
used as, a pathname whose interpretation starts at the current process node. It always starts with
‘USER(user _name).

When identifying a node, use of "#" to end any relationship key in the pathname is interpreted as
the relationship key of an existing relationship, lexicogr:iphically following ali other keys for the same
relation and initial relationship key character sequence of relationships emanating from that particular
node.

PROPOSED MUASTD-C -
31 JANUAR)Y 1985

Table L. Pathname BNF

path name::= relationship _ key{path _element} |
path _element{path _element} |:

path _element::= ‘relation _name | ([relationship _key })] |
.relationship _ key
relation _ name::= identifier

relationship _key::= identifier | [identifler | #

Note: the relation name DOT must have 8 non-empty relationship key.

Notation:

1. Words - syntactic categories

2.] - optional items

3.{} - anitem repeated zero or more times
4. | - separates alternatives

4.3.6. Attributes

Both nodes and relationships may have attributes which provide information about the node or
relationship. Attributes are identified by an attribute name. Each attribute has a name and has a
list of the values assigned to It, represented using the LIST __UTILITIES type called LIST _TYPE
(see Section 5.4.1).

Relation names and attribute names both have the same form (that Is, the syntax of an Ada
identifier). Relation names and node attribute names for a given node must be different from each
other. relationship atiribute names are in a Separate name space.

The CAIS predefines certaln attributes which are discussed in Section 5 and listed In Appendix

A. Predefined atiributes cannot be created, modified or deleted by the user, except where explicitly
noted. The user can also create and manlpulate user-defined attributes (see Section 5.1.3).

'.._—-mmmmc

31 JANUARY 1085

4.4. Discretionary and mandatory access control

The CAIS specifies mechanisms for discretionary and mandatory access control (see [TCSEC). These
specifications are only recommendations. Alternate discretionary or mandatory access control
mechanisms can be substituted by an Implementation provided that the semantics of all interfaces in
Section 5 (with the exception of Section 5.1.4) are implemented as specified.

In the CAIS, access control refers to all Lthe aspects of controlling access to information. It consists
of:

8. access control rights Descriptions of the kinds of operations which can be performed.

b. access conirol rules The rules describing the correlations between access rights and those
rights required for an intended operation.

c. access checking The operation of checking granted access rights against those rights

required for the Intended operation according to the access control ruiles, and elther
permitting or denying the Intended operation.

All of the information required o0 perform access checking is collectively referred to as access control
information. The resulting restrictions placed on certain kinds of operations by access control are
calied access rights conatraints.

4.4.1. Node access
In the CAIS, the following operations constitute access to a node:

a. reading or writing of the contents of the node,
b. reading or writing of attributes of the node,
c. reading or writing of relationships emanating from a node or of their attributes, and

d. traversing a node (see Section 4.3.5).

The phrase “reading relationships® is a convenient short-hand meaning either traversing relationships
or reading their atiribuytes. To access a node, then, means t¢ perform any of the ibove access
operations. The phrase "to obtain access™ to a1 node means being permitted to perform certain
operations on the node within access right constraints. Access 10 a node by means of a pathname can
only be achieved If the current process has the respective access rights to the nodc as well as o any
node traversed on the path to the node.

In the CAIS, the following operations do not con-titute access to a node: closing node handles to a
node, opening 3 node with intent EXISTENCE (s TABLE V), reading or writing of relationships of
which a node is the target or of the attributes of ~uch relationships, querying the kind of a node and
querying the status of node handles Lo a node. *

A node Is fnaccessible If the current process do. not have sufficient discretionary access control
rights to have knowledge of the node’s existence ¢ If mandatory access controls prevent information
flow from the node o the current process. The property of inaccessibility Is always relative Lo the
access rights of the currently executing process, while the property of unobtainability is a property of
the node alone,

quag e e

PR

PROPOSED MH-~TIx0 Al
3t JANT ARY jaRr,

4.4.2. Discretionary access control

Discretionary saccess céntrol is a means of restricting access to objects based on the identity of
subjects and/or groups to which they belong. The controls are discretionary in the sense that a
subject with certain access permission is capable of passing that permission (perhaps indirectly)
on to any other subject [TCSEC).
In the CAIS, an obj ct is any node 1o be accessed and a subjyect is any process (acting on the behalf of
a given user) perforining an operation requiring access to an object. Discretionary access control Is
used to limit access to nodes by processes running programs on behalf of users or groups of users.

An object can have established for it a8 secondary relationship of the predefined reiation ACCESS
which speciflies the kinds of operations which may be performed on it. A process node may have a
secondary relationship of the ADOPTED _ ROLE relation established to the same target node as a
predefined relation relstionship. The information provided by these two kinds of relationships
determines the approved access rights which the process has to the object (see Section 4.4.2.3). When
the process tries (o open the object node, the access rights implied by the INTENT parameter (see
Section 5.1) are checked against these approved access righis to determine whether the process can
perform the operation on that node.

4.4.2.1. Establishing grantable access rights

An object may be the source node of 2ero or more secondary relationships of the predefined relation
ACCESS (called access relationships). Each access relationship has s predefined atiribute. called
GRANT. which specifies what access rights 1o the object are grantabie to processes (subjects).

In order o limit the set of nodes to which access relationships can be established, the CAIS
discretionary access control model requires that, upon creation of a root process node, secondary
relationships of the predefined relation ALLOW _ACCESS be crested. These relationships emanate
from the created root process node to an (mplecmentation-defined set of nodes. The CAIS
Implementation must establish at least the secondary relationship of the predefined relation
ALLOW _ ACCESS with the user name as key (rom the root process node Lo the user top-level node.
All such relationships are inherited by the process nodcs created under the root process node.

Access reiationships and GRANT attributes are established for objects in one of two ways: ysing the
interfaces provided in the package ACCESS _ CONTROL or at node creation.

The SET _ACCESS__CONTROL procedure can be used by a process to establish an access
reistionshlp between two nodes and Lo set the value of the GRANT attribute. This procedure can also
be used to change the value of the GRANT attribute of an existing access relationship.

Access relationships are also established at node creation. The ACCESS__CONTROL parameter
provides the necessary information In two parts. One part provides relationship keys which are used
to identify the nodes which will be the targets of the new access relatlonships. If the current process
node has a relationship of the relation ALLOW _ ACCESS whose key Is one of the keys given In the
parameler, then the node identified by that relationship becomes the target of 8 new access
relationship from the created node.

The other part of the ACCESS__CONTROL parameter gives a set of access rights for each
relationship key. These access rights become the value of the GRANT attribute of the access

relationship created with the corresponding key.

The ACCESS _ CONTROL parameter specifies the initla) access control information to be established

21

PROPOSED MIL-STD-C A~
31 JANUARY ‘985

for a node being created using named Ada aggregate syntax; that is, it consists of a list of items each
of which has a name (identifying s target node for an access relationship) followed by a list of values
for the GRANT attribute.

For every reiationship key named in the list for which the current process node has a retationship of
the predefined relation ALLOW _ ACCESS. s relationship of the predefined relation ACCESS with
the given relationship key and the given saccess rights value for its GRANT stiribute vatue is created
from the new node to the target of the relationship of the predefined relation ALLOW _ ACCESS

4.4.2.2. Adopting a role

In the CAIS, a role is associated with a set of access rights that a subject can acquire when it acts
under authority of that role. Each role is associated with a CAIS user, a program being executed. or a
particular group of users, programs or subgroups. A subject (process) may act under the authority of
several roles. Roles can be acquired dynamically.

In the CAIS a role is represented by a node; the associated access rightes are determined by access
relationships as described in the following sections. This node may be a top-level node representing a
user, & node contalning the executable image of a program, or a structural node representing a group.
The structural node representing a group has relationships emanating from it to the nodes which
represent the group's members.

Each group member is Identified either by s primary relationship of the predefined relation
PERMANENT _MEMBER or by a secondary relationship of the predefined relation
POTENTIAL _MEMBER emsnating from the group node. The phrase permanent member of a group
refers to any node reachable from a node representing the group via primary relationships of the
predefined relation PERMANENT _ MEMBER. The retation PERMANENT _ MEMBER may be used
to create a hierarchy of nodes representing roles by defining members of a group that are themselves
groups. A user top-level node may not be the target of a primary relationship of the predefined
relation PERMANENT _MEMBER emanating {rom 8 group node due to the restriction that user
top-level nodes can only have a primary relationship from the system-level node.

’ Secondary retationships of the predefined relation POTENTIAL __MEMBER are used to identify those
members that may dynamically acquire membership In the group. The phrase potential member of a
group refers to any node that |Is the target of a relationship of the predefined relation
POTENTIAL _MEMBER {rom that group or from any of that group’s permanent members.

When s process adopts s particular role, a secondary relationship of the predefined relation
ADOPTED _ ROLE is created from the process node 10 the node representing the role. There may be
multiple relationships of the predefined relation ADOPTED_ROLE emanating from a process node.
Roles are adopted either at creation of the process node or explicitly. When s process is created. it
tmplicitly adopts the role represented by the fNie node containing an executable image of the program
it is executing. When a root process node is created, It implicitly adopts the role represented by its
current user node. When any process node Is created, It implicitly Inherits the relationships of the
relation ADOPTED _ ROLE of the node of Its creating process. A process may explicitly adopt s role
associated with a group using the ADOPT procedure (Section 5.1.4.4). For a process to adopt a role

i associated with a given group, a node representing some other adopted role of the process must be a
potential member of the glven group.

22

PROPOSED MIL-STD-(Ajs
31 JANTU ARY 1985

4.4.2.3. Evaluating access rights

The value of the GRANT attribute is a list whose syntax is given by the BNF in TABLE Il. The
necessary right is an access right, and the resulting rights are a list of access rights. An access right
name has the syntax of an Ada identifier.

Table I. GRANT attribute value BNF

grant _attribute _value::= ([grant _item {.grant_item}})
grant _ item::= ({necessary _ right=>] resulting _ rights _list)
necessary _ right::= identifier

resulting _rights _ list::= Identifier |
{ identifier {, identifier})

Notation:

1. Words - syntactic categories

2. 1 - optional items

3. {]} - an ltem repeated zero or more times
4. | - separates alternatives

The syntax is consistent with that given In Section 5.4. The Interfaces in Section 5.4 can be used to
construct and manipuiate values of the GRANT attribute.

Checking of discretionary access control rights involves relevant grant items and approved access
rights, both of which are derived from the values of GRANT attributes. For a given subject and
object, relevant grant items are the grant items in values of GRANT attributes of relationships of the
relation ACCESS emanating from the object and pointing at any node representing a role which is an
adopted role of the process subject or representing & group one of whowe permanent members is an
adopted role of the process subject. Approved access rights are access rights whose names appear in
resulting rights lists of relevant grant ltems for which either (1) the necessary right ie null or (2) the
necessary right Is an approved access right.

For example, given a process node SUBJECT, an object OBJECT, and two nodes ROLE1 and ROLE?2
representing roles, the following relatlonships might exist:
a. a rclationship of the relatlon ACCESS from OBJECT to ROVLE! with a GRANT attribute
value of (READMAIL=>(READ, WRITE)).

b. a relationship of the relation ACCESS from OBJECT to ROLE2 with a GRANT attribute
value of (READMAIL).

23

W-—— v T TPROFOSED MIL-STD- ALS
31 JANUARY 19RS

5

NON-EXCLUSIVE EXCLUSTVE

E
X E
12 1 X
- E
I TRYRC W ACRAVAAARR YR ARCCRVY RC WC ACRA YA AARR WR AR C
R BIST
[} R b ¢ X X X X
] v XX X X X X X X X X XY
RC X X
E w XX X X X
X AC X X X
c RA X
L A XX
u AA X
- AR X X
I R XX X XX
v AR X X XX
4 c XXx X X XX
EXEC X X
4 R X X b 4 X X X X X X X
X ¥XX X X X X X X X X XXX XX X X X X X X X X XX
c RC X X X X
L wXXx X X X X XX X X X
U AC X X X X X X
8 RA X X
I WA XX XX
v AA X X
1 RR X X X X
W XX X XX X X X XX
AR X X XX X X XX
cXxXX X X XX XX X X XX

X = Open wvitd intent I2 is blocked 1f there are open bandles cpened with

intent I1.
Exist = EXISTENCE R = READ ¥ = WRITE
RC = READ CONTENTS ¥C = WRITE_CONTENTS AC = APPEND_CONTENTS
RA = READ ATTRIBUTES WA = WRITE_ATTRIBUTES AA = APPEND_ATTRIBUTES
RR = READ RELATIONSHIPS WR = WRITE_ATTRIBUTES AR = APPEND_RELATIONSHIPS
C = CONTROL Exec = EXECUTE

Figure 2. Matrix of access synchronization constraints

N\
Reproduced from N
best available copy. %gp

37

e e

PROPOSED MIL-STD-C AI&
31 JANUARY 1985

specified in FIGURE 2. Open and change_intent operations are additionally
delayed if there are open node handles to the node with Intent to read. write or
append refationships or Lo read. write or append access control Information.

EXECUTE: Open and change _intent operations are delayed if the node contents are locked
against read operations. The established access right for subsequent operations ix
the permission to initiate a process taking the node contents as executable image.

Open node handles can block other attempts to open other node handles or to change the Intent of

other node handles according to the rules demonstrated in FIGURE 2.

368

A e,

-y g T —

PHROP O~ NI =T v g~

31 JAaNt ARY e

For EXCLUSIVE _ WRITE _ ATTRIBUTES, the node Is locked against opens with
fntent to read, write or append attributes as specified in FIGURE 2. Open and
change _Intent operations are additionally delayed if there are open node handles o
the node with Intent to read, write or append attributes.

APPEND _ ATTRIBUTES, EXCLUSIVE _ APPEND _ ATTRIBUTES:
Open and change _intent operations are delayed if the node or fts attributes are
locked agalinst append operations. The established access right for subsequent
op rations Is Lo create node attributes.

For EXCLUSIVE _APPEND _ ATTRIBUTES, the node I8 locked against opens
with Intent to write or append sttributes as specified in FIGURE 2. Open and
change _intent operations are addltlonally delayed if there are open node handles to
the node with intent to write or append attributes.

READ _ RELATIONSHIPS, EXCLUSIVE _ READ _ RELATIONSHIPS:
Open and change _Intent operations are delayed If the node or its relationships are
locked agalnst read operations. The established access right for subsequent
operations is to read node relationships, including their attributes.

For EXCLUSIVE _ READ _ RELATIONSHIPS, the node is locked against opens
with Intent to write relationships as specified In FIGURE 2. Open and
change _intent operations are sdditionally delayed If there are open node handles to
the node with intent Lo write relationships.

WRITE _ RELATIONSITIPS, EXCLUSIVE __ WRITE _ RELATIONSHIPS:
Open and change _ Intent operations are delayed if the node or its relationships are
locked against write operations. The established access right for subsequent
operations i3 Lo write or create node relationships, including their attributes.

For EXCLUSIVE _ WRITE _RELATIONSHIPS, the node is locked against opens
with intent to read, write or append relationships as specified In FIGURE 2. Open
and change _intcnt operations are additionally delayed if there are open node
handles to the node with intent to read, or write append reirtionships.

APPEND _ RELATIONSHIPS, EXCLUSIVE _ APPEND _ RELATIONSHIPS:
Open and change _ intent operations are delayed If the node or its relationships are
locked against append opcrations. The estabiished access right for subsequent
operations is to create node relationships, Including their attributes.

For EXCLUSIVE _ APPEND _ RELATIONSHIPS, the node Is locked against opens
with intent to write or append relationships as specified in FIGURE 2. Open and
change _Intent operations are additionally delayed If there are open node handies to
the node with intent to write or append relationships.

CONTROL, EXCLUSIVE _ CONTROL:
Open and change _intent operations are delayed if the node or Its retationships are
locked against write or control operations. The established access right for
subsequent operations is to read, write or append access control Information.

For EXCLUSIVE _ CONTROL. the node is locked against opens to read, write, or
append relationships or to read, write, or append access control information as

35

y— —y
- PROPOSED MIL-STI-C AlS

31 JANU ARY 198

or relationships are locked against write operations. The established access right for
subsequent operations is Lo write, create or append to pode contents, attributes and
relationships.

For EXCLUSIVE _ WRITE, the node Is locked against opens with any read, write
or append intent as specified in FIGURE 2. Open and change_ intent operations
are additionally delayed If there are open node handles to the node with read, write
or append intent.

READ _CONTENTS, EXCLUSIVE _READ_ CONTENTS:

Open and change _intent operations are delayed Il the node or its contents are
focked against read operations. The established sccess right for subsequent
operations is to read the node contents.

For EXCLUSIVE _READ _ CONTENTS, the node contents are locked against all
opens with write intent as specified in FIGURE 2. Open and change _Intent
operations are additionally delayed If there are open node handles to the node with
Intent to write its contents.

WRITE _CONTENTS, EXCLUSIVE _WRITE _CONTENTS:

Open and change_Intent operations are delayed If the node or Its contents are
locked against write operations. The established access right for subsequent
operations is to write or append to the node contents.

For EXCLUSIVE _WRITE_CONTENTS, the node contents are locked against
opens with read., write or append intent as specified in FIGURE 2. Open and
change _ Intent operations are additionally delayed If there are open node handles to
the node with intent to read, write or append to its contents.

APPEND _ CONTENTS. EXCLUSIVE _ APPEND _ CONTENTS:

Open and change_ intent operations are delayed if the node or Its contents are
locked against append operations. The established access right for subsequent
operations is to append to the node contents.

For EXCLUSIVE _ APPEND _ CONTENTS, the node contents are locked against
opens with append or write intent as specified in FIGURE 2. Open and
change __intent operations are additionally delayed If there are open node handlcs to
the node with Intent to sppend or write to Its contents.

READ _ ATTRIBUTES, EXCLUSIVE _ READ _ ATTRIBUTES:

Open and change _ Intent operations are delayed If the node or its attributes are
locked sgainst read operations. The established access right for subsequent
operations Is to read node attributes.

For EXCLUSIVE _READ _ ATTRIBUTES, the node is locked against opens with
intent to write attributes as specified In FIGURE 2. Open and change_intent
operations are additionally delayed If there are open node handles to the node with
intent to write atiributes.

WRITE _ ATTRIBUTES, EXCLUSIVE_ WRITE _ ATTRIBUTES:

Open and change _ intent operations are delayed If the node or its attributes are
locked eagainst write operations. The established access right for subscquent
operations Is to modily and create node attributes.

34

P PROPOSED MIL-~TD-C Al~
3t JANUARY 1089

SECURITY _ VIOLATION s raised whenever an operation is sttempted which violates mandatory
access controls for ‘write’ operations. SECURITY _ VIOLATION is raised only i the conditlons for
other exceptions are not present.

5.1.2. Package NODE_MANAGEMENT

This package defines the general primitives for msnipuiating, copying, renaming and deleting nodes
and their relationships.

‘The operations defined In this package are applicable to all nodes, relationships and attributes except
where explicitly stated otherwise. These operations do not include the creation of nodes. The creation
of structural nodes is performed by the CREATE_NODE procedures of package
STRUCTURAL _ NODES (see Sectlon 5.1.5), the creation of nodes for processes Is pcrformed by
INVOKE _ PROCESS, SPAWN _ PROCESS and CREATE_JOB of package
PROCESS _ CONTROL (see Section 5.2.2). and the creation of nodes for files is performed by the
CREATE procedures of the input and output packages (see Section 5.3).

4 Three CAIS interfaces for manipulating node handles are: OPEN opens a node bandle, CLOSE closes
the node handle, and CHANGE _INTENT alters the specification of the Intention of node bandle
usage. In addition, GET _ PARENT, GET _CURRENT _ NODE, GET _ NEXT,
OPEN _FILE _NODE and the node creation procedures also open node handles. These Interfaces
perform access synchronization In accordance with an intent specified by the parameter INTENT.

Operations which open node handles or ch inge their intent are central to general node administration
1 since they manipulate node handies and most other interfaces take node handles as parameters.

While such other Interfaces may also be i rovided in overloaded versions, taking pathnames as node
identification, these overloaded versions ::¢ to be understood as including implicit OPEN calls with
appropriate Intent specification and a d fault TIME_LIMIT parameter. Subsequent uses of the
phrase ‘open operation’ may refer to any " the OPEN, GET _ CURRENT _ NODE, GET _ PARENT,
GET__NEXT and OPEN_ FILE _ NODE «perations.

One or more of the intents defined in TA!ILE V can be expressed by the INTENT parameters.

Table V. Intents

EXISTENCE: The established access right for subsequent operations Is to query properties of the
node handle and existence of the node only. Locks on the node have no delaying
effect.

READ, EXCLUSIVE _ READ:
Open and CHANGE _INTENT operations are delayed If the node. its contents,
attributes or relationships are locked against read operations. The established access
right for subsequent operations Is (o read node contents, attributes and
[relationships.

For EXCLUSIVE _ READ, the node Is locked sgainst opens with any write Intent as
specified in FIGURE 2. Open and change_intent operations are additionally
delayed If there are open node handles to the node with write intent.

WRITE, EXCLUSIVE _ WRITE: i
Open and change _intent operations are delayed If the node, Its contents, attributes

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

subtype FORM_STRING Is BTRING;

NODE _ TYPE describes the type for node handles. NODE_ KIND Is the enumeration of the kinds
of nodes. INTENT_SPECIFICATION describes the usage of node handles and Is further explained
in Section 5.1.2. INTENTION s the type of the parameter INTENT of CAIS procedures which open
or change the intent of a node handle, as further explained In Section 5.1.2.

NAME__STRING. RELATIONSHIP _KEY, RELATION_NAME., and FORM_STRING are
subtypes for pathnames, relationship keys, and relation names, as well as for form strings (see (LRM!
14). Value of these string subtypes are subject to certain syntactic restrictions whose violation causes
exceptions to be raised.

CURRENT_USER : constant NAME_STRING = *°*CURRENT_USER®:
CURRENT_NODE : constant NAME_STRING := " °CURRENT_NODE":
CURRENT_PROCESS : constant NAME_STRING =

LATEST_KEY : constant RELATIONSHIP KEY:= “8*;
DEFAULT_RELATION: constant RELATION_RAME := *DOT*";

¥O_DELAY : constant DURATION := DURATION 'FIRST

CURRENT _USER. CURRENT _ NODE, and CURRENT _PROCESS are standard pathnames for
the current user's top-level node, current node, and current process, respectively. LATEST _KEY
and DEFAULT _RELATION are standard names for the latest key and the default relation name,

respectively. NO_ DELAY Is a constant of type DURATION (see [LRM] 9.8) used for time limits.
T NAME_ERROR : exception:
1 USE_ERROR . exception;
STATUS_ERROR : exception;
d LOCK_ERROR : exception;
INTENT_VIOLATION : exception;
ACCESS_VIOLATION : exception:
SECURITY_VIOLATION : exception:

NAME _ ERROR s raised whenever an attempt is made to access & node via a pathname or node
handle while the node does not exist, It Is unobtalnable, discretionary access control constraints for
knowledge of existence of a node are violated, or mandatory access controls for ‘read’ operations are
violated. This exception takes precedence over ACCESS _ VIOLATION and
SECURITY _ VIOLATION exceptlons.

‘ . USE _ERROR Is raised whenever a restriction on the use of an Interface Is violated.
STATUS _ERROR is raised whenever the open status of a node handle does not conform to
expectations.

LOCK _ERROR Is ralsed whenever an attempt Is made to modify or lock a locked node.

INTENT _ VIOLATION 1s railsed whenever an operation Is attempted on an open node handle which
is In violation of the intent associated with the open node handle.

ACCESS_VIOLATION is raised whencver an operation Is attempted which violates access right
constraints other than knowledge of existence of the node. ACCESS _ VIOLATION s raised only if
the conditions for NAME _ ERROR are not present.

32

NI NSRS SRS N - il S

ﬁ-'-—__— i

;"__4_;;'

-——

-

PROPONED MUASTD-0 AlS
31 JANLUARY 1985

5. DETAILED REQUIREMENTS

The following detalied requirements shall be fulfllled in a manner consistent with the model
descriptions given in Section 4 of this standard.

65.1. General node management

This section describes the CAIS interfaces for the general manipulation of nodes, relationships and
attributes. These Interfaces are defined in flve CAIS packages: NODE _ DEFINITIONS defines types.
subtypes, exceptions, and constants used throughout the CAIS; NODE__MANAGEMENT defines
interfaces for general operations on nodes and relationships; ATTRIBUTES defines interfaces for
general operations on sttributes; ACCESS _ CONTROL defines Interfaces for setting and adopting
access rights; and STRUCTURAL _ NODES deflnes Interfaces for the creation of structural nodes.

Specialized Interfaces for the manipulation of process and flle npodes and of their relationships and
attributes are defined in Sections 5.2 and 5.3, respectively.

To simplify manipulation by Ada programs, an Ada type NODE_ TYPE is deflned for values that
represent an internal handle for a node (referred to as a node handle. Objects of this type can be
associated with s node by means of CAIS procedures, causing an open node handle to be assigned to
the object. While such an association is In effect, the node handle is sald to be open; otherwise, the
node handle is sald to be closed. Most procedures expect either a parameter of type NODE _ TYPE,
a pathname, or a combination of a base node (specified by a parameter BASE of type NODE __ TYPE)
and a path element relative (o It, to identify a node.

An open node handie Is guaranteed always to refer to the same node, regardiess of any changes to
relationships that could cause pathnames to become Invalld or to refer to different nodes. This
behavior is referred to as the tracking of nodes by open node handles.

5.1.1. Package NODE__DCFINITIONS

This package defines the Ada type NODE_ TYPE. It aiso defines certaln enumeration and string
types and exceptions usefyl for node manipulations.

type NaDE_TYPE is limited private:
type WODE KIND is (FILE, STRUCTURAL. PROCESS) .

type INTENT SPECIFICATION is
(EXISTENCE, READ, WRITE, READ_ATTRIBUTES, WRITE_ATTRIBUTES,
APPEND_ATTRIBUTES, READ RELATIONSHIPS, WRITE_RELATIONSHIPS,
APPEND_RELATIONSHIPS, READ_CONTENTS, WRITE_CONTENTS,
APPEND_CONTENTS, CONTROL, EXECUTE, EXCLUSIVE_READ,
EXCLUSIVE_WRITE, EXCLUSIVE_READ_ATTRIBUTES,
EXCLUSIVE_WRITE_ATTRIBUTES., EXCLUSIVE_APPEND_ATTRIBUTES,
EXCLUSIVE_READ_RELATIONSHIPS, EXCLUSIVE_WRITE_RELATIONSHIPS,
EXCLUSIVE_APPEND_RELATIONSHIPS, EXCLUSIVE_READ_CONTENTS,
EXCLUSIVE_WRITE_CONTENTS, EXCLUSIVE_APPEND_COKTENTS,
EXCLUSIVE_CONTROL) ;

type INTENTION Is array (POSITIVE range <>) of INTENT_SPECIFICATION;
subtype NAE_STRING is sTRING;

subtype RELATIONSHIP KEY i» STRING;
subtype RELATION NAME is STRING;

3

emticitns

\4

PROPOSED MIL-STD-CAlS
31 JANUARY 1985

4.5.2. Pragmatics for SEQUENTIAL IO

A CAIS implementation must support generic instantiation of this package with any (non-limited)
constrained Ada type whose maximum size in bits (as delined by the attribute
ELEMENT _TYPE'SIZE) is at least 2**15-1. A conforming implementation must aiso support
Instantiation with unconstrained record types which have default constraints and a maximum size in
bits of at least 2**15-1. It may (but need not) use variable length elements to conserve space In the
external flle.

4.5.3. Pragmatics for DIRECT 10

Each element of a direct-access file is selected by an Integer index of type COUNT. A conforming
impiementation must at least support a range of indices from one to 2**15-1.

A CAIS impiementation must support generic instantiation of this package with any (non-limited)
constrained Ada type whose maximum size In bits (as defilned by the attribute
ELEMENT _ TYPE'SIZE) I8 at least 2**151. A conforming implementation must also support
instantiation with unconstrained record types which have default constraints and a maximum size in
bits of at least 2**15-1. It may (but need not) use variablie length elements to conserve space in the
external flle.

4.5.4. Pragmatics for TEXT 10

A CAIS implementation must support files with at least 2**15-1 records/lines in total and at least
2**15-1 lines per page. A CAIS implementation must support at least 255 columns per line.

TTT R

PROPOSED MIE-=TD-¢ AT~
31 JANL ARY 1085,

assigned to the flie node. The attribute LOWEST _ CLASSIFICATION defines the lowest allowable
object classification label that may be assigned to the flie pode.

When a file node representing the device Is opened, the device inherits its security classification label
from the first proccss performing the open operation. If it is not possible Lo label the node
representing the device within the bounds of the attributes HIGHEST _ CLASSIFICATION and
LOWEST _ CLASSIFICATION, the operation falls by raising the exception

"SECURITY _ VIOLATION.

4.4.3.5. Mandatory access checking

When access control is enforced for a given operation, mandatory sccess control rules are checked. If
mandatory access controls are not satisfied, the operation terminates by raising the exception
SECURITY _ VIOLATION, except where the Indication of fallure constitutes violation of mandatory
sccess control rules for "read” operations, in which case NAME _ ERROR may be raised.

4.56. Pragmatics

This section provides several minimum values for impiementation-determined quantities and sizes.

4.5.1. Pragmatics for CAIS node model

Several private types are defined as part of the CAIS node model. The actual implementation of
these types may vary from one CAIS implementation to the next. However, it is important to
establish certain minimum values for each type to enhance portabllity.

NAME _ STRING
At least 255 characters must be supported in a CAIS pathname.

RELATIONSHIP _KEY
At least 80 leading characters must be significant in a relationship key.

ATTRIBUTE _ NAME, RELATION_ NAME
At least 80 leading characters must be significant in attribute and relation names.

Tree beight At lesst 10 leveis of hlerarchy must be supported for the primary relationships.

Record size pumber
At least 2**15-1 bits per record must be supported.

Open node count
Each process must be able to have at least 127 nodes open simultaneously.

List At least 2**15-1 bits per list musi be supported.

29

"

"

31 JANL ARY 1085

Table IV. Classification attribute value BNF

object _ classification ::= classification
subject __classification ::= ciassification
classification ::= (hierarchical _ ciassification,
non __hierarchical _ categories)
hierarchical _ciassification ::= keyword
non__ hierarchical _ categories ::= ([keyword { . keyword } |)
keyword ::== identifler

Notation:

1. Words - syntactic categories

2.[] - optional items

3.{ } - anitem repeated zero or more times
4. | - separates alternatives

4.4.3.2. Labeling of process nodes

When a root process is created, It Is assigned subject and object classification labels. The method by
which these initia) labels are assigned is not specified; however, the labels shall accurately represent
security levels of the specific fusers] with which they are associated [TCSEC]. When any non-root
(dependent) process node is created, the creator may specily the classification attributes assoctated
with the node. If no ciassification is specified, the classification is inherited from the creator. The
sssigned classification must adhere to the requirements for mandatory access control over write
operations.

4.4.3.3. Labeling of non-process nodes

When a non-process object is created, it Is assigned an object classification label. The classification
label may be specified in the create operation, or it may be inherited from the parent. The assigned
classification must adhere o the requirements for mandatory access control over write operations.

4.4.3.4. Labeling of nodes for devices

Certain flle nodes representing devices may have 8 range of classification levels. The clas<ification
labe! of the node of the first process opening a handle to one of these nodes Is assigned Lo the Nic node
while there are any open node handles to the flle node. Only when all open node handies hive been
closed can a ncw classification label be assigned to the file node.

The range of classification levels is specified by two predefined CAIS node atiributes. The attribute
HIGHEST _ CLASSIFICATION defines the highest allowable object classification label that may be

v—-———

PROPOSED MIL-<TD-CAl~
31 JANUAR)Y 1985

Each subject and object Is assigned zero or more non-hlerarchical categories which represent
coexisting classifications. A subject may obtain read access to an object Il the set of non-hierarchical
categories assigned to the subject contains each category assigned to the object. Likewise, a subject
may obtain write access to an object If each of the non-hierarchical categories assigned to the subject
are included In the set of categories assigned to the object.

A subject must satisfy both hierarchical and non-hlerarchical access rights rules to obtain access to an
1 " object.

In the CAIS, subjects are CAIS processes, while an abject may be any CAIS node. Operations are
CAIS operations and are classified as read, write, or read/write operations. Access checking is
performed at the time the operation is requesied by comparing the classification of the subject with
that of the object with respect to the type of operation.

4.4.3.1. Labeling of CAIS nodes

{ The labeling of nodes Is provided by predefined node attributes. A predefined attribute, called
SUBJECT _ CLASSIFICATION, Is assigned to each process node and represents the process’
classification ss a subject. A predefined attribute, called OBJECT _ CLASSIFICATION, is assigned to
each node and represents the node’'s classification as an object. These attributes have a limited
function and cannot be read or written directly through the CAIS interfaces. The value of the
sttribute is a parenthesized list containing two items, the hierarchical classification level and the non-
hierarchical category list. The hierarchical classification is a keyword member of the ordered set of
1 hierarchical classification keywords. The non-hlerarchical category list Is a lst of zero or more

keyword members of the set of non-hierarchical categories. The hierarchical classification level set and
the non-hierarchical category set are implementation-defined. For example, the following are possible
classification attribute values:

(TOP _SECRET. (MAIL _USER. OPERATOR, STAFF))
(UNCLASSIFIED, ())
i (SECRET. (STAFF))

The BNF for the value of a ciassification attribute (and of the LEVEL parameter which provides it at
l node creation) is given in Table V.

PROPOSED MIL-STD-CAlS
31 JANUARY 1985

READ This s the union of READ_RELATIONSHIPS, READ__ATTRIBUTES,
READ _CONTENTS and EXISTENCE access rights. This access right s necessary
to open the object with intent READ. It is sufficient to open the object with intent
READ _ RELATIONSHIPS, READ _ ATTRIBUTES or READ _ CONTENTS.

WRITE This Is the union of WRITE _RELATIONSHIPS, WRITE_ATTRIBUTES,
WRITE _CONTENTS and EXISTENCE access rights. This access right is
necessary to open the object with intent WRITE. It is sufficient to open the object
with intent WRITE_ RELATIONSHIPS, WRITE _ATTRIBUTFES or
WRITE_ CONTENTS.

APPEND This is the uplon of APPEND__ RELATIONSHIPS, APPEND_ ATTRIBUTES,
APPEND _ CONTENTS and EXISTENCE access rights. This access right is
pecessary to open the object with intent APPEND. It is sufficient to open the
object with intent APPEND__ RELATIONSHIPS, APPEND_ ATTRIBUTES or
APPE") _ CONTENTS.

EXECUTE The subject may create a process that takes the conteni~ of the object as its
executable image; the access right EXISTENCE Is implicitly granted. This access
right Is necessary to open the object with intent EXECUTE.

CONTROL The subject may modify access coantrol information of the object; the access right|
EXISTENCE is implicitly granted. This access right is necessary to open the object
with intent CONTROL.

4.4.2.4. Discretionary access checking

CAIS access control rules state that any access right required for a subject Lo access an object must
be contained in the set of approved access rights of that object with respect to that subject. The
CAIS model allows discretionary access checking to be performed at the time s node handle is opened.
At this point access rights implied by the INTENT parameter of the open operation must be a subset
of the approved access rights. If this Is not the case, the operation Is terminated and an exception is
raised. For subsequent access using the node handle, the access rights required may be compared to
the rights implied by the intent, rather than the approved sccess rights.

4.4.3. Mandatory access control

Mandatory access control provides access controls based directly on a comparison of the
Individual's clearance or authorization for the Information and the classification or sensitivity
designation of the information being sought [TCSEC].

A mandatory access control classification may be either a hierarchical classification level or a non-
hierarchical category. A hlerarchical classification level Is chosen from an ordered set of classification
levels and represents elther the sensitlvity of the object or the trustworthiness of the subject. In
hierarchical classification, the reading of information flows downward towards less sensitive areas,
while the creating of information flows upward towards more trustworthy Individuals. A subject may
obtain read access to an object if the hierarchical classification of the subject Is greater than or equal
to that of the object. In turn, to obtain write access to the object, a subject's hierarchical
classification must be less than or equal to the hierarchical classification of the object.

N

PROPOSED MIL-STD-C AlI~
31 JANU ARY 19RY

Table IIl. Predefined access rights
EXISTENCE The minimum access rights without which the object Is inaccessible to the subject.
Without additional sccess rights the subject may neither read nor write attributes,
relationships or contents of the object.

READ _ RELATIONSHIPS
The subject may read attributes of relationships emanating from the object or use
it for traversal to another node; the access right EXISTENCE Is implicitly granted.
This access right I8 necessary to open the object with intent
READ _ RELATIONSHIPS.

WRITE _ RELATIONSHIPS
The subject may create or delete relationships emanating from the object or may
create, delete, or modify attributes of these relationships; the access right
EXISTENCE Is implicitly granted. This access right is necessary Lo open the object
with intent WRITE_ RELATIONSHIPS.

APPEND _ RELATIONSHIPS
The subject may create relationships emanating from the object and attributes of
these relationships; the access right EXISTENCE Is Implicitly granted. This access
right is necessary to open the object with intent APPEND _ RELATIONSHIPS.

READ _ ATTRIBUTES
The subject may read attributes of the object; the sccess right EXISTENCE is
implicitly granted. This access right Is necessary to open the object with intent
READ _ ATTRIBUTES.

WRITE _ ATTRIBUTES
The subject may create, write, or delete attributes of the object; the access right
EXISTENCE is implicitly granted. This access right is necessary to open the object
with Intent WRITE _ ATTRIBUTES.

APPEND _ ATTRIBUTES
The subject may create attributes of the object; the access right EXISTENCE is
implicitly granted. This access right is necessary to open the object with intent
APPEND _ ATTRIBUTES.

READ _CONTENTS
The subject may read contents of the object; the access right EXISTENCE is
implicitly granted. This access right is necessary to open the object with intent
READ _ CONTENTS.

WRITE _ CONTENTS
The subject may write contents of the object; the access right EXISTENCE is
implicitly granted. This access right Is necessary to open the object with Intent
WRITE _CONTENTS granted. This access right is necessary to open the object
with Intent READ _ CONTENTS.

APPEND _CONTENTS
The subject may append contents of the object; the access right EXISTENCE Is
implicitly granted. This access right Is necessary to open the object with intent
APFPEND _ CONTENTS.

25

. PROPOSED MIL-STD-C Al~

1 JANUARY JO8S
) ¢. a relationship of the relation ADOPTED _ ROLE from SUBJECT to ROLE!L. and

d. a relationship of the reiation ADOPTED _ ROLE from SUBJECT to ROLE2.

The reievant grant itcms are READMAIL and READ \fAIL=>(READ, WRITE). The approved
access rights for SUBJILCT to access OBJECT are (1) READMAIL because the necrssary rights of the
relevant grant iter, of the access relationship o ROLE2 is null and (2) READ and WRITE because
the necessary right, READMAIL, of the relevant grant item of the access reiationship o ROLE!] is

approved. FIGURE 1 shows a graphic representation of these relationships.

L a4

ADOPTED_ROLE

GRANT =
(READMAIL =>(READ WRITE)

ACCESS

ACCESS

ADOPTED_ROLE
GRANT = (READMAIL))
PROCESS NODE
‘ OBECT L SUBJECT STRUCTURAL NODE
L1
FILE NODE

Figure 1. Access relationships

Access rights may be user-defined. but certain access rights have special significance 1o CAIS
operations. In particular, the CAIS recognizes the access rights given in Table I and the kinds of
access for which they are necessary or sufficient.

from aee
?:b\e: copY.

Reproduc
best aval

24

- e e —aA o a e ol

PROPOSED MIL-51 D-CAIS
31 JANUARY 1685

5.1.2.1. Opening a node handle

N

procedure OPEN (NODE: in out wooE_TYPE;

NAME : in NAME_STRING;

INTENT: in INTENTION :=

(1 => READ) ;

TIME_LIMIT: in DURATION := NO_DELAY);
procedure OPEN (XODE: in out wope_tYPE;

BASE: in WODE_TYPE;

KEY: in RELATIONSHIP_KEY

RELATION: in RELATION_NAME : =
DEFAULT_RELATION:

INTENT: in INTENTION := (1 => READ);

TIME_LIMIT: in DURATION := NO_DELAY):

Purpose:

These procedures return an open node handle in NODE to the node identified by the pathname
NAME or BASE/KEY/RELATION, respectively. The INTENT parameter determines the access
rights avallable for subsequent uses of the node handle; it also establishes access synchronization
with other users of the node. The TIME __LIMIT parameter allows the specification of a time
limit for the delay imposed on OPEN by the existence of locks on the node. A delayed OPEN
call completes after the node is unlocked or the specified time limit has efapsed. In the latter
case, the exception LOCK _ ERROR is raised.

Parameters:
NODE is a node handle, initially closed, to be opened to the identified node.
NAME is the pathname identifying the node to be vpened.
BASE is an open node handle to a base node for node ldentification.
KEY is the relationship key for node identification.

RELATION is the relation name for node identification.

INTENT Is the intent of subsequent operations on the node; the actual parameter takes the
form of an array aggregate.

TIME _ LIMIT s a vaiue of type DURATION, specifying a time limit for the delay on walting for
the unlocking of a node in accordance with the desired INTENT.

Exceptions:

NAME _ ERROR
is raised if the pathname specified by NAME s syntactic lly illegal or I any
traversed node In the path specified by name Is unobtainable. inaccessible or non-
existent or if the refationship specified by RELATION and KEY or by the last path
element of NAME does not exist. NAME_ERROR is also raised If the node to
which a handle Is to be opened Is Inaccessible or unobtainable and the given
INTENT includes any intent other than EXISTENCE.

USE _ERROR Is raiscd If the specified INTENT {s an empty array.

| N . o

Eitpivetin gyt

PROPOSED MIL-STD-(Af~
31 JANUARY toRS

STATUS _ERROR
is raised If the node handle NODE is aiready open prior Lo the call on OPEN or ir
BASE is not an open node handle.

LOCK _ERROR
is ralsed If the OPEN operation is delayed beyond the specified time limit due to
the existence of locks in conflict with the specified INTENT This includes any
delays caused by locks on nodes traversed on the path specified by the pathname
NAME or locks on the node Identified by BASE, preventing the reading of
relationships emanating from these nodes.

INTENT _ VIOLATION
is ralsed If BASE was not opened with an Intent establishing the right to read
relationships.

ACCESS _ VIOLATION
Is raised If the current process’ discretionary access control rights are insufficient w
traverse the path specified by NAME by BASE., KEY and RELATION or to obtain
access to the node consistent with the specified INTENT. ACCESS_ VIOLATION
is raised only if the conditions for NAME _ ERROR are not present.

SECURITY _ VIOLATION
is ralsed if the attempt to obtain access to the node with the specified INTENT
represents s violation of mandatory access controls for the CAIS.
SECURITY _ VIOLATION s raised only If the conditions for other exceptions are
not present.

Notes:
An open node handle acts as If the handle forms an unnamed temporary secondary relationship

to the node; this means that, if the node identified by the open node handle is repamed
{potentially by another process), the open node handle tracks the renamed node.

It is possible to open a node handie to an unobtainable node or to an Inaccessible node. The
Iatter Is consistent with the fact that the existence of a relationship emanating from an
accessible node to which the user has READ _RELATIONSHIPS rights cannot be hidden from
the user.

5.1.2.2. Closing a node handle

procedure CLOSE(NODE: In out NODE_TYPE);

Purpose:
This proccdure severs any assocliation between the node handle NODE and the node and rcleases

sny associasted lock on the node imposed by the intent of the node handle NODE. Closing an
already closed node handle has no effect.

Parameter:
NODE Is a node handle, Initially open, to be closed.
Exceptions: .’

PROPOSED MIL-STD-C A\ IS
31 JANUARY 1985

none
Notes:

A NODE_ TYPE variable must be closed before another OPEN can be called using the same
NODE__ TYPE variable as an actual parameter to the formal NODE parameter of OPEN.

5.1.2.3. Changing the intention regarding node handle usage

procedure CHANGE_INTENT (WODE: in out moDE_TYPE;
INTENT: in INTENTION:
TIME_LINIT: in DURATION: =

WO_DELAY) ;

Purpose:
This procedure changes the intention regarding use of the node handle NODE. It is semantically
equivalent to closing the node handle and reopenin: the node handle to the same node with the
INTENT and TIME_LIMIT parameters of CHANGE_INTENT, except that
CHANGE _ INTENT guarantees to return an opct node handle that refers to the same node as
the node handle input in NODE (see the Issue expialned in the note below).

Parameter:
NODE Is an open node handle
INTENT is the Intent of subsequent oper:itions on the node; the actual parameter takes tne

form of an array aggregate.

TIME _ LIMIT is a value of type DURATION, specifying a time limit for the delay on waiting for
the unlocking of a node in accordance with the desired INTENT.

Exceptions:

NAME _ERROR
Is raised If the node handie NODE refers to an unobtainable node and INTENT
contains any intent specification other than EXISTENCE.

STATUS _ERROR
Is raised Iif the node handle NODE is not an open node handie.

LOCK _ERROR
is ralsed if the operation is delayed beyond the specified time limit duc to the
existence of locks on the node In conflict with the specified INTENT.

ACCESS _ VIOLATION
Is raised If the current process’ discretionary access control rights are insufficient to
obtaln access to the node consistent with the specified INTENT.
ACCESS _ VIOLATION is raised only If the condition for NAME _ ERROR s not
present.

SECURITY _ VIOLATION

is ralsed if the attempt to oblain access consistent with the intentlon INTENT to
the node specified by NODE represents a violation of mandatory access controls for

410

PROPOSED \II-STD-C A~
31 1ANL ARY 18R

the CAIS. SECURITY _VIOLATION Is raised only If the conditions for other
exceplions are not present.

Notes:

Use of the sequence of 8 CLOSE and an OPEN operation instead of a CHANGE _INTENT
operation cannot guarantee that the same node Is opened, since relationships, and therefore the
node identification, may have changed since the previous OPEN on the node.

5.1.2.4. Examining the open status of a node handle

function 1S_OPEN(NODE: in NODE_TYPE)
return BOOLEAN;

Purpose:
This function returns TRUE if the node handle NODE is open; otherwise, it returns FALSE.

Parameter:

NODE is a node handle.

Exceptions:
None.

5.1.2.5. Querying the intention of a node handle

function INTENT OF (NGDE: in WODE_TYPE)
return INTENTION:

Purpose:
This function returns the intent with which the node handle NODE is open.

Parameter:

NODE is an open node handle.

Exception:

STATUS _ERROR
is raised If the node handle NODE is not open.

5.1.2.6. Querying the kind of a node

function XIND(NGDE: in NODE_TYPE)
return NODE_KIND;

Purpose:
This function returns the kind of a node, either FILE, PROCESS or STRUCTURAL.

Parameter:

NODE is an open node handic.

11

-

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Exceptions:

STATUS _ERROR
is raised if the node handle NODE is not open.

5.1.2.7. Obtaining the unique primary pathname

function PRIMARY_NAME (NODE: in WODE_TYPE)
return NAME STRING:

Purpose:
This function returns the unique primary name of the node identified by NODE.

Parameter:

NODE is an open node handle identifying the node.

Exceptions:

NAME _ERROR
is raised if any node traversed on the primary path to the node is inaccessible.

STATUS_ERROR
Is raised if the node handle NODE is not open.

LOCK _ERROR
is raised if access consistent with Intent READ _RELATIONSHIPS to any node

traversed on the primary path cannot be obtained due to an existing lock on the
node.

INTENT _ VIOLATION
is raised if NODE was not opened with an intent establishing the right to read
relationships.

ACCESS_ VIOLATION
is raised if the current process’ discretionary access control rights are insufficient to
traverse the node's primary path. ACCESS_ VIOLATION s raised only if the
conditions for NAME _ ERROR are not present.

6.1.2.8. Obtaining the relationship key of a primary relationship

function PRIMARY KEY(NODE: in NODE_TYPE)
return RELATIONSHIP_KEY;

Purpose:
This function returns the relationship key of the last path element of the unique primary
pathname of the node.

Parameter:

NODE is an open node handle identifying the node.

Exceptions:

12

— . -

dusitiuine

.

PROPOSED MUL-STI-0 Al
31 JANUARY 1985

NAME _ERROR
is ralsed if the parent node of the node identified by NODE is inaccessible.

STATUS_ERROR
Is raised If the node handle NODE Is not open.

LOCK _ERROR
is raised If the parent node Is locked against reading relationships.

INTENT _ VIOLATION
is raised If the node handle NODE was not opened with an intent establishing the
right to read relationships.

ACCESS _ VIOLATION
is raised If the current process’ discretionary access control rights are insufficient to
obtain access to the node's parent consistent with intent READ _ RELATIONSHIP.
ACCESS _ VIOLATION is raised only if the conditions for NAME _KRROR are
not present.

5.1.2.9. Obtaining the relation name of a primary relationship

function PRIMARY_RELATION(NGDE: in NODE_TYPE)
return RELATION_NAME;

Purpose:

This function returns the relation name of the last path element of the unique primary
pathname of the node.

Parameter:

NODE is an open node handle identifying the node.
Exceptions:

NAME _ERROR

Is raised If the parent node of the node Identified by NODE Is inaccessible.

STATUS _ERROR
Is raised If the node handle NODE is not open.

LOCK _ERROR
Is raised if the parent node Is locked against reading relationships.

INTENT _ VIOLATION
Is raised If NODE was not opened with an intent establishing the right to read
relationships.

ACCESS_ VIOLATION
Is ralsed If the current process’ discretionary access control rights are insufficient to
obtain access to the node's parent consistent with Intent to
READ _ RELATIONSHIPS. ACCESS _ VIOLATION is raised only if the conditions
for NAME _ ERROR are not present.

43

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

5.1.2.10. Obtaining the relationship key of t e last relationship traversed

function PATH_KEY(MODE: in WODE_TYPE)
return RELATIONSHIP_KEY;

Purpose:
This function returns the relationship key of the r iationship corresponding to the last path
element of the pathname used in opening this node | \ndle. Since a path element is a string. the
relationship key Is returned even If the relationship h s been deleted.

Parameter:

NODE is ap open node handle.
Exceptions:

STATUS_ERROR

is raised if the node handie NODE Is n it open.

5.1.2.11. Obtaining the relation name of the last relationship traversed

function PATH_RELATION(NODE: in NODE_TYPE)
return RELATION NAME:

Purpose:
This function returns the relation name of the r« .tionship corresponding to the last path
element of the pathname used in opening this node h ndle. The relation name Is returned even if
the relationship has been deleted.

Parameter:

NODE is an open node handle.

Exceptions:

STATUS _ ERROR
Is raised if the node handle NODE I= : t open.

5.1.2.12. Obtaining a partial pathname

function BASE PATH(NAME: in NAME_STRING)
return NAME_STRING;

Purpose:
This function returns the pathname obtained by d«! ting the last path element from NAME. It
does not establish whether the pathname identi s an existing node; only the syntactic
propertics of the pathname are examined. This fun«-tion also checks the syntactic legality of the
pathname NAME.

Parameters:

NAME Is a pathname (not necessarily identifying a node).

14

ﬁﬂf PROPOSED MHASTH-C AlS

31 JANUARY 1085
i Exceptions:

NAME _ ERROR
Is raised If NAME Is a syntactically lllegal pathname.

5.1.2.13. Obtaining the name of the last relationship in a pathname

function LAST_RELATION(NAME: in MAME_STRING)
1 return RELATION MAME:

Purpose:

This function returns the name of the relation of the last path element of the pathname NAME.
1 It does not establish whether the pathname identifies an existing node; only the syntactic
properties of the pathname are examined. This function also checks the syntactic legality of the
pathname NAME.

Parameters:

NAME Is a pathname (not necessarily identifying a node).
Exceptions:

NAME._ ERROR

is raised If NAME is a syntactically illegal pathname.

5.1.2.14. Obtaining the key of the last relationship in a pathname

function LAST_KEY(NAME: in NAME_STRING)
return RELATIONSHIP KEY;

Purpose:
This function returns the relationship key of the Iast path element of the pathname NAME. It
does not establish whether the pathname Identifies an existing node; only the syntactic
properties of the pathname are examined. This function checks the syntartic legality of the

pathname NAME.

Parameters:

NAME is a pathname (not necessarily identifying a node).

Exceptions:

NAME _ ERROR
Is ralsed if NAME is a syntactically iliegal pathname.

5.1.2.15. Querying the existence of a node

function IS OBTAINABLE(NODE: in NODE_TYPE)
return BOOLEAN;

Purposc:
This function returns FALSE If the node identified by NODE is unobtalnable or inaccessible. It
returns TRUE otherwise. ‘

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Parameters:

NODE Is an open node handle identifying the node.

Exceptions:

STATUS_ERROR
is ralsed If NODE is not an open node handle.

Addltional Interfaces:
function IS_OBTAINABLE (NAME: in MAME_STRING)
return BOOLEAN
is
NODE: NODE_TYPE:
RESULT: BOOLEAN;
begin
OPEN(NODE, NAME, (1=>EXISTENCE));
RESULT := IS _OBTAIMABLE (NQDE) ;
CLOSE (NODE) ;
return RESULT:
exception
when others => return FALSE;
end IS_OBTAINABLE;

function IS_GBTAITNABLE (BASE: in woDE_TYPE;
KEY: in RELATIONSHIP KEY:
RELATION: in RELATION MAME := DEFAULT RELATION)
return BOOLEAN
ia
NODE: WODE_TYPE;
.RFSULT: BOOLEAN;
n
OPEN(NODE, BASE, KEY, RELATION. (1=>EXISTENCE)):;
RESULT := IS_OBTAINABLE (NODE);
CLOSE (NODE) ;
return RESULT;
exception
when others => return FALSE;
end IS _OBTAINABLE;

Notes:
OBTAINABLE can be used to determine whether a node identified via a secondary relationship
bas been made unobtainable by a DELETE operation or is Inaccessible to the current process
(see Note In Section 5.1.2.3).

5.1.2.16. Querying sameness

function IS_SAME(NODE1: in NODE_TYPE;
WODE2: in NODE_TYPE)
return BOOLEAN;

Purpoee:
This function returns TRUE If the nodes identified by Its arguments are the same node;
otherwise, it returns FALSE.

Parameters:

NODE)} Is an open node handie 10 a node.

46

PROPOSED MIL-STD-C AJ&
31 JANUARY 1985

NODE2 is an open node handle to a node.

Exceptions:

STATUS _ERROR
is raised If at least one of the node handles, NODE1 and NODE2, Is not open.

Additional Interface:

function IS_SAME (NAME1: in NAME_STRING;
NAMEZ: in NAME_STRING)
return BOOLEAN
in
NODE1. WODE2: NODE_TYPE;
RESULT: BOOLEAN;
begin
OPEN(NODE1., NAME1, (1=>EXISTENCE));
begin
OPEN(NODE2, MAME2, (1=>EXISTENCE));
exception
when others =>
CLOSE (NODEY)
raise;
end;
RESULT := IS_SAME (NODE1, WODE2):
CLOSE (NODE1) ;
CLOSE (NODEZ) ;
return RESULT;
end IS_SAME:

Notes:
Sameness Is not to be confused with equality of attribute values, relationships and contents of
nodes, which Is a necessary but not a sufficient criterion for sameness.

5.1.2.17. Obtaining an open node handle to the parent node

procedure GET_PARENT (PARENT: in out WODE_TYPE;
MODE : in MODE_TYPE;
INTENT: in INTENTION := (1=>READ);

TIME_LINIT: in DURATION := NO_DELAY):

Purpose:
This procedure returns an open node handie in PARENT to the parent node of the node
identified by the open node handle NODE. The Intent under which the node handle PARENT is
opened Is specified by INTENT. A call on GET_PARENT is equivalent to a call
OPEN(PARENT, NODE, **, PARENT, INTENT, TIME _ LIMIT).

Parameters:
PARENT Is a node handle, initially closed, to be opened to the parent node.
NODE Is an open node handle identifying the node.
INTENT Is the intent of subsequent operations on the node handle PARENT.

TIME _ LIMIT is a value of type DURATION, specilying a time limit for the delay on waiting for
the unlocking of the parent node tn accordance with the desired INTENT.

47

f—

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Exceptlons:

NAME__ERROR
is raised If the node identified by NODE is a top-level node or If its parent node Is
Inaccessible.

USE _ ERROR s raised if the specified INTENT is an empty array.

STATUS _ERROR
is raised if the node handle PAI'ENT is open prior to the call or If the node handie
NODE iIs not open.

LOCK _ERROR
Is raised If the opening of the parent node is delayed beyond the specified
TIME _ LIMIT due to the existence of locks in conflict with the specified INTENT.

INTENT _ VIOLATION
is ralsed if NODE was not opened with an intent establishing the right to read
relationships.

ACCESS _ VIOLATION
is raised If the current process’ discretionary access control rights are insufficient to
obtain access W the parent node with the specified INTENT.
ACCESS _ VIOLATION is raised only If the conditions for NAME _ERROR are
not present.

SECURITY _ VIOLATION
is raised If the attempt o gain with the specified INTENT access to the parent
node represents a violation of mandatory access controls for the CAIS.
SECURITY _ VIOLATION s raised only If the conditions for other exceptions are
not present.

5.1.2.18. Copying a node

procedure COPY_NODE (FROM: in woDE_TYPE:
TO_BASE: in noDE_TYPE;
TO_KEY: in RELATIONSHIP KEY:

TO_RELATION: in RELATION_RAME
:=DEFAULT_RELATION) ;

Purpose:

This procedure coples s flle or structural node that does not bave emanating primary
relationships. The node copied is }dentifled by the open node handle FROM and is copled w0 a
newly created node. The new gode is ldentifled by the combination of the TO_ BASE,
TO_KEY and TO_RELATION parameters. The aewiv created node is of the same kind as the
node identifled by FROM. [If the node Is a flle node, its contents are also copied, i.e., 8 new
copled file is created. Any secondary relationships emanating from the original node, excepting
the relationship of the predefined reistion PARENT (which is appropriately adjusted), are
recreated In the copy. If the target of the original node’s relatlonship Is the node Iitself, then the
copy has an snalogous reiationship to Itself. Any other secondary relationship whose target Is
the original node Is unaffected. All attributes of the FROM node sre also copied. Regardiess of
any locks on the node identified by FROM, the newly created node is unlfocked.

Parameters:

18

A e 4

PROFPOSED MU ASTD-0 Al~
31 JANT ARY 1085

FROM Is an open node handie 1o the node to be copled.
TO _BASE is an open node handle to the base node for identification of the node to be created.
TO _KEY Is a relationship key for the identification of the node to be created.

TO _RELATION
Is a relation name for the identification of the node Lo be created.

Exceptions:

NAME _ERROR
Is raised if the new node identification is lllegal or if 8 node already exists with the
identification given for the new node.

USE _ ERROR s raised if the original node Is not a Me or structural node or if any primary
rel:itlonships emanate from the original node. USE_ERROR s also raised if
TO _RELATION is the name of a predeflned relation that cannot be modified or
created by the user.

STATUS _ERROR
is raised If the node handles FROM and TO _BASE are not both open.

INTENT _ VIOLATION
is raised If FROM was not opened with an intent establishing the right to read
contents, attributes, and relationships or If TO_BASE was not opened with an
intent establishing the right to append relationships. INTENT __ VIOLATION is not
raised If the conditions for NAME _ ERROR are present.

SECURITY _ VIOLATION
Is railsed if the operation represents a violation of mandatory access controls and the
conditions for other exceptions are not present.

Additlonal Interface:
procedure COPY_NGDE(FROM: in WODE_TYPE:

To: in MAME_STRING)
is
TO_BASE: NODE_TYPE;

begin
OPEN(TO_BASE, BASE_PATH(TU), (1=>APPEND_RELATIONSHIPS));
COPY_NODE(FROM, TO_BASE, LAST_KEY(TO), LAST_RELATION(TD));
CLOSE (TD_BASE) ;
exception
when others =>
CLOSE (TO_BASE) ;
raise;
end COPY_NODE;

49

r—-—-—-—-

PROPOSED MIL-STD-CAIS
3) JANUARY 1985

5.1.2.19. Copying trees

procedure COPY_TREE (FRON: in woDE_TYPE:
TO_BASE: in WODE_TYPE:
TO_KEY: in RELATIONSHIP KEY,

TO_RELATION: in RELATION NAME
:=DEFAULT_RELATION)
Purpose:

This procedure coples a tree of file or structural nodes formed by primary relationships
emanating from the node ldentified by the opea node handle FROM. Primary relationships are
recreated between corresponding copied nodes. The root node of the newly created tree
corresponding to the FROM node is the node identified by the combination of the TO__ BASE,
TO _KEY and TO_RELATION parameters. If an exception Is ralsed by the procedure, none of
the nodes are copied. Secondary reiationships, attributes, and node contents are copled as
described for COPY _NODE with the foilowing additional rules: secondary relationships
between two nodes which both are copied are recreated between the two copies. Sccondary
relationships emanating from a node which is copied, but which refer to nodes outside the tree
being copled. sare copled so that they emanate from the copy. but stil refer to the original target
node. Secondary relationships emanating from a node which I8 not copied, but which refer o
nodes inside the tree being copied, are unaffected. If the node identified by TO _ BASE ir part
of the tree to be copied, then the copy of the node identifled by FROM will not be copied
recursively.

Parameters:
FROM is an open node handle Lo the root node of the tree to be copied.

TO _BASE is an open node handle to the base node for identification of the node to be created
as root of the new tree.

TO_KEY Is a relationship key for the identification of the node to be created as root of the
new Llree.

L TO _RELATION
| Ia a relation name for the identification of the node to be created as root of the new
tree.

Exceptions:

NAME _ERROR
Is raised If the new node jdentification is ilicgal or If a node already exists with the

identification given for the new node to be created as a copy of the node identified
by FROM.

STATUS _ERROR
is raised If the node handies FROM and TO _ BASE are not both open.

USE _ ERROR s raised Il the original node Is not a flle or structural node. USE__ERROR Is also
raised if TO_RELATION Is the name of a predefined reiation that cannot be
modIfied or created by the user.

LOCK _ERROR
is raised If any node to be copied except the node ldentified by FROM, is locked
against read access Lo attributes, relationships or contents.

PROPOSED MIL-STD-C AIS
31 JANUARY 985

INTENT _ VIOLATION
is raised If FROM is not o ‘n with an intent establishing the right o read node
contents, attributes and rcli ionships or if TO__BASE is not open with an intent
estabiishing the right to iy pend relationships. INTENT _ VIOLATION is only
raised If the conditions for N.AMIZ_ ERROR are not present.

ACCESS _ VIOLATION
is raised If the current process’ discretionary sccess control rights are insufficient to
obtain access to each node to be copled with intent READ.
ACCESS_ VIOLATION is not raised If conditions for NAME _ ERROR sare present.

SECURITY _ VIOLATION
Is ralsed if the operation represents a violation of mandatory access controls and the
conditions for other exceptions are not present,

Additional Interface:

procedure COPY_TREE (FROM: in WODE_TYPE;
TO: in NAME_STRING)

is
TO_BASE: NUDE_TYPE:
begin
OPEN(TO_BASE, BASE_PATH(TD), (1=>APPEND_RELATIONSHIPS));
COPY_TREE(FROM, TO_BASE, LAST_KEY(TO). LAST_RELATION(TD));
CLOSE (TO_BASE) ;
exception
when others =>
CLOSE (TD_BASE) ;
raise:
end COPY_TREE:

5.1.2.20. Renaming the primary relationship of a node

procedure RENAME (NGDE: in NODE_TYPE;
NEV_BASE : in NODE_TYPE:
NEV_KEY: in RELATIONSHIP_KEY;

NEV_RELATION: in RELATION_NANE
:=DEFAULT_RELATION) ;

Purpose:
This procedure renames a file or structural node. It deletes the primary relationship to the node
ldentified by NODE and installs a new primary relationship o the node, emanating from the
node identified by NEW __BASE, with key and relation name given by the NEW _KEY and
NEW _ RELATION parameters. The parent relationship is changed accordingly. This changes
the unique primary pathname of the node. Existing secondary relationships with the renamed
node as target track the renaming, l.e., they have the renamed node as target.

Parameters:

NODE is an open node handle to the node to be renamed.

NEW __BASE Is an open node handle to the base node [rom which the new primary relationship to
the renamed node emanates.

NEW _KEY s a relationship key for the new primary refationship.

51

PRCGPOSED MIL-STD-C AIS
31 JANUARY 1985

Parameters:

NODE is an open node handle Lo 8 node whose attribute I8 to b. deleted.

ATTRIBUTE Is the name of the attribute to be deleted.

Exceptions:

USE _ERROR s ralsed if the node does not have an attribute of the given name. USE__ ERROR is

also raised If ATTRIBUTE is the name of a predeflned node attribute which cannot
be modified or created by the user.

STATUS_ERROR
Is raised if the node handle NODI is not open.

INTENT _ VIOLATION

is raised If NODE was not opened with an intent establishing the right to write
attributes.

SECURITY _ VIOLATION

is raised If the operation represents a violation of mandatory access controls.

SECURITY _ VIOLATION is ralscd only if the conditions for other exceptions are
not present.

Additional Interface:

procedure DELETE_NODE_ATTRIBUTE (NAME © in MAME_STRING;
ATTRIBUTE: in ATTRIBUTE_NANE)
is

NODE: NODE_TYPE;
begin
OPEN(NODE, NAME. (1=>WRITE_ATTRIBUTES)):
DELETE_NODE_ATTRIBUTE(NODE, ATTRIBUTE):
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end DELETE_NODE_ATTRIBUTE;

5.1.3.4. Deleting path attributes

procedure DELETE_PATH_ATTRIBUTE (BASE: in woDE_TYPE;

KEY: In RELATIONSHIP KEY:
RELATION: §n RELATION_NAME
:=DEFAULT_RELATION;
ATTRIBUTE: in ATTRIBUTE_RAME)
Purpose:

This procedure delctes an atiribute, named by ATTRIBUTE, of a relationship identified by the
base node BASE, the relation name RELLATION and the relationship key KEY.

Parameters:

BASE i3 an open node handle Lo the node from which the relatlonship emanates.

85

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

ATTRIBUTE Is the attribute name.

VALUE is the initial value of the attribute.

Exceptions:

NAME _ERROR
is ralsed if the reiationship Identified by the BASE, KEY and RELATION
parameters does not exist.

USE _ERROR is raised if the reiationship already bas an attribute of the given name or if the
attribute name given is syntactically Illegal. USE__ERROR is also raised If
RELATION is the name of a predefined relation that cannot be modified by the
user. USE_ERROR Is also raised If ATTRIBUTE is the name of a predefined
relationship attribute which cannot be created by the user.

STATUS_ERROR
Is raised If the node handle BASE iIs not open.

INTENT _ VIOLATION
is raised If BASE was not opened with an intent establishing the right to write
refationships.

SECURITY _ VIOLATION
Is raised If the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION is raised only if the conditions for other exceptions are
not present.

Additional interface:

procedure CREATE_PATH_ATTRIBUTE (NAME : in MAME_STRING:
ATTRIBUTE: in ATTRIBUTE_NAME;
VALUE: in LIST_TYPE)

is

BASE: NODE_TYPE;
begin
OPEN(BASE, BASE_PATH(MAME). (1=>WRITE_RELATIONSHIPS))
CREATE_PATH_ATTRIBUTE (RASE, LAST_KEY (NAME), LAST_RELATION(NAME),
ATTRIBUTE, VALUE);
CLOSE (BASE) ;
exception
when others =>
CLOSE (BASE) ;
raise;
end CREATE_PATH_ATTRISUTE;

5.1.3.3. Deleting node attributes

procedure DELETE_NODE_ATTRIBUTE(NODE: in wODE_TYPE;
ATTRIBUTE: [n ATTRIBUTE_NAKE) ;

Purpose:

This procedure deletes an attribute, named by ATTRIBUTE, of the node identified by the open
node handie NODE.

04

PROPOSED M -STD-¢ AY-
31 JANL ARY jux)

name given Is syntactically illegal. USE__ERROR Is also raised if ATTRIBUTE is
the name of a predefined node attribute which cannot be created by the user.

STATUS _ERROR
is raised if the node handlie NODE is not open.

INTENT _ VIOLATION
is raised if NODE was not opened with an intent establishing the right to append
attributes.

SECURITY _ VIOLATION
Is ralsed iIf the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION is raised only If the conditions for other exceptions are
not present.

Additional Interface:

procedure CREATE_NODE_ATTRIBUTE (NAKE: in NAME_STRING;
ATTRIBUTE: in ATTRIBUTE_NAME:
VALUE : in LIST_TYPE)

is

NODE: MODE_TYPE:
begin
OPEN(NODE, NAME, (1=>APPEND_ATTRIBUTES)):
CREATE_WODE_ATTRIBUTE (NODE, ATTRIBUTE, VALUE);
CLOSE (NGDE) ;
exception
when others =>
CLOSE (NGDE) ;
raise;
end CREATE_MODE_ATTRIBUTE:

5.1.3.2. Creating path attributes

procedure CREATE_PATH_ATTRIBUTE (RASE: in NOGDE_TYPE:
KEY: in RELATIONSHIP_KEY;
RELATION: in RELATION_RAME
:=DEFAULT_RELATION;
ATTRIBUTE: in ATTRIBUTE_NAME;
VALUE: in LIST_TYPE);

Purpose:
This procedure creates an attribute, named by ATTRIBUTE, of a relationship and scts Its initial
value to VALUE. The relationship Is identified by the base node identified by the open node
handle BASE, the relation name RELATION sand the relationship key KEY.

Parameters:
BASE is an open node handle to the node from which the relationship emanates.
KEY Is the relationship key of the affected relationship.

RELATION Is the relation name of the affected relationship.

’

83

PROPOSED MIL-STD-CAI~
31 JANL AR)Y 1085

ACCESS _ VIOLATION
Is ralsed If the current process’ discretionary access control rights are Insufficient to
obtain access to the current node with the specified INTENT.
ACCESS _ VIOLATION s raised only If the conditions for NAME _ERROR are
not present.

SECURITY _ VIOLATION

: is ralsed If the operation represents a violation of mandatory access controls.
} SECURITY _ VIOLATION 1s raised only If the conditions other exceptions are not
present.

Notes:

The call on GET_ CURRENT _ NODE is equivalent to OPEN(NODE, "'CURRENT _ NODE",
(INTENT.TIME _ LIMIT)).

S———

5.1.3. Package ATTRIBUTES

This package supports the definition and manlipulation of attributes for nodes and relationships. The
name of an attribute follows the syntax of an Ada identifler. The value of each attribute is a list; the
format of the list is defined by the package LIST _UTILITIES (see Scction 5.4). Upper and lower case
distinctions are not significant within the atiribute names.

1 Unless stated otherwise, the attributes predefined by the CAIS cannot be created, deleted or modified
by the user.

The operations defined for the manipulation of attributes identify the node to which an attribute
belongs either by pathname or open node handle. They implicitly identify a relationship to which an
attribute belongs by the last path element of a pathname or explicitly Identify the relationship by
base node, key and relation name identification.

5.1.3.1. Creating node attributes

i procedure CREATE_NODE_ATTRIBUTE (NODE: in MODE_TYPE;
ATTRIBUTE: in ATTRIBUTE_NAME:
VALUE: in LIST_TYPE);

l Purpose:

This procedure creates an attribute named by ATTRIBUTE of the node identified by the open
node handle NODE and sets its initial value to VALUE.

Parameters:

1 NODE Is an open node handle to a node to recelve the new attribute.

ATTRIBUTE Is the name of the attribute.

VALUE is the initial value of the attribute.

Exceptlons:

USE _ERROR s raised If the node already has an attribute of the glven name or If the attribute

82

P

- ——

W—l - ——

PROPOSED MIL-STD-C Al~
31 JANUARY 1985

SECURITY _ VIOLATION

Is raised if the operation represents a violation of mandatory access controls.

SECURITY _ VIOLATION Is raised only if the conditions for other exceptions are
not present.

Addiltional Interface:
procedure SET_CURRENT_NODE (NAME: in NAME_STRING)
is

WODE: WODE_TYPE;
begin
OPEN(NODE, NAME, (1x>EXISTENCE)):
SET_CURRENT_NODE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end SET_CURRENT NODE:

5.1.2.30. Opening a node bhandle to the current node.

procedure GET_CURRENT WODE (NODE: in out woDE_TYPE:
INTENT: in INTENTION: =
(1=>EXISTENCE) ;
TIME_LIMIT: in DURATION:=NO_DELAY);

Purpose:

This procedure returns in NODE an open node handle to the currcn node of the current
process; the Intent with which the node handle is opened as specii 'd by the INTENT

parameter.

Parameter:
NODE is a node handle, initially closed, to be opened to the current node.
INTENT Is the Intent of subsequent operations on the node handle NODE.

TIME _LIMIT is a value of type DURATION specifying a time limit for the delay on walting for
the unlocking of the node in accordance with the desired INTENT.

Exceptions:

NAME _ ERROR
is ralsed Iif the current node |Is inaccessible or if It is unobtainable and the INTENT

is anything other than EXISTENCE.
USE _ERROR s raised if INTENT is an empty array.

STATUS _ERROR
Is raised if NODE is an open node handle prior to the call.

LOCK _ERROR

Is raised If access, with Intent READ__ RELATIONSHIPS, to the current process
node cannot be obtalned due to an existing lock on the node.

61

RSP TTEC o

31 JANUARY 1085
INTENT is the Intent of subsequent operations on the node bandle NEXT _ NODE.

TIME _LIMIT Is a value of type DURATION, specifying a time limit for the delay on walting for
the unlocking of the node In accordance with the desired INTENT.

Exceptions:

NAME _ERROR
is raised if the node whose node bandle is to be returned in by NEXT__NODE is
unobtainable and If the INTENT includes any Intent other than EXISTENCE.

USE _ERROR s raised if the ITERATOR has not been previously set by ITERATE or if the
iterator is exhausted (l.e., MORE (ITERATOR)=FALSE) or if INTENT is an
empty array.

LOCK _ERROR
is raised if the opening of the node is delayed beyond the specified TIME _ LIMIT
due to the existence of locks in conflict with the specified INTENT.

ACCESS_ VIOLATION
is raised if the current process’ discretionary access control rights are insufTicient o
obtain access to the next node with the specified INTENT. Access Violation is
raised only If the conditions for NAME _ ERROR are not present.

SECURITY _ VIOLATION
is raised If the current process’ attempt to obtain access to the next node with the
specified INTENT represents a violation of mandatory access controls for the CAIS.
SECURITY _ VIOLATION s raised only if the conditions for other exceptions are
not present.

5.1.2.29. Setting the current node relationship

procedure SET_CURRENT NODE (WODE: in WODE_TYPE);

Purpose:
This procedure specifies the node identified by NODE as the current node. The relationship of
the predefined relation CURRENT _ NODE of the current process Is changed accordingly.

Parameters:

NODE Is an open node handle to a node to be the new target of the CURRENT _ NODE
relationship emanating from the current process node.

Exceptions:

STATUS _ERROR
is raised If the node handle NODE is not open.

LOCK _ERROR
Is raised If access, with Intert WRITE _ RELATIONSHIPS, to the current process
node cannot be obtained due Lo an existing lock on the node.

PROPOSED MUASTD-C Al-
33 JANUARY 108

RELATION: in RELATION_NAME_PATTERN
:= DEFAULT_RELATION;
PRIMARY OMLY: in BOOLEAN := TRUE)

is
NODE: WODE_TYPE:
begin
OPEN(NODE. NAME, (1=>READ_RELATIONSHIPS)):
ITERATE (ITERATOR, NODE, KIND, KEY, RELATION, PRIMARY_OMLY);
CLOSE (MODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end ITERATE;

Notes:

The functions PATH__KEY and PATH__RELATION may be used to determine the relationship
which caused the node to be Included In the iteration. The iteration interfaces can be used to
determine relationships to inaccessible or upobtainable nodes.

§5.1.2.27. Determining iteration status

function MORE (ITERATOR: in NODE_ITERATUR)
return BOOLEAN;

Purpose:
The function MORE returns FALSE If all nodes contained in the node iterator have been

retrieved with the GET_ NEXT procedure; otherwise it returns TRUE.
Parameters:

ITERATOR is a node iterator previously set by the procedure ITERATE.

Exceptions:

USE _ ERROR I8 raised if the ITERATOR has not becn previously set by the procedure ITERATE.

5.1.2.28. Getting the next node in an iteration

procedure GET_NEXT(ITERATOR: im out NODE_ITERATUR;
¥EXT_NoDE: in out NODE_TYPE;
INTENT: in INTENTION := (1=>EXISTENCE):
TIME_LINIT: in DURATION := NO_DELAY);

Purpose:

The procedure GET _ NEXT returns an open node handle to the next node In the parameter
NEXT _ NODE; the intent under which the node handle is opened Is specified by the INTENT
parameter. If NEXT _ NODE is open prior to the call to GET _ NEXT, it is closed prior to being
opened to the next node. A time limit can be specified for the maximum delay permitted if the
node to be opened is locked against access with the specificd INTENT.

Parameters:

ITERATOR Is a node iterator previously set by ITERATE.

NEXT _NODE
is a node handle to be opcned to the next node on the ITERATOR.

59

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

relationship key. The effect on existing (terators of creation or deletion of relationships Is
implementation-defined.

6.1.2.26. Creating an iterator over nodes

procedure ITERATE (ITERATOR: out NODE_ITERATOR;
WODE : in woDE_TYPE;
KIMD: in woOE_KIND:
KEY: in RELATIONSHIP KEY PATTERN := ®s°;
RELATION: in RELATION_NAME_PATTERN

:x DEFAULT_RELATION;
PRIMARY ONLY: in BOGLEAN :x TRUE);

Purpose:
This procedure establishes a node Iterator ITERATOR over the set of nodes that are the targets
of relationships emanating from a given node ldentifled by NODE and matching the specified
KEY and RELATION patterns. Nodes that are of a different kind than the KIND specified are
omitted by subsequent calls to GET_NEXT wusing the resulting ITERATOR. If
PRIMARY _ ONLY is true, then the iterator will be based on only primary relationships.

Parameters:

ITERATOR is the node iterator returned.

NODE i{s an open node handle to 8 node whose relationships form the basis for constructing
the Iterator.

KIND is the kind of nodes on which the iterator is based.

KEY is the pattern for the relationship keys on which the iterator is based.

RELATION is the pattern for the relation names on which the iterator is based.

PRIMARY _ONLY
Is 8 boolean; If TRUE, the iterator will be based on only primary relationships; If
FALSE.the iterator will be based on all refationships satisfying the patterns.

Exceptions:

USE _ ERROR s raised If the pattern given in KEY or RELATION s syntactically illegal.

STATUS _ERROR
is raised If NODE is not an opea node handle.

INTENT _ VIOLATION

Is raised If NODE was not opened with an intent establishing the right to read
relationships.

Additional Interface:

procedure ITERATE (ITERATOR: Out NODE_ITERATOR;
NAME : in waE_STRING;
KIND: in woDE_KIND:
xeY: In RELATIONSHIP_KEY PATTERN := ®e=;
58

PROPOSED MIL-STD-C Al~
31 JANUARY 1085

RELATION is the relation name of the relationship to be deleted.

Exceptions:

NAME _ERROR
Is raised If the relationship identified by BASE. KEY and RELATION does not

exist.

USE _ERROR s raised if the specified relationship is a primary reiationship. USE__ERROR Is
also ralsed iIf RELATION is the name of a predefined relation that cannot be
modified or created by the user.

STATUS_ERROR
Is raised If the BASE is not an open node handle.

INTENT _ VIOLATION
is ralised If BASE was not opened with an intent establishing the right to write

relatior.ships.

SECURITY _ VIOLATION
Is raised If the operation represents a vijolation of mandatory access controls.
SECURITY _VIOLATION is raised only if the conditions for other exceptions are
not present.

Additional Interface:

procedure UNLINK(NAME: in MAME_STRING)
in
BASE: NGDE_TYPE;
begin
OPEN(BASE, BASE_PATH(NAME), (1=>WRITE_RELATIONSHIPS)):
UNLINK (BASE, LAST KEY(NAME), LAST_RELATION (NAME)) ;
CLOSE (BASE) ;
exception
when others =>
CLOSE (BASE) :
raise;
end UNLINK;

Notes:
UNLINK can be used to deiete secondary relationships to nodes that have become unobtainable.

5.1.2.25. Node iteration types and subtypes

type NODE_ITERATOR is limited private;
subtype RELATIONSMIP_KEY_PATTERN is RELATIONSHIP_KEY;
subtype RELATION_NAME_PATTERN i8 RELATION NAME:

These types are used in the following Iinterfaces for lwerating over a set of nodes.
RELATIONSHIP _ KEY _PATTERN and RELATION _NAME _PATTERN follow the syntax of
relationship keys and relation names. except that *?' will match any single character and **' will match
any string of characters. NODE _ITERATOR Is a private type assumed (o contaln the bookkeeping
information necessary for the implementation of the MORE and GET _ NEXT functions. The nodes
are returned by GET _NEXT in ASCH lexicographical ,order by relation name and then by

57

r

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

NAME _ERROR
is raised if the relationship key or the relation name are lllegal or If a node already
exists with the identification given by NEW _BASE, NEW _KEY, and
NEW _ RELATION.

USE _ERROR s raised If NEW _ RELATION Is the name of a predefined relation that cannot be
modified or created by the user.

STATUS _ERROR
is raised If the node handles NODE and NEW _ BASE are not open.

INTENT _ VIOLATION
is raised If NEW _ BASE was not opened with an intent establishing the right to
append relationships.

SECURITY _ VIOLATION
is raised if the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION is raised only if the conditlons for other exceptions are
not present.

Additional Interface:

procedure LINK(NODE: in NODE_TYPE;
WMEV_MAME: in NAME_STRING)
is
NEV_BASE: WODE_TYPE;
n
OPEN (NEV_BASE, BASE_PATH(NEW_MAME) , (1=>APPEND_RELATIONSHIPS)) ;
LINK(NODE, NEV_BASE, LAST_KEY(NEW_NAME)
LAST_RELATION (NEW_NAME)) ;
CLOSE (NEW_BASE) ;
exception
when others =>
CLOSE (NEW_BASE) ;
raise;
end LINK;

5.1.2.24. Deleting secondary relationships

procedure UNLINK(BASE: in moDE_TYPE:
KEY: in RELATIONSHIP KEY;
RELATION: in RELATION_MAME
:=DEFAULT_RELATION) ;
Purpose:
This procedure deletes a secondary relationship identified by the BASE, KEY and RELATION
parameters.

Parameters:
BASE is an open node handle o the node from which the relationship emanates which is
to be deleted.
KEY Is the relationship key of the relationship to be deleted.

PROPOSED MIL-STD-C A~
31 JANUARY 1985

ACCESS_ VIOLATION
is raised If the current process does not have sufficient discretionary access control
rights to obtain access to the parent of the node specified by NODE with Intent
WRITE _ RELATIONSHIPS or to obtaln access to any target node of a primary
relationship to be deleted with Intent EXCLUSIVE _ WRITE aad the conditions for
NAME _ ERROR are not present.

SECURITY __ VIOLATION
Is raised If the operation represents a violstion of mandatory access controls.
SECURITY _ VIOLATION Is raised only if the conditions for other exceptions are
not present.

Additional Interface:

procedure DELETE_TREE (NAME: in NANE_STRING)
is
NODE: WODE_TYPE:
begin
OPEN(NODE, NAME, (EXCLUSIVE WRITE, READ RELATIONSHIPS)) ;
DELETE_TREE (NODE) ;
exception
when others =>
CLOSE (NGDE)
raise;
end DELETE_TREE:

Notes:
This operation can be used to delete more than one primary relationship in a single operation.

5.1.2.23. Creating secondary relationships

procedure LINK(NODE: in NODE_TYPE;
WEW_BASE: in NODE_TYPE;
NE¥W_KEY: in RELATIONSHIP_KEY;

MEW_RELATION: in RELATION NAME
:=DEFAULT_RELATION) ;

Purpose:
This procedure creates a secondary relationship between two existing nodes. The procedure
takes 8 node handle NODE on the target node, 8 node handle NEW _ BASE on the source node,
and an explicit key NEW__KEY and relation name NEW _ RELATION for the relationship to
be established from NEW _ BASE to NODE.

Parameters:

NODE is an open node handle to the node to which the new secondary relationship points.

NEW _BASE Is an open node handie to the base node from which the new sccondary relationship
to the node emanates.

NEW _KEY Is the relationship key for the new secondary relationship.

NEW _RELATION
Is the relation name for the new secondary relationship.

Exceptions:

55

PROPOSED MIL-STD~CAIS
31 JANUARY 1985

WODE: WGDE_TYPE;
begin
OPEN(NODE, MAME, (EXCLUSIVE_WRITE.READ_RELATIONSHIPS)) ;
DELETE_NODE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end DELETE_NODE;

Notes:
The DELETE _ NODE operations cannot be used to delete more than one primary relation node
in a single operation. It is left to an Implementation decision whether and when nodes whose
primary relationships have been broken are actually removed. However, secondary relationships
to such nodes must remain until they are explicitly deleted using the UNLINK procedures.

65.1.2.22. Deleting the primary relationships of a tree

procedure DELETE_TREE(NODE: in out NODE_TYPE);

Purpose:
This procedure effectively performs the DELETE__NODE operation for a specified node and
recursively applies DELETE _ TREE (o all nodes reachable by a unique primary pathname from
the designated node. The nodes whose primary relationships are to be deleted are opened with
intent EXCLUSIVE _ WRITE, thus locking them for other operations. The order in which the
deletions of primary relationships is performed is not specified. If the DELETE__TREE
operation raises an exception, none of the primary relationships is deleted.

Parameters:
NODE is an open node handle to the node at the root of the tree whose primary
relationships are to be deleted.
Exceptions:

NAME _ERROR
Is raised if the parent node of the node identified by NODE or any of the target
nodes of primary relationships to be deleted are inaccessible.

USE _ ERROR s raised If the primary relationship to the node identified by NODE belongs to a
predefined reiation that cannot be modified by the user.

STATUS _ERROR
is ralsed If the node handle NODE Is not open prior to the call.

LOCK _ERROR
is raised iIf a node handie to the parent of the node specified by NODE cannot be
opened with intent WRITE _ RELATIONSHIPS or if a node handle identifying any
node whose unique primary path traverses the node ldentified by NODE cannot be
opened with Intent EXCLUSIVE _ WRITE.

INTENT _ VIOLATION
is raised I the node handle NODE was not opened with an Intent Including
EXCLUSIVE _ WRITE and READ _ RELATIONSHIPS.

54

& it

I
e s e Y

PROPOSED MI1-STD-¢ \I~
31 JANUARY (085

raise;
end RENANT;
Notes:

Open node handies from existing processes track the renamed node.

5.1.2.21. Deleting the primary relationship to a node

procedure DELETE_NODE (NODE: in out NODE_TYPE)
Purpose:

This procedure deletes the primary relationship to a node Identified by NODE. The node
becomes unobtainable. The node bandle NODE is closed. If the node is & process node and the
process is not yet TERMINATED (see Section 5.2), DELETE _ NODE aborts the process.

Parameters:
NODE Is an open node handle to the node which is the target of the primary relationship
to be deleted.
Exceptlons:

NAME _ ERROR

is raised If the parent node of the node identified by NODE is inaccessible.

USE _ ERROR s raised if any primary relationships emanate from the node.
STATUS _ ERROR

Is raised If the node handle NODE is not open prior to the call.
LOCK _ERROR

is raised If access, with intent WRITE _RELATIONSHIPS, to the parent of the
node to be deleted cannot be obtained due to an existing lock on the node.

INTENT _ VIOLATION

Is raised If the node handle NODE was not opened with an intent including
EXCLUSIVE _ WRITE and READ __ RELATIONSHIPS.

ACCESS__ VIOLATION

is ralsed if the current process does not have sufficient discretionary access control
rights to obtain access to the parent of the node to be deleted with intent

WRITE _ RELATIONSHIPS and the conditions for NAME_ERROR are not
present.

SECURITY _ VIOLATION

Is ralsed If the operation represents a violation of mandatory access controls.

SECURITY _ VIOLATION Is raised only if the conditions for other exceptions are
not present.

Additlonal Interface:

procedure DELETE_NODE (NAME: In NAME_STRING)
is

53

ﬁ—f

PROPOSED MIA~STD-CAIN
31 JANUARY 1085

NEW _RELATION
Is a relation name for the new primary relationship.

Exceptlons:

NAME _ERROR
is raised if the new node identification is llegal or If & pode already exists with the
Identification glven for the new node.

USE__ERROR I8 ralsed If the node Identified by NODE Is not a file or structural node or if the
renaming cannot be accompiished while still maintaining acircularity of primary
relationships (e.g., If the new parent node would be the renumcd node).
USE _ERROR is also raised if NEW__RELATION 48 the name of a predefined
relation that cannot be modified or created by the user or if the primary
relationship to be deleted belongs to a predefined relation that cannot be modified
by the user.

STATUS _ERROR
Is raised If the node handles NODE and NEW _ BASE are not open.

LOCK _ERROR
ls raised if access, with intent WRITE_RELATIONSHIPS, to the parent of the
node to be deleted cannot be obtained due to an existing lock on the node.

INTENT _ VIOLATION
Is raised if NODE was not opened with an Intent establishing the right to write
relationships or {f NEW __BASE was not opened with an Intent establishing the
right to append relationships.

ACCESS _ VIOLATION
is raised if the current process does not have sufTicient discretionary access control
rights to obtain access to the parent of the node to be renamed with intent
WRITE _RELATIONSHIPS and the conditions for NAME_ERROR are not
present.

SECURITY __ VIOLATION
is raised If the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION s ralsed only if the conditions for other exceptions are
not present.

Additional Interface:

procedure RENAME(NODE: in NODE_TYPE;
NEW_NAME: in NAME_STRING)
is

NEW_BASE: NODE_TYPE,

n

OPEN(NEW_RASE, BASE_PATH(NEV_MAME), (1=>APPEND_RELATIONSHIPS))
RENAME (NODE, NEW_BASE, LAST_KEY(NEW_NAME),

‘ LAST_RELATION (NEV_NAME)) ;
CLOSE (NEV_BASE) ;
exception
when others =>
CLOSE (NEW_BASE) ;
52

PROPOSED MIL-STD-C Al
31 JANUARY 1985
Parameters:
NODE Is an open node handie to a node the value of whose attribute named by
ATTRIBUTE is to be set.
ATTRIBUTE Is the name of the attribute.

VALUE is the new value of the attribute.

Exceptions:

USE__ERROR Is raised If the node has no stiribute of the given name. USE _ERROR is also
ralsed Il ATTRIBUTE is the name of a predefined node attribute which cannot be
modified by the user.

STATUS _ERROR
is raised if NODE is not an open node nandle.

INTENT _ VIOLATION
is raised if NODE was not opened with an intent establishing the right to write
attributes.

SECURITY _ VIOLATION
is raised if the operation represents a violation of mandatory access controis.
SECURITY _ VIOLATION Is raised only If the conditions for other exceptlions are
not present.

Additional Interface:

procedure SET_NODE_ATTRIBUTE (NAME : in NAME_STRING:
ATTRIBUTE: in ATTRIBUTE_NAME;
VALUE: in LIST_TYPE)

is

NODE: MNODE_TYPE;
begin
OPEN(NODE, NAME, (1=>WRITE_ATTRIBUTES));
SET_NODE_ATTRIBUTE (NODE, ATTRIBUTE. VALUE);
CLOSE (NODE) ;
excepiion
when others =>
CLOSE (NGDE) ;
raise;
end SET_NGDE_ATTRIBUTE:

5.1.3.8. Setting path attributes

procedure SET_PATH_ATTRIBUTE (BASE : in NODE_TYPE;
KEY : in RELATIONSHIP_KEY:
RELATION : in RELATION NAME
:=DEFAULT_RELATION;
ATTRIBUTE: in ATTRIBUTE_NAME;
VALUE : In LIST_TYPE);

Purpose:
This procedure sets the value of the relationship attribute named by ATTRIBUTE to the value

—

Y Al v > -——- — -
PROPOSED MIL-STD-CAIS

31 JANUARY 19085

specified by VALUE. The relationship is identified explicitly by the base node BASE, the
relation name RELATION and the relationship key KEY.

Parameters:
BASE is an open node handle to the node from which the relationship emanates.
KEY Is the relationship key of the affected relationship.

RELATION is the relation name of the affected reiationship.
ATTRIBUTE Is the name of the sttribute.

VALUE is the new value of the attribute.

Exceptions:

NAME __ERROR
is raised if the relationship Identifled by the BASE, KEY and RELATION
parameters does not exist.

USE _ERROR s raised If the node does not have an atiribute of the given name. USE__ERROR
is also raised If RELATION Iis the name of a predefined relation that cannot be
modified by the user. USE _ ERROR s also raised if ATTRIBUTE is the name of a
predefined refationship attribute which cannot be modified by the user.

STATUS _ERROR
Is raised If the node handle BASE is not open.

INTENT _ VIOLATION
Is raised iIf BASE was not opened with an intent establishing the right to write
relationships.

SECURITY _ VIOLATION
Is raised If the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION s raised only if the conditions for other exceptions are
not present.

Additiona! Interface:

procedure SET_PATH_ATTRIBUTE (NAME: in nuE_STRING;
ATTRIBUTE: in ATTRIBUTE_NAME:
VALUE : in LI1ST_TYPE)

is

BASE: WODE_TYPE;
begin
OPEN(BASE, BASE PATH(NAME), (1=>WRITE_RELATIONSHIPS));
SET_PATH_ATTRIBUTE(BASE, LAST KEY(NAME), LAST_RELATION(NAME).
ATTRIBUTE, VALUE);
CLOSE (BASE) ;
exception
when others =>
CLOSE (BASE) ;
raise;
end SET_PATH_ATTRIBUTE;

- el
ﬁ L, "

o L

PROPOSED MHASTD-CAlS
31 JANL ARY 18RS

65.1.3.7. Getting node attributes

procedure GET_WODE_ATTRIBUTE (NODE: in NODE_TYPE;
ATTRIBUTE: in ATTRIBUTE_RAKE
VALUE: in out LIST_TYPE);

Purpose:

This procedure returns the value of the node attribute named by ATTRIBUTE in the parameter
VALUE. The node is Identified by open node handie NODE.

Parameters:

NODE is an open node handle to 2 node the value of whose attribute ATTRIBUTE is to be

retrieved.

ATTRIBUTE is the name of the attribute.
VALUE is the result parameter contalning the value of the attribute.

Exceptions:
USE_ ERROR Is raised if the node has no attribute of name ATTRIBUTE.

STATUS _ERROR
is raised if NODE is not an open node handle.

INTENT _ VIOLATION

Is ralsed If NODE was not opened with an iatent establishing the right to read
attributes.

Additional laterface:

procedure GET_NODE_ATTRIBUTE (NAME: in NAME_STRING;
ATTRIBUTE: in ATTRIBUTE_NAME;
VALUE : in out LIST_TYPE)
is

NODE: NODE_TYPE;
begin
OPEN(NODE, NAME, (1=>READ_ATTRIBUTES)):
GET_NODE_ATTRIBUTE (NODE, ATTRIBUTE, VALUE);
CLOSE (NQDE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end GET_NODE_ATTRIBUTE;

5.1.3.8. Getting path attributes

procedure GET_PATH_ATTRIBUTE (BASE: in NODE_YYPE;

KEY: in RELATIONSHIP_KEY;

RELATION: in RELATION_NAME
:=DEFAULT_RELATION;

ATTRIBUTE: in ATTRIBUTE_MAME;

VALUE: in out LIST_TYPE):

Purpose:
69

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

This procedure assigns the value of the relationship attribute named by ATTRIBUTE to the
parameter VALUE. The reliationship is ldentified explicitly by the base node BASE, the relation
name RELATION and the relationship key KEY.

Parameters:
BASE is an opcn node handie to the node from which the relationship emanates.
KEY is Lthe relationship key of the accessed relationship.

RELATION is the relation name of the accessed relationship.
ATTRIBUTE is the name of the attribute.

VALUE is the result parameter containing the value of the attribute.

Exceptions:

NAME _ERROR
is raised if the relationship identified by the BASE, KEY and RELATION
parameters does not exist.

USE _ ERROR I8 raised If the relationship does not have an attribute of the given name.

STATUS_ERROR
is raised if the node handle BASE is not open.

INTENT _ VIOLATION
is raised {{ BASE was not opened with an intent establishing the right to read
relationships.

Additional Interface:

procedure GET_PATH_ATTRIBUTE (NAME: in NAME_STRING;
ATTRIBUTE: in ATTRIBUTE_NAME;
VALUE : in out LIST_TYPE)

is

BASE: NODE_TYPE;
begin
OPEN(BASE, BASE_PATH(NAME), (1=>READ_RELATIONSHIPS)) ;
GET_PATH_ATTRIBUTE (BASE, LAST KEY(NAME), LAST_RELATION(NAME),
ATTRIBUTE, VALUE);
CLOSE (BASE) ;
exception
when others =>
CLOSE (BASE) ;
raise;
end GET_PATH_ATTRIBUTE;

70

_A‘f)

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

5.1.3.9. Attribute iteration types and subtypes

subtype ATTRIBUTE_MAME is STRING:
type ATTRIBUTE_ITERATOR is limited private;
subtype ATTRIBUTE_PATTERN is STRING;

These types are used in the following interfaces for iteration over a set of attributes of nodes or
relationships. ATTRIBUTE_NAME is a subtype for the mnames of attributes. An
‘ATTRIBUTE _PATTERN has the same syntax as an ATTRIBUTE_ NAME, except that ‘" will
match any single character and '*' will match any string of characters. ATTRIBUTE _ ITERATOR is
a private type assumed to contain the bookkeeping information necessary for the implementation of
the MORE and GET _ NEXT functions. The attributes are returned by GET _NEXT in ASCII
lextcographical order by attribute name. The effect on existing lterators of creation or deletion of
atiributes or relationships is Implementation-defined.

5.1.3.10. Creating an iterator over node attributes

procedure NODE_ATTRIBUTE_ITERATE (ITERATOR: out ATTRIBUTE_ITERATOR;
WODE : in NODE_TYPE;
PATTERN: in ATTRIBUTE_PATTERN
1=Ts%);
Purpose:

The procedure NODE__ ATTRIBUTE _ITERATE returns in the parameter ITERATOR an
attribute iterator according to the semantic rules for attribute selection given in Section 5.1.3.9.

Parameters:

ITERATOR is the attribute iterator returned.

NODE is an open node handle to a node over whose atiributes the iterator is to be
constructed.

PATTERN is a pattern for attribute names as lescribed in Section 5.1.3.9.

Exceptions:

USE _ ERROR Is ralsed If the PATTERN is syntactically illegal.

STATUS _ERROR
is raised if NODE is not an open node handie.

INTENT _ VIOLATION
is raised If NODE is pot open with an intent establishing the right to read
attributes.

Additional Interface:

procedure NODE_ATTRIBUTE_ITERATE (ITERATOR: Out ATTRIBUTE_ITERATOR:

RAME : in NAME_STRING;
PATTERN: in ATTRIBUTE_PATTERN
::...)
in
NODE: NODE_TYPE;
in
7

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

OPEN(NODE. NAME, (1=>READ_ATTRIBUTES));
WODE_ATTRIBUTE_ITERATE (ITERATOR, NODE, PATTERN);
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end WODE_ATTRIBUTE_ITERATE;

Notes:
By using the pattern '*’, it Is possible to iterate over all attributes of a node.

5.1.3.11. Creating an iterator over relationship attributes

procedure PATH_ATTRIBUTE_ITERATE(ITERATOR: out ATTRIBUTE_ITERATUR;
BASE: in WODE_TYPE;
KEY: in RELATIONSHIP_KEY;

RELATION: in RELATION_NAME
:=DEFAULT_RELATION;
PATTERN: in ATTRIBUTE_PATTERN

i=te®);
Purpose:

This procedure Is provided to obtain an attribute iterator for relationship attributes. The
relationship is identified explicitly by the base node BASE, the relation name RELATION and
the rélatlonship key KEEY. The procedure returns an attribute iterator in ITERATOR according
to the semantic rules for attribute selection applied to the attributes of the identified
relationship. This Iterator can then be processed by means of the MORE and GIET _ NEXT
interfaces.

Parameters:

ITERATOR s the attribute iterator returned.

BASE is an open node handle to the node from which the relationship emanates.
KEY Is the relationship key of the affected relationship.

RELATION is the relation name of the affected relationship.

PATTERN Is a pattern for attribute names (see Section 5.1.3.9).

Exceptions:

NAME _ERROR
Is raised if the relationship Identified by the BASE, KEY and RELATION
parameters does not exist.

USE _ERROR s raised if the PATTERN s syntactically tllegal.

STATUS _ ERROR
is ralsed If BASE Is not an open nodie handle.

INTENT _VIOLATION

is raised if BASE was not opened with an intent establishing the right to read
relationships.

72

g Baadll

PROPOSED MIL-~TD-C Al~
31 JANL ARY 16&,

Additional Interface:

procedure PATH_ATTRIBUTE_ITERATE (ITERATOR: out ATTRIBUTE_ITERATOR:

NAME : in NAME_STRING;
PATTERN: in ATTRIBUTE_PATTERN
::-.-)
is
BASE: NODE_TYPE;
begin
OPEN(BASE, BASE_PATH(NAME), (1=>READ_RELATIONSHIPS)) ;
PATH_ATTRIBUTE_ITERATE (ITERATOR, BASE. LAST KEY (NAME) .
LAST_RELATION (NAME) , PATTERN);
CLOSE (BASE) ;
exception
when others =>
CLOSE (BASE) ;
raise;

end PATH_ATTRIBUTE_ITERATE;

5.1.3.12. Determining iteration status

function MORE(ITERATOR: In ATTRIBUTE_ITERATOR)
return BOOLEAN;

Purpose:
The function MORE returns FALSE if all attributes contained in the attribute iterator have
been retrieved with the procedure GET __ NEXT; otherwise, it returns TRUE.

Parameters:

ITERATOR is an attribute iterator previously constructed.

Exceptions:

USE _ERROR is raised If the ITERATOR has not been previously set by the procedures
NODFE _ ATTRIBUTE _ITERATE or PATH_ ATTRIBUTE _ITERATE.

5.1.3.13. Getting the next attribute

procedure GET_NEXT(ITERATOR: in out ATTRIBUTE_ITERATOR;
ATTRIBUTE: out ATTRIBUTE_NAKE;
VALUE: in out LIST TYPE);

Purpose:
The procedure GET _ NEXT returans, in Its parameters ATTRIBUTE and VALUE, both the
name and the value of the next attribute In the iterator.

Parametcrs:

i ITERATOR Is an attribute iterator previously constructed.

ATTRIBUTE Is a result parameter containing the name of an attribute.

VALUE is a result parameter containing the value of the attribute named by ATTRIBUTE.

Exceptions:

USE_ ERROR Is raised if the ITERATOR has not been previously set by the procedures

73

Sl

PROPOSED MIL-STD-CAIN
31 JANUARY 1985

NODE _ ATTRIBUTE _ITERATE or PATH_ATTRIBUTE _ITERATE or If the
iterator is exhausted, i.e., MORE(ITERATOR)= FALSE.

5.1.4. Package ACCESS._CONTROL

This package provides primitives for manipula.ing discretionary access control information for CAIS
nodes. In addition, certain CAIS subprograms declared eisewhere allow the specification of initial
access control information. The CAIS specifies mechanisms for discretionary and mandatory access
control (see [TCSEC]|). These mechanisms are only recommendations. Alternate discretionary or
mandatory access control mechanisms can be substituted by an implementation provided that the
semantics of all interfaces In Section 5 (with the exception of Section 5.1.4) sre Implemented as
specified.

5.1.4.1. Subtypes

subtype GRANT_VALUE is CAIS.LIST UTILITIES.LIST TYPE;

GRANT _ VALUE Is a subtype for values of GRANT attributes; it is s list in the syntax described in
Table .

5.1.4.2. Setting access control

procedure SET_ACCESS_CONTROL (NODE: in woDe_TYPE;
ROLE_WODE: in WODE_TYPE.
GRANT : in GRANT VALUE) ;

Purpose:

This procedure sets access control information for a given node. If a relationship of the
predefined relation ACCESS does not exist from the node Identifled by NODE to the node
identified by ROLIE__NODE., such a relationship with an implementation-defined relationship
key is created from the node specified by NODE to the node specified by ROLE_NODE. If
necessary, the predefined attribute GRANT Is created on this relationship. The value of the
GRANT attribute is set to the value of the GRANT parameter (see Table II for the syntax).
The effect is 1o grant the access specified by GRANT to processes that have adopted the role
ROLE_ NODE.

Parameters:
NODE is an open node handle to the node whose access control information is to be set.
ROLE _ NODE
Is an open node handle to the node representing the role.
GRANT Is a list describing what access rights can be granted.
Exceptions:

USE _ERROR s raised if GRANT is not in valid syntax.

STATUS _ERROR
Is raised If NODE and ROLE _NODE are not both open node handles.

INTENT _ VIOLATION
Is raised if NODE was not opened with intent CONTROL..

74

e e e A

M—- PROPOSED MIL-STD-C AlS
31 JANUARY 1985

SECURITY _ VIOLATION

is ralsed If the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION is ralsed only If the conditions for other exceptions are
not present.

Additional Interface:

_ procedure BET_ACCESS_CONTROL (MAME : in NAME_STRING;
ROLE KAME: in NAME_STRING;
' GRANT: in GRANT_VALUE)
is
WODE, ROLE_NGDE: WODE_TYPE;
begin
' OPEN(NODE, NAME, (1=>CONTROL)):
OPEN(ROLE_NODE. ROLE_NAME, (1=>EXISTENCE));
' SET_ACCESS_CONTROL (NODE. ROLE_NODE. GRANT) ;
; CLOSE (NODE) ;
CLOSE (ROLE_NODE) ;
r exception
4 when others =>
CLOSE (NODE) ;
CLOSE (ROLE_NODE) ;
! raise;

end SET_ACCESS_CONTROL;

5.1.4.3. Examining access rights

function IS_GRANTED (OBJECT_MODE :@ inm NODE_TYPE;
ACCESS_RIGHT: in NAME_STRING)
return BOOLEAN;
Purpose:
This function returns TRUE If the current process as a subject has an approved access right
ACCESS _RIGHT to the OBJECT _NODE as an object. Otherwise it returns FALSE.

Parameters:

OBJECT _NODE
is an open node handle to the object node.

ACCESS _RIGHT
is the name of 8 predeflned or user-defined access right.

Exceptlons:
USE _ERROR s raised If ACCESS _ RIGHT s not a valid Ada identifier.

STATUS _ERROR
is raised If OBJECT _NODE Is not an open node handie.

INTENT _VIOLATION

Is raised if OBJECT _NODE was not opened with an intent establishing the right
to read relationships or to read access control information.

Additional Interface:

75

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

function I5_GRANTED (OBJECT NAME: in NAME_STRING:
ACCESS_RIGHT: in NAME_STRING)
return BOOLEAN

is
OBJECT WODE: NODE_TYPE;
RESULT: BOOLEAN;
n

OPEN (OBJECT_NODE. OBJECT WAME, (1=>READ_RELATIONSHIPS));
RESULT := IS_GRANTED (OBJECT_MGDE, ACCESS_RIGHT);
CLOSE (0BJECT_WODE) ;
return RESULT;
exception
when others =>
CLOSE (OBJECT_NODE) ;
raise;
end IS_GRANTED;

5.1.4.4. Adopting a role

procedure ADOPT (ROLE_NGDE: In WODE_TYPE:
ROLE_KEY: in RELATIONSHIP_KEY:=LATEST_KEY):

Purpose:
This procedure causes the current process to adopt the group specified by the ROLE _NODE. A
relationship of the predefined relation ADOPTED _ ROLE with relationship key ROLE _ KEY is
created from the calling process node to the node identified by ROLE_ NODE. In order for the
current process to adopt the group, a node representing some other adopted role of the current
process must be a potential member of the group to be adopted.

Parameters:

ROLE _NODE
Is an open node handie to s node representing the group.

ROLE _KEY s a relationship key to be used in creating the relationship.

Exceptions:

USE _ ERROR is raised If there is no adopted role of the current process that is a potential
member of the group represented by ROLE_ NODE or If there already exists a
relationship of the predefined relation ADOPTED_ROLE with relationship key
ROLE_ KEY emanating from the current process node. USE__ERROR Is also
ralsed if the node identified by ROLE_ NODE is inaccessible or unobtainable.

STATUS_ ERROR
is raised if ROLE__ NODE Is not an open node handle.

LOCK _ERROR

Is ralsed If access with intent APPEND _ RELATIONSHIPS to the current process
node cannot be obtained due to an existing lock on the node.

SECURITY _ VIOLATION
Is raised if the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION Is raised only if the conditlons for other exceptions are
not present.

76

PROPOSED MIL-STD-C Al
31 JANUARY 1985

5.1.4.6. Unlinking an adopted role

procedure UNADOPT(ROLE KEY: in RELATIONSHIP_KEY) ;
Purpose:
This procedure deletes the relationship of the predefined relation ADOPTED _ROLE with
relationship key ROLE_ KEY emanating from the current process node. If there Is no such
relationship, the procedure has no effect.

Parameters:

ROLE _ KEY s the relationship key of the relation ADOPTED _ROLE

Exception:
USE__ERROR s raised If the target node of the relationship to be deleted is the top-level node
identifled by *"CURRENT _USER". In this case the relationship is not deleted.

LOCK _ERROR
Is raised if access, with intent WRITE _ RELATIONSHIPS, to the current process
node cannot be obtained due to an existing lock on the node.

5.1.5. Package STRUCTURAL_NODES

Structural nodes are special nodes in the sense that they do not have contents as the other nodes of
the CAIS model do. Their purpose is solely to be carriers of common information about other nodes
related to the structural node. Structural nodes are typically used to create conventional directories,
configuration objects, etc..

The package STRUCTURAL _ NODES deflnes the primitive operations for creating structural nodes.

5.1.5.1. Creating structural nodes

procedure CREATE_NGDE (NODE: in out WODE_TYPE:

BASE: in WODE_TYPE:

KEY: in RELATIONSHIP_KEY
:=LATEST_KEY.

RELATION: in RELATION NAME
:=DEFAULT_RELATION;

ATTRIBUTES: in LIST_TYPE := EMPTY_LIST:

ACCESS_CONTROL: in LIST_TYPE := EMPTY_LIST;

LEVEL: in LIST_TYPE := EMPTY LIST):

Purpose:
This procedure creates a structural node and installs the primary relationship to it. The relation
name and relationship key of the primary relationship to the node and the base node from which
It emanates are given by the parameters RELATION, KEY, and BASE. An open node handle
to the newly creatd node with WRITE intent Is returned in NODE.

The ATTRIBUTES parameter defines and provides initial values 'or attributes of the node. The
ACCESS _ CONTROL paramcter specifics initlal access control info-mation to be established for
the created node (:ce Section 4.4).

The LEVEL paranicter specifies the security level at which the node is to be crealed.

”

F-———*

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Parameters:
NODE is a nod« handle, initially closed, to be opened to the newly created node.
BASE is an opcn node handle to the node from which the primary relationship to the new
node is Lo emanate.
, KEY is the relationship key of the primary reiationship to be created.

RELATION is the reiation name of the primary relationship to be created.

ATTRIBUTES Is a named list (see Section 5.4) whose elements are used to establish initial values
for attributes of the newly created node; each named item specifies an attribute
name and the value to be given to that attribute.

ACCESS _CONTROL
Is the initial access control information associated with the created node; it is a
named list (see Section 5.4) each of whose named items specifies a relationship key
followed by a list of access rights.

LEVEL Is the classification label for the created node (see TABLE IV).

Exceptions:

NAME _ERROR
is ralsed If a node already exists for the node identification given, If the node
identification is lllegal. or if sny node identifying s group specified in the given
ACCESS_ CONTROL parameter is unobtainable or inaccessible.

USE_ ERROR Is raised if the ACCESS_ CONTROL or LEVEL parameters do not adhere to the
required syntax or if the ATTRIBUTES parameter contains references to predefined
attributes which cannot be modified or created by the user. USE__ ERROR Is also
raised if RELATION Is the name of a predefined relation that cannot be modified
or created by the user.

STATUS _ERROR
is raised If BASE is not an open node handie or if NODE is an open node handle
prior to the call.

INTENT _ VIOLATION
is raised If BASE was not opened with an Intent establishing the right to append
re.ationships.

SECURITY _ VIOLATION
is ralsed If the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION s ralsed only If the conditions for other exceptions are
not present.

Additional Interfaces:

procedure CREATE_NODE (NODE: in out wWODE_TYPE:
NANE : in NAME_STRING;
78

F——_-fi

1

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

L

LIST:

TLIST):

ATTRIBUTES: in LIST TYPE := EMPTY |
ACCESS_CONTROL: in LIST_ "TYPE = EMPTY_LIST,
LEVEL: in LIST "TYPE := EMPTY_|
is
BASE: NODE_TYPE;
n
OPEN(BASE. BASE PATH(NMAME) . (1=>APPEND_RELATIONSHIPS))'
CREATE_NUDE (NODE. BASE. LAST_KEY(NAME). LAST_RELATION (MAME).
ATTRIBUTES, ACCESS_CONTROL, LEVEL):
CLOSE (BASE) ;
exception
when others =>
CLOSE (NCDE)
CLOSE (BASE) ;
raise;

end CREATE_NODE;

procedure CREATE_NODE (BASE: in moDE_TYPE:
KEY: in RELATIONSHIP_KEY
:=LATEST_KEY:
RELATION: in RELATION_NAME
:=DEFAULT_RELATION:
ATTRIBUTES: in LIST_TYPE := EMPTY_LIST:
ACCESS_CONTROL: in LIST_TYPE :s EMPTY_LIST:
LEVEL: in LIST_TYPE := EMPTY_LIST:
in
WODE: MODE_TYPE:
begin

CREATE_NODE (NODE, KEY , RELATION , ATTRIBUTES , ACCESS_CONTROL , LEVEL) ;

CLOSE (NQDE) ;
end CREATE_MODE;

procedure CREATE_NGDE (NAME: in MAME_STRING
ATTRIBUTES: in LIST TYPE := EMPTY LIST:
ACCESS_CONTROL: in LIST _TYPE := EMPTY_LIST:
LEVEL: in LIST_TYPE := EMPTY _LIST):
is
NODE: NGDE_TYPE:
begin
CREATE_NODE (WODE, NAME. ATTRIBUTES. ACCESS_CONTROL, LEVEL):
CLOSE (NQDE) ;
end CREATE_MODE;
Notes:
Use of the sequence of a CREATE _NODE call that does not return an open node handle
followed by a call on OPEN for the created node, using the node identification of the created

node, cannot guarantee that a handle to the node just created is opened:

relationships, and therefore the node identification.

CREATE _ NODE call.

may

5.2. CAIS process nodes

this is because
have changed since the

This section describes the semantics of the execution of Ada prnerams as represented by CAIS

processes and the facilities provided by the CAIS for initiating and ntrolling processes.

stages in a process’ life are initiation. running (which may Inciude

termination or abortion. The CAIS defines [lacilitiex to conirnl

suspension, resumption, and termination r abortion of processes
process has a current status associaled w "h it which changes with
TABLE V1. i

’

79

The major

-1spension or resumption), and

nd coordinate the initiation,
e Section 4.3.2). Each CAIS
crrtain events as speeified in

Fw—j y v yr——ur

PROPOSED MIL-STD-C AlIN
31 JANUARY 1085

A process Is sald to be terminated when its main program (In the sense of [LRM] 10.1) has terminated
(in the scnse of [LRM] 8.4). See also the notes in [LRM)] 0.4. Thus, termination of a process takes
piace when the main program has been completed and all tasks dependent on the main program have
terminated. A process may be aborted either by itsell or by another process. When a process has
terminated or has been aborted, all of its dependent processes which have not already terminated or
becn aborted will be aborted but its process node remains until explicitly deleted. Any open node
handles of a process are closed when the process terminates or is aborted.

Two mechanisms for a process (o initiate another process are provided:

a. Spawn - the procedure SPAWN _ PROCESS returns after initiating toe specified program.
The initiating process and the Initiated process run in parallel, and, within each of them,
thelr tasks may execute in paraliel.

b. Invoke - the procedure INVOKE _ PROCESS returns control to the calling task after the
Initiated process has terminated or aborted. Execution of the calling task is blocked untii
termination or abortion of the initiated process, but other tasks in the initiating process
may execute in parallel with the Initiated process and its tasks.

Every process node has several predefined attributes. Three of these are: RESULTS, which can be
used to store user-delined strings giving Intermediate results of the process; PARAMETERS, which
contains the parameters with which the process was initiated;: and CURRENT _ STATUS, which gives
the current status of the process (see TABLE VI). In addition, every process node has severa!
predefined attributes which provide information for standardized debugging and performance
measurement of processes within the CAIS implementation. One of these predefined attributes,
HANDLES _OPEN, has an implementation-indepcndent value which gives the number of node
handles the process currently has open. The remaining predefined attributes have implementation-
dependent values and should not Lbe used for comparison with values from other CAIS
implementations. START_ TIME and FINISH _ TIME give the time of activation and the time of
termination or abortion of the process. MACHINE _ TIME gives the length of time the process was
active on the logical processor, If the process has terminated or aborted, or zero, If the process has not
terminated or aborted. IU_ UNITS gives the number of GET and PUT operations that have been
petformed by the process. The CURRENT_STATUS, HANDLES_OPEN, START_TIME,
FINISH _ TIME, MACHINE _ TIME, and 10 _ UNITS predefined attributes are maintained by the
implementation and cannot be set using CAIS Interfaces.

When a process has terminated or aborted, the final status, recorded in the predefined process node
attribute CURRENT _STATUS, will persist as Jong as the process node exists.
CURRENT _ STATUS may also be examined by the CAIS procedures STATUS _OF _ PROCESS
and GET _RESULTS. The process status of a process will be returned to any task awaiting the
termination or abortion of the process whenever the process Is terminated or aborted. If the process
has already been terminated or aborted at the time a call to AWAIT_ PROCESS _ COMPLETION s
made, then the final status Is immediately avallable.

For purposes of input and output, every process node has one relationship of each of the following
predefined relations: STANDARD _ INPUT, STANDARD_JUUTPUT, STANDARD _ERROR,
CURRENT _INPUT, CURRENT_OUTPUT, and CURRENT_ERROR. STANDARD _INPUT,
STANDARD _ OUTPUT and STANDARD _ ERROR are relation names of relationships established
at Job creation to the defaull input, output and error fiies, respectively. The STANDARD _ INPUT
and STANDARD _OU'TPUT files conform to the semantics given for thess in [LRM] 14.3.2.
CURRENT _INPUT, CURRENT_OUTPUT and CURRENT_ERROR are relation names of
relationships established by a process to alternative flles to be used as the default Input, output and
crror files, respectively. CURRENT _INPUT and CURRENT_OUTPUT also conform to the

"~ AD-A157-389 Mﬁ‘m sla:zaggnw o E? &ma(aﬁgﬁsmn)

UNCLASSIFIED F/G 972 NL

M= [=

!

T
lle= g

s

o e [

PROPO~ED MIL-STD-C Al
31 JANUARY IR

semantics of [LRM] 14.3.2. Interfaces are provided in the CAIS Inpul and outlpul packages (see
Section 5.3) to read relationships of these predefined relations and to change the relationships of the
relations CURRENT _ INPUT, CURRENT _ OUTPUT, and CURRENT _ ERROR.

Table V1. Process status transition tabie

(e.g.. terminstion of the main prograas).

| status: | non_existent | READY | SUSPENDED | ABORTED | TERMINATED
| event ! | | | |
{ process l READY (S 77 S N/A [77 S N/A
| eresation | | I I !
| termination | | TERM- | N/A I N/A | N/A
| of main | N/A { IMATED | | |
| prograa t | | | !
} ABORT_ | N/A | ABOR- | ABORTED | --- | -
| PROCESS { | TED l l (
| SUSPEND_ | N/A | svUs- | - I ——- | -
| PROCESS l | PENDED | ! |
| RESUME _ | N/A | == | READY | -—= i -
| PROCESS | I | | |
N/A: marks events that are not applicable to the status
specified.
~-~: marks events that have no effect on the status.
upper cass: Status which are values of the enumeration type
PROCESS_STATUS (e.g.. READY) and for events which
are caused by calling CAIS interfaces (e.g..
ABORT_PROCESS) .
lover case: other status (1.e., nom-existent) and other svents

5.2.1. Package PROCESS__DEFINITIONS

This package defines the types and exceptions associated with process nodes.

type PROCESS_STATUS is

(READY, SUSPENDED, ABORTED, TERMINATED):

An object of type PROCESS _ STATUS Is the status of a process,

subtype RESULTS_LIST
subtype RESULTS_STRING s STRING;

subtype PARAMETER_LIST is CAIS.LIST UTILITIES.LIST_TYPE;

is CAIS.LIST UTILITIES. LIST_TYPE,;

An object of type RESULTS _LIST Is a list of results from a process. The clements of this list are of

type RESULTS _STRING.
parameter information.

An objrct of type PARAMETER _LIST is a list containing process

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

ROOT_PROCESS : constant RAME_STRING
CURRENT_INPUT : constant NAME_STRING
CURRENT OUTPUT : constant NAME_STRING
CURRENT ERROR : constant WAME_STRING :

* *CURRENT_JOB® ;
CURRENT_INPUT*;
CURRENT OUTPUT®
* *CURRENT_ERROR®;

ROOT _PROCESS Is a standard pathname for the root process node of the current job.
CURRENT _INPUT, CURRENT_ OUTPUT and CURRENT _ERROR are standard pathnames for
the current process’ input, output and error flles, respectively.

5.2.2. Package PROCESS CONTROL

This package specifies interfaces for the creation and termination ol processes and examination and
modification of process node attributes.

As part of the creation of process nodes, new secondary relationships are built as described in TABLE
VIL

Table VII. Created and Inherited relationships

A secondsry relationship 18 created Lo the node

of the predefined relation: 1dentified by:

CURRENT_INPUT the interface parameter INPUT_FILE
CURRENT_OUTPUT the interface parsmeter OUTPUT FILE
CURRENT _ERROR the interface parameter ERROR FILE
ADOPTED_ROLE the interface parameter FILE NODE
CURRENT_NGDE the interface parameter ENVIRONMENT NODE
PARENT the predefined corstant CURRENT PROCESS

(for dependent process nodes)
the predefined constant CURRENT_USER
(for root process nodes)

The created process node inherits all secondary relationships
of the following predefined relations from the creating process
node:

CURRENT_USER
USER
ALLOVW_ACCESS
DEVICE
STANDARD_INPUT
STANDARD_OUTPUT
STANDARD_ERROR
ADOPTED_ROLE (1]
CURRENT_JoB (2]

1. For CREATE _ JOR, only the relationship of the predefined relation ADOPTED _ROLE
with the CURRENT _USER as target is inherited from the creating process node.

2. For CREATE _JORB, a relationship of the predefined relation CURRENT _JOB is created
with the new node as both source and target instead of being Inherited from the creating
process node.

82

- _ — -

PROPOSED MIL-STD-(AJS
31 JANUARY 1985

5.2.2.1. Spawning a process

procedure SPAWN_PROCESS

Purpose:

{MODE : fn out wODE_TYPE:;

FILE WODE: in WODE_TYPE:

INPUT_PARAMETERS: in PARAMETER_LIST:=EMPTY_LIST:
KEY: in RELATIONSHIP _KEY := LATEST KEY:
RELATION: in RELATION_NAME := DEFAULT_RELATION:
ACCESS_CONTROL: in LIST_TYPE := EMPTY_LIST:
LEVEL: in LIST_TYPE := EMPTY LIST;
ATTRIBUTES: in LIST_TYPE := EMPTY_LIST;
INPUT_FILE: in NAME_STRING := CURRENT_INPUT;
OUTPUT_FILE: in WAME_STRING := CURRENT_OUTPUT;
ERROR_FILE: in NAME_STRING := CURRENT_ERROR:
ENVIRONMENT WODE: in NAME_STRING := CURRENT_NODE) ;

~ This procedure creates a new process node whose contents represent the execution of the

program contalned in the specified file node. Control returns to the calling task after the new
node is created. The process node containing the calling task must have execution rights for the
file node. An open node handie NODE on the new node Is returned, with an intent (1=>

READ _ ATTRIBUTES). The new process, as a subject, has all discretionary access rights to Its
own process node (the object). When the parent process terminates or aborts, the chiid process

will be aborted.

Secondary relationships emanating from the new process node are created and Inherited as
described in TABLE VII.

The ACCESS_ CONTROL parameter specifies the Initial access control information to be

established for the created node. If the CAIS modeils of discretionary and mandatory access
control are used, then, in addition to the relationships established using the information in the
ACCESS__ CONTROL parameter, an access relationship is established from the created process

node to the current user node, with a GRANT attribute valuc ((READ, WRITE, CONTROL)).

The LEVEL parameter specifies the security level at which the node is to be created.

naipmde

Parameters:

NODE

is 8 node handle returned open on the newly created process node.

FILE_NODE is an open node handle on the flle node contalning the executable image whose

execution will be represented by the new process.

INPUT _ PARAMETERS

is s list contalning process parameter information. The list is constructed and

‘parsed using the tools provided in CAIS.LIST _UTILITIES (see Section 5.4). The

value of INPUT_PARAMETERS Is stored In 8 predefined attribute
PARAMETERS of the new node.

KEY is the relationship key of the primary relationship from the current process node to
the new process node. The default Is supplied by the mechanism of interpreting the
LATEST _KEY constant.

RELATION iIs the relation name of the primary relationship from the current process node to

the new process node. The default Is DEFAULT _RELATION.

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

ACCESS_ CONTROL

Is a string defining the Initial access control Information associated with the created
node.

h LEVEL is a string defining the classification label for the created node (see TABLE IV).

ATTRIBUTES s a list which can be used to set attributes of the new ncde. It could be used by an
. implementation to establish aliocation of resources.

INPUT _FILE. OUTPUT _FILE, ERROR _FILE
are pathnames to file nodes.

————

ENVIRONMENT _ NODE
is the node the new process will have as its initial current node. The default value
is the CURRENT _ NODE of the Initiating process.

Exceptions:

NAME _ERROR
Is raised If a node saiready exists for the relationship specified by KEY and
RELATION. NAME _ERROR is aiso raised If any of the nodes identified by
INPUT _FILE, OUTPUT _FILE, ERROR_ FILE, or ENVIRONMENT _ NODE do
not exist. It is also raised if KEY or RELATION is syntactically lllegal or if any
node identifying a group specified in the given ACCESS _ CONTROL paramecter is
unobtainable or inaccessibie.

USE _ ERROR s raised If it can be determined that the node indicated by FILE_ NODE does not

contain an executable image. USE_ ERROR = also rilsed if any of the parameters

INPUT _PARAMETERS, LEVEL, ACCESS_CONTROL. or ATTRIBUTES Iis

syntactically or semantically lllegal. USE_ ERROR is also raised if RELATION is

‘ the name of a predefined relation or If the ATTRIBUTES parameter contains

! references to a predefined attribute which cannot be modified or created by the
user.

L STATUS _ERROR
is raised If NODE is an open node handle prior to the call or if FILE _NODE is not
an open node handle.

LOCK _ERROR
Is raised If access with intent APPEND _ RELATIONSHIPS to the current process
| node cannot be obtained due to an existing lock on the node.

INTENT _ VIOLATION
is raised If the node designated by FILF.__NODE was not opened with an Intent
establishing the right to cxecute Its contents,

Notes:

SPAWN _ PROCESS does not return results or process status. If coordination between any task
and the new process is desired, AWAIT__PROCESS _COMPLETION or the techniques
provided In CAIS input and output (see Section 5.3) must be used.

84

- J—— —_—— e mm o Ao ORI [PRSOR— A e

e L

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

5.2.2.2. Awaiting termination or abortion of another process

procedure AVAIT PROCESS_COMPLETION
{NODE : in NODE_TYPE;
TIME_LIMIT: in DURATION := DURATION'LAST);

Purpose:

This procedure suspends the calling task and waits for the process identified by NODE to

terminate or abort. The calling task Is suspended until the identified process terminates or
aborts or until the time limit Is exceeded

Parameters:

NODE is an open node handle for the process to be awaited.

TIME _ LIMIT is the limit on the time that the calling task will be suspended awaiting the process.
When the limit is exceeded the calling task resumes execution. The default is the
implementation-dependent maximum value for DURATION.

Exceptions:

NAME _ERROR
is raised if the node identified by NODE Is Inaccessible or unobtalnable.

STATUS _ERROR
is rajsed if NODE is not an open node handle.

INTENT _ VIOLATION

Is raised if NODE was not opcned with an intent establishing the right to read
attributes.

Additional Interface:

procedure AVAIT_PROCESS_COMPLETION

(NODE : in NODE_TYPE;
RESULTS_RETURNED : in out RESULTS_LIST;
STATUS : out PROCESS_STATUS:
TIME_LIMIT : in DURATION := DURATION'LAST)
is
begin =

AWAIT_PROCESS_COMPLETION (NODE, TIME_LINMIT);
GET_RESULTS (NODE, RESULTS_RETURNED) ;
STATUS := STATUS_OF_PROCESS (NODE):

end AWATT_PROCESS_COMPLETION;

5.2.2.3. Invoking a new process

procedure INVOXE_PROCESS

{NODE: in out wODE_TYPE;

FILE_NODE: in WODE_TYPE;

RESULTS_RETURNED: in out RESULTS_LIST;

STATUS: out PROCESS_STATUS;

INPUT_PARAMETERS: in PARAMETER_LIST;

KEY: in RELATIONSHIP_KEY := LATEST_KEY:

RELATION: in RELATION_NAME :=DEFAULT_RELATION;
85

PROPOSED MIL-STD-CAIS

Al JANUARY 1985

Purbosc:

ACCESS_CONTROL: in LIST_TYPE := EMPTY_LIST;
LEVEL: - in LIST TYPE := EMPTY_LIST,
ATTRIBUTES: in LIST_TYPE := ENPTY_LIST;
INPUT _FILE: in NAME_STRING := CURRENT_INPUT;
OUTPUT_FILE: in MAME_STRING := CURRENT_OUTPUT;
ERROR_FILE: in KAME_STRING := CURRENT_ERROR;
ENVIRONMENT NODE: in NAME_STRING := CURRENT_WODE;
TIME_LINIT: in DURATION := TION'LAST);

This procedure provides the functionality described by the following Ada fragment except that
the implementation must guarantee that only exceptions raised by the call to
SPAWN__PROCESS In this fragment are raised by INVOKE _ PROCESS.

SPAWN_PROCESS (NODE. FILE_NUDE, INPUT_PARAMETERS, KEY, RELATION,

ACCESS_CONTROL, LEVEL, ATTRIBUTES, INPUT FILE,
OUTPUT_FILE, ERROR_FILE, ENVIRONMENT_NODE);

AWAIT_PROCESS_COMPLETION (NODE. TIME_LINTT);
GET_RESULTS (NODE, RESULTS_RETURNED) :

STATUS

Parameters:

NODE

= STATUS_OF _PROCESS (NODE):

is a node handiec returned open on the newly created process node.

FILE _NODE Is an open node handle on the flle node contslning the executable image whose

executlon will be represented by the new process.

RESULTS _ RETURNED

STATUS

is a list of results which are represented by strings from the new process. The
individual results may be extracted from the list wusing the tools of
CAIS.LIST _UTILITIES.

gives the process status of the process. If termination or abortion of the ldentified
process can be reported within the specified time limit, STATUS will have the value
ABORTED or TERMINATED. II the process does not terminate or abort within
the time limit, STATUS will have the value READY or SUSPENDED.

INPUT _ PARAMETERS

Is a list containing process parameter Information. The list Is constructed and
parsed using the list handling tools of CAIS.LIST _UTILITIES. The value of
INPUT _ PARAMETERS is stored in the predefined atiribute PARAMETERS of
the new node.

KEY Is the relationship key of the primary relationship from the current process node to
the new process node. The default Is supplied by the mechanism of interpreting the
LATEST _KEY constant,

RELATION is the relation name of the primary relationship from the current process node to
the new node. The default Is DEFAULT _RELATION.

ACCESS _ CONTROI.

LEVEL

is a string defining the Initial access control Information associated with the ercated
node.

is a string defining the classification label for the ereated node (see TARLE V).

PROPOSED MIL-STD-C AlIS
31 JANUARY 1985

ATTRIBUTES is a list which can be used to set atiributes of the new node. It could be used by an
implementation to establish aliocation of resources.

_.;::'-._4

INPUT _FILE, OUTPUT _FILE. ERROh _FILE
3 are pathnames to file nodes.

ENVIRONMENT _ NODE
is the node the new process will have as its current node.

———.

TIME _ LIMIT s the limit on the time that the calling task will be suspended awaiting the new
process. When the limit Is exceeded, the calling task resumes execution. The
default is the Implementation dependent maximum value for DURATION.

Exceptions:

H NAME _ERROR

is raised If a node already exists for the relationship specified by KEY and
RELATION. NAME _ERROR Is also raised If any of the nodes identified by
INPUT _FILE, OUTPUT _FILE. ERROR _FILE or ENVIRONMENT NODE do
not exist. It Is also ralsed If KEY or RELATION is syntactically illegal or if any

node identifying a group specified In the given ACCESS_ CONTROL parameter is
unobtainable or inaccessible.

USE _ERROR s ralsed If it can be determined that the node Indicated by FILE_ NODE does not
contain an executable image. USE_ERROR is also raised il any of the parameters
INPUT _PARAMETERS, LEVEL. ACCESS_CONTROL. or ATTRIBUTES is
syntactically or semantically illegal. USE_ ERROR Is also raised if RELATION is
the name of a predefined relation or If the ATTRIBUTES parameter contains
references to a predefined attribute which cannot be modified or created by the
user.

STATUS _ERROR

Is raised if NODE is an open node handle prior to the call or If FILE_ NODE is not
an open node handle.

LOCK _ERROR

Is raised If access with intent APPEND _ RELATIONSHIPS cannot be obtained to
the current process node duc to an existing lock on the node.

| INTENT _ VIOLATION

is raised If the node designated by FILE__NODE was not opened with an intent
establishing the right to execute contents.

Notes:

Both control and data (results and status) are returned to the calling task upon termination or
shortion of the Invoked prucess or when the TIME _ LIMIT Is exceeded.

87

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

5.2.2.4. Creating a new job

procedure CREATE_JOB

(FILE_NODE: in NODE_TYPE;

INPUT_PARAMETERS: in PARAMETER_LIST:=EMPTY_LIST:
KEY: in RELATIONSHIP KEY := LATEST XEY;
ACCESS_CONTROL: in LIST TYPE := EMPTY_LIST:

LEVEL: in LIST_TYPE := EMPTY LIST;
ATTRIBUTES : in LIST TYPE := EMPTY_LIST:
INPUT FILE: in NAME_STRING := CURRENT_INPUT:
OUTPUT_FILE: in MAME_STRING := CURRENT_OUTPUT.
ERROR_FILE: in MAME_STRING := CURRENT_ERROR:

ENVIRONMENT NODE: im MAME_STRING := CURRENT_USER);

Purposc:
This procedure creates 8 new root process node whose contents represent the execution of the
program contained In the specified file node. Control returns to the calling task after the new
job is created. The process node containing the calling task must have execution rights for the
file node and sufficient rights to append relationships to the node identified by
*'CURRENT_USER". A new primary relationship of the predefined relation JOB is
established from the current user node to the root process node of the new job. The new root
process as a subject can acquire all discretionary access rights to its own process node (the
object). Secondary relatlonships emanating from the new process node are created and inherited
as described in TABLE VII. .
The ACCESS _CONTROL parameter specifies the Initial access control information to be
established for the created node. If the CAIS models of discretionary and mandatory access
control are used. then, In addition to the relationships established using the information in the
ACCESS _ CONTROL paramecter, an access relationship is established from the created process
node 1o the current user node, with 8 GRANT attribute value ((READ, WRITE, CONTROL)).

The LEVEL parameter specifies the security level at which the node is to be created.

Paramecters:

FILL _NODE Is an open node handle on the file node contalning the executable image whose
execution will be represented by the new process.

INPUT _ PARAMETERS
is a list containing process parameter information. The list Is constructed and
parsed using the tools provided in CAIS.LIST _UTILITIES.
INPUT _ PARAMETERS Is stored in the predefined attribute PARAMETERS of
the new node.

KEY Is the relationshlp key of the primary relationship of the predefined relation JOB
from the current user node to the new process node. The default is supplicd by the

mechanism of interpreting the LATEST _ KEY constant.

ACCESS _CONTROL

i= a string defining the Initial access control information associated with the created
node.
LEVEL Is a string defining the classification label for the created node (see TABLE 1V),
RS

PROPOSED MITA=TD-C A~
31 JANUARY 18RS

ATTRIBUTES Is a list which can be used to set atiributes of the new node. [t could be used by an
Implementation to establish allocation of resources.

INPUT _FILE, OUTPUT _FILE, ERROR_ FILE
are pathnames to file nodes.

ENVIRONMENT _NODE
is the node the new process will have as {ts initial current node.

Exceptions:

NAME _ ERROR
is raised if a node already exists for the relationship specified by KEY and the
relation JOB. NAME _ERROR is also raised il any of the nodes identified by
INPUT _FILE, OUTPUT _FILE, ERROR _FILE or ENVIRONMENT NODE does
not exist. It is also raised If KEY is syntactically lllegal or if any node identifying a
group specified in the ACCESS_CONTROL parameter is unobtainable or
Inaccessible.

USE_ ERROIR s raised If it can be determined that the node indicated by FILE_ NODE does not
contalu an executatie image. USE__ERROR is also raised if any of the parameters
INPUT _ PARAMETERS, LEVEL, ACCESS__CONTROL. or ATTRIBUTES is
syntactically or semantically {liegal. USE _ERROR s aiso ralsed Il the
ATTRIBUTES parametet contains references to a predefined attribute which
cannot be modifled or created by the user.

STATUS _ERROR
is raised if FILE__NODE is not an open node handle.

LOCK _ERROR
is raised If sccess to the current user node or the current process node with intent
APPEND _ RELATIONSHIPS cannot be obtained due to an existing lock on the
node.

INTENT _ VIOLATION
Is raised If the node designated by FILE__NODE was not opened with an Intent
establishing the right to execute contents.

ACCESS _ VIOLATION
Is raised If the current process does not have sufficient discretionary access rights to
open the current user node with APPEND__RELATIONSHIPS intent.
ACCESS _ VIOLATION s raised only if the conditions for raising NAME _ ERROR
are not satisfled.

SECURITY _ VIOLATION
is raised iIf the attempt to obtain access to the node Identified by
CURRENT _USER represcnts a violation of mandatory access controls for the
CAIS. SECURITY _VIOLATION is raised only If the conditions for raising the
other exceptions are not satisfied.

89

R e 4

PROPOSED MIL-STD-CAIS

31 JANUARY 1985

Notes:
CREATE_JOB does mot return results or process stitus to the calling program unit. If
coordination between any program unit and the new process Is desired,
AWAIT _PROCESS_COMPLETION or the techniques provided in CAIS input and output
(see Section 5.3) must be used.

The relation name for the primary relationship to the new node Is JOB.

5.2.2.5. Appending results

procedure APPEND_RESULTS (RESULTS: in RESULTS_STRING) ;

Purpose:
This procedure inserts the value of its RESULTS parameter as the last item in to the list which
Is the value of the RESULTS attribute of the cnrrent process node.

Parameters:
RESULTS Is a string to be appended to the RESULTS attribute value of the «urrent prc .ss
node.
Exceptions:

LOCK _ERROR
Is raised if access with intent WRITE __ATTRIBUTES to the current process node
cannot be obtained due to an existing lock on the node.

6.2.2.6. Overwriting results

procedure WRITE_RESULTS (RESULTS: in RESULTS_STRING):

Purpose:
This procedure replaces the value of the RESULTS attribute of the current process node with a
list containing a single item which is the value of the parameter RESULTS.

Parameters:

RESULTS Is a string to be stored in the RESULTS attribute of the current process node.

Exceptions:

LOCK _ERROR
is raised If access with intent WRITE _ATTRIBUTES o the current process node
cannot be obtained due to an existing lock on the node.

5.2.2.7. Getting results from a process

procedure GET_RESULTS (NODE: in NODE_TYPE:
RESULTS: in out RESULTS_LIST);

Purpose:
This procedure returns the value of the attribute RESULTS of the process node identificd by
NODE. The process need not have terminated or aborted. The empty list is returned in
RESULTS Iif WRITE _ RESULTS or APPPEND _RESULTS has not been called by the process
contained In the node Identified by NODE.

- a - - [P <

PROPOSED MIL-STD-C AlN
31 JA L ARY I9R5

Parameters:
NODL is an open node handle on a process node.
RESULTS is an unnamed list of strings which returns the value of the RESULTS attribute of
the process node identified by NODE. The individual strings may be extracted
from the Hst using the tools of CAIS.LIST _ UTILITIES (see Section 5.4).
Exceptions:

USE _ ERROR s raised if the node identified by NODE is not a process nodc.

STATUS _ERROR
is raised If NODE is not an op-n node handie.

INTENT _ VIOLATION

Is ralsed If the NODE was no! npened with an intent establishing the right to read
attributes.

Additional Interfaces:

procedure GET_RESULTS (NODE: in NODE_TYPE;
RESULTS: in out RESULTS_LIST;
STATUS: out PROCESS_STATUS)

is

begin

GET_RESULTS (NODE, RESULTS):
STATUS : =STATUS_OF _PROCESS (NODE) ;
end GET_RESULTS;

procedure GET_RESULTS (NAME: in NAME_STRING;
RESULTS: in out RESULTS_LIST;
STATUS: out PROCESS_STATUS)
is

NODE: NODE_TYPE;
begin
OPEN(NODE, MAME, (1=>READ ATTRIBUTES)):
GET_RESULTS(NODE. RESULTS);
STATUS - =STATUS_OF _PROCESS (NODE) ;
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end GET_RESULTS;

procedure GET_RESULTS (NAKE: in WAME STRING;
RESULTS: in out RESULTS_LIST)
is
NODE: NODE_TYPE;

begin
OPEN(NODE, NAME, (1=>READ_ATTRIB ES));
GET_RESULTS(NODE. RESULTS) ;
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end GET_RESULTS.

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

5.2.2.8. Determining the status of a process

function STATUS_OF_PROCESS(NODE: in WODE_TYPE)
return PROCESS_STATUS;

Purpose:
This function returns the current status of the process represented by NODE. It returns the

value of the attribute CURRENT _STATUS associated with the process node identified by
NODE.

Parameters:
NODE is an open node handle identifying the node of the process whose status is to be
queried.
Exceptions:

USE _ ERROR s raised If the node identified by NODE Is not a process node.

STATUS _ERROR
is raised If NODF is not an open node handle.

INTENT _ VIOLATION

is ralsed If the node handle NODE was not opened with an intent estabiishing the
right to read attributes.

Additional Interface:

function STATUS_OF_PROCESS (NAME: in NAME_STRING)
return PROCESS_STATUS
is
NODE: NODE_TYPE.
RESULT: PROCESS_STATUS;
begin
OPEN(NODE, MAME, (1=>READ_ATTRIBUTES)):
RESULT := STATUS_OF PROCESS (NODE) ;
CLOSE (NODE) .
return RESULT;
exception
when others =>
CLQSE(HDDE);

raise;
end STATUS_OF_PROCESS;

5.2.2.9. Getting the parameter list

procedure GET_PARANETERS (PARAMETERS: in out PARANETER LIST);

Purpose:

This procedure returns the value of the predefined attribute PARAMETERS of the current
process node.

Paramcters:

PARAMETERS

PROFPOSED MIL-STD-CAIS

31 JANUARY 1985

ACCESs _CONTROL

LEVEL

Exceptions:

defines the initial access control information associated with the created node.

defines the classification label for the created node.

NAME _ERROR

USE _ ERROR

is raised if 8 node already exists for the node specified by KEY and RELATION. if
KEY or RELATION is syntactically illegal, or If any node identifying 8 group
specified In the given ACCESS_CONTROL parameter is unobtainable or
inaccessible.

18 raised If any of the parameters ACCESS_CONTROL, LEVEL or ATTRIBUTES
is syntactically or semantically illegal. USE_ ERROR I8 also raised {f interpretation
of the ATTRIBUTES parameter would result in modification or creation of any
predefined attribute. USE__ ERROR is also ralsed If RELATION is the name of a
predcfined reiation that cannot be modified or created by the user.

STATUS _ERROR

is ralsed If BASE is not an open node handle or if FILE is an open file handle prior
to the call.

INTENT _ VIOLATION

is raised I BASE was not opened with an intent establishing the right to append
relationships.

SECURITY _VIOLATION

is raised Il the operation represents a violation of man ory aceess controls
SECURITY _ VIOLATION is raised only If the conditions | r other exceptions are
nol present.

Additional Interface:

procedure CREATE(FILE: in out FILE TYPE;
NAME : in NAME_STRING:
MODE : in FILE MODE := INUUT FILE;
FORM : in LIST_TYPE := EMPTY_LIST.
ATTRIBUTES in LIST _TYPE := EMPTY _LIST,
ACCESS_CONTROL: in LIST_TYPE := EMPTY_LIST;
LEVEL: in LIST_TYPE := EMPTY_LIST®
is

BASE : WODE_TYPE;

begin

OPEN (BASE, BASE PATH(MAME), (1=>APPEND_RELATIONSHIPS)).
CREATE(FILE, BASE. LAST_KEY(MAME). LAST_RELATION(NAME).

MODE, FORM, ATTRIBUTES, ACCESS_CONTROL, LEVEL);

CLOSE (BASE) ;
exception
when others =>

CLOSE(FILE) ;
CLOSE (BASE) ;

raise,
end CREATE.

106

PROPOSED MUASTI-0 At
31 JANL ARY 19k0

FILE _MODE Indicates whether input operations, output operations or both can be performed on the
direct-access file.

5.3.2.2. Creating a direct input or output file

procedure CREATE(FILE: in out FILE_TYPE;

BASE: in WoDE_TYPE:

KEY. in RELATIONSHIP KEY :=
LATEST_KEY,

RELATION: in RELATION _MAME =
DEFAULT_RELATION:

MODE : in FILE MODE := INOUT FILE;

FORM : in LIST_TYPE := EMPTY_LIST,

ATTRIBUTES: in LIST_TYPE := EMPTY_LIST:

ACCESS_CONTROL: in VIST_TYPE := EMPTY_LIST;

LEVEL: in LIST TYPE := EMPTY_LIST):

Purpose:
This procedure creates a file and its flie node; cach element of the file is directly addressable by
an index. The (LRM| deflines what constitutes an element. The attribute ACCESS _ METHOD
is assigned the value *"(DIRECT, SEQUENTIAL.)" as part of the creation.

The FORM parameter is used to provide Mie characteristics concerning the creation of the (ile.
The predefined file characteristic ESTIMATED _ SIZE may be used to specify an approximation
to the number of storage units (i.e, bytes or blocks) that should be writabie 1o the fle. The
ESTIMATED _ SIZE characieristic is specified na "(ESTIMATED _SIZE = > 0)", where "n" is
any NATURAL number.

The ATTRIBUTES parameter deflnes and provides initial values for atiributes of the node. The
ACCESS __CONTROL parameter specifies initlil access control information to be established for
the created node (See Section 4.4.2.1 for details).

The LEVEL parameter specifies the security level at which the file node i3 10 be created.

The value of the attribute FILE __KIND for the file node will be SECONDARY _ STORAGE.

Parameters:
FILE is a file handle, initially closed, to be opened.
BASE is an open node handle to the node which will be the source of the primary
relationship to the new node.
KEY is the relatlonship key of the primary relationship to be created.

RELATION is the relation name of the primary relationship to be created.
MODE indicates the mode of the lie.
FORM indicates flle characteristics

ATTRIBUTES defines initial values for attributes of the newly created node.

tns

,._,—'-——-"_'_'_'_'_—-(—‘_—————)

-

PROPOSED MiL-STD-CAIS
31 JANUARY 1985

5.3.1. Package I0_DEFINITIONS

This package delincs the types ﬁnd exceptions associated with file nodes.
type CHARACTER_ARRAY is array (CHARACTER) of BOOLEAN:
type FILE MODE is (IN_FILE, INGUT_FILE, OUT_FILE, APPEND_FILE);
type FILE TYPE is limited private;
type FUNCTION_KEY_DESCRIPTOR(LENGTH: POSITIVE) is private;
type TAB_ENUMERATION is (HORIZONTAL, VERTICAL):

type POSITION_TYPE is
record
ROV : NATURAL:
COLUMN : NATURAL;
end record:

CHARACTER _ ARRAY provides information concerning the characters that can be obtained during
8 GET operation. FILE__MODE indicates the type of operations that are to be permitted on a filc.
Analogous to the {LRM] type FILE _TYPE and the CAJS type NODE _ TYPE. the CAIS provides a
type FILE _ TYPE whose values are references to internal files. FILE__TYPE is used for controlling
the operations on all files. FUNCTION _KEY _DESCRIPTOR Is used to determine the function
keys entered from a terminal. TAB_ ENUMERATION is used to specify the kind of tab stop to be
set. POSITION _ TYPE is used to specify a position on a terminal.

This package also provides the definitions (or all exceptions generated by the input and output
packages. These definitions are comparable to those specified in the package 10 _ EXCEPTIONS In
the {LRM..

5.3.2. Package DIRECT_IO

This package provides facilities for direct-access Input and output to CAIS flles comparable to those
described in the DIRECT _lO package of [LRM]. Files written with the CAIS.DIRECT _10 are also
readable by CAISSEQUENTIAL _ 10, If the two packages are Instantiated with the same generic
data type.

The package specification and semantics of the CAIS.DIRECT __ 10 are comparable to those of the
(LRM! package DIRECT _IO. Al subprograms present in the [LRM; package DIRECT 10 are
present In thls CAIS package. The following se<tions demonstrate only the specifications and
semantics that differ.

5.3.2.1. Subtypes and constants

subtype FILE _TYPE {8 CAIS.IO0_DEFINITIONS.FILE_TYPE;

subtype FILE MODE is CAIS.IO_DEFINITIONS.FILE_MODE;

FILE _ TYPE describes the type for Nle handles for all direct Input and output operations.

104

PROPOSED MU ST Al
31 JANU ARY 18RS,

1

Table IX. Flle node predefined attiributes, attribute values and
relation

Sscondary Magnstic
Storage Qusue Terminal Tape

ACCESS_METHOD A A
SEQUENTIAL
DIRECT
TEXT

FILE_KIND
SECONDARY STORAGE
QUEVE
TERMINAL
MAGNETIC TAPE

QUEUE_XIND
SOLD
MIMIC
coPY

TERMINAL_KIND
SCROLL
PAGE
FORM

COUPLE

<

<> 4<CL>
>

<

<< <>

< 4>

P o im ot m m m m hm A - -

A

!
}
|
!
I
!
[
!
|
]
!
l
]
|
|
!
|
|

§ e o me o o e e e e o - —

A = an stiribute or relation which spplies to the file node
V = an sttribute value vhich the attridbute can have for the file node.

The input and output operations In the packages in (s section are expresscd as operations on objects
of some flie type, rather than directly in terms of the external files. These objects are files which are
Ilnternal to a CAIS process (internal files). Internal files are identifled by file handles. Throughout
this document, the word file is used to mean an Ada cxternal file, while in the [LRM| the word file Is
used to mean an internal file. The mode of a flle detcrmines the intents with which its associated file
node can be opened. These corresponding modes and intents are given in TABLE X.

Table X. Mo« ~ and intents

It the MOUDE is: the INTENT mu’ . establish the right to:
IN FILE read contents
OUT_FILE vrite contents
INFILE read and write contents
APPEND_FILE append conterts
103

o ———

e ——

PROPOSED MIL-STD-CAIS
3t JANT ARY 1985

It is possible that a single file node may have more than one access method. as specified by the
predefined attribute ACCESS_METHOD. The value of the attribute ACCESS _METHOD
determines the packages that may operate upon the file. The predefined values for the attribute
ACCESS _METHOD are SEQUENTIAL, DIRECT, and TEXT or any list combination of these. A
value of SEQUENTIAL Indicates that the CAIS.SEQUENTIAL _ 10 package may be used. A value of
DIRECT Iindicates that the package CAIS.DIRECT _IO may be used. A value of TEXT indicates
that the package CAIS.TEXT _ 10 may be used.

The attribute FILE _KIND denotes the kind of file that is represented by the contents of the file
node. The predefined values for the attribute FILE_KIND are SECONDARY __STORAGE.
QUEUE. TERMINAL, and MAGNETIC__TAPE. These values determine which packages may be
used to operate on fles. as shown in TABLE VIIl.

Flle nodes with 3 FILE _ KIND value of QUEUE also have s predefined attribute QUEUE _ KIND.
The predeflned values for the attribute QUEUE _ KIND are SOLO. MIMIC, and COPY.

Flle nodes with a FILE__KIND value of TERMINAL aiso have a predefined atiribute
TERMINAL _KIND. The values SCROLL, PAGE. and FORM are predefined for this attribute. In
addition. terminal flle nodes will have a value of TEXT (or the attribute ACCESS _ METHOD.

When a QUEUE file node is created with QUEUE _ KIND of COPY or MIMIC, a relationship of the
predefined relation COUPLE is established from the QUEUE node to the flle node which provides the

queue’s initial contents.

Thf above discussion is summarized in TABLE IX.

11474

O]

PROPOSED MIUASTD-C AlS
31 JANU AR 1985

-

Table VOI. Input and output packages for file kinds

Secondary Magnetic
Storage Queue Terminal Tape
CAIS.ID_CONTROL { X l x | X t p 4 {
CAlS.10_DEFINITIONS ! X [X t X 1 b ¢ {
CAIS.SEQUENTIAL_IO { X f X { ! 1
CAIS.DIRECT IO 1 X { | f I
CAIS . TEXT 10 ! X t X | X | X i
CAIS SCROLL TERMINAL ! I 1 X ! i
CAIS.PAGE_TERMINAL | | ! X i !
CAIS.FORN_TERMINAL | ! | X [{
CAIS MAGNETIC TAPE l | f | X 1

A secondary storage flle In the CAIS represents a disk or other random access storage file. Secondary
storage flles may be created by use of the CREATE procedures specified in the packages
CAIS.SEQUENTIAL _10, CAIS.DIRECT __10, and CAIS.TEXT _10.

A gqueue flle In the CAIS represents a sequence of information that is accessed in 8 first-In, first-out
manner. There are three kinds of CAIS queue flles: solo, copy and mimic. A solo queue operates like 8
simple queue, initially empty, In which all writes append informsation to the end and all reads are
destructive. A copy queue operates like a solo queue except that It has initial contents which are
copied from another (lle: after the creation of the copy queue, it Is independent of the file. A mimic
queue operates like a solo queue except that It has tnitial contents that are the same as the contents
of another file; after the creation of the mimic queue, the mimic queue and the file are mutually
dependent. This means that, Il information Is written to the mimic queue file, it is appended to the
other file as well at sn implementsation defined time which is no later than CLOSE of the mimic queue
file; the effect on the mimic queue file of writing or appending to the other file is implementation
defined. Solo queue flles may be created by use of the CREATE procedures in the packages
CAIS SEQUENTIAL _10 and CAIS.TEXT _10. Copy and mimic queue Nies may be created by use
of the COUPLE procedure in the package I0_ CONTROL.

A terminal file in the CAIS represents an Interactive terminal device. Three kinds of terminal devices
are distinguished in the CAIS: scroll, page and form. These are distinguished because they have
different characteristics which require specialized interfaces. Scroll and page terminals may be
represented elther by a single terminal file for input and output or by two terminal flies, one lor Input
and one for output. The impiementation determines, for each physical terminal, whether It will be
represented by one or two terminal files. If two terminal files are used Lo represent the terminal input
and output, then the implementation maintains an impliclt association between the two files. A form
terminal Is represented by a single terminal fite for both Input and output.

A magnetic tape drive [lle In the CAIS represents a magnetic tape drive. Operations on magnetic
tape drive MNles can affect either the magnetic tape or the drive. Interfaces must be provided outside
the CAIS for the creation of terminal Niles and magnetic tape drive flles.

Several predcfined attributes are applicable to fNle nodes. The attributes ACCESS _METHOD,
FILE _ KIND, QUEUE _KIND, and TERMINAL _KIND provide information about the contents of a
file node and how it may be accessed.

101

[SO

.

PROPOSED MIL-STD-C AlIS
31 JANUARY 1988

§.2.2.17. Determining the time a process has been active

function XACHINE_TIME (NODE : in NODE_TYPE)
Teturn DURATION;
Purpose:

This function returns a value of type DURATION representing the value of the predefined
actribnte MACHINE _ TIME of the process node identified by NODE.

Parameters:
NODE is an open node handle identifying the process node whose attribute is being
queried.
Exceptions:

USFE._ ERROR is raised il the node identificd by NODE is not a process node.

STATUS _ERROR
Is raised If NODE is not an open node handle.

INTENT _ VIOLATION

is raised if the node handle NODE was not opened with ap intent establishing the
right to read attributes.

Additional Interface: ‘

function MACHINE TIME (MAME : in NAME_STRING)
return DURATION
is
NODE: NODE_TYPE:
RESULT: DURATION:
begin
OPEN(NODE, NAME, (3=>READ_ATTRIBUTES));
RESULT := MACHINE_TIME (NODE) .
CLOSE (NODE) ;
return RESULT.
exception
when others 2>
CLOSE (NODE)
raise;
end MACHINE_TIME;

5.3. CAIS input and output

The CAIS defines four kinds of flles: secondary storage (lles, queue flles. terminal MNles and magnetic

tape drive flles. CAIS fles are supported by CAIS input and output psckages as described in TABLE
VIl

100

PROPOSED MUASTD-C afw
31 JANUARY 1985
RESULT: TIME;
begin
OPEN (NUDE, MAME, (l=>READ_AT.'RIRJTEs)).'

RESULT := START_TIME (NODE) ;
CLOSE (NODE) ;

return RESULT;
exception
when others =»
CL.OSE (NODE) ;
Talgs;
end START Tig;

5.2.2.18. Determining the time of termination or abortion

function FINISH TIME (WODE : in NODE_TYPE)
return TIME;

This function returns a value of type TIME representin
FINISH _ TIME of the pr

£ the vafue of the predeflned attribyte
ocess node identified by NODE.

Parameters:
NODE Is an open node handje identifying the process node whose attribute s being
quetied.
Exceptions:

USE _ERROR s ralsed if the node Identifled by NODE is Dot a process node.

STATL’S_ ERROR
Is raised If NODE s not an open node handle.

INTENT-VIOLATION

Is ralsed it the node handle

NODE was not opened with an tnent establishing the
right to read aliributes,

Additiona) Interface:

function FINISH TIME (NAME : in RAME_STRING)
return Tna
is
NODE: NODE_TYPE;
RESULT: TIME;
in
OPEN (NODE, NAME,
RESULT := FINISH_
CLOSE (NODE) ;
return RESULT;
exception
when others =»
CLOSE (NODE) ;
raise;
end FINISH TIME;

(12>READ_ATTRIBUTES)) .
TIME (NODE) ;

LY

PROPOSED MILASTD-C AIS
31 JANU ARY 1HRS

is raised If the node handie was not opened with an intent eslablishing the right Lo
read attributes.

Additional Interface:

function I0_UMITS (NAME : in NAME_STRING)
return NATURAL
is
¥ODE: NODE_TYPE;
RESULT: NATURAL;
begin
OPEN(NODE, NAME, (1=>READ_ATTRIBUTES));
RESULT := IO_UNITS(NODE) ;
CLOSE (NODE) ;
return RESULT;
exception
when others =>
CLOSE (NODE) ;
raise;
end 10_UNITS;

5.2.2.15. Determining the time of activation

function START TIME (NODE : in NODE_TYPE)
return TIME;

Purpose:
This function returns a value of type TIMI. representing the value of the predefined attribute
START _ TIME ol the process node identified by NODE.

Parameters:
NODE is an open node handie Identifving the process node whose attribute is being
queried.
Exceptions:

USE _ERROR s raised il the node identified by NODE is not a process node.

STATUS _ERROR
is raised if NODE is not an open node handle.

LOCK _ERROR
Is raised If the node Is locked against reading attributes.

INTENT _ VIOLATION
. Is raised If the node handic NODE was not opened with an intent establishing the
right to read attributes.

Additional Interface:

function START_TIME (NAME : in NAME_STRING)
return TIME
in
NODE: NODE_TYPE;

o8

PROPOSED MIL-STD-(Al~
31 JANU ARY 1085

Exceptions:
USE _ERROR s raised if the node identified by NODE is not a process node.

STATUS__ERROR
is raised if NODE is not an open node handle.

INTENT _ VIOLATION

Is raised If the node handle NODE was not opened with an intent establishing the
right to read attributes.

Additional Interface:

function HANDLES_OPEN (NAME : in NAME_STRING)
; return NATURAL
is
NODE: NODE_TYPE;
RESULT: MATURAL:
begin
OPEN(NODE, NAME, (1=>READ_ATTRIBUTES)):
RESULT := HANDLES_OPEN (NODE) ;
CLOSE (NODE) :
return RESULT;
exception
when others =>
CLOSE (NODE) ;
raise;
end HANDLES OPEN;

5.2.2.14. Determining the number of input and output units used

function 10_UNITS (NODE : in NODE_TYPE)
return NATURAL;

Purpose:

This function returns a natural number representing the value of the predefined attiribute
10 __UNITS of the process node identified by NODE.

) Parameters:
)
NODE is an open node handle identifying the process node whose attribute is being
queried.
!
Exceptions:

USE _ ERROR is raised if the node identificd by NODE Is not a process node.

STATUS _ ERROR
is ralsed If NODE is not an open node handle.

LOCK _ERROR
is raised if the node Is locked agalnst reading attributes,

; INTENT _ VIOLATION

97

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

NODE is an open node handle identifying the node of the process to be resumed.

Exceptions:

JSE__ ERROR 1Is raised If the node identified by NODE Is not a process node.

STATUS _ ERROR
Is raised iIf NODE is not an open node handle.

INTENT _ VIOLATION
is raised \f the node handle NODE was not opened with an intent establishing rights
to read relationships and to write attribytes and contents.

ACCESS _ VIOLATION
Is ralsed if the current process does not have sufficient discretionary access rights to
obtain access to any node of a process to be suspended with intent inciuvding
READ _RELATIONSHIPS, WRITE _ ATTRIBUTES and WRITE_ CONTENTS.

SECURITY _ VIOLATION
Is raised if the attempt to obtaln access to the node Identified by NODE represents
s violation of the mandatory sccess controls for the CAIS.
SECURITY _ VIOLATION s raised only if the conditions for raising the otaer
exceptions are not satisfied.

Additional Interface:

procedure RESUME_PROCESS(NAME: in RAME_STRING)
is
NODE: WODE_TYPE;
begin
OPEN(NODE, NAME, (READ_RELATIONSHIPS, WRITE_ATTRIBUTES,
VRITE_CONTENTS))
RESUME_PROCESS (NODE) ;
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end RESUME_PROCESS:

65.2.2.13. Determining the number of open node handles

function HANDLES OPEN (NODE : in MODE_TYPE)
return NATURAL;

Purposc:
This function returns a natural number representing the value of the predefined stiribute
HANDLES _ OPEN of the process node Identified by NODE.

Parameters:

NODE Is an open node handle Identifying the proccss node whose attrihwte Is being
querled.

PROPOSED MIL-STD-CAlS
31 JANUARY toRs

Exceptions:

USE_ERROR Is raised If the node identified by NODE is not a process node.

STATUS _ERROR
is raised if NODE is not an open node hancle.

INTENT _ VIOLATION
is raised if the node handle NODE was not opened with an intent establishing rights
to read relationships and to write attributes and contents.

ACCESS _ VIOLATION
Is raised If the current process does not have sufficient discretionary access rights to
obtain access to any node of s process to be suspended with intent including
READ _ RELATIONSHIPS, WRITE_ ATTRIBUTES and WRITE _ CONTENTS.

SECURITY _ VIOLATION
is raised if the attempt to obtain access to the node identified by NODE represcents
s violation of the wmandatory access controls for the CAIS.
SECURITY _VIOLATION is raised only If conditions for raising the other
exceptions are not satisfied.

Additional Interface:
procedure SUSPEND_PROCESS (NAME: in KAME_STRING)
io

NGDE: NODE_TYPE;
begin
OPEN(NODE, NAME, (READ_RELATIONSHIPS, WRITE ATTRIBUTES,
WRITE_CONTENTS)) ;
SUSPEMD_PROCESS (NGDE) ;
CLOSE (NGDE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end SUSPEND_PROCESS:

Notes:
SUSPEND_ PROCESS can be used by a task to suspend the process that contalns it.

6.2.2.1,. Resuming a process

procedure RESUME PROCESS (NODE: in WODE_TYPE) ;

Purpose:
This procedure causes the process represented by NODE (o resume execution.
RESUME _ PROCESS does not change the process status if the process Is not suspended. After
RESUME __PROCTSS Is called, the PROCESS_ STATUS of the |dentified process Is READY
provided that the process was in the SUSPENDED status at the time that the resumption took
effect. If the node identified by NODE Is the parent of other process nodes, the other processes
are likewise resumed. If an exception Is ralsed, none of the processes is rcsumed.

Parameters:

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

a violation of mandatory access controls in the CAIS. SECURITY _ VIOLATION Is
r..oed only If the conditions for raising the other exceptions are not satisfled.

Additional Interfaces:

Notes:
ABORT _PROCESS can be used by a task to abort the process that contains it. It is
intentional that LOCK _ ERROR will not be raised by this procedure.

procedure ABORT_PROCESS (NAME : in xuE_sSTRING:
RESULTS: in RESULTS _STRING)
is
NODE: NODE_TYPE;
begin
OPEN(NODE, WAME, (READ_RELATIONSHIPS., WAITE_CONTENTS,
WRITE_ATTRIBUTES))
ABORT_PROCESS (WODE, RESULTS);
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end ABORT_PROCESS;

procedure ABORT PROCESS (NODE: in WODE_TYPE)

is
begin

ABORT_PROCESS (RODE, *ABORTED") ;
erd ABORT_PROCESS;

procedure ABORT_PROCESS (NAME: in WAME_STRING)
is

WODE: WODE_TYPE;
n
OPEN(NODE, NAME, (READ_RELATIONSHIPS,VRITE_CONTENTS,WRITE_ATTRIBUTES));
ABORT _PROCESS (NODE, "ABORTED") ;
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end ABORT_PROCESS;

5.2.2.11. Suspending a process

Purpose:
This procedure suspends the process represented by NODE. After SUSPEND _ PROCESS Is
called, the CURRENT _ STATUS of the identified process is SUSPENDED, provided that the
process was In the READY status at the time that the suspension took effect.
SUSPEND _ PROCESS does not change the process status if the process is not in the READY
state. If the node identifled by NODE Is the parent of other process nodes, the other processes
are likewise suspended. If an exception is raised, none of the processes are suspended.

procedure SUSPEND_PROCESS(NCDE: in WODE_TYPE);

Parameters:

is an open node handle identifying the node of the process to be suspended.

PROPOSED MIL-STD-C o
31 JANUARY)9

Is a list contalning parameter information. The list Is constructed and can t
manipulated using the tools provided in CAIS.LIST _UTILITIES

Exceptions:

LOCK _ERROR

is raised If access with intent READ _ATTRIBUTES w the rurrent process nod
cannot be obtained due to an existing lock on the node.

Notes:

The value of the predefined attribute PARAMETERS Is set during process node creation; see
the interfaces SPAWN _ PROCESS, INVOKE _ PROCESS and CREATE _JOB.

5.2.2.10. Aborting a process

procedure ABORT_PROCESS (NODE: in woDE_TYPE;
RESULTS: in RESULTS_STRING) ;

Purpose:

This procedure aborts the process represented by NODE and forces any processes in the subtree
rooted at the identified process to be aborted. The order of the process abortions is not
specified. If the state of the process represented by NODE after return of ABORT__ PROCESS
is examined, it will be ABORTED or TERMINATED; It will be TERMINATED only {f the
process terminated before ABORT_PROCESS took effect. The node associated with the
aborted process remains until explicitly deleted. If an exception is raised, none of the processes

are aborted.
Parameters:
NODE is an open node handle for the node of the process to be aborted.
RESULTS i{s a string to be appended to the RESULTS attribute of the node represented by
NODE.
Exceptions:

USE _ ERROR is raised if the node identifled by NODE is not a process node.

STATUS _ERROR
is ralsed if NODE is not an open node handle.

INTENT_ VIOLATION

is ralsed If the node was not opened with an intent establishing rights to read
relationships and to write attributes and contents.

ACCESS _ VIOLATION

is raised If the current process doex not have sufficient discretionary access control
rights to obtain access Lo any node of a process to be aborted with intent including
READ _ RELATIONSIIPS, WRITI. _ ATTRIBUTES and WRITE_ CONTENTS.

SECURITY _VIOLATION ,

Is ralzed If Lhe attempt to obtaln access to Lthe node Identified by NODE represeats

3

PROPOSED MIL-ST-C Al
31 JANUAR)Y 1085

65.3.2.3. Opening a direct input or output file

procedure OPEN(FILE: in out FILE_TYPE:
WODE : in WODE_TYPE;
MODE : in FILE_MODE) ;

Purpaose:
This procedure opens a flle handle on a flle, given an open node handle to the file node; each
element of the flle is directly addressable by an index.

Parameters:
FILE is a file handle, Initially closed, to be opened.
i NODE Is an open node handle to the {lle node.
; MODE Indicates the mode of the file.
Exceptions:

USE _ERROR 1is raised If the attribute ACCESS_METHOD of the flie node does not have the
value DIRECT, If the element type of the file does not correspond with the element
type of this instantiation of the CAIS.DIRECT _IO package, or if the mode is
APPEND _ FILE.

STATUS _ERROR
Is raised if FILE Is an open file handle at the time of the call on OPEN or f NODE
is not an open node handle.

INTENT _ VIOLATION
Is raised if NODE was not opened with an intent establishing the access rights
required for the MODE, as specified in TABLE X.

Additional Interface:
procedure OPEN(FILE: in out FILE TYPE;
RAE: in NAME_STRING;
MODE: in FILE_NODE)
is
NODE : NODE_TYPE;
begin
case MODE is
when IN _FILE => OPEN(NODE, MAME, (1=>READ_CONTENTS));
[when OUT_FILE => OPEN(NGDE, WAME,(1=>WRITE_CONTENTS)):
when INOUT_FILE =>OPEN(NODE,MAME,
(READ_CONTENTS , WRITE_CONTENTS)) ;
when APPEND FILE =>raise USE_ERROR;
end case;
OPEN(FILE. NODE. MODE)
CLOSE (NODE) ;
exception
when others =»>
CLOSE(FILE) ;
CLOSE (NODE) ;
raise; .
end OPEN;

107

PROPOSED MI-STD-CAIS
31 JANL ARY 1085

Notes:

The effects on the open file handle of closing an open node handle on Its node are
Implementation-defined. In particular, no assumption can be made about the access protection
provided by the node model.

§.3.2.4. Deleting a direct input or output file

procedure DELETE(FILE:in out FILE_TYPE):

Purpose:
In addition to the semantics specified In [LRM], if the node associated with the open file handle
FIILE is no: already unobtainable, this node is made unobtainable as if a call to the
DELETE _ NODE procedure had been made. If this node Is already unobtainable by this call,
no exception other than STATUS _ERROR may be raised by this procedure.

Parameters:

FILE Is an open file handle on the flle being deleted.

Exceptions:

NAME _ERROR

is raised If the parent node of the node associated with the file identified by FILE is

inaccessible.

USE __ERROR is raised If any primary relationships emanate from the node associated with the file
Identifled by FILE.

STATUS __ERROR
is raised if FILE is not an open file handle.

LOCK _ERROR
Is raised If access with intent WRITE _RELATIONSHIPS to the parent of the node
to be deleted cannot be obtained due to an existing lock on the node.

ACCESS _VIOLATION

is raised if the current process does not have sufficlent discretionary access control
rights to obtain access to the parent of the node to be deleted with Intent

WRITE _ RELATIONSHIPS or to obtain access to the node to be deleted with
Intent EXCLUSIVE_WRITE. ACCESS_ VIOLATION is only raised If the
conditions for NAME_ ERROR tre no' present.

SECURITY _ VIOLATION

Is rajsed If the operation represenix a violation of mandatory access controls.
SECURITY _VIOLATION Is raised enly If the conditions for other exceptions are

not present.

108

PROPOSED MIL-ST-¢ A~
31 JANUAR)Y 19RS

5.3.3. Package SEQUENTIAL_10

This package provides facllities for sequentially accessing data elements In CAIS files. [LRM; defines
what constitutes an element. These facilitles are comparable to those described in the
SEQUENTIAL _10 package of [LRM].

The package specification and semantics of the CAIS.SEQUENTIAL _ IO are comparable to those of
the [LRM] package SEQUENTIAL _IO. All subprograms present in the [LRM package
SEQUENTIAL _10 are present In this CAIS package. The following sections demonstrate only the
specifications and semantics that differ.

5.3.3.1. Subtypes and constants

subtype FILE_TYPE is CAIS.IO_DEFINITIONS.FILE_TYPE:

subtype FILE MODE is CAIS.IO DEFINITIONS.FILE_MODE;

FILE _TYPE describes the type for file handles for all sequential input and output operations.
FILE__MODE indicates whether input operatlons, output operations or both can be performed on the
sequentlal-access file. A mode of APPEND _ FILE causes any elements that are written to the
specified flle to be appended to the elements that are already in the file.

5.3.3.2. Creating a sequential input or output file

procedure CREATE(FILE: in out FILE TYPE:
BASE: in MODE_TYPE:
KEY: in RELATIONSHIP KEY := LATEST_KEY;
RELATION: in RELATION_NAME := DEFAULT_RELATION;
MODE : in FILE MODE := INOUT_FILE;
FORM: in LIST_TYPE := EMPTY_LIST:
ATTRIBUTES: in LIST TYPE := EWPTY_LIST;
ACCESS_CONTROL: in LIST_TYPE := EMPTY_LIST;
LEVEL: in LIST_TYPE := EMPTY_LIST);

Purpose:
This procedure creates a flle and Its file node; each element of the file Is sequentially accessible.
The attribute ACCESS_METHOD Iis assigned the value “(SEQUENTIAL)"® as part of the
creation.

The FORM paramecter Is used to provide file characteristics concerning the creation of the file.
The predefined file characteristic ESTIMATED _ SIZE may be used to specily an approximation
to the number of storage units (e.g., bytes or blocks) that should be writable to the file. The
ESTIMATED _ SIZ{ characteristic Is specified as *(ESTIMATED _SIZE = > n)", where "n" Is
any NATURAL number.

The ATTRIBUTES parameter defines and provides initial values for attributes of the node. The
ACCESS _ CONTROL parameter specifies Initlal access control information to be established for
the crested node (see Sectlon 4.4.2.1 for detalls).

109

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

The LEVEL parameter specifies the security level at which the file node is 1o be created.

The defauit value for the attribute FILE_KIND for the flle node s
SECONDARY _STORAGE. The default value may be overridden by explicitly specifying a
value of QUELUE In the attributes parameter (l.e, *(FILE_KIND => QUEI'E)"), in which
case the value of the attribute QUEUE _ KIND is SOLO.

Parameters:
FILE Is a file handle, Initially closed, to be opened.
BASE is an open node handle to the node which will be the source of the primary
relationship to the new node.
KEY is the relationship key of the primary relationship to be created.

RELATION is the relation name of the primary relationship to be created.
MODE indicates the mode of the file.

FORM indicates file characteristics.

ATTRIBUTES defines Initial values for attributes of the newly created node.

ACCESS _CONTROL
defines the initial access contro! information associated with the created node.

LEVEL defines the classification label for the created node.

Exceptions:

NAME _ERROR
is raised If a node already exists for the node specified by KEY and RELATION or
if KEY or RELATION is syntactic.ily liegal or If any node identifying a group
specified In the given ACCESS_CONTROL parameter s unobtainable or
inaccessible.

USE_ ERROR s raised if any of the parameters ACCESS _ CONTROL, LEVEL or ATTRIBUTES
is syntactically or semantically lllegal. USE__ ERROR Is also ralsed If interpretation
of the ATTRIBUTES parameter would resuit in creation of any predefined
attribute other than FILE_KIND. USE_ ERROR Is also raised if RELATION is
the name of a predefined relation that cannot be created by the user.

STATUS_ERROR

Is ralsed If BASE is not an open node handle or if FILE is an open (e handle prior
to the call.

INTENT _ VIOLATION

is raised if BASE was not opened with an intent establishing the right to append
relationships.

110

PROPOSED MU-«TD-C A~
31 JANUAR)Y tox5

SECURITY _ VIOLATION
fs ralsed if the operation represents a violation of mandatory access controls.
SECURITY _VIOLATION Is raised only if the conditions for other exceptions are
not present.

Additional Interface:

procedure CREATE(FILE: in out FILE_TYPE:
NAME : in MAME_STRING;
MODE : in FILE MODE := INOUT FILE:
FORN: in LIST_TYPE := EMPTY LIST;
ATTRIBUTES: in LIST_TYPE := EMPTY_LIST:
ACCESS_CONTROL :in LIST_TYPE '= EMPTY_LIST.
LEVEL: in LIST_TYPE := EMPTY_LIST)
is

BASE : NODE_TYPE;
begin
OPEN (BASE. BASE_PATH(NAME), (1=>APPEND_RELATIONSHIPS));
CREATE(FILE, BASE, LAST KEY(NAME). LAST_RELATION (NAKE).
MODE., FORM, ATTRIBUTES, ACCESS_CONTROL, LEVEL):
CLOSE (BASE) ;
exception
when others =>
CLOSE(FILE);
CLOSE (BASE) ;
raise;
end CREATE:

5.3.3.3. Opening a sequential input or output file

procedure OPEN(FILE: in out FILE TYPE:
NODE in NODE_TYPE:
MODE: in FILE_MODE);

Purpose:
This procedure opens a file handle on a file, given an open nodc handle on the file node; each
element of the flle Is sequentially accessible.

Parameters:
Fl.io ts a fic handle, nitially closed, to be opened.
NODE Is an open node handle 1o the file node.
MODE indicates the mode of the file.

Exceptions:

USE _FRROR is ralsed If the attribute ACCESS__ METHOD of the file node docs not have the
value SEQUENTIAL or if the element type of the file does not correspond with the
element type of this Instantiation of the CAIS.SEQUENTIAL _10 package.
Usts__ERROR is also raised)f the node identified by NODE has a value of QUEUE
for the sitribute FILE_KIND and a wvailne of MIMIC lor the attribute
QUEUE _KIND and the mimic queue file identified by FILE is being opened with
MODIE other than IN _FILE but the coupled fle (see Section 5.3.5.13) has been
deleted.

111

~g—y™

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

STATUS_ERROR

is raised if FILE is an open file handle at the time of the call on OPEN or if NODE
is not an open node handle.

INTENT _ VIOLATION

is raised If NODE was not opened with an intent establishing the access rghts
required for the MODE, as specified in TABLE X.

Additional Interface:

procedure OPEN(FILE: in out FILE TYPE;

NAME: in WAME_STRING;
MODE : in FILE_MODE)
is
WODE : WODE _TYPE;
begin
case MODE is
when IN_FILE => OPEN(NODE, NAME, (1=>READ_CONTENTS)) ;
when OUT_FILE => OPEN(NODE, MAME, (1=>WRITE_CONTENTS)):
when INOUT_FILE=>OPEN (NODE.NAME,
(READ_CONTENTS ,WRITE_CONTENTS)) :
when APPEND_FILE => OPEN(NODE, NAME.(1=>APPEND_CONTENTS));
end case;
OPEN(FILE, WODE, MODE):
CLOSE (NODE) ;
exception
when others =>
CLOSE (FILE) ;
CLOSE (NODE) ;
raise;
end OPEN;

5.3.3.4. Deleting a sequential input or output file

procedure DELETE(FILE:in out FILE TYPE):

Purpose:

In addition to the semantics specified in [LRM,, If the node associated with the open fle handle
FILE is not already uncbtainable, this node Is made unobtainable as If a call to the
DELETE _ NODE procedure had been made. If this node is aiready unobtainable by this call, no
exception other than STATUS _ ERROR may be raised by this procedure.

Parameters:

FILE is an open file handle on the flle being deleted.

Exceptions:

NAME _ ERROR

is raised if the parent node of the node associated with the Nle identified by FILE Is
inaccessible.

USE _ERROR s raised if any primary relationships emanate from the node assoclated with the file
identified by FILE.

STATUS _ERROR
is raised if Fi1.K is not open file handie,

112

e - g

PROPOSED MIL-STD-C Al
31 JANUAR)Y 1985

LOCK _ERROR
Is ralsed If access with intent WRITE _ RELATIONSHIPS to the parent of the node
to be deleted cannot be obtained due to an existing lock on the node.

ACCESS _ VIOLATION
is raised If the current process does not have sufficient discretionary access control
rights to obtain access to the parent of the node to be deleted with intent
WRITE _RELATIONSHIPS or to obtain access to the node (o be deleted with
Intent EXCLUSIVE _WRITE. ACCESS_ VIOLATION is only raised If the
conditions for NAME _ ERROR are not present.

SECURITY _ VIOLATION
is raised If the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION s raised only if the conditions for other exceptions are
not present.

5.3.4. Package TEXT__10

This package provides facilities for the input and output of textual data to CAIS files. [LRM] deflines
what constitutes an element of data. These facilities are comparable to those specified in the package
TEXT _10 in [LRM]. All subprograms present in the [LRM] package TEXT _1lO are present in this
CAIS package. The following sections demonstrate only the specifications and semantlcs that differ.

5.3.4.1. Subtvpes and constants

subtype FILE_TYPE is CAIS.I0_DEFINITIONS.FILE_TYPE;

subtype FILE MODE ia CAIS.10_DEFINITIONS.FILE_NODE:

FILE _TYPE describes the type for file handles for all text input and output operations.
FILE _MODE indicates whether input operatlons. output operations or both can be performed on the
text file. A mode of APPEND __FILE causes any text written to the specified file to be appended to
the text that Is already in the file.

5.3.4.2. Creating a text input or output file

procedure CREATE(FILE: in out FILE_TYPE:
BASE: in NODE_TYPE;
KEY: in RELATIONSHIP_KEY := LATEST_KEY:
RELATION: in RELATION_NAME := DEFAULT_RELATION;
MODE : in FILE_MODE := INOUT FILE;
FORM: in LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: in LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL: In LIST_TYPE := EMPTY_LIST;
LEVEL: in LIST_TYPE := EMPTY_LIST):

Purpose:
This procedure creates s file and its file node; the HNle Is textual. The attribute
ACCESS_METHOD Is assigned the value "(TEXT)" as part of the creation.

13

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

The FORM parameter Is used to provide flle characleristics concerning the creation of the
external file. The predefined flle characteristic ESTIMATED __SIZE may be used to specify an
approximation Lo the number of storage units (e.g.. bytes or blocks) that should be writable to
the file. The ESTIMATED _ SIZE characteristic is specified as *(ESTIMATED _SIZE => n)",
where "n” Is any NATURAL number.

The ATTRIBUTES parameter defines and provides initial values for attributes of the node. The
ACCESS__ CONTROL parameter specifies initial access control Information to be established for
the created node (see Section 4.4.2.1 for detalls).

The LEVEL parameter specifies the security level at which the flie node is to be created.

The default value for the attribute FILE_ KIND is SECONDARY __STORAGE. The defauit
value may be overridden by explicitly specifying a value of QUEUE iIn the ATTRIBUTES
parameter le., ®*(FILE_KIND => QUEUE)"). If the value of FILE__KIND is QUEUE, the
default vajue of the attribute QUEUE _ KIND is SOLO.

Parameters:
FILE is a file handie, Initially closed, to be opened.
BASE Is an open node bandle to the node which will be the source of the primary
relationship to the new node.
KEY Is the relationship key of the primary relationship to be created.

RELATION is the reiation name of the primary relationship to be created.
MODE Indicates the mode of the flle.

FORM indicates file characteristics.

ATTRIBUTES defines Initial values for attributes of the newly created node.

ACCESS _ CONTROL
defines the Initial access control informatlon associated with the created node.

LEVEL defines the classification label for the created node.

Exceptions:

NAME _ERROR
is raised if s node aiready exists for the node apecified by KEY and RELATION or
if KEY or RELATION Is syntactically fllegal or if any node Iidentifying a group
specified in the given ACCESS__ CONTROL parameter is unobtainable.

USE _ERROR is raised if any of the parameters ACCESS _CONTROL, LEVEL or ATTRIBUTES
is syntactically or semantically itlegal. USE _ ERROR is also ralsed If jnterpretation
of the A'TTRIBUTES parameter would result In modification or creation of a
predefined attribute other than FILE _KIND. USE_ERROR Is also raised Il
RELATION is the name of a predcfined relation which cannot be created by the
user.

114

PROPOSED MIL-~TID-0 Al
31 JANUARY 10K,

STATUS _ERROR
Is raised If BASE is not an open node handle or if FILE is an open file handle prior
to the call.

INTENT _ VIOLATION
Is raised If BASE was not opened with an Intent establishing the right to append
relationships.

SECURITY _ VIOLATION
is raised Il the operation represents a violation of mandatory access controls
SECURITY _ VIOLATION s raised only if the conditions for other exceptions are
not present.

Addltional Interface:

) procedure CREATE(FILE: in out FILE TYPE;
RAME : in NAME_STRING;
& MODE : in FILE MODE := INOUT_FILE;
1 FORM: in LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: in LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL: in LIST_TYPE := EMPTY_LIST;
LEVEL: in LIST_TYPE := EMPTY_LIST)
is
BASE : WODE_TYPE;
1 begin
OPEN (BASE, BASE_PATH(NAME). (1=>APPEND_RELATIONSHIPS));
F CREATE(FILE, BASE, LAST KEY(NAME). LAST_RELATION(NAME),
MODE, FORM, ATTRIBUTES, ACCESS_CONTROL, LEVEL);
CLOSE (BASE) ;
exception
when others =>
CLOSE (FILE) ;
CLOSE (BASE) :
raise;
end CREATE;

5.3.4.3. Opening a text input or output file

-4-—,-_*"““‘1

procedure OPEN(FILE: in out FILE TYPE:
NODE : in WODE_TYPE;
MODE : in FILE_MODE) ;

Purpose:

This procedure opens a flle handle on a file that has textual contents, given an open node handle
on the flle node.

Parameters:
FILE is a flile handle, inltially closed, to be opened.
NODE Is an open node handie to the filc node.
MODE Indicates the mode of the fle.

Exceptlons:

115

PRSI P S A y - - S - -~ e B ooy

P P —

PROPOSED MI-STD-CAIS

31 JANUARY 19085

USE _ ERROR s raised If the attribute ACCESS_METHOD of the file no« v does not have the

value TEXT or the element type of the file does not corresp: .d with the element
type of this Instantiation of the CAIS.TEXT _1O package. USE__ERROR is aiso
ralsed If the node Identified by NODE has a value of QUEUE for the attribute
FILE_KIND and a value of MIMIC for the attribute QUEUE_KIND and the
mimic queue flle identified by FILE is being opened with MODE other than
IN_FILE but ihe coupled file (see Section 5.3.5.13) has been deleted.
USE _ERROR s also raised If the node identified by NODE has a value of
TERMINAL or MAGNETIC _ TAPE for the attribute FILE _ KIND and the MODE
is APPEND _FILE.

STATUS _ERROR

Is raised If FILE is an open file handie at the time of the call on OPEN or if NODE
Is not an open node handie.

INTENT _ VIOLATION

Is ralsed If NODE has not been opened with an intent establishing the access rights
required for the MODE. as specified in TABLE X.

Additional Interface:

procedure OPEN(FILE: in out FILE TYPE:

MAME: in NAME_STRING;
MODE: in FILE_MODE)
is
WODE : WODE_TYPE;
begin
case MODE is
when IN_FILE => OPEN(NODE. NAME,(1=>READ CONTENTS)):
when OUT_FILE => DPEN(NODE, NAME, (1=>WRITE_CONTENTS)) ;
when INOUT_FILE =>OPEN(NODE, NAME,
(READ_CONTENTS,WRITE_CONTENTS))
when APPEND_FILE => OPEN(NODE. NAME, (1=>APPEND_CONTENTS)) .
end case;
OPEN(FILE, NODE, MODE);
CLOSE (NGDE) ;
exception
when others =>
CLOSE (FILE) ;
CLOSE (NODE) ;
raise;
end OPEN;

Notes:

If the Nle identified by FILE is a mimic queue file which Is being opened to ead and its coupled
flle (see Section 5.3.5.13) has been deleted or has (ewer elements than e ected to be in the
mimic queue file (e.g., if some of the contents of the coupled flle have heen dcleted), read
operations on the mimic queue flle will encounter an end of file.

6.3.4.4. Deleting a text input or output file

procedure DELETE(FILE: in out FILE_TYPE);

Purpose:

In addition to the semantics specified In [LRM], the node associated with -he open file handle
FILI is made unobtainable as If a call to the DELETE _ NODE procedure had been made.

T T

PROPOSED MIL-STD¢ Al~
31 JANT ARY jusx,

Paramecters:

FILE Is an open flie handle on the fle belng deleted.

Exceptions:

NAME _ ERROR
is raised If the parent node of the node associated with the file identified by FILL is
Inaccessible.

USE _ERROR Is raised if any primary relationships emanate from the node associated with the file
identified by FILE.

STATUS _ERROR
is raised if FILE Is not an open file handle.

LOCK _ERROR
Is raised if access with intent WRITE _ RELATIONSHIPS to the parent of the node

to be deleted cannot be obtained due to an existing lock on the node.

ACCESS _ VIOLATION
is raised If the current process does not have sufficient discretionary access control
rights to obtailn access to the parent of the node to be deleted with intent
WRITE _RELATIONSHIPS or to obtain access to the node to be deieted with
intent EXCLUSNE _WRITE. ACCESS_ VIOLATION Is only raised If the
conditions for NAME __ERROR are not present.

SECURITY _ VIOLATION
is raised If the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION 1is raised only if the conditions for other exceptions are
not present.

5.3.4.5. Resetting a text file

procedure RESET(FILE: in out FILE_TYPE;
NODE- in FILE_MODE);

Purpose: -
In addition to the semantics specified in [LRM,. application of this procedure to a file which
represents a magnctic tape drive will cause the magnetic tape to be rewound to the filemark
Iimmediately preceding the current tape position. See Section 5.3.9 for more information on
magnetic tapes.

Parameters:
FILE is an open file handle on the file begin reset.
MODE indicates the mode of the file.

Exceptions:

USE _ERROR Is ralsed If the node associated with the file identified by FILE has a value of
TERMINAL or MAGNETIC _ TAPE for the attribute FILE _KIND and the MODIL
iIs APPEND _FILE. ’

117

-~ enpuv anu OUpHt aperations.

104

' PROPOSED MIL-STD-CAIS

31 JANUARY 18RS
! 5.3.4.86. Reading from a text file
| -

procedure GET(...);

Purpose:

L These procedures read characters from the specified text fle.

For all values of the attribute FILE__KIND the CAIS defines only reading of the printable
ASCIl characters plus the format effectors cslled borizontal tabulation, vertical tabulation.
carriage return, line feed, and form feed. AN of the printable characters plus the horizontal
tabulation and vertical tabulation characters may be read as characters. The characters carriage
return and line feed are to be treated as line terminators whether encountered singly or together
(l.e.. CR. LF. CRLF, and LFCR are line terminators). The character form fced is to be treated
as the page terminator.

When text is belng read from a flle whose file node sttribute FILE _KIND has the valuye
TERMINAL. It Is expected that most implementations will provide facllities for editing the input
1 entered by the user before making the characters avaitable to a program for reading.

5.3.4.7. Writing to a text file

procedure PUT(...):

Purpose:
These procedures write characters to the specified flle.

The CAIS supports the transfer of information to and from a singie magnetic tape volume. Data
transferred to and from magnetic tapes may consist of the loilowing characters:

Characters Representation of Characters
(all printable charascters corresponding ASCII characters

horizontal tad ASCII.HT

vertical tab ASCI11.VT

carriage return ASCII.CR

l1ine terminsator ASCII1.LF

page terminator ASCII.FF

file terainator 1870 OF mOTe f111 characters folloved

immediately by & tape Bark
f111 character ASCII.NUL

Use of other characters is not deflned.

8.3.4.8. Setting the input file

procedure SET_INPUT(FILE : in FILE_TYPE):
Purpose:
In addition to the semantics specified In the [LRM], the file node associated with the file

identificd by FILE becomes the target of the relationship of the predefined relation
CURRENT _INPUT of the current process node.

Parameters:

PHOPOSED NI -~Tiee a)=
31 IAND ARy ek,

FilE I= an open flie handle.

Foaceptions:

MODE _ERROR
is raised if the mode of the I identifted by FILE s OUT_FILE or
APPEND _FILE.

STATUS _ERROR
is ralsed If FILE Is not an open file handle.

1.OCK _ ERROR
is raised if the current process node is LOCKed against writing relationships.

5.3.4.9. Setting the output file

procedure SET_OUTPUT(FILE : in FILE_TYPE);

Purpose:
In addition to the semantics specified in the [LRMI, the flle node associated with FILE becomes
the target of the relationship of the predefined relation CURRENT _ OUTPUT of the current
process node.

Parameters:

FILE is an open MNie handle.

Exceptions:

MODE _ERROR
is raised i{ the mode of the file identified by FILE is IN _FILE.

STATUS _ ERROR
is raised if FILLE i= not an open fNie handle.

LOCK _ERROR
Is raised if the current process node is LOCKed against writing relationships

5.3.4.10. Setting the error file

procedure SET_ERROR(FILE : in FILE_TYPE)

Purpose:
The file node assoclated with the fiie Identified by FILE becomes the target of the relationship of
the predefined relation CURRENT _ ERROR of the current process node.

Parameters:

FILE i= an open flic handle.

Faxeeptions:

110

PROPOSED MIL-STD-C AlN
31 JANUARY 1085

MODE _ ERROR
I raised If the mode of the file identified by FILE is IN __FILE.

STATUS _ERROR
is raised If FILE is not an open file handle.

LOCK _ERROR
is raised if the current process node is LOCKed against writing relationships.

5.3.4.11. Determining the standard error file

function STANDARD _ERROR return FILE TYPE;

Purpose:
This function returns an open file handle to the target node of the refationship of the predefined
relation STANDARD _ ERROR that was set at the start of program execution.

Parameters:

None.

Exceptions:

LOCK _ERROR
I8 raised If the current process node is locked against reading relationships.

5.3.4.12. Determining the current error file
function CURRENT ERROR return FILE_TYPE;

Purpose:
This function returns an open file handle Lo the target node of the relationship of the predefined
relation CURRENT _ERROR which is either the standard error file or the file specificd in the
most recent invocation of SET _ ERROR In the current process.

Parameters:
None.

Exceptions:

LOCK _ERROR
Is raised if the current process node is locked against reading relationships.

5.3.5. Package JO_CONTROL

This package defines facilities that may be used to modify or query the functionality of CAIS fles. It
provides for association of input and output text files with an output logging flle. It also provides
facilities for lorcing data from an Internal flle to its assoclated external file, for manipulation of
function keys and prompt strings and for creating mimic and copy queues.

120

PROPOSED MIL-STD-CAIS
31 1ANL ARY 1683

Parameters:

TERMINAL is an open [ile handle on an output terminal file.

KIND Is the kind (horizontal or vertical) of tab stop to be removed.

Exceptions:

USE _ERROR is raised if TERMINAL is not the value of the predeflned attribute FIL.12 _KIND or
SCROLL Is not a value of the predefined attribute TERMINAL _ KIND of the file
node assoclated with the flle identified by the parameter TERMINAL, or if there is
no tab stop of the designated kind at the active position.

MODE _ ERROR
Is raised if the file identified by TERMINAL is of mode IN _FILE.

STATUS _ERROR
is ralsed {f TERMINAL is not an open file handle.

DEMICE _ ERROR
is raised if an input or output operation cannpot be completed b canse of a
malfunction of the underlying system.

Additional Interface
procedure (LEAR TAB(KIND. in TAB_ENUMERATION := HORIZONTAL)
»
begin
cxm_rn(mn_mn, KIND) ;
end CLEAR TAB.

65.3.6.7. Advancing to the next tab position

procadure TAB(TERMINAL: in FILE_TYPE;
KIND: in TAB_ENUMERATION := HORIZONTAL;
COUNT : in POSITIVE := 1);

Purpose:
This procedure advances the active position COUNT tab stops. Horizontal advancem ‘nt causes
a change in only the column number of the active position. Vertical advancement causes a
change in only the row number of 1 he active position.

Parameters:

TERMINAL is an open flle handie on an output terminal flle.

KIND is the kind (horizontal or vertical) of tab to be advanced.
COUNT is a positive integer Indicating the number of tab stops the active position is to
advance.
Exceptions:
134

PROPOSED MI{-<Ti-¢ A~
31 IANUARY 10x0

return TERIINAL__SIZE(WRREHT_MPUT):
end TERMINAL_SIZE;

5.3.6.5. Setting a tab stop

procedure SET_TAB(TERMINAL: in FILE_TYPE;
KIND: in TAB_ENUMERATION := HORIZONTAL):
Purpose:
This procedure establishes a horizontal tab stop at the column of the active position if KIND is
HORIZONTAL, or a vertical tab stop at the row of the active position if KIND is VERTICAL.

Parameters:

TERMINAL s an open file handle on an output terminal file.

KIND is the kind (horizontal or vertical) of tab stop to be set.

Exceptions:

USE _ERROR s raised f TERMINAL is not the value of the predefined attribute FILE __KIND or
SCROLL is not a value of the predefined attribute TERMINAL _KIND of the fite
node associated with the [lle Iidentified by the parameter TERMINAL.
USE _ERROR is also raised If the number of rows for the terminal is unlimited and
KIND is VERTICAL.

MODE _ERROR
is raised if the fle identified by TERMINAL is of mode IN _FILE.

STATUS _ERROR
is raised If TERMINAL is not an open file handle.

DEVICE _ERROR
Is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:
procedure SET_TAB (KIND: in TAB_ENUMERATION := HORIZONTAL)
is
begin
SET_TAB (CURRENT_OUTPUT, KIND);
end SET_TAB;

§.3.6.6. Clearing a tab stop

procedure CLEAR_TAB(TERMINAL: In FILE_TYPE;
KIND: fn TAB_ENUMERATION := MORIZONTAL):

Purpose:
This procedure removes a horizontal tab stop from the column of the actlve position if KIND is
HORIZONTAL or a vertical tab stop from the row of the active position If KIND s
VERTICAL.

133

PROPOSED MIL-STD-C AIS
31 JANUARY 1885

MODE _ERROR
Is raised If the file identified by TERMINAL is of mode IN_ FILE.

STATUS _ERROR
is raised if TERMINAL Is not an open flle handle.

DEVICE _ERROR

is ralsed If an input or output operation cannot be completed because of
malfunction of the underlying system.

Additional Interface:
function GET_POSITION
return POSITION TYPE
is
begin
return GET_POSITION(CURRENT_OUTPUT) ;
end GET_PUSITION:

5.3.6.4. Determining the size of the terminal

function TERMINAL_SIZE(TERMINAL: in FILE_TYPE)
return POSITION TYPE;

Purpose:

This function returns the maximum row and maximum column of the outpul terminal file

Identified by TERMINAL. A value of zero for the row number indicates that the row number is
unlimited.

Parameters:

TERMINAL s an open flie handle on an output terminal file.

Exceptions:

USE _ERROR s raised it TERMINAL Is not the value of the predefined attribute FILE _KIND or
SCROLL is not a value of the predefined attribute TERMINAL _ KIND of the file
node sssociated with the file identifled by the parameter TERMINAL.

MODE _ ERROR
is raised if the file identified by TERMINAL is of mode IN__ FILE.

STATUS _ERROR
Is ralsed if TERMINAL is not an open fle handle.

DEVICE _ERROR

is raised if an Input or output operation cannot be completed tiecause of a
malfunction of the underlying system.

Additional Interface:

function TERMINAL_SIZE
return POSITION_TYPE

is

begin

132

PROPOSED MIL-NTD-C A}~
31 JANUARY 1984
Parameters:

TERMINAL Is an open file handle on an output terminal file.

POSITION is the new actlve position in the output terminal file.

Exceptions:

USE _ERROR s raised if TERMINAL is not the value of the predefined attribute FILE _ KIND, or
SCROLL is not a value of the predefined attribute TERMINAL _ KIND of the fiie
node associated with the file identified by the parameter TERMINAL.

MODE _ ERROR
is ralsed if the file identified by TERMINAL is of mode IN _FILE.

STATUS__ERROR
is raised If TERMINAL is not an open file handle.

LAYOUT _ERROR
I8 raised if the position does not exist on the terminal or the position precedes the
active position.

DEVICE__ERROR
is raised If an Input or output operation cannot be completed because of 8
malfunction of the underlying system.

Additional Interface:

procedure SET_POSITION (POSITION: in POSITION_TYPE)
is
begin
SET_POSITION (CURRENT OUTPUT, POSITION);
end SET_POSITION;

5.3.6.3. Determining the active position

function GET_POSITION(TERMINAL: in FILE_TYPE)
return POSITION TYPE;

Purpose:
This function returns the active position of the output terminal Nle identified by TERMINAL.
Parameters:

TERMINAL Is an open file handle on an output terminal flle.

Exceptions:

USE__ ERROR s raised If TERMINAL is not the value of the predefined attribute FILE_ KIND or
SCROLIL Is not 8 value of the predefined attribute TERMINAL _ KIND of the fiie
node associated with the flle identified by the parameter TERMINAL.

13t

FPROPOSED MIL-STD-CAIS
3t JANUARY 1085

to open with MODE other than IN-FILE a wmimic queue flle whose coupled flle has been deleted
will raise a USE_ ERROR exception.

5.3.6. Package SCROLL.__TERMINAL

This package provides the functionality of a scroll terminal. A scroll terminal consists of two devices:
an input device (keyboard) and an assoclated output device (a printer or dispiay). A scroll terminal
may be accessed either as a single flle of mode INOUT _FILE or as two files: one of mode IN_FILE
(the keyboard) and the other of mode OUT _ FILE (the printer or display). As keys are pressed on the
scroll terminal keyboard, the transmitted characters are made avallable for reading by the
CAIS.SCROLL _ TERMINAL package. As characters are written to the scroll terminal file, they are
displayed on the output device.

The output devices for scroll terminals have positions in which printsble ASCII characters may be
graphically displayed. The positions are arranged Into horizontal rows and vertical columns. Each
position is identifiable by the combination of s positive row number and a positive column number.
An output device for a scroll terminal has a fixed number of columns and might have a fixed number
of rows. The rows are Incrementally indexed starting with one after performing the NEW _ PAGE
(see Section 5.3.8.19) operation. The columns are incrementally indexed siarting with one at the left
side of the output device.

The active position on the output device of a scroll terminal I8 the position at which the next
operation will be performed. The active position I8 sald to advance if (1) the row number of the new
position is greater than the row number of the old position or (2) the row number of the new position
Is the same as the row number of the old position and the new position has a greater column number.
Similarly. a position Is said to precede the active position If (1) the row number of the position is less
than the row number of the active position or (2) the row number of the position Is the same as the
row number of the active position and the column number of the position Is smaller than the columnn
number of the active position.

5.3.6.1. Subtypes
subtype FILE_TYPE is CAIS.10_DEFINITIONS.FILE_TYPE;

subtype FUNCTION_KEY_DESCRIPTOR is
CAIS.IO_DEFINITIONS.FUNCTION_KEY DESCRIPTOR:

subtype POSITION TYPE is CAIS.IO_DEFINITIONS.POSITION_TYPE;

subtype TAB_ENUMERATION is CAIS.IO_DEFINITIONS.TAB_ENUMERATION;

FILE_TYPE describes the type for fiie handles. FUNCTION_KEY__DESCRIPTOR is used o
obtain information about function keys read from a terminal. FOSITION-TYPL: describes the type of
a position on a terminal. TAB_ ENUMERATION is used o specify the kind of tab stop to be sct.

5.3.6.2. Setting the active position

procedure SET_POSITION(TERMINAL: Ip FILE_TYPE;
POSITION: in POSITION_TYPE);

Purpose:

This procedure advances the active position to the specifiled POSITION in the output terminal
file tdentified by TERMINAL.

130

e e b e et e

CLOSE (BASE) ;
exception
when others =>
CLOSE (BASE) ;
raise;
end COUPLE;
procedure COUPLE (QUEUE_BASE:
QUEUE_KEY:
QUEUE_RELATION:
FILE_WAME:
FORM:
ATTRIBUTES:
ACCESS_CONTROL :
LEVEL:
is
FILE_NODE : MODE_TYPE;
in

OPEN(FILE_NODE. FILE NAME

in
in

in

in
in
in
in
in

PROPOSED MIL-STD-C A<
31 JANUARY 1985

WODE_TYPE;

RELATIONSHIP KEY :=
LATEST KEY;

RELATION NAME :=
DEFAULT_RELATION:

NAME_STRING;

LIST TYPE := EMPTY_LIST;
LIST TYPE;

LIST TYPE := EMPTY_LIST;
LIST_TYPE := EMPTY_LIST)

(READ_ATTRIBUTES, READ_CONTENTS));
COUPLE (QUEUE_BASE, QUEUE_KEY, QUEUE_RELATION,
FILE_WODE, FORM, ATTRIBUTES, ACCESS_CONTROL, LEVEL);

CLOSE (FILE_WODE) ;
exception

when others =>
CLOSE (FILE_WNODE) ;

raise;
end COUPLE;
procedure COUPLE (QUEUE_NAME:
FILE NAME:
FORM:
ATTRIBUTES:
ACCESS_CONTROL
LEVEL:
is
FILE_NODE : WODE_TYPE:
QUEUE_BASE : NODE_TYPE,
begin

in
in
in
in
in
in

NAME STRING;
NAME_STRING;

LIST_TYPE := EMPTY_LIST;
LIST_TYPE:.

LIST_TYPE := EMPTY_LIST,
LIST_TYPE := EMPTY_LIST)

OPEN (QUEVE_BASE. BASE_PATH (QUEVE_KAME) .
(1=>APPEND_RELATIONSHIPS)) ;

OPEN(FILE_NODE, FILE_NAME,

(READ_ATTRIBUTES, READ_CONTENTS)) .
COUPLE (QUEUE_BASE, LAST_KEY (QUEUE_NAME) ,
LAST_RELATION (QUEUE_NAXE)
FILE_NODE. FORM. ATTRIBUTES, ACCESS_CONTROL, LEVEL);

CLOSE (QUEVE_BASE) ;
CLOSE (FILE_NODE) :
exception
when others =>
CLOSE (QUEUE_BASE) ;
CLOSE (FILE_NODE) ;
raise;
end COUPLE;

Notes:

Read operations on a mimie queue file whaose coupled file has been deleted or has fewer elements
than expected in the mimic queue Ne (e.g., If some of the contents of the coupicd hie have been
deleted) will encounter an end of file. Attempts Lo opena mimic queue file whose coupled file
has been deleted with MODE other than IN _ FILE raises a USE _ ERROR cxeeption. Attempts

120

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

ATTRIBUTES defines Initial values for attributes of the newly created node.

ACCESS _CONTROL
defines the initial access control Information associated with the created node.

LEVEL defines the classification label for the created node.

Exceptlons:

NAME _ERROR
is raised {f a node already exists for the node Identification given by
QUEUE _BASE, QUEUE_KEY and QUEUE_RELATION or If this node
Identification is illegal. NAME _ERROR is also raised if any node Identifying a
group specified Iin the ACCESS_CONTROL parameter is unobtainable or
Inaccessible.

USE_ ERROR s raised If the node identified by FILE _ NODE is not a file node, does not have a
FILE _KIND attribute value of SECONDARY_STORAGE. or has an
ACCESS _METHOD attribute value of DIRECT or If the ATTRIBUTES
parameter either has no value for the QUEUE __KIND attribute or has the value
QUEUE_ KIND => SOLO. USE_ERROR Is also raised if the FORM, LEVEL,
ACCESS _ CONTROL or ATTRIBUTES parameters do not adhere to the required
syntax. USE__ERROR s siso raised If interpretation of the ATTRIBUTES
parameter would resuit in modification or creation of any predefined attributes
other than QUEUE _ KIND, or iIf QUEUE _ RELATION is the name of a predefined
relation which cannot be created by the user.

STATUS _ ERROR
is raised if QUEUE _ BASE and FILE _NODE are not both open node handles.

INTENT _ VIOLATION
Is ralsed If QUEUE __ BASE was not opened with an intent establishing the right to
append relationships or If FILE_ NODE was not opened with an intent establishing
the right to read contents and attributes.

SECURITY _ VIOLATION
Is raised if the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION s raised only if the conditions for other exceptions are
not present.

Additional Interfaces:

procedure COUPLE(QUEUE_NAME: in NAME_STRING;
FILE_NODE: in NODE_TYPE;
FORM: in LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: in LIST_TYPE;
ACCESS_CONTROL: in LIST TYPE := EMPTY_LIST;
LEVEL: in LIST_TYPE := ENPTY_LIST)
is

BASE : NODE_TYPE;
begin
OPEN (BASE, BASE_PATH (QUEUE_NAME) , (1=>APPEND_RELATIONSHIPS)) ;
COUPLE (BASE, LAST_KEY(QUEUE_NAME), LAST_RELATION(QUEUE_NANE),
FILE _NODE, FORM, ATTRIBUTES, ACCESS_CONTROL, LEVEL);

128

PROPOSLD MIL-STD-CAIJS
31 JANUARY 1985

STATUS _ERROR
Is raised If TERMINAL is not an open file node.

5.3.5.13. Creating a queue file node

procedure COUPLE

(QUEUVE_BASE :in WODE_TYPE;

QUEVE_KEY :In RELATIONSHIP KEY := LATEST KEY;
QUEUE_RELATION :in RELATION_NAME := DEFAULT RELATION;
FILE_NODE :in woDE_TYPE;

FORM :in LIST _TYPE := EMPTY_LIST;

ATTRIBUTES :in LIST_TYPE; -- intentionally mot defaulted
ACCESS_CONTROL :im LIST_TYPE := EMPTY_LIST;

LEVEL :in LIST_TYPE := EMPTY_LIST),

Purpose:
This procedure creates a queue file node and its contents and installs the primary relationship to
It. The relation name and relationship key of the primary relationship to the node and the base
node from which It emanates are given by the parameters QUEUE _RELATION,
QUEUE _KEY and QUEUE _BASE. A secondary relationship of the predefined relation
COUPLE Is created from the created queue flle node to the file node Identified by
FILE _ NODE.

The initial contents of the queue flle is the contents of the flie associated with the flle node
identified by FILE_ NODE at the time the queue file is created. The queue file node is created
with the same ACCESS__METHOD attribute value as the node identified by FILE_ NODE.
DIRECT may not be a value of this ACCESS__METHOD attribute. The FILE_KIND
attribute of the created queue flle node has the value QUEUE. The QUEUE_KIND attribute
of the created queue (lie node is set by the appropriate value ln the ATTRIBUTES parameter.
ATTRIBUTES must include a list item that Is either QUEUE_ TYPE => COPY or
QUEUE_TYPE => MIMIC. COUPLE is the only interface that can be used to create a
mimic or copy queue.

The ATTRIBUTES parameter defines and provides initial values for attributes of the npode. The
ACCESS_ CONTROL parameter specifies initial access control information to be established for
the created node.

The LEVEL parameter specifies the security level at which the file node Is to be created.
Parameters:

QUEUE _ BASE
Is an open node handle to the node from which the primary relationship to the new
node is to emanate.

QUEUE _KEY
is the relationship key of the primary relationship to be created.

QUEUE _ RELATION
Is the relation name of the primary relationship to be created.

FILE _NODE Is an open node handle to the file node with which the queue Is 'o be coupled.

FORM Indicates flle characteristics,

127

TR T

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

5.3.5.11. Enabling and disabling function key usage

procedure EMABLE FUNCTION KEYS (TERMINAL :in FILE TYPE,
ENABLE :in BOOLEAN) ;

Purpose:
This procedure establishes whether data read as the result of pressing a function key on the
physical input terminal is to appear in the input terminal file as ASCI} character sequences or o«
function key identification numbers. A value of TRUE for ENABLE Indicates that the functirn
keys should appear as numbered values. A value of FALSE Indicates that the function kevs
shouid appear as ASCII character sequences. The function keys are said to have been enabled if
the value of ENABLE is TRUE.

Parameters:

TERMINAL Is an open flle handle on an input terminal Nle.

ENABLE indicates how function keys are to appear.

Exceptions:

USE __ERROR Is raised If TERMINAL is not the value of the attribute FILE _KIND of the node
associated with the flle identified by the parameter TERMINAL. USE _ERROR is
also raised (f the flle Identified by TERMINAL Is of mode OUT_FILE or
APPEND _ FILE.

STATUS _ERROR
Is raised If TERMINAL is not an open file handle.

Notes:
This procedure has no effect on read operations of the CAIS.TEXT _ 1O package.

5.3.56.12. Determining function key usage

function FUNCTION_KEYS_ENABLED (TERMINAL :in FILE_TYPE)
return BOOLEAN;

Purpose:
This function returns TRUE) the function keys are enabled, l.e., they appear In the input
terminal file as numbered values; otherwise It returns FALSE.

Parameters:

TERMINAL is an open file handle on an Input terminal file.

Exceptions:

USE _ERROR is raised If TERMINAL is not the value of the attribute FILE _KIND of the node
assoclated with the file identified by the parameter TERMINAL. USE _ERROR Is
siso raised If the flle identified by TERMINAL Is of mode OUT_FILE or
APPEND _FILE.

126

PROPOSED MIL-STD-¢ af~
31 JANUARY qur’

5.3.5.9. Determining the prompt string

function GET_PROMPT (TERMINAL :in FILE_TYPE)
return STRING;

Purpose:

This function returns the current prompt string for the input terminal fle ldentiied by
TERMINAL.

Parameters:

TERMINAL is an open flle handle identifying an input terminal file.

Exceptions:

USE _ERROR is raised If TERMINAL Is not the value of the attribute FILE__KIND or if

SCROLL or PAGE is not a value of the atiribute TERMINAL _KIND of the node
sssociated with the file identified by the parameter TERMINAL.

MODE _ERROR

s raised if the file identified by TERMINAL is not of mode IN_FILE or
INOUT _FILE.

STATUS _ERROR
Is raised if TERMINAL is not an open file handle.

5.3.5.10. Determining intercepted characters

function INTERCEPTED_CHARACTERS (TERMINAL :in FILE TYPE)
return CHARACTER_ARRAY.

Purpose:

This function returns the array CHARACTER _ ARRAY that indicates the characters that can
never appear in the input terminal Nie identifled by TERMINAL due to characteristics ol the
underlying system and the individual physical terminai. A value of TRUE indicates that the
character can appear; a value of FALSE Indicates that it cannot appear.

Parameters:

TERMINAL is an open file handle on an input terminal file.

Exceptions:

USE _ERROR Is raised I{f TERMINAL s not the value ol the attribute FILE_ KIND of the node
associated with the file identified by the parameter TERMINAL.

MODE_ERROR

Is raised if the flie identiNed by TERMINAL s not of mode IN_FILE or
INOUT _FILE

STATUS _ERROR
is ratsed \f TERMINAL Is not an open flie handle.

125

PROPOSED NL-STD-C AT
31 JANUARY 19R5

USE _ERROR is raised if the file ldentified by FILE has no log fle.

STATUS _ ERROR
is raised if FILE is not an open flle handle.

5.3.56.7. Determining the file size

function NUMBER_OF_ELEMENTS (FILE :in FILE_TYPE)
return NATURAL;

Purpose:

This function returns the number of data elements contained in the flle identifled by FILE. The
package that was used to write the elements determines what constitutes a data element.

Parameters:

FILE is an open file handie on a secondary storage or queue file.

Exceptions:

USE. _ERROR is raised If the value of the attribute FILE _ KIND of the node associated with the
file ldentified by FILE is TERMINAL or MAGNETIC _ TAPL.

STATUS _ERROR
is raised If FILE Is not an open file handle.

5.3.5.8. Setting the prompt string

procedure SET_PROMPT (TERMINAL :in FILE TYPE;
PROMPT :in STRING):

Purpose:
This procedure sets the prompt string for the output terminal file associated with the input
terminal file identified by TERMINAL. All future requests for a line of input from the input

terminal file identified by TERMINAL will first output the prompt string to the associated
output terminal file.

Parsmeters:

TERMINAL is an open file handle identifying an input terminal fie.

PROMPT fs the new value of the prompt string.

Exceptions:

USE _ERROR I8 raised If TERMINAL Is not the value of the attribute FILE _KIND or if
SCROLL or PAGE ias not a value of the attri wute TERMINAL _ KIND of the node
associated with the file identified by the pararmicter TERMINAL.

MODE_ERROR
is raised If the Nic Identified by TERMINAL Is not of mode IN_FILI: or
INOUT _FILE.

STATUS _FRROR
I8 raised If TERMINAL Is not an open flie handle.

124

PROPOSED NI -STI¢ A~
31 JANU ARY 1985

5.3.5.4. Removing a log file
procedure CLEAR _LOG(FILE :in FILE_TYPE):

Purpose:

This procedure removes the association established between the file iccntifled by FILE and its
log file.

Parameters:

FILE is an open flle handie on a flle that has a log fiie.

Exceptions:

STATUS _ERROR
is raised if FILE is not an open flle handle.

Notes:

If FILE is an open file handie and there is no log flle, this procedure has no effect.

5.3.5.5. Determining whether logging is specified

function LOGGING (FILE :in FILE_TYPE)
return BOCLEAN:

Purpose:

This function returns TRUE if the flie identified by FILE has a log file associated with It;
otherwise, it returns FALSE.

Parameters:

FILE is an open file handle.

Exceptions:

STATUS _ERRGR
is raised If FILE Is not an open file handle.

§.3.6.6. Determining the log file

function GET_LOG (FILE :in FILE_TYPE)
return FILE_TYPE;

Purpose:

This function returns an open file handle on the log flle currently associated with the file
identified by FILE.

Parameters:

FILE Is an open fle handle.

Exceptions:

123

PROPOSED MIL-STD-€ AfS
31 JANT ARY 18RS

5.3.5.2. Synchronizing program files with system files

procedure SYNCHRONIZE(FILE :in FILE_TYPE):

Purpose:
This procedure forces all data that has been written to the Internal file identified by FILE to be
transmitted to the external flle with which it is assoclated.

Parameters:

FILE Is an open flie handle on the internal flle to be synchronized.

Exceptions:
USE __ ERROR Is raised if the file identifled by FILE Is of mode IN _ FILE.

STATUS _ERROR
is ralsed if FILE is not an open flle handle.

5.3.5.3. Establishing a log file

procedure SET_LOG(FILE :in FILE_TYPE;
LOG_FILE :in FILE_TYPE);

Purpose:
This procedure associates a log flle identifled by LOG_ FILE with the file Identified by FILE.
All elements written to the internal flle identified by FILE are also written to the file identified
by LOG _FILE.

Parameters:

FILE is an open flle handle on the file which is to have a log flle.

LOG_FILE is an open flle handie on the file to which the log should be written.

Exceptions:

MODE _ ERROR
Is raised Iif the mode of either of the fies identified by FILE or LOG_FILE is
IN FILE.

USE_ERROR 18 raised If the nodes assoclated with the files Identified by FILE and LOG _FILE
do not have the same valyes for the attribute ACCESS _ METHOD or If the files do

not have compatible elements (implementation-defined).

STATUS _ERROR
is raised If FILE and LOG _FILE are not both open flle handles.

122

PROPOSED MIL.STD-C 4
31 JANUARY 10k

5.3.5.1. Obtaining an open node handle from a file handle

procedure DPEN_FILE WODE (FILE: in FILE_TYPE,
NODE : in out WODE_TYPE.
INTENT: in INTENTION;

TIME_LIMIT: in DURATION: =NO_DELAY) ;

Purpose:
This procedure returns an open node handle for the node associated with the file identifled by
FILE.

Parameters:
FILE is an open Nie handle.
NODE is a pode handle, initially closed. to be opened.
INTENT 18 the intent of subsequent operations on the node; the actual parameter takes the

form of an array aggregale.

TIME _ LIMIT specifies a time limit for the delay on walting for the uniocking of s node in
accordance with the desired INTENT.

Exceptlons:

NAME _ERROR
is raised Il the node to which a handle is to be opened Is Inaccessible or if it is
unobtainable and the given INTENT includes any intent other than EXISTINCE.

USE _ ERROR Is raised {f the specified INTENT is an empty array.

STATUS _ERROR
is raised if FILE is not an open file handie or if NODE is an open node handle.

LOCK _ERROR
is raised if the OPEN _FILE__ NODE operation is delayed beyond the specified
time limit due to the existence of focks in conflict with the specified intent.

ACCESS _ VIOLATION
is raised if the current process’ discretionary access control rights are insufficient to
obtain access to the node consistent with the specified INTENT.
ACCESS _ VIOLATION s raised only if the conditions for NAME _ERROR sre
not present.

SECURITY _ VIOLATION
Is raised Il the operation represents a8 violation of mandatory access controls.
SYCURITY __VIOLATION is raised only if the conditions for other exceptions are
not present.

12t

PROPOSED MIL-<TD-¢ a]~
31 JANUARY 1085

USE_ERROR I8 raised if TERMINAL I8 pot the value of the predefined attribute FILE _KIND,
SCROLL is not a value of the predefined attribute TERMINAL _KIND of the i}~
node assoclated with the flle Identified by the parameter TERMINAL, or there are
fewer than COUNT tab stops of the designated kind after the active position.

MODE _ERROR
is raised If the file identificd by TERMINAL is of mode IN_ FILE.

STATUS _ ERROR
Is raised if TERMINAL is not an open file handle.

DEVICE _ERROR
is raised if an input or outpul operation cannot be completed because of a
malfunclion of the underlying system.

Additional Interface:
procedure TAB(XIND: in TAB_ENUMERATION := HORIZONTAL:
COUNT: in POSITIVE := 1)
is
begin
TAB (CURRENT_OUTPUT, KIND. COUNT);
end TAB.

5.3.6.8. Sounding a terminal bell

procedure BELL (TERMINAL: in FILE_TYPE);
Purpose:

This procedure sounds the bell (beeper) on the terminat represented by the output terminal file
identified by TERMINAL.

Parameters:

TERMINAL is an open [lle handlc on an output terminal file.

Exceptions:

USE _ERROR s raised If TERMINAL I8 not the value ' ° the predefined attribute FILE _ KIND or
SCROLL is not a value of the predefincy attribute TERMINAL _ KIND of the file
node associated with the Nle identified by the parameter TERMINAL.

MODE _ERROR
Is raised Il the file identificd by TERMINAL is of mode IN _ FILE.

STATUS _ERROR
is raised If TERMINAL is not an open flle handle.

DEVICE_ERROR
= raized If an input or output operation cannot be completed because of &
maifunction of the underlying system.

Additional {nterface:

135

PROPOSED MIL-STD-CAls
31 JANUARY 1985

procedure BELL
is
begin
BELL (CURRENT_OUTPUT) ;
end BELL;

5.3.6.9. Writing to the terminal

procedure PUT(TERMINAL: In FILE TYPE;
ITEM: in CHARACTER) :

Purpose:
This procedure writes a single character to the output terminal flle identified by TERMINAL
and advances the active position by one column.

Parameter:

TERMINAL is an open file handle on an output terminal fije.

ITEM is the character to be written.

Exceptions:

USE _ ERROR s raised Il TERMINAL Is not the value of the predefined attribute FILE _ KIND or
SCROLL is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the file identified by the parameter TERMINAL.

MODE _ ERROR
is raised I the file identifled by TERMINAL is of mode IN _FILE.

STATUS _ERROR
Is raised if TERMINAL is not an open flie handle.

DEVICE _ERROR
is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interfaces:
procedure PUT(ITEN: in CHARACTER)

is
begin

PUT (CURRENT_OUTPUT, ITEM);
end PUT;
procedure PUT(TERMINAL: in FILE_TYPE;

ITEM: in sTRING)

is
begin

for INDEX in ITEM'FIRST .. ITEN'LAST loop

PUT (TERNINAL. ITEN(INDEX));

end loop;

end PUT;

procedure PUT(STEM: In STRING)
is

136

PROPOSIED MIL-STD-C Al~
41 JANUARY 1985

begin
PUT (CURRENT_OUTPUT, ITEM)
end PUT:

Notes:
After a character is written In the rightmost position of a row, the active position is the first
position of the next row.

§.3.6.10. Enabling echo on s terminal

procedure SET_ECHO(TERNINAL: in FILE TYPE;
TO: in BOOLEAN := TRUE);

Purpose:
This procedure establishes whether characters which appear in the input terminal file identified
by TERMINAL are echoed to its associated output terminal file. When TO is TRUE, each
character Is echoed to the output terminal file. When TO is FALSE, each character which
appears In the [nput terminal file is not echoed to its assoclated output terminal file.

Parameters:

TERMINAL is an open file handle on an input terminal file.

TO indicates whether or not to echo input characters.

Exceptions:

USE __ERROR s ralsed If TERMINAL is not the value of the predefined attribute FILE _ KIND or
SCROLL Is not s value of the predefined attribute TERMINAL _KIND of the file
node associated with the flle identified by the parameter TERMINAI..

MODE _ ERROR
Is ralsed If the file identiled by TERMINAL is of mode OUT_FILE or
APPEND _FILE.

STATUS _ERROR
is ratsed If TERMINAL is not an open flile handle.

DEVICE _ ERROR
Is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:
procedure SET_ECHO(TO: in BOOLEAN := TRUE)

is
begin

SET_ECHO (CURRENT_INPUT, TO);
end SET_ECHD;

137

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

5.3.6.11. Querying echo on a terminal

function ECHD(TERMINAL: in FILE_TYPE)
return BOOLEAN;

Purpose:
This function returns TRUE if echo Is enabled; otherwise It returns FALSE.

Parameters:

TERMINAL is an open flle handle on an input terminal file.

P Exceptions:

) USE _ ERROR s ralsed If TERMINAL Is not the value of the predefined attribute FILE _ KIND or
SCROLL is not a value of the predefined attribute TERMINAL _ KIND of the file
; node associated with the file |dentified by the parameter TERMINAL.

MODE__ERROR

| is raised If the file Identified by TERMINAL Is of mode OUT_FILE or
APPEND _FILE.

STATUS _ERROR
is raised If TERMINAL Is not an open file handle.

DEVICE _ ERROR

is raised iIf an input or output operation cannot be completed because of a
maifunction of the underlying system.

Additional Interface:
function ECHO return BOOLEAN

is
! begin
return ECHO(CURRENT_INPUT);
L end ECHD;

5.3.6.12. Determining the number of function keys

function MAXIMUM_FUNCTION_KEY(TERMINAL: in FILE_TYPE)

r return NATURAL;
Purpose:
This function returns the maximum function key identification number that can be returned by
t a2 GET operation on the Input terminal file identified by TERMINAL.

i Parameters:

TERMINAL is an open flle handle on an input terminal file.

Exceptions:

USE _ERROR s raised If TERMINAL is not the value of the predefined atiribute FILE__KIND or

} 138

L‘h o e F- . a J . —

PROPOSED MIL-<TID-¢ A~

31 JANU ARY 085

SCROLL 1s not a value of the predefined attribute TERMINAL __KIND of the fle
node associated with the Nie Identifled by the parameter TERMINALI,.

MODE _ERROR
is raised If the file identified by TERMINAL s of mode OUT_FILE or
APPEND _ FILE.

STATUS _ERROR
is raised if TERMINAL Is not an open file handle.

DEVICE _ ERROR

is ralsed If an Input or output operation cannot be completed because of a
malfunction of the underlying systein.

Additional Interface:

function MAXIMUM_FUNCTION KEY return NA RAL
is
begin

return MAXIMUM_FUNCTION_KEY (CURRENT_ NPUT)
end MAIMUM_FUNCTION_KEY:

5.3.6.13. Reading s character from a terminal

procedure GET (TERMINAL: in
ITEN:
KEYS:

FILE TYPE;
out CHARACTER;
out FUNCTION_KEY DESCRIPTOR) ;
Purpose:

This procedure reads elther a single character into ITEM or a single function key identification
number into KEYS from the input terminal file identified by TERMINAL.

Parameters:
TERMINAL is an open flle handle on an input terminal file.
ITEM Is the character that was read.
KEYS is the description of the function key tdentification number that was read.
Exceptions:

USE _ERROR s raised if TERMINAL is not the value of the predefined attribute FILE__ KIND or

SCROLL is not s value of the predefined atiribute TERMINAL _ KIND of the file
node assoclated with the flic identified by the parameter TERMINAL..

MODE _ERROR
Is raised If the file Identified by TERMINAL Is of mode OUT_FILE or
APPEND _FILE.

STATUS _ERROR

is ralsed IF TEHMINAL I8 not an open file handle.

130

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

DEVICE _ERROR
Is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additjonal Interface:

procedure GET(ITEM: Out CHARACTER;
KEYS: out FUNCTION_KEY_DESCRIPTOR)

is
begin

GET (CURRENT_INPUT, ITEN. KEYS):
end GrT;

Notes:
This procedure will only return function key identification numbers in KEYS if function keys
have been enabled (see Section 5.3.5.11). Otherwise the characters in the ASCil character
sequence representing the function key will appear one at a time in I TEM.

65.3.6.14. Reading all available characters from a terminal

procedure GET(TERMINAL: in FILE_TYPE;

ITEM: out STRING;
LAST: out NATURAL;
KEYS: out FUNC!‘IO)!_KE‘Y_DESCRIPTDR);

Purpose:
This procedure successively reads characters and function key identification numbers into 1ITEM
and KEYS respectively, until either all positions of ITEM or KEYS are filled or there are no
more characters available in the input terminal flle. Upon completion, LAST contains the index
of the last position in ITEM to contain a character that has been read.

Parameters:

TERMINAL is an open flle handle on an input terminal fle.

i ITEM is Lthe string of characters that were read.
‘ LAST is the position of the last character read In ITEM.

KEYS is a description of the function key Identification numbers that were read.
" Exceptions:

USE _ ERROR s raised If TERMINAL is not the value of the predefined attribute FILE_ KIND or
SCROLL Is not s value of the predefined attribute TERMINAL _KIND of the fiie
node associated with the file identified by the parameter TERMINAL.

MODE_ ERROR :
i is raised If the file identificd by TERMINAL is of mode OUT_FILE or
APPEND _FILE.

STATUS _ERROR
r Is ralsed If TERMINAL is not an open flle handle.

140

PROPOSED MIL-STD-C A~
31 JANU ARY 1085

DEVICE _ ERROR
is raised if an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

procedure GET(ITEM: out STRING:
LAST: Out MATURAL:
KEYS: out FUNCTION_KEY_DESCRIPTOR)

is
begin

GET (CURRENT _INPUT, ITEM, LAST. KEYS);
end GET;

Notes:
This procedure will only return function key identification numbers in KEYS If function keys
have been enabled (see Section 5.3.5.11). Otherwise the characters in the ASCII character
sequence representing the function key will appear in ITEM. If there are no elements avallable
for reading from the input terminal file, then LAST has a value one less than ITEM'FIRST and
FUNCTION_KEY__COUNT(KEYS) (see Section 5.3.8.15) Is equal to 3ero.

5.3.6.15. Determining the number of function keys that were read

function FUNCTION_KEY COUNT(KEYS: in FUNCTION_KEY DESCRIPTOR)
return NATURAL;

Purpose:
This function returns the number of function keys described in KEYS.

Parameters:

KEYS ts the function key descriptor being queried.

Exceptions:
None

5.3.6.16. Determining function key usage

procedure FUNCTION_KEY (KEYS: in FUNCTION_KEY DESCRIPTOR;
INDEX: in POSITIVE:
KEY _IDENTIFIER: out POSITIVE;
POSITION: Out NATURAL) ;

Purpoee:
This procedure returns the identification number of a function key and the position in the string
(read at the same time as the function keys) of the character foliowing the function key.

Parameters:
KEYS is the description of the function key Identification numbers that were read.
INDEX is the index in KEYS of the function key to be queried.
111
P —a PSP -

PROPOSED MIL-STD-C AIS
31 JANUARY 1985

KEY _IDENTIFIER
is the identification number of a function key.

POSITION Is the position of the character read after the function key.

Exceptions:

CONSTRAINT _ERROR
is raised If INDEX Is greater than FUNCTION _KEY _ COUNT(KEYS).

5.3.6.17. Determining the name of a functior_key

procedure FUNCTION KEY_NAME (TERMINAL: in FILE TYPE:
KEY_IDENTIFIER: in POSITIVE;
KEY_NAME : out STRING;
LAST: out POSITIVE) .

Purpose:

This function returns (in KEY __NAME) the s'-ing Identification of the fu
designated by KEY _IDENTIFIER. It also returns the Index of the las
function key name in LAST.

tion key sequence
character of the
Parameters:

TERMINAL Is an open file handle on an input terminal flle.

KEY _ IDENTIFIER
is the identification number of a function key.

KEY _ NAME Is the name of the key designated by KEY _IDENTIFIER.
LAST is the position iIn KEY _ NAME of the last character of the function key name.

Exceptions:

USE __ERROR I8 raised If TERMINAL Is not the value of the predefined attribute FILE _KIND or
SCROLL is not a value of the predefined attribute TERMINAL _ KIND of the file

node associated with the file identifled by the parameter TERMINAL.

MODE _ERROR
is raised iIf the file identified by TERMINAL is of mode OUT_FILE or
APPEND _ FILE.

STATUS _ERROR
is raised If TERMINAL Is not an open flle haqdle.

DEVICE _ERROR

Is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying xystem.

CONSTRAINT _ERROR
is raised If the value of KEY_ IDENTIFIER is greater than

142

PROPOSID MIL-NTD-C Al~
31 JANUARY 1085

MAXIMUM _ FUNCTION_KEY(TERMINAL) or the string identification of the
function key sequence is longer than the string KEY__ NAME.

Additlonal Interface:
procedure FUNCTION KEY_MAME

(KEY_IDENTIFIER: in POSITIVE;
KEY_NAME : out STRING;
LAST: out POSITIVE)
is
begin

FUNCTION_KEY_NAME (CURRENT INPUT,

KZY_IDENTIFIER. KEY_NAME, LAST):
end FUNCTION_KEY_NAME;

5.3.6.18. Advancing the active position to the next line

procedure NEV_LINE (TERMINAL: in FILE_TYPE:
COUNT: in POSITIVE := 1);

Purpose:

This procedure advances the active position in the output terminal flle to column one, COUNT
lines after the active position.

Parameters:

TERMINAL Is an open flle handle on an output terminal file.

COUNT s the number of lines to advance.

Exceptions:

USE _ERROR I8 raised It TERMINAL is not the value of the predefined attribute FILE _KIND or

SCROLL is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the file identified by the parameter TERMINAL.

MODE _ERROR
is raised If the file identified by TERMINAL is of mode IN _ FILE.

STATUS _ERROR
is ralsed If TERMINAL Is not an open file handie.

DEVICE _ERROR

is raised if an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:
procedure NEW_LINE(COUNT:in PUSITIVE := 1)

is
begin

NEW_LINE (CURRENT _OUTPUT, COUNT);
end wEV_LINE;

143

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

5.3.8.18. Advancing the active position to the next page

procecure NEV_PAGE (TERMINAL: in FILE TYPE):

Purpose:
This procedure sdvances the active position in the cutput terminal file to the first column of the
firsc line of 8 new page.

Parameters:

TERMINAL s an open file handie on an output terminal file.

Exceptions:

USE _ ERROR s raised {f TERMINAL Is not the value of the predefined attribute FILE _KIND or
SCROLL is not a value of the predefined atiribute TERMINAL _KIND of the file
node associated with the file identified by the parameter TERMINAL.

MODE _ ERROR
is raised if the file identified by TERMINAL is of mode IN__FILE.

STATUS _ERROR
is raised If TERMINAL is not an open flle handle.

DEVICE _ ERROR
is raised if an Input or output operation cannot be compieted because of a
malfunction of the underlying system.

Additional Interface:
procedure NEV_PAGE

L]
begin

NEW_PAGE (CURRENT_OUTPUT)
end NEW_PAGE;

5.3.7. Package PAGE_TERMINAL

This package provides the functionality of a page terminal. A page terminal consists of two devices:
an input device (keyboard) and an associated output device (display). A page terminnl may be
accessed elther as a single flle of mode INOUT _FILE or as two files: one of mode IN_FILE (the
keyboard) and the other of mode OUT __FILE (the display). As keys are pressed on the page terminal
keyboard, the transmitted characters are made available for reading by the
CAIS.PAGE _ TERMINAL package. As characters are written o the page terminal fic. they are
displayed on the output device.

The display for & page terminal has positions in which printable ASCH characters may be craphically
displayed. The positions are arranged into horizontal rows and vertical columns. Each position Is
idcntifiable by the combination of & row number and 8 column number. A display has a fixcd number
of rows and columns. The rows snd columns of a display are identified by positive numbers. The
rows are Incrementally Indexced starting with one st the top of the display. The columns are
incrementally indexed starting with one at the left side of the display.

144

PROPOSED MIL-~TD-¢ Al
31 JANL ARY 10k

The active position on the display of a page terminal is the position at which the next operation will
be performed. The active position Is said to advance If (1) the row number of the new position is
greater than the row number of the oid pogition or (2) the row number of the new position Is the same
as the row number of the old position and the new position has a greater column number. Similarly, a
position is said to precede the active position If (1) the row number of the position is less than the row
number of the active position or (2) the row number of the position is the same as the row number of
the active position and the column number of the position is smaller than the colutun npumber of the

" sctive position.

5.3.7.1. Types, subtypes and constants

subtype FILE_TYPE is CAIS.IO_DEFINITIONS.FILE_TYPE;

subtype FUNCTION KEY DESCRIPTOR is .
CAIS.I0_DEFINITIONS.FUNCTION_KEY DESCRIPTOR:

subtype POSITION_TYPE is CAIS.ID_DEFINITIONS.POSITION TYPE;
subtype TAB_ENUMERATION is CAIS.IC_DEFINITIONS.TAB_ENUMERATION;

type SELECT_ENUMERATION is
(FROM_ACTIVE_POSITION_TO_END.
FROM_START_TO_ACTIVE_POSITION,
ALL_POSTTIONS) :

type GRAPHIC_RENDITION_ENUMERATION is
(PRIMARY_RENDITION,
BOLD,
FAINT,
UNDERSCORE,
SLOW_BLINK,
RAPID_ELINK,
REVERSE_INMAGE) ;

type GRAPHIC_RENDITION_ARRAY is arrsy (GRAPHIC_RENDITION_ENUMERATION)
of BOOLEAN;

DEFAULT_GRAPHIC RENDITION : constant GRAPHIC RENDITION_ARRAY
:= (PRIMARY_RENDITION => TRUE, BOLD..REVERSE_IMAGE => FALSE);

FILE__TYPE describes the type for file handles. FUNCTION__KEY _DESCRIPTOR is used to
obtain Information about function keys read from a terminal. POSITION _ TYPE describes the type
of a position on a terminal. TAB__ ENUMERATION Is used to specify the kind of tab stop to be set.
SELECT_ENUMERATION s used in ERASE_IN_DISPLAY and ERASE_IN_LINE w0
determine the portion of the display or line to be erased.
GRAPHIC _RENDITION _ENUMERATION, GRAPHIC _ RENDITION _ ARRAY. and
DEFAULT _ GRAPHIC _RENDITION are used to determine display characteristics of printable
characters.

5.3.7.2. Setting the active position

procedure SET_POSITION(TERMINAL : in FILE_TYPE;
POSITION : in POSITION_TYPE):

Purpose:

This procedure advances the active position to the specified POSITION on the output terminal
file IdentifNed by TERMINAL.

145

PROPO=ED MIL-STD-CAIS
31 JANUARY 1985

Parameters:

TERMINAL Is an open flle handle oh an output terminal fle.

POSITION is the new active position in the output terminal file.

Exceptlons:

USE__ERROR s raised If TERMINAL is not the value of the predefined attribute FILE_KIND
or PAGE I8 not a value of the predefined atiribute TERMINAL __KIND of the fiie
node associated with the flle identifled by the parameter TERMINAL.

MODE_ERROR
is raised If the file identified by TERMINAL Is of mode IN _FILE.

STATUS _ERROR
is raised If TERMINAL Is not an open file handle.

LAYOUT _ERROR
is raised (f the position does not exist on the terminal.

DEVICE _ERROR
Is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

procedure SET_POSITION(PGSITION : {p POSITION_TYPE)

.
begin

SET_POSITION (CURRENT_OUTPUT, POSITION);
end SET_POSITION;

5.3.7.3. Determining the active position

function GET_POSITION(TERMINAL : in FILE_TYPE)
return POSITION_TYPE:

Purpose:
This function returns the active position of the outpn’ terminal file identificd by TERMINAL.
Parameters:

TERMINAL Is an open file handle on sn output terminal file.

Exceptions:

USE__ERROR |Is ralsed If TERMINAL Is not the value of the predefined attribute FILE _ KIND
or PAGE Is not a value of the predefined attribute TERMINAL __ KIND of the file
node associated with the file identified by the parameter TI;RMINAL.

MODE __ERROR
Is ratsed If the file identified by TERMINAL is of mode IN_FILE.

146

PROPOSED MIL-STD-C Ajs
31 JANUARY 1985

STATUS _ERROR
is raised If TERMINAL is not an open flle handle.

DEVICE _ ERROR
is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:
function GET_POSITION return POSITION_TYPE
is
begin

return GET_POSITION (CURRENT OUTPUT);
end GET_POSITION;

65.3.7.4. Determining the size of the terminal

function TERMINAL SIZE(TERMINAL : in FILE_TYPE)
return PUSITION_TYPE;

Purpose:
This function returns the maximum row and maximum column of the output terminal flie
identified by TERMINAL.

Parameters:

TERMINAL is an open flie handle on a terminal flle.

Exceptions:

USE _ ERROR s raised If TERMINAL is not the value of the predefined attribute FILE _KIND
or PAGE Is not a value of the predefined attribute TERMINAL _KIND of the file
node associated with the flle identified by the parameter TERMINAL..

MODE _ ERROR
is raised if the file identified by TERMINAL is of mode IN_FILE.

STATUS _ERROR
Is raised If TERMINAL Is not an open file handle.

DEVICE _ ERROR

is ralsed if an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

function TERMINAL SIZE
return POSITION TYPE
is
begin
return TERMINAL_$IZE (CURRENT OUTPUT):
end TERMINAL_SIZE;

147

PROPOSED MIL-STD-C AL
31 JANUARY 1085

65.3.7.5. Setting a tab stop

procedure BET_TAB(TERMINAL : in FILE_TYPE:
KIND : in TAB_ENUMERATION := HORIZONTAL)

Purpose:
This procedure establishes a horizontal tab stop at the column of the active position If KIND is
HORIZONTAL, or a vertical tab stop at the row of the active position if KIND is VERTICAL.

Parameters:

TERMINAL is an open flle handle on a terminal file.

KIND is the kind (horizontal or vertical) of tab to be set.

Exceptions:

USE __ERROR is raised If TERMINAL Is not the value of the predefined attribute FILE__KIND
or PAGE is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the file identified by the parameter TERMINAL.

MODE _ ERROR
is raised if the filc identified by TERMINAL is of mode IN _ FILE.

STATUS _ERROR
is ralsed If the Nie identifled by TERMINAL is not an open file handle.

DEVICE _ ERROR
is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

procedure SET_TAB(KIND : in TAB_ENUMERATION := MORIZONTAL)
is
begin
SET_TAB (CURRENT_OUTPUT, KIND):
end SET_TAB;

5.3.7.6. Clearing a tab stop

procedure CLEAR_TAB(TERMINAL : in FILE_TYPE:
XIMp : In TAB_ENUMERATION := HORIZONTAL);

Purpose:
This procedure removes 3 horizontal tab stop from the column of the active position If IKIND is
HORIZONTAL or a VERTICAL tab stop from the row of the active position I KIND is
VERTICAL.

Parameters:

TERMINAL Is an open file handle on a terminal file.

148

PROPOSED MIL-STD-C AN
3t JANU ARY 1885

MODE _ ERROR
Is raised i the file identified by TERMINAL is of mode IN_ FILE.

STATUS _ERROR
is raised If TERMINAL is not an open file handle.

DEVICE _ERROR
Is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

procedure ERASE_IN_LINE(SELECTION: in SELECT ENUMERATION)
is
begin
ERASE_IN_LINE (CURRENT_OUTPUT, SELECTION);
end ERASE_IN_LINE;

5.3.7.23. Inserting space characters in a line

procedure INSERT _SPACE(TERMINAL: in FILE TYPE:
COUNT : in POSITIVE := 1);

Purpose:
This procedure inserts COUNT space characters into the active line at the active position. The
character at the active position and adjacent characters are shifted to the right. The COUNT
rightmost characters on the line are lost. The active position is not changed.

Parameters:

TERMINAL is an open Mle handle on an output terminal file.

COUNT is the number of space characters to be inserted.

Exceptlons:

USE_ERROR s raised If TERMINAL is not the value of the predefined attribute FILE _KIND
or PAGE Is not a value of the predefined attribute TERMINAL __KIND of the file
node associated with the flle identifled by the parameter TERMINAL, or il the
value of COUNT is greater than the number of columns Including and following the
sctive position.

MODE _ ERROR
is raised If the flle identified by TERMINAL Is of mode IN _ FILE.

STATUS _ERROR
Is raised If TERMINAL is not an open file handlie.

DEVICE _ERROR

is raised if an inpul or output operation cannot be completed because of s
malfunction of the undcrlying system.

182

PROPOSED MIL-STD-(AIS
31 JANT'ARY 1985

TERMINAL is an open flle handle on an output terminal file.

SELECTION is the portion of the display to be erased.

Exceptions:

USE_ ERROR s raised If TERMINAL is not the value of the predefined attribute FILE _ KIND
or PAGE Is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the flle identified by the parameter TERMINAL.

MODE _ERROR
is ralsed If the file identified by TERMINAL is of mode IN_ FILE.

STATUS _ERROR
is raised If TERMINAL is not an open file handle.

DEVICE _ERROR

is raised If an Input or output operation cannot be completed because of a
malfunction of the underiying system.

Add:tional Interface:

procedure ERASE_IN_DISPLAY(SELECTION : in SELECT_ENUMERATION)
is
begin
ERASE_IN_DISPLAY(CURRENT _OUTPUT, SELECTION):
end ERASE_IN DISPLAY;

5.3.7.22. Erasing characters in a line

procedure ERASE IN_LINE(TERMINAL: in FILE_TYPE;
SELECTION: in SELECT ENUMERATION);

Purpose:

This procedure erases the characters in the active line as determii ed by the active position and

the given SELECTION (including the active position). After eresure erased positions have space
characters. The active position is not changed.

Parameters:

TERMINAL is an open file handle on an output terminal file.

SELECTION is the portion of the line to be erased.

Exceptions:

USE_ERROR Is raised If TERMINAL is not the value of the predefined atiribute FILE_ KIND
or PAGE is not a value of the predefined attribute TERMINAL _ KIND of the file
node assocliated with the flle Identified by the paramecter TERMINAL. or If the

value of COUNT is greater than the number of columns Including and following the
active position.

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

5.3.7.20. Erasing characters in a line

procedure ERASE_CHARACTER (TERMINAL: in FILE TYPE;
COUNT: in POSITIVE := 1);

Purpose:
This procedure replaces COUNT characters on the active line with space characters starting at
the active position and advancing toward the end position. The active position is not changed.

Parameters:

TERMINAL is an open flle handle on an output terminal fle.

COUNT is the number of characters 1o be erased

Exceptions:

USE _ERROR is raised If TERMINAL is not the value of the predefined attribute FILE_ KIND
or PAGE Is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the flle identified by the parameter TERMINAL, or il the
value of COUNT Is greater than the number of positions in the active line including
and after the active position.

MODE _ ERROR
is raised If the fiie identified by TERMINAL is of mode IN_ FILE.

STATUS _ERROR
Is raised if the file identified by TERMINAL is not an open file handle.

DEVICE _ERROR
is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Addlitional Interaces:

procedure ERASE_CHARACTER(COUNT : in POSITIVE :=1)
is
begin
ERASE_CHARACTER (CURRENT _OUTPUT, COUNT) ;
end ERASE_CHARACTER;

5.3.7.21. Erasing characters in a display

procedure ERASE_IN_DISPLAY(TERMINAL: in FILE TYPE;
SELECTION: {in SELECT_ENUMERATION) ;

Purpose:
This procedure erases the characters in the display as determined by the active position and the

given SELECTION (including the active position). After erasure erased positions have space
characters. The active position is not changed.

Parameters:

—_— -

PROPOSED MUASTD-C AlS
31 JANL ARY 1aws
Additional interface:
procedure DELETE_CHARACTER(COUNT: in POSITIVE :=1)
is
begin
DELETE_CHARACTER (CURRENT_OUTPUT, COUNT);
end DELETE_CHARACTER;

5.3.7.19. Deleting lines

procedure DELETE_LIME(TERMINAL: in FILE_TYPE:
COUNT : in POSITIVE:=1):

Purpose:
This procedure deletes COUNT lines starting at the active position and advancing toward the
end position. Adjacent lines are shifted from the bottom toward the active position. Open space
at the bottom of the display is filled with erased lines. The active position is not changed.

Parameters:

TERMINAL is an open file handle on an output terminal file.

COUNT Is the number of lines to be delcted.

Exceptlons:

USE _ERROR s raised iIf TERMINAL is not the value of the predefined attribute FILE _KIND
or PAGE is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the fie identified by the parameter TERMINAL, or if the
value of COUNT s greater than the number of rows including and following the
active position.

MODE _ ERROR
is raised if the file identifled by TERMINAL Is of mode IN _FILE.

STATUS _ERROR
Is raised if TERMINAL Is not an open file handle.

DEVICE _ ERROR
is raised if an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

procedure DELETE_LINE(COUNT: §n POSITIVE :x 1)

is
begin

DELETE_LINE (CURRENT OUTPUT, COUNT):
end DELETE_LINE:

159

PROPOSED MIL-STD-CAIS
3t JANUARY t9R5

DEVICE _ ERROR
is raised If -an input or output operation cannot be completed b~-cause of a
malfunction of the underlying system.

CONSTRAINT _ ERROR
Is vraised If the value of KEY_IDENTIFIER 8 greater than
MAXIMUM _ FUNCTION _KEY(TERMINAL) or the string identification of the
function key sequence is longer that the string KEY _ NAME.

Additional Interface:

procedure FUNCTION KEY NAME (KEY_IDENTIFIER : in POSITIVE:
KEY_NAME : out STRING;
LAST : out POSITIVE;)

is
begin
FUNCTION_KEY_NAME (CURRENT INPUT,
KEY_IDENTIFIER, KEY_NAME, LAST);
end FUNCTION KEY_NAME;

5.3.7.18. Deleting characters

procedure DELETE_CHARACTER(TERMINAL: in FILE_TYPE:
COUNT: in POSITIVE := 1);

Purpose: B
This procedure deletes COUNT characters on the active line starting at the active position and
sdvancing toward the end position. Adjacent characters to the right of the actlve position are
shifted left. Open space on the right Is filled with space characters. The active position Is not
changed.

Parameters:

TERMINAL Is an open file handle on an output terminal flle.

COUNT Is the number of characters to be deleted.

Exceplions:

USE _ERROR s ralsed if TERMINAL Is not the value of the predefined attribute FILE _ KIND
or PAGE Is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the file dentified by the parameter TERMINAL, or if the
value of COUNT Is greater than the number of positions in the active line Including
and foliowing the active position.

MODE _ERROR
is raised If TERMINAL is of mode IN _FILE.

STATUS _ERROR
Is ralsed If the file identifled by TERMINAL is not an open file handle.

DEVICE _ERROR
Is ralsed I an Input or output operation cannot be completed because of a
malfunction of the underlying system.

158

PROPOSED MIL-STD-C Al-
31 JANUARY 1985

Parameters:
KEYS is the d&cr\puon of the function key numbers that were read.
INDEX is the index in KEYS of the function key to be queried.
KEY _IDENTIFIER

is the identification number of a function key.

POSITION is the position of the character read after the function key.

Exceptions:

CONSTRAINT _ ERROR
is raised if INDEX is greater than FUNCTION _KEY__COUNT(KEYS) .

65.3.7.17. Determining the name of a function key

procedure FUNCTION_KEY_WAME (TERKINAL :in FILE_TYPE;
KEY_IDENTIFIER : in POSITIVE;
KEY_NAME : out STRING;
LAST : out POSITIVE);

Purpose:

This function returns (in KEY _ NAME) the string Identification of the function key designated

by KEY _IDENTIFIER. It also returns the index of the Iast character of the function key name
in LAST.

Parameters:
TERMINAL is an open file handle on an input terminal file.

KEY _IDENTIFIER
is the identification number of a function key.

KEY _NAME s the name of the key designated by KEY _ IDENTIFIER.
LAST is the position in KEY _ NAME of the last character of the function key name.

Exceptions:

USE _ ERROR s ralsed If TERMINAL Is not the value of the predefined attribute FILE _ KIND or
PAGE is not a value of the predeflned attribute TERMINAL _KIND of the flie
node associated with the flle identifled by the parameter TERMINAL.

MODE _ERROR

Is raised If the file Identified by TERMINAL Is of mode OUT_FILE or
APPEND _FILE.

STATUS _ERROR
is raised It TERMINAL Is not an open file handle.

157

PROPOSFD MIL-STD-CAIS
31 JANUARY 1985

is raised if the file identified by TERMINAL Is of mode OUT_FILE or
APPEND _ FILE.

STATUS _ERROR
is raised if TERMINAL is not an open flle handle.

DEVICE _ ERROR :
is ralsed if an Input or output operation cannot be completed because of a

malfunction of the underlying system.

Additional Interface:

procedure GET(ITEM : out STRING;
LAST : out NATURAL;
KEYS : out FUNCTION XEY_DESCRIPTUR)

is
begin

GET (CURRENT _INPUT, ITEM, LAST, KEYS):
end GET;

Notes:
This procedure wlll only return function key identification numbers in KEYS If function keys
have been enabled (see Section 5.3.5.11),. Otherwise the characters in the ASCII character
sequence representing the function key will appear in ITEM. If there are no elements available
for reading from the input terminal Nle, then LAST hss a value one less than ITEM'FIRST and
FUNCTION __KEY_ COUNT(KEYS) (see Section 5.3.7.15) is equal to zero.

5.3.7.15. Determining the number of function keys that were read

function FUNCTION_KEY_COUNT(KEYS : in FUNCTION_XEY_DESCRIPTUR)
return NATURAL,

Purpose:
This function returns the number of function keys described in KEYS.

Parameters:

KEYS is the function key descriptor being queried.

Exceptions:
None.

5.3.7.16. Determining function key usage

procedure FUNCTION_KEY (KEYS :in FUNCTION_KEY_DESCRIPTOR;
INDEX : in POSITIVE;
KEY_IDENTIFIER : out POSITIVE;
POSITION : out NATURAL);
Purpose:

This procedure returns the ldentification number of & function key and the position in the string
(read at the same time as the funct! ~n keys) of the character following the function key.

156

PROPOSED MIL-<TD-C Als
31 JANUARY 198,

STATUS_ERR' R
I+ raised If TERMINAL is not an open flle handle.

DEVICE _ ERROR
is raised If an Input or output operation cannot be completed because of a

ma function of the underlying system.

Additional Interface:

procedure GET(ITEM : out CHARACTER;
XEYS : out FUNCTION_KEY_DESCRIPTOR)
is
begin
GET (CURRENT _INPUT, ITEM, KEYS);
end GET:

Notes:
This procedure will only return function key identification numbers in KEYS If function keys
have been enabled (see Section 5.3.5.12). Otherwise the characters in the ASCII character
sequence representing the function key will appear one at a time In ITEM.

5.3.7.14. Reading all available characters from a terminal

procedure GET(TERNINAL : in FILE_TYPE:

ITEM : out STRING;
LAST : OUt NRATURAL:
KEYS : out FUNCTION_KEY DESCRIPTOR);

Purpose:
This procedure successively reads characters and function key identification numbers Into ITEM
snd KEYS respectively until either all positions of ITEM or KEYS are filled or there are no
more characters avallable In the input terminal flle. Upon completion, LAST contains the index
of the last position in ITEM to contain a character that has been read.

Parameters:

TERMINAL Is an open flle handie on an Input terminal flle.

ITEM Is a string of the characters that were read.

LAST is the position of the last character read In ITEM.

KEYS Is the description of the function key identification numbers that were read.
Exceptions:

USE_ERROR Is ralsed If the file)dentiied by TERMINAL Is not the value of the predefined
attribute FILE_KIND or PAGE is not a value of the predefined attribute
TERMINAL _KIND of the file node associated with the flic identified by the
parameter TERMINAL.

MODE _ ERROR

155

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

USE_ ERROR s raised if TERMINAL is not the value of the predefined attribute FILE__KIND
or PAGE Is not a value of the predefined attribute TERMINAL _ KIND of the file
node assoclated with the flie identified by the parameter TERMINAL.

MODE _ ERROR
Is raised {f the file identified by TERMINAL is of mode OUT_FILE or
APPEND _ FILE.

STATUS _ ERROR
is raised if TERMINAL is not ap open file handle.

DEVICE _ERROR
is raised if an Input or output operation cannot be completed bec: use of a
malfunction of the underlying system.

Additional Interface:

function MAXINUN_FUNCTION_KEY
return NATURAL

is
begin

return MAXINUN_FUNCTION_KEY (CURRENT INPUT) .
end AXINUN_FUNCTION KEY:

5.3.7.13. Reading s character from a terminal

procedure GET(TERMINAL : in FILE_TYPE;
ITEN : out CHARACTER;
KEYS : out FUNCTION_KEY DESCRIPTUR);

Purpose:
This procedure reads either a single character into ITEM or a single function key identification
number into KEYS from the input terminal file identified by TERMINAL.

Parameters:

TERMINAL is an open file handle on an input terminal file.

ITEM is the character that was read.
KEYS describes the function key that was read.
Exceptions:

USE_ERROR s raised If TERMINAL Is not the value of the predefined attribute FILE _KIND
or PAGE is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the fle identified by the parameter TERMINAL.

MODE _ERROR

Is raiscd If the file identified by TERMINAL is of mode OUT_FILE or
APPEND _FILE.

154

PROPOSED MIL-STD-C A~
31 JANUARY 1985

5.3.7.11. Querying echo on_a terminal

function ECHO(TERMINAL : in FILE_TYPE)
return BOOLEAN:

Purpose:
This function returns TRUE il echo is enabied; otherwise it returns FALSE.
Parameters:

TERMINAL Is an open flie handle on an lnput terminal Nle.

Exceptions:

USE_ERROR is raised If TERMINAL is not the value of the predefined attribute FILE _KIND
or PAGE is not a value of the predefined attribute TERMINAL _ KIND of the file
node associat.:d with the file identified by the parameter TERMINAL.

MODE _ERROR
is raised if the file identified by TERMINAL is of mode OUT_FILE or
APPEND _FILE.

STATUS _ERROR
Is rai=d If TURMINAL is not an open file handle.

DEVICE _ERROR
is raised if an input or output operation cannot be compicted because of a
malfunction of the underlying system.

Additiona] Interface:

function ECHO
return BOOLEAN

is
begin

return ECHO (CURRENT_ INPUT);
end ECHD;

5.3.7.12. Determining the number of function keys

function MAXIMUM_FUNCTION_KEY(TERMINAL : in FILE_TYPE)
return NATURAL;

Purpose:
This function returns the maximum function key identification number that can be returned by

a GET operation In the input terminal fle Identified by TERMINAL.

Paramcters:

TERMINAL Is an open file handle on an Input terminal file.

Exceptions: ’

153

g

e -

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Notes:

After a character Is written In the rightmost position of a row, the active position I8 the first
position of the next row.

6.3.7.10. Enabling echo on a terminal

procedure SET_ECHO(TERMINAL : in FILE_TYPE;

TO : in BOOLEAN := TRUE):

Purpose:

This procedure establishes whether characters which appear In the input terminal fiic identified
by TERMINAL are echoed to its associated output terminsl file. When TO Is TRUE. each
character which appears in the input terminal flle is echoed to the output terminal filc. When

TO is FALSE, each character which appears in the Ilnput terminal flle Is not echoed to its
associated output terminal [ile.

Parameters:
TERMINAL is an open file handle on an input terminal file.
TO indicates whether or not to echo input characters.
Exceptions:

USE_ERROR s raised if TERMINAL is not the value of the predefined attribute FILE _KIND

or PAGE Is not a value of the predefined attribute TERMINAL _ KIND of the file
pode associated with the fiie identified by the parameter TERMINAL.

MODE _ ERROR

Is raised If the file identified by TERMINAL Is of mode OUT_FILE or
APPEND _FILE.

STATUS _ERROR
is raised If TERMINAL is not an open file handle.
DEVICE _ ERROR

is ralsed If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Addttional Interface:

procedure SET_ECHO™0 : in BOOLEAN

:= TRUE)
is
begin
SET_ECHO (CURRENT_INPUT, TO);
end SET_ECHO;
152

PROPOSED MN-STD-¢ A~
31 JANUARY o,

end BELL

6.3.7.9. Writing to the terminal

procedure PUT(TERMINAL : in FILE_TYPE;
ITEM : lp CHARACTER) ;

Purpose:
This procedure writes a single character o the output terminal file identified by TERMINAL
and sdvances the active position by one column.

Parameter:

TERMINAL is an open flie handle on an output terminal file.

ITEM is the character to be written.

Exceptions:

USE __ERROR s raised if TERMINAL Is not the value of the predefined attribute FILE _KIND or
PAGE 18 not a value of the predefined attribute TERMINAL _KIND of the file
node associated with the file identified by the parameter TERMINAL.

MODE _ERROR
is raised If the file identified by TERMINAL is of mode IN_ FILE.

STATUS _ERROR
is raised If TERMINAL Is not an open flle handle.

DEVICE__ERROR
is raiscd If an Input or output operatlon cannot be completed because of a
malfunction of the underlying system.

Additional Interfaces:

procedure PUT(ITEM : in CHARACTER)

is
begin

PUT (CURRENT_OUTPUT, ITEM);
end PUT;

procedure PUT(TERMIKAL : in FILE TYPE;
ITEM : in STRING)

is
begin
for INDEX in ITEM'FIRST .. ITEM'LAST loop
PUT(TERMINAL, ITEM(INDEX)):
end loop;
end PuUT;

procedure PUT(ITEM : in STRING)
is
begin

PUT (CURRENT_OUTPUT, ITEN):
end PUT;

151

L

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

MODE _ERROR
is raised if the file identifled by TERMINAL is of mode IN_ FILLE.

STATUS _ERROR
is ralsed If the flie identified by TERMINAL is not an open file handle.

DEVICE _ERROR
is raised if an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

procedure TAB(KIND : in TAB_ENUMERATION := HORIZONTAL;
COUNT : in POSITIVE := 1);
is
begin
TAB (CURRENT_OUTPUT, KIND, COUNT);
end TAB;

5.3.7.8. Sounding a terminal bell

procedure BELL(TERMINAL : in FILE TYPE):

Purpose:
This procedure sounds the bell (beeper) on the terminal represented by the output terminal file
identified by TERMINAL.

Parameters:

TERMINAL is an open file handle on an output terminal flie.

Exceptions:

USE _ERROR s ralscd if TERMINAL Is not the value of the predefined attribute FILE__KIND
or PACGE is not a value of the predefined attribute TERMINAL _ KIND of the file
node as~ociated with the Nie identified by the parameter TERMINAL.

MODF_ ERROR
is ralsed If the file identified by TERMINAL is of mode IN_FILE.

STATUS _ERROR
Is raised if TERMINAL is not an open flle handle.

DEVICE _ERROR
is ralsed If an Input or output operation cannot be completed because of a
malfunction of the underiying system.

Additional Interface:

procedure BELL

is
begin

BELL (CURRENT_OUTPUT) ;

150

PROPONED MIL-STD-C Als
31 JANUAR)Y 19K3

KIND is the kind (horizontal or vertical) of tab stop to be removed.

Exceptions:

USE __ERROR s raised if TERMINAL is not the value of the predefined attribute FILE_KIND
or PAGE Is not a value of the predefined attribute TERMINAL _KIND of the file
node associated with the flie Identifled by the parameter TERMINAL, or If there is
no tab stops of the designated kind at the active position.

MODE _ ERROR
Is ralsed If the fle identified by TERMINAL is of mode IN_ FILE.

STATUS _ERROR
is raised If TERMINAL is not an open file handle.

DEVICE _ ERROR

is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:
procedure CLEAR_TAB(KIND : in TAB_ENUMERATION := HORIZONTAL)
is
begin
CLEAR_TAB(CURRENT_OUTPUT, KIND):
end CLEAR_TAB;

5.3.7.7. Advancing to the next tab position

procedure TAB(TERMINAL : in FILE_TYPE;

KIND : in TAB_ENUMERATION := HORIZONTAL;
COUNT : in POSITIVE := 1);

Purpose:

This procedure advances the active position COUNT tab stops.
a change Iin only the column number of the active position.
change in only the row number of the active position.

Horizontal advancement causes
Vertical advancement causes a
Parameters:

TERMINAL is an open flle handle on an output terminal file.

KIND is the kind (horizontal or vertical) of tab «top to be advanced.

COUNT is a positive integer indicating the number of tab stops the active position Is to

advance.

Exceptlons:

USE_ERROR Is raiscd If TERMINAL is not the value of the predefined attribute FILE _KIND
or PAGE In not a value of the predefined attribute TERMINAL _ KIND of the flle
node associated with the file identified by the parameter TERMINAL, or there are
fewer than COUNT tab stops of the designated kind after the active position.

149

A
- - —a At

PROPOSED MIL-ST-C I~
31 JANUARY 14k,

Additional Interface:

procedure INSERT_SPACE(COUNT: in POSITIVE := 1)

is
begin
INSERT_SPACE (CURRENT_OUTPUT, COUNT)
end INSERT_SPACE:

5.3.7.24. Inserting blank lines in the output terminal file

procedure INSERT_LINE(TERMINAL: in FILE TYPE;
COUNT: in POSITIVE := 1);

Purpose:
This procedure inserts COUNT blank lines into the output terminal flie at the active line. The
lines at and below the active position are shifted down. The COUNT bottom lines of the display
are lost. The active line is not changed. The column of the active position is changed to one.

Parameters:

TERMINAL is an open file handle on an output terminal file.

COUNT Is the number of blank lines 1o be Inserted.

Exceptions:

USE _ ERROR is raised if TERMINAL is not the value of the predefined attribute FILE _ KIND
or PAGE I8 not a value of the predefined attribute TERMINAL _KIND of the file
node associated with the file identified by the parameter TERMINAL, or the value
of COUNT is greater than the number of rows inciuding and following the active
position.

MODE _ ERROR
is raised if the file identified by TERMINAL s of mode IN_FILE.

STATUS _ERROR
is raised if TERMINAL I8 not an open file handie.

DEVICE _ERROR
Is raised If sn Input or output operation cannot be completed becausc «f a
malfunction of the underlying system.

Additional Interface:
procedure INSERT_LINE(COUNT: in POSITIVE:= 1)
is
begin
INSERT_LINE (CURRENT_OUTPUT. COUNT);
end INSERT LINE;

163

A — . . Tep——

vy

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

5.3.7.25. Determining graphic rendition support

function GRAPHIC RENDITION_SUPPORT (TERNINAL: in FILE_TYPE;

RENDITION: in GRAPHIC_RENDITION_ARRAY)
return BOOLEAN;

Purpose:
‘This function returns TRUE If the RENDITION of combined graphic renditions Is supported by

the physical terminal associated with the output terminal flle ldentified by TERMINAL;
otherwise it returns FALSE.

Parameters:
TERMINAL is an open file handle on an output terminal file.
RENDITION is a combination of graphic renditions.
Exceptions:

USE _ERROR is raised If TERMINAL I8 not the value of the predefined attribute FILE_ KIND
or PAGE Is not a value of the predefined attribute TERMINAL _ KIND of the file
node associated with the flie identifled by the parameter TERMINAL, or If the

selected graphic renditions are not supported by the physical terminal associated
with the output terminal flle identlfied by TERMINAL.

MODE _ERROR
Is raised if the file identified by TERMINAL Iis of mode IN_FILE.

STATUS _ERROR
is raised {f TERMINAL is not an open file handle.
DEVICE _ ERROR

is raised If an Input or output operation cannot be completed because of a
malifunction of the underlying system.

Additional Interface:

function GRAPHIC_RENDITION_SUPPORT (RENDITION:

in GRAPHIC RENDITION_ARRAY)
return BOOLEAN

is
begin

return GRAPHIC_REMDITION_SUPPURT (CURRENT OUTPUT, RENDITION);
end GRAPHIC_RENDITION_SUFPORT;

6.3.7.28. Selecting the graphic rendition

procedure SELECT GRAPHIC_RENDITION(TERMINAL: in FILE_TYPE:

RENDITION: In GRAPHIC_RENDITION_ARRAY
:= DEFAULT_GRAPHIC_RENDITION):

Purpose:

This procedure scts the graphic renditlon for subsequent characters Lo be output to the output
terminal file.

164

e —— ——

ﬂm

PROPOSED MIL-STD-C Als
31 JANUARY 10RS

Parameters:

TERMINAL Is an open file handle on an output terminal file.
RENDITION is the graphic rendition to be used In subsequent output operations.

Exceptions:

USE _FERROR is raised if TERMINAL Is not the value of the predefined at.ribute FILE _ KIND
or PAGE is not a value of the predefined attribute TERMINAL _KIND of the file
node associsted with the flle Identified by the paramet«r TERMINAL, or Il the
selected graphic renditions are not supported by the ph sical terminal associated
with the output terminal flie identified by TERMINAL.

MODE _ERROR
Is raised If the flle ldentified by TERMINAL is of mode I". _ FILE.

STATUS_ ERROR
is raised If TERMINAL Is not an open flie handle.

DEVICE_ERROR

is raised If an input or output operation cannot be completed because of a
malfunction of the underiying system.

Additional Interface:

procedure SELECT_GRAPHIC_RENDITION(RENDITION : in

GRAPHIC_RENDITION_ARRAY :=

DEFAULT_GRAPHIC_RENDITION)

is

begin
SELECT_GRAPHIC_RENDITION(CURRENT OUTPUT, RENDITION):

end SELECT GRAFHIC_RENDITION;

5.3.8. Package FORM TERMINAL

This package provides the functionality of a form terminal (e.g., an IBM 327x terminal). A form

terminal consists of a single device (inasmuch as a programmer is concerned).

The scenario for usage of a form terminal has two active agents: a process and a user. Each
Interaction with the form terminal consists of a three step sequence. First, the process creates and

writes a form to the terminal. Second, the user modifies the form. Third, the process reads the
modified form.

A form Is a two-dimensional matrix of character positions. The rows of a form are Indexed by
positive numbers starting with row one at the top of the display. The columns of a form are indexed
i by positive nnmbers siarting with column one at the left side of the form. The position identified by

row one, column one, is called the start position of the form. The position with the highest row and
column Index term is called the end position of the form.

The position at which an operation is to be performed is called the active position. The active
t position is sald to advance toward the end position of the form when the indices of its position are

185

-

PROPOSED MIL~-STD-CAIS
31 JANUARY 1985

incremented. The column Index is incremented until it attains the highest value permitted for the
form. The next positlon i8 determined by incrementing the row index of the active position and
resetting the column index to 1.

A form is divided into qualified areas. A qualified area identifies a contiguous group of positions that
share a common set of characteristics. A qualified area begins at the position designated by an arra
qualifier and ends at the position preceding the next ares qualifier toward the end of the form.
Depending on the form, the position of the area qualifier may or may not be considered to be in a
qualified area. The characteristics of a qualificd area consist of such things as protection (from
modification by the user), display renditions (e.g., Intensity), and permissible values (e.g., numeric
only, alphabetic only). Each position in a qualified area contains a single printable ASCII character.

5.3.8.1. Types and subtypes

type AREA_INTENSITY is
(NONE.
WORMAL ,
HIGH) ;

type AREA PROTECTION is
(UNPROTECTED,
PROTECTED) ;

type AREA_INPUT is
(GRAPHIC_CHARACTERS,
NUMERICS,
ALPHABETICS) ;

type AREA_VALUE is
(NO_FILL,
FILL_WITH_ZEROES,
FILL WITH_SPACES);

type FORM_TYPE

(RODV : POSITIVE:
COLUMN : POSITIVE,;
AREA QUALIFIER REQUIRES SPACE : BOOLEAN)

is private:

subtype FILE TYPE is CAIS.ID_DEFINITIONS.FILE_TYPE:

subtype PRINTABLE_CHARACTERS is CHARACTER range ° * .. *~°;

AREA _INTENSITY indicates the intensity at which the characters in the area should be dispiayed
(NONE indicates that characters are not displayed). AREA __PROTECTION specifies whether the
user can modify the contents of the ares when the form has been activated. AREA _ INPUT specifies
the valid characters that may be entered by the user; GRAPHIC _ CHARACTEMRS Indicates that any
printable character may be entered. AREA _ VALUE indicates the initial value that the area should
have when activated; NO _FILL indicates that the value has been specified by a previous PUT
statement. FORM _ TYPE describes characteristics of forms. FILE_ TYPE describes the type for
file handles. PRINTABLE _CHARACTERS describes the characters that can be output to a form
terminal.

168

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

5.3.8.2. Determining the number of function keys

function MAXINUN_FUNCTION_KEY(TERMINAL: in FILE_TYPE)
return NATURAL;

Purpose:
This function returns the maximum function key identifier that can be returned by the function

TERMINATION _ KEY (see Section 5.3.8.13).
Parameters:

TERMINAL is an open file handle on a terminal file.

Exceptions:

USE _ERROR s raised If TERMINAL is not the value of the predefined attribute FILE _ KIND
or FORM Is not a value of the predefined attribute TERMINAL _KIND of the file
node associated with the file identified by the parameter TERMINAL.

MODE _ ERROR
is raised If the file identified by TERMINAL is of mode OUT_FILE or
APPEND _FILE.

STATUS _ERROR
is raised If TERMINAL Is not an open flie handle.

DEVICE _ ERROR
is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:
function MAXIMUM_FUNCTION KEY return NATURAL
is
begin

return MAXIMUM_FUNCTION_KEY (CURRENT_INPUT) ;
end MAXINUNY_FUNCTION_KEY;

5.3.8.3. Defining a qualified area

procedure DEFINE_QUALIFIED_AREA
(FORM: in out FORM_TYPE;
INTENSITY: in AREA_INTENSITY := NORMAL;
PROTECTION: in AREA_PROTECTION := PROTECTED;
INPUT: in AREA_INPUT := GRAPHIC_CHARACTERS;
VALUE: in AREA_VALUE := ND_FILL):

Purpose.
This procedure places an area qualifier with the designated attributes at the active position of
the form. A qualified area consists of the character positions between two area qualifiers. The
area s qualified by the area qualifier that precedes the area. A qualified area may or may not
include the position of its area qualificr.

167

PROPOSF.D MIL-STD-CAIS
31 JANUARY 1985

Parameters:

FORM Is the form 6n which the quallfied area is being defined.
INTENSITY Indicates the intensity at which the qusalified aresa Is to be displayed.

PROTECTION Indicates the protection for the qualified area.

INPUT indicates the permissible input characters for the qualified ares.
VALUE Indicates the initial value of the qualified area.

Exceptions:
STATUS _ERROR

is raised if the active position is already defined as an area qualifier.

5.3.8.4. Removing an area qualifier

procedure RENOVE_AREA QUALIFIER(FORM: In out FORM_TYPE);

Purpose:

This procedure removes an area qualificr from the active position of the form.
Parameters:
FORM is the form {rom which the qualified area is to be removed.
Exceptions:
USE _ ERROR s raised If the active position does not have an area qualifier.

STATUS _ ERROR
is raised if the active position does not contain an area qualifier.

5.3.8.5. Changing the active position

procedure SET_POSITION (FORM: in out FORM_TYPE:
POSITION: in POSITION_TYPE);

Purpose:
This procedure Indicates the position on the form that is to become the active pos!tion.

Parameters:

FORM is the form on which to change the active position.

POSITION Is the new actlve position on the form.

Exceptlions:

LAYOUT _ERROR ‘
Is raised If POSITION does not Identify a position in FORM.

PROPOSED MIL-STD-C AIS
31 JANUARY 1985

5.3.8.6. Moving to the next qualifieC area

procedure NEXT QU.LIFIED AREA(FORM: in out FORM_TYPE;
counT: in POSITIVE := 1);

Purpose:
This procedure advances the active position COUNT qualified areas toward the end of the form.

Parameters:

FORM is the form on which the active position is being advanced.

COUNT is the number of qualified areas the active position is to be advanced.
Exceptions:

USE_ ERROR s raised If FORM has fewer than COUNT qualified areas after the active position.

5.3.8.7. Writing to a form

procedure PUT(FORM: in out FORM_TYPE:
ITEN: im PRINTABLE_CHARACTER) :

Purpose:
This procedure places ITEM at the active position of FORM and advances the active position

one position toward the end position. If the active position is the end position, the active
position Is not changed.

Parameters:

FORM Is the form being written.

ITEM Is the character Lo be written to the form.
Exceptions:

USE_ERROR iIs raised I the active position contains an area qualifier and
AREA _ QUALIFIER _ REQUIRES_ SPACE of FORM was set to TRUE.

Additional interface:

procedure PUT(FORK: in out FORM_TYPE;
ITEM: in STRING)
Is

begin
for INDEX in ITEM'FIRST .. ITEM'LAST loop
PUT(FORM, ITEM(IMDEX));
end loop;
end PuT;

169

e e O s s

PROPOSED MI~STD-CAIS
31 JANUARY 1085

5.3.8.8. Erasing a qualified area

procedure ERASE_AREA(FORM: in out FORM_TYPE):

Purpose:

This procedure places space characters in all positions of the area in which the active position of
the form is located.

Parameters:

FORM Is the form on which the qualified area is being erased.

Exceptions:

STATUS _ERROR
is raised If no area qualifiers have been defined for FORM.

5.3.8.9. Erasing a form

procedure ERASE_FORN(FORN: in out FORM_TYPE):
Purpose:
This procedure removes all ares qualifiers and places SPACE charecters in all positions of the
form.

Parameters:

FORM is the form to be erased.

Exceptions:
None.

5.3.8.10. Activating a form on a terminal

procedure ACTIVATE(TERMINAL: in FILE_TYPE;
FORM : in out FoRM_TYPE):

Purpose:
This procedure actlvates the form on the terminal. The contents of the terminal file is modified
to refiect the contents of the form. When the user of the terminal enters a termination key. the
modified contents of the terminal flie Is copied back to the form and returned. This operation
may not result in the modification of protected areas.

Parameters:

TERMINAL Is an open file handle on a terminal file.

FORM Is the form to be activated.

Exceptions:

USE _ERROR Is raised if TERMINAL Is not the value of the predefined attribute FILE _ KIND
or FORM Iis not a value of the predefined attribute TERMINAL _KIND of the file
node assoclated with the file identified by the parameter TERMINAL.

170

i . PG aapES R
P ——— PR

-

PROPOSED MIL-STD-CAI~
31 JANUARY 1985

STATUS__ERROR
Is raised If TERMINAL is not an open file handle.

5.3.8.11. Reading from a form

procedure GET(FORM: {n out FORM_TYPE:
ITEN: out PRINTABLE CHARACTER) ;

.Purpose:
This procedure reads a character from FORM at the active position and advances the active
position forward one position (unless the active position Is the end position). An area qualifier
(on a form on which the area qualifier requires space) is read as the SPACE character.

Parameters:
FORM i the form to be read.
ITEM is the character that was read.
Exceptions:
None.

Additional Interface:

procedure GET(FORM: in out FORM_TYPE;
ITEM: out STRING)

is
begin
for INDEX in ITEM'FIRST .. ITEK'LAST loop
GET(FORM. ITEM(INDEX)):

end loop;
end GET;

5.3.8.12. Determining changes to a form

function IS_FURN_UPDATED(FORM: im FORM_TYPE)
return BOOLEAN;

Purpose:
This function returns TRUE if the value of any position oo the form was modified during the
last activate operation Iin which the form was used; otherwise it returns FALSE.

Parameters:

FORM is the form to be queried.

Exceptions:

None.

m

e B

PROPOSED MIL-NTD-CAIS
31 JANUARY 1085

5.3.8.13. Determining the termination key

function TERNINATION KEY(FORM: in FORM_TYPE)
return NATURAL:

Purpose:
This function returns a number that Indicates which (implementation-dependent) key
terminated the ACTIVATE procedure for the FORM. A value of zero Indicates the normal
termination key (e.g., the ENTER key).

Parameters:

FORM is the form to be queried.

Exceptions:

None.

5.3.8.14. Determining the size of a form

function FORM_SIZE(FORM: in FORM_TYPE)
return POSITION_TYPE:

Purpose:
This Tunction returns the position of the last column of the Iast row of the form.

Parameters:

FORM is the form (o be queried.

Exceptions:
None.

5.3.8.15. Determining the size of a terminal

function TERMINAL_SIZE(TERNINAL: in FILE_TYPE)
return POSITION_TYPE;

Purpose:
This function returns the position of the last column of the last row of the terminal file.
Parameters:

TERMINAIJ Is an open file handle on a terminal file.

Exceptlions:

USE_ERROR s raised i TERMINAL is not the value of the predefined attribute FiLE_ KIND
or FORM Is not a value of the predefined attribute TERMINAL _ KIND of the file
node assoclated with the fie identified by the parameter TERMINAL.

STATUS _ERROR
is raised If TERMINAL Is not an open file handle.

172

PROPOSED MHASTD-¢ AlN
31 JANU ARY 1085
DEVICE _ERROR

Is raised If sn input or output operation canpnot be completed because of a
malfunctlon of the underlying system.

Additional Interface:

function TERNINAL_SIZE
return POSITION_TYPE

is
begin

return TERNINAL_SIZE (CURRENT_QUTPUT)
end TERMINAL SIZE:

5.3.8.16. Determining if the area qualifier requires space in the form

function AREA_GUALIFIER_REQUIRES_SPACE (FURM:

in FORM_TYPE)
return BOOLEAN;

Purpose:
‘This function returns TRUE If the area qualifier requires space in the form; otherwise it returns

FALSE.

Parameters:

FORM is the form to be queried.

Exceptions:
None.

5.3.8.17. Determining if the area qualifier requires space on a terminal

function AREA_QUALIFIER _REQUIRES_SPACE(TERNINAL: in FILE_TYPE)
return BOOLEAN,
Purpose:

This function returns TRUE If the area qualifier requires space on the physical terminal
associated with the terminal file identified by TERMINAL; otherwise it returns FALSE.

Parameters:

TERMINAL is a1 open file handle on a terminal file.

Exceptions:

USE _ERROR s ralsed I TERMINAL is not the value of the predefined attribute FILE__KIND

or FORM Is not a value of the predefined attribute TERMINAL __KIND of the file
node assoclated with the file ideatified by the parameter TERMINAL.

STATUS _ERROR
is raised if TERMINAL is not an open file handle,

DEVICE _ ERROR

173

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

is raised Il an lnput or output operation cannot be completed because of a
malfunction of the underlying system.
Additional Interface:

function AREA_QUALIFIER_REQUIRES SPACE
return BOOLEAN
is
begin
feturn AREA_QUALIFIER_REQUIRES_SPACE (CURRENT OUTPUT):
end AREA_QUALIFIER REQUIRES SPACE;

5.3.9. Package MAGNETIC_TAPE

This package provides Interfaces for the support of input and output operations on both labeled and
uniabeled magnetic tapes. Interfaces for labeled tapes are designed with carclul consideration of level
II of the [ANSI 78] standard. These interfaces only support single-volume magnetic tape files.

To use a tape drive, a file handie on the Nle representing the tape drive must be obtained (see OPLEN
in Section 5.3.4.3). The first time s tape Is used, it must be initiaiized either ;s a labeled tape or as an
unlabeled tape. All initialized tapes may be loaded as uniabeied tapes: however, only initialized labeled
tapes may be loaded as labeled trpes. Once a tape has been loasded, CAIS. TEXT _IO routines are
used to get information to and from the tape.

When information transfer is completed, the tape is unloaded and dismounted using the UNLOAD
and DISMOUNT procedures.

Once a tape is dismounted, another tape may be mounted. When the uscr Is finished utilizing the
drive, he closes the file handle on the flle representing the tape on the drive (see Section 5.3.4).

Magnetic tape drive files can only be created by the implementation. Implementation-defined file
characteristics must be supported by the impiementation and wliil Include the densities and block sizes
supported by the tape drive, whether or not a tape is mounted on the drive and whether the tape was

loaded as a iabeled or unlabeled tape. Each block of a Mie may be terminated by zero or more fil
characters.

An unlabeled tape Is read according to the format:

BOT nile * file * ... * file **

where * represents a tape mark, ** represenis the logical end of tape, and BOT Is the beginning of
the tape. For the CAIS, a (ile on & magnetic tape is either a text file or a label group. A labeled tape
may be mounted as an uniabeled tape, which causes each label group to be considered as a file. A

label group can be one of the following: a volume header label and a flle héader label, ot a flle header
iabel, or an end-of-file label.

A labeled tape Is read according to the format:

174

e —
e i W e
.

PROPOSED MIL-STD-C Al«
31 JANUARY 1985

BOT VOLt HDR * file * EOF * HDR * file * EOF *...* HDR * flle * EOF**

where * represents a tape mark, ** represents the logical end of tape, BOT is the beginning of the
tape, VOLI1 is the volume header label, HDR Is the file header label, and EOF is the end-of-file label.

5.3.9.1. Types and subtypes

type TAPE_POSITION is
(BEGINNING_OF TAPE,
PHYSICAL_END_OF_TAPE,
TAPE_MARK,
OTHER) ;

subtype REEL_NAKE is STRING;

subtype VOLUME_STRING is STRING(1..8):

subtype FILE_STRING is STRING(1..17);

subtype LABEL_STRING is STRING (1..80);

subtype FILE_TYPE is CAIS.IO_DEFINITIONS.FILE TYPE:

TAPE _ POSITION describes the position of the tape on the tape drivi; a value of TAPE_MARK
means that the tape is positioned just after a8 tape mark. That is, a read in this position will read the
next fiie or label. A read starting in position TAPE _MARK will only rcad a tape mark If there are
two consecutive tape marks on the tape at this location.

REEL __ NAME describes the type used for the external name of a tape /i.e, the name written on the
tape contalner).

VOLUME _STRING and FILE_STRING both have the synt:x of an Ada identifier.
LABEL _ STRING describes the type used for reading volume header labels, file header labels and
end-of-file labels. FILE _ TYPE describes the type for lle handies, which are used for controlling ali
operations on tape drives.

5.3.9.2. Mounting a tape

procedure MOUNT(TAPE_DRIVE: in FILE TYPE;
TAPE_NAME : in REEL NA'E;
DENSITY: in POSITY 2);

Purpose:
This procedure generates an Implementation-d ‘fined request that the tape whose external name
Is TAPE__NAME be mouanted on the tape drive represented by the file identified by
TAPE _DRIVE. It also requests that the tape drive density be set to DENSITY. Following
completion of the requested operations, the function IS_MOUNTED(TAPE _DRIVE) will
return TRUE.

Parameters:

TAPE _DRIVE
is an open fllc handle on the file representing the tape «drive.

TAPE _NAME
is an external name which identifies the tape to be mor nted on the Lape drive.

175

PROPOSED MIE-STD-CALS
31 JANUARY 198RS

DENSITY is the density in characters per inch (e.g.. 800, 1600, 6250).

Exceptions:

USE _ERROR s raised if MAGNETIC _ TAPE is not the value of the atiribute FILE _KIND of
the node assoclated with the file Identified by TAI'E_DPRIVE or |f
IS_MOUNTED(TAPE _DRIVE) is TRUE at the time of the call.

STATUs _ERROR
is raised If TAPE _DRIVE is not an open file handle.

DEVICE_ERROR

Is raised If this operation cannot be completed because of a malfunction of the
underlying system.

5.3.9.3. Loading an unlabeled tape

procedure LOAD_UNLABELED (TAPE_DRIVE: in FILE_TYPE.
DENSITY: in POSITIVE.
BLOCK_SIZE: In POSITIVE):

Purpose:
This procedure loads the tape on the tape drive represented by the flle Identified by
TAPE _DRIVE. The tape is positioned at the beginning of tape. The DENSITY is validated
against the setiings of the tape drive. The block size for subsequent reads and writes is set o
the value of BLOCK _ SIZE. Following completion of this procedure, the [lunction
IS_ LOADED(TAPE _ DRIVE) will return true.

Parameters:
TAPE _DRIVE is an open file handle on the flle representing the drive.

DENSITY Is the density in characters per inch (e.g.. 800, 1600. 8250) at which the tape is to
be read or written.

BLOCK _SIZE is the size of each data block which is to be read from or written to the file
identifled by TAPE __DRIVE.

Exceptions:

USE__ERROR is raised 1§ IS _LOADED(TAPE _DRIVE) is TRUE or
IS _MOUNTED(TAPE _DRIVE) is FALSE at the time of the c¢ I, or if DENSITY
Is not the same as the density of the tape drive, or If the block size cannot be
supported by the tape drive.

STATUS _ERROR
is raised It TAPE_ DRIVE is not an open Mie handle.

DEVICE _ERROR

Is ralsed if an Input or output operation cainot be completed because of a
malfunction of the underlying system or iIf the tzpe Is uninitlalized.

178

" AD-hITT-SEY AR S CORONLIPTE (40 PN SYTOE, ¥4

UNCLASSIFIED F/G 972 NL

it e g

M= = e
N

ey

o2 s e

A\

MICROCOPY RESOLUTION TEST tHAR:
NATIONAL BUREAU OF WTANDARDS Lo 2

— A —

S

PROPOSED MIL-STD-¢ Al~
31 JANUARY 1985

5.3.9.4. Initializing an unlabeled tape

procedure INITIALIZE UNLABELED(TAPE DRIVE: in FILE_TYPE:
DENSITY: in POSITIVE:
BLOCX_SIZE: in POSITIVE):

Purpose:
This procedure Initializes the tape which Is mounted on the tape drive represented by the file
Identified by TAPE _DRIVE. The tape drive must have been mounted but not loaded. If the
tape Is not positioned at the beginning of tape, then the tape is rewound to it. Two adjacent
tape marks are written following the beginning of tape mark.The DENSITY Is validated against
the settings of the tape drive. The block sign for subsequent reads and writes is set to the value
of BLOCK _SIZE. The tape is positioned at the beginning of the tape. Initialization places the
logical end of tape at the beginning of the tape. The resulting tape is an Initialized unlabeled
tape.

Parameters:

TAPE _ DRIVE is an open flle handle on the flie representing the drive.
DENSITY is the density in characters per inch (e.g., 800, 1600, 6250)

BLOCK _SIZE s the size of each data block which is to be read from or written to the file
Identified by TAPE_ DRIVE.

Exceptlons:

USE _ERROR is raised if MAGNETIC _ TAPE Is not the value of the attribute FILE _KIND of
the node associated with the fle identified by TAPE _DRIVE, or DENSITY is not
the same as the density of the tape drive, or If the block size cannot be supported
by the tape drive.

MODE _ ERROR
Is ralsed If the flle Identified by TAPE _DRIVE is of mode IN_ FILE.

STATUS _ERROR
Is raised if TAPE _ DRIVE Is not an open flle handle.

DEVICE _ERROR

Is raised if an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Notes:

The first flle is written immediately following the beginning of tape mark, overwriting the two
tape marks written at initialization.

5.3.9.5. Loading a labeled tape

procedure LOAD LABELPD (TAPE_DRIVE: in FILE TYPE;
VOLUME_IDFNTIFIER: in VOLUME_STRING;
DENSITY: in POSITIVE;
BLOCK_SIZF.: in PoSITIVE):
177

PROPOSED MIL-STD-CAIS

31 JANUARY 1085

Purpose:

This procedure loads the labeled tape on the tape drive represented by the flle identified by
TAPE _DRIVE. It checks to see that the first block on the volume is & volume header label
("VOLt"). The VOLUME _IDENTIFIER In the parameter list must match the volume
identifier In the volume header label on the tape. The tape is positioned at the beginning of
tape. The DENSITY is validated against the settings of the tape drive. The bilock size for
subsequent reads and writes is set to the value of BLOCK _SIZE. Following completion of this

procedure, the function IS__ LOADED{TAPE _ DRIVE) (see Section 5.3.9.8) will return TRUE.

Parameters:

TAPE_DRIVE is an open flle handle on the flie representing the tape drive.

VOLUME _ IDENTIFIER

DENSITY

Is the name which identifies the volume.

Is the density in characters per inch (e.g.. 800, 1600, 8250) at which the tape is to
be read or written.

BLOCK _SIZE |s the size of each data block which Is to be read from or written to the file

Exceptions:

identtified by TAPE _DRIVE.

USE__ERROR s raised if IS_ LOADED(TAPE _DRIVE) is TRUE or

IS_ MOUNTED(TAPE _DRIVE) 8 FALSE prior to the ecall, or the
VOLUME _ IDENTIFIER does not match the volume identifler in the volume
header label on the tape, or if the tape is unlabeied. USE__ ERROR s also raised if
the block size cannot be supported by the tape drive or, if DENSITY is not the
same as the density of the tape drive.

STATUS _ERROR

Is raised if TAPE_ DRIVE Is not an open file handle.

DEVICE _ERROR

is raised i an laput or output operation cannot be completed because of a
malfunction of the underlying system.

5.3.9.8. Initializing a labeled tape

procedure INITIALIZE_LABELED(TAPE_DRIVE: in F1LE_TYPE;
VOLUME_IDENTIFIER: in VOLUME_STRING;
DENSITY: in posITIVE:
BLOCK_BIZE: in rosITIVE;
ACCESSIBILITY: In cARACTER:=" *);

Purpoee:

This procedure initializes the tape which Is mounted on the tape drive represented by the [ile
identified by TAPE _DRIVE. The tape drive must have been mounted but not loaded. If the
tape Is not positioned at the beginning of tape, then the tape is rewound to It. A volume header
label is written, followed by two tape marks. The tape is positioned following the volume h:ader
label. Initlalization places the logical end of tape after the volume header label. The DENRSITY
Is validated against the settings of the tape drive. The block size for subsequent rcads and
writes ', set to the value of BLOCK _SIZE. The resulting tape is an initialized labeled tape.

178

PROPUSED MIL-STD-¢ al~
31 JANUARY 1985

Parameters:

TAPE _DRIVE is an oben flle handle on the flle reprcsenting the tape drive.

VOLUME __ IDENTIFIER
is a six-character string giving the volume name.

DENSITY Is the density In characters per inch (e.g., 800, 1600, 6250) at which the tape Is to be
read or written.

BLOCK _SIZE is the size of each data block which I8 to be read from or written to the file
identified by TAPE _ DRIVE.

ACCESSIBILITY
is a character representing restrictions on access to the tape, in accordance with

[ANSI 78]; a SPACE Indicates no access control.

Exceptions:

USE__ERROR s raised If MAGNETIC__ TAPE is not the value of the attribute FILE _KIND of
the node associated with the flle identified by TAPE_DRIVE, or the
VOLUME _ IDENTIFIER does not match the volume Identifier in the volume
header label on the tape, or if the tape is unlabeled.

MODE _ ERROR
is raised If the file identified by TAPE _DRIVE is of mode IN_ FILE.

STATUS _ERROR
is raised If TAPE _DRIVE Is not an open flle handle.

DEVICE _ ERROR
is ralsed if an input or output operation cannot be completed because of s

malfunction of the underlying system.

Notes:
When the first file is written on the tape, the file header label will follow the volume header
created by this procedure.

5.3.9.7. Unloading a tape
procedure UNLOAD(TAPE_DRIVE: in FILE TYPE);
Purpose:
This procedure unloads the tape on the tape drive represented by the file identified by
TAPE _DRIVE. It rewinds the tape to the beginning of tape and releases the established block
size. Following complction of thia procedure, the function IS_ LOADED(TAPE_DRIVE) will
return FALSE. '

Parameters:

TAPE _DRIVE Is an open flle handle on the flle representing the tape drive.

179

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

Exceptions:
STATUS_ERROR '.
is raised iIf TAPE _ DRIVE is not an open flie handle.

DEVICE _ERROR

Is raised if an Input or output operation cannot be completed because of a
malifunction of the underlying system.

Notes:

If no conditions for these exceptions exist and there is no tape loaded on the tape drive, this
procedure has no effect.

5.3.9.8. Dismounting a tape

procedure DISNOUNT (TAPE_PRIVE: in FILE TYPE):

Purpose:
This procedure generates an implementation-defined request that the tape on the tape drive
represented by the file identified by TAPE_DRIVE be removed from the drive. It makes the
tape avallable for removal and releases the established density. Following the completion of this
procedure, the function IS_ MOUNTED (TAPE _DRIVE) will return FALSE.

Parameters:

TAPE _DRIVE is an open file handle on the flle representing the tape drive.

Exceptions:

USE _ERROR Is raised if MAGNETIC_ TAPE is not the value of the attribute FILE_ KIND of
the node associated with the file identified by TAPE_ DRIVE.

STATUS _ERROR
is raised If TAPE__ DRIVE is not an open file handle.

DEVICE _ERROR

is ralsed If this operation cannot be completed because of a malfunction of the
underlying system.

Notes:

If no conditions for these exceptions exist and there is no tape mounted on the tape drive. this
procedure has no effect.

5.3.9.9. Determining if the tape drive is loaded

function IS_LOADED(TAPE DRIVE: in FILE_TYPE)
return BOOLEAN;

Purpose:

This function returns TRUE if the tape on the tape drive rep;esenbed by the file identifled by
TAPE _DRIVE has been loaded; otherwise It returns FALSE. ,

180

o

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Parameters:

TAPE _DRIVE Is an open file handle on the flie representing the tape drive.

Exceptions:

USE_ERROR is raised if MAGNETIC _ TAPE is not the value of the sttribute FILE _ KIND of
the node associated with the file identified by TAPE__ DRIVE.

STATUS _ ERROR
is raised if TAPE__ DRIVE is not an open file handle.

DEVICE _ ERROR

Is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

5.3.9.10. Determining if a tape is mounted

function IS_MOUNTED(TAPE_DRIVE: in FILE_TYPE)
return BOOLEAN;

Purpose:

This function returns TRUE i a tape is mounted on the tape drive represented by the file
identified by TAPE _ DRIVE; otherwise it returns FALSE.

Parameters:

TAPE _ DRIVE Is an open flle handie on the flie representing the tape drive.

Exceptions:

USE_ERROR is ralsed if MAGNETIC _ TAPE is not the value of the attribute FILE _ KIND of
the node associated with the file identified by TAPE _ DRIVE.

STATUS _ERROR
is raised Il TAPE _DRIVE is not an apen file handle.

DEVICE _ERROR

is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

5.3.9.11. Determining the position of the tape

function TAPE_STATUS(TAPE_DRIVE: In FILE_TYPE)
return TAPE_POSITION;

Purposc:
This function returns current tape position information.

Parameters:

TAPE_DRIVE Is an open file handle on the flle representing the tape drive.

18t

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Exceptions:

USE _ERROR s raised If MAGNETIC_TAPE is not the value of the attribute FILE _KIND of
the node associated with the fie Identified by TAPE_ DRIVE.

STATUS _ERROR
is raised if TAPE__DRIVE is not an open file handle.

DEVICE _ERROR

is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

6.3.9.12. Rewinding the tape

procedure REVIND TAPE(TAPE DRIVE: fn FILE_TYPE):

Purpose:
This procedure positions the tape at the beginning of tape.

Parameters:

TAPE __DRIVE is an open flle handle on the flie representing the tape drive.

Exceptions:

USE _ERROR is raised if MAGNETIC__ TAPE is not the value of the attribute FILE _KIND of
the node associated with the file identified by TAPE _DRIVE.

STATUS _ERROR
is raised If TAPE_ DRIVE Is not an open fife handle.

DEVICE _ERROR

is raised If an input or output operation cannot be completed because of s
malfunction of the underiying system.

5.3.9.13. Skipping tape marks

procedure SKIP_TAPE_MARKS(TAPE_DRIVE: in FILE_TYPE;
NUMBER : in INTEGER:=1;
TAPE_STATE: out TAPE_POSITION) ;

Purpose:

This procedure provides a method of skipping over tape marks. A positive NUMBER indicates
forward skipping, while s negative NUMBER Indicates backward skipping. If NUMBER s zero.
the tape position does not change.

Following a call to SKIP_ TAPE _MARKS, if NUMBER Is positive, the tape Is positioned
immediately following the appropriate tape mark. Following a call to SKIP__ TAPE_MARKS,
if NUMBER Is negative, the tape is positioned immediately preceding the appropriate tape mark
(l.e., at the end of a file or label). If two consecutive tape marks are encountered, the tape Is
positioned immediately following the second one, even if fewer than NUMBER tape marks have
been skipped. Additionally, the current column, current line and current page numbers (see
[ILRM] 14.3) are set Lo one.

182

—

PROPOSED MIL-~TD-C Als
31 JANUARY 1085

Parameters:
TAPE _DRIVE is an open file handle on the flle representing the tape drive.

NUMBER is the number of tar. ' marks to skip and the direction of movement.

TAPE _STATE
is the position of the tape after skipping the specified number of tape marks.

Exceptions:

USE_ ERROR s ralsed if MAGNETIC __TAPE Is not the value of the attribute FILE _ KIND of
the node associated with the file identified by TAPE _ DRIVE.

STATUS _ERROR
is ralsed If TAPE_ DRIVE Is not an open file handle.

DEVICE _ ERROR

is ralsed if an input or output operation cannot be completed because of a
malfunction of the underlying system.

5.3.9.14. Writing a tape mark

procedure WRITE_TAPE_MARK(TAPE DRIVE: in FILE_TYPE;
WUMBER : in POSITIVE := 1;
TAPE_STATE: out TAPE_POSITION);

Purpose:
This procedure writes NUMBER consecutive tape marks on the tape which is mounted on the

tape drive represented by the file identifled by TAPE _DRIVE. The tape is stopped foliowing
the last tape mark written.

Parameters:

TAPE _DRIVE is an open file handle on the file representing the tape drive.
NUMBER is the number of consecutive tape marks to be written.

TAPE _STATE
Is the new position of the tape.

Exceptions:

USE _ERROR is raised If MAGNETIC _ TAPE Is not the value of the attribute FILE _KIND of
the node assoclated with the flle Identified by TAPE_DRIVE or |if
IS_LOADED(TAPE _DRIVE) Is FALSE.

MODE _ ERROR
Is raised if the flle identified by TAPL _ DRIVE Is of mode IN_ FILE.

STATUS _ERROR
Is raised If TAPE _DRIVE Is not an open file handle.

183

PROPOSED MIL-STD-CAIS
31 JANUARY 1985
DEVICE _ERROR

Is raised il .an input or output operation cannot be compieted because of a
malfunction of the underlying system.

5.3.9.15. Writing a volume header label

procedure VOLUME_HEADER (TAPE_DRIVE: in FILE_TYPE;
VOLUME_IDENTIFIER: in VOLUME_STRING:
ACCESSIBILITY: in CHARACTER :=* °):

Purpose:
This procedure writes a volume header label, as described in TABLE XI on the tape loaded on
the tape drive represented by the file identified by TAPE_ DRIVE.

The accessibility character is obtained from the ACCESSIBILITY parameter. The owner
identification is the user name indicated by 'CURRENT _USER. The Labcl-Standard Version,

TR

L which is 3, indicates the ANSI standard version to which these labeis conform.
Table XI. Volume header label
Charscter
Position Fleld Name Content
13 | Ladel Identifier | voL
| |
4 { Label Number I 1
| I
5 tw 10 ! Volume Identifier | Assigned permanently
! | by ovner to identify
l | volume
| |
11 | Accessibdility | Indicates restrictions
1 | on access to the
| | information on the
} | volume
| |
12 to 37 | Reserved for Future | BSpaces
f | Standardization |
| 1
38 to 51 | Owner Identity | Identifies owner of
f | volume
I |
82 o 79 | Reserved for Future | Epaces
| Standazdization |
| l
80 | Ladbel-Standard | Indicates the version
| | Version | of the ANSI standard
| | to which the labdels
l | and data formats on this
| | volume conform

Parameters:

TAPE _DRIVE Is an open flle handle on the file representing the tape drive.

VOLUME _IDENTIFIER
is a six-character string giving the volume name.

184

- T
W "

PROPOSED MIL-STI-C Als
31 JANUARY 1085

ACCESSIBILITY
is a character representing restrictions on access to the tape, in accordance with
[ANSI 78]; a SPACE indicates no access control.

Exceptions:

USE_ERROR s raised I MAGNETIC _ TAPE is not the value of the attribute FILE _KIND of
the node associated with the flle identified by TAPE_DRIVE. USE_ ERROR s
also raised If the tape on the tape drive represented by the file identified by
TAPE_DRIVE was joaded as an unisbeled tape or if the value of
VOLUME _ IDENTIFIER does not conform to the syntax of an Ada identifier.
USE__ERROR s also raised if IS_ LOADED(TAPE _ DRIVE) is FALSE at the time
of the call.

. MODE _ ERROR
Is raised If the file identified by TAPE__DRIVE is of mode IN _ FILE.

STATUS _ERROR
is raised if TAPE _ DRIVE is not an open file bandle.

DEVICE _ERROR

is raised if an Input or output operation cannot be completed because of a
malfunction of the underlying system.

5.3.9.16. Writing a file header label

procedure FILE_HEADER(TAPE_DRIVE: in FILE _TYPE:
FILE_IDENTIFIER: in FILE STRING:
EXPIRATION_DATE: in STRING :=" 99386°;
ACCESSIBILITY : in CHARACTER :=' °);

Purpose:
This procedure writes a flle header label, as described in TABLE XII', on the tape loaded on the
‘ tape drive represented by the file identified by TAPE_ DRIVE.
Parameters:

185

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Table XII. Flle header tabel

Character

Position Field Name Content

1 to3 | Label Identifier | HDR
! |

4 | Label Mumber 1 1
[{

5 0 21 | File Identifier | Assigned persanently by
| | system to identify file
| |

22 TO 27 | F1le Set Identifier | The VOLUME IDENTIFIER
| | in the file set
| !

28 to 31 | File Section Number i 0001
! I
| !
| l
| !

32 to 35 | Fille Sequence Number | Distinguishes files in a
| | file set. First file in
| | set gets °0001°. For
I | each file after,
| | seguence number is
| | incremented by one base 10.
| l

38 to 39 | Generation Number I 0001
| |

40 to 41 | Generation Versiorm | 00
| Number !

! !

42 to 47 | Creation Date | Date file header 1s
I | written
1 {

48 to 53 | Expiratior Date | Date on which file may de
| | overwritten
! !

54 | Accessidility | Indicates restrictions on
! | access to information in
| I file
| I

55 to 80 | Block COUNT | 000000
i 1

81 to 73 | Systea Code | Spaces
| |

74 0 B0 | Reserved for Future | Spaces
| |

Standardizsation

Parameters:

TAPE _ DRIVE Is an open flle handle on the Nie representing the tape drive.

FILE _IDENTIFIER
is a 17-character string gliving the flle name.

EXPIRATION _DATE

is a string identifying the date (8 characters ' YYDDD' where YY s the year and
DDD is the day (001-366)) the file may be overwritten. When the expiration date is

186

PROPOSED MIL-<TD-¢ A~
31 JANU ARY qux

a space followed by 5 zeroes, the file has expired. ACCESSIBILITY
is 8 character representing restrictions on access to the tape. in accordance with
[ANSI 78}; a SPACE Indicates no access control.

Exceptions:

USE _ERROR s raised if MAGNETIC __TAPE is not the value of the attribute FILE _KIND of
the node associated with the file identified by TAPE_DRIVE. USE _KRROR is
also raised Il the tape on the tape drive represented by the file identificd by
TAPE _ DRIVE was loaded as an uniabeled tape or If FILE _IDENTIFIER does not
conform o the syntax of an Ada identifier. USE_ERROR is also raised if
IS_LOADED(TAPE _DRIVE) is FALSE at the time of the call.

MODE _ERROR
is raised if the file identified by TAPE__DRIVE is of mode IN_ FILE.

STATUS _ERROR
is raised If TAPE _ DRIVE is not an open file handle.

DEVICE_ERROR
is raised if an input or output operation cannot be completed berause of a
malfunction of the underlying system.

5.3.9.17. Writing an end of file label

procedure END FILE LABEL (TAPE_DRIVE: in FILE_TYPE);

Purpose:
This procedure writes an end of file label, as shown in TABLE XIII on the tape loaded on the
tape drive represented by the file identifled by TAPE _ DRIVE.

Table XIII. End of file label

Character

Position Field Name Contents

1 t03 | Labtsl Identifier | EOF
| l

4 | Label Number I 1
| |

6§ to 54 | Same as corresponding | Same as corresponding
| fields 1n f1le header | filelds in file header
| label | label
| |

85 to 80 | Block COUNT | NWumber of bdlocks in file
| |

61 to 80 | Same as corresponding | Same as corresponding
| fields 11 file header | fields in file headesr
| label | 1label

Parameters:

TAPE _DRIVE Is an open flle handie on the file representing the tape drive,

187

PROPOSED MIL-STD-C AJs
31 JANUARY 1085

Exceptions:

USE _ERROR I8 raised If MAGNETIC _ TAPE is not the value of the attribute FILE _KIND of
the node associated with the file :dentifled by TAPE _DRIVE. USE_ERROR is
also raised If IS__ LOADED(TAPE _DRIVE) Is FALSE at the time of call or if the
tape on the tape drive represent.d by the file identified by TAPE _DRINVE was
loaded as an unjabeled tape.

MODE _ERROR
is raised If the file identified by TAPE_ DRIVE is of mode IN_ FILE.

STATUS _ERROR
Is raised If TAPE _ DRIVE is not an open file handle.

DEVICE _ERRCR
is raised If an input or output operation cannot be completed because of a

malfunction of the ynderlying syvst« m.

5.3.9.18. Reading a label on a labeled tape

procedure READ LABEL (TAPE_DRIVE: in FILE_TYPE:
LABEL : out LABEL STRING):
Purpose:
Thig procedure obtains th first 80 characters of the next available block and returns them in
LABEL.
Parameters:

TAPFE _DRIVE is an open file handle on the filc representing the tape drive.

LABEL is the 80-character string read from the tape.

Exceptions:

USE _ERROR is raised If the attempt to read eighty characters encounters a tape mark or if
MAGNETIC _TAPE Is not the value of the attribute FILE_KIND of the node
assoclated with the file identified by TAPE_ DRIVE or i
IS _LOADED(TAPE _DRIVE) is FALSE at the time of the call. USE_ ERROR is
aiso raised If the tape on the tape drive represented by the file identified by
TAPE _DRIVE was loaded as an uniabeled tape.

STATUS _ERROR
Is raised if TAPE _DRIVE Is not an open fite handle.

DEVICE _ERROR
Is raised If an input or output operation cannot be completed because of a

malfunction of the underlying system or If the tape Is uninitialized.

188

w

PROPOSED MI-STD-C AN

31 JANE ARY 1985

SEARCH _ERROR

is raised If there is no item with the name NAMED.

5.4.1.18. Inserting a list-type item into a list

procedure INSERT(LIST: in out LIST_TYPE:
LIST_ITEM: in LIST_TYPE.
POSITION: in COUNT) ;

procedure INSERT(LIST: in out LIST_TYPE;
LIST_ITEX: in LIST_TYPE.
NAMED . in NAME_STRING;
POSITION : in COUNT) :

procedure INSERT(LIST: in out LIST_TYPE:
LIST_ITEM: in LIST_TYPE;
NAMED : in TOKEN_TYPE,
POSITION : in COUNT) ;

Purpose:

This procedure inserts a list-type item into a list after the list item specified by POSITION. A
value of zero in POSITION specifies a position at the head of the list. Subsequent modifications
to the values of LIST or of LIST _ITEM do not affect 11 other value.

Paramcters:

LIST
LIST _ITEM
POSITION
NAMED

Exceptions:

USE _ERROR

g the llst into which the item will be Inserted.

is the value of the item Lo be inserted.

is the position in the list after » hich the item Is to be inserted.

is the name of the new item. It may only be used with named or empty lists.

is raised if an attempt is mad to insert a named item into an unnamed list or,
conversely, an attempt is mad: to insert an unnamed item into a named list or il
LIST Is a named list that alre ly contains an item with the name NAMIED or if.
POSITION specifies a value lar 'r than the current length of the list.

5.4.1.19. Identifying a list-type item by value within a list

function POSITION_BY VALUE(LIST: in LIST_TYPE;

Purpoee:

VALUE: in LIST_TYPE;
START_POSITION: in POSITION_COUNT
= POSITION_COUNT 'FIRST;
END_POSITION : in POSITION_COUNT
:= POSITION_COUNT LAST)
return POSITION_COUNT;

This function returns the position at which the next list-type item of the given value Is located.
The search begina at the START _POSITION and ends when etther an item of value VALUE Is
found, the last item of the list has been examined, or the item at the END _POSITION has
been examined, whichever comes first.

Parameters:

202

PROPOSED MIL-STD-C AlN
31 JANUARY 1985

This function locates a list-type item in a list and returns in LIST _ITEM & copy of it.
Subsequent modifications (o the values of LIST or to the value returned in LIST _ITEM do not
affect the other value.

Parameters:
LIST is the list containing the item Lo be extracted.
POSITION Is the positlon within the list that identifies the Item to be extracted.
LIST _ITEM is the value of the list-Ltype item extracted.
NAMED is the name of the item to be extrac -2d. It may only be used with named lists.

Exceptions:

USE _ERROR s ralsed if the list Is empty or if POSITION has a value larger than the current
length of the list. USE__ERROR s also raised If NAMED is used with an unnamed
list or If the POSITION specification or the name NAMED identifies an item not of
list-type kind.

SEARCH _ERROR
Is raised If there is not itern with the name NAMED.

5.4.1.17. Replacing a list-type item in a list

procedure REPLACE(LIST:
LIST ITEM
POSITION :

procedure REPLACE(LIST:
LIST_ITEM:
MAMED :

procedure REPLACE(LIST:

LIST_ITEM:
NAMED

Purpose:

This procedure replaces the valuc of a list-type item in a list.

:in

: in

in out LIST_TYPE,;
in LIST_TYPE;
in POSITION_COUNT),

in out LIST_TYPE;
in LIST_TYPE:
NAME_STRING) ;

in out LIST_TYPE;

in LIST_TYPE;
TOKEN_TYPE) ;

Subsequent modifications Lo the

values of LIST or of LIST _ITEM does not affect the other value.

Parameters:
LIST is the list containing the item to be replaced.
LIST _ITEM s the value of the new (tem.
POSITION is the position within the lst that identifiea the itemn to be replaced.
NAMED is the name of the item to be replaced. It may only be used with named lists.

Ixceptions:

USE _ ERROR s raised If NAMED Is used with an unnamed lixt, if the POSITION specification or
the name NAMED Identifics an item not of list-type kind. If the list 1s empty or or
I POSITION has a value larger than the current length of the list.

201

-—w

—_—— —

PROPOSED MIL-STD-C AL~
31 JANUARY 1885

Parameters: .

LIST is the list of interest.

POSITION is the position within the list that identifies the item.

NAMB is the token representation of the name of the itemn in the named list.
Exceptlons:

USE _ ERROR is raised if LIST is not a named list.

if POSITION has a value larger than the
current length of LIST.

5.4.1.15. Determining the position of 8 named item

function POSITION_BY NAME(LIST: in LIST TYPE;
MAMED: In WAME_STRING)
return POSITION_COUNT;
function POSITION_BY NAME(LIST : in LIST TYPE;
NAMED: in TOKEN TYPE)
return POSITION_COUNT;
Purpose:

This function returns the position at which an item with the given name NAMED is located in
LIST. It may only be used with named lists.

Parameters:
LIST is the list in which the position of an item is to be found by name.
NAMED Is the name.

Exceptions:

USE _ERROR is raised If LIST is not a named list or {f the list {s empty.

SEARCH _ERROR

is raised If NAMED is not a name of an item contained in the list.

5.4.1.16. Extracting a list-type item from a list

procedure EXTRACT(LIST: in LIST_TYPE;
POSITION: in POSITION_COUNT;
LIST_ITEM: out LIST_TYPE):
procedure EXTRACT(LIST: in LIST_TYPE:
MAMED : in NAME_STRING;
LIST_ITEM: out LIST_TYPE);
procedure EXTRACT(LIST: in LisT_TYPE;
NAMED : in TOKEN_TYPE;

LIST ITEM: out LIST TYPE);

Purposc:

— v

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

Parameters:

LIST ts the list of interest.

Exceptlons:
None.

5.4.1.13. Determining the length of a string representing a list or a list item

function TEXT LENGTH(LIST: in LIST_TYPE)
return NATURAL:

function TEXT_LENGTH(LIST: in LIsT TYPE;

POSITION: in POSITION_COUNT)
return POSITIVE;

function TEXT_LENGTH(LIST: {in LIST TYPE:
NAMED: n MAME_STRING)
return POSITIVE;

function TEXT_LENGTH(LIST: in LIST_TYPE:
NAMED: §n TOKEN_TYPE)
return POSITIVE;

Purpose:

This function returns the length of a string representing either a list or the list item identified
by POSITION or NAMED in a list.

Parameters:
!
) LIST Is the list of interest.
k POSITION is the positlon within the list that identifies the item.
1 NAMED is the name of the list item.
|
1 Exceptions:

USE _ERROR s raised If POSITION has a valve larger than the (existing) length of the Hst or if

T the parameter NAMED Is used with an unnamed list.

SEARCH _ERROR
Is raised If there Is no item with the name NAMID.

65.4.1.14. Determining the name of a named item

procedure ITEN_NAME (LIST: in LIST_TYPE:
POSITION: in POSITION_COUNT;
NAKE : out TOKEN_TYPE);

—————

Purpose:

This proccdure returns in NAME the token representation of the name of the ttem tn the namaes!
list, as specified by POSITION.

169

LR e 4

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

empty list. The values of FRONT and BACK are not affected. Subsequent modifications to the
values of FRONT or BACK or to the value of the returned RESULT list do not affect the other

list.
Parameters:
FRONT is the fNirst list to be merged.
BACK is the second list 1o be merged.
RESULT is the list produced by the merge; It has the list items of FRONT In its initial
sublist and those of BACK as the rest of its items.
Exceptions:

USE _ERROR s raised if FRONT and BACK are not of the same kind and neither of them is an
empty list. USE__ERROR Is aiso raised If FRONT and BACK are both named and
contain an item with the same name.

5.4.1.11. Extracting a sublist of items from a list

function SET_EXTRACT(LIST: in LIST_TYPE;
POSITION: in POSITION_COUNT:
LENGTH: im POSITIVE:= POSITIVE'LAST)
return LIST TEXT;

Purpose.

This function allows a (sub)iist to be extracted from a list. The returned value is & copy of the
list subset that starts at the tem at POSITION and has LENGTH items in it. If there are
fewer than LENGTH items in this part of the list, the subset extends to the tail of the list.

Parameters:

LIST is the list containing the subset to be extracted.

POSITION is the position within the list that identifes the subset to be extracted.

LENGTH is the length of the subset.

Exceptions:

USE_ ERROR s raised if POSITION has a value larger than the current length of the list.

5.4.1.12. Determining the length of a list

function LENGTH(LIST: in LIST_TYPE)
return COUNT:

Purpose:
This function returnrs a count of the number of items In LIST. If LIST is empty, LENGTH
returns zero. .

108

PROPOYED MIL-STD-¢ Als
31 JANU ARY 1885

LIST is the list of interest.
POSITION Is the position within the list that identifies the item.

NAMED Is the name of the list item.

‘Exceptions:

USE _ERROR s raised If the parameter NAMED is used with an unnamed list, If the list is empty,
If there Is no item with the namec NAMED or if POSITION has s value larger than
the current length of LIST.

SEARCH _ ERROR
is raised If there Is no item with the name NAMED.

5.4.1.9. Inserting a sublist of items into a list

procedure SPLICE(LIST: in out LIST_TYPE;
POSITION: in POSITION_COUNT;

SUB_LIST: in LIST_TEXT);

procedure SPLICE(LIST: in out LIST TYPE;
POSITION: in POSITION COUNT:

SUB_LIST: in LIST_TYPE) .
Purpose:
This procedure allows a list to be inserted Into a list. The items In the list to be inserted will
bhecormne items in the resuiting list. Subsequent modifications to the value of LIST or to the value
of SUB _LIST do not affect the other list.

Parameters:

LIST is the list Into which a list Is to be inserted.
POSITION Is the position after which the new items will be inserted.

SUB_LIST is the list to be inserted.

Exceptlons:

USE _ ERROR s ralsed If SUB_LIST as LIST _ TEXT does not conform to the syntax specified in
TABLE XIV. USE__ERROR Is also raised If LIST and SUB_LIST are not of the
same kind and neither of them is an empty list. USE.__ ERROR s also raised if LIST
and SUB_LIST are both named and contain an item of the same name or if
POSITION has a value larger than the current length of the list.

5.4.1.10. Merging two lists

procedure MERGE(FRONT: in LIST_TYPE;
acx: in LIST_TYPE;
RESULT: in out LIST_TYPE);

Purpose:
This procedure returns in RESULT a list constructed by concatenating BACK to FRONT. The
lists FRONT and BACK must be of the same kind or either FRONT or BACK must be an

197

1

PROPOSED MIL-STD-CAIS
A1 JANUARY 1985

Purpose:
This procedure deletes the Item specified by POSITION or NAMED from LIST. If this was the
last item In the list, the kind of the list changes 10 EMPTY.

Parameters:

LIST is the list from which the item will be deleted.
POSITION Is the positlon within the list that identiNes the item to be deleted.

NAMED is the name of the list item to be deleted.

Exceptions:

USE _ ERROR is raised if the parameter NAMED is used with an unnamed list, If the list is empty,
If there is no item with the name VAMED or If POSITION has a value larger than
the current length of LIST.

SEARCH _ ERROR .
Ir raised If there is no item with the name NAMED.

5.4.1.7. Determining the kind of list

function GET_LIST KIND(LIST: In LIST_TYPE)
return LIST KIND;

Purpose:
This function returns the kind of the referenced | L.

Parameters:

LIST is the list of interest.

Exceptions:
None.

5.4.1.8. Determining the kind of list item

function GET_ITEM_KIND(LIST: in LiST_TYPE,
POSITION: in FOSITION_COUNT)
return ITEM _KIND;

function GET_ITEM XIND(LIST: in LIST_TYPE:
WAMED: in NAM} _STRING)
return ITEM KIND:
function GET_ITEM_KIND(LIST: in LIST TYPE;

NANED: in TOK iN_TYPE)
return ITEN _KIND;

Purposc:
This function returns the kind of an item In the 1 ferenced Hist.

Parameters:

196

PROPOSED MIL-STD-C" z I~
31 JANUARY 1985

5.4.1.4. Converting to an external list representation

function TO_TEXT (LIST_ITEM: in LIST_TYPE)
return LIST_TEXT;

Purpose:

This function returns the external representation of the value of the LIST_ITEM parameter.
The representation is the string representation defined in Section 5.4.

Parameters:

LIST _ITEM s the list to be converted.

Exceptlons:
None.

5.4.1.6. Determining the equality of two lists

function Is5_EQUAL(LIST:: In LIST_TYPE;
LIST2: in LIST_TYPE)
return BOOLEAN;

Purpose:
This function returns TRUE if the values of the two lists LIST1 and LIST2 are equal according
to the following rules; otherwise, It returns FALSE.

Two values of type LIST _ TYPE are equal if and only if:

a. both iists are of the same kind (i.e., pamed. unnamed or empty), and
b. both lists contain the same number of list items, and

c. for each position, the values of list ltems at this position, as obtained by an EXTRACT
operation, are of the same kind and are equal under the equality defined for this kind,
and

d. in the case of named lists, for each position, the names of the Hst items at this position
are equal under TOKEN _ TYPE equality (i.e.. IS_ EQUAL).

Parameters:

LISTI1, LIST2 are the lists whose equality is to be determined.

Exceptions:
None.

5.4.1.6. Deleting an item from a list

procedure DELETE(LIST: in out LIST_TYPE;
. POSITION: in POSITION_COUNT):
procedure DELETE(LIST: in out L1sT_TYPE;
MeEp: in NAKE_STRING) ;
procedure DELETE(LIST: in out L1sT_TYPE;

MAMED : in TOKEN_TYPE) ;

185

Ldtowsia

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

CONSTRAINT _ERROR s raised If an attempl Is made to convert a value to a numeric type when
the value does not satisfy the constraints for that type.

5.4.1.2. Copying a list

procedure COPY(TO_LIST: out LIST TYPE;
FROM_LIST: in LIST_TYPE);

Purpoee:

This procedure returns In the parameter TO__LIST a copy of the list value of the parameter
FROM _LIST. Subsequent modifications of either list do not affect the other list.

Parameters:

TO_LIST is the list returned as a copy of the value of FROM _ LIST.

FROM _LIST s the list to be copied.

Exceptions:
None.

5.4.1.3. Converting to an internal list representation

procedure TO_LIST(LIST_STRING: in STRING;
LIST: out LIST_TYPE);
Purpose:
This procedure converts the string representation of a list into the internal list representation.
It establishes the list as a named, unnamed, or empty list. The individual list items are classified
asccording to their external representation. For a numeric item value, the item Is classified as an
loteger item If the numeric value can be interpreted as a literal of universal _integer type;
otherwise, the numeric item is claseified as a floating point item. Blanks, format effectors and
non-printing characters are allowed in the value of the parameter LIST _ STRING.

Parameters:

LIST _STRING
is the string to be interpreted as a list value.
LIST i8 the list built and returned according to the contents of LIST _ STRING.
Exceptions:

USE _ERROR s raised If the value of the parameter LIST _STRING does not conform to the
syntax of TABLE XIV. Blanks, format effectors and non-printing characters are
allowed between lexical or syntactic elements of this syntax.

CONSTRAINT _ ERROR

is raised If » numeric literal in the LIST _STRING parameter designates a value
which cannot be represented as the value of an item in the LIST result.

184

PROPOSED MI-STD-¢ AIn
31 JANUARY 1985

c. For an identifier list item or the name of a list item, the external string representation is
the Identifier string in upper case characters.

d. For s quoted string list item, the external string representation Is the string literal
representing the value of the list item (l.e., the string value enclosed by quotation
characters and with inner quotation ~haracters doubled).

e. for a list as a list Item, the external string representation Is the external representation of
the value of the list.

f. for a list, the external siring representation of Its valne is the string representation
composed of the external representation of its list items according to the syntax of Table
XIV without blanks, format effectors or non-printing characters between the lexical or
syntactic constituents of the syntax.

6.4.1. Package LIST_UTILITIES

This package defines types, subtypes, constants, exceptions and general list manipulation interfaces.
The latter are supplemented by generic subpackages for the manipulation of list items of numeric
type.

5.4.1.1. Types and subtypes

type LIST_TYPE is limited private;

type TOKEN_TYPE is limited privsate;

type LIST KIND is (UNNAMED, NWAMED. EMPTY) :

type ITEN_KIND is (LIST_ITEM. STRING_ITEN, INTEGER_ITEM,
FLOAT_ITEM, IDENTIFIER_ITEN);

subtype LIST_TEXT is STRING;

subtype MAME_STRING is STRING;

type COUNT is range 0 .. INTEGER'LAST;

subtype POSITION_COUNT is COUNT range COUNT 'FIRST + 1 .. COUNT'LAST;

LIST_TYPE describes the type for lists. TOKEN_TYPE describes the type for Interna)
representations of Identifiers. LIST _KIND enumcrates the kinds of lists. JITEM __KIND enumerates
the kinds of list items. LIST _ TEXT is the type of a list's external representation. NAME _ STRING
is the type of an identifler or of an ltem's pame In a8 named item In Its external representation.
COUNT describes the type for the length of a list. POSITION_COUNT describes the type for the
position of an item in s non-empty list.

EMPTY _ LIST : constant LIST _ TYPE;

EMPTY _ LIST is a deferred constant denoting the value of an empty list. Any implementation of
the CAIS must ensure that IS EQUAL(EMPTY _LIST, X) is TRUE for any object X of type
LIST _ TYPE whose value is an empty lst.

SEARCH _ERROR : exception;
CONSTRAINT _ ERROR: exception;

SEARCH __ERROR is raised If a search for an Itcm falls because the item Is not present in the list.

103

P N .

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

(sub)list. Operations to delete an item or a set of items are also provided. Insertion and deletion
operations will adjust the ordinal positions of items afier the inserted or deleted items.

The value of an entity of type LIST_TYPE can be represented externally to the packsge
LIST _UTILITIES as a string. Interfaces are provided to convert between entitles of type STRING.
containing a string value consistent with the syntax of this external representation, and entities of
type LIST _TYPE. An object of type LIST _ TYPE has as its Initial value the empty list. The BNF
for a list's external representation is given iIn TABLE XIV.

Table XIV. List cxternal representstion BNF

list ::= named_list

| unpamed list

| empty_list
named_11st ::= (named_item { , named_item })
unnamed_list ::x (item { , item })
empry_1ist ::= ()
famed_item ::= Rame_string => item
item ::= list

| quoted_string

| integer_number

| float_numder

| identifier
integer_number ::= integer
float_pumder ::= decimal litersl
quoted_string :@:= string_literal
name _string ::= identifier

Motation:

1. Words - syntactic categories

2.1 optional items

3. ()} an item repeated zero or MOre tises
4 | - separates slternatives

The CAIS deflnes a canonical external string represcntation for values of type LIST_TYPE. The
string subtype LIST_TEXT Is used in the CAIS interfaces for string values that adhere to this
canonical external representation. This external representation is obtalned by applying the
TO _ TEXT operation to a value of type LIST_ TYVE or to a value that Is a legal value of a list
item.

The canonical external string representation of a value of type LIST _TYPE snd of Its list items is
defined as follows:

a. For an Integer list item, the external string representation is the decimal representation of
its numeric value without leading zeroes.

b. For s Nosting point list Item, the externna! atring representation Is the string image of its
numeric value In decimal notation with a format as obtained under implementation-defined
settings of the FORE, AFT. and EXP p:.rameters in PUT operations of Ada TEXT _10
(see [LRM] 14.3.8). These settings of FORE, AFT, and EXP must guarantee that quality
of the external representation implies equ:lity of the internal representation and vice versa
within the limitations imposed by the accuracy of numeric comparisons in Ada.

192

PROPOSED MIL-STD-C Als
31 JANUARY 1085

5.4. CAIS Utilities

This section defines the abstract data type LIST _ TYPE for use by cther CAIS Interfaces. The valye
of an entity of type LIST _ TYPE (referred to as a [ist) is a linearly ordered set of data elements
called list sitems.

It Is possible to associate a name with s list item. If no name i3 associated with a lst item, the item is

"an unnamed item. If a name Is associated with a list Item, the item is & named stem. A list can
either contsin all unnamed items, in which case it Is called an unnamed list, or all named items, in
which case it is called a named list, but not both. If s st contains all npamed items, names among
these items must be unique. An empt: list (s a list which contains no items. Such a list is not
considered to be either named or unnamed. An empty list can be obtained by using the
EMPTY _LIST constant or the DELET!. procedure. The type LIST_ KIND enumerates these three
classifications of lists.

Associated with each list item is a classification, or kind. List items are classified as strings, integers,
float numbers, identifiers and lists. The kind of an item I8 a value of the enumeration type
ITEM_ KIND. The CAIS interfaces allow, but do not require, an individual implementation of the
CAIS to employ efficient mechanisms for representing identifiers as part of lists. Towards this
purpose, a private type TOKEN _ TYPE Is Introduced, which allows Identiflers to be manipulated as
internal representations calied tokens. Interfaces are provided to transform identiflers in the form of
a NAME_STRING Into a TOKEN_ TYPE and vice versa. NAME_STRING is a subtype of
STRING, whose values are assumed to conform to the syntax of Ada Identifiers. Tokens are equal if
and only If their external representations are equal under string comparison, excepting differences in
upper and lower case notition.

The names of list items in a named list may be internally represented as tokens. Overloaded Interfaces
are provided In the CAIS that allow the names of list items within 8 named list to be specified by
parameters of either NAME _ STRING or TOKEN _ TYPE type.

The specifications within this package allow for the manipulation of lists which are of unnamed,
named or empty kind. If a parameter of an interface specifies an item by position, then that interface
may be used with either unnamed lists or named lists. If. however, a parameter specifies an item by
name, t} *n the associated interface may only be used with named lists.

Items of a list can be manipulated by:

a. extracting items from a list,
b. replacing or changing values of items in a list, and

c. Inserting new items into a list.

These operations are provided by the EXTRACT, REPLACE, and INSERT subprograms,
respectively. Packages are provided to allow such operations to be performed directly on strings,
identifiers and lists. Operations on the numeric types are provided with generic packages.

The positions in the list where Lhese operations are specif «d Lo take place are usually designated by
the parameter POSITION. With named lists a particular item can be specificd by a name. This |Is
posstbic since such names by definftion are unique. Specifying a particular item by name is only
permitied with EXTRACT and RECLACE operations.

Inscrtion operations can also be performed on scts of Items. A sct would then effectively constitute a

PROPOSED MIL-STD-CAIS
31 JANUARY 10985

IMPORT (NODE . HOST_FILE NAME) ;
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end IMPORT;

it

§.3.10.2. Exporting a file

procedure EXPORT (NODE: in MODE_TYPE;
HOST_FILE NAME: in STRING);

Purpose:
This procedure creates a new flle named HOST _FILE _NAME in the hosi file system and
coples the contents of the file node identifled by NODE into It.

Parameters:

NODE is an open node handle on the file node.

HOST _FILE_ NAME
is the name of the host file Lo be created.

Exceptions:

NAME _ERROR
is rajsed if the node identifled by NODE is inaccessible.

USE __ERROR s raised if HOST _FILE__ NAME does not adhere to the required syntax for file
names in the host file system or if HOST_FILE_ NAME cannot be created in the
host file system. USE_ERROR is also raised If FILE is not the value of the

* attribute KIND of the node identified by NODE.

STATUS_ERROR
Is raised If NODE is not an open node handle.

1L INTENT _ VIOLATION
is raised if NODE was not opened with an intent establishing the right to read
contents.

Additional Interface:

’ procedure EXPORT (NAME : in maE_sTRING;
HOST FILE MAME: in STRING);
is

NODE : NODE_TYPE;
n
OPEN (NODE, NAME, (1=>READ_CONTENTS)) ;
EXPORT (NODE, HOST_FILE_NAME) ;
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end EXPORT;

PROPOSED MIL-STD-(aJ«
31 JANUARY 1089

5.3.10. Package FILE_IMPORT_EXPORT

The CAIS allows a particula: CAIS implementation to maintain flies separately from Nles maintained
by the host file sysvem. This package provides the capability to transfer files between these two
systems.

. 5.3.10.1. Importing a file

procedure IMPORT (NODE: in wooE_TYPE;
ROST_FILE_RAME: In STRING):

Purpose:
This procedure searches for a flle in the host file system named HOST _FILE__NAME and
coples its contents into a CAIS flle which Is the contents of the node identifted by NODE. It also
coples any flle characteristic information which must be maintained by the CAIS
implementation.

Parameters:

NODE is an open node handle on the flle node.

HOST _FILE __NAME
is the name of the host file to be copled.

Exceptions:

NAME _ERROR
is raised if the node ldentiftied by NODE is inaccessiblc.

USE_ERROR I8 raised If HOST _FILE_ NAME does not adhere to the required syntax for file
names in the host file system or if HOST__FILE _ NAME does not exist in the host
fNlle system. USE _ERROR is aiso raised If FILE is not the value of the attribute
KIND of the node identifled by NODE.

STATUS __ERROR
Is raised if NODE is not an open node handle.

INTENT _ VIOLATION
is raised {f NODE was not opened with an Intent establishing the right Lo write
contents.

SECURITY _ VIOLATION
Is ralsed If the operstion represents a violatlon of mandatory access controls,
SECURITY _ VIOLATION Is raised oniy if the conditions for other exceptions are
not present.

Additional Interface:

procedure IMPORT (NAME: In MAME_STRING;
HOST_FILE_WMAME: in STRING)
Is

WODE : WODE_TYPE;
begin -
OPEN (NODE, NAME , (1=>WRITE_CONTENTS)) ; ’

189

R

PROPOSED MU ASTH-¢ AlS
3t JANUARY tus5

LIST Is the list in which the position of an item is to be found.
VALUE is the list-type Item value.

START _POSITION
s the position of the first Item to be considered in the search.

END _POSITION
is the position beyond which the search will not proceed; the search may terminate
prior to reaching FND _POSITION shonid the sought list-type item be found or
should the last element of the list be considered.

Exceptlons:

USE_ERROR Is raised If START _ POSITION specifies a value larger than the current length of
the lst, Iif the list Is empty or If END_POSITION is less than
START _ POSITION.

SEARCH_ ERROR

is raised If the VALUE specified is not found within the region specified by
START _POSITION and END _ POSITION.

5.4.1.20. Package IDENTIFIER_ITEM

This package provides interfaces for the manipuilation of list items whose values are identifiers and of
names of list items. Such names and values are represented internally as values of type
TOKEN_ TYPE.

5.4.1.20.1 Converting an identifier to a token

procedure TO_TOKEN(IDENTIFIER: in MAME_STRING;
TOKEN: out TOKEN_TYPE) ;

Purpose:

This procedure converts the string representation of an identifier into the corresponding internal
token representation.

Parameters:

IDENTIFIER is the string to be converted to a tolen.

TOKEN Is the token bulilt and returned according to the value of IDENTIFIER.

Exceptions:

USE _ERROR s raised If the value of the paramet-t IDENTIFIER does not conform to the syntax
of an Ada identifer.

o

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

6.4.1.20.2 Converting a token to an_identifier

function TO_TEXT(LIST_ITEN. in TOKEN_TYPE)
return NAME_STRING;

Purpose:
This function returns the external representation of the value of the LIST _ITEM paramcter.
The external representation is the string representation defined in Section 5.4. It adheres to the
syntax required for NAME _ STRING..

Psrameters:

LIST_ITEM s the Item expressed as a token.

Exceptions:
None.

5.4.1.20.3 Determining the equality of two tokens

function IS_EQUAL ("OKEN1:
TOKEN2:
return BOOLEAN;

in TOKEN_TYPE;
in TOXEN_TYPE) ;
Purpose:
This function returns TRUE if the two tokens TOKEN1 and TOKEN2 represent Ada identifiers

whose string representation is equal under string comparison. excepting differences in upper and
lower case notation: otherwise, it returns FALSE.

Parameters:

TOKENI. TOKEN2
are the tokens whose equality is to be determined.

Exceptions:
None.

5.4.1.20.4 Extracting an identifier item from a list

procedure EXTRACT(LIST: in LIST_TYPE;
POSITION: in POSITION_COUNT,
TOKEN : out TOKEN_TYPE) ;

procedure EXTRACT(LIST: In LIST_TYPE:
NAMED: in NAME_STRING;
TOKEN: out TOKEN_TYPE) ;

procedure EXTRACT(LIST: in LIST_TYPE;
MAMED: in TOKEN_TYPE;
TOKEN: out TOKEN_TYPE);

Purpose:
This function locates an identifier Item in a list and returns in TOKEN a copy of its token.
Parameters:

LIST Is the list containing the item to be extracted.

Y

PROPOSED MIL-STD-C AlS
31 JANUARY 19085

POSITION is the position within the list that identifies the item to be extracted.

TOKEN Is the u;ken representation of the identifier item.

NAMED is the name of the item to be extracted. It may only be used with named lists.
Exceptions:

USE _ ERROR s ralsed if NAMED is used with an unnamed list ,if the POSITION specification or
the name NAMED identifles an item not of token type If the list is empty or If
POSITION has a value larger than the current length of the list.

SEARCH _ERROR
is raised If there is no item with the name NAMED.

5.4.1.20.5 Replacing an identifier item in a list

procedure REPLACE (LIST: in out LIST TYPE;
LIST_ITEM: in TOKEN_TYPE;
POSITION: in POSITION_COUNT) ;
procedure REPLACE (LIST: in out LIST_TYPE;
LIST_ITEM: in TOKEN_TYPE:
NAMED : in MAME_STRING) ;
procedure REPLACE(LIST: in out LIST TYPE:
LIST_ITEM: in TOKEN_TYPE;
NAMED : in TOKEN_TYPE)
Purpose:
This procedure replaces the value of an Identifier item in a list.
Parameters:
LIST is the list containing the item to be replaced.

LIST _ITEM s the new value of Lhe item.
POSITION Is the position within th. list that identifies the item to be replaced.

NAMED Is the name of the item to be replaced. It may only be used with named lists.

Exceptions:

USE _ ERROR is raised if NAMED is used with an un. .med list, If the POSITION specification or
the name NAMED identifies an item not of Identifier kind, If the list is empty, or if
POSITION has a value larger than the current length of the list.

SEARCH_ERROR
is raised if there is no item with the name NAMED.

— a _

PROPOSED MIASTD-CAIN
31 JANDU ARY 16R5

5.4.1.20.6 Inserting an identifier item into a list

procedure INSERT(LIST: in out LIST_TYPE.

LIST_ITEM: in TOKEN_TYPE;
POSITION: in COUNT) ;
procedure INSERT(LIST: ip out LIST TYPE;
LIST_ITEM: in TOKEN_TYPE:
NAMED : in RAME STRING;
POSITION: in COUNT) ;
procedure INSERT(LIST: in out LIST TYPE;
LIST_ITEM: in TOKEN_TYPE;
NAMED : in TOKEN_TYPE;

POSITION : in COUNT) ;
Purpose:
This procedure inserts an identifier item into a list after the list item specified by POSITION.
A value of zero in POSITION specifics a8 position at the head of the list.

Parameters:

LIST is the list into which the itemn will be jnserted.
LIST _ITEM s the value of the ttem to be inserted.
POSITION is the position In the list after which the item {8 to be inserted.

NAMED Is the name of the new item. It may oniy be used with named or empty lists.

Exceptions:

USE__ERROR s raised if an attempt i* made to insert a named item into an unnamed list or,
conversely, an attempt Is made to insert an unnamed item into & named list or il
LIST is a named list that aiready contains an item with the name NAMED.
USE _ ERROR s also raised if POSITION specifies a value larger than the current
length of the list.

5.4.1.20.7 Identifying an identifier item by value within a list

function POSITION BY VALUE(LIST: in LIST_TYPE;
VALUE : in TOXKEN_TYPE:
START_POSIITON: in POSITION_COUNT
:= POSITION_COUNT ‘FIRST;
END_POSITION : in POSITION COUNT
:= POSITION_COUNT ‘LAST)
return POSITION_COUNT,

Purposc:
This function returns the position at which the next identifier tem of the given value Is located.
The search begins at the START __POSITION and ends when elther an item of value VALUE is
found. the last Item of the list has been examined, or the item at the END _ POSITION has
been examined, whichever comes first.

Parameters:

LIST Is the list in which the position of an Item I8 to be found by value.

2006

ol

PROPOSLD MIL-STD-C Al
31 JANUARY 1985

VALUE Is the Kdentificr item value (token).

START _POSITION
is the position of the first item to be considered in the search.

END_ POSITION

Is the position beyond which the scarch will not proceed; the search may terminate
prior to reaching END_ POSITION should the sought Iidentifier item be found or
should the last element of the list be considered.

Exceptions:

USE _ ERROR s raised If START _ POSITION specifies a value larger than the current length of

the list, If the list is empty or If END_POSITION Is less than
START _ POSITION.

SEARCH__ERROR

is raised if the VALUE specified is not found within the reglon specified by
START _POSITION and END _ POSITION.

5.4.1.21. Generic package INTEGER__ITEM

This Is a generic package for manipulating list items which are Integers. This package must be
Instantiated for the appropriate integer type (indicated by NUMBER In the specification).

5.4.1.21.1 Converting an integer itern to its canonical external representation

function TO_TEXT(LIST_ITEM: in WUMBER)
return STRING:

Purpose:
This function returns the external representation of the value of the LIST _ITEM parameter.
The external representation is the string representation defined In Section 5.4.

Parameters:

LIST _ITEM s the integer Item whose external representation is to be returned.

Exceptlons:
None.

5.4.1.21.2 Extracting an integer item from a list

function EXTRACT(LIST: in LIST_TYPE:
POSITION: in POSITION_COUNT)
return NUMBER;

function EXTRACT(LIST : In LIST_TYPE;
RAMED: in MANE_STRING)
return NUMBER;

function EXTRACT(LIST : in LIST_TYPE;

NAMED: in TOKEN_TYPE)
return NUMBER;

207

w—

PN

PROPOSED MIL-STD-CAIS
31 JANUARY 1885

Purpose:
This function locates an Integer Item In a list and returns a copy of its numeric value.

Parameters:

LIST Is the list containing the item to be extracted.
POSITION is the position within the list that Identifies the Item to be extracted.
NWED is the name ol the item to be extracted. It may only be used with named lists.

Exceptions:

USE _ ERROR s raised if NAMED Is used with an unnamed list, if the POSITION specification or
the name NAMED identifies an item not of integer kind, If the list is empty or If
POSITION has a value larger than the current length of the list.

SEARCH _ERROR
is raised If there Is no item with the name NAMED.

CONSTRAINT _ERROR

is raised If the valiue to be extracted violates the constralnts of the type designated
by NUMBER.

5.4.1.21.3 Replacing an _integer item in a list

procedure REPLACE (LIST: in out LIST_TYPE:
LIST_ITEM: in WUMBER ;
POSITION: in POSITION_COUNT) ;
procedure REPLACE(LIST: in out LIST_TYPE.
LIST_ITEN: in WUMBER ;
NAMED : in NAME_STRING) ;
procedure REPLACE(LIST: in out LIST_TYPE.
LIST_ITHM: in WABER ;
RAMED : in TOXEN_TYPE) ;
Purpose:
This procedure replaces the vajue of an integer item in a list.
Parameters
LIST is the list containing the item to be replaced.

LIST _ITEM Is the new value of the item.
POSITION is the position within the list that identifies the item to be replaced.

NAMED Is the name of the item to be replaced. It may only be used with named lists.

Exceptions:

USE_ ERROR s raised If NAMED I8 used with an unnamed list or If the POSITION apecification
or the name NAMED identifies an item not of integer kind. If the list is empty or if
POSITION has a value larger than the current length of the Jist.

K e g

PROPONED MIT-STID-C A IS
It JANUARY 1085,

SEARCH _ERROR
is raised if there is no item with the name NAMED.

5.4.1.21.4 Inserting an integer item into a list

procedure INSERT(LIST: in out LIST_TYPE:
LIST_ITEM: in WUMBER ;
POSITION : in COUNT) ;

procedure INSERT(LIST: in out LIST TYPE:
LIST_ITEM: in WUMBER ;
WAMED : in NAME_STRING;
POSITION : in COUNT) ;

procedure INSERT(LIST: in out LIST TYPE;
LIST_ITEM: in WUMBER ;
NAMED : in TOKEN_TYPE:

POSITION : in COUNT) ;
Purpose:
This procedure inserts an Integer item into & list after the list item specified by POSITION. A
value of zero In POSITION specifies a position at the head of the list.

Parameters:

LIST is the list into which the item will be inserted.
LIST _ITEM is the value of Lhe item to be inserted.
POSITION Is the position within the list after which the item is to be inserted.

NAMED is the name of the new item. It may only be used with named or empty lists.

Exceptions:

USE _ ERROR Is raised If an attempt is made to insert a named item into an unnamed list or,
conversely, an attempt is made to insert i1n unnamed item into a named list or if
LIST is a named list that siready contains an item with the name NAMID.
USE _ ERROR is also ralscd If POSITION specifies a value larger than the current
length of the list.

5.4.1.21.5 Identifying an integer item by value within a list

function POSITION BY_VALUE(LIST: in LIST_TYPE;
VALUE: in WUMBER;
START_POSITION: in POSITION_COUNT
= POSITION_COUNT 'FIRST;
END_POSITION: in POSITION_COUNT
:= POSITION_COUNT ‘LAST)
return POSITION_COUNT;
Purpose:
This function returns the position at which the next integer Item of Lhe given value is located.
The search begins at the START _ POSITION and ends when either an item of value VALUE is
found, the last ftem of the list has heen examined. or the item at the END _ POSITION has
been examined, whichever comes first.

Paramelcers:

209

.

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

LIST is the list in which the position of an item is to be found.
VALUE is the Integer item value.

START _ POSITION
is the position of the first item to be considered in the search.

END_ POSITION
Is the position beyond which the search will not proceed; the search may terminate

prior to reaching END__POSITION should the sought Integer item be found or
should the last element of the list be considered.

Exceptions:

USE_ ERROR s raised iIf START _ POSITION specifies a value larger than the current length of
the list, if the list Is empty or If END_POSITION is less than

START _ POSITION.

SEARCH_ ERROR
is raised or the VALUE specified Is not found within the region specified by
START _POSITION and END _ POSITION.

5.4.1.22. Generic package FLOAT ITEM

‘This Is a generic package for manipulating list items which are floating point pumbers. This package
must be Ipstantiated for the appropriate type (indicated by NUMBER in the specification).

5.4.1.22.1 Converting a floating point item to its canonical external
representation

function TO_TEXT(LIST_ITEM: in MMBER)
return STRING;

Purpose:
This function returns the external representation of the value of the LIST _ITEM parameter.
The external representation is the string representation defined in Section 5.4.

Parameters:

LIST _ITEM s the floating poiat item whose external representation is to be returned.

Exceptions:
None.

§.4.1.22.2 Extracting a floating point item from a list

function EXTRACT(L18T: in vIST_TYPE;
POSITION: In POSITION_COUNT)
return NMAMBER;

function EXTRACT(LIST: in LIST_TYPE;
RAMED: in MAME_STRING)
return MAMBER;

function EXTRACT(LIST: In LIST TYPE;
XAED: In TOKEN_TYPE)
return NUMBER;

210

PROPOSED MINA<STD-C A~
31 JANUAR)Y 198)

Purposc:
This function locates a floating point item in a list and returns a copy of Its pumeric value.
Parameters:

LIST I8 the list containing the item to be extracted.
POSITION Is the position within the list that identifies the item o be extracted.

NAMED is the name of the item to be extracted. It may only be used with named lists.

Exceptions:

USE _ERROR s raised If NAMED Is used with an unnamed list, if the POSITION specification or
the name NAMED identifies an item not of floating point kind, if the list is empty
or If POSITION has a value larger than the current length of the list.

SEARCH _ERROR
is raised if there is no item with the name NAMED.

CONSTRAINT _ ERROR

is raised if the value to be extracted violates the constraints of the type designated
by NUMBER.

5.4.1.22.3 Replacing a floating point item into s list

procedure REPLACE(LIST: in out LIST_TYPE;
LIST_ITEX: in NUMBER ;
POSITION: in POSITION_COUNT) ;
procedure REPLACE (LIST: in out LIST_TYPE,
LIST_ITEN: in NUMBER :
MAMED : in MAME_STRING) ;
procedure REPLACE(LIST: in out LIST_TYPE;
LIST_ITEM: in MWUMBER ;
NAMED : in TOKEN_TYPE) ;
Purpose:
This procedure replaces the value of a floating point item in a list.
Parameters.
LIST is the list containing the Item to be replaced.

LIST _ITEM s the new value of the item.
POSITION is the position within the list that identifics the item to be replaced.

NAMED Is the name of the item to be replaced. It may only be used with named lists.

Exceptions:

USE_ERROR Is raised if NAMED Is used with an unnamed list, If the POSITION specification or

211

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

the name NAMED lIdentifies an item not of floating point kind,) the list is empty
or if POSITION has a value larger than the current length of the list.

SEARCH_ERROR
is raised \f there is no item with the name NAMED.

5.4.1.22.4 Inserting » floating point item into a list

procedure IRSERT(LIST: in out LIST_TYPE:
LIST_ITEM: in NUMBER ;
POSITION: In COUNT) ;

procedure INSERT(LIST: in out LIST TYPE:
LIST_ITEM: in WUMBER ;
NAMED : in RAME_STRING:
PosITION: in COUNT) ;

procedure INSERT(LIST: in out LIsT_TYPE;
LIST_ITEM: in WUMBER ;
MAMED : in TOKEN_TYPE:
POSITION: in couNT) ;

Purpose:

This procedure inserts a floating point item into a list after the list item apecified by
POSITION. A value of zero in POSITION specifies a position at the head of the list.
Parameters:

LIST is the list into which the item will be inserted.
LIST _ITEM Is the value of the item (o be Inserted.
POSITION is the position in the list after which the item Is to be inserted.

NAMED is the name of the new item. It may only be used with named or empty lists.

Exceptions:

USE _ERROR is raised If an attempt is mad ‘- to Insert & named ltem Into an unnamed list or,
conversely, an sttempt is mad: to insert an unnamed item Iintc a named list or if
LIST is a named list that already contains an item with the name NAMED.
USE_ERROR I8 also raised if POSITION specifies a value larger than the current
iength of the liat.

5.4.1.22.5 ldentifying a floating point item by value within a list

function POSITION_BY_VALUE(LIST: in LIST TYPE:
VALUE in WUwWBER;
START_POSITION: in POSITION_COUNT,
1= POSITION_COUNT 'FIRST;
END_POSITION: in POSITION_COUNT;
:= POSITION_COUNT ‘LAST)
return POSITION_COUNT;
Purpose:

This function returns the position at which the next floating point ftem of the given valuc is

212

- ———

PROPOSED MIL-STD-(|~
31 JANU ARY tnRy

located. The search begins at the START _ POSITION and ends when either an item of value
VALUE Is found, the last item of the list has been examined, or the Item at the
END _ POSITION has been examined, whichever comes first.

Parameters:
LIST is the list in which the position of an item is to be found.
VALUE is the Moating point item value.
START _ POSITION

is the position of the first item to be considered In the search.

END _POSITION

is the position beyond which the search will not proceed: the search may terminate
prior to reaching END _ POSITION should the sought floating point item be found
or should the iast element of the list be considered.

Exceptions:

USE __ERROR |a raised if START _ POSITION specifics a value larger than the current length of
the list. or if END _ POSITION s less than START _ POSITION.

SEARCH_ ERROR

is raised the VALUE specified Is not found within the region specified by
START _POSITION and END _ POSITION.

5.4.1.23. Package STRING__ITEM

This is a package for manipulating list items which are strings. The external representation of the
value of a string item is the string returned by an EXTRACT operation applied to the string item.

5.4.1.23.1 Extracting a string item from a list

function EXTRACT (LIST: in LIST_TYPE,

POSITION: in POSITION_COUNT)
return STRING:

function EXTRACT(LIST: in LI T_TYPE;
WAMED : in WA £_STRING)
return STRING.
function EXTRACT(LIST in LIST_TYPE,
NAMED in TOKEW_TYPE)

return STRING,

Purpone:

This function locates 8 atring item in a list and returns a copy of it

Parameters:
LIST in the list cantaining the item Lo be extracted
POSITION s the position within the list that identifies the item to be extracted.

213

PR
3t

OPONED MIL-STD-CAIS
JANUARY 18RS

NAMED Is the name of the item to be extracted. It may only be used with named lists.

Exceptions:

USE _ERROR s raised if NAMFED is used with an unnamed list, if the POSITION specification or

the name NAMED Iidentifies an item not of string kind. if the list Is empty or If
POSITION has a value larger than the current length of the list.

SEARCH_ERROR

Is raised iIf there is no item with the name NAMED.

5.4.1.23.2 Replacing a string item in a list

Pu

Pa

procedure REPLACE(LIST: in out LIST_TYPE:
LIST_ITEM: in STRING;
POSITION: in POSITION_COUNT) ;
procedure REPLACE (LIST: in out LIST_TYPE:
LIST_ITEM: in STRING
WAMED : in MAME_STRING) :
procedure REPLACE(LIST: in out LIST_TYPE;
LIST_ITEM: in STRING,
MAMED : in TOKEN_TYPE) .
rpose:

This procedure replaces the value of a string item in a list.

rameters:

LIST Is the list containing the item to be replaced.

LIST _ITEM s the new value of the item.

POSITION is the position within the list that identifies the item to be replaced.

NAMED is the name of the item to be replaced. It may only be used with named lists.

Exceptions:

USE _ ERROR s raised iIf NAMED Is used with an unnamed list or If the POSITION specification

or the name NAMED identifies an item not of string kind, If the list is empty or if
POSITION has a value larger than the current length of the list.

SEARCH _ERROR

is raiscd If there Is no item with the name NAMED.

5.4.1.23.3 Inserting a string item into a list

procedure INSERT(LIST: in out LIST_TYPE,
LIST_ITEX: in STRING;
POSITION: in COUNT) ;
procedure INSERT(LIST: in out LIST_TYPE.
214
—r A > S e A R

PROPOSED MIL-~Tt)~
31 JANTARY 10K5

LIST_ITEM: in STRING:
WAMED in NAME_STRING:
POSITION: in COUNT) ;
procedure INSERT(LIST: in out LIST TYPE.
LIST_ITEM: in STRING,
MAMED . in TOKEN_TYPE
POSITION : in COUNT) ;

Purpose:
This procedure inserts a string item into a list sfter the list item specified by POSITION. A
value of zero in POSITION specifies a position at the head of the list.

Parameters:

LIST i8 the list into which the item will be inserted.
LIST _ITEM is the value of the item (o be Inserted.
POSITION s the position in the list after which the item is to be inserted.

NAMED is the name of the new item. It may only be used with named or empty lists.

Exceptions:

USE _ERROR is raised if an attempt Is made Lo insert a named item into an unnamed list or.
conversely, an attempt is made to insert an unnamed item into a8 named list or if
LIST is a named list that already contains an item with the name NAMID.
USE _ERROR is also ralsed if POSITION specifics a value larger than the current
length of the list.

5.4.1.23.4 Identifying a string itermn by value within a list

function POSITION BY VALUE(LIST: in LIST_TYPE;
VALUE: in STRING:
START_POSITION: in POSITION_COUNT
:=POSITION_COUNT ‘FIRST;
END_POSITION : in POSITION_COUNT
:=POSITION_COUNT 'LAST)
return POSITION_COUNT,

Purpose:
This functlon returns the position at which the next string Item of the given value Is located.
The search begins at the START _POSITION and ends when either an item of value VALUE is
found, the last item of the list has bren examined, or the item at the END_ POSITION has
been examined, whichever comes first.

Parametcrs:
LIST s the Ust in which the position of an item is to be found by value.
VALUE is the string item value.

START _POSITION
Is the position of the first 'em to be considered in the search

215

PROPOSED MIL-STD-CAIS
a1 JANL ARY 19RS

END__POSITION
Is the position beyond which the search will not proceed; the search may terminate
prior to reaching END _POSITION should the sought string item be found or
should the last element of the list be considered.

Exceptlons:

USE _ ERROR s ralsed If START _ POSITION specifies a value larger than the current length of
the list, iIf the Mlst Is empty or If END_POSITION Is less than
START _POSITION.,

SEARCH _ERROR
is raised If the VALUE specified is not found vithin the region specified by
START _ POSITION and END _ POSITION.

216

PROPOSED MHUASTD-CAIS
31 JANUARY 1985

TIME_LIMIT: DURATION
procedure SET_CURRENT NODE (NODE:

NO_DELAY) ;
NODE_TYPE) ;

procedure SET_CURRENT_NODE(NAME: NAME_STRING) ;

procedure GET_CURRENT NODE

(NODE : in out NODE_TYPE;
INTENT: INTENTION := (1 => EXISTENCE);
TIME_LIMIT: DURATION := NO_DELAY):
private
type NODE_ITERATOR is
(INPLEMENTATION_DEFINED);
-~ should de defined dy isplementor
end NODE_MANAGEMENT;
package ATTRIBUTES is
use NODE_DEFINITIONS:
use LIST_UTILITIES:
subtype ATTRIBUTE_NAME is STRING:
type ATTRIBUTE_ITERATOR is limited private:
subtype ATTRIBUTE_PATTERN is STRING;
procedure CREATE_NODE_ATTRIBUTE (NODE: NODE_TYPE:
ATTRIBUTE: ATTRIBUTE_NAME;
VALUE: LIST_TYPE);
procedure CREATE_NODE_ATTRIBUTE (NAME: NAME _STRING;
ATTRIBUTE: ATTRIBUTE_NAME;
VALUE: LIST_TYPE);
procedure CREATE_PATH_ATTRIBUTE (BASE: NODE_TYPE:
KEY: RELATIONSHIP_XEY:;
RELATION: RELATION NAME :=
DEFAULT_RELATION;
ATTRIBUTE: ATTRIBUTE_NAME
VALUE: LIST_TYPE);
procedure CREATE _PATH_ATTRIBUTE (NAME: NAME_STRING:
ATTRIBUTE: ATTRIBUTE_NAME
VALUE: LIST_TYPE):
procedure DELETE_NODE_ATTRIBUTE (NODE: NODE_TYPE,
ATTRIBUTE: ATTRIBUTE_NAME) :
procedure DELETE _NODE_ATTRIBUTE (NAME: NAME_STRING:
ATTRIBUTE: ATTRIBUTE_NAME) :
procedure DELETE_PATH_ATTRIBUTE (BASE: NODE_TYPE:
KEY: RELATIONSHIP KEY:
RELATION: RELATION NAME :=
DEFAULT _RELATION:
ATTRIBUTE: ATTRIBUTE_NANE)
procedure DELETE_PATH_ATTRIBUTE (NAME: NAME_STRING,
ATTRIBUTE: ATTRIBUTE_NAME) ;
procedure SET_NODE_ATTRIBUTE (NODE: NODE_TYPE.
ATTRIBUTE: ATTRIBUTE_NAME,
VALUE: LIST_TYPE).
procedure SET_NODE_ATTRIBUTE (NAME: NAME_STRING;
ATTRIBUTE: ATTRIBUTE_NAME:
VALUE: LIST_TYPE);
procedure SET_PATH_ATTRIBUTE (BASE: NODE_TYPE;
KEY: RELATIONSHIP_KEY;
RELATION: RELATION NAME =
DEFAULT _RELATION;
ATTRIBUTE: ATTRIBUTE_NAME;
VALUE LIST_TYPE),
procedure SET_PATH_ATTRIBUTE (NAME: NAME_STRING:
ATTRIBUTE: ATTRIBUTE_NAME;
230

PROPONED VMIL-~TD-C AlS
31 JANUARY 10K5

NODE2: NODE_TYPE)
return BOOLEAN;
function IS_SAME(NAME1: NAME_STRING;
NAME2: NAME_STRING)
return BOOLEAN;
procedure GET_PARENT

(PARENT: in out NODE_TYPE;

NODE: NODE_TYPE:

INTENT: INTENTION := (1 => READ);

TIME_LIMIT: DURATION := NO_DELAY):
procedure COPY_NODE :

(FROM: NODE_TYPE:

TO_BASE: NODE_TYPE:

TO_KEY: RELATIONSHIP KEY:

TO_RELATION: RELATION NAME := DEFAULT RELATION) :
procedure COPY_NODE (FROM: NODE_TYPE;

T0: NAME_STRING) ;
procedure COPY_TREE
(FROM: NODE_TYPE;
TO_BASE: NODE_TYPE;
TO_KEY: RELATIONSHIP_KEY:

TO_RELATION: RELATION_NAME := DEFAULT_RELATION)
procedure COPY_TREE(FROM: NODE_TYPE;

TO: NAME_STRING) ;
procedure RENAME
(NODE : NODE_TYPE;
NEW_BASE: NODE_TYPE;
NEW _KEY: RELATIONSHIP KEY:
NEW_RELATION: RELATION_NAME := DEFAULT_RELATION) :
procedure RENAME (NODE: NCDE_TYPE:

NEW_NAME: NAME_STRING) :
procedure DELETE _NODE (NODE: in out NODE_TYPE):
procedure DELETE NODE (NAME: NAME_STRING) :
procedure DELETE TREE(NODE: in out NODE_TYPE):
procedure DELETE_TREE(NAME: NAME_STRING);

procedure LINK(NGDE: NODE_TYPE;

NEW_BASE: NODE_TYPE;

NEW _KEY: RELATIONSHIP KEY:

NEW_RELATION: RELATION NANE := DEFAULT_RELATION);
procedure LINK(NODE: NODE_TYPE:

NEW_NAME: NMAME_STRING);
procedure UNLINK(E.SE: NODE_TYPE:

KEY: RELATIONSHIP KEY:

RELATION: RELATION NAME := DEFAULT_RELATION);
procedure UNLINK(NAME: NAME_STRING);
procedure ITERATE

(ITERATOR: out NODE_ITERATOR;
NODE : NODE_TYPE,
KIND: NODE_KIND:
KEY: RELATIONSHIP_KEY_PATTERN := “e°;
RELATION: RELATION_NAME _PATTERN := DEFAULT_RELATION:
PRIMARY_ONLY: BOOLEAN := TRUE);

procedure ITERATE
(ITERATOR: Out NODE_ITERATOR;
NAME : NAME_STRING;
KIND: NODE_KIND;
KEY: RELATIONSHIP_KEY PATTERN := "s*;
RELATION: RELATION_NAME_PATTERN := DEFAULT_RELATION;
PRIMARY ONLY: BOOLEAN = TRUE);

function MORI(ITERATOR: NODE_ITERATUR)
return BOOLEAN:
procedure GZT_NEXT
(ITERATOR: in out NODE_ITERATOR;
NEXT NODE: in out NODE_TYPE;
INTENT: INTENTION .= (1 => EXISTENCE):

229

ﬁ-— o

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

type TOKEN _TYPE is (IMPLEMENTATION_DEF INED) :

-~ should be defined dy ispleamentor

type LIST_TYPE is (IMPLEMENTATION_DEFINED)

-~ should be defined dy implementor

EMPTY_LIST : constant LIST TYPE := (IMPLEMENTATION_DEFINED) .
-~ should de defined dy implementor

end LIST UTILITIES:

package NODE_MANAGEMENT is
use NODE_DEFINITIONS:
use LIST UTILITIES:

type NODE_ITERATOR is limited private;
subtype RELATIONSHIP_KEY PATTERN is RELATIONSHIP_KEY:
subtype RELATION NAME PATTERN is RELATION_NAME:

procedure OPEN

(NODE: in out NODE_TYPE:

NAME : NAME_STRING:

INTENT: INTENTION := (1 => READ);

TIME_LIMIT: DURATION := NO_DELAY);
procedure OPEN

(NODE : in out NODE_TYPE;

BASE: NODE_TYPE:

KEY: RELATTONSHIP_KEY;

RELATION: RELATION NAME := DEFAULT RELATION;

INTENT: INTENTION := (1 => READ);

TIME_LIMIT: DURATION := NO_DELAY);

procedure CLOSE(NODE: in out NODE_TYPE);
procedure CHANGE_INTENT

(NODE: in out NODE_TYPE,
INTENT: INTENTION;
TIME LIMIT: DURATION = NQ_DELAY),

function IS_OPEN(NGDE: NODE_TYPE)
return BOOLEAN) ;

function INTENT_OF (NODE: NODE_TYPE)
return INTENTION;

function KIND(NODE: NODE_TYPE)
return NODE_KIND;

function PRIMARY NAME(NODE: NODE_TYPE)
return NAME_STRING:

function PRIMARY KEY(NODE: NODE_TYPE)
return RELATIONSHIP XEY:

function PRIMARY_RELATION(NODE: NODE_TYPE)
return RELATION NAME;

function PATH_KEY(NODE: NODE_TYPE)
return RELATIONSHIP_KEY;

function PATH_RELATION(NODE: NODE_TYPE)
TELurn RELATION MAME;

function BASE PATH(NAME: NAME_STRING)
return NAME_STRING;

function LAST _RELATION(NAME: MAME_STRING)
return RELATION NAME;

function LAST KEY(NAME: NAME STRING)
return RELATIONSHIP_KEY.

function S_OBTAINABLE(NODE: NODE_TYPE)
return BOOLEAN:

function 1S_OBTAINABLE(NAME: NAME_STRING)
return BOOLEAN;

function 15_0BTAINABLE (BASE: NODE _TYPE;

KEY: RELATIONSHIP KEY;
RELATION: RELATION _NAME '~ = DEFAULT _RELATION)

return BOOLEAN; ‘

function 1S_SAME(NODE1: NODE_TYPE:

- -

228

- =

PROPOSED MIL-~TD-C Al
31 JANUARY 1985

NAMED : NAME_STRING) ;
procedure REPLACE(LIST: in out LIST_TYPE;
LIST I NUMBER ;
NAMED TOKEN_TYPE) ;
procedure INSERT(LIST: in out LIST_TYPE:
LIST_ITEM: NUMBER ;
POSITION: COUNT) ;
procedure INSERT(LIST: in out LIST_TYPE;
LIST_ITEM: NUMBER ;
NAMED: NAME_STRING;
POSITION: COUNT) ;
procedure INSERT(LIST: in out LIST_TYPE:
LIST_ITEM: NUMBER;
NAKED : TOKEN_TYPE;
POSITION: COUNT) ;
function PosITION BY VALUE
(LIST: LIST_TYPE;
VALUE: NUMBER;

START_POSITION:
END_POSITION:

return POSITION_COUNT;

end FLOAT ITEM;
package STRING_ITEM is

function EXTRACT(LIST:
POSITION:
return STRING;
function EXTRACT(LIST: LIST_TYPE;
MAMED: NMAME_STRING)
return STRING;
function EXTRACT(LIST: LIST TYPE;
NAMED: TOKEN_TYPE)
return STRING:

POSITION_COUNT

:= POSITION_COUNT®
POSITION_COUNT

:= POSITION_COUNT 'LAST)

FIRST;

LIST_TYPE;
POSITION_COUNT)

procedure REPLACE(LIST: in out LIST TYPE;
LIST ITEM: STRING;
POSITION: POSITION_COUNT):
procedure REPLACE(LIST: in out LIST_TYPE;
LIST_ITEM: STRING;
NAMED : NAME_STRING) ;
procedure EPLACE(LIST: in out LIST_TYPE;
LIST_ITEM: STRING;
NAMED : TOKEN_TYPE)
procedure INSERT(LIST: in out LIST TYPE;
LIST_ITEM: STRING;
POSITION: COUNT) ;
procedure INSERT(LIST: in out LIST TYPE:
LIST_ITEM: STRING;
NAMED : NAME_STRING;
POSITION: COUNT) ;
procedure INSERT(LIST: in out LIST TYPE;
LIST t STRING;
MAMED ; TOKEN_TYPE;
POSITION: COUNT) ;
function POSITION_BY VALUE
(LIST: LIST TYPE;
VALUE: STRING;

START_POSITION:
END_POSITION:

return POSITION_COUNT:

end STRING_ITEM;

private

227

POSITION_COUNT

:= POSITION_COUNT ‘FIRST;
POSITION COUNT

:= POSITION_COUNT'LAST)

TRIS TUNCLIUN SISV Be s g

212

50

PROPOSED MI-STD-CaAlS
3t JANUARY 1988

end IDENTIFIER ITEw;
generic . .
type NUMBER is range <:
package INTEGER _ITEN is
function TO_TEXT(LIST_ITEM: NUMBER)
feturn STRING;

function BerracT(LIsT: LIST TYPE;
POSITION: POSITION_COUNT)
return NUMBER;

function extract(ListT: LIST_TYPE:
NAMED: NAME_STRING)
return NUMRER;
function omracT(LIsT: LIST_TYPE;
NAMED: TOKEN_TYPE)

return POSITION_COUNT;
end INTEGER 1TEM;
generic
type NOGER is digits <> :
package FLOAT ITEW is

function T0_TEXT (LIST_ITEM: NUMBER)

return STRING;

b return NUMBER;
5 procedure REPLACE(LIST: in out LIST_TYPE;
LIST_ITEM: NUMBER ;
POSITION: POSITION_COUNT) ;
procedure REPLACE(LrST: in out LIsT TYPE;
LIST_ITEM: NUMBER;
NAMED: NAME_STRING) ;
procedure REPLACE(L1ST: in out LISt typE;
LIST_ITEM: NUMBER ;
NAMED : TOKEN_TYPE) ;
procedure INSERT(LIST: in out LIST TYPE;
LIST_ITEM: NUMBER ;
POSITION: CouNT) ;
procedure INSERT(LIST: in out L1ST TYPE;
LIST_ITEM: NUMBER ;
NAMED : NAME_STRING;
POSITION: COUNT) ;
procedure INSERT(LIST: in out LIST_1vPE,
LIST_ITEM: NUMBER ;
NANED : TOKEN_TYPE:
POSITION: COUNT) ;
function POSITION BY VALUE
(LIST: LIST_TYPE;
VALUE: NUMBER ;
START_POSITION: POSITION COUNT
2 POSITION_COUNT ‘FIRST,
EMD_POSITION: POSITION_CouNnt

= POSITION_CQUNT "LAST)

function exRact (L1sT: LIST_TYPE:
POSITION: PosITION_COuNT)

return NUMBER:

function EXTRACT(LIST: LIST TyrE:

NAMED: NAME_STRING)

return NUMBER;

function exTRACT(LIST: LIST_TYPE;
NAMED: TOKEN_TYPE)

return NUMRER;

procedure REPLACE(LIST:
LIST ITEM:
POSITION:

procedure REPLACE(LIST:
LIST _ITeu:

in out L1sT_TYPE;

NUMBER;
POSITION_CUUNT) ;

in out L1sT_TYPE;

NUWBER .

PROPOSED AMIL-STD-C \IS
3 JANUARY 198s

POSITION: POSITION_COUNT)
return POSITIVE:
function TEXT_LENGTH(LIST: LIST_TYPE;
NAMED: NAME_STRING)
return POSITIVE;
function TEXT _LENGTH(LIST: LIST_TYPE,
NAMED: TOKEN_TYPE)
return POSITIVE;

package IDENTIFIER_ITEM is
procedure TO_TOKEN(IDENTIFIER: NAME_STRING;
TOKEN: out TOKEN_TYPE);

function To_TEXT(LIST_ITEM: TOKEN_TYPE)
return NAME_STRING:

function IS_EQUAL (TOKEN1: TOKEN TYPE:
TOKEN2: TOKEN_TYPE)
return BOOLEAN;

procedure EXTRACT(LIST: LIST_TYPE;
POSITION: POSITION_COUNT,
TOKEN: out TOKEN_TYPE) ;
procedure EXTRACT(LIST: LIST_TYPE;
NAMED: ™ NAME STRING;
TOKEN: out TOKEN_TYPE) ;
procedure EXTRACT(LIST: LIST_TYPE:
NAMED : TOKEN_TYPE
TOKEN: out TOKEN_TYPE) .
procedure REPLACE(LIST: in out LIST_TYPE;
LIST_ITEM: TOKEN_TYPE;
POSITION: POSITION_COUNT) ;
procedure REPLACE(LIST: in out LIST TYpE:
LIST_ITENM: TOKEN_TYPE:
NAMED : NAME_STRING) ;
procedure REPLACE (LIST: in out LIST TYPE;
LIST_ITEM: TOXKEN_TYPE:
NAMED : TOKEN_TYPE) ;
procedure INSERT(LIST: in out LIST TYPE;
LIST_ITEN: TOKEN_TYPE;
POSITION: COUNT) ;
procedure INSERT(LIST: in out LIsT_TYPE;
LIST_ITEM: TOKEN_TYPE;
NAMED : NAME_STRING:
POSITION: COUNT) ;
procedure INSERT(LIST: in out LIST_TYPE;
LIST_ITEM: TOKEN_TYPE:
NAMED : TOKEN_TYPE;
POSITION: COUNT) ;
function POSITION_BY VALUE(LIST: LIST_TYPE;
VALUE: TOXEN_TYPE;

START_POSITION: POSITEON_CDUNT
:= POSITION_COUNT 'FIRST.
END_POSITION: POSITION_COUNT
:= POSITION_COUNT ' LAST)
return POSITION _COUNT;

dition

PROPOSED MIL-STD-CAIS
3t JANUAR)Y 1985

procedure INSERT(LIST:
LIST_ITEM
NAMED :
POSITION:

function POSITIONM_BY_VALUE(LIST:

in out LIST_TYPE;
: LIST_TYPE;
TOKEN_TYPE;
COUNT) ;

return POSITION COUNT;

-

function SET_EXTRACT(LIST:

LIST_TYPE;

POSITION: POSITION_COUNT.

LENGTH
return LIST_TEXT;

procedure SPLICE(LIST:
POSITION:
SUB_LIST:

procedure SPLICE(LIST:
POSITION:
SUB_LIST:

procedure DELETE(LIST:
POSITION:
procedure DELETE(LIST:
NANED
procedure DELETE(LIST:
NAMED :
function GET_LIST XIND(LIST:
return LIST_KIND:

function GET_ITEM_KIND(LIST:

: POSITIVE := POSITIVE LAST)

in out LIST_TYPE;
POSITION_COUNT;
LIST_TEXT);

in out LIST_TYPE:
POSITION_COUNT;
LIST_TYPE):

in out LIST TYPE:
POSITION_COUNT) ;
in out LIST TYPE:
NAME_STRING) ;
in out LIST TYPE;
TOKEN_TYPE) ;
LIST_TYPE)

LIST_TYPE;

POSITION: POSITION_COUNT)

return ITEM_KIND:
function GET_ITEM_KIND(LIST:

LIST_TYPE;

NAMED: NAME_STRING)

return ITEM KIND;
function GET_ITEM_KIND(LIST:

LIST_TYPE;

NAMED: TOKEN_TYPE)

return ITEM_KIND;
procedure MERGE (FRONT:
BACK:

RESULT: in

LIST_TYPE;
LIST_TYPE;
out LIST _TYPE);

function LENGTH(LIST: LIST_TYPE) return COUNT;

procedure ITEM_NAME(LIST:

LIST_TYPE;

POSITION: POSITION COUNT;

NAME :
function POSITION_BY NAME (LI

out TOKEN_TYPE);
ST: LIST_TYPE:

NAMED: NAME_STRING)
return POSITION_COUNT;

function POSITION_BY NAME(LI

ST: LIST_TYPE;

NAMED: TOKEN_TYPE)
return POSITION_COUNT;

function TEXT_LENGTH(LIST:
return NATURAL;
function TEXT_LENGTH(LIST:

LIST_TYPE)

LIST_TYPE;

LIST_TYPE;
VALUE: LIST_TYPE:
START_POSITION: POSITION_COUNT
:= POSITION_COUNT 'FIRST;
END_POSITION: POSITION_COUNT
:= POSITION_COUNT 'LAST)

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

LOCK_ERROR: exception;
ACCESS_VIOLATION: exception;
INTENT_VIOLATION: exception;
SECURITY_VIOLATION: exception;

private
type NODE_TYPE is
(IMPLEMENTATION _DEFIMED);
-- should be defined by implementor
end WODE_DEFINITIONS;

package LIST_UTILITIES is
use WODE_DEFINITIONS.
type LIST TYPE is limited private:
type TOKEN_TYPE is limited private:
type LIST KIND is (UNMAMED, MAMED, EMPTY);
type ITEX KIND is
(LIST_ITEM, STRING_ITEM,
INTEGER_ITEM, FLOAT_ITEM, IDENTIFIER_ITEM) ;
type COUNT is range 0 .. INTEGER'LAST;

subtype LIST_TEXT is STRING:
subtype POSITION COUNT is COUNT range COUNT FIRST + 1 .. COUNT 'LAST;

EMPTY_LIST: constant LIST_TYPE;
SEARCH ERROR: exception;
CONSTRAINT _ERROR: exception;

procedure COPY(TO_LIST: out LIST _TYPE;
FROM_LIST: LIST_TYPE);

procedure TO_LIST(LIST STRING: STRING;
LIST: out LIST_TYPE);
function TO_TEXT(LIST_ITEM: LIST_TYPE)
return LIST_TEXT:
function IS_EQUAL(LIST1: LIST_TYPE;
LIST2: LIST_TYPE)
return BOOLEAN;

procedure EXTRACT(LIST: LIST_TYPE;
POSITION: POSITION_COUNT;
LIST_ITEN: out LIST TYPE):
procedure EXTRACT(LIST: LIST_TYPE;
NAMED : NAME_STRING;
LIST_ITEM: out LIST m)
procedure EXTRACT(LIST: LIST_TYPE;
NAMFD : TOKEN_TYPE;
LIST_ITEM: out LIST_TYPE);
procedure REPLACE(LIST: in out LIST_TYPE;
LIST_ITEM: LIST_TYPE;
POSITION: POSITION_COUNT) ;
procedure REPLACE(LIST: in out LIST_TYPE:
LIST_ITEN: LIST_TYPE;
NAMED : NAME_STRING) ;
procedure REPLACE(LIST: in out LIST_TYPE;
LIST_ITEM: LIST_TYPE;
NAMED : TOKEN_TYPE) ;
procedure INSERT(LIST: in out LIST_TYPE;
LIST_ITEM: LIST_TYPE;
POSITION: COUNT) ;
procedure INSERT(LIST: in out LIST_TYPE;
LIST_ITEM: LIST_TYPE;
NAMED : NANE_STRING;
POSITION: COUNT) ;
223

PROPOSED MIL-STD-CAIS

31 JANUARY 1085

This appendix contains a set of Ada package specifications of the CAIS Interfaces which
complles correctly. It brings together the Interfaces found in Section 5 using the Nested Generic
Subpackages Implementation approach. Although the interfaces are not necessarily shown here
in the order in which they are discussed in the text, this appendix provides a reference listing of

Appendix B
CAIS Specification

the CAIS as well as an illustration of the generics approach.

with CALENDAR;

use CALENDAR;

package cals is
package NODE_DEFINITIONS is

type NODE_TYPE is limited private;
type NODE_KIND is (FILE. STRUCTURAL, PROCESS):
type INTENT_SPECIFICATION is

(EXISTENCE,

READ,

WRITE,

READ_ATTRIBUTES.
WRITE_ATTRIBUTES,
APPEND_ATTRIBUTES,
READ_RELATIONSHIPS,
WRITE_RELATIONSHIPS,
APPEND_RELATIONSHIPS,
READ_CONTENTS,

WRITE_CONTENTS,
APPEND_CONTENTS,

CONTROL,

EXECUTE,

EXCLUSIVE_READ,
EXCLUSIVE_WRITE,
EXCLUSIVE_READ_ATTRIBUTES,
EXCLUSIVE_WRITE_ATTRIBUTES,
EXCLUSIVE_APPEND_ATTRIBUTES,
EXCLUSIVE_READ_RELATIONSHIPS.
EXCLUSIVE_WRITE_RELATIONSHIPS,
EXCLUSIVE_APPEND_RELATIONSHIPS,
EXCLUSIVE_READ_CONTENTS,
EXCLUSIVE_WRITE_CONTENTS,
EXCLUSIVE_APPEND_CONTENTS,
EXCLUSIVE_CONTROL) ;

type INTENTION is array (POSITIVE range <>)

of INTENT_SPECIFICATION;

subtype NAME_STRING is sTRING:
subtype RELATIONSHIP_KEY is STRING;
subtype RELATION_NAME is STRING;

subtype FORM_STRING is sTRING;
CURRENT _USER: constant NAME_STRING := *'CURRENT USER®
CURRENT_MODE : constant NAME_STRING :x *'CURRENT_NCDE®
CURRENT PROCESS: constant NAME STRING := *:°;
LATEST KEY: constant RELATIONSHIP KEY := °s*;
DEFAULT RELATION: constant RELATION NAME := °DOT";
NO_DELAY: constant DURATION := DURATION FIRST;
NAME_ERROR: exception;
USE_ERROR: exception: .
STATUS_ERROR: exception:

222

diaitagsi,

e
e

PROPOSED MIL-STD-C AIS
31 JANUARY 19RS

applies to process nodes; designates the classification of the node’'s process as a

subject; values ar implementation-defined.

TERMINAL _ KIND:

applies to flie nodes with a FILE_ KIND attribute value of TERMINAL; designates
the kind of terminal which is represented by the node’s contents; possible values are
SCROLL, PAGE and FORM.

Predefined Attribute Values:

ABORTED

APPEND
APPEND _ ATTRIBUTES
APPEND _ CONTENTS
APPEND _ RELATIONSHIPS
CONTROL

COPY

DIRECT

EXECUTE

EXISTENCE

FILE

FORM

MAGNETIC _ TAPE
MIMIC

PAGE

PROCESS

QUEUE

READ

READ _ ATTRIBUTES
READ _CONTENTS
READ _ RELATIONSHIPS
READY

SCROLL

SECONDARY _ STORAGE
SEQUENTIAL

SOLO

STRUCTURAL
SUSPENDED

TERMINAL
TERMINATED

TEXT

WRITE

WRITE _ ATTRIBUTES
WRITE _CONTENTS
WRITE _RELATIONSIHIPS

221

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

FINISH _ TIME:
applies to process nodes; designates the implementation-drfined time at which the
process terminated or aborted.

GRANT: applies to relationships of the predefined relation ACCESS; designates the access
rights which can be granted via the access relationship; values are lists of relevant
grant items as specified in TABLE I1.

HANDLES _ OPEN:
applies to process nodes; designates the number of node handles the node's process
currently has opened.

HIGHEST _ CLASSIFICATION:
applies to file nodes; designates the highest allowable object classification label thal
may be assigned to the node; values are implementation-defined.

10 _UNITS: applies to process nodes; designates the number of GET and PUT operations that
have been performed by the node's process.

KIND: applies to all relationships; designates the kind of the target node; possible values
are STRUCTURAL, PROCESS and FILE.

LOWEST _ CLASSIFICATION:
applics to file nodes; designates the lowest allowable object classification label that
may be assigned to the node; values are implementation-defined.

MACIHINE _ TIME:
applies to process nodes; designates the length of time the process was active on the
logical processor, If the process has terminated or aborted, or zero,. if the process has
not terminated or aborted.

OBJECT _ CLASSIFICATION:
applies to all nodes; designates the node’s classification as an object; values are
implementation-defined.

PARAMETERS:

applies to process nodes; designates the parameters with which the process was
initiated.

QUEUE _KIND:
applies to flle nodes with a FILE _ KIND attribute value of QUI UE; designates the
kind of queue flie; possible values are SOLO, MIMIC and COPY.

RESULTS: applies to process nodes; designates the intermediate results of the process; values
are user-defined. ’

START _ TIME:
applies to process nodes; designates the implementation-defined 1:me of activation of

the procesa.

SURBJECT _ CLASSIFICATION:

PROPOSED MU ASTD-C A~
31 JANUARY 191)

representing a device to which the process has access. Also designatles a primary
relationship from the system-level node to a node representing a device.

DOT: designates the default relation name to be used when nonc is provided. Special
rules apply for pathname abbreviations In the presence ol path elements whose
relation name is DOT. No other semantics are associated with DOT.

JOB: designates a primary relationship from the top-level nod:: of a user to the root
process node of a job.

PARENT: designates the secondary relationship from a given node to the node which Is the
source of the unique primary relationship pointing to the given node.

PERMANENT _ MEMBER:
designates a primary relationship from a node representing a group to the pode
representing a permanent member of the group.

POTENTIAL _MEMBER:
designates a secondary relationship from: 8 node representing a group to the node
representing a potential member of the group.

STANDARD _ ERROR:
designates the secondary relationship (romn a process node to a file node representing
the standard device for error messages for the whole job.

STANDARD _ INPUT:
designates the econdary relationship from a process node to a file representing the
standard input device for the whole job.

STANDARD _ OUTPUT:
designates the secondary relationship from a process node to a file node representing
the standard output device for the whoie job.

USER: designates a secondary relationship from a process node to a user’'s top-level node.
Also designates a primary relationship from the system-level node to a top-level
node representing a user.

Predefined Attributes:

ACCESS _ METHOD:
applies Lo file nodes; designates the kind of access which can be used on the node's
contents; possible values are SEQUENTIAL, DIRECT snd TEXT.

CURRENT _STATUS:
applies to process nodes; designates the current status of the node's contents;
possible values are READY, SUSPENDED, ABORTED and TERMINATED.

FILE _KIND: applies to flle nodes; designates the kind of file that Is the r.uc - contents; possible
values are SECONDARY __ STORAGE, QUEUE, TERMINAL and
MAGNETIC _ TAPE.

219

-T-——'_—L o

&

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

Appendix A
PREDEFINED RELATIONS, ATTRIBUTES AND

ATTRIBUTE VALUES

Predefined Relations:

ACCESS: designates a secondary relationship from an object node to a node representing a
’ role; the access rights that can be granted to adopters of the role are given In the
GRANT attribute of this relationship.

ADOPTED _ ROLE:
designates a secondary relationship from a subject (process) node to a node
representing a role; Indicates that the process has adopted the role represented by
the node.

ALLOW _ ACCESS:
designates a secondary relationship from a process node to a node representing a
role; indicates that the process can create relationshipe of the predefined reiation
ACCESS from an object to this node representing the role.

COUPLE: designates a secondary relationship from a node representing a queue file to the
node representing that flle’s coupled fle; indicates that the queue flle and the other
flle are coupled; for copy queue flles, this means the contents of the fiie are the
Initial contents of the queue file; for mimic queue files, this means that the contents
of the flle are the Initial contents of the queue flle and subsequent writes to the
queue file are appended to the other flle as well.

CURRENT _ ERROR:
designates a secondary relationship from a process node to a flle node representing
the file to which error messages are to be written.

CURRENT _INPUT:
designates a secondary relationship from a process node to a file node representing
the file which is currently the source of process inputs.

CURRENT _JOB:
designates a secondary relationship from a process node to the root process node of
the tree which contalins the process node.

CURRENT _ NODE:
designates a secondary relationship from a process node to the node representing
the current focus of attentlon or context for the process' actlvities.

CURRENT _OUTPUT:
designates a secondary relationship from a process node to a file node representing
the flie to which outputs are currently being directed.

CURRENT __USER:
designates a secondary relatlonship from s process node to a top-level node
representing the user on whose behalfl the process was initiated.

DEVICE: designates a secondary relationship from a process node to a top-level node

218

i e 4

PROPOSED MH-STD-0 AIS
31 JANL ARY 1985

6. NOTES

6.1. Keywords

The following list represents the keywords applicable to this standard. These keywords may be used
to categorize the concepts present~d within this standard and assist in automatic retrieval of

" appropriate data used in automated document retrieval systems.

Ada

APSE

CAIS

Commcn APSE Interface Set
computer file systea

KAPSE

high level languages

interfaces

interoperabilicy

operating systems

portadility

programming support eanvironment
software engineering envirorment
transportability

virtual opersating systes

217

PROPOSED MIL-STD-C AIS
31 JANUARY 1985

VALUE: LIST_TYPE);
procedure GET_NODE_ATTRIBUTE (NODE: NODE_TYPE:
ATTRIBUTE: ATTRIBUTE _NANE ;
VALUE: in out LIST_TYPE):
procedure GET_NODE_ATTRIBUTE (NAME: NAME_STRING:
ATTRIBUTE: ATTRIBUTE_NAME ;
VALUE: in out LIST _TYPE):
procedure GET_PATH_ATTRIBUTE (BASE: NODE_TYPE:
KEY: RELATIONSHIP_KEY;
RELATION: RELATION NAME :=
DEFAULT_RELATION;
ATTRIBUTE: ATTRIBUTE _NANE
VALUE: in out LIST_TYPE).
procedure GET_PATH_ATTRIBUTE (NAME: NANE_STRING:
ATTRIBUTE: ATTRIBUTE _NAKE
VALUE: in out LIST_TYPE):
procedure NODE_ATTRIBUTE_ITERATE (ITERATOR: OuUt ATTRIBUTE_ITERATOR:
NODE: NODE_TYPE;
PATTERN: ATTRIBUTE_PATTERN :@= ®¢%);
procedure NODE_ATTRIBUTE_ITERATE (ITERATOR: out ATTRIBUTE_ITERATOR;
NAME : NANE_STRING;
PATTERN: ATTRIBUTE_PATTERN = *«");
procedure PATH_ATTRIBUTE_ITERATE (ITERATOR: oOuUt ATTRIBUTE_ITERATOR;
BASE: NODE_TYPE:
KEY: RELATIONSHIP_KEY;
RELATION: RELATION NAME :=
DEFAULT_RELATION;
PATTERN: ATTRIBUTE_PATTERN := *s*);
procedure PATH_ATTRIBUTE_ITERATE (ITERATOR: oOuUt ATTRIBUTE_ITERATOR:
NAME : NAME_STRING;
PATTERN: ATTRIBUTE_PATTERN .= *»%);

function MORE(ITERATOR: ATTRIBUTE_ITERATOR)
return BOOLEAN;

procedure GET_NEXT(ITERATOR: in Out ATTRIBUTE_ITERATOR;
ATTRIBUTE: out ATTRIBUTE_NAME:
VALUE: in out LIST_TYPE):

private
type ATTRIBUTE_ITERATOR i8 (IMPLL~ENTATION_DEFINED) ;
-- should be defined dy isplemencor

end ATTRIBUTES;

package ACCESS_CONTROL is
use NODE_DEFINITIONS;

subtype GRANT VALUE is CAIS.LIST UTILITIES.LIST_TYPE:

procedure SET_ACCESS_CONTROL (NODE: NODE_TYPE;
ROLE_NODE: NODE_TYPE:
GRANT: GRANT_VALUE) ;

procedure SET_ACCESS_CONTROL (NAME: NAME_STRING;
ROLE_NAME: NAME_STRING;
GRANT: GRANT_VALUE) :

function IS_GRANTED (OBJECT_NODE: NODE_TYPE.

ACCESS_RIGHT: NAME_STRING)

return BOOLEAN;
function IS_GRANTED(OBJECT NAME: NAME_STRING.
ACCESS_RIGHT: NAME_STRING)
return BOOLEAN;
procedure ADOPT(ROLE_NODE: NODE_TYPE;
ROLE_KEY: RELATIONSHIP KEY = LATEST_XEY;;
procedure UNADOPT(ROLE_KEY: RELATIONSHIP_KEY) :
end ACCESS_CONTROL;

package STRUCTURAL NODES is
use NODE _DEFINITIONS;

231

Ty , ,
:
a

1 use LIST UTILITIES:

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

x

procedure CREATE_NODE
1 (NODE : in out
BASE:
KEY:
RELATION:
ATTRIBUTES:
ACCESS_CONTROL:
LEVEL:
procedure CREATE_NODE
(NODE : in out
NAME :
ATTRIBUTES:
) ACCESS_CONTROL:
LEVEL:
! procedure CREATE_NODE
1 (BASE:
KEY:
RELATION:
ATTRIBUTES:
ACCESS_CONTROL:
LEVEL:
procedure CREATE_NODE
(NAME :
ATTRIBUTES:
ACCESS_CONTROL:
LEVEL:

end STRUCTURAL_NODES;
package PROCESS DEFINITIONS ie
use NODE_DEFINITIONS:
use LIST_UTILITIES;
type PROCESS_STATUS is
(READY, SUSPENDED. ABORTED,

subtype RESULTS_STRING is STRING:

ROOT_PROCESS: constant NAME_STRING

CURRENT_OUTPUT: constant MAME_STRING
f CURRENT_ERROR: constant NAME_STRING

end PROCESS DEFINITIONS;

package PROCESS_CONTROL is
use NODE_DEFINITIONS;
use LIST UTILITIES;
use PROCESS_DEFINITIONS;

procedure SPAWN_PROCESS

CURRENT_INPUT: constant NAME_STRING :

NODE_TYPE;

NODE_TYPE;

RELATIONSHIP_KEY := LATEST_KEY:
RELATION_NAME := DEFAULT_RELATION;

LIST_TYPE := EMPTY_LIST:
LIST_TYPE := EMPTY_LIST:
LIST_TYPE := EMPTY LIST):
NODE_TYPE;

JAME_STRING;

LIST_TYPE := EMPTY_LIST;
LIST_TYPE := EMPTY_LIST;
LIST_TYPE := EMPTY LIST);
NODE_TYPE;

RELATIONSHIP_KEY := LATEST_KEY;
RELATION_NAME := DEFAULT_RELATION;

LIST_TYPE := EMPTY_LIST:
LIST_TYPE := EMPTY_LIST:
LIST_TYPE := EMPTY LIST):
NAME_STRING;

LIST_TYPE := EMPTY_LIST;
LIST_TYPE := EMPTY_LIST:
LIST_TYPE := EMPTY LIST):

TERMINATED) ;

l subtype RESULTS_LIST is CAIS.LIST UTILITIES.LIST TYPE;

subtype PARAMETER_LIST is CAIS.LIST UTILITIES.LIST TYPE;

* "“CURRENT_JOB" ;

* *CURRENT_INPUT*;
* ' CURRENT_OUTPUT*®;
* *CURRENT_ERROR*;

(NODE: in out NODE_TYPE;

FILE_NODE: NODE_TYPE;

INPUT _PARAMETERS: PARAMETER LIST := EMPTY_LIST:
KEY: RELATIONSHIP_KEY := LATEST_KEY:
RELATION: RELATION_NAME := DEFAULT RELATION;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;

LEVEL: LIST_TYPE := EMPTY LIST;
ATTRIBUTES: LIST_TYPE :=

232

S SRS S ettt . P — - I Py

Y

- —— g

procedure
procedure
procedure

- ——————

procedure

procedure

procedure

procedure
procedure

procedure

procedure
procedure
procedure
procedure
procedure
procedure

function STATUS_OF_PROCESS (NODE:

NP S S -

INPUT FILE:
OUTPUT_FILE:
ERROR_FILE:
ENVIRONMENT NODE:

(NODE :
TIME_LIMIT:

(NODE :
RESULTS_RETURNED:
STATUS:
TIME_LIMIT:

procedure INVOKE_PROCESS

(NODE:

FILE_NODE:
RESULTS_RETURNED:
STATUS:
INPUT_PARAMETERS:
KEY:

RELATION:
ACCESS_CONTROL:
LEVEL:
ATTRIBUTES:
INPUT_FILE:
OUTPUT_FILE:
ERROR FILE:
ENVIRONMENT NODE:
TIME_LIMIT:

procedure CREATE_JOB

(FILE_NODE:
INPUT_PARAMETERS:
KEY:
ACCESS_CONTROL:
LEVEL :
ATTRIBUTES:
INPUT_FILE:
OUTPUT_FILE:
ERROR FILE:
ENVIRONMENT NODE:

EMPTY_LIST;
NAME_STRING

NAME_STRING :
NAME_STRING :
NAME_STRING :
procedure AWAIT_PROCESS_COMPLETION

NODE_TYPE;
DURATION

procedure AVAIT PROCESS_COMPLETION

NODE_TYPE;
in out RESULTS_LIST;

out PROCESS_STATUS;
:= DURATIONLAST) ;

DURATION

in out NODE_TYPE;
NODE_TYPE;
in out RESULTS_LIST;

out PROCESS_STATUS;
PARAMETER_LIST;
RELATIONSHIP_KEY

RELATION_NAME

LIST_TYPE :=
LIST_TYPE
LIST_TYPE
NAME_STRING
NAME_STRING
NAME_STRING
NAME_STRING
DURATION

NODE_TYPE;
PARAMETER_LIST
RELATIONSHIP_KEY
LIST_TYPE :
LIST_TYPE :
LIST_TYPE :
NAME_STRING :
NAME_STRING :
NAME_STRING :
NAME_STRING :

APPEND RESULTS(RESULTS: RESULTS_STRING);
WRITE RESULTS (RESULTS: RESULTS_STRING):

GET_RESULTS (NODE:
RESULTS:
GET_RESULTS (NODE:
RESULTS:
STATUS:
GET_RESULTS (NAME :
RESULTS:
STATUS:
GET_RESULTS (NAME :
RESULTS:

GET_PARAMETERS (PARAMETERS :

ABORT_PROCESS (NODE :

NODE_TYPE;

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

CURRENT_INPUT
CURRENT _OUTPUT;
CURRENT_ERROR;
CURRENT_NODE) ;

;= DURATION'LAST) ;

EMPTY_LIST:
EMPTY_LIST;
EMPTY_LIST;

in out RESULTS_LIST);

NODE_TYPE;

in out RESULTS LIST;

CURRENT_INPUT;
CURRENT_OUTPUT;
CURRENT_ERROR;
CURRENT _NODE ;

:= DURATION'LAST) ;

:= EMPTY_LIST,
:= LATEST _KEY;

3

§

é
:

out PROCESS_STATUS) :

NAKE_STRING:

in out RESULTS_LIST,;

out PROCESS_STATUS);

NAME_STRING;

in out RESULTS_LIST);

NODE_TYPE;

RESULTS: RESULTS_STRING) ;

ABORT PROCESS (NAME:

NAME_STRING:

RESULTS: RESULTS_STRING)

ABORT PROCESS (NODE:
ABORT _PROCESS (NAME :

SUSPEND_PROCESS (NODE :
SUSPEND_PROCESS (NAME :

RESUME_PROCESS (NODE :
RESUME_PROCESS (NAME:

NODE_TYPE) ;
NAME_STRING) :
NODE_TYPE) ;
NANE_STRING) ;
NODE_TYPE) ;
NAME_STRING) ;
NODE_TYPE)

233

in out PARAMETER LIST);

:= LATEST_KEY;
:= DEFAULT_RELATION;

PROPOSED MIL-STD-CALS
31 JANUARY 1085

return PROCESS_STATUS:

function STATUS_OF_PROCESS (NAKE: NAME_STRING)
return PROCESS_STATUS,

function HANDLES_OPEN(NGDE: NODE_TYPE)
return NATURAL:

function HANDLES GPEN(NAME: NAME_STRING)
return NATURAL;

function I0_UNITS(NODE: NODE_TYPE)
return NATURAL;

function I0_UNITS(NAME: NAME_STRING)
return NATURAL;

function START_TINE(NODE: NODE_TYPE)
return TIME:

function START_TIME(NAME: NAME_STRING)
return TIME:

function FINISH_TIME(NODE: NODE_TYPE)
return TIME:

function FINISH_TIME(NAME: NAME_STRING)
return TIME:

function WACHINE_TIME(NODE: NODE_TYPE)
return DURATION;

function MACHINE_TIME(NAME: NAME_STRING)
return DURATION:

end PROCESS_CONTROL;

package I0_DEFINITIONS is
use NODE_DEFINITIONS;
use LIST_UTILITIES;

type FILE_TYPE is limited private:
type FILE_MODE ia

(IN_FILE, INOUT_FILE, OUT_FILE,

APPEND _FILE);
type CHARACTER_ARRAY i8 array (CHARACTER) of BOOLEAN;
type FUNCTION _KEY_DESCRIPTUR(LENGTH: PUSITIVE) is private;
type TAB_ENUMERATION ie (HORIZONTAL, VERTICAL);
type POSITION_TYPE is

record
ROW: NATURAL ;
COLUMN: NATURAL;
end record;

private
type FILE_TYPE is (IMPLEMENTATION_DEFINED);
-~ should be defined dy implementor
type FUNCTION_XEY DESCRIPTOR(LINK: POSITIVE) is
record
null: -- defined by implementor
end record;

end I0_DEFINITIONS;

package I0_CONTROL is
use I0_DEFINITIONS;
use NODE_DEFINITIONS;
use LIST_UTILITIES;

procedure OPEN_FILE_NODE

(FILE: FILE_TYPE;

NODE: in out NODE_TYPE;

INTENT: in INTENTION; .
TIME_LIMIT: in DURATION := NG _DELAY);

procedure SYNCHRONIZE(FILE: FILE_TYPE):

o

PROPOSED MIT-STD-¢ AL~
31 JANU ARY 1985

procedure SET_LOG(FILE: FILE_TYPE,
‘ LOG FILE: FILE_TYPE);
procedure CLEAR_LOG(FILE: FILE_TYPE):

function LOGGING(FILE: FILE_TYPE)

return BOOLEAN;

function GET_LOG(FILE: FILE_TYPE)

return FILE_TYPE:

function NUNBER_OF ELEMENTS(FILE:

return NATURAL:
procedure SET_PROMPT (TERMINAL:
PROMPT:

FILE_TYPE)

FILE TYPE:
STRING) ;

function GET_PROMPT(TERMINAL: FILE_TYPE)

return STRING:

function INTERCEPTED _CHARACTERS (TERMINAL: FILE_TYPE)

return CHARACTER_ARRAY;

procedure ENABLE_FUNCTION_KEYS (TERMINAL: FILE_TYPE;
ENABLE: BOOLEAN) :
function FUNCTI ON_KEYS_ENABLED(TERMINAL: FILE TYPE)

return BOOLEAN;
procedure COUPLE (QUEUE_BASE:
QUEUE_KEY:

QUEVE_RELATION:

FILE_NODE:
FORM:
ATTRIBUTES:

ACCESS_CONTROL .

LEVEL:

procedure COUPLE (QUEUE_NAME:
FILE_NODE:
FORM:
ATTRIBUTES:

ACCESS_CONTROL:

LEVEL:
procedure COUPLE (QUEUE_BASE:

QUEUE KEY:

QUEUE_RELATION-

FILE_NAME:
FORM:
ATTRIBUTES:

ACCESS_CONTROL:

LEVEL:
procedure COUPLE (QUEUE_NAKE:
FILE NAME:
FORM :
ATTRIBUTES:

ACCESS _CONTROL:

LEVEL:

end 10_cowNTROL;

generic

type ELEMENT TYPE is private;
package DIRECT 10 is

use NODE_DEFINITIONS;

use LIST UTILITIES;

use 10_DEFINITIONS:

NODE_TYPE;

RELATIONSHIP_KEY := LATEST KEY.
RELATION_NAME := DEFAULT_RELATION:
NODE_TYPE;

LIST_TYPE := EMPTY_LIST.
LIST_TYPE;

-= intentionally no default
LIST_TYPE := EMPTY_LIST,
LIST_TYPE := EMPTY_LIST):
NAME_STRING:

NODE_TYPE;
LIST_TYPE
LIST_TYPE;
LIST_TYPE
LIST_TYPE
NODE_TYPE;
RELATIONSHIP_KEY := LATEST_KEY.
RELATION_MAME := DEFAULT_RELATION;

EMPTY_LIST;

EMPTY_LIST;
EMPTY_LIST);

NAME_STRING;

LIST_TYPE := EMPTY_LIST
LIST_TYPE;

LIST_TYPE := EMPTY_LIST:
LIST_TYPE := EMPTY_LIST):
NAME_STRING:

NAME_STRING;

LIST TYPE := EMPTY_LIST;
LIST_TYPE:

LIST_TYPE := EMPTY_LIST;

LIST_TYPE := EMPTY_LIST).

subtype FILE TYPE is CAIS.IO_DEFINITIONS.FILE_TYPE;
subtype FILE MODE is CAIS.IO DEFINITIONS.FILE_WODE;

type COUNT is range 0 .. INTEGER'LAST:

subtype POSITIVE_COUNT is COUNT range 1 .. COUNT'LAST;

235

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

-- File sanagement

procedure CREATE(FILE: in out FILE_TYPE:
BASE: NODE_TYPE;
KEY: RELATIONSHIP_KEY := LATEST KEY;
RELATION: RELATION NAME :=
DEFAULT_RELATION:
MODE: FILE_MODE := INOUT_FILE;
FORM: LIST_TYPE := EMPTY_LIST:
ATTRIBUTES: LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST_TYPE := EMPTY _LIST);
procedure CREATE(FILE: in out FILE_TYPE:
NAME: NAME_STRING:
MODE: FILE_MODE := INOUT_FILE;
FORM: LIST TYPE := EMPTY_LIST:
ATTRIBUTES: LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL.: LIST_TYPE := EMPTY_LIST).
procedure OPEN(FILE: in out FILE_TYPE:
NODE: NODE_TYPE:
MODE: FILE_MODE) ;
procedure OPEN(FILE: in out FILE_TYPE:
NAME: NAME_STRING;
ODE: FILE_MODE) ;

procedure CLOSE(FILE: in out FILE_TYPE);
procedure DELETE(FILE: in out FILE_TYPE):
procedure RESET(FILE: in out FILE_TYPE:
MODE : FILE_WODE) ;
procedure RESET(FILE: in out FILE_TYPE);

function MODE(FILE: FILE TYPE) return FILE_MODE;
function NAME(FILE: FILE_TYPE) return STRING;
function FORM(FILE: FILE_TYPE) return STRING:

function IS_OPEN(FILE: FILE_TYPE) return BOOLEAN;
-- Input and output operations

procedure READ(FILE: FILE TYPE:
ITEM: out ELEMENT TYPE;
FROM: POSITIVE_COUNT)
procedure READ(FILE: FILE_TYPE:

ITEM: out ELEMENT TYPE):

procedure WRITE(FILE: FILE_TYPE;
ITEN: ELEMENT_TYPE:
TO: POSITIVE_COUNT) ;
procedure WRITE(FILE: FILE_TYPE:
ITEM: ELEMENT TYPE);

procedure SET_INDEX(FILE: FILE_TYPE:
TO: POSITIVE_COUNT):

function INDEX(FILE: FILE _TYPE) return POSITIVE_COUNT;
function SIZE(FILE: FILE_TYPE) return COUNT;

function END_OF_FILE(FILE: FILE_TYPE) return BOOLEAN:
end DIRECT_IO:
generic

type ELEMENT_TYPE is private;
package SEQUENTIAL_I0 is

236

TR

use NODE_DEFINITIONS;
use LIST UTILITIES;
use IO _DEFINITIONS;

PROPOSED MUASTD-C AlS
31 JANUARY 1985

subtype FILE_TYPE is CAIS.IO_DEFINITIONS.FILE_TYPE;
subtype FILE MODE is CAIS.IO_DEFINITIONS.FILE_MODE;

== File management

procedure CREATE (FILE:

in out FILE_TYPE;

BASE: NODE_TYPE;
KEY: RELATIONSHIP_KEY := LATEST_KEY,
RELATION: RELATION_NAME := DEFAULT_RELATION,
MODE : FILE MODE := INOUT_FILE;
FORM: LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: LIST _TYPE := EMPTY_LIST,;
ACCESS_CONTROL: LIST TYPE := EMPTY_LIST:
LEVEL: LIST_TYPE := EMPTY_LIST);
procedure CREATE(FILE: in out FILE TYPE;
NAME : NAME_STRING;
MODE: FILE_MODE := INOUT_FILE:
FORM: LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: LIST _TYPE := EMPTY_LIST:
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST_TYPE := EMPTY_LIST).
procedure OPEN(FILE: in out FILE_TYPE:
NODE: NODE_TYPE;
MODE: FILE_MODE)
procedure OPEN(FILE: in out FILE TYPE;
NAME : NAME_STRING;
MODE ; FILE_MODE):

procedure CLOSE (FILE:
procedure DELETE (FILE:
procedure RESET(FILE:

MODE :
procedure RESET(FILE:

in out FILE_TYPE);
in out FILE_TYPE);
in out FILE_TYPE:
FILE_MODE);
in out FILE_TYPE);

function MODE(FILE: FILE_TYPE) return FILE_WODE:

function NAME(FILE: FI
function FORM(FILE: FI

function IS_OPEN(FILE:

LE_TYPE) return STRING:
LE_TYPE) return STRING;

FILE_TYPE) return BOOLEAN;

-- Input and output Operations

procedure READ(FILE:
ITEM:
procedure WRITE(FILE:
ITEM:

function END_OF_FILE(FI
end SEQUENTIAL_IO;

package TEXT_I0 is
use NODE_DEFINITIONS;
use LIST_UTILITIES:
use I0_DEFINITIONS;

FILE_TYPE;
out ELEMENT TYPE):
FILE_TYPE:
ELEMENT _TYPE) .

LE: FILE_TYPE) return BOOLEAN;

subtype FILE_TYPE is CAIS.I0_DEFINITIONS .FILE TYPE;
subtype FILE_MODE is CAIS.IO_DEFINITIONS.FILE_MODE;

type COUNT is range o ..

INTEGER "LAST

[

Y

PROPOSNED MIL-STD-CAIS
31 JANUARY 198s

subtype POSITIVE_COUNT is COUNT range 1 .. COUNT'LAST:
UNBOUNDED : constant COUNT := 0; -- line and page leagth

subtype FIELD is INTEGER range 0 .. INTEGER'LAST:
subtype NUMBER BASE is INTEGER range 2 .. 16;

type TYPE_SET is (LOWER_CASE, UPPER_CASE);

-= File Management

procedure CREATE(FILE in out FILE_TYPE:
BASE: NODE_TYPE;
KEY: RELATIONSHIP_KEY := LATEST_KEY.
RELATIOX: RELATION_NAME := DEFAULT_RELATION.
MODE : FILE MODE := INOUT _FILE:
FORM: LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST TYPE := EMPTY_LIST):
procedure CREATE(FILE: in out FILE TYPE:
NAME : NAME_STRING;
MODE : FILE_MWODE := INOUT FILE:
FORM: LIST_TYPE := EMPTY_LIST,
ATTRIBUTES: LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL: LIST_TYPE := EMPTY LIST:
LEVEL: LIST_TYPE := EMPTY_LIST);
procedure OPEN(FILE: in out FILE TYPE:
NODE : NODE_TYPE;
MODE: FILE_MODE) ;
procedure OPEN(FILE: in out FILE TYPE;
NAYE : NAME_STRING;
NODE : FILE_MODE) ;

procedure CLOSE(FILE: in out FILE_TYPE):

procedure DELETE(FILE: in out FILE_TYPE):

procedure RESET(FILE: in out FILE_TYPE:
MODE : FILE_MODE) ;

procedure RESET(FILE: in out FILE_TYPE):

function MODE(FILE: FILE TYPE) return FILE MODE;
function NAME(FILE: FILE_TYPE) return STRING;
function FORM(FILE: FILE_TYPE) return STRING;

function IS_OPEN(FILE: FILE_TYPE) return BOOLEAN;

-- Control of default input and output files

procedure SET_INPUT(FILE: FILE_TYPE);
procedure SET_OUTPUT(FILE: FILE_TYPE);
procedure SET_ERROR(FILE: FILE_TYPE);

function STANDARD_INPUT return FILE_TYPE;
function STANDARD OUTPUT return FILE_TYPE;
function STANDARD ERROR return FILE_TYPE:

function CURRENT_INPUT return FILE TYPE;
function CURRENT OUTPUT return FILE_TYPE;
function CURRENT ERROR return FILE_TYPE;

Ry

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

-- Specification of line and page lengths

procedure SET_LINE_LENGTH(FILE: FILE_TYPE;

TO: COUNT) ;

procedure SET_LINE_LENGTH(TO: COUNT);

procedure SET_PAGE_LENGTH(FILE: FILE_TYPE:

TO: COUNT) ;

procedure SET_PAGE_LENGTH(TO: COUNT):

function LINE_LENGTH(FILE:

FILE_TYPE) return COUNT;

function LINE_LENGTH return COUNT;

function PAGE_LENGTH(FILE:

FILE_TYPE) return COUNT.

function PAGE_LENGTH return COUNT:

-- Column, Line and Page Control

procedure NEV_LINE(FILE:

SPACING: POSITIVE_COUNT

FILE_TYPE;

procedure NEW_LINE(SPACING: POSITIVE_COUNT : :

procedure SKIP_LINE(FILE:

SPACING: POSITIVE_COUNT :=
procedure SKIP_LINE(SPACING: POSITIVE_COUNT :=

function END_OF _LINE(FILE:

FILE_TYPE;

FILE_TYPE) return BOOLEAN;

function END_OF_LINE return 300LEAN:

procedure NEW_PAGE(FILE:
procedure NEV_PAGE:

procedure SKIP_PAGE(FILE:
procedure SKIP_PAGE;

function END_UF_PAGE (FILE:

FILE_TYPE) ;

FILE_TYPE);

FILE TYPE) return BOOLEAN;

function END_OF_PAGE return BOOLEAN;

function END_OF_FILE(FILE:

FILE_TYPE) return BOOLEAN:

function END_OF_FILE return BOOLEAN:

procedure SET_COL(FILE:
TO:

FILE_TYPE;
POSITIVE_COUNT)

procedure SET_COL(TO: POSITIVE_COUNT);

procedure SET_LINE(FILE:
TO:

FILE_TYPE;

POSITIVE_COUNT) ;

procedure SET_LINE(TO: POSITIVE_COUNT):

function COL(FILE: FILE_TYPE) return POSITIVE_COUNT;
function cOL return POSITIVE_COUNT;

function LINE(FILE: FILE_TYPE) return POSITIVE_COUNT,;
function LINE return POSITIVE_COUNT;

function PAGE(FILE: FILE_TYPE) return POSITIVE_COUNT;
function PAGE return POSITIVE_COUNT:

-- Character Input-Output

procedure GET(FILE: FILE_TYPE:
ITEM: out CHARACTER):

239

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

procedure GET (ITEM:
procedure PUT(FILE:
procedure PUT(ITEN:

-- String Input-Output

GET(FILE:
GET(ITEM:
PUT(FILE:
PUT (ITEM:

procedure
procedure
procedure
procedure

procedure GET_LINE(FILE:
ITEM:
LAST:
GET_LINE (ITEM:
LAST:

procedure

procedure PUT_LINE(FILE:

end INTEGER_IO;

-- Types
generic
t type nu is digits <>;
package FLOAT_IO is
DEFAULT_FORE: FIELD
DEFAULT AFT: FIELD

FILE_TYPE; ITEM
out STRING):
FILE_TYPE; ITEM :
STRING) :

=N
;= NUM'DIGITS - 1.

out CHARACTER) ;
FILE_TYPE: ITEM :
CHARACTER) ;

CHARACTER) ;

1 out STRING):

STRING)

FILE TYPE:
out STRING.
out NATURAL) ;
out STRING.
out NATURAL) ;

FILE TYPE; ITEM: STRING) ;

procedure PUT_LINE(ITEM: STRING):
i -~ geperic psckage for Input-Output of Integer Types
generic
type NUM is range <>:
package INTEGER_IO is
DEFJULT WIDTH: FIELD := NUM'WIDTH;
DEFAULT BASE: NUMBER_BASE := 10;
procedure GET(FILE: FILE_TYPE:
ITEM: out NUM;
wIDTH: FIELD := 0);
procedure GET(ITEM: out NUM;
wIDTH: FIELD := 0);
pro-edure PUT(FILE: FILE TYPE;
ITEM: NUM;
VIDTH: FIELD := DEFAULT WIDTH:
BASE: NUMBER_BASE := DEFAULT_BASE):
procedure PUT(ITEM: NUN;
WIDTH: FIELD := DEFAULT_WIDTH:
BASE: NUMBER BASE := DEFAULT BASE);
procedure GET (FROM: STRING:
i ITEM: out NUM:
LAST: out POSITIVE);
procedure PUT(TD: out STRING;
ITEM: NUM;
§ BASE: NUMBER_BASE := DEFAULT_BASE);

-~ generic package for Input-Output of Flosting Point

ok . - -

DEFAULT _EXP: FIELD

procedure GET(FILE:
ITEM:

WIDTH:

procedure GET(ITEM:

WIDTH:

procedure PUT(FILE:
ITEM:
FORE:
AFT:
EXP:

procedure PUT(ITEM:
FORE:

AFT
EXP:

procedure GET(FRON:

T

procedure PUT(TD:

3%

end FLOAT_IO;

PROPOSED MIL-STD-C AIN
31 JANUARY 1985

= 3

FILE_TYPE;
out NUM;

FIELD := 0):
out NUM;

FIELD := 0).

FILE_TYPE;
NUM;

FIELD
FIELD
FIELD
NUM;

FIELD
FIELD
FIELD

DEFAULT_FORE;
DEFAULT AFT;
DEFAULT_EXP) ;

'R

DEFAULT_FORE:
DEFAULT_AFT;
DEFAULT_EXP) ;

WO

STRING;
out NUM:
out POSITIVE):
out STRING;
UM
FIELD
FIELD

DEFAULT_AFT;
DEFAULT_EXP) ;

W

-- generic package for Input-Qutput of Fixed Polnt Types

generic
type M is delta <>;
package FIXED IO is

DEFAULT_FORE: FIELD := NUM'FORE;
DEFAULT _AFT: FIELD := NUM'AFT.
DEFAULT EXP: FIELD := 0;
procedure GET(FILE: FILE_TYPE:
ITEM: out NUM;
YIDTH: FIELD := 0);
procedure GET(ITEM: out NUM:
WIDTH: FIELD := 0):
procedure PUT(FILE: FILE_TYPE;
ITEM: NUM;
FORE: FIELD := DEFAULT_FORE;
AFT: FIELD := DEFAULT_AFT;
EXP: FIELD :» DEFAULT EXP):
procedure PUT(ITEM: NUN:
FORE: FIELD := DEFAULT_FORE; .
AFT: FIELD := DEFAULT_AFT;
EXP: FIELD := DEFAULT EXP).
procedure GET(FROM: STRING;
ITEM: out wNUM:
LAST: out POSITIVE):
procedure PUT(TD: out STRING;
ITEM: NUM
AFT: FIELD = DEFAULT_AFT:
BXP: FIELD := DEFAULT_EXP)

end FIXED_10:

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

-- generic package for Input-Output of Enumeration Types

generic
type ENUK is (<>);
package ENUMERATION_IO is

DEFAULT_WIDTH: FIELD := O;
DEFAULT_SETTING: TYPE_SET := UPPER_CASE:

procedure GET(FILE: FILE TYPE: ITEM : out ENUK):
procedure GET(ITEM: out ENUM);

procedure PUT(FILE: FILE_TYPE:

ITEM: ENUM;

WIDTH: FIELD := DEFAULT_VWIDTH;

SET: TYPE_SET := DEFAULT_SETTING):
procedure PUT(ITEN: ENUN;

¥IDTH: FIELD := DEFAULT_WIDTH;

SET: TYPE_SET := DEFAULT_SETTING):

procedure GET (FROM: STRING;
ITEM: out ENUX;
LAST: out POSITIVE);

procedure PUT(TO: out STRING;
ITEM: ENUM;
SET: TYPE_SET := DEFAULT_SETTING) .

end ENUMERATION I0;
end TEXT_IO:

package SCROLL_TERMINAL is
use NODE_DEFINITIONS,
use I0_DEFINITIONS;
use I0_CONTROL;
subtype FILE_TYPE is CAIS.IO_DEFINITIONS.FILE_TYPE:
subtype FUNCTION_KEY DESCRIPTOR is
CAIS.I0 _DEFINITIONS FUNCTION_KEY DESCRIPTOR;
subtype POSITION_TYPE is CAIS.IO_DEFIITIONS.POSITION_ TYPE;
subtype TAB_EUMERATION is CAIS.I0_DEFINITIONS.TAB_ENUMERATION:

procedure SET_POSITION(TERMINAL: FILE_TYPE:

POSITION: POSITION_TYPE);
procedure SET_POSITION(POSITION: POSITION_TYPE);
function GET_POSITION(TERMINAL: FILE_TYPE)

return POSITION_TYPE:
function GET_POSITION return POSITION_TYPE;
function TERMINAL_SIZE(TERMINAL: FILE_TYPE)
return POSITION TYPE;
function TERMINAL_SIZE return POSITION_TYPE:
procedure SET_TAB(TERMINAL: FILE TYPE:
KIND: TAB_ENUMERATION := HORIZONTAL);
procedure SET_TAB(KIND: TAD_ENUMERATION :z HORIZONTAL);
procedure CLEAR_TAB(TERMINAL: FILE_TYPE;
KIND: TAB_ENUMERATION ;= HORIZONTAL);
procedure CLEAR_TAB(XIND: TAB_ENUMERATION := HORIZONTAL);
procedure TAB(TERMINAL: FILE TYPE;
KIND: TAB_ENUMERATION = HORIZONTAL;
COUNT: POSITIVE := 1):

procedure TAB(KIND: TAB_ENUMERATION := HORIZONTAL;
COUNT: POSITIVE := 1)

procedure BELL(TERMINAL: FILE_TYPE).

procedure BELL;

procedure PUT(TERMINAL: FILE TYPE:
ITEM: CHARACTER) ;

pr cedure PUT(ITEN: CHARACTER);
pr- cedure PUT(TERMINAL: FILE_TYPE;

ITEM: STRING) ;
pr: cedure PUT(ITEM: STRING);
pr' cedure SET_ECHO(TERMINAL: FILE _TYPE;

TO: BOOLEAN := TRUE);
pr-cedure SET_ECHO(TO: BOOLEAN := TRUE);

funcnon ECHD (TERMINAL : FILE_TYPE)

return BOOLEAN;
function ECHO return BOOLEAN:
function WAXIMUM_FUNCTION KEY(TERMINAL: FILE TYPE)

return NATURAL;

fur=tion wAXIWMUM_FUNCTION _KEY return NATURAL:

pre cedure GET(TERMINAL: FILE_TYPE;
ITEM: out CHARACTER;
KEYS: out FUNCTION_KEY DESCRIPTOR)

procedure GET(ITEM: oOut CHARACTER:
KEYS: out FUNCTION_KEY DESCRIPTOR) ;

procedure GET(TERMINAL: FILE_TYPE;
ITEX: out STRING;
LAST: out NATURAL;
KEYS: out FUNCTION_KEY DESCRIPTOR) :

procedure GEf(ITEM: out STRING;
LAST: out NATURAL;

PROPOSED MIL-STD-C AJS
31 JANUARY 1985

prccedure FUNCTION_KEY (KEYS:

KEYS: out FUNCTION _KEY_DESCRIPTCR) ;
function rFuncTION _KEY_COUNT (KEYS: FUNCTION_KEY _DESCRIPTOR)
return NATURM.

FUNCTION_KEY DESCRIPTOR;

INDEX: POSITIVE;
KEY_IDENTIFIER: oOut POSITIVE;
POSITION: out NATURAL) ;
procedure FUNCTION KEY NAME (TERMINAL: FILE TYPE:
KEY_IDENTIFIER: POSITIVE;
KEY_NAME: out STRING;
LAST: out POSITIVE);
prccedure FUNCTION_KEY MAME (KEY IDENTIFIER: POSITIVE;
KEY_NAME: out STRING;
LAST: out POSITIVE):
procedure NEV_LINE(TERMINAL: FILE TYPE;
COUNT : POSITIVE := 1);
procedure NEW_LINE(COUNT: POSITIVE := 1);
procedure NEW_PAGE(TERMINAL: FILE_TYPE);
procedure NEW_PAGE;

end SCROLL_TERMINAL:

package PAGE TERMINAL is
use NODE_DEFINITIONS:
use I0 DEFINITIONS:
use 10_CONTROL;
subtype FILE _TYPE is CAIS.10_DEFIITIONS.FILE_TYPE:
subtype ruwcTION KEY _DESCRIPTUR is

CAIS.IO_DEFINITIONS. FUNCTION_KEY DESCRIPTOUR;

subtype POSITION TYPE is

CAIS.

I0_DEFINITIONS.POSITION TYPE.

subtype TAB_ENUMERATION is

type SELECT ENUMERATION is

CAIS.

I0_DEFINITIONS.TAB_ENUMERATION;

(FROM_ACTIVE_POSITION_TO_END,
FROM_START_TO_ACTIVE_POSITION,

ALL POSITIONS) ;

Lype GRAPHIC_RENDITION ENUMERATION is

(PRIMARY_RENDITION,

80LD,

2143

i S P PN gy~ WS- v 1

[,

- a—

PROPOSED MIL-STD-C Al~
31 JANUARY 1085

———————y— ———— ——— —

FAINT, UMDERSCORE .,
SLOW_BLINK, RAPID_BLINK,

REVERSE_IMAGE) ;

type GRAPHIC_RENDITION_ARRAY is array
(GRA\PHIC_RENDITION_ENUMERATION) of BOGLEAN;

DEFAULT_ZRAPHIC_RENDITION: constant GRAPHIC RENDITION_ARRAY :@=

(PRIMARY_RENDITION =
TRUE,

BOLD .. REVERSE_IMAGE =>
FALSE) .

proced''re SET_POSITION(TERMINAL

: FILE_TYPE;

POSITION: POSITION_TYPE);

proced' re SET_POSITION(POSITION
functio'r GET_PUSITION

. POSITION_TYPE);

(TERMINAL: FILE_TYPE) return POSITION_TYPE;
function GET_POSITION return POSITION_TYPE:

functio1 TERMINAL_SIZE

(TERMINAL: FILE_TYPE) return PUSITION TYPE:

function TERMINAL _SIZE return
proced:ire SET_TAD

POSITION_TYPE:

(TERMINAL: FILE TYPE:
KIND: TAB_ENUMERATION := HORIZONTAL) ;

proced 're SET_TAB

(XIND: TAB_ENUMERATION = HORIZONTAL);

proced: re CLEAR TAB

(TERMINAL: FILE TYPE.
KIND: TAB_ENUMERATION := HORIZONTAL);

proced 'ire CLEAR _TAB

(KIND: TAB_ENUMERATION := HORIZONTAL)

proced::re TAB

(TERMINAL: FILE _TYPE.
KIND: TAB_ENUMERATION := HORIZONTAL:
COUNT: POSITIVE := 1);

procedure TAaB

(KIND: TAB_ENUMERATION := HORIZONTAL;
COUNT: POSITIVE := 1);

proced: re BELL

(TERMINAL: FILE_TYPE);

proced: re BELL;

proced: re PUT(TERMINAL: FILE TYPE:
ITEM: CHARACTER) ;

procedure PUT(ITEM: CHARACTER)

procedure PUT(TERMINAL: FILE_TYPE:
ITEM: STRING) ;

procedure PUT(ITEM: STRING):
procedure SET_ECHO(TERMINAL: F

ILE_TYPE:

TO: BOOLEAN := TRUE);

procedure SET_ECHO(TU: BOOLEAN

:= TRUE);

function ECHO(TERMINAL: FILE_TYPE) return BOOLEAN:

function ECHO return BOOLEAN;
function MAXIMUM_FUNCTICON_KEYS

(TERMINAL: FILE TYPE) return NATURAL:

function MAXINUM_FUNCTION_KEYS

return NATURAL;

procediire GET(TERMINAL: FILE_TYPE:
ITEM: out CHARACTER:
XEYS: out FUNCTION_KEY DESCRIPTOR) ;

procediure GET(ITEM: out CHARACTER:
KEYS: out FUNCTION_KEY_DESCRIPTOR);

procedure GET (TERMINAL: FILE_TYPE:
ITEN: out STRING;
LAST: ont NATURAL;
KEYS: out FUNCTION_KEY_DESCRIPTOR)
214

PROPOSED MIL-STD-CAJl~
31 JANUARY 1985

CLOSE (N¥ODE);
raise;
end NODE_A1 "RIBUTE_ITERATE:

procedure . "H_ATTRIBUTE_ITERATE
(ITEP‘TOR: out ATTRIBUTE_ITERATOR;

BASE NGDE_TYPE;

KEY: RELATIONSHIP_KEY:

RELATION: RELATION_NAME := DEFAULT_RELATION:
PATTERN: ATTRIBUTE_PATTERN := ***) is separate;

procedure ‘ATH_ATTRIBUTE_ITERATE
(ITEF \TOR: out ATTRIBUTE_ITERATOR;

NAME : NAME_STRING;

PATTERN: ATTRIBUTE_PATTERN := "s*)
in
BASE : NODE_TYPE;
begin

OPEN (BASE. BASE_PATH (NAME), (1 => READ_RELATIONSHIPS)):
PATH_ATTRIBUTE_ITERATE

(ITERATOR, BASE, LAST_KEY (NAME), LAST RELATION (NAME). PATTERN):
CLOSE (BASE) .
exception
when others =>

CLOSE (BASE) ;

raise;
end PATH_ATTRIBUTE_ITERATE:

function MORE(ITERATOR: ATTRIBUTE_ITERATOR)
return BOGLEAN

in
RESULT : BOOLEAN;

begin
~- should be defined by implementor
return RESULT.

end MORE;

procedure GET_NEXT (ITERATOR: in out ATTRIBUTE_ITERATOR;
ATTRIERUTE: out ATTRIBUTE_NAME.
VALUE: in oyt LIST_TYPE)
in
begin
null; -- should be defined by implementor
end GET_NEXT;

end ATTRIBUTES:

separate (CAIS)

package body ACCESS_CONTROL is
use NODE_DEFINITIONS;
use NODE_MANAGEMENT;

procedure SET_ACCESS_CONTROL (NODE: NODE_TYPE;

ROLE_NODE: NODE_TYPE;

GRANT: GRANT_VALUE) is separate;
procedure SET_ACCESS_CONTROL (NAME: NAME_STRING;

ROLE_NAME: NAME_STRING:

GRANT: GRANT_VALUE)

is

NODE, ROLE_NODE ° NODE_TYPE:
begin

OPEN (NODE, NAME. (1 => CONTROL)):

258

PROPOXSED MIL-STD-CAIS
31 JANUARY 1085

proced yre GET_NODE_ATTRIBUTE

{NODE: NODE_TYPE:
ATTRIBUTE: ATTRIBUTE _NANE:
VALUE: in out LIST_TYPE) is separate;
proced ire GET_NODE_ATTRIBUTE
NAME : NAME_STRING;
ATTRIBUTE: ATTRIBUTE _NAME
VALUE: in out LIST_TYPE)
in
NODE : NODE_TYPE;
begin

OPEN ('IODE, NAME, (1 => READ_ATTRIBUTES)};
GET _Nr' 'E_ATTRIBUTE (NODE, ATTRIBUTE, VALUE):
CLOSE 'NODE):
excep! on
when -thers =>

€L SE (NGDE);

ra -e;
end GET_ IDE_ATTRIBUTE;

proce: ;re GET_PATH_ATTRIBUTE

BASE: NODE_TYPE;

KEY: RELATIONSHIP_KEY;

RELATION: RELATION_NAME := DEFAULT_RELATION;

ATTRIBUTE: ATTRIBUTE_NAME;

VALUE: in out LIST_TYPE) is separate;
procedure GET_PATH_ATTRIBUTE

INAME : NAME_STRING;

ATTRIBUTE: ATTRIBUTE_NAME;

VALUE: in out LIST_TYPE)

in
BASE - NODE_TYPE;
begin
OPEN ('ASE, BASE PATH (NAME), (1 => READ_RELATIONSHIPS)):
GET_P/ H_ATTRIBUTE
(B4 JE, LAST_KEY (NAME), LAST _RELATION (NAME).
AT RIBUTE. VALUE):
CLOSE (BASE):
except on
when others =>
Cl)SE (BASE);
r:ise;
end GE *_PATH_ATTRIBUTE:

proced ire NODE_ATTRIBUTE_ITERATE
(ITERATOR: out ATTRIBUTE_ITERATOR:
NQODE: MODE _TYPE,
PATTERN: ATTRIBUTE_PATTERN := “+") is separate;

proced: “e NODE_ATTRIBUTE_ITERATE
"ERATOR: Out ATTRIBUTE_ITERATOR;

ME: NAME_STRING;

PATTERN: ATTRIBUTE PATTERN := *s+°)
is
NODE : NODE_TYPE;
begin

QPEN ('QDE, NAME, (1 => READ_ATTRIBUTES)):
NODE_A /TRIBUTE_ITERATE (ITERATOR, NODE, PATTERN):
CLOSE 'NQDE):

except on

when others =>

[
55

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

procedure "ELETE_PATH_ATTRIBUTE (BASE: NODE_TYPE;
KEY: RELATIONSHIP_KEY;
RELATION: RELATION_NAME := DEFAULT_RELATION;
ATTRIBUTE: ATTRIBUTE_NAME) is separate;
procedure NELETE_PATH_ATTRIBUTE (NAKE: NAME_STRING:
ATTRIBUTE: ATTRIBUTE_NAME)
is
BASE : NODE_TYPE;
begin

OPEN (BASE, BASE_PATH (NAME), (1 => WRITE_RELATIONSHIPS)):

DELETE_PATH ATTRIBUTE

(BASE, LAST KEY (NAME), LAST_RELATION (NAME). ATTRIBUTE);

CLOSE (BASF) ;
exception
when others =>
CLOSE (3ASE);
raise;
end DELETE >ATH_ATTRIBUTE:

procedure SET_NODE_ATTRIBUTE (NODE:

ATTRIBUTE:

VALUE:

procedure SET_NODE_ATTRIBUTE (NAME:

ATTRIBUTE:

VALUE:

i8
NODE

begin

NOD®_TYPE;

NODE_TYPE:
ATTRIBUTE_NAME;
LIST_TYPE) is separate;

NAME_STRING;
ATTRIBUTE_NAME;
LIST_TYPE)

OPEN (NODE NAME. (1 => WRITE_ATTRIBUTES)).
SET_NODE_A" TRIBUTE (NODE, ATTRIBUTE, VALUE);

CLOSE (NGD);
exception
when others =>
CLOSE (NODE):
raise;
end SET_NO™ :_ATTRIBUTE;

procedure SET_PATH_ATTRIBUTE

;= DEFAULT_RELATION;

NAME_STRING:

ATTRIBUTE_NAXME;
LIST_TYPE)

(BAST : NODE_TYPE;
KEY RELATIONSHIF_KEY;
RELATION: RELATION_NAME
ATTTIBUTE: ATTRIBUTE_NAME:
VALUE: LIST_TYPE) is separate;
procedure SET_PATH_ATTRIBUTE (NAME:
ATTRIBUTE:
VALUE:
is
BASE : NODE_TYPE;
begin

OPEN (BASE., BASE_PATH (NAME)., (1 => WRITE_RELATIONS.IPS)):

SET_PATH_A. TRIBUTE

(BASE, L\ST_KEY (NAME), LAST_RELATION (NAME). ATTRIBUTE,

CLOSE (BASF);
exception
when oth: rs =>
CLOSE (2ASE);
raise;
\ end SET_PATH_ATTRIBUTE;

| S

258

VALUE) ;

———— -

use NODE_MANAGEMENT,

procedure CREATE_NGDE_ATTRIBUTE

("ODE: NODE_TYPE;
ATTRIBUTE: ATTRIBUTE_NAME:
VALUE : LIST_TYPE) is separate;

procedure CREATE_NODE_ATTRIBUTE

(NAME : NAME_STRING;
ATTRIBUTE: ATTRIBUTE_NAME;
VALUE: LIST_TYPE)

is

NODE : NODE_TYPE;

begin

OPEN (NODE, NAME, (1 => APPEND_ATTRIBUTES));

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

CREATE_NODE_ATTRIBUTE (NGDE, ATTRIBUTE. VALUE) ;

CLOSE (NODE) ;
exception
when others =>
CLCSE (NODE) ;
raise;
end CREATE_NODE_ATTRIBUTE;

procedure CREATE_PATH_ATTRIBUTE (BASE:

KEY:
RELATION:
ATTRIBUTE:
VALUE:

proced ire CREATE_PATH_ATTRIBUTE (NAME:
ATTRIBUTE:
VALUE:

is

BASE - NODE_TYPE;
begin

NODE_TYPE;

RELATIONSHIP_KEY

RELATION _NAME := DEFAULT_RELATION:
ATTRIBUTE_NAME

LIST_TYPE) is separate;

NAME_STRING
ATTRIBUTE_NANE
LIST_TYPE)

OPEN (I'ASE, BASE PATH (NAME), (1 => WVRITE_ATTRIBUTES)) ;

CREATE PATH_ATTRIBUTE

(BA'E. LAST_KEY (NAME), LAST RELATION (NAME) , ATTRIBUTE, VALUE)

CLOSE BASE);
except on
when others =>
ClL SE (BASE):
r:ise;
end CR. ATE_PATH_ATTRIBUTE;

procedure DELETE_NODE_ATTRIBUTE (NODE:

ATTRIBUTE:
procec ure DELETE_NODE_ATTRIBUTE (NAME :
ATTRIBUTE:
is
NODE : NODE_TYPE;
begin

OPEN ("ODE, NAME, (1 => WRITE_ATTRIBUTES)):
DELETE NODE_ATTRIBUTE (NODE. ATTRIBUTE);
CLOSE NODE).;
except 2n
when others =>

C' SE (NODE):

raise;
end DE! ZTE_NODE_ATTRIBUTE;

25%

NODE_TYPE:
ATTRIBUTE_NAME) is separate;

NAKE_STRING;
ATTRIBUTE_NAME)

PROPOSED MIL-STD-C A
31 JANUARY 1985

procedure ITERATE

(XTERATOR: out NODE_ITERATOR;
NAKE : NAKE_STRING;
KIND: NODE KIMND;
KEY: RELATIONSHIP KEY PATTERN := *ao;
RELATION: RELATION MAME_PATTERN :=
DEFAULT_RELATION;

. PRIMARY ONLY: BOOLEAN : =" TRUE)

s

bt? : NODE_TYPE;

in

OPEN (NDDE, NAME,
ITERATE (ITERATOR,
PRIMARY ONLY) ;

CLOSE (NODE) ;

exception

when others =»
CLOSE (NODE) :
raise;

end ITERATE:

function MORE (1TERATOR:
is

RESULT :
begin

BOOLEAN;

~~ 8hould be defineg by implementor

return RFSULT;
end WORE;

procedure GeT_NexT

a = READ_RE_ATIONSHIPS));
NODE, KIND, KEY, RELATION,

NODE_ITERATOR) return BoOLEAN

(ITERATOR: in out NODE_ITERATOR;

Nm_NODE:
INTENT:
TIVE LINIT:
is
begin
null; -- shenia be
end GET_NEXT;

procedure SEY_CURRENT _NODE (NODE :

in out NopE_TYpE;
INTENTION :=
DURATION

(1 => EXISTENCE);

‘= NO_DELAY)

defined by implesentor

NCDE_TYPE) is separate:

procedure SET_CURRENT NODE (NAME : NAME_STRING)
is

NODE :
gin
QPEN (NODE. NaME,
SET_CURRENT NODE (NGDE)
exception
when others =>
CLOSE (‘ODE);
raise;
end SET_CURPENT _WODE;

NODE_TYPE;

procedure GET_CURRENT_NQDE
(NODE :
INTENT:

TIME_LINIT:

end NODE_WANAGE =NT.

separate (CAls)
package body rmirsures is
use NODE DEF “NITIONS.

{1 => EXISTENCE)):

in out MODE_TYPE;

254

INTENTION = (1 => EXISTENCE):
DURATION := NO_DELAY) is separate;

-«

PROPOSED MIL-STD-C Ajw
31 JANUARY 1985

procedure DELETE_TREE(NAME: NAME_STRING)
is
NODE : NODE_TYPE;
begin
OPEN (NODE. NAME, (EXCLUSIVE_WRITE, READ_RELATIONSHIPS)):
DELETE TREE (NODE):
exception
when others =>
CLOSE (NODE) ;
raise;
end DELETE_TREE;

procedure LINK(NODE: NODE_TYPE;
NEW_BASE: NODE_TYPE;
NEW_KEY: RELATIONSHIP_KEY;

NEW_RELATION: RELATION_NAME :=
DEFAULT_RELATION) is separate;

procedure LINK(NGDE: NODE_TYPE;
NEW_NAME: NAME_STRING)

is
NEV_BASE : NODE_TYPE;
begin
OPEN (NEW_BASE, BASE_PATH (NEW_NAME) , (1 => APPEND_RELATIONSHIPS)):
LINK (NODE. NEW_BASE, LAST KEY (NEW_NAME) ,
LAST RELATION (NEW_NAME));
CLOSE (NEW_BASE) ;
exception
when others =>
CLOSE (NEW_BASE) ;
raise;
end LINK:

procedure UNLINK(BASE: NODE_TYPE;
KEY: RELATIONSHIP_KEY:
RELATION: RELATION NAME :=
DEFAULT_RELATION) is separate;

procedure UNLINK(NAME: NAME_STRING)
is
BASE : NODE_TYPE;
begin
OPEN (BASE. BASE_PATH (NAME),
(1 => WRITE_RELATIONSHIPS)):

UNLINK (BASE, LAST_KEY (NAME), LAST_RELATION (NAME)):
CLOSE (BASE) ;
exception
when others =>

CLOSE (BASE) ;

raise;
end UNLINK;

procedure ITERATE

(ITERATOR: out NODE_ITERATOR;

NODE: NODE_TYPE;

KIND: NODE_XIND;

KEY: RELATIONSHIP_KEY PATTERN (= "s°;

RELATION: RELATION_NAME_PATTERN :=
DEFAULT_RELATION; ,

PRIMARY ONLY: BOOLEAN := TRUE) is separate;

253

S~y
P —————

PROPOSED MIL-STD-CAls
31 JANUARY 1988

end COPY NODE;

procedure COPY_TREE (FRoM:

NODE_TYPE;
TO_BASE: NODE_TYPE;
TO_KEY: RELATIONSHIP_KEY;

TO_RELATION: RELATION RAGE .=

DEFAULT RELATION) is separate;
Procedure COPY_TREE (FROM: NODE_TYPE;
™

¢ NAME_STRING)

is

TO_BASE : NODE_TYPE;

begin

OPEN (TO_BASE, BASE_PATH (10). (1 =» APPEND_RELATIONSHIPS)) :
COPY_TREE

(FROM, TD_BASE, LAST KEY (10), LAST_RELATION (T0));
CLOSE (TO_BASE);

exception
when others =»
CLOSE (TO_BASE)
raise:
end COPY_TREE;

procedure RENAME (NODE:

WODE_TYPE;
NEV_BASE: NODE_TYPE;
NEY_KEY: RELATIONSHIP KEY;

NEW_RELATION: RELATION NAGE =

DEFAULT_RELATION) is separate:
procedure RENAME (NODE: NODE_TYPE;
NEW_NAME: NAME_STRING)
is

NE¥_BASE : NODE_TYPE;

begin

OPEN (NEW_BASE, BASE_PATH (NEV_MAME), (1 => APPEND_RELATIONSHIPS)) :
RENAME

.

(NGDE. WE¥_BASE, LAST K&y
LAST_RELATION (NEW_NAME))
CLOSE (NEW_BASE) ;
exception
when others -»
CLOSE (NEW_BASE) ;
raise;
end RENAME;

(NEV_NAME)

.

procedure DELETE_NODE(NGDE: in out NODE_TYPE) is separate:

procedure DELETE NopE(NAME: NAME_STRING)
is

NODE : NGDE_TYPE;
in

OPEN (NODE, NAME, (EXCLUSIV!_'RITE. READ_RE.ATIONSHIPS));
DELETE‘_NODE (NODE) ;

exception
when otherp =>»
CLOSE (NODE) ;
raise; -
end DELETE_NoDE;

Procedure DELETE_TREE(NoDR: i Out NODE_TYPE) is separate:

return BQOLEAN

NODE : NODE_TYPE;
RESULT : BOOLEAN;
begin

OPEN (NODE, BASE. KEY, RELATION,
:= 1S_OBTAINABLE (NODE);

RESULT
CLOSE (NODE) ;
return RESULT;
exception

when others =>
end IS_OBTAINABLE;

function IS_SAME (NODE1:
NODE2:

function IS_SAME (NAKE!:
NAME2:
is
NODE1,
RESULT
begin
OPEN (NODE1,

begin
OPEN (NODE2, NAMEZ,
exception
when others =>
CLOSE (NODE1);
raise;

NODE2 : NODE_TYPE:
: BOOLEAN;

NAME!,

end;

RESULT IS_SAME (NODE1,
CLOSE (NGDE1):;

CLOSE (NODE2) ;

return RESULT;

end IS _SAME:

procedure GET_PARENT
(PARENT:
NODE :
INTENT:
TIME_LIMIT:

procedure COPY_NODE

PROPOSED ML-=TD-¢ als
31 JANU ARY 1085

(1 => EXISTENCE)) .

return FALSE.

NODE_TYPE;
NODE_TYPE) return BOOLEAN is separate:

NAME_STRING;
NAME_STRING) return BOGLEAN

(1 => EXISTENCE));

(1 => EXISTENCE)) :

NODE2) ;

in out NODE_TYPE:

NODE_TYPE;
INTENTION := (1 => READ);
DURATION := NO_DELAY) in separate;

(FROM: NODE_TYPE;

TO_BASE: NODE_TYPE;

TO_KEY: RELATIONSHIP_KEY;

TO_RELATION: RELATION_NAME := DEFAULT_RELATION) is separate;
procedure COPY_NODE(FROM: NODE_TYPE;

TO: NAME_STRING)

is
TO_BASE : NODE_TYPE;
begin

OPEN (TO_BASE. BASE_PATH
COPY_NODE

(TO), (1 => APPEND_RELATIONSHIPS));

(FROM, TO_BASE, LAST _KEY (TO). LAST RELATION (TD)):

CLOSE (TO_BASE):

exception

when others =>
CLOSE (TO_BASE);
raise;

251

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

procedure CLOSE(NODE: in out NODE_TYPE) is separate:

procedure CHANGE_INTENT

1 (NODE: in out NODE_TYPE;
INTENT: INTENTION;
} TIME _LIMIT: DURATION := NO_DELAY) is separate:
function IS_OPEN(NODE: NODE_TYPE) return BOOLEAN
. is
RESULT : BOOLEAN;
! begin
== should be defined by implementor
return RESULT;
end IS_OPEN;

function INTENT OF(NODE: NGDE_TYPE)
return INTENTION is separate;
{ function KIND(NODE: NODE_TYPE) return NODE_KIND is separate;

Y function PRIMARY_NAME(NODE: NODE_TYPE)
1 return NAME_STRING is separate:

function PRIMARY XEY(NODE: NODE_TYPE)
return RELATIONSHIP_KEY is separate:

function PRIMARY RELATION(NODE: NODE_TYPE)
1 return RELATION NAME is separate;

function PATH_KEY(NODE: NGDE_TYPE)
return RELATIONSHIP_KEY is separate;

function PATH_RELATION(NODE: NCDE_TYPE)
return RELATION NAME is separate;

function BASE_PATH(NAME: NAME_STRING)
b return NAME STRING is separate;

function LAST_RELATION(NAME: NAME_STRING)
return RELATION_NAME is separate;

function LAST KEY(MAME: NAME_STRING)
L return RELATIONSHIP KEY is separate;

function IS_OBTAINABLE(NODE: NODE_TYPE)
return BOOLEAN is separate;

function IS_OBTAINABLE(MAKE: NAME_STRING) return BOCLEAN

is
1 NODE: NODE_TYPE;
RESULT: BOOLEAN;
begin

OPEN (NODE, NAME, (1 => EXISTENCE)):
RESULT := IS_OBTAINABLE (NODE):
CLOSE (NODE) ;

return RESULT;

exception

when others => return FALSE;
end IS OBTAINABLE:

function IS_OBTAINABLE
(BASE: NODE_TYPE;
KEY: RELATIONS!IP_KEY;
RELATION: RELATION_NAME := DEFAULT_RELATION)

_ - e . Y P a - >

R e

with CALENDAR:

Appendix C
CAIS Body

package body cais is

package body
package body
package body
package body
package body
package body
package body
package body
package body
package body
package body
package body
package body
package body

psckage body
end cAIS;

with CALENDAR;
separate (CAlIS)

NODE_MANAGEMENT is separate;
ATTRIBUTES is separate:
ACCESS_CONTROL is separate;
STRUCTURAL_NODES is separate;
PROCESS_CONTROL is separate;
DIRECT_IO is separate;
SEQUENTIAL_IO is separate;
TEXT_IO is eeparate;
I0_CONTROL is separate;
SCROLL_TERMINAL is separate:
PAGE_TERMINAL is separate;
FORM_TERNINAL is separate;
MAGNETIC_TAPE is separate;
FILE_IMPORT_EXPORT is separate:

LIST_UTILITIES is separate;

package body NODE_MANAGEMENT is
use NOTE _DEFINITIONS:

use CALENDAR;
procedure OPEN(NODE: in out NODE_TYPE;
NAE NAME_STRING:
INTENT: INTENTION := (1 => READ)
TIME _LIMIT: DURATION := NO_DELAY)
is
begin
null; -- should be defined Dy implementor
end OPEN;
procedure GPEN(NODE: in out NODE_TYPE;
BASE: NODE_TYPE:
KEY: RELATIONSHIP_KEY;
RELATION: RELATION _NANE
INTENT: INTENTION :
TIME_LIMIT: DURATION :
is
begin
nulf; -- snould be defined dy isplementor
end OPEN;

PROPOSED MIL-STD-CALS
31 JANUARY 1985

'= DEFAULT_RELATION;

P

Ottt Ao Ml

PROPOSED MIL-STD-CAIS
At JANUARY 1085

HOST_FILE_NAME: STRING);

procedure EXPORT (NODE: NODE_TYPE;
HOST_FILE NAME: STRING);
procedure EXPORT (NAME: NAME_STRING;

HOST_FILE_NAME: STRING);
end FILE_IMPORT_EXPORT;

_end CAIS:

e

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

use I0 DEFINITIONS;

type TAPE_POSITION is
(BEGINNING_OF TAPE. PHYSICAL_END_OF_TAPE,
TAPE_MARK, OTHER) ;

subtype VOLUME_STRING is STRING (1 .. 8);

subtype FILE STRING is STRING (1 .. 17);

subtype REEL NAME is STRING;

subtype FILE_TYPE is CAIS.IO DEFINITIONS.FILE_TYPE;
subtype LABEL STRING is STRING (1...80);

procedure MOUNT (TAPE_DRIVE: FILE_TYPE;
TAPE_NAME: REEL_NAME;
DENSITY: POSITIVE);
procedure LOAD_UNLABELED(TAPE_DRIVE: FILE_TYPE;
DENSITY: POSITIVE;
BLOCK_SIZE: POSITIVE).
procedure INITIALIZE_UNLABELED(TAPE DRIVE: FILE_TYPE;
DENSITY: POSITIVE;
BLOCKSIZE: POSITIVE);

prccedure LOAD_LABELED(TAPE_DRIVE: FILE_TYPE.
VOLUME_IDENTIFIER: VOLUME_STRING;
DENSITY: POSITIVE:
BLOCK_SIZE: POSITIVE) :

procedure INITIALIZE_LABELED (TAPE_DRIVE: FILE TYPE;
VOLUME IDENTIFIER: VOLUME_STRING:

DENSITY: POSITIVE:
BLOCK _SIZE: POSITIVE;
ACCESSIBILITY: CHARACTER :=° °);

procedure UNLOAD(TAPE_DRIVE: FILE_TYPE);

prccedure DISMOUNT (TAPE_DRIVE: FILE_TYPE);

function 1S LOADED(TAPE DRIVE: FILE_TYPE)
return BOOLEAN:

function IS_MOUNTED(TAPE DRIVE: FILE_TYPE)
return BOOLEAN;

function TAPE_STATUS(TAPE_DRIVE: FILE_TYPE)
return TAPE_POSITION:

procedure REVIND TAPE(TAPE_DRIVE: FILE_TYPE);

procedure SKIP_TAPE_MARKS (TAPE_DR FILE_TYPE:
NUMBER: INTEGER :=1;
TAPE_STATE: out TAPE_POSITION);

procedure YRITE_TAPE_MARX (TAPE_DRIVE: FILE_TYPE;
NUMBER : POSITIVE :=%;
TAPE_STATE: out TAPE_POSITION);

procedure VOLUME HEADER (TAPE_DRIVE:

FILE TYPE;

VOLUME_IDENTIFIER: VOLUME_STRING:
ACCESSIBILITY: CHARACTER :=° *);
procedure FILE_HEADER(TAPE_DRIVE: FILE TYPE;
FILE_IDENTIFIER: FILE_STRING;
EXPIRATION DATE: STRING :=* 99386°;

ACCESSIBILITY: CHARACTER :=° °);
procedure END_FILE_LABEL(TAPE_DRIVE: FILE TYPE):
procedure READ_LABEL (TAPE_DRIVE: FILE TYPE;

LABEL: out LABEL_STRING):

end MAGNETIC_TAPE;
package FILE IMPORT EXPORT is
use NODE_DEFINITIONS;

procedure IMPORT(NODE: NODE_TYPE;
HOST_FILE_NAME: STRING);
procedure IMPORT (NAME: NANE_STRING,;
247

ﬁ y - > Naad

H
; PROPOSED MIL-STD-CAIS
i 31 JANUARY 1085
ALPHABETICS) ;
type ARFA_VALUE is
(NO_FILL, FILL_WITH_ZEROES,
FILL_WITH_SPACES) ;
1 type FORM_TYPE(ROV: POSITIVE;
COLUWN: POSITIVE:
AREA_QUALIFIER_REQUIRES _SPACE: BOOLEAN) is private;
f) subtype PRINTABLE_CHARACTER is CHARACTER range * * .. '~°;
function MAXINUM_FUNCTION _KEY
(TERMINAL: FILE_TYPE) return NATURAL:
function MAXIMUM_FUNCTION_KEY return NATURAL;
procedure DEFINE_QUALIFIED AREA
(FORM: in out FORM_TYPE;
INTENSITY: AREA_INTENSITY := NORMAL;
] PROTECTION: AREA_PROTECTION := PROTECTED:
INPUT: AREA_INPUT := GRAPHIC_CHARACTERS;
VALUE: AREA_VALUE := NO_FILL):
procedure RENOVE_AREA QUALIFIER(FORM: in out FORM_TYPE):
procedure SET_POSITION(FORM: in out FORM_TYPE;
i POSITION: POSITION_TYPE) ;
procedure NEXT_QUALIFIED AREA(FORM: in out FORM_TYPE;
COUNT: POSITIVE := 1);
procedure PUT(FORM: in out FORM_TYPE;
ITEM: PRINTABLE _CHARACTER) ;
procedure PUT(FORM: in out FORM_TYPE;
ITEM: STRING) ;
procedure ERASE_AREA(FORM: in out FORM_TYPE);
procedure ERASE_FORM(FORM: in out FORM_TYPE);
procedure ACTIVATE (TERMINAL: FILE_TYPE;
FORM: in out FORM_TYPE) .
procedure GET(FORM: in out FORM_TYPE;
ITEM: out PRINTABLE_CHARACTER) ;
procedure GET(FORM: in out FORM_TYPE;
ITEM: out STRING);
function IS_FORM_UPDATED(FORM: FORM_TYPE) return BOOLEAN:
function TERMINATION KEY(FORM: FORM_TYPE) return NATURAL:
function FORM_SIZE(FORM: FORM_TYPE) return POSITION TYPE;
function TERMINAL _SIZE(TERMINAL: FILE_TYPE) return POSITION_TYPE;
function TERMINAL_SIZE return POSITION_TYPE;
function AREA_QUALIFIER_REQUIRES_SPACE
(FORM: FORM_TYPE) return BOOLEAN;
function AREA_QUALIFIER_REQUIRES_SPACE
1 (TERMINAL: FILE TYPE) return BOOLEAN;
function AREA_QUALIFIER_REQUIRES_SPACE return BOOLEAN:
private
type FORM_TYPE (ROW: POSITIVE:
COLUMN: POSITIVE;
AREA_QUALIFIER_REQUIRES_SPACE: BOOLEAN) is
record

null; -- should be defined by implementor
end record;

end FORM_TERMINAL;

package MAGNETIC_TAPE is
use NODE_DEFINITIONS;

216

L e g

PROPOSED MIL-STD-C'\IS
31 JANUARY 1985

procedure GET(ITEN: out STRING;
LAST: out NATURAL;
KEYS: out FUNCTION_KEY_DESCRIPTOR) ;
function FUNCTION_KEY_COUNT(KEYS: FUNCTION_KEY_DESCRIPTUR)
return NATURAL;

prccedure FUNCTION_KEY (KEYS: FUNCTION_KEY_DESCRIPTOR;
INDEX: POSITIVE:
KEY_IDENTIFIER: out POSITIVE;
POSITION: out NATURAL);
procedure FUNCTION_KEY_NAME (TERMINAL: FILE_TYPE;
- KEY_IDENTIFIER: POSITIVE;
KEY_NAME : out STRING:
LAST: out POSITIVE);
procedure FUNCTION_KEY NAME (KEY_IDENTIFIER: POSITIVE;
KEY _NAME: nut STRING:
LAST: out POSITIVE);
procedure DELETE CHARACTER(TERMINAL: FILE_TYPE;
COUNT: POSITIVE := 1);

procedure DELETE_CHARACTER(COUNT: POSITIVE := 1);
procedure DELETE_LINE(TERMINAL: FILE_TYPE;
COUNT: POSITIVE :=1);
procedure DELETE_LINE(COUNT: POSITIVE := 1);
procedure ERASE_CHARACTER(TERMINAL: FILE_TYPE;
COUNT: POSITIVE := 1);
procedure ERASE_CHARACTER(COUNT: POSITIVE := 1)
procedure ERASE_IN_DISPLAY(TERMINAL: FILE_TYPE;
SELECTION: SELECT_ENUMERATION) ;
procedure ERASE_IN_DISPLAY(SELECTION: SELECT ENUMERATION) ;
procedure ERASE_IN LINE(TERMINAL: FILE_TYPE;
SELECTION: SELECT_ENUMERATION) ;
procedure ERASE_IN_LINE(SELECTION: SELECT_ENUMERATION) ;
procedure INSERT SPACE (TERNINAL: FILE_TYPE;
COUNT: POSITIVE := 1);
procedure INSERT_SPACE(COUNT: POSITIVE := 1);
procedure INSERT LINE(TERMINAL: FILE TYPE:
COUNT: POSITIVE := 1);
procedure INSERT_LINE(COUNT: POSITIVE := 1);
function GRAPHIC_RENDITION_SUPPORT
(TERMINAL: FILE_TYPE;
RENDITION: GRAPHIC_RENDITION_ARRAY)
return BOOLEAN;
function GRAPHIC_RENDITION_SUPPORT
(RENDITION: GRAPHIC_RENDITION_ARRAY)
return BOCOLEAN:
procedure SELECT GRAPHIC RENDITION
(TERMINAL: FILE_1YPE;
RENDITION: GRAPHIC_RENDITION ARRAY :=
DEFAULT_GRAPHIC_RENDITION) :
procedure SELECT GRAPHIC_RENDITION
(RENDITION: GRAPHIC_RENDITION_ARRAY :=
DEFAULT_GRAPHIC_RENDITION):

end PAGE_TERMINAL;

package FORM_TERMINAL is

use NODE_DEF INITIONS;

use I0_DEFINITIONS:

use I0_CONTROL;

subtype FILE_TYPE is CAIS.I0_DEFINITIONS.FILE_TYPE:

type AREA_INTENSITY is (NONE, NORMAL, HIGH);
type AREA_PROTECTIOM is (UNPROTECTED, PROTECTED)
type AREA_INPUT is

(GRAPHIC_CHARACTERS, NUMERICS,

245

PROPOSED MIL-STD-CAlS
31 JANUARY 1985

OPEN (OLE_NODE, ROLE_NAME., (1 => EXISTENCE)).
SET_AC ESS_CONTROL (NODE, ROLE_NODE, GRANT);
CLOSE NODE) ;
CLOSE ROLE_NODE) ;
except on
when others =>
CL .SE (NODE);
CL 'SE (ROLE_NODE):
ra.se;
end SE' _ACCESS_CONTROL:

functi~ 1 (S_GRANTED(OBJECT NODE: NODE_TYPE:
ACCESS _RIGHT: NANE_STRING)
return BOOLEAN is separate;

functii n IS_GRANTED (OBJECT _NANE: NAME_STRING;
ACCESS_RIGHT: NAME_STRING)
return BOOLEAN

.

in
OBJECT NODE : NUDE_TYPE;
RESULT : BOOLEAN;
begin

OPEN (1BJECT_NODE, OBJECT MAME, (1 => READ RELATIONSHIPS)):
RESUL™ := IS _GRANTED (QBJECT NODE. ACCESS_RIGHT):
CLOSE '0OBJECT_NOQDE) :
retur:y RESULT;
except.on
when others =>
CL.SE (OBJECT_NODE) ;
ra'‘se;
end IS_GRANTED;

procedure ADOPT (ROLE _NODE: NODE_TYPE:
ROLE_KEY: RELATIONSHIP KEY := LATEST KEY)is separate;

procedure UNADCPT(ROLE KEY: RELATIONSHIP KEY) is separate:
end ACCESS_CONTROL;

separate (CAIS)

package brdy STRUCTURAL_NODES is
use NODE DEFINITIONS;
use NODE_MANAGEMENT;

procedure CREATE_NODE

(NODE: in out NODE_TYPE;

BASE: NODE_TYPE:

KEY: RELATIONSHIP KEY := LATEST XEY:

RELATION: RELATION _NAME := DEFAULT RELATION;

ATTRIBUTES: LIST_TYPE := EMPTY_LIST:

ACCESS_CONTROL: LIST_TYPE = EMPTY_LIST:

LEVEL: LIST_TYPE := EMPTY_LIST) is separate;
procedure CREATE_NODE

(NODE: in out NODE_TYPE;

NAME ; NAME STRING;

ATTRIBUTES: LIST_TYPE := EMPTY_LIST:

ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;

LEVEL: LIST_TYPE := EMPTY_LIST)

18
BASE : NODE_TYPE:
begin
OPEN (BASE, BASE_PATH (NAME),
(1 s> APPEND RELATTONSHKIPS)),

259

PROPOSED MIL-STD-C IR
31 JANUARY 1985

CREATE_NODE

(NODE, BASE. LAST KEY (NAME), LAST RELATION (NAME),
ATTRIBUTES, ACCESS_CONTROL, LEVEL):

CLOSE (BASE);

exception

when others =>
CLOSE (NGDE) ;
CLOSE (BASE);
raise;

end CREATE_NODE;

procedure CREATE_NODE

(BASE:
KEY:
RELATION:
ATTRIBUTES:
ACCESS_CONTROL:
LEVEL:
is
NODE : NODE_TYPE.
begin
CREATE_NODE
(NODE, KEY, RELATION,
LEVEL) .
CLOSE (NOD=);

end CREATE_NODE;

procedure CREATE_NGDE

NODE_TYPE;
RELATIONSHIP_KEY := LATEST_KEY:
RELATION_NAME := DEFAULT_RELATION;

LIST_TYPE := EMPTY_LIST;
LIST_TYPE := EMPTY_LIST;
LIST_TYPE := EMPTY_LIST)

ATTRIBUTES, ACCESS_CONTROL,

NAME_STRING;

LIST_TYPE := EMPTY_LIST:
LIST_TYPE := EMPTY_LIST;
LIST_TYPE := EMPTY_LIST)

(NODE. NAME. ATTRIBUTES, ACCESS_CONTROL, LEVEL):

(MAME :
ATTRIBUTES:
ACCESS_CONTROL:
LEVEL:

is

NODE : NODE_TYPE:

begin

CREATE_NODE

CLOSE (NODE) ;

end CREATE_NODE:
end STRUCTURAL _NODES;

separate (CAIS)

package body PROCESS_CONTROL is

use NODE_DEFINITIONS:
use PROCESS_DEFINITIONS;
use NODE_MANAGEMENT;

procedure SPAYN_PROCESS
(NODE:
FILE_NODE:
INPUT_PARAMETERS:
KEY:
RELATION:
ACCESS_CONTROL :
LEVEL:
ATTRIBUTES:
INPUT_FILE:
QUTPUT_FILE:
ERROR _FILE:
ENVIRONMENT NODE:

in out NODE_TYPE;
NODE_TYPE;
PARAMETER _LIST := EMPTY_LIST:
RELATIONSHIP_KEY .= LATEST KEY:
RELATION_NAME := DEFAULT_RELATION;

LIST_TYPE := EMPTY_L1ST;

LIST_TYPE := EMPTY_LIST,

LIST_TYPE := EMPTY_LIST.

MAME_STRING := CURRENT_INPUT;

NAME_STRING := CURRENT OUTPUT;
NAME_STRING := CURRENT_ERROR:

NAME_STRING := CURRENT_NODE) is separate;

procedure AWAIT_PROCESS_COMPLETION

(NODE:

NODE_TYPE:

P S

PROPOSED MIL-STD-(Als
31 JANUARY (985

TIME_LIMIT: DURATION := DURATION‘LAST)
is separate;
procedure AVAIT_PROCESS_COMPLETION
(NQGDE: NODE_TYPE;
RESULTS_RETURNED: in out RESULTS_LIST:
STATUS: out PROCESS_STATUS:
TIME_LIMIT: DURATION := DURATION'LAST)

is

begin

AWAIT _PROCESS_COMPLETION (NODE, TIME_LIMIT):
GET_RESULTS (NODE, RESULTS_RETURNED) ;
STATUS := STATUS_OF_PROCESS (NQDE);

end AVAIT_PROCESS_COMPLETION;

procedure INVOKE_PROCESS

(NODE: in out NODE_TYPE:

FILE_NODE: NODE_TYPE:

RESULTS_RETURNED: in out RESULTS_LIST;

STATUS: out PROCESS_STATUS;
INPUT_PARAMETERS : PARAMETER_LIST:

KEY: RELATIONSHIP_KEY := LATEST_KEY:
RELATION: RELATION _NAME := DEFAULT_RELATION;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: LIST_TYPE := EMPTY_LIST;

INPUT FILE: NAME_STRING := CURRENT_INPUT;
OUTPUT_FILE: NAME_STRING := CURRENT OUTPUT;
ERROR_FILE: NAME_STRING := CURRENT_ERROR;
ENVIRONMENT _NODE: NAME_STRING := CURRENT_ NCDE;
TIME_LIMIT: DURATION :=

DURATION 'LAST) is separate;

procedure CREATE_JOB
(FILE_NODE: NODE_TYPE;
INPUT_PARAMETERS: PARAMETER_LIST := EMPTY_LIST;

ENVIRONMENT NODE: NAME_STRING :

KEY: RELATIONSHIP_KEY := LATEST_KEY;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: LIST_TYPE := EMPTY_LIST:

INPUT _FILE: NAME_STRING := CURRENT_INPUT;
QUTPUT_FILE: NAME_STRING := CURRENT OUTPUT;
ERROR FILE: NAME _STRING := CURRENT ERRCR:

=

procedure APPEND_RESULTS(RESULTS: RESULTS_STRING)
is separate;

procedure WRITE_RESULTS (RESULTS: RESULTS_STRING) is separate;

procedure GET_RESULTS (NODE: NODE_TYPE;
RESULTS: in out RESULTS_LIST)
is separate;
procedure GET_RESULTS (NODE: NODE_TYPE;
RESULTS: in out RESULTS_LIST;
STATUS: out PROCESS_STATUS)
in
begin

GET_RESULTS (NODE, RESULTS):
STATUS := STATUS_OF_PROCESS (NODE):
end GET_RESULTS;

siebitaston,

e

PROPONED MIL-STD-C AIS
31 JANUARY 1088

procedure GET_RESULTS (MAME: NAME_STRING;
RESULTS: in out RESULTS_LIST;
STATUS: Out PROCESS_STATUS)
is
NODE : MODE_TYPE;
gin

OPEN (NODE, NAME, (1 => READ _ATTRIBUTES)) ;
GET_RESULTS (NODE, RESULTS):
STATUS :a STATUS_OF_PROCESS (NODE) ;
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end GET_RESULTS;

procedure GET_RESULTS (NAME: NAME_STRING;
RESULTS: in out RESULTS LIsT)

is

NODE : NODE_TYPE;

begin

OPEN (NGDE, NAME. (1 => READ_ATTRIBUTES)):
GET _RESULTS (NODE, RESULTS);
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end GET_RESULTS;

procedure GET_PARAMETERS
(PARANETERS: in out PARAMETER_LIST) is separate:

procedure ABORT_PROCESS (NoDE: NODE_TYPE;
RESULTS: RESULTS_STRING) is separate:
procedure ABORT PROCESS (NAME: NAME_STRING:
RESULTS: RESULTS_STRING)
ia
NODE : NODE_TYPE;
begin

OPEN (NODE, NAME, (READ RELATI
ABORT_PROCESS (NODE, RESULTS):
CLOSE (NGDE) ;
exception
when othery =>

CLOSE (NODE) ;

raise;
end ABORT_PROCESS;

ONSHIPS, WRITE_CONTENTS, WRITE_ATTRIBUTES)) :

procedure ABORT_PROCESS (NoDE: NODE_TYPE)
1)

begin
ABURT_PROCESS (NODE, *ABORTED*);
end ABORT_PROCESS;

procedure ABORT_PROCESS (NAME: NAME_STRING)
is

NODE : NODE_TYPE;
begin

262

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

OPEN (NODE, NAME, (READ RELATIONSHIPS,WRITE_CONTENTS,WRITE_ATTRIBUTES)) ;
ABORT_PROCESS (NODE, "ABORTED");
CLOSE (NODE): -
exception
when others =>
CLOSE (NODE) ;
raise;
end ABORT_PROCESS;

procedure SUSPEND_PROCESS(NODE: NODE_TYPE) is separate;

procedure SUSPEND_PROCESS (NAME: NAME_STRING)
18
NODE : NODE_TYPE;
begin
OPEN (NODE. NAME, (READ RELATIONSHIPS,WRITE_CONTENTS,WRITE_ATTRIBUTES));
SUSPEND_PROCESS (NODE) ;
CLOSE (NODE):
exception
when others =>
CLOSE (NODE) ;
raise;
end SUSPEND_PROCESS:

procedure RESUME_PROCESS(NODE: NODE_TYPE) is separate:

procedure RESUME_PROCESS (NANE: NAME_STRING)
is
NODE : NUDE_TYPE;
begin
OPEN (NODE. NAME. (READ_RELATIONSHIPS,WRITE_CONTENTS,WRITE_ATTRIBUTES)):
RESUME _PROCESS (NCDE) :
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) :
raise;
end RESUME_PROCESS;

function STATUS_OF_PROCESS(NODE: NODE_TYPE)
return PROCESS_STATUS is separate;

function STATUS_OF PROCESS(NAME: NAME_STRING)
return PROCESS_STATUS

is

NODE : NODE_TYPE;
RESULT : PROCESS_STATUS;
begin

OPEN (NCDE, NAME, (1 => READ_ATTRIBUTES)):

(RESULT := STATUS_OF PROCESS (NODE) ;

CLOSE (NODE) ;

return RESULT;

exception

when others =>
CLOSE (NGDE) ;
raise;

end STATUS_OF _PROCESS;

function HANDLES OPEN(NODE: NODE_TYPE) return NATURAL
is separate;

PROVOSED MIL-STD-CAIS
31 JANUARY 1985

function HANDLES_OPEN(NAME: MAME_STRING) return NATURAL
is

NOGDE : NODE_TYPE;
RESULT : NATURAL;
begin

OPEN (NODE, NAME, (t => READ_ATTRIBUTES));
RESULT := HANDLES_QPEN (NODE) .
CLOSE (NODE) ;
return RESULT;
exception
when othecrs =>
CLOSE (NODE) ;
raise;
end HANDLES_OPEN;

function I0_UNITS(NTDE: NODE_TYPE) return NATURAL is separate;

function 10_UNITS(NAME: NAME_STRING) return NATURAL

is
NODE : NGOE_TYPE:
RESULT : NATURAL;
begin

OPEN (NODE. NANE, (1 => READ_ATTRIBUTES));
RESULT := TO_UNITS (NODE).
CLOSE (NODE) ;
return RESJLT;
exception
when others =>
CLOSE (NODE);
raise;
end 10_UNITS;

function START_TIME(NODE: NODE_TYPE)
return TIME is separate;

function START TIME(NAME: NAME_STRING)
return TIME
is
NODE : NODE_TYPE;
RESULT : TIME;
begin
OPEN (NODE, NAME, (1 => READ_ATTRIBUTES)):
RESULT .= START_TIME (NGDE);
CLOSE (NODE) .
return RESULT;
exception
when others =>
CLOSE (NODE) .
raise;
end START_TIME;

function FINISH_TIME(NODE: NODE_TYPE)
return TIME is separate;

function FINISH TIME(NAME: NAME_STRING)

return TIME
is
NODE : NODE_TYPE;
RESULT : TIME; .
begin .

OPEN (NODE, NAME, (1 => READ_ATTRIBUTES)):

P -

PROPOSED MIL-STD-C AlS

RESULT := FINISH_TIME (NODE);
CLOSE (NODE) ;
return RESULT;
exception
when others =>
CLOSE (NODE) ;
raise;
end FINISH TIME;

function MACHINE_TIME(NODE: NODE_TYPE) return DURATION

is separate;
function WACHINE_TIME(NAME: NAME_STRING) return DURATION
is
NODE : NODE_TYPE;
RESULT : DURATION;
begin

OPEN (NODE. NAME, (1 => READ ATTRIBUTES)):

RESULT := MACHINE_TIME (NODE);

CLOSE (NODE) ;

return RESULT;

exception

when others =>
CLOSE (NODE) .
raise;

end MACHINE TIME;

end PROCESS_CONTROL:

separate (CAIS)

package body I10_CONTROL is
use NODE_DEFINITIONS;
use NODE_MANAGEMENT;
use 10 _DEFINITIONS;
use LIST UTILITIES;

procedure OPEN_FILE NGODE(FILE: FILE_TYPE:
NODE: in out NoDE_TYPE;
INTENT: INTENTION;
TIME_LIMIT: DURATION := NO_DELAY)

is separate;
procedure SYNCHRONIZE(FILE: FILE_TYPE) is separate;

procedure SET_LOG(FILE: FILE_TYPE;
LOG_FILE: FILE_TYPE) is separate;

procedure CLEAR _LOG(FILE: FILE_TYPE) is separate;
function LOGGING(FILE: FILE_TYPE) return BOOLEAN is separate;
function GET_LOG(FILE: FILE_TYPE) return FILEZ TYPE is separate;
function NUMBER_OF_ELEMENTS(FILE: FILE_TYPE) return NATURAL
is
RESUL™ : NATURAL;
begin
-- 8 114 be defined dy ilmplementor.
return RESULT;
end NUv""R_OF _ELEMENTS;

procedu~e SET_PROMPT(TERMINAL: FILE TYPE,;
PROMPT: STRING) is separate;

31 JANUARY 1985

Bl

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

function GET_PROMPT(TERNINAL: FILE_TYPE) return STRING
is separate;

function INTERCEPTED_CHARACTERS (TERMINAL: FILE_TYPE)
return CHARACTER_ARRAY is separate;

procedure ENABLE FUNCTION_KEYS(TERMIMAL: FILE TYPE;
ENABLE: BOOLEAN)
" is separate;

function FUNCTION_KEYS_ENABLED(TERMINAL: FILE_TYPE)
return BOCLEAN is separate:

procedure COUPLE(QUEUE_BASE: NODE_TYPE:

QUEUE_KEY: RELATIONSHIP_KEY := LATEST KEY:
QUEUE_RELATION: RELATION NANE := DEFAULT_RELATION;
FILE_NODE: NODE_TYPE:
FORM: LIST_TYPE := ENPTY_LIST:
ATTRIBUTES: LIST TYPE; -- intentionally
-- not defaulted
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST_TYPE := EMPTY LIST) is separate;
procedure COUPLE (QUEUE_NAME: NAME_STRING;
FILE_NODE: NODE_TYPE;
FORM: LIST_TYPE := EMPTY_LIST:
ATTRIBUTES: LIST_TYPE;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST_TYPE := EMPTY_LIST)
18
BASE : NODE_TYPE;
begin

OPEN (BASE, BASE_PATH (QUEUE NAME). (1 => APPEND RELATIONSHIPS));

COUPLE
(BASE, LAST XEY (QUEUE_NAME) .

LAST RELATION (QUEUE_NAME), FILE_NODE. FORM,
ATTRIBUTES, ACCESS_CONTROL, LEVEL);

CLOSE (BASE) ;

exception

when others =>
CLOSE (BASE) .

raise;

end COUPLE;

procedure COUPLE (QUEVE_BASE:

NODE_TYPE;

QUEVE_KEY: RELATIONSHIP_KEY := LATEST_KEY;
QUEVE_RELATION: RELATION NAME := DEFAULT_RELATION:
FILE_NAME: NAME_STRING;
FORM: LIST_TYPE := ENPTY _LIST;
ATTRIBUTES: LIST_TYPE;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST_TYPE := EMPTY LIST)

is

FILE_NODE : NODE_TYPE;

begin

OPEN (FILE NODE, FILE MAME, (READ_ATTRIBUTES, READ_CONTENTS)).

COUPLE

(QUEUE_BASE, QUEUE_KEY. QUEUE_RELATION, FILE_NQODE,
FORM, ATTRIBUTES, ACCESS_CONTROL, LEVEL);

CLOSE (FILE_NODE) :
exception

when others =>

. CLOSE (FILE_NODE);
raise;

208

. ——

PROPOSED MHASTD-C AIS
31 JANUARY 1085

end COUPLE;
procedure COUPLE (QUEUE_NAME: NAME_STRING:
FILE_NAME: NAME_STRING;
FORM: LIST_TYPE := EMPTY_LIST:
ATTRIBUTES: LIST_TYPE;
ACCESS_CONTROL: LIST_TYPE := EMPTY _LIST;
LEVEL: LIST_TYPE := EMPTY_LIST)
is

FILE NODE : NODE_TYPE:
QUEUE_BASE : NODE_TYPE;
begin

OPEN (QUEUE_BASE. BASE _PATH (QUEVE_NAME), (1 => APPEND_RELATIONSHIPS)):
OPEN (FILE NODE, FILE_NAME, (READ_ATTRIBUTES, READ_CONTENTS));

COUPLE
(QUEUE_BASE, LAST_KEY (QUEUE_NAXE),
LAST_RELATION (QUEUE_NAME) , FILE_NODE,
ATTRIBUTES, ACCESS_CONTROL, LEVEL):
CLOSE (QUEUE_BASE) ;
CLOSE (FILE_NODE);
exception
when others =>
CLOSE (QUEUE_BASE) ;
CLOSE (FILE__NODE):
raise;
end COUPLE;

end I0_CONTROL;

separate (CAIS)

package body DIRECT IO is
use NODE_DEFINITIONS;

use 10 DEFINITIONS;
use NODE_MANAGEMENT;

-~ File manageaent

procedure CREATE(FILE:

FORM,

in out FILE_TYPE;

BASE: NODE_TYPE;
KEY: RELATIONSHIP_KEY := LATEST_KEY:
RELATION: RELATION_NAME := DEFAULT_RELATION;
MODE: FILE MODE := INOUT_FILE;
FORM: LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: LIST TYPE := EMPTY LIST;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST;
LEVEL: LIST_TYPE := EMPTY_LIST)

is

begin

null; -- should be defined dy implementor

end CRUATE;

procedure CREATE(FILE: in out FILE_TYPE;
NAME : NAME_STRING;
MODE: FILE_MODE := INOUT FILE;
FORM: LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST.
LEVEL: LIST_TYPE .= EMPTY_LIST)

is '

BASE : NODE_TYPE:

287
- . V) -

PROPOSED MIL-STD-C Al>
31 JANUARY 1085

begin
OPEN (BASE, BASE_PATH (NAME), (1 => APPEND_RELATIONSHIPS)):
CREATE (FILE, BASE, LAST,_KEY (NAME),
LAST_RELATIUN (NAME), MODE, FORM, ATTRIBUTES,
ACCESS_CONTROL, LEVEL);
CLOSE (BASE);
exception
when others =>
CLOSE (FILE);
CLOSE /BASE) ;
raise;
end CREATE.

procedure OPEN(FILE: in out FILE_TYPE:

NODE : NODE_TYPE;
MODE : FILE_MODE)
is
begin
null; -- should de defined by implementor
end OPEN;

procedure OPEN(FILE: in out FILE TYPE;

NAME : NAME_STRING;
NODE: FILE_MODE)
is
NGDE : NODE_TYPE;
begin

case NODE is
when IN _FILE
when OUT FILE
when INOUT_FILE
when APPEND FILE
end case;

]
v

OPEN (NODE, NAME, (1 => READ_CONTENTS));

OPEN (NODE, NAME, (1 => WRITE_CONTENTS));

OPEN (NODE, NAME, (READ CONTENTS, WRITE_CONTENTS));
raise USE_ERROR;

1)
v Vv

non
v

OPEN (FILE, NODE, MODE):
CLOSE (NODE) ;
exception
when others =>

CLOSE (i'ILE):

CLOSE (™'ODE) ;

raise;
end OPEN:

procedure CLOSE(FILE: in out FILE_TYPE)
is
begin
null; -- should bde defined dy tmplementor
end CLOSE;

procedure DELETE(FILE: in out FILE_TYPE)

is
begin

null; -- should ve defined dy implementor
end DELETE;
procedure FESET(FILE: in out FILE TYPE:

MODE: FILE_MODE)

is
begin
null; -- should e defined by implementor
end RESET:

procedure RESET(FILE: in out FILE_TYPE)

268

PROPOSED MIL-STD-CAIS

is

begin

null; -- should be defined by implementor
end RESET;

function WODE(FILE: FILE_TYPE) return FILE_MODE
is

RES' .T : FILE_MODE;
begin

~- 570uld be defined dy implementor

return RESULT;

end MODE;
function NAME(FILE: FILE_TYPE) return STRING is separate;

function FORM(FILE: FILE_TYPE) return STRING
is
RESU.T : STRING(1 .. 10);
begin
-~ should be defined by implementor
return RESULT:
end FOPNM;

functicn 1S_OPEN(FILE: FILE_TYPE) return BOOLEAN
is

RESULT : BOOLEAN;
begin

-- should de defined by implementor

return RESULT;

end IS OPEN;

-- Input and output operations

procedure READ(FILE: FILE_TYPE:
ITEN: out ELEMENT TYPE;
FROM: PUSITIVE_COUNT)

in

begin

null; -- should de defined by lwplementor

end READ;

procedure READ(FILE: FILE_TYPE.
ITEM: out ELEMENT_TYPE)

is

begin

null; -- should be defined by implementor

end RE\D;

procec ure VRITE(FILE: FILE_TYPE;
ITEM: ELEMENT TYPE;

TO: POSITIVE_COUNT)
is
begin
null; -- should de defined by implementor
end wITE;

procec'ure WRITE(FILE: FILE_TYPE;
ITEM: ELEMENT TYPE)
is
begin
null; -- should be defined by implementor
end WRITE;

procediire SET_INDEX(FILE: FILE_TYPE;

269

31 JANUARY 1685

PROPOSED MIL-STD-C AN
31 JANUARY 1985

TO: POSITIVE_COUNT) is separate:
function INVEX(FILE: FILE_TYPE) return POSITIVE_COUNT is separate;

function SIZE(FILE: FILE_TYPE) return COUNT
is separate;

function END OF FILE(FILE: FILE_TYPE) return BOOLEAN
is
RESULT : BOOLEAN;
begin
~~ should de defined by implementor
return RTSULT;
end END_OF FILE;

end DIRECT_IO:

separate (CAIS)

package body SEQUENTIAL_IO is
use NODE_DEFINITIONS;
use NODE_MANAGEMENT;
use 10 _DEFINITIONS:

-- File sanzgesgent

procedure CREATE(FILE: in out FILE TYPE:
BASE: NODE_TYPE;
KEY: RELATIONSHIP_KEY := LATEST KEY:
RETATION: RELATION_NAME := DEFAULT RELATION;
MODE : FILE_MODE := INOUT_FILE;
FORM: LIST_TYPE := EMPTY_LIST:
ATTRIBUTES: LIST TYPE := EMPTY LIST;
ACCESS_CONTROL: LIST_TYPE := EMPTY_LIST:
LEVEL: LIST_TYPE := EMPTY_LIST)

is

begin

null; -- should be defined vy implementor

end CREATE;

procedure CREATE(FUE: in out FILE_TYPE;
MAE: NAME_STRING;
MODE : FILE_MODE := INQUT FILE:
FORM: LIST_TYPE := EMPTY_LIST;
ATTRIBUTES: LIST_TYPE := EMPTY_LIST;
ACCESS_CONTROL : LIST_TYPE := EMPTY_LIST;

" LEVEL: LIST_TYPE := EMPTY_LIST)

BASE : NODE_TYPE;

begin

OPEN (BASE, BASE PAT{ (MAME), (1 => APPEND_RELATIONSHIPS)) ;
CREATE (FILE, BASE, LAST_KEY (NAME),
LAST RELATION (“AME), MODE, FORM, ATTRIBUTES,
ACCESS _CONTROL, LEVEL);
CLOSE (BASE) ;
exception
when others =>
CLOSE (FILE):
CLOSE (BASE) .
raise;
end CREATE;

procedure OPEN(FILE: in out FILE TYPE;

270

PROPOSED MI-STD-CAIS
31 JANUARY 1985

NODE : NODE_TYPE
MODE : FILE_MODE)

is

begin

null; -- should de defined by implementor

end OPEN;

procedure OPEN(FILE: in out FILE TYPE:

NAME : NAME_STRING;
MODE: FILE_MODE)
is
NODE : NODE_TYPE
begin

case MODE is

when IN_FILE => OPEN (NODE, NAME, (1 => READ_CONTENTS));:

when OUT FILE => OPEN (NODE, NAME, (1 => WRITE_CONTENTS)):

when INOUT_FILE => OPEN (NODE. NAME, (READ _CONTENTS, WRITE_CONTENTS)):
when APPEND FILE => OPEN (NODE, NAME, (1=> APPEND_CONTENTS));

end case;

OPEN (FILE, NODE, MODE);
CLOSE (NODE) ;
exception
when others =>

CLOSE (FILE):

CLOSE (NODE) ;

raise;
end OPEN;

procedure CLOSE(FILE: in out FILE_TYPE)
is
begin

null; -- ehould be defined by implementor
end CLOSE;

procedure DELETE(FILE: in out FILE_TYPE)
is
begin

null;-- should be defined by implementor
end DELETE:

procedure RESET(FILE: in out FILE TYPE:
MODE: FILE_MODE)

is

begin

null; -- should be defined dy implementor

end RESET;

procedure RESET(FILE: in out FILE_TYPE)

is

begin

null; -- should be defined by implementor
end REPLACE:

function MODE(FILE: FILE_TYPE) return FILE MODE

is
RESULT : FILE_MODE;

begin
~- should de defined by 1mplementor
return RESULT.

end MODE;

function NAME(FILE: FILE_TYPE) return STRING

W

PROPOSED MIL-STD-CAlS
31 JANUARY 1085

is
RESULT . STRING(1..10):
begin

-- should be defined by implementor

return RESULT;
end NAME;

function FORM(FILE: FILE _TYPE) return STRING

is
RESULT : STRING(1..10);
begin

-~ should be defined by implementor

return RESULT;
end FORM;

function IS_OPEN(FILE: FILE TYPE) return BODLEAN

ia
RESULT : BOOLEAN;
begin

-- should de defined by implesmentor

return RESULT;
end IS_OPEN;

-~ Input and output operations

procedure READ(FILE: FILE_TYPE;
ITEM: out ELEMENT TYPE) is separate;

procedure WRITE(FILE: FILE_TYPE:

ITEM @ ELEMENT_TYPE) is separate;

function END OF FILE(FILE: FILE_TYPE) return BOOLEAN

is
RESULT : BOOLEAN;
begin

-- should be defined by implementor

return RESULT.
end END OF FILE;
end SEQUENTIAL_IO;

separate (CAIS)

package body TEXT_IO is
use NODE_DEFINITIONS;
use NODE_MANAGEMENT;
use IO0_DEFINITIONS;

-- File Management

procedure CREATE(FILE:
BASE:
KEY:
RELATION:
MODE :
FORNM :
ATTRIBUTES:
ACCESS_CONTROL:
LEVEL:

procedure CREATE(FILE:

in out FILE TYPE:
NODE_TYPE;
RELATIONSHIP_KEY := LATEST_KEY;
RELATION NAME := DEFAULT_RELATION;

FILE_MODE := INOUT_FILE;
LIST_TYPE := EMPTY_LIST,
LIST_TYPE := EMPTY_LIST;
LIST_TYPE := EMPTY_LIST,
LIST_TYPE ‘= EMPTY_LIST)

is separate;

in out FILE TYPE;

NAME NAME_STRING;
MODE: FILE MODE = INOUT FILE;
FORM: LIST_TYPE .= EMPTY LIST;
ATTRIBUTES: LIST_TYPE = EMPTY_LIST;
»
272
- o —_- - JUD . A v re

ARSI gt STOARD, COMOUIPIE (o0 TSGR, 44

UNCLASSIFIED F/G 9/2 NL

== o =gz |

#as

P
| |||||'§-_ e
R s e

Py Y A, -

i

"

PROPOSED MIL-STD-CAIS
31 TANUARY 19853

ACCESS_CONTROL.: LIST_TYPE :

LEVEL: LIST_TYPE :

EMPTY_LIST;
EMPTY_LIST)

is .
BASE : NODE_TYPE;
begin
OPEN (BASE, BASE_PATH (NAME), (1 => APPEND_RELATIONSHIPS)):
CREATE (FILE, BASE, LAST_KEY (NAME),
LAST_RELATION (NAME) , MODE, FORM, ATTRIBUTES,
ACCESS_CONTROL, LEVEL);
CLOSE (BASE) ;
exception
when others =>
CLOSE (FILE);
CLOSE (BASE);
raise;
end CREATE;

procedure OPEN(FILE: in out FILE TYPE;

NODE: NODE_TYPE;

MODE: FILE_MODE) is separate;
procedure OPEN(FILE: in out FILE_TYPE:

NAME : NAME_STRING;

MODE: FILE_MODE)

is
NODE : NOCE_TYPE;
begin
case MODE is
when IN_FILE => OPEN (NODE, NAME, (1 => RE.AD_CONTENTS)):

when OUT_FILE => OPEN (NODE, NAME, (1 => WRITE_CONTENTS));

when INOUT_FILE =>
OPEN (NODE, NAME, (READ_CONTENTS, WRITE_CONTENTS));

when APPEND_FILE => OPEN (NODE, NAME, (1 => APPEN'D_CONTENTS));
end case;

OPEN (FILE, NODE, MODE);
CLOSE (NODE) ;
exception
when others =>
CLOSE (FILE);
CLOSE (NODE) ;
raise
end OPEN;
procedure CLOSE(FILE: in out FILE_TYPE)
is
begin

null; -- ehould be defined vy implemsntor
end CLOSE;

procedure DELETE(FILE: in out FILE_TYPE) is separate:

procedure RESET(FILE: in out FILE_TYPE;

MODE : FILE_MODE)
is
begin
null; -~ should be defined by implementor
end RESET;

procedure RESET(FILE: in out FILE_TYPE)
is

273

PROPOSFED MIL-STD-C\AIS
31 JANUARY 1985

begin
null; -- should be defined by isplementor
end RESET:

function MODE(FILE: FILE_TYPE) return FILE_NQDE is separate;
function NAME(FILE: FILE_TYPE) return STRING
is

RESULT: STRING(1..10);
begin

--should be defined by implementor

return RESULT;
end NAME;
function FORM(FILE: FILE_TYPE) return STRING is separate;
function IS_OPEN(FILE: FILE_TYPE) return BOOLEAN
ia

RESULT : BOOLEAN;
begin

-~ should de defined by implementor

return RESULT;
end IS_OPEN;
-~ Control of default 1npit. and output files
procedure SET_INPUT(FILE: FILE_TYPE) is separate;
procedure SET_OUTPUT(FILE: FILE_TYPE) is separate;
procedure SET_ERROR(FILE: FILE_TYPE) is separate;
function STAMDARD INPUT return FILE_TYPE is separate;
function STANDARD OUTPUT return FILE_TYPE is separate;
function STANDARD_ERROR return FILE_TYPE is separate;
function CURRENT_INPUT return FILE TYPE is separate;
function CURRENT_OUTPUT return FILE_TYPE is separate;

function CURRENT ERROR return FILE TYPE is separate;

-- Specification of 1ine and page lengths

procedure SET_LINE_LENGTH(FILE: FILE TYPE;
TO: COUNT)

is

begin

null. -- should be defined by tmplementor
end SET LINE_LENGTH.

procedure ST _LINE_LENGTH(TD: COUNT)

is

begin

null, -- snosid de defined by implemeator
end SET_LINE_LENGTH;

procedure SET_PAGE_LENGTH(}ILE: FILE TYPE:
TQ: COUNT)

- —

ol -~

is

begin

null; -- should be defined by implementor
end SET_PAGE_LENGTH;

procedure SET_PAGE_LENGTH(TD: COUNT)

in

begin

null; -- should be defined by implementor
end SET_PAGE_LENGTH;

function LINE_LENGTH(FILE: FILE_TYPE) return COUNT
is
RESULT : COUNT;
begin
-~ should be defined Dy implementor
return LINE_LENGTH;
end LINE_LENGTH;

function LINE_LENGTH return COUNT

is
RESULT : COUNT;

begin
-- should be defined by implementor
return RESULT;

end LINE_LENGTH;

function PAGE_LENGTH (FILE: FILE_TYPE) return COUNT
18
RESULT : COUNT;
begin
-~ should de defined dy 1lp1ncnwr
return RESULT;
end PAGE_LENGTH;

function PAGE_LENGTH return COUNT
is
RESULT : COUNT.;
begin
-~ should be defined by implementor
return RESULT.

end PAGE_LENGTH:

-- Column, Line and Page Control

procedure NEV_LINE(FILE: FILE_TYPE;
SPACING: POSITIVE COUNT := 1)
s -
begin
null; -- should be defined by implementor

end NEV_LINE;

procedure NEW_LINE(SPACING: POSITIVE_COUNT := 1)

is
begin
null; -- should be defined dy implementor
end NEW_LINE;
procedure SKIP_LINE(FILE: FILE_TYPE:
SPACING: POSITIVE COUNT :2 1))
is
begin
null; -- should be defined by implementor

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

PROPOSED MIL-STD-CAIS
L} 31 JANUARY 1085

i

end SKIP_LINE:

1 procedure SKIP_LINE(SPACING: POSITIVE_COUNT := 1)
is

L begin
1 null; -- should de defined dy implementor
end SKIP_LINE;
rr : function END_OF_LINE(FILE: FILE_TYPE) return BOOLEAN
is
RESULT : BOOLEAN;

begin

-- should be defined by implementor
return RESULT;

end END_OF_LINE;

function END_OF _LINE return BOOLEAN
in
RESULT : BOOLEAN;
begin
-~ ghould bdbe defined dy implementor
return RESULT;

end END_OF_LINE;

procedure NEW_PAGE(FILE: FILE_TYPE)

is

begin

null; -- should be defined by implementor
end NEV_PAGE;

procedure NEW_PAGE

is

begin

null; -- should ve defined by implementor
i end NEW_PAGE;

procedure SKIP_PAGE(FILE: FILE_TYPE)

is

begin

null; -- should de defined dy implementor
L end SKIP_PAGE;

procedure SKIP_PAGE

is

begin

null; -- should be defined by implementor
end SKIP_PAGE;

function END_OF_PAGE(FILE: FILE_TYPE) return BOOLEAN
is
RESULT : BOOLEAN:
begin
~= should de defined by isplementor
return RESULT:
end END_OF _PAGE;

function END_OF_PAGE return BOOLEAN
is
RESULT : BOOLEAN:
begin
-= should be defined by implementor
return RESULT;
end END_OF_PAGE;

276

- e e

—

function END_OF_FILE(FILE: FILE_TYPE) return BOOLEAN
is
RESULT : BOOLEAN;
begin
-~ ghould be defined dy implementor
return RESULT,

end END OF FILE;

function END_OF_FILE return BOOLEAN
is
RESULT : BOOLEAN:
begin
~-- should de defined dy implementor
return END_OF FILE;
end END_OF_FILE;

procedure SET_COL(FILE: FILE_TYPE:
TO: POSITIVE_COUNT)
is

begin
null; -- should be defined by implementor
end SET_COL;

procedure SET_COL(TO: POSITIVE_COUNT)

is

begin

null; -- should be defined by implesentor
end SET_COL:

procec ire SET_LINE(FILE: FILE_TYPE:

TO: POSITIVE_COUNT)
in
begin
null; -- should be defined by implementor

end SE- _LINE:

proced ire SET_LINE(TO: POSITIVE_COUNT)

is

begin

null; - should be defined by implementor
end st _LINE;

functi- 1 COL(FILE: FILE TYPE) return POSITIVE_COUNT
is
REf .T : POSITIVE_COUNT;
begin
-- shc ld de defined by implesentor
re! irn RESULT;
end ct :

functica coL return POSITIVE_COUNT
is

RESULT : POSITIVE_COUNT;

begin

-=- should be defined dy implementor
ret urn RESULT;

end coL;

function LINE (FILE: FILE_TYPE) return POSITIVE_COUNT
is

RESULT : POSITIVE_COUNT;
begin

277

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

-

—~——— —_—

———— e

PROPOSED MIL-STD-C AN
31 JANUARY 1985

-- should de defined dy implementor
return RESULT:
end LINE: '

function LINE return POSITIVE_COUNT

is
RESULT : POSITIVE_COUNT;

begin

~- should de defined dy implementor
return RESULT;

end LINE;

function PAGE(FILE: FILE_TYPE) return POSITIVE_COUNT

18
RESULT : POSITIVE_COUNT;

begin

~- should bde defined by implementor
return RESULT:

end PAGE;

function PAGE return POSITIVE_COUNT
18
RESULT : POSITIVE_CUUNT;
begin
-- should be deflned dy implementor
return RESULT;
PAGE;
end PAGE;

~- Character Inpuc-Cutpuc

procedure G T(FILE: FILE TYPE;
ITEM: out CHARACTER)

[

begin

null; -~ shcild be defined by implementor

end GET:

procedure GET(ITEM: out CHARACTER)

is

begin

null; -~ should be defined dy implementor
end GET;

procedure PUT(FILE: FILE_TYPE;
ITEM: CHARACTER)

is

begin

null; -- snould de defined by implementor
end PUT:

procedure PUT(ITEM: CHARACTER)

is

begin

null; -- should de defined dy implementor
end PUT;

== String Input-Output

procedure GET(FILE: FILE TYPE;

278

ITEM: out STRING)
is
begin
null; -- should be defined by impiesentor
end cLT;

procedure GET(ITEM: out STRING)

is
begin

null; -- should be defined by implementor
end GET;

procedure PUT(FILE: FILE_TYPE;
ITEM: STRING)
is
begin
null; -- should be defined by implementor
end PUT;
procedure PUT(ITEM: STRING)
is

begin

null; -- should be defined by implementor

end puT;

procedure GET_LINE(FILE: FILE_TYPE;
ITEM: out STRING;
LAST: out NATURAL)

in

begin

null; -- should de defined by implementor

end GET_LINE;

procedure GET_LINE(ITEM: out STRING:
LAST: out NATURAL)

is

begin

null; -- should be defined by implementor

end GET_LINE;

procedure PUT_LINE(FILE: FILE_TYPE: ITEM: STRING)

is
begin

null; -- should be defined dy implementor

end PUT LINE;

procedure PUT_LINE(ITEM: STRING)

is

begin

null: -- snhoculd de defined dy implementor

end P.T_LINE;

== generic package for Input-Output of Integer Types

packare body INTEGER 10 is separate;
- gen-ric package for Input-Output of Flosting Point Types

package body FLOAT_10 is separate:
- Ber°riC package for Input-Output of Fixed Point Types
package body FIXED 10 is separate;

-- generic package for Input-Output of Enumeration Types

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

- - - - B 5 S

e i

p—

PROPOSED MIL-STD-CAIS
31 JANUARY 1985

package body ENUMERATION_IO is separate;

end TEXT_I0;

separate (CAIS)
package body SCROLL _TERMINAL is
use NODE _DEFINITIONS;
use NODE_MANAGEMENT
use 10 DEFINITIONS;
use TEXT_I0;

procedure SET_POSITION(TERMINAL: FILE_TYPE;
POSITION: POSITION_TYFE)
is
begin
null; -- should be defined by implementor
end SET_POSITION;

procedure SET_POSITION(POSITION: POSITION_TYPE)
is

begin

SET_POSITICON (CURRENT_OUTPUT. POSITION);

end SET_POSITION;

function GET_POSITION (TERMINAL: FILE_TYPE)
return POSITION_TYPE
is
RESULT : POSITION_TYPE;
begin
~-- should be defined dy implementor
return RESULT:

end GET_POSITION;

function GET_POSITION return POSITION_TYPE

18

begin

return GET_POSITION (CURRENT OUTPUT)
end GET_POSITION:

function TERMINAL_SIZE(TERMINAL: FILE_TYPE)
return POSITION_TYPE

18
RESULT : POSITION_TYPE;

begin
-- should bde defined by implementor
return RESULT;

end TERMINAL_SIZE;

function TERMINAL_SIZE return POSITION_TYPE
is

begin

return TERMINAL_SIZE (CURRENT OUTPUT):

end TERMINAL_SIZE:

procedure SET_TAB(TERMINAL: FILE_TYPE;

KIND: TAB:ENUIERATIDN := HORIZONTAL)
is
begin .
~- should be defined by implesentor ’
null;
280

- — A e

end SET_TAB;

procedure SET_TAB(KIND: TAB_ENUMERATION := HORIZONTAL)
is

begin

SET_TAB (CURRENT_OUTPUT, KIND);

end SET_TAB;

procedure CLEAR_TAB(TERMINAL: FILE_TYPE:
KIND: TAB_ENUMERATTION := HORIZONTAL)
is
begin
~- ghould be defined by implementor
null;
end CLEAR_TAB;

procedure CLEAR_TAB(KIND: TAB_ENUMERATION := HORIZONTAL)
is

begin

CLEAR _TAB (CURRENT_OUTPUT, KIND);

end CLEAR_TAB;

procedure TAB(TERMINAL: FILE TYPE:

KIND: TAB_ENUMERATION := HORIZONTAL,
COUNT: POSITIVE := 1)
is
begin
== should be defined by implementor
null
end TAB;

procedure TAB(KIND: TAB_ENUMERATION := HORIZONTAL;
COUNT: POSITIVE := 1)

in
begin

TAB (CURRENT_OUTPUT, KIND, COUNT) ;
end Tap.

procedure BELL (TERMINAL: FILE_TYPE)
in
begin
-- should be defined Dy implementor
null;
end BELL;

procedure BELL

is

begin

BELL (CURRENT_OUTPUT) ;

end BELL;

procedure PUT(TERNINAL: FILE TYPE:

ITEM: CHARACTER)

in

begin
== should de defined by isplementor
nul{:

end PuT;

procedure PUT(ITEM: CHARACTER)
is

PROPOSED MIL-STD-(AlS
S31 JANUARY 1uRs

PROPOSED MIL-STD-CAIS
M1 JANUARY 1085

begin
PUT (CURRENT_OUTPUT, ITEM);
end PUT; '

procedure PUT(TERNINAL: FILE_TYPE; ITEM : S.RING)
18
begin
for INDEX in ITEM'FIRST .. ITEM'LAST loop
PUT (TERMINAL, ITEM (INDEX)):
end loop:
end PUT;

procedure PUT(ITEM: STRING)
is

begin

PUT (CURRENT OUTPUT, ITEM):
end PUT;

procedure SET_ECHO(TERNINAL: FILE_TYPE;
TO: BOCLEAN := TRUE)
is
begin
-- should be defined by implementor
null;
end SET_ECHO:

procedure SET_ECHD(TO: BOOLEAN := TRUE)

is
begin

SET_ECHO (CURRENT _INPUT. TO):
end SET_ECHD;

function ECHO (TERMINAL: FILE_TYPE) return BOOLEAN
is separate;

function ECHO return BOOLEAN
is

begin

return ECF~ {(CURRENT_INPUT);
end ECHO;

function MAYIMUM_FUNCTION_KEY(TERMINAL: FILE TYPE)
return NATURAL
is
RESULT : NATURAL;
begin
-~ should be defined by implementor
return RCSULT,
end MAXIMUM_FUNCTION KEY:

function MAXIMUM_FUNCTIOK KEY return NATURAL
is

begin

return MAXIMUM_FUNCTION_KEY (CURRENT_ INPUT);
end MAXIWUM_FUNCTION_KEY;

procedure ' ST(TERMINAL: FILE TYPE;
ITEM: out CHARACTER:
282

-~ -

PROPOSED MIL-STD-C A&
JL JANU AT Y 1985

KEYS: out FUNCTION XEY_DESCRIPTOR)
is
begin
null; -- should be defined by implementor
end GET:

procedure GET(ITEM: out CHARACTER;

KEYS: out FUNCTION_KEY_DESCRIPTOR)

.

is
begin

GET (CURRENT OUTPUT, ITEM, KEYS):
end GET;

procedure GET (TERMINAL: FILE_TYPE:
ITEM: out STRING;
LAST: out NATURAL;
KEYS: out FUNCTION_KEY_DESCRIFTOR)
is
begin
null; -- sbould be defined by laplesentor
end GET:

procedure GET(ITEM: outi STRING;
LAST: oOut NATURAL;

is
begin
GET (CURRENT INPUT, ITEM, LAST. KEYS) .
end GET.

KEYS: out FUNCTION KEY DESCRIPTOUR)

function FUNCTION _XEY COUNT(KEYS: FUNCTION_KEY_DESCRIPTOR)

return NATURAL
is
RESULT :@ NATURAL;
begin
~- should be defined by implementor
return RESULT;

end FUNCTION_KEY_COUWT;

procedure FUNCTION_KEY (KEYS:

FUNCTION _KEY DESCRIPTOR:

INDEX: POSITIVE;
KEY_IDENTIFIER: out POSITIVE,
POSITION: out NATURAL)
is
begin
~- should be defined by implementor
null;
end FUNCTION_KEY;
procedure FUNCTION_KEY NAME (TERMINAL: FILE TYPE;
KEY_IDENTIFIER: POSITIVE;
KEY _NAME : out STRING;
LAST: out POSITIVE)

is

begin
-- should de defined by implementor
null.

end FUNCTION KEY_NANE.

procedure FUNCTION_KEY NAME (KEY_IDENTIFIER: POSITIVE;

KEY_NAKE:
LAST:

283

out STRING;
out POSITIVE)

PROPOSED MIL-STD-CAIN
31 JANUARY 1985

is
begin
FUNCTION_KEY_NAME
(CURRENT_INPUT, KEY_IDENTIFIER, KEY_NAME, LAST);
end FUNCTION_KEY NAME;

procedure NEW_LINE(TERMINAL: FILE_TYPE;
COUNT: POSITIVE := 1) is separate;

procedure NEW_LINE(COUNT: POSITIVE := 1)
is

begin

NEW_LINE (CURRENT_OUTPUT. COUNT);

end NEW_LINE:

procedure NEY _PAGE(TERMINAL: FILE TYPE) is separate;

procedure NEW_PAGE

is

begin

NEW_PAGE (CURRENT OUTPUT) :
end NEW_PAGE;

end SCROLL_TERMINAL;

separate (CAIS)
package body PAGE TERMINAL is
use NODE_DEFINITIONS;
use NODE_MANAGENENT:
use IC_DEFINITIONS;
use TEXT_IO;

procedure SET_POSITION(TERMINAL: FILE_TYPE;
POSITION: POSITION_TYPE)
is
begin
null; -- should de defined by implementor
end SET_POSITION;

procedure SET_POSITION(POSITION: POSITION TYPE)
is

begin

SET_POSITION (CURRENT OUTPUT. POSITION):

end SET_POSITION;

function GET_POSITION(TERMINAL: FILE_TYPE)
return POSITION_TYPE

. -

s
RESULT : POSITION_TYPE;

begin
-- should be defined by implesmentor
return RESULT;

end GET_POSITION.

function GET_POSITION return POSITION TYPE
is

begin

return GET_POSITION (CURRENT OUTPUT);

end GET_POSITION;

284

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

Appendix D
PACKAGE LISTING OF CAIS PROCEDURES AND
FUNCTIONS

This appendix lists the CAIS procedures and functions in the context of their assiciated packages.
This appendix is intended to provide a simple reference to the CAIS procedures and functions in
package order.

Operation Description and Interfaces

Package NODE _ MANAGEMENT

Manipuiation of The following interfaces are used for manipulating
node handles pnode handles and determining node handie status and
node handle intent.

procedure OPEN

procedure CLOSE

procedure CHANGE _ INTENT

function IS__ OPEN

function INTENT _OF

Querying node The following interfaces are used to determine the
kind and name kind of a node (flle, process, or structural) and
the primary name of a node.
function KIND
function PRIMARY _NAME

Pathname queries The following interfaces allow queries about
pathnamcs. None of these interfaces perform
accesses (o nodes; they perform pathname
manipulations at the syntactic level only.

function PRIMARY _ NAME
function PRIMARY _KEY
function PRIMARY _ RELATION

function PATH_KEY
function PATH_RELATION
function BASE_ PATH
function LAST _ RELATION
function LAST _KEY

Node queries The following Interfaces allow queries about nodes.
function IS _OBTAINABLE
function IS_ SAME
procedure GET_ PARENT

Node duplication The following Interfaces are used to duplicate
interfaces single nodes or trees of nodes spanned by
primary relationshlips.

procedure COPY __NODE .
procedure COPY _ TREE

PO SRR

PROPOSED MI-~TID-C Af~
31 JANUARY 1985

function TEXT_LENGTH(LIST: LIST_TYPE;
NAMED: NAME_STRING)
return POSITIVE

is
RESULT: POSITIVE;
begin

-- shotld be defined by implementor
return RESULT;
end TEXT_LENGTH:
function TEXT LENGTH(LIST: LIST_TYPE;

NAMED: TOKEN_TYPE)
return POSITIVE

is
RESULT: POSITIVE;
begin

-- should be defined by implementor
return RESULT;
end TEXT_LENGTH;
package body IDENTIFIER_ITEM is separate
package INTEGER_ITEM is separate
package FLOAT_ITEM is separate
package STRING_ITEM is separate

end LIST_UTILITIES;

207

PROPOSED MIL-STD-C A~
31 JANUARY 1985

POSITION: POSITION_COUNT)
return ITEN_KIND
is .
bemmuvr: ITEM_KIND;
n
-- should be defined by implementor
return RESULT:
end GET_ITEM KIND;
function GET_ITEM_KIND(LIST: LIST_TYPE,
NAMED: KAME_STRING)
return ITEM XIND
is
RESULT: ITEN_KIND;
begin
-- should de defined by implementor
return RESULT;
end GET_ITEM_KIND;
procedure MERGE (FRONT: LIST_TYPE.
BACK: LIST_TYPE;
RESULT: in out LIST_TYPE)
is separate;
function LENGTH(LIST: LIST_TYPE) return COUNT
is separate;

procedure ITEM_NAME (LIST: LIST_TYPE:
POSITION: POSTTION_COUNT;
NAME : out TOKEN_TYPE)

is separate:
function POSITION BY MAME(LIST: LIST_TYPE;
NAMED: NAME_STRING)
return POSITION_COUNT
is
RESULT: POSITION_COUNT;
begin
-~ should be defined by implementor
return RESULT;
end POSITION_BY MAME;
function POSITION BY NAME(LIST: LIST TYPE:
NAMED: TOKEN_TYPE)
return POSITION_COUNT
is
RESULT: POSITIQN_COUNT;
begin
-- should be defined by implementor
return RESULT;
end POSITION_BY NAKE;

function TEXT_LENGTH(LIST: LIST_TYPE)
return NATURAL
is
RESULT: NATURAL:
begin
-~ ghould be defined by implesentor
return RESULT;

end TEXT_LENGTH;

function TEXT_LENGTH(LIST: LIST_TYPE;
POSITION: POSITION_COUNT)
return POSITIVE
in
RESULT: POSITIVE;
begin
-- should be defined dy implementor
return RESULT:

end TEXT_LENGTH;

' FROPOSED MIL-<TIC Al

—

return RESULT.
end SET_EXTRACT;

procedure SPLICE(LIST: in out LIsT_TYPE:
POSITION: POSITION_COUNT;
SUB_L1ST: LIST_TEXT)
is
RESULT: LIST TEXT(1..10);
begin
null; -- snould be defined vy implementor
end SPLICE;
procedure SPLICE(LIST: in out LIST TYPE:
POSITION: POSITION_COUNT;
SUB_LIST: LIST_TYPE)
in
RESULT: LIST_TEXT(1..10);
begin
null; -- should be derined by 1mplementor
end SPLICE:
procedure DELETE(LIST: in out LIST TYPE;
POSITION: POSITION_COUNT)
is
RESULT: LIST_TEXT(1..10);
begin
null; -- should be defined by tmplementor
end DELETE;
procedure DELETE(LIST: in out LIST_TYPE;
NAMED : NAME_STRING)
is
RESULT: LIST_TEXT(1..10):
begin
null; -- ehould be defined by implementor
end DELETE:
procedure DELETE(LIST: in out LIST_TYPE:
NAMED : TOKEN_TYPE)
is
RESULT: LIST TEXT(1..10);
begin
null; -~ should be defined by implementor
end DELETE.

function c.T_LI1ST KIND(LIST: LIST_TYPE)
return LIST_KIND;
is
RESULT: LIST_KIND:
begin
=~ shoyld be defined by implementor
return RESULT;

end GET_LIST XKIMD:

function GET_1TEN KIMD(LIST: LIST_TYPE;
NAMED: TOKEN_TYPE)
return ITEM_KIND
is
RESULT: ITEX_KIND,
begin
-- should be defined by implementor
return RESULT;
end GET_ITEM KIND; :
function GeT_1TEM_KIMD(LIST: LIST_TYPE,

205

PROPOSED AL .~Ter Al~
31 JANU ARY jax,

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

null; -- shoula ve detined vy implementor
end EXTRACT;
procedure EXTRACT (LIST: LIST_TYPE;
NAMED : TOKEN_TYPE)
LIST_ITEM: out LIST TYPE):
begin
null; -- snould be defined by implenmentor
end EXTRACT:
procedure REPLACE (LIST: in out LisT_TYPE:
LIST_ITEM: LIST_TYPE:
POSITION: POSITION_COUNT)
begin
null; -- should be defined by implemsntor
end REPLACE;
procedure REPLACE (LIST: in out LIST_TYPE;
LIST_ITEM: LIST_TYPE,
NAMED : NAME_STRING)
begin
null; -~ should be defines by implementor
end REPLACE;
procedure REPLACE (LIST: in out LIST_TYPE:
LIST_ITEM: LIST_TYPE;
RAMED : TOKEN_TYPE)
begin
null; -- should be defined vy implementor
end REPLACE;
procedure INSERT(LIST: in out LIST_TYPE;
LIST_ITEN: LIST_TYPE;
POSITION: COUNT)
begin
null; -- should be defined by 1mplesentor
end INSERT:
procedure INSERT(LIST: in out LIST_TYPE:
LIST_ITEM: LIST_TYPE.
NAMED : NAME_STRING:
POSITION: COUNT)
begin
null; -- ehould be defined by i1mplementor
end INSERT.
procedure INSERT(LIST: in out LIST_TYPE:
LIST_ITEM: LIST_TYPE;
NAMED : TOKEN_TYPE;
POSITION: COUNT)
begin
null; -- should de defined by 1wplementor
end INSERT;
function POSITION BY VALUE(L1sT: LIST_TYPE;
VALUE: LIST_TYPE;
START POSITION: POSITION_COUNT
= POSITION_COUNT 'FIRST;
END_POSITION: POSITION_COUNT
:= POSITION_COUNT 'LAST)
return POSITION_COUNT is separate:
function SET_EXTRACT(LIST: LIST_TYPE;
POSITION: POSITION_COUNT:
LENGTH: POSITIVE := POSITIVE'LAST)
return LIST_TEXT
is
RESULT: LIST_TEXT(1..10);
begin

== should be defined by tmplementor

PROPOSED MIL-~TDx(ajs
31 JANUARY 1085

procedure IMPORT (NoDE: NODE_TYPE;
. HOST FILE NAME: STRING) ia separate;
procedure IMPORT (NAME: NAME_STRING

HOST FILE_NAME: STRI)G)
is
NODE: MQDE_TYPE;
begin
OPEN (NODE. NAME, (1=> WRITE_CONTENTS,) ;
IMPORT (NODE, HOST_FILE NAME) ;
CLOSE (NODE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end IMPORT;
procedure EXPORT (NODE: NODE_TYPE;
HOST_FILE MAME: STRING) is separate;
procedure EXPORT (NAME ' NAME_STRING:
HOST FILE NAME: STRING)
in
NODE: NODE_TYPE;
begin
OPEN (NODE, NAME,, (1=>READ_CONTENTS)) ;
EXPORT (NODE, HOST FILE NAME) ;
CLOSE (NQDE) ;
exception
when others =>
CLOSE (NODE) ;
raise;
end EXPORT;
end FILE_IMPORT EXPORT.

separate (Cals)
package body LIST_UTILITIES is
Use NODE_DEFINITIONS;
uUse NODE_MANAGEMENT;
procedure COPY(TO_LIST: out LIST_TYPE;
FROM_LIST: LIST_TYPE) is separate:;

function TO_LIST(LIST_STRING: STRING)
return LIST TYPE is separate:

function TO_TEXT(LIST_ITEM: LIST_TYPE)
return LIST TEXT

in

RESULT: LIST TEXT(1..10):
gin
=~ should bde defineq by implementor
return RESULT;
end TO_TEXT;
function 1s_gquaL(LrsTs LIST_TYPE;
LIST2: LIST TYPE)
return BOOLEAN is separate;

procedure EXTRACT(LIST: LIST_TYPE;
POSITION: POSITION_COUNT;
beg LIST_ITEM: out LIST TYPE);
in
null; -- snould be defineg by 1splementor
end EXTRACT:
procedure EXTRACT(LIST: LIST TYPE:
NAMED : NAYME_STRING;
LIST_ITEM: out LIST TYPE);
begin

203

gy

Y

PROPONSED AMIL-STD-C ALS
31 JANUARY 1985

end AREA_QUALIFIER _REQUIRES_SPACE;
end FORM_TERMINAL;

separate (CAIS)

package body MAGNETIC TAPE is
use NODE DEFINITIONS:
use NODE_MANAGEMENT

procedure MOUNT (TAPE DRIVE: FILE TYPE;

TAPE_NAME: REEL_NAME:

DENSITY: POSITIVE) is separate;
procedure LOAD_UNLABELED (TAPE_DRIVE: FILE_TYPE;

DENSITY: POSITIVE.
BLOCK_SIZE: POSITIVE)
is separate;

procedure INITIALIZE_UNLABELED (TAPE DRIVE: FILE_TYPE;
DENSITY: POSITIVE;
BLOCK_SIZE: POSITIVE)

is separate;

procedure LOAD _LABELED(TAPE_DRIVE: FILE_TYPE;
VOLUME_IDENTIFIER: VOLUME_STRING;
DENSITY: POSITIVE;
BLOCK_SIZE: POSITIVE) is separate;
procedure INITIALIZE_LABELED (TAPE_DRIVE: FILE_TYPE;
VOLUME_IDENTIFIER: VOLUME_STRING;
DENSITY: POSITIVE;
BLOCK_SIZE: POSITIVE;
ACCESSIBILITY: CHARACTER :=' °*)
is separate;

procedure UNLOAD(TAPE_DRIVE: FILE_TYPE) is separate;
procedure DISMOUNT (TAPE_DRIVE: FILE_TYPE) is separate;
function IS_LOADED(TAPE_DRIVE: FILE_TYPE)
return BOOLEAN is separate;
function IS_MOUNTED (TAPE_DRIVE: FILE_TYPE)
return BOOLEAN is separate;
function TAPE_STATUS (TAPE_DRIVE: FILE_TYPE)
return TAPE_POSITION is separate;
procedure REWIND_TAPE(TAPE_DRIVE: FILE TYPE) is separate;
procedure SKIP_TAPE_MARKS (TAPE_DRIVE: FILE_TYPE:
NUMBER : INTEGER :=1;
TAPE_STATE: out TAPE_POSITION)
is separate;

procedure WRITE_TAPE_MARK (TAPE_DRIVE: FILE_TYPE:
NUMBER : POSITIVE :=t;
TAPE_STATE: out TAPE_POSITION)
is separate;
procedure VOLUME_HEADER (TAPE_DRIVE: FILE_TYPE:
VOLUME_IDENTIFIER: VOLUME_STRING;
ACCESSIBILITY: CHARACTER :=* *)
is separate;
procedure FILE_HEADER (TAPE_DRIVE: FILE_TYPE;

FILE_IDENTIFIER: FILE_STRING;

EXPIRATION_DATE: STRING :=" 99366°;

ACCESSIBILITY: CHARACTER :=' ‘) is separate;
procedure END_FILE_LABEL (TAPE DRIVE: FILE_TYPE) is separate;
procedure READ_LABEL (TAPE_DRIVE: FILE_TYPE;

LABEL : out LABEL_STRING) is separate;

end MAGNETIC_TAPE;

package FILE_IMPORT_EXPORT is

use NODE_DEF INITIONS: ‘
use NODE_MANAGENENT;

292

Badiand

g
¥

ITEM : out PRINTABLE_CHAR\CTER)
is
begin
-~ should be defined dy implementor
null;
end GET;
procedure GET(FORM: in out FORM_TYPE;
ITEM: out STRING)
is
begin
for INDEX in ITEM'FIRST .. ITEN'LAST loop
GET (FORM, ITEM (INDEX)). -- Resd a single character
end loop:
end GET;

function IS_FORM_UPDATED (FORM: FORM_TYPE) return BOOLEAN
is separate:

function TERMINATION_KEY(FORM: FORM_TYPE) return NATURAL
is separate;

function FORM_SIZE(FORN: FORM_TYPE) return POSITION_TYPE
is separate;

function TERMINAL_SIZE(TERMINAL: FILE TYPE)
return POSITION_TYPE

is
RESULT: POSITION_TYPE;

begin
-~ should be defined by implesentor
return RESULT;

end TERMINAL_SIZE:

function TERMINAL_SIZE return POSITION_TYPE

is

begin

return TERMINAL_SIZE (CURRENT OUTPUT):
end TERMINAL_SIZE;

function AREA_QUALIFIER_REQUIRES_SPACE(FORM FORM_TYPE)
return BOOLEAN
is
RESULT : BOOLEAN;
begin
-~ should be defined by implementor
return RESULT;

end AREA_QUALIFIER _REQUIRES_SPACE;

function AREA_QUALIFTER REQUIRES_SPACE
(TERMINAL: FILE_TYPE) return BOOLEAN
is

RESULT : BOOLEAN;

begin
-~ should de defined by implementor
return RESULT;

end AREA_QUALIFIER_REQUIRES_SPACE;

function AREA_QUALIFIER_REQUIRES_SPACE return BOOLEAN
is

begin

return AREA_QUALIFIER_REQUIRES_SPACE (CURRENT_OUTPUT);

PROPOSED MIL-STD-C 48
31 JANUAR)Y 1085

PROPOSED M!L-STD-CAJS
31 JANUARY 1985

- - - - P RPN o NG §

is

begin

SELECT_GRAPHIC RENDITION (CURRENT_OUTPUT, RENDITION);
end SELECT _GRAPHIC _RENDITION:

end PAGE_TERMINAL;

separate (CAIS)
pu:kn.ge body FoRM_TERNINAL is

use NODE_DEFINITIONS:
use NODE_MANAGEMENT;

use IO_DEFINITIONS;

use TEXT_I0:

function MAXIMUM_FUNCTION_KEY (TERMINAL: FILE_TYPE)
return NATURAL is separate;

function MAXIMUM_FUNCTION KEY return NATURAL
is

begin
return NAXINUM_FUNCTION_KEY (CURRENT_INPUT):
end MAXINUM_FUNCTION KEY:

procedure DEFINE_QUALTFIED_AREA

(FORM: in out FORM_TYPE;

INTENSITY: AREA_INTENSITY := NORMAL;
PROTECTION: AREA_PROTECTION := PROTECTED;
INP'T: AREA_INPUT := GRAPHTC_CHARACTERS:
VALLZ: AREA_VALUE := NO_FI! L) is separate;

procedure "EMOVE_AREA QUALIFIER(FORN: in out FORM_TYPE) is separate:

procedure ET_POSITION (FORN: in out FORM_TYPE;
POSITION: POSITION_TYPE) is separate;

procedure NEXT_QUALIFIED_AREA(FORM: in out FORM_TYPE;
COUNT: POSITIVE := 1) is separate:

procedure PUT(FORN: in out FORM_TYPE;
ITEN: PRINTABLE_CHARACTER)
is

begin
null. -- should be defined by implementor
end PUT;

procedure PUT(FORN: in out FORM_TYPE.; ITEM : STRING)
is

begin
for INDEX in ITEM'FIRST .. ITEM'LAST loop
PUT (FORM, ITEM (INDEX)); -- Write s single charscter
end loop:
end PUT;

procedure ERASE_AREA(FORM: in out FORM_TYPE) is separate;
procedure ERASE_FORM(FORM: §n out FORM_TYPE) is separate:

procedure ACTIVATE(TERMINAL: FILE_TYPE;
FORM: in out FORM_TYPE) is separate;

procedure GET(FORM: in out FORM_TYPE:

o L

PROPOSED MIL-STD-C A\~

procedure ERASE_IN_DISPLAY
(TERMINAL: FILE TYPE;
SELECTION: SELECT_ENUMERATION) is separate:

procedure ERASE_IN_DISPLAY
(SELECTION: SELECT_ENUMERATION)
is
begin
ERASE_IN_DISPLAY (CURRENT_OUTPUT, SELECTION);
end ERASE_IN_DISPLAY:

procedure ERASE_IN_LINE(TERMINAL: FILE_TYPE;
SELECTION: SELECT_ENUMERATION) is separate:

procedure ERASE_IN_LINE(SELECTION: SELECT_ENUMERATION)

18

begin

ERASE_IN_LINE (CURRENT_OUTPUT, SELECTION):
end ERASE_IN_LINE:

procedure INSERT_SPACE(TERMINAL: FILE TYPE;
COUNT : POSITIVE := 1) is separate;

procedure INSERT SPACE(COUNT: POSITIVE := 1)
is

begin

INSERT_SPACE (CURRENT_OUTPUT, COUNT):

end INSERT_SPACE;

procedure INSERT_LINE(TERMINAL: FILE_TYPE;
COUNT: POSITIVE = 1) is separate;

procedure INSERT_LINE(COUNT: POSITIVE :=1)

18

begin

INSERT_LINE (CURRENT_OUTPUT, COUNT):
end INSERT LINE:

function GRAPHIC_RENDITION_SUPPURT
(TERMINAL: FILE_TYPE;
RENDITION: GRAPHIC_RENDITION_ARRAY)
return BOOLEAN is separate;

function GRAPHIC_RENDITION_SUPPORT
(RENDITION: GRAPHIC_RENDITION_ARRAY)
return BOOLEAN

is

begin

return GRAPHIC_RENDITION_SUPPORT

(CURRENT OUTPUT, RENDITION):
end GRAPHIC_RENDITION_SUPPORT;

procedure SELECT_GRAPHIC_RENDITION
(TERMINAL: FILE TYPE;
RENDITION: GRAPHIC_RENDITION_ARRAY :=
DEFAULT_GRAPHIC_RENDITION) is separate;

procedure SELECT_GRAPHIC_RENDITION :
(RENDITION: GRAPHIC_RENDITION ARRAY := °
DEFAULT_GRAPHIC_RENDITION)

31 JANUAR)Y 19085

PROPOSED MUASTD-CALN
31 JANUARY 1985

RESULT: NATURAL;

begin
-- should be defined dy implementor
return RESULT;

end FUNCTION_KEY_COUNT;

procedure FUNCTION_KEY (KEYS: FUNCTION_KEY_DESCRIPTOR;
INDEX: POSITIVE:
KEY_ IDENTIFIER: out POSITIVE;
POSITION: out NATURAL)
is
begin
-~ should be defined by implementor
null;

end FUNCTICN KEY;

procedure FUNCTION_KEY NAME (TERMINAL: FILE_TYPE:
KEY_IDENTIFIER: POSITIVE;
KEY_NAME : out STRING;
LAST: out POSITIVE) $
is
begin
-- should be defined by implementor
null;

end FUNCTION_KEY NAME:

procedure FUNCTION_KEY_ NAME(KEY_IDENTIFIER: POSITIVE;
KEY_NAME : out STRING;
LAST: out POSITIVE)

is

begin

FUNCTION_KEY NAME
(CURRENT _INPUT, KEY_IDENTIFIER, KEY_NAME, LAST);
end FUNCTION_KEY NAME;

procedure DELETE_CHARACTER(TERMINAL: FILE_TYPE;
COUNT: POSITIVE := 1) is separate;

procedure DELETE_CHARACTER(COUNT: POSITIVE := 1)
in

begin

DELETE_CHARACTER (CURRENT_OUTPUT, COUNT);

end DELETE_CHARACTER;

procedure DELETE LINE(TERMINAL: FILE_TYPE;
COUNT: POSITIVE := 1) is separate;

procedure DELETE_LINE(COUNT: POSITIVE := 1)
in

begin

DELETE_LINE (CURRENT OUTPUT, COUNT);

end DELETE_LINE;

procedure ERASE_CHARACTER(TERMINAL: FILE_TYPE;
COUNT: POSITIVE := 1) is separate;

procedure ERASE_CHARACTER (COUNT: POSITIVE := 1)

19

begin

ERASE_CHARACTER (CURRENT OUTPUT. COUNT):
end ERASE_CHARACTER;

288

PROPOSED MIL-STD-C AIS
31 JANUARY 1085

return RESULT;
end ECHO;

function ECHO return BOOLEAN
is

begin

return ECHO (CURRENT_INPUT);
end ECHOD;

function MAXIMUM_FUNCTION_KEY(TERMINAL: FILE_TYPE)
return NATURAL
is
RESULT : NATURAL;
begin
~- should bde defined dy implementor
return RESULT;
end MAXINUM_FUNCTION_KEY;

function MAXINUM_FUNCTION KEY return NATURAL
in

begin

return MAXIMUM_FUNCTION_KEY (CURRENT_INPUT);
end MAXINUM_FUNCTION_KEY:

procedure GET(TERMINAL: FILE_TYPE;
ITEM: out CHARACTER;
KEYS: out FUNCTIDN_KEY_DESCRIPTOR)
is
begin
null; -- should be defined by implementor
end GET;

procedure GET(ITEM: oOut CHARACTER:
KEYS: out FUNCTION_KEY_DESCRIPTOR)

is
begin
GET (CURRENT INMUT, ITEM. KEYS):
end GET;
procedure GET (TERMINAL: FILE_TYPE;
ITEM: out STRING:
LAST: Out NATURAL;
KEYS: out FUNCTION_KEY DESCRIPTOR)
is
begin
null; -- should be defined by implementor
end GET:
procedure GET(ITEM: out STRING;
LAST: out NATURAL;
KEYS: in out FUNCT1ION_KEY_DESCRIPTOR)
is
begin
GET (CURRENT_INPUT, ITEN, LAST, KEYS).
end GET:

function FUNCTION_KEY_COUNT(KEYS: FUNCTION_KEY DESCRIPTOR)
return NATURAL
is

287

PROPOSED MIL-STD-C AlIS
At JANUARY 1085

is

begin .
-- should be defined dy implementor
null;

end BELL;

procedure BELL

is

begin

BELL (CURRENT_QUTPUT) ;
end BELL:

procedure PUT(TERMINAL: FILE TYPE:

ITEX: CHARACTER)
is
begin
-- should be defined by implementor
null;
end PuT;

procedure PUT(ITEM: CHARACTER)
is

begin

PUT (CURRENT_QUTPUT, ITEM).
end PUT;

procedure PUT(TERMINAL: FILE TYPE; ITEM : STRING)
is
begin
for INDEX in ITEM'FIRST .. ITEM'LAST loop
PUT (TERMINAL, ITEM (INDEX)):
end loop;
end PuUT;

procedure PUT(ITEM: STRING)

is
begin

PUT (CURRENT_UUTPUT. ITEM) :
end PUT;

procedure SET_ECHO(TERMINAL: FILE TYPE;
TO: BOOLEAN := TRUE)
is
begin
-- should de defined by implementor
null;
end SET_ECHO;

procedure SET_ECHO(TO: BOOLEAN := TRUE)
is

begin

SET_ECHO (C'RRENT_INPUT, TO);

end SET_ECHO:

function ECHO(TERMINAL: FILE TYPE) return BOOLEAN
is

RESULT: BCOLEAN; .
begin p

-- should bde defined dy implementor

286

PROPOSED MIL-STD-CA
35 JANUARY 100

function TERMINAL_SIZE(TERMINAL: FILE_TYPE)
return POSITION_TYPE
is
RESULT : POSITION_TYPE;
begin
~= should be defined by implementor

return RESULT:
end TERMINAL SIZ¥

function TERMINAL SIZE return POSITION_TYPE
is

begin

return TERMINAL SIZE (CURRENT OUTPUT);

end TERMINAL_SIZE:

procedure SET_TAB(TERMINAL: FILE_TYPE;

KIND: TAB_ENUMERATION := HORIZONTAL)
is
begin
~-~ should de defined by isplementor
null;
end SET_TAB:

procedure SET_TAB(KIND: TAB_ENUMERATION := HORIZONTAL)
is

begin

SET_TAR (CURRENT OUTPUT, KIND);

end SET_TAB;

procedure CLEAR_TAB(TERMINAL: FILE _TYPE:
KIND: TAB_ENUMERATION := HORIZONTAL)

is

begin
~- should be deflned by implementor
null;

end CLEAR_TAB:

procedure CLEAR_TAB(KIND: TAB_ENUMERATION := HORIZONTAL)
in

begin

CLEAR_TAB (CURRENT OUTPUT, KIND}:

end CLEAR_TAB;

procedure TAB(TERMINAL: FILE TYPE;

KIND: TAI_ENUMERATION := HORIZONTAL,
COUNT: POSITIVE = 1)
is
begin
~~ should be defined by isplewentor
null;
end Tap;

procedure TAB(KIND: TAB_ENUMERATION := HORIZONTAL;
COUNT: POSITIVE := 1)

in
begin

TAB (CURRENT OUTPUT. KIND, COUNT);
end TAR;

procedure BELL(TERMINAL: FILE_TYPE)

Alteration of
relationships

Deletion of primary
‘relationships

Creation and
deletion of
secondary
relationships

Node iterators

Manipulation of the
CURRENT _NODE
relationship

Manlipulation of
attributes

PROPOSED MIL-STD-C AlS
31 JANUARY 1085

The following interface is used to alter the
primary relationship of a node, thereby changing
its uanique primary name.

procedure RENAMLE

The following two !nterfaces allow the

deletion of the primary relationship of a single
node or of the primary relationships of a node
and a!l the nodes that are contalned in the tree
spanned by primary relationships emanating from
these nodes.

procedure DELETE _ NODE
procedure DELETE _ TREE

The following Interfaces allow the creation and
deletion of user-defined secondary relationships.

procedure LINK
procedure UNLINK

The following interfaces allow the iteration
over nodes reachable from s given node via its
emanating relationships.

procedure ITERATE
function MORE
procedure GET _ NEXT

The following interfaces allow changes to

the relationship of the predefined relation
CURRENT _ NODE emanating from the current process
node and open & node handle on the node that Is

the target of such a relationship.

procedure SET_ CURRENT _ NODE
procedure GET _ CURRENT _ NODE

Package ATTRIBUTES

The following interfaces are used for defining
and manipulating the attributes for nodes and
relationships.

procedure CREATE_ NODE_ ATTRIBUTE
procedure CREATE _PATH_ATTRIBUTE
procedure DELETE _NODE_ ATTRIBUTE
procedure DELETE _PATH _ATTRIBUTE
procedure SET _NODE__ ATTRIBUTE
procedure SET _PATH_ATTRIBUTE

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

Manipulation of
access contro}

Creation of
structural node

Spawning a
process

Awalting process
termination
or abortion

Invoking a
process

Creating a
pew job

Examination and
modification of
results list

procedure GET _ NODE _ ATTRIBUTE

© procedure GET_PATH_ATTRIBUTE

procedure NODE__ ATTRIBUTE _ ITERATE
procedure PATH_ ATTRIBUTE _ITERATE
function MORE

procedure GET _ NEXT

Package ACCESS__ CONTROL

The following interfaces sre used to manipulate
access control information for nodes.

procedure SET _ ACCESS _ CONTROL
function IS_ GRANTED

procedure ADOPT

procedure UNADOPT

Package STRUCTURAL _ NODES

The following interface Is used to create &
structural node and to establish the primary
reiationship to it.

procedure CREATE _ NODE

Package PROCESS _ CONTROL
This interface crestes & process node, Initiates
the new process, and returns control to the calling
task upon node creation.

procedure SPAWN__ PROCESS

This interface suspends the calling task and
walits for the process to terminate or abort.

procedure AWAIT _PROCESS _ COMPLETION
This Interface is functionally the same as
performing a call o SPAWN__ PROCESS followed
by a call to AWAIT _ PROCESS _ COMPLETION.
procedure INVOKE _ PROCESS
This Interface creates a new root process node.
Control is returned to the calling task after
the new Job is created.

procedure CREATE _JOB

These interfaces provide the techniques for a
process to examine and modify a results list.

PROPOSED MIL-STD-C AIS
31 JANUAR)Y 19085

procedure APPEND _ RESULTS
procedure WRITE __ RESULTS
procedure GET _ RESULTS

Determination Thcse interfaces are used to determine the value
of state of of the predefined attributes CURRENT _STATUS and
‘process and PARAMETERS.

input parameters
function STATUS _ OF _PROCESS
procedure GET__ PARAMETERS

Modification These interfaces change the process status of a
of the status process.
of a process

procedure ABORT__ PROCESS
procedure SUSPEND _ PROCESS
procedure RESUME _ PROCESS

Handling 1/0 These interfaces are used to query process
and time nodcs to determine the values of the predefined
queries attributes HANDLES _ OPEN, 1I0-UNITS, START _ TIMF,

FINISH_ TIME. and MACHINE _ TIME.

function HANDLES _ OPEN
function 10 _ UNITS
function START _TIME
function FINISH_ TIME
function MACHINE _ TIME

Packages CAIS.DIRECT _10, CAIS.SEQUENTIAL _ 10, CAIS.TEXT _IO

Creating, opening, These interfaces are used to create a file
and deleting and its flle node, to open a handle on a
secondary storage flle, and to delete a flle. These may be
file used with direct access, sequential access,
and text flles.
procedure CREATE

procedure OPEN
procedure DELETE

Package TEXT _10

Reading and writing This procedure is used to read and wri:e characters
characters from/to from/to a text file
text file

procedure RESET
procedure GET

procedure PUT
Setting predefined These Interfaces set the relationships of the
relations prdcfined relatlons CURRENT _ INPUT, CURRENT _ OUTPUT.
301

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

Opening and
returning
bhandles on
error files

Opening a
file node

Transmitting
data from
internal to
external flle

Handling log
flles, prompts,
and function
keys

Creating
coupled
queue

Package SCROLL _

Advancing the

and CURRENT _ ERROR.

procedure SET__ INPUT
procedure SET _ OUTPUT
procedure SET__ ERROR

These interfaces are used for returning an open file
handle on the error flle and for returning an open
fNle handle on the current error output flle.

function STANDARD _ ERROR
function CURRENT _ERROR

Package 10_ CONTROL

This interface obtains an open node handle from a
file handle.

procedure OPEN_ FILE _ NODE

This interface Is used to transmit data from an
internal file to its associated external flle.

procedure SYNCHRONIZE

These interfaces are used for performing
operations on log flles and for handling
prompt strings, character arrays, and
function keys.

procedure SET_ LOG

procedure CLEAR_ LOG

procedure ENABLE _ FUNCTION _KEYS
function LOGGING

function GET_LOG

function NUMBER _ OF _ ELEMENTS
procedure SET _ PROMPT

function GET_PROMPT

function INTERCEPTED _ CHARACTERS
function FUNCTION _KEYS _ENABLED

This interface creates a queue flie and its node.
The Inltial contents of the gqueue flie are the
same as those of the file to which it is coupled.
The queue flle must be of kind MIMIC or COPY.

procedure COUPLE

TERMINAL, PAGE _ TERMINAL, FORM _ TERMINAL

This procedure advances the active position to

302

Ko

active position

Querying terminal,
controlling tab
stop, sounding

bell and writing

a character

Contolling echo,
querying function
keys and reading
characters
function keys

Line and page
advancement

Performing
deletions, erasures,
and Insertions on

a page

Package

PROPOSED MIL-STD-CAIS
31 JANUARY 1085

the =pecified position.

procedure SET _ POSITION

SCROLL _ TERMINAL, PAGE _ TERMINAL

These {nterfaces are used with scroll and page
terminals to determine the sctive position,
determine terminal row and column size,
manipulate tab stops, sound the bell, and
write a character.

function GET _POSITION
function TERMINAL _SIZE
procedure SET _TAB
procedure CLEAR __TAB
procedure TAB

procedure BELL

procedure PUT

These interfaces are used for echoing characters
to assoclated output devices, determining the
maximum allowable function key identification
number,reading a character or characters, and
determing Information about function keys.

procedure SET _ ECHO

function ECHO

function MAXIMUM __FUNCTION_KEY
procedure GET

function FUNCTION_KEY_ COUNT
procedure FUNCTION _KEY

procedure FUNCTION _KEY _ NAME

Package SCROLL _ TERMINAL

These interfaces are used to control line and
page advancemcnt.

procedure NEW _ LINE
procedure NEW _ PAGE

Package PAGE _ TERMINAL

These interfaces are used for deleting characters
characters and lines, for repiacing characters
entire displays and lines with spaces and for
Inserting spaces and |ines.

procedure DELETE__ CHARACTER
procedure DELETE _ LINE
procedure ERASE_ CHARACTER
procedure ERASE _IN_ DISPLAY

303

PROPOSED MIL-STD-CAIS

3t JANUARY 1985

Graphic rendition
determination and
selection

Determing maximum

value from

TERMINATION _KEY

Opening form
snd defining
qualified area

Qualified area
sdvancement,
writing, and
erasing

Actlvating form,
reading, and
determining
information
ahout form

Mounting, status
checking, and

procedure ERASE _IN_ LINE
procedure INSERT _ SPACE
procedure INSERT _ LINE

These interfaces are used for determining if a
graphlc rendition is supported and for selecting
a particular graphic rendition.

function GRAPHIC _RENDITION _SUPPORT
procedure SELECT _ GRAPHIC _RENDITION

Package FORM__ TERMINAL

‘This interface returns the maximum value that

may be returned by function TERMINATION _KEY.

function MAXIMUM _ FUNCTION _KEY

These interfaces open & form to the specified
size, determine If the form is open, defipe
s qualified ares, and remove an area qualifier.

procedure DEFINE _ QUALIFIED _ AREA
procedure REMOVE _ AREA__QUALIFIER

These interfaces advance the active position to
s subsequent qualified area, write to a form,
erase a qualified area, and erase the form.

procedure NEXT _ QUALIFIED _ AREA
procedure PUT

procedure ERASE__ AREA

procedure ERASE _ FORM

These interfaces activate the form on the
terminal, read data from the form, determine if

changes have been made to the form, detcrmine the
terminstion key, determine the size of the form and

terminsl, and determine If the area qualifier
requires space.

procedure ACTIVATE
procedure GET

function IS_FORM_ UPDATED
function TERMINATION_KEY
function FORM _SIZE

function TERMINAL _SIZE

function AREA_QUALIFIER _REQUIRES__SPACE

Package MAGNETIC _ TAPE

These are used to load uniabeled sad labeled
tapes, dismount tapes, determine if a tape is

oo

DRI

writing tape
marks

Initialize snd
S labeling tspes

Transferring
files between

» CAIS and host
system

copying and
H converting lists

comparing,
deleting, and
querying lists

PROPOSED MIL-STD-C Al-
31 JANUARY 1085

loaded or mounted and where It is positioned,
skip tape marks, and write a tape mark.

procedure MOUNT

procedure LOAD _UNLABELED
procedure LOAD _ LABELED
procedure UNLOAD .
procedure DISMOUNT

function 1S_LOADED

function IS__MOUNTED

function TAPE__STATUS
procedure REWIND _ TAPE
procedure SKIP_ TAPE _ MARKS
procedure WRITE _ TAPE _MARK

These Interfaces are used to initialize tapes, to
create a volume flle header, end of flle, resd tape
lsbel and end of volume label.

procedure INITIALIZE _ UNLABELED
procedure INITIALIZE _ LABELED
procedure VOLUME _ HEADER
procedure FILE_ HEADER
procedure END__ FILE _ LABEL
procedure READ _ LABEL

Package FILE_ IMPORT _EXPORT

These interfaces are used to transfer files
between a CAIS implementation and the host
file system.

procedure IMPORT
procedure EXPORT

Package LIST _ UTILITIES

These interfaces perform operations on list items

that are lists. Operations performed copy

a list, convert the textual representation to an internal
list representation, and convert an internal representation
to & textual representation.

procedurs COPY
procedure TO _LIST
function TO _ TEXT

The-<e list interfaces determine the equility of two
lista, delete an item from a list, determine the
kind of iist, and kind of list item.

PROPOSED MIL-STD-CAIS
; 31 JANUARY 1985

List splicing,
1' merging. and
extracting

list lengths

! Determining
3 and names

Manipulation
of list jtems
in 8 list

Manipuiation
\ of tokens

function IS_ EQUAL
procedure DELETE
function GET _LIST_KIND
function GET _LIST __KIND
function GET _ITEM_ KIND

These list interfaces insert a sublist of Items
into a list, merge two lists and extract sublists
of items from a list.

procedure SPLICE
procedure MERGE
function SET__ EXTRACT

These list {interfaces determine the length of a list,
length of a string representing text, the name
of a namcd Item and the position of a named item.

function LENGTH

function TEXT__LENGTH
procedure ITEM_ NAME
function POSITION _BY _ NAME

These list interfaces extract an item from a
list, replace an item in a list, Insert an item
in a list, and search a list for a list value.

procedure EXTRACT

procedure REPLACE

procedure INSERT

function POSITION _BY_ VALUE

Geuneric Package IDENTIFIER _ ITEM

These interfaces are used for manipulating list
Items which are tokens. Operations performed by
these Interfaces convert a string representsation of
an identifier to its token, convert a token to an
Identifier, determine the equality of two tokens,
extract an Identifier from a list, replace an
identifler in a list, insert an Identifler

into a list, and search a list for an identifier item value.

procedure TO_ TOKEN

function TO_ TEXT

function IS_ EQUAL

procedure EXTRACT

procedure REPLACE

procedure INSERT

function POSITION _BY _VALUE

Generic Package INTEGER _ ITEM

- —— -

Manipuiation
of integer
Items In a
list

Masanipulation
of floating
point items
in s list

Manipulation
of string
items in &
list

PROPOSED MIL-STD-(Al~
31 JANUARY 1085

These interfaces are used for manipulating list
items which are integers. Operations performed by
these interfaces convert an integer item to its
textual representation, extract ap integer item
from a list, insert an Integer item Into a list

and search a list for an integer value.

function TO_ TEXT

funetion EXTRACT

procedure REPLACE

procedure INSERT

function POSITION _BY_ VALUE

Generic Package FLOAT _ ITEM

These interfaces are used for manipuiating list

items which are floating point numbers. Operations performed by
these interfaces convert an floating point item to its

textual representation, extract an floating point item

from a list, Insert an floating point item Into a list

and search a list for an floating point value.

function TO_ TEXT

function EXTRACT

procedure REPLACE

procedure INSERT

function POSITION _BY _ VALUE

Generic Package STRING _ ITEM

These interfaces are used for manipulating list

items which are strings. Operations performed by
these interfaces extract a string item

from a list, replace the value of a string item in a list,
insert a string item into a list, and

search a list for a string value.

function EXTRACT

procedure REPLACE

procedure INSERT

function POSITION _BY_ VALUE

307

r—-f

PROPOSED MIL-<TD-C AIS
31 JANUARY 1985

Index

Abort 8

ABORT _PROCESS o3

Aborted 79

Access 5,23

Access checking 5. 20

Access control 5. 20

Access control constraints $
Access control Information 5. 20
Access control mechantsms 74
Access control rights 20

Access control rules 5. 20

Access relationshlp §

Access relationships 21

Access right 33

Access rights 5. 20

Accesa rights constraints 30
Accews synchronization 33

Access 10 8 node 5. 20. 31
ACCESS _CONTROL .74
ACCESS _METHOD 101
ACCESS _ VIOLATION 32
Accessible &

ACTNATE 170

Active position §. 185

Ads external flles 13

Ada Programming Support Environment .5
ADOPT 22.76

Adopt s role 5. 22

Adopted role of a process 6, 22
ADOPTED _ROLE 22

Adopts 22

Advance 6. 120

Append Intent 3

APPEND _FILE 152
APPEND _ RESULTS ®0
Approved access rights 6. 23
APSE 1.8

Ares qualifier 6, §68

AREA _INPUT 166

AREA _INTENSITY 168
AREA _ PROTECTION)00
AREA _QUALIFIER _REQUIRES _SPACE 173
AREA _VALUE 108

Attribute 8. I3

Attribute iteration types and subtypes 71
Atiribute name 19. 62
ATTRIBUTE_ITERATOR 71
ATTRIBUTE _NAME 02, 83, 64, 65, 71
ATTRIBUTE _ PATTERN 71,72
Attributes 19, 31, 62. 114
AWAIT _PROCESS _ COMPLETION 85

BASE_PATH 44
BELL 133, 150

Case distinction €62
CHANGE _INTENT 2.4
Classificstion levels 29
CLEAR_LOG_FILE 123

T

CLEAR _TaAB 148
CLEAR _TaB 133

CLOSE 33, 3¢

Close & node handle 33

Clored node handle ¢
Contents 8, 13

Copy queue 101, 120

COPY _NODE 48

COPY _TREE 49

Copying nodes 33

Couple 6. 127

CREATE 133. 105, 109, 113
Creste node attribytes 3
CREATE _JOB s

CREATE _NODE 33, 7.0
CRE\TE_NODE_ATTRIH[‘TE 62
CREATE_PATN_A‘I‘TRIB\'TE 63. 04
Current job o

Current node 6

Current process 6. 16

Current user ¢
CURRE.\'T__ERROR 80, 120
CURRENT_ INPUT 80. 152
CURRE.\‘T_JOB 15
CL'RRE.'\'T_NODE 15. 32
CURRENT _OUTPUT 80. 146
CURRENT _PROCESS 32
CURRENT _STATUS 0. 81
Cl'RRE.\'T_l‘SER 15, 32

DEF.\('LT_GR\PHIC_RENDITIO.\' 145
DEFAULT _RELATION 32, 40
DEFI.\‘E_QI'ALIFIED_AREA 187
DELETE 108, 112, 116. 195
DELETE~CH.\R_\(TER 158
DELETE _LINE 150

DELETE _NODE sa

DELETE ~NODE _ ATTRIBUTE [2]
DELETE _PATH _ATTRIBUTE 65
DELETE_TREE 34

Deleting nodes 33

Dependent process 6. ;0

Dependent process node 16
Descendant (of a node) 8

Device 6. 15

Device nare 6. 16
DEVICE_ERROR 143
Discretionary access cheeking 26
Discretfonary access control @, 19, 21
DISMOUNT 180

DOT 17

ECHO 138 153

Element (of s Nle) o

Empty ltst 194
ENABLE_FL'NCTION_RE\'S 120
End position 7. 185
E.\'D_FILE_LABEL 187
ERASE_AREA 170
ERASE_CK\RACTER 180
ERASE _FORM 170
ER.\SE__IN_DISPLA\' 100
ERASE_IN_LI.\‘E 1081

309

i

31 JANL ARy 198,

end TEXT_LENGTH;

206

. PROPOSED \MIL-STD-CAlS

31 JANUARY 1985

Exceptions useful for node manipulations 31
Extstence of the node 33

EXPORT 190

External file 7,103

EXTRACT 204. 207, 210. 213

Fiie 7

Fiie handle 7. 103

File node 7,13, 14

flle transfer 189

FILE _READER 18%

FILE _KIND 101

FILE _STRING 175

FILE_TYPE 145.175

FINISH _TIME oo

Form 7. 114

Form terminal 10)

FORM _SIZE 172

FORM_STRING 32, 77
FORM_TYPE 166

FUNCTION _KEY 141. 156
FUNCTION _KEY _COUNT 141, 156
FUNCTION _KEY _ DESCRIPTOR 145
FUNCTION _KEY _NAME 142. 157
Fl'!\‘(‘TlO.\'_KEYSgEN.\BLED 126

GET 118, 139, 140. 154, 155, 17}
GET_Cl'RRE.\'T_.\'ODE 61
GET_LIST_KIND 196

GET_LOG 123

GET _NEXT s9.73

GET _NODE _ATTRIBUTE 69

GET _PARAMETERS @92
GET_PARENT 47
GET_PATH_ATTRIBUTE 69

GET _POSITION 131, 148

GET _PROMPT 125

GET_RESULTS 60

GRANT 21
GR_\PHI(‘_RE.\'DITION_ARRA\‘ 145
GR\PHIC-RE.\‘DITION_EN’l'MERATIO,\' 145
GRAPHI(‘_RE.\'DITION_SI'PPORT 164
Group 7. 22

HANDLES _OPEN 96
Hierarchical classiNcation level 28
HIGHEST _CLASSIFICATION 28

IdentifNication 18

Hiegal identification 7. 18
MMPORT 189

IN_FILE 144. 148

Insccessible 7. 20

INITIALIZE _LABELED 178
INITIALIZE _ UNLABELED 177
Inttiste 7

Initisted 12

Inltiated process 7. 13
Inftisting process 7. 13
INOUT_FILE 144

fnput and outpur 100

INSERT 202. 205. 208. 211. 214
INSFRT__LINE 163

310

INSERT _SPACE 162
INTENT 21,33

INTENT_OF ¢
lNTE\'T_SPE(‘lFI(‘ATION: 32
INTENT _\VIOLATION 32
INTENTION o7
INTER(‘EPTED_(‘H\RA(‘TERS 125
Interface 7

internal nie 7, 103

Invoke 80

INVORE _ PROCESS 33. 85
10 _ DEFINITIONS 104
10_UNITS o7
lS_FORM_L'PDATED 17
IS_GRANTED 1713
IS_LOADED 180

IS _MOUNTED s
IS_OPEN a1

IS _SAME 46

ITEM _NAME 199

ITERATE 58

Iteration siatus 72

lterator 7

Job 7,15, 16

Key 7.18

Keyword member 27
Keywords 27
KIND 41,101, 108

Labe! 174
Label group 7. 183

LAST _KEY o5

LAST _RELATION 45
Latest key 8. 17
L.\TEST_KE\' 17.77
L\\'Ol'T_ERROR 145
LENGTH 198

LEVEL 114

LINK 85

List 8. 10)

List clasaifiestions 9]
List ltem 8. 19)
LIST_TYPE 62 63. 64. 85
LOAD _LABELED 177
LOAD _ UNIABFELED 170
LOCK_ERROR 32
Locked against read operations 33
Locks on the node 33
LOGGING 123
LOWEST_CL\SSIF‘IC/\TIO.\‘ s

MACHINE _TIME 100

Magnetic tape drive file 100, 101
Mandstory sccesa control 8. 19, 26
Manipulation of atitibutes @2
.\U\XJ\Il’M_Fl‘N(‘TION_KBY 15, 107
MAXIMUM _ FL'NCTIO.\'_ KEYS 13
MERGE 197

Mimic queue 101, 190

MODE _ERROR)43

Modify node atiribytes 3

3n

PROPONED MIL-STI-¢ 4ge
31 JANL ARy 1R,

\:

PROPOSED MIL-~TD-C Al
31 JANU ARY 19RS

MORE 50, 72
MOUNT 175

NAME _ERROR 32
NAME _STRING 32, 44

Named ltem 8. 191

Named list 8

Necessany right 24

NEW _LINE 143

NEW _PAGE 144

NENT _QUALIFIED _ AREA 109
NO _DELAY 32

Node 8,13

Node atiributes 82

Node handle 8. 3)

Node management 31
NODE_AT’I‘RIB['TE_!TERATE N
NODE _ DEFINITIONS 3]
NODE _ITERATOR 87, 58
NODE _ KIND 32, 58

NODE _ MANAGEMENT 31,33
NODE_TYPE 31. 45
Non-existing node 8. 15
Non-hlerarchical category 26
NUMBER _OF _ELEMENTS J24

Object 8. 21. 27

Obtalnable 8. 45

OPEN 33, 38, 107, 111, 115
Open a node handie 33
Open node handle 8. 31
OPEN_FILE_NODE 121
OUT _FILE 144. 152

Page terminal 101

PARAMETERS 80

Parent 8, 15

Parent node 15

Psth 8.7

Path element 8. 17
PATH_ATTRIBUTE _ITERATE 72
PATH_KEY 44

PATH _RELATION 44

Pathname 8. 17

Permanent member 8, 22
PERMANENT _MEMBER 22
Position 8. 130. 191, 209

POSITION _BY_NAME 200
POSITION _BY _VALUE 202. 208, 212. 215
POSITION _TYPE 145

Potential member 8. 22
POTENTIAL _MEMBER 22
Pragmatics 9. 20

Precede 130

Predefned sttributes 62

Predefined relations 5. 80

Primary relstionship 9, IS
PRIMARY _KEY 2

PRINMARY NAME 42

PRIMARY _RELATION 43
PRINTABLE _CHARACTER 100, 17}
PRINTABLE. _ CHARACTERS 164
PRNILEGE _SPUCIFICATION 74

312

Procexs 9, 13

Procesa node 9. 13. 16

Process nodes 79

Process state transltions 8}
PROCESS _CONTROL 213, 82
PROCESS _ DEFINITIONS 81
PROCESS _STATUS a1
Program 9

PUT 138, 151. 160

Qualifled area ©
Qualified areas 186
Queue 9. 13

Queue flle 100, 101
QUEUVE_KIND 101

READ_LAPEL 188

Reading relationships 20
REEL _NAME 175

Relatlon ¢, 14

Relation name 9. 15. 19
RELATION _NAME 32, 45
ernllonshlp 9. 13
Relationship key 9. 15
RELATIONSHIP _KEY 32. ¢5
Relevant grant ttems 9, 23
REMOVE _ AREA_QUALIFIER 168
RENAME 51

Renaming nodes 33
REPLACE 201. 205, 208. 211, 214
Resulting right 24

RESULTS 80
RESUME _ PROCESS o5
REWIND _TAPE 182

Role 9. 22

Root process 18

Root process node 9. 16

Seroll terminal 103
Secondary relatlonship 9. 15
Secondary storage file 100. 101
Security level 9, 28
SECURITY _VIOLATION 29, 32
SELECT _ ENUMERATION 145
SELE(’T_GR.\PHIC~RE.\‘DITION 104
SET_ACCESS _ CONTROL 74
SET _CURRENT _NODE 60
SET_ECHO 137,152
SET_ERROR 119

SET _EXTRACT 198
SET_INFUT 118

SET_LOG 122

SET _NODE_ATTRIBUTE e6
SET_OUTPUT ne
SET_PATH_ATTRIBUTE e7
SET _POSITION 130, 145. 168
SET _PROMPT 124
SET_TAB)33, 148
SKIP_TAPE _MARKS 182

Solo queue 101
Source node 0, 14
Spswn 90

SPAWN__PROCESS 33, 82

313

PROPOSED A -~The¢ A~
3L IANY ARY jany,

eitosiond i

e

-~ —

PROPOSED MHASTD-CAIS
31 JANUARY 1985

SPLICE 1907

STANDARD _ERROR 80
STANDARD _ERROR 120
STANDARD _INPUT 80
STANDARD _OUTPUT 80
Start position 9, 165
START_TIME 68
STATE _OF _PROCESS 92
STATUS _ERROR 32. 145
Structural node 9, 13
Structural nodes 77
STRUCTURAL _ NODES 31
Subject 10, 21, 27
SUSPEND _ PROCESS o4
SYNCHRONIZE 122
System-level node 10. 15

TAB 134, 149
TAB_ENUMERATION 145
TAPE_MARK 175

TAPE _POSITION 175
TAPE_STATUS 181
Target node 10, 14

Task 10,13, 14

Terminal flle 100. 101
TERMINAL _KIND 101
TERMINAL _SIZE 132. 147. 172
Terminated 79
Termination of a process 10
TERMINATION _KEY 172
To identity 18

To obtaln access 20
TO_LIST 194
TO_TEXT 195. 204

TO _TOKEN 3203

Token 10
TOKEN_TYPE 192
Tokens 192

Tool 10

Top-level node 10. 15
Track 10

Tracking 31
Traversal of a node 10, 18
Traversal of a relationship 10
Traverse a relationship 15

UNADOPT 77

Un'que primary path 10, 17
Unique primary pathname 10, 18
UNLINK 88

UNLOAD 179

Unnamed Item 10, 191
Unnamed ltst 10
Unobtainable 0.)5
USE_ERROR 32. 145
User 10.15

User name 10, 15

VOLUME _ HEADER 183
VOLUME _ IDENTIFIER 178
VOLUME _STRING 175

Write Intent 33

314

el

WRITE _RESULTS o0
WRITE _ TAPE _ MARK

183

315

PROPOSED MIL-STD-C AlS
31 JANUARY 1985

L

—~——

'z

PROPOSED MUASTD-C AIS
31 JANUARY (9RY

Custodians:
Army -
Navy -
Alr Force -

Review activities:
Army -
Navy -
Alr Force -

User activities:
Army -
Navy -
Alr Force -

Agent:

318

Preparing actlvity:

(Project IPSC/ECRS 0208)

Postscript : Submission of Comments

For submission of comments on this proposed MIL-STD-CAIS, we would appreciate them being sent
by ARPANET/MILNET to the \ddress

CAIS-COMMENT at ECLR
If you do not have Arpanet access, please send the comments by mail

Patricia Oberndorf

Naval Ocean Systems Center
Code 423

San Diego, CA 902152-5000

For mall comments, it will assist us if you are sbile to send them on 8-inch single-sided singie-density
DEC format diskette - but even If you can manage this, please also send us a paper copy. in case of
problems with reading the diskette.

All comments are sorted and processed mechanically in order to simplify their analysis and to
facilitate giving them proper consideration. To ald this process you are kindly requested to precede
each comment with a three line header

section ...

tversion MIL-STD-CAIS
ftopic ...

rationale ...

The section iine includes the section number, the paragraph number enclosed in parentheses, your
name or affillation (or both), and the date in ISO standard form (year-month-day). As an example,
here Is the section line of a comment from s previous version:

'section 03.02.01(12)A. Gargaro 82-04-26
The version line, (or comments on the current document, should only contain *"MIL-STD-CAIS". [Its

purpose is to distinguish comments that refer to different versions.

The topic line should contain a one line summary of the comment. This line is essential, and you are
kindly asked to avoid topics such as "Typo" or "Editorial comment® which will not convey any
Information when printed in a table of contents. As an example of an informative topic line, consider:

!topic FILE NODE MANAGEMENT

Note aiso that nothing prevents the topic line from Including all the Information of a comment, as in
the following topic line:

topic Insert: ®...are {implicitiy} defined by a subtype declaration®
As a final exampie here is a complete comment:

isection 03.02.01(12)A. Gargaro 85-01-15

tversion MIL-STD-CAIS

ftopic FILE NODE MANAGEMENT

Change "component® to “"subcomponent® in the last sentence.

Otherwise the statement Is Inconsistent with the defined use of subcomponent in 3.3, which says that
subcomponents are excluded when the term component Is used Instead of subcomponent.

20

IR - SR -~

{See Instructions - Reverse Side)

1. COCUMANT NJMBER 2 OOCUMENT TITLE

STANDARDIZATION DOCUMENT (MPROVEMENT PROPOSAL 4

3w NAME OF BUSMITTING OAGANIZATION

h ADDASES @Boest, City, Jam, ZIP Cade)

4 TYPE OF ORGAMZATION (Mot ene

D vENDOA
O wmn

[wawuracrunen

[omean aew::

& PROSLEM AREAS
e Py N e g

& Romun/Retionsly for Resssurendution:

6 REuMARKS

A& WORK TELEPVIO.N FARMBER (huleds Asun
Cude) — Optionut

& DATE OF SUDAEINGS (7 VIIESY

=N T~

