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CHAPT= I

TM PAH FOLLOWIN PMOL

1. Introduction

The problem addressed in this dissertation can be described as

follows. Assume that we are given,

0 : Q n+1 . ,n

H e C i.e., H is twice continuously differentiable

H(y ) - 0

det[H'(yO) 0 O.

Under these conditions, we know, by the implicit function theorem, that

for some neighborhood N of y 0, C n • is a smooth one-dimensional

manifold, where C is the maximal connected subset of H-l(y 0 ) 0 {y C :

H(y) - 0} containing y0 . The problem of interest may then be stated

as the numerical task of tracing C in some specified direction,
0

starting at y and continuing until some point of interest is

encountered or until C ceases to be a smooth one-dimensional

manifold. We shall be mainly concerned with the case in which n is

large and H'(y) is sparse.
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2. Applications of Path-following

Applications of the path-following problem fall roughly into two

categories: parametric problems and homotopy problems. By "parametric

problems" we mean those problems in which motion along the curve may

represent the variation of some system under study, as some naturally

occurring parameter in the system is changed. For these problems, the

entire curve is normally of interest and numerical methods for tracing

it are usually required to do so very closely. Into this category fall

the so-called continuation problems (Wacker (1978)). Homotopy problems

are generally directed towards the solution of some nonlinear system

where this solution is represented by a specific point of C.

Algorithms for tracing C in this case are concerned only with

reaching this point of interest; C is useful only as a guide to get

this solution and hence it may be quite loosely followed until we get

close to the desired point.

Example 1: Parametric Structural Problem (Rhelnboldt (1981))

Figure (1.2.1) represents a simple plane structure in which two

identical rods with longitudinal elastic modulus y are pin-jointed to

the supports A and B and together at C. The vertical displacement,

x, under load p satisfies the equation

I h2
H(x.p) 'y[ 11-hh 2 - (h-x) - p 0,

1 - (h-x)
2

2
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where h is the vertical distance of C from AB under zero load.

The structural engineer, who wishes to study the behavior of the system

under varying load p, is interested in all values (x,p) satisfying

H(x,p) - 0 and p > 0. Hence he is faced with the problem of tracing

C - ((x,p) : H(xp) - 0} from the point (0,0) in the direction of

increasing p. The curve C is shown in Figure (1.2.2), where the load

p M p is an asymptote of C and represents a buckling point of the

system. For larger and more complex structures, the system of equations

is larger and more complex but the underlying path tracing problem is

the same. 0

Example 2: 1lamotopy problem

By Brouwer's Fixed Point Theorem, we know that f(-) has a fixed

point in [I/e, el where f En * R n

n

fi(x) exp[cos( I xj1 for i - 1, 2, ... , n
J-i

We can locate this fixed point by tracing the path C - {(x,t) : H(x,t)

- 0) where

H(x,t) - x - tf(x)

from the point (0,0), starting initially in the direction of increasing

t and then continuing along C until some point (x,l) is

encountered. Then x is a fixed point of f(o).

4
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Note that homotopy problems sometimes do require close path follow-

ing. In Example (2) above, the path C possesses very high curvature

through almost its entire length and any path-following technique that

is used must follow it very closely or risk the danger of losing it

altogether. Also in the homotopy problem for solving for all solutions

of polynomial systems (see Garcia and Zangwill (1981), Rosenberg (1983))

several separate paths are followed to different solutions; each path

must be closely followed in order to minimize the danger of slipping

from one path to another.

3. Historical Background

The path-following problem has developed historically from two

completely separate directions. In one direction lies the classical

continuation problem as discussed in Ortega and Rheinboldt (1970), Smale

(1976) and Wacker (1978); in the other lie the piecewise-linear

simplicial techniques as discussed in Eaves (1976) and Todd (1976a).

The classical continuation technique was developed as a

globalization of Newton's method and was used for problems in which good

starting points were not available. Given a function f : e + 1 n  a

homotopy is set up to produce a smooth path from the available starting

0point x . This path is followed in the hope that it will lead to a

solution of f(x) - 0. Examples of possible homotopies are



H(x,t) - (1-t)f(x) + tA(x-x ) A e Rnxn (regularizising homotopy)

H(x,t) - f(x) - (1-t)f(x 0 ) (defect reducing homotopy)

The classical continuation method used "t" as the independent variable

so that the algorithm proceeded along the following lines:

(i) Choose some partition 0 - t0 < tI < goo < tk-1 < tk

(ii) Solve H(x,t ) = 0 by Newton's method using as starting point
i-I i-I ,i-I)

x where x is the solution of H(xt ) - 0.
k

Note that x solves f(x) - 0. As we shall see later, this algorithm

is a special -- and inefficient -- implementation of the predictor-

corrector method. It breaks down if t does not increase monotonically

along the curve C. This is one important difference between the

classical continuation method and more recent path-following

techniques. The classical method relinquished the path-following task

if the curve "turned backwards"; the later methods continue along the

curve around such bends by using "t" as a dependent variable, choosing

instead the arclength, s, as the independent variable as introduced by

Haselgrove (1961). One important problem, to which many papers have

been addressed (e.g., Wacker et al. (1978), Deuflhard (1979), Den Heijer

and Rheinboldt (1981)) is the question of efficient adaptive choice of

the partition {t i as the algorithm progresses. Efforts to attack

this problem were directed to the analysis of radii of convergence of

Newton's method. Leder (1970) presented another adaptive technique by

reformulating the path-following problem as an optimization problem:

6



min IG(x,t)I

where

H(x, t)

G(x,t) , m 0 0 , m constant

Adaptive incrementing of "t" was achieved by a steplength control

based on a monotonicity test in the sense of Goldstein-Armijo (see

Armijo (1966) and Goldstein (1967)).

The simplicial techniques originated with Scarf (1967a) and were

based on the ideas of complementary pivoting as presented in Lemke and

Howson (1964). The relationship between these techniques and homotopy

methods was studied by Eaves (1972) and Merrill (1972). For an exten-

sive bibliography on simplicial techniques see Eaves (1976), Todd

(1976a) and AlIgower and Georg (1980). Scarf's paper was motivated by

the search for a fixed point of a mapping. Kellog, Li and Yorke (1976),

using a non-retraction principle, provided a constructive proof of

Brouwer's fixed-point theorem for smooth mappings, and thus established

a link between differentiable homotopy techniques and simplicial

methods. This led to a revitalization of interest in the continuation

technique. Later followed the studies on differentiable homotopies by

Chow et al. (1978), Garcia and Gould (1978) and a host of other

publications including the extensive numerical results of Watson (1981).

7



for more predictor-corrector cycles to trace C. Increasing the

predictor steplength leads to more work being needed in the corrector

phase, and we may also obtain corrector sequences which fail

completely. An efficient implementation of a predictor-corrector

algorithm requires a dynamic resetting of the current steplength and an

effective strategy for handling those cases in which the corrector

sequence diverges. Any such steplength strategy depends in turn on how

well we expect the predictor to behave and how powerful the corrector

technique is. Ideally we would like to allow for adaptive choice of

predictor and corrector techniques and corresponding dynamic reevalu-

ation of steplength strategies, provided this can be obtained

economically.

The predictor-corrector method is in sharp contrast to simplicial

path-following techniques. While the latter is not conceptually as

simple as the predictor-corrector method, once a triangulation has been

chosen implementation is a relatively easy task. The strength of the

predictor-corrector method versus simplicial techniques is its adaptive

ability to move rapidly through well-behaved portions of C by using

large steplengths and to slow down at more difficult portions of C.

It is the attempt to exploit this capability that leads to difficulties

in implementation. The statement of L.F. Shampine (see Watson (1979c))

in reference to numerical techniques for the solution of differential

equations (". . . how a method is implemented may be more important than

the method itself") is clearly applicable to the predictor-eirrector

method. It should be noted that predictor-corrector methods and

21
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kl k kH vk ,k, Xk

Sk+1 y k + Xkvk where HW(yk) v k 0, Av I 1 and is

some predetermined step length.
0 k+1

(ii) Set w = z and

-1

W +1 - .,i - I _ <v<, _lo

k+1

(iii) y is taken to be the last wI  in the sequence in (ii)

where the iteration is terminated when some stopping criteria are
k-Ilik+1- kI-1

satisfied, e.g., y may be taken as z where w I - w 1 I < C

and

1w1 -w-' > e for j < 1, for some specified e > 0

The iteration in (ii) represents the refinement of the initial estimate

kIl k+l
z in the hyperplane through z perpendicular to the tangent

k+1
direction at y , see Figure (2.1.1).

The conceptual simplicity of the predictor-corrector method is

misleading; in practice an efficient implementation is a quite difficult

process. There are many problems which may arise. At the heart of

these problems lies the decision, at each predictor step, of what step-

length should be used in estimating the next point on the curve. If a

small steplength is used, we can expect the next iterative sequence of

corrector steps to be quickly convergent. However, there is a tradeoff

involved in the use of small predictor steps since this incurs the need

19
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CHAPTE 2

TM PRIDICTU ORUCOR T1EOD

1. Introduction

Recall the path-following problem stated in Chapter 1. Given H c

C2 , H : Q C Xn+1 + En, H(y) 0 and det[H'(y0)] 0 we wish to

0
trace C, the one-dimensional manifold containing y , which is

contained in H- (0) = {y 6 £n+l : H(y) - 0). In this chapter we

shall discuss the computational considerations involved in using a

predictor-corrector method to trace C. Although we are mainly

concerned with the specific case when n is large and H' (-) is

sparse, most of the following discussion is more generally applicable.

The predictor-corrector algorithm traces C by moving from one

point in C to another by the following conceptually simple process.

0 1 k
Assume successive points y , y , ..., y in C have already been

k+1
located. Then y is obtained by

(i) Predict
kIl k+1

Obtain z as an approximation to y by using some

0 1 k
extrapolation technique based on the points y , y , ... , y and

possible other information at these points, e.g., H'(y 0), H'(yl), ... ,

H'(yk) etc.

(ii) Correct

k+1
Refine the estimate z by using some local iterative

scheme.

For example, if an Euler predictor and a Newton corrector are used

k+1
then y is obtained as follows:

18



7. The Predictor-Corrector Method

Equation (6.2) has essentially two separate components. The first

term on the right-hand side propels the algorithm along the tangent of

the curve, while the second term pushes toward the curve so as to

decrease the error incurred in the forward motion. The predictor-

corrector method involves an explicit implementation of this idea.

Motion along the curve is achieved by predictor-corrector cycles which

first predict a point further along on the curve and then use a local

iterative technique to correct for the error in prediction. Further

details are given in Chapter 2.

The most expensive part of the predictor-corrector algorithm is the

local iterative sequence used in the corrector phase. Traditionally,

Newton's method has been the choice for the iterative technique, but

this may turn out to be an expensive overkill. We shall turn instead to

the use of quasi-Newton methods. These are discussed in Chapter 3 for

the specific case of large sparse systems.

17



has suggested approximating H' (y) by the use of quasi-Newton updates.

Georg (1981) also uses quasi-Newton updates, but first replaces (6.1)

with another system with better stability properties. For

A c n x (n l ) , let t(A) c En be the unique vector satisfying

A
At(A) - 0, It(A)I - 1, det[ t(A)T > 0

Then (6.1(a)) is replaced by

dy - 6 - t(H'(y)) - [H'(y)]+ H(y), 6 > 0
ds

where AT(AAT)- I is the Moore-Penrose inverse of A. (6.2)

The second term on the right-hand side of (6.2) introduces a damping

element into the vector field, which makes for a more stable integra-

tion. Choice of 6 may be made adaptively over different parts of C

with 6 large where the curvature is small and vice versa.

Tracing C by the use of formulation (6.1) or (6.2) is, in

general, not a very efficient technique, even though it does have the

convenient property of being able to make use a readily available

software. The predictor-corrector technique which is the main focus of

this research is more efficient than either the differential equation

approach or the simplicial continuation technique.

16



6. The hyvidenko Differential Xquation

Tracing C can be accomplished by first converting the problem

into the following system of differential equations (Davidenko (1953)):

(a) H'(y) -

(b) .1 -1
ds

H'(y)1

(c) det > 0

(&Z)T
ds

(d) y(O) - yO (6.1)

The first equation is derived from differentiation of H(y) - 0, the

second from the use of arclength, s, as the independent variable and the

third equation chooses the sign of dy/ds to obtain a consistent

orientation. The system (6.1) can now be integrated using any of the

efficient and available computer packages for solving the Initial Value

Problem. Watson (1981a) has demonstrated the effectiveness of this

approach.

Integration of (6.1) is, in general, a quite expensive process.

Obtaining dy/da involves solving the linear system (6.1(a)) and,

hence, requires the calculation of H'(y) at each step. Schmidt (1979)

15



Beginning from a simplex along the chain of simplices which define the

piecewise linear path, G-1(0), an attempt is made to predict a simplex

further along on this chain by the use of polynomial extrapolation.

Usually the predicted simplex does not lie in the chain but just off

it. A correction technique, based on topological perturbations, is then

used to eliminate this prediction error by locating a simplex on the

chain close to the predicted simplex. This technique has been

incorporated into the Scout Continuation Package which has been used in

the study of various continuation problems (Peitgen and Prufer (1979)).

The main disadvantage of the simplicial technique is its inability

to handle problems of large dimensions. The number of simplices that

need to be traversed grows rapidly with increasing dimension. In Todd

(1980a) and Saigal (1981), techniques are presented for alleviating this

problem of dimensionality by exploiting structure and sparsity, which

may be encountered in large systems. When separability or sparsity is

encountered in the system H(-) and certain specific triangulations are

used, the piecewise linear function G(o) is linear over regions which

may span groups of adjacent simplices. With the use of appropriate data

structures, the simplicial pivot required in moving from one simplex to

another within these pieces of linearity can be reduced to a trivial

amount of work; the corresponding function evaluation is also virtually

eliminated. While these techniques have done a lot towards expanding

the range of applicability of simplicial techniques, much work still

needs to be done before simplicial techniques can be used as a general

path-following technique for large systems.

14



Two published techniques designed to attack this problem of

inefficiency in simplicial continuation methods do so by relaxing the

inflexibility of the algorithm. The basic standard technique is

retained at points of high curvature so as to take advantage of its

robust properties. In other regions of the path, where high curvature

is not encountered and robustness is not absolutely necessary, more

flexible techniques are used to move rapidly and inexpensively along the

path.

The first technique is the "flex simplicial algorithm" of Garcia

and Zangwill (1980). Instead of working with a fixed triangulation

which is imposed at the start of the procedure, the algorithm allows for

the formation of simplices of varying sizes as it moves along the path.

Large simplices are used in regions where the path is well-behaved; when

high curvature is encountered, the algorithm switches to a fixed trian-

gulation. In this way efficiency and robustness are adaptively traded.

The present computational status of the algorithm is unclear. To date,

no significant computational experience has been reported. Effective

exploitation of the basic idea of the method may still require much

research into setting up efficient decision rules for the formation of

simplices along the path as the algorithm progresses.

The second technique is the "simplicial predictor-corrector method"

of Saupe (1982). Here a fixed triangulation is used and at points of

high curvature the standard simplicial pivoting algorithm is in force.

In more well-behaved regions, however, the algorithm attempts to skip

simplices along the path by using predictor-corrector techniques.

13
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Theorem (5.2)

Let H : Q c R n+ l + R n  where Q - D x T, D is the closure

of an open bounded set in Rn and H- (0) is a one-dimensional

manifold . If H(O) satisfies a Lipschitz condition with constant K

then for y in the interior of any simplex of the triangulation with

simplicial grid size e

nG'(y) - H'(y)U < Kne

Proof: See Saigal (1977). 0

Simplicial techniques which employ fine triangulations are very

expensive. Each simplex encountered along the piecewise linear path

incurs a cost of one function evaluaticn and one linear programming

pivot. Decreasing the grid size results in more simplices being

encountered and this leads to an expensive algorithm if the path is very

long. On the other hand simplicial path-following techniques are very

robust and can be used on highly nonlinear problems for which other

path-following methods would fail. They remain unaffected by high

curvature of the path, which may cause other methods to lose the correct

sense of direction or to cycle. The price of this robustness, though,

is very high if the underlying path is very long and it has to be

closely followed.

12
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developed to solve for fixed points of nonlinear systems. Hence, the

main concern of these algorithms was to get to an endpoint of the path

rather than approximating the path closely throughout. The refining

triangulations of Eaves (1972) are designed specifically for this goal;

H-1(0) is very loosely approximated when we are far away from the point

of interest and very closely approximated as we move towards the level

t - 1. The continuation problem has somewhat different requirements;

here, it may be necessary to follow 0-1(0) very closely throughout, as

in the study of nonlinear eigenvalue problems (Peitgen and Prufer

(1979)) or in the problem of finding all solutions of polynomial systems

of equations. A fine triangulation must be used throughout so that

G7I(0) is close to H-1(0). The following results relate G-1 (0) and

H- (0). The simplicial grid is defined as the length of the largest

edge over all simplices in the triangulation.

*" Theorem (5.1)

Let H : Q9 cRn+ + Rn where Q = D x T and D is the closure

of an open bounded set in ln . For any 6 > 0, if the simplicial
*-1

grid of the triangulation is small enough and y 6 G(o), then

dist(y, H- (0)) -min{ly-zl z cc (o) < 6

Proof: See Garcia and Zangwill (1981), Chapter 12. 0

* 11
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.

Exaple 3 (Freadenthal Triangulation) K1

Denote

N = 1, 2, ... , n)

- some permutatior. of N

KO-{Yen : is an integer for i e N),

for some 6 > 0

0 0 1 n
K(Y O , y ) E the simplex spanned by {y , y y

where

y K1  y y +t-1 ( , for 1 < i < n

and

0 otherwise

K I is the set of all simplices KI(yo,%) when 6 = 1. We can

choose other values for 6 to scale the triangulation and it can be

made as fine as we want by taking 6 sufficiently small. 0

The simplicial technique follows G- (0) by using the pivoting

techniques of linear programming. The principle of complementary

pivoting and the use of perturbatic techniques ensure that this path is

well-defined. Traditionally, simplicial path-following techniques were

10
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with many curves Ce (for e in some region D0 c IRn) most of which

are, by Sardts theorem, smooth one-dimensional manifolds. On the other

hand, the set of numbers which can be stored on a computer is countable

and hence has measure zero; in such a situation, it is not clear what

the value of a probabilistic statement is.

For the homotopy problem, it is useful to know, a priori, whether

the curve C reaches the level t - 1. For a discussion of boundary-

free conditions which are sufficient to ensure that this will occur, and

which can be shown to be true in some cases, see Eaves (1976) and Garcia

and Zangwill (1981). In most cases, no such result can be verified and

the implementation of a homotopy method needs to follow the advice of

Alexander (1978b): "Have faith."

5. Simplicial Path-Following Nethods

Simplicial pivoting techniques provide an effective and robust

method for following a piecewise linear approximation to C. Moreover,

this method can work with weaker differentiality conditions on the

function H(.); in fact, all that is needed is upper semi-continuity of

H(-). The first step of the simplicial technique is to impose a trian-

gulation on e~n; for details see Eaves (1976) or Todd (1976a). This

divides Rn into a countable number of simplices. The algorithm

then works with the piecewise linear function G(.), instead of with

H(e), where G agrees with H at the nodes of the simplices and is

linear within simplices.

9



4. Path Existence

It is of interest to know whether we -an make any statements, prior

to attempting to trace the curve numerically, concerning the existence

of such a curve and its smoothness and boundedness properties. As noted

in Section (1), all that we can guarantee is that since det [H'(y 0)]

0
0, there is some neighborhood N containing y such that N n C is a

smooth one-dimensional manifold. However if we proceed along the curve

outside N we may discover that it ceases to be a one-dimensional

manifold. Sard's theorem provides a global probabilistic statement

concerning the nature of C.

-' Sard's Theorem (Sard (1942))

Let G D Rq + Rn, where D is the closure of an open set,

and let G be k times continuously differentiable where k > 1 +

max{Oq-n). Then for almost all e

rank G'(y) = n for all y c G-1(e) {y E D G(y) = e . 0

This result tells us that even though C may not be a one-

dimensional manifold, we can use an arbitrarily small perturbation, e,

so that, by the implicit function theorem, C - {y : H(y) - e} is ae

one-dimensional manifold. In practice, the roundoff error encountered

by a numerical technique for tracing C automatically provides pertur-

bations in the problem, so we can expect, in some sense, to be dealing

8
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2. Predictor Consideratlona

kk+1

'.- lmpThea techniques use to obta y texintlstiae, z o deosr then

next point, y k1, in C can vary from being very simple to quite

sophisticated. The choice of predictor depends mainly on how powerful

we can expect the corrector technique to be. For example, if Newton's

method is used for correcting then simple and crude predictors can work

- quite well. Simple predicting methods involve fewer arithmetic calcula-

tions and also require that less information be retained from previous

* points, thus incurring a lower storage cost.

(i) The Elevator Predictor (Garcia and Zangwill (1981))

This is a simple predictor which obtains zk+ 1  from yk by

-k
moving parallel to one coordinate axis. If v satisfies

k -k -k k -k
H'(y )v - 0, IvkI - I and v is some approximation to v then

y  j i
jk+1 (2.1)
j k k

yj+ , j =i

where

i = argmax{IvI} , (2.2)

:22
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and X is some predetermined steplength. If it is known, a priori,

that the path is monotonic in one coordinate, say y p, then we may

choose i - p throughout instead of using (2.2), and thus avoid the

--kneed to approximate v . For example, if y - (x,t) and H'(x,t) is
* x

nonsingular at all points of C, then we can deduce that either dt/ds > 0

or dt/ds < 0 for all points in C (where s - arclength). In such a

case we may simply set i - n+1 (since t - yn+1) . Monotonic curves

arise quite often in practice; an important case involves certain

homotopies used to solve polynomial systems of equations (Rosenberg

(1983)).

(ii) Polynomial and Hermite Predictors

k+1
More sophisticated predictors obtain z by fitting polynomials

k k-1 0to past points y , y , ... , y of C and derivatives to the curve

at these points. In particular, Adams-Bashforth predictors (Shampine

and Gordon (1975)) are important for their excellent stability

properties and their capacity to make use of approximations of the

-k ktangent directions v at points y of C. Using arclength, s, as

0the independent variable for parameterization of C, with y(0) - y

stwe have, at the start of the (k+l) predictor step the following

approximations:

y(sj) y i , y'(s ) vj for j - 0, 1, ... , k (2.3)

The Adams-Bashforth predictor based on p points obtains the polynomial

P W(t) which satisfies
p k

23
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Ppk(Sj) vj  for j - k-p+l, k-p+2, ... , k (2.4)

. and then for some predetermined steplength ' " ak+1 - 'k  obtains
". k+1

z as

zk+1 .. yk + k+lv k(t) dt • (2.5)

1; sk

It is easily shown that if a constant steplength A is used then the

asymptotic error rk -zk+l _ y(sk+1)1 satisfies

k . O(A 2) (2.6)

C,

The use of the Adams-Bashforth predictor is useful in predictor-

corrector methods because of its insensitivity to small errors in the

tangent directions at yJ, 0 < j < k. These errors arise because we may

try to estimate the tangent directions instead of directly calculating

them and also because the points yO , y 1 y. k are not exactly in
0 1 kC. In fact, the previously estimated points y 0 Y , .-, Y may be

quite loosely arranged around C since a strategy of loose and

inexpensive path following may be employed until we get to the region of

C that is of primary interest.

3. Corrector CoMsideratlons

aThe usual and convenient corrector technique involves the use of a

locally convergent iterative scheme in a hyperplane through z k, that

24
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,-is sufficiently traversal to C. As in the example of section (1), we

may choose the hyperplane P - {y : v k (y-Zk+1) - 0). In this case we

use an iterative technique to obtain y k1as the solution of

H(y)

Gscy)rvsk k+1 (3
Iv (y-z J

k ,k k
t hat since rank[Hpan n and y: (y v 0 we have that

' H1 k

I GtH~yk)-( LI(v k k -T

is nonsingular. Hence using a continuity argument we can deduce that

for &k- sk+l - sk  small enough, there exists a neighborhood B such
that yk z k+1 and y(S+ ) c 9 and G'(y) is nonsingular for y c 0.

This establishes the feasibility of using Newton-type iterations In the

solution of (3.1).

We shall be concerned mainly with the use of Newton and quasi-

Newton methods in solving (3.1) for y k+. Each corrector step will be

a full Newton step, i.e., no steplength control is imposed on the cor-

rector sequence. The basic philosophy of the predictor corrector

method, as implemented here, is that if full Newton steps do not lead to
9 k+1

convergence of the corrector sequence then it probably means that z

is too far away from C and hence we should restart the predictor-

corrector cycle with a shorter steplength, Ak . The alternative strategy

of using a steplength control to make it more likely that the corrector

sequence will converge introduces certain problems. First, if we use

25
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large steps and then encourage convergence by the use of a corrector

steplength control strategy then it become more likely that we may

converge to a solution of (3.1) other than the one we are seeking (see

Figure (2.3.1)). Also in those cases in which a sharp turn causes zk+1

to be very far away from C (Figure (2.3.2)) or even leads to the

infeasibility of (3.1) (Figure (2.3.3)), then more work is expended

before the sequence is eventually relinquished as divergent. For the

purpose of safe and effective curve following it seems better to retain

a full-step strategy on corrector sequences; steplength controls may

increase the likelihood of convergence but not necessarily to the

desired point and hence make it more likely that the algorithm may run

into cycles (Figure (2.3.4)) or switch to points in (y : H(y) - 0)V

(Figure (2.3.1)).

In the classical continuation method (Wacker (1978)), Newton's

method is used on the corrector steps. This algorithm was known as the

Global Newton Method since the continuation technique was introduced

specifically to enlarge the domain of convergence of Newton's method by

the construction of a homotopy. The use of quasi-Newton methods on the

corrector steps, while mentioned by several authors (Schmidt (1979),

Deuflhard (1979), Rheinboldt (1974)), was first discussed in Georg

(1981b). Here the focus was on small problems, for which Broyden's

Update proved to be a quite effective tool for maintaining a useful

approximation of H'(y) throughout the entire length of C, with only

an occasional need to re-evaluate H'(y) from scratch.
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Figure 2.3.1

Figure 2.3.2
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Figure 2.3.3

Figure 2.3.4
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For large sparse systems the problem is somewhat more difficult.

The sparse Broyden method may be used as in the case for small aystems.

However, as discussed in Chapter 3, this incurs a considerable storage

cost since both the current matrix and its LU factors must be main-

tained explicitly. An alternative strategy is to use the direct secant

updates of LU factors which will be discussed in Chapter 3. Note,

however, that since these updates can be expected to behave properly

only on local convergence problems--because of their inability to update

pivoting strategies--their use introduces the need to recalculate the

Jacobian, H'(y), from scratch at start of each corrector sequence.

4. Orientation

At the start of each predictor step we need to establish the

correct orientation of the curve C, i.e., given HI(yk) k 0,

i k I -I and w is some approximation of wk, then the decision

has to be made of whether vk = k or vk  +wk , where vk  is the

direction in which we shall proceed.

We assume that the path is parameterized by arclength, that is

C - {y(s) : 0 < s < 8)

where ; is the length of the curve up to the point of interest. Under

the assumption that rank [H'(y(s))] - n for 0 < s < a, we have the

Basic Differential Equation (Garcia and Zangwill (1981)) which describes

C:

29
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d "  lu'- for I - 1, 2, 1.., nI (4.1)

where

ui  q(-l)i det[H'i(y)] for i - 1, 2, ... , n+1 (4.2)

and q - +1 depending on original orientation. H' (y) . Kxn is

obtained by eliminating the ith column of H'(y). We choose q so

0that (4.1) is satisfied at y(O) - y , and then it remains constant

thereafter.

We know by Sard's Theorem that rank [H'(y(s))] - n for 0 < a < a

is an event of probability one. Hence in order to establish the correct

orientation we can choose v - u/huN where u is given by (4.2).

However, in practice, interesting problems do arise in which the curve

C does not have the full rank property throughout. In such cases the

path C may intersect other curves Ci c {y : H(y) - 0}. At such points

of intersection -- known as bifurcation points -- we have det[A(s)] - 0

where

FH'(y(s))1
A(s) - Id/s (4.3)

A bifurcation point, y(B), is characterized as odd or even depending

on the number of eigenvalues of A(s) that go to zero (Crandall and
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Rabinowitz (1971)). If the predictor-corrector algorithm jumps over an

odd bifurcation point then we need to change the sign of q if we wish

to continue along C. Keeping q constant will cause the algorithm to

double back along that part of C from which it came.

In order to ensure that the predictor-corrector method follows the

curve safely, we monitor the orientation as given by (4.1), and we

employ the following orientation strategy. The point y is taken to

be an acceptable next point along C if

k k+1 k k+1arcos(v -w ) < e or arcos(-v -w l) < e (4.4)

k+1 -k+lwhere e is some given acute angle and w approximates w where

-k+1 k+1 -k+1 1-k+1w is defined by H'(y w = 0, w - 1. If (4.4) is

satisfied, then let

k+l k+1 wk+1

v k sign(v .w ) . (4.5)

This strategy, along with (4.2), results in a safe curve following

algorithm and can be used to detect when an odd bifurcation has been

encountered.

5. Steplength Strategy

The predictor steplength strategy is the most crucial control

problem which arises in an implementation of a predictor-corrector

algorithm. An over-conservative steplength strategy, which employs

small steps, leads to successful corrector sequences but to many
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predictor-corrector cycles. A more ambitious steplength strategy

results in longer corrector sequences or to failed corrector sequences

for which the predictor-corrector cycle must be restarted with smaller

steplength. Denote by X k the current value of the steplength for the

kth cycle. One basic steplength strategy is the following:

Steplength Strategy (A):

i) Xk+1 + min{Xmax, aXk for some a>1.

ii) If the corrector sequence fails then set X k+l X k+I/P for

P > 1, and restart the predictor-corrector cycle.

iii) If necessary repeat (ii) until the corrector sequence

converges or until X kl < Xmn

Maximum and minimum steplengths are denoted by Xmax, X5 n . The

maximum allowable steplength prevents dangerously large steplengths

being taken which may lead to loss of the curve; if the steplength

required for convergence falls below Xmin, then the algorithm has

failed. Strategy (A) attempts to increase the steplength at the start

of each cycle. Several consecutive successful corrector sequences will

cause the steplength to grow at an exponential rate. A more

conservative strategy is:
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Steplength Strategy (B):

min{kma x , ak } if X k>X k+  or k 2 where a> 1j) ~k+14.{
X k otherwise

ii) Same as in Strategy (A).

iii) Same as in Strategy (A).

Strategies (A) and (B) are very simple procedures and are based on

the idea of becoming more ambitious when things appear to be going well

and more conservative when difficulties are encountered. More

sophisticated strategies take into consideration the specific predictor

and corrector techniques being employed. Most such strategies attempt

to minimize the number of predictor-corrector cycles by estimating, at

the start of each cycle, the maximum possible steplength that could be

taken and still allow convergence of the next corrector sequence. Den

Heijer and Rheinboldt (1981) showed that while a finite upper bound on

the radius of convergence of the next corrector sequence cannot be

derived solely from information based on previous corrector iterates but

requires more global information, we can still use the accumulated

information from past corrector sequences to derive a useful estimate of

this radius. Deuflhard (1979) and Hackl et al. (1980) also give

steplength strategies for the case in which Newton's method is used as

the corrector technique. These methods are all based upon the use of

information derived from the local behavior of the algorithm to estimate

global constants associated with the convergence of Newton's Method.
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When quasi-Newton - rather than Newton -- correctors are used, it

Ls not clear how applicable the above techniques are. Moreover, these

:echniques are based on the questionable assumption that it is desirable

Eor each predictor step to be as large as possible while still maintain-

Lng corrector convergence. They do not take into consideration the

possibility that such a strategy might actually lead to an increase in

the total work involved in traversing C by increasing the number of

corrector steps needed for convergence. In our implementation we shall

turn to the more heuristic approach of Georg (1981).

Assume that the predictor is an Adams-Bashforth extrapolation based

on the last m points. Then

izk+1 _ yk+l I- 0( P) where p = m4+2, 4  Sk+1 -k (5.1)

Now if the Jacobian is accurate -- that is, calculated either

analytically or by finite differences -- at the start of the corrector

step, then we can show the following (Georg (1981)):

- IH(w 0 - O(Ap) , where wJ is as defined in Section (1)(5.2)k+1 HIHw)

whr a[1) 1 [ Uii N - o( ), whr i - r 'k 5

for i 0, 1

d I H(wO )I O(A) (5.4)
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d~ Is Io -o(AP) (5.5)
k+1 0 k

ak+ .arcos(v k . vk+) =0(A k )  (5.6)

By monitoring the variables defined in (5.2-5.6) a simple and effective

heuristic is developed as follows. The user of the algorithm decides, a

priori, what would be ideal values for each of these variables and then

chooses the steplength, A, to make it likely that these values are

attained. For example, we have from (5.2)

Ik ( k (5.7)Kk+l "kII

Therefore, in order to obtain an ideal value Kideal on the (k+l)st

step we should set

Ak+1 Z (Kideal) / p Ak (5.8)
ck

Similarly other values for the steplength can be estimated using (5.3-

5.6). We then take Ak+ 1  to be the minimum of all these estimates.

6. Estimation of Tangent Directions

The use of Adams-Bashforth predictors requires that at the end of

keach predictor-corrector cycle we estimate the tangent direction, v , at

k
the recently located point, y , of C. The safest, but somewhat

expensive, technique is to calculate it precisely by solving for the
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Also let

S A the orthogonal projection operator into the subspace A

Tk span{el, e2 ' "'.,

Ok S span{ek' ek+l' "..' e}

x(A) [I < i < n : there exists a v E A such that v # 01

for any subspace A c in (2.1.2)

2.2. Update I

Consider the updating problem encountered at each step. Ignoring

superfluous subscripts in this section, we may state it as follows.

There is some current approximation, A, to the Jacobian matrix. It is

available in the form of the LU factors where A - LU. The last

Newton step has provided new information which we will use to update the

current approximate Jacobian. We wish to update (L,U) directly to

Rn
(L, U) where, for s,y c , we require

LUs - y where y = F(x+s) - F(x)

is a unit lower triangular matrix (2.2.1)

U is an upper triangular matrix

The system (2.2.1) may be rewritten as follows:
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:ep. In Section 2 a new update is described, which may be viewed as a

meralization of this update and which allows both L and U to

iry. Johnson and Austria (1983) presented an algorithm for full

itrices which maintains the factors L and U explicitly and

4ates these factors directly at each iteration. In Section 2 a sparse

triant of this update is presented. In Section 3 some sparsity results

elating the sparsity pattern of Ak  to the sparsity patterns of L,

-1 and U are examined. In Sections 4 and 5 local convergence

aalyses of the two updates are presented. Section 6 concludes with a

omparison of the two updates and suggestions are made for overcoming

heir present disadvantages.

0 Updating Techniques

.1. notation

The following sparsity notation, which generalizes the notation

sed in Section 1, is convenient and will be used throughout the rest of

he chapter. For any matrix-valued function B :Q c en- n

efine

S{v R n : eTv =0 for all J such that eTB(x)e 0
ji  i

for all x e QJ

iB zB n {v e : vi = 0) (2.1.1)

Z B=jMB for i - 1, 2, ... n}i i

-B = M ]nXn : T -BZ M e : C-ZBi for I - I, 2, n}
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suffers disadvantages not associated with its full lower dimensional

counterpart. For the full Broyden update the O(n 3) operations

k
involved in solving for the Newton step, s , at each stage of the itera-

tion (1.1.1) can be reduced to O(n 2) operations by using the tech-

niques of Gill et al. (1974). These techniques make use of the fact

that for the full Broyden update (Ak 1 - A k) is a rank one matrix.

The QR factors of A are maintained explicitly and are updated to give

k+1the QR factors of A . The Jacobian approximation A is never

actually explicitly represented in storage. For the sparse Broyden

update, however, (Ak+ - A k ) is generally of rank n and the

techniques of Gill et al. (1974) are not applicable. A must be

explicitly maintained so that it can be updated to Ak+I according to

k
(1.1.6). Solution of (1.1.1) for the Newton step s , therefore, incurs

both the need to refactorize the new matrix Ak at each step and the

need for extra storage to hold the factors of A k . If these storage

costs and the cost of factorization, relative to the cost of function

evaluations, are high enough then other updating techniques for sparse

problems may become competitive even when they may have slower conver-

gence rates than the sparse Broyden method.

It is assumed for the rest of this chapter that the storage require-

kments for the problem allow for the solution of the Newton step, s , in

(1.1.1) by factorization techniques. We focus on methods which maintain

sparse LU factors of Ak which are directly updated by incorporating

the quasi-Newton information at each step. Dennis and Marwil (1982)

introduced an update which holds L fixed and updates U only at each
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z1 -l IV CRn e T v 0 for all j such e TF'(x) e -o0

for all x e Q}

and

Z -{M . e n n: HT ei C Z for i - 1, 2, ... , n} (1.1.4)

Zi  represents the sparsity pattern of the ith row of F'(x), while Z

represents the sparsity pattern of F'(x). A k+ 1 is chosen to be the

solution of the optimization problem

min{EA-AkI : A E Q(y k,sk) n Z) • (1.1.5)

Let S A  be the orthogonal projection operator into the subspace

k+1A c R . Then the solution, A l, of (1.1.5) may be written explicitly

as

k-1 A k+ T sZ k Tk k ZikT
A A + ((S ) (Seis )J+ e1  - s ) ei(S s

i-I

where

+ 0 for a- 0
(a)+ a -  a 0- . (1.1.6)

In Broyden, Dennis and More (1973), local superlinear convergence

of Broyden's updating technique was demonstrated; later, Marwil (1978)

showed that the same is true for the sparse Broyden technique. In an

actual computer implementation, however, the sparse Broyden method
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Schnabel (1979)) -- adaptively define A from A k - 1 as the iteration

proceeds. For example, Broyden's method (Broyden (1965)) derives Ak

for k > 0 through the following updating technique. After completion

of the steps in (1.1.1), A k+  is obtained as

Ak+l Ak + (yk _ Aksk )(ak)T/(ksk)

where yk . F()k+1 F(x ) (1.1.2)

Ak I  is chosen to solve the optimization problem

min{IA-AkI : A e Q(y k,sk)

where Q(y k,s ) m nxn : Msk . yk}

and 1-1 represents the Frobenius norm . (1.1.3)

A k+  is thus derived from Ak  by incorporating the new slope informa-
kk+I ,,k+I Qksk),

tion obtained in moving from xk to x A e Q(yks )" is known

as the quasi-Newton condition.

For large sparse problems the update (1.1.2) is inappropriate

since, in general, it results in an updated Jacobian approximation which

is dense. The sparse Broyden update (Broyden (1971), Schubert (1970))

avoids this drawback by imposing a further condition on the optimization

problem (1.1.3) so that sparsity is maintained. Using the notation of

Dennis and Marwil (1982), one obtains the sparse Broyden update as

follows:

Let
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CHAPTER 3

DIRECT SECANT UPDATES OF SPARSE MATRIX FACTORS

1. Introduction

Consider the general Newton-type iterative technique used to solve

for a zero of a non-linear system of equations. Given a function

F : Q c Xn + e, we wish to locate x* e Q such that F(x*) - 0. In

this chapter we shall be concerned mainly with the local convergence
0 A0

problem, i.e., given x and A as initial estimates of x* and

0 0F'(x ), respectively, we seek to iteratively refine this estimate, x

until it is within some prescribed distance e > 0 from x*. The

(k+l)s t step of the iteration takes the following general form:

k k k Ak nn
solve A s - F(x ) , A en

and set xk+1 . xk + kkk• (1.1.1)

Ak is chosen as some approximation to the Jacobian F'(xk). Dennis and

More (1974) demonstrated that, in algorithms of this type, local super-

linear convergence of xk  to x* requires limk+. - 1. Hence for

x close to x* we may wish to take X - 1. For the remainder of

this chapter, we shall set X - I for all k > 0.

There are many variations on the specification of A k . Setting

Ak - A0  for k > 0 results in the pseudo-Newton method, while

Ak M F'(xk) gives Newton's method. Quasi-Newton methods -- also known

as least-change secant methods (Dennis and More (1977)), Dennis and
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8. Quasl-Eevton Correctors

Most of the work involved in a predictor-corrector algorithm is

incurred in the corrector phase of the algorithm. As a corrector,

Newton's method is very reliable but also very expensive. In our

algorithm we attempt to reduce this expense by using quasi-Newton

correctors instead. Quasi-Newton techniques for large sparse systems do

not, in general, have a very strong reputation (Thapa (1981)). However,

there are certain differences between the corrector convergence problem

and the general root-finding convergence problem which suggest that

there are advantages to be gained from the use of quasi-Newton

techniques, rather than the more robust and expensive Newton's method,

in predictor-corrector algorithms.

First, the level of difficulty of each corrector problem is an open

choice; it can be varied by choosing different predictor steplengths.

Hence less robust convergence techniques are feasible. Secondly, it may

actually be better for the algorithm to take two short predictor steps

and use a less expensive corrector technique than to take one large step

and then use a powerful and expensive corrector technique to solve the

resulting difficult corrector problem. Not only is it possible that

less total work may be required, but also from the point of view of safe

path following the second strategy has the disadvantage that it is more

likely to lead to corrector divergence or, even worse, to convergence to

a point on another curve.

In the next chapter we examine the theoretical aspects Of quasi-

Newton methods for large sparse systems.
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(Xi,t j)

Figure 2.7.1
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Hence if M is large, dYn+i/ds is very small and a near-tangential

approach is observed. To distinguish between this case and the case

involving singularity of f'(i), we calculate the condition number of

f,(xO). A Newton-type iteration at level t - 1 is implemented only

if this condition number a[f'(x )] is less than a for some

prescribed a.

Whatever the reason for tangential or near-tangential approach, it

is clear that if C runs close to the hyperplane P - {(x,t) : t - 1}

over a significant distance, then it is necessary to trace C very

carefully in this region if we want to obtain a good estimate of the

point of intersection x - C n P. For those cases in which

-0
O[f,(O)J > -a, we refine the estimate x by restarting with

homotopy (7.4) and then carefully tracing C, rather than using an

iterative technique at level t - 1.

Another problem caused by tangential approach is the situation

illustrated in Figure (2.7.1). Here C touches P tangentially at

x, so that for the points (xi, t), (xj+l, tJ+l) we have tJ < 1,

tJ+ l < 1. To recognize such an occurrence in practice we check for

changes in the sign of dt/ds for t close to 1. When this situation

arises, x is located by carefully retracing C between (x , t )

and (x J+ , t J+ ) using smaller predictor steps.

41
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H(x,t) - f(x) - (1-t) f(-O) (7.4)

If f'(x) is singular then this strategy is not appropriate since it

is quite likely that the final iteration at level t - I will diverge

again. Fortunately, this situation can be recognized by the algorithm

in practice. If f'(x) is singular then by (4.2) the path C, obtained

from either homotopy (7.1) or (7.2), approaches the hyperplane {(x,t)

t - 1} tangentially. Tangential--or near tangential-approach may

arise, though, for other reasons. For example, if homotopy (7.2) is

used and x is very far away from x so that If i(x°)I > K for

1 < i < n and M > 0 very large, then

1 u(S) where u(s) - [-[f'(x(s))J- I f(x) ]

But

n[f'(x(s))] -! f(x) O

- 1 0 -- 1 -1 0> l[f,(x)j f(x )I - 1{[f,(X)j - [f,(x(s))] - } f(x )I

> kIM-E for constants kI1 > 0, C > 0

where c is very small for x(s) close to x

> kM for some constant k.

Hence

dYn+l 1 1 1

do u(S)- I[f,(x(s))lW f(x0 )1 -

40
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ii) As the hyperplane {(xt) : t - 1) is approached, tighten up

the error tolerances of the corrector sequences and the

predictor steplength control heuristics so that the curve is

traced more closely.

iii) Continue the algorithm until some point y = (x t is

located, where ti > I. Now if y(s) E (x(s), (t(s)) - Q(s)

is the most recent polynomial predictor which was used to

locate z (where a - arclength measured along C), then we

solve for x(6) where

(x(^), 1) - Q(8) (7.3)

If Q is a low-order polynomial we can solve (7.3) explicitly for

x(s); otherwise, we obtain an estimate of x(s) by interpolation

between y and y and then use the one-dimensional Newton's method

to solve the polynomial system (7.3) for x(s).

iv) Now taking x0 - x(s) as an initial estimate of x where

f(x) - 0, we use Newton's method or a quasi-Newton method to

solve f(x) - 0.

Divergence of the final Newton-type iteration at level t - 1, in

step (iv) above, results in failure of ths basic technique. Such

divergence means that the path following algorithm did not serve its

purpose, which was to obtain an estimate of the solution, x, of

f(x) - 0 which is within the domain of convergence of the final

iterative technique. One possible strategy, in this situation, Is to

restart the entire path following algorithm at (i0, 0) using a new

homotopy, e.g.,
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For updating techniques which do not allow good approximations to

the tangent directions by use of this method, we switch to either direct

-k
calculation of v or the use of a simpler predictor which does not'.

require knowledge of the tangent directions.

7. Terminating the Predictor-Corrector Algorithm

The task of tracing C may be carried out with one of two

purposes in mind: either all of C is of interest or only some

specific point or region of C is. If the first reason is true, then

the algorithm will be relatively conservative with short predictor steps

and tight error tolerances on the corrector steps so as to allow for

close curve following. If, on the other hand, the algorithm is being

used only to get to some endpoint then it attempts to follow C as

loosely as possible without losing the curve until the region of

interest is encountered.

The homotopy problem is an example of the case in which we are

interested only in a specific point of C. For example, if

H(x,t) t tf(x) + (1-t) A(x-x0) , A k RnXn (7.1)

H(xt) - f(x) - (1-t) f(x ) (7.2)

then we wish to locate y - (x, t) e C where t = 1. We then

have x as a solution of f(x) - 0.

The basic technique for locating y Is as I -'ws:

0i) Begin the predictor-corrector algorithm at (x ,0) moving

along C is the direction of increasing t.

38
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Figure 2.6.1
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kernel of H'(yk), where H'(yk) is calculated analytically or by

finite differences. In the case of quasi-Newton correctors, a less

expensive technique which works well in some cases (as discussed in

Chapter 4) is to update the currently available approximation to the

Jacobian so that it is correct in the two-dimensional subspace spanned

k-I ad(k k
by v and (y - z ) (see Figure 2.6.1). Note that this technique

requires two extra function evaluations at the end of the corrector

phase.

Exmple:

If Broyden's update is being used, and the current approximation to

the Jacobian is B, then let

T T

B (Y, BY -8-+ (Y2 - B 2)
1 11 8282

where

s1 M 6v for some 6 > 0

". 2 (kk )

8 -(y-z , for some 6 > 0

Y, a H(yk + s - H (yk)

-Y2 H(yk + s - H(y k )

Note that s*s 2 = 0 since all corrector steps are perpendicular to

kv . It is easily seen that if 8 is small enough, the matrix B is

effectively correct in the subspace spanned by {PSl,2).
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tw - Y for i1 1, 2, .. ,n (2.2.2)

where we denote

I'l 1u 12  U In

%C

JS

Z:r 1 2, 3, ... (2.2.3)

-:f 2()- for < " < n

(11

(L,, 1, L-2 ,i,,U,

SS

£or i - 2, 3, ... , n (2.2.3)

and

1 (11 12 In

"- t - ( L i l ' L i 2 . " ' ' ' L u .. -1 ' U t t , ..., U i n ) f o r 2 < i < n

- L1 ".. ' U',-1 U) for 2<i <n .

• " (2.2.4)
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Using (2.2.2-2.2.4), a least change secant update is used to determine

the rows of , U sequentially. Under the assumption that rows

k = 1, 2, ..., i-I of L, U have already been determined, then

whose components are the same as those of the ith rows of

U, is chosen as the solution of

min i -4 U (2.2.5(a))

subject to

i W Yi (2.2.5(b))

i Span Zi9 Zi} (2.2.5(c))

Condition (2.2.5(c)) maintains the sparsity patterns of L,U while

th(2.2.5(b)) is the quasi-Newton condition for the i row. Note that

the update of Dennis and Marwil (1982) is obtained if we impose on the

optimization problem (2.2.5) the further condition

-L

S ($ - *i) - 0 (2.2.6)

which holds L fixed. The next theorem gives the solution of (2.2.5);

the proof is deferred until Section 3.

Theorem 2.1:

Let Y Span{ziL' ZU}. The solution of (2.2.5) may be written

explicitly as
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.+-., ; _ + !- ! ! I p n + + I ..- , -' . -.:, + . r .: - .:

- [(S _ (i)T (S ,(i)))T

x (yt : W(i ) (SiY I iWay (2.2.7)

where w is determined iteratively, according to (2.2.3), by

S(1)s

n

I U -  if j-i-1
*a-i-I("i ) (1

i-1) otherwise

for i - 2, 3, ... , n . (2.2.8)
0

The convergence analysis of this update - presented In Section 4

-- seems to suggest that it should be implemented in a cautious type of

'S algorithm which allows for periodic restarts, similar to that used by

Dennis and Marwil (1982).
,.

• .2.3. Algorita I:

(1) Choose

0 n
x e R n  as an approximation to x*

m a fixed positive integer
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(2) Evaluate F(x0 ) and A , a finite difference (or analytic)

approximation to F'(x ).

(3) Factorize POA0Q0 - L0U0  using a threshold pivoting

0 0strategy, where PO, Q are permuation matrices.

(4) Solve

Lkwk  -P 0 F(x)

kk k
U t -V

k+ k k

(5) k1 -x + k

Evaluate F(x k+ )

If stopping criteria are met, then STOP.

(6) f k= ml, et 0 k+I
(6) If k - m-1, set x x , k - 0 and go to (2).

(7) Set yk - F(x)k+1 - F(x k ) and update the rows of L,U

according to (2.2.7).

(8) k + k + 1; go to (4).

For simplicity, step (4) is stated under the assumption that Uk

is non-singular. If Uk is singular after updating, the entire

0 k
algorithm is restarted with x as the current value, x . The

threshold pivoting strategy of step (3) is used to enhance the sparsity
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of L0  and U0  by relaxing the usual stability test; for further

details see Duff (1977). As with the update presented in Dennis and

Harwil (1982), periodic recalculation of the Jacobian matrix seems to be

necessary to ensure convergence.

2.4. Update II

The somewhat unsatisfactory theoretical requirement of Update I,

that periodic restarts are necessary after some fixed number of steps,

may be avoided if we work explicitly with L instead of L. We

employ a sparse version of the update in Johnson and Austria (1983).

Denoting N - L -1, i.e., NA - U, where N is a unit lower triangular

matrix and U is upper triangular, we consider the problem of directly

updating (NU) to (N,U) such that

Ny - Us . (2.4.1)

Condition (2.4.1) is the quasi-Newton condition, equivalent to

As - y. This problem is treated in Johnson and Austria (1983) where it

is assumed that N,U are dense triangular matrices. For the sparse

case we choose (N,U) to be the solution of the following

optimization problem:
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mini N-N+U-U I

subject to

Ny -Us

z N- ZU

N I for i1 1, 2, .. ,n (2.4.2)

The next theorem gives the solution of (2.4.2); the proof is deferred

until Section 3.

Theorem 2.4

The solution of (2.4.2) is given by

I -i T (i) - ii( Vi (S (S~ V)T

for i - 1, 2, ... , n (2.4.3)

where

(8 if i-i1

V ) Y921 iP ** 8V -an i (2.4.4)

I (U III U12, U1 )

(N, .** _, , .*., Ui) for i in2, 3, *.,n
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a - Ny - Us

X - Span tZ N, Z U) 0

2.5. Algoritbm II

This is similar to Algorithm I, except we may take m

(1) Choose x 0  R n  as an approximation to x*.

k + 0.

(2) Evaluate F(x 0 ) and A 0 , a finite difference (or analytic)

approximation to F'(x ).

(3) Factorize A 0 as N PA Q0 = U0 using a threshold pivoting

strategy, where P0 and Q0 are permutation matrices.

(4) Solve Ut k  _n-NkP0F(xk),

sk O ~k .

k+1 k k .k+

(5) x k x + s ; evaluate F(x

If stopping criteria are met, then STOP.

(6) Let yk . p0(F(x k+) - F(x k)) and update the rows of N and

U according to Theorem 2.4.

(7) k + k+1; go to (4).

2.6. Pivoting Considerations

We first note that Updates I and II are stated under the assump-

tion that the pivoting strategy is the identity, i.e., P A Q - L U

where P0 = Q0 - I. It should be clear that if P0 and Q0 are

nontrivial, then we can permute the independent and dependent variables
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so that we obtain a system with the trivial pivoting strategy, I, and to

which we can then apply the Updates I and II as stated above. This will

not be done explicitly here since it merely amounts to an exercise in

notation.

Updates I and II attempt to go directly from an approximation

(Lk,Uk) - or (Nk,Uk) -- of the factors of F(xk) to an approximation

(Lk+I,Uk+l) -- or (Nk+I,Uk+I) -- of the factors of F(xk+l). In

essence this requires assumptions on the continuity of the factors of

F'(x) and on the persistence of the pivoting strategy as we move from

one matrix approximation to another. The following two theorems

establish the validity of this process.

Theorem 2.6.1

Let A : + n, and suppose that for some x0 c Rn, A(x 0)

is nonsingular, and that there exist e0 > 0 and yi -  0 such that

leT[A(x) - A(y)JeJ < YIJ x-yl

for i,J - 1, 2, ... , n and for all x,y c N(x 0 ,
0 ) - (z nz-x 0

0CO 0). If the LU decomposition without pivoting exists at x

A(x 0) - L(x 0)U(x 0), then there exists E > 0 such that decomposition

without pivoting exists at all x e I(x 0c). Furthermore, there exist

constants c0 ,d0 > 0 such that

IL(x) - L(xO)I <c 0olx-x 0I and IU(x) - U(xO)I < d ox-x I

00
for all x c 18(x 0 ,). 0
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Proof: See Dennis and Harwil (1982).

Theorem 2.6.2

Let A : Rn Rnxn be continuous and nonsingular at x*.

For any threshold pivoting strategy, there exists > > 0 such that if

e N(x* , T) and if (PO QO) is a pivot sequence for which

P A(x )Q has an LU decomposition without further pivoting, P A(x )QO

- L(x ) U(x ), then P A(x*)Q can be factored without further

pivoting. 0

Proof: Similar to Dennis and Marwil (1982), Corollary 3.5.

Note that by the Banach Perturbation Lemma (stated below), which

establishes the continuity of L-1 as a function of L, we obtain as a

corollary of Theorem 2.6.1 the following

Corollary 2.6.3

With the same hypotheses as Theoem 2.6.1, there exists c > 0

such that UN(x) - N(x0 )1 - NLI(x) - L-(x O) I < c 0 x-x
0 1 for all

0x E 1(xOc). 0

Theorem 2.6.4 (Bauach Perturbatiou Lema 115])

Let A,C e a n xn and assume A is invertible with A-1 < a.

If IA-CU < and ao < 1, then C is also invertible and
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IC- I < a'(I-ap) .

3. Som Sparsity Relationships

3.1 on-cAa1elation Asamption

The updates in Section 2 are defined in terms of the sparsity

patterns of L,N and U. The sparsity patterns of these factors are

generally not given as input to the algorithm but instead are defined

during the factorization process. The sparsity pattern of F'(x) and

A0  is, however input which is given to the algorithms of Section 2; it

may be specified by the user or predetermined by some separate sub-

routine. In this section, some results concerning the sparsity patterns

of the factors are established. But first, we need an assumption on the

way these patterns are defined during the factorization process.

Consider the reduction of a matrix A to upper triangular form by

Gaussian elimination. Without loss of generality, assume here that

P - I whre P is the permutation matrix representing the p1(voting

strategy, i.e., A - LU, where L is unit lower triangular and U is

upper triangular with non-zero diagonal elements. The process takes

place in n steps as follows:

Am = r 0A where r0 - I

A(1+1) - r A(i) for i - 1, 2, ... , n-I (3.1.1)

where
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iTri-I+ e l

iR 0 for j i

and

A(n ) - U (3.1.2)

Thus

n-n n-2 eN- r n_1 rn-2 see r 0 - T (I + en- n-i)
i-I

-I -1 *1 n-i i T n- i T
L 1 .. rn- ' (I - e ) = I - eT . (3.1.3)

i-I i-il

At the (i+l)st stage of the reduction, the elementary matrix ri

preaIltiplies A 1 )  to reduce to zero all elements of the ith column

of A( , which are in rows r for r > i. However, unexpected

zeroes may arise through cancellation in other columns in positions

where, formerly, there were non-zero elements. The non-cancellation

assumption says that, in defining the sparsity pattern of A(i+1) at

the (i+l)st stage, accidental zeroes which arise are treated as small

non-zero elements. No advantage is taken of unexpected zeros to reduce

the density of the matrix A(i+l) and of subsequent matrices A(1)

for I > i+1. This is equivalent to defining the sparsity patterns of

L and U as the sparsity pattern of LU factors of maximum density

that can be generated from all matrices that have the same sparsity

pattern as A.
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ftample 3.1.1

1 2 1 2 1 0 0 0

AM 1 4 2 2 -1 1 0 0A -
)

0 2 9 0 0 0 1 0

0 0 0 1 0 0 0 1

1 2 1 2 1 0 0 0

A(2) 0 2 1 0 0 1 0 0

0 2 9 0 0 -1 1 0

0 0 0 1 0 0 0 1

1 2 1 2

A(3) 0 2 1 r3

0 0 8 e

0 0 0 1

and

A - A(3 )  hence U - A(3 )

The symbol 0 is used in the above example to denote zero elements

which are treated as non-zeroes for the sake of defining the sparsity

patterns of the factors. The acceptable sparsity pattern for U in the

above example is given by
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0 * * * 0 * * 0
and not by

0 0 * * 0 0 * 0

0 o 0 * 0 0 0 *

here * denotes a non-zero element.

The non-cancellation assumption is also extended to the generation

f the sparsity pattern of N. We assume that no cancellations occur in

he generation of N according to (3.1.3), i.e., the sparsity pattern

f N has the maximum density that can be obtained from all possible

actors having the same sparsity patterns as ri  for i - 1, 2, .,

*ample 3.1.2

1 0 1 0 1 0 0 0

A() I I 1 0 -1 1 0 0

1 0 0 1 -1 0 1 0

2 0 0 3 2 0 0 1

1 0 1 0 1 0 0 0

(2) 0 1 0 0 0 1 0 0

0 0 -1 1 0 0 1 0

0 0 -2 3 0 0 -2 1
m -4
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1 0 1 0 1 0 1 0

Ao4 0 1 0 0 -1 1 0 0
- N-r I3r 1 =

0 0 -1 1 -1 0 1 0

0 0 0 1 0 0 -1 1

The sparsity pattern of N is taken to be

* 0 0 0 * 0 0 0

* * 0 0 * * 0 0
and not

* 0 * 0 * * 0

* 0 * * 0 0 * *

Here N41 was set to zero by an unexpected cancellation while

multiplying the factors Fi , so we shall consider N41 * 0 in

defining the sparsity pattern of N.

3.2. Sparsity Results

Let

Y,=Span {iL, ZU) and X, Span FzN, Z U1

The following theorem establishes the basic relationships in the

sparsity patterns which we shall need.
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a4.2.1

If 15( -
) -*(i)! < 26, then for 6 small enough there exists a

> 0 such that pISYi(U(i))I > ISYi(s)I.

'roof:

TYt(W M [ Y((t))] [TY(s)] , by Lemma 3.2.2

Y Y JY,
T (s) [T (U)j [T( )) ](. (4.2.1)

Now uiO)-u*(i) ! < 26 implies ITYi(U(i))-iYi(U*(i) )I

( 26 and we know that TYi(U*(i)) is nonsingular. Therefore by the

Banach Perburbation Lemma, for 6 small enough and it -U*(i)

< 26, there exists pi > 0 such that [TYi(u(i))]-  exists and

0 <fN[Yi(u(i))]-If < p. Substituting into (4.2.1), we get

< pIT i((i))I where p - max(p}
i

The required result now follows by noting that for any v e

IT A(v)I - IS (v) for any subspace A ¢ . 0

Denote - (L I'" i, L*i i .. i ) and let

x + a.
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Iv-uI < IF(v) - F(u)I < plv-ul for some p > 0

le following lemma gives a result analogous to (4.1.1), but obtains a

ighter bound by exploiting the sparsity pattern.

-a4.1.1

There exist e > 0 such that if o(u,v) < c, then

zA

IF (v) - F (u) - Fj(x*)(v-u)l < i(uv) IS i(v-u)q for some K > 0

roof: Let y -F(v) - F(u) and s - v - u.

lyi - Pj(x*)s" I-Fl(u+ts) - Fj(x*)jsI

for some 0 < t < 1 by the mean value theorem

- U[F'(u+ts) - F'(x*)I (S ic())A since zA zF'(x)
i i

ZA

K ilu+ts-x*I IS i(8)3 by assumption (c)

A

< Ka(u,v) IS i(s)i where K - max{Ki  •
i

.2 Covergece Results

Denote A* - F'(x*) - L* U*. We assume, without loss of

enerality, that the pivoting strategy at x* is the identity. The

ollowing lema uses notation introduced in Lemma 3.2.2.
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¥n (v e mn : vW (i) =yi}

Proof of Theorem 2.4

We verify easily that ti C Xi and zi v( ) -0. But these

imply the feasibility of L, U. Optimality and uniqueness now

follow as in the proof of Theorem 2.2.

4. Convergence Analysis of Algorithm I

4.1 Properties of Function F(-)

Let 1l1 denote the 12 vector norm or the Frobenius matrix

norm. Assume F satisfies the following conditions:

(a) F : In + Mn is continuously differentiable on an open

convex set 0 c In .

(b) There exists x* c Q such that F(x*) = 0 and F'(x*) is

nonsingular.

(c) There exists K > 0 such that IF'(x) - F'(x*)l < Ktx-x*l for

x c 0. Or, equivalently, we have that there exist Ki > 0 for

i - 1, 2, ..., n such that lFi(x) - F'(x)l < Kigx-xfI for

all x,x C 0.

Denote o(u, v) = max{Iu-x*l, lv-x*I}. By Lemma 3.1 of Broyden et

al. (1973) we then have that there exists E > 0 such that if

c(u,v) < C, then

IF(v) - F(u) - F'(x*)(v-u)l < KC(u,v)lv-ul (4.1.1)

and
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where TYi(uji) is nonsingular since it is an upper triangular

matrix with non-zero diagonal elements. Therefore Tyi(s) - 0 which

imlies S i($) - 0. Since ZA c Yi by Lemma 3.2.1(a), we get

S i(s) - 0. Now

Y- = Fi(x + a) - Fi(x)

e TF'(x + ts)s for some 0< t< 1 by mean

value theorem

zA

- eT F'(x + ts)(S '()] since A and F'(x) have same

sparsity pattern

ZA

M 0 since S i(a) - 0

Hence i (i) 0 - yi and I() is feasible.

We verify the optimality of *i by considering any other feasible

vector

y Y,1-4 1, 1[Cs I ¢i))T SI s(W~i))) ¢Yi- I W¢i) ) (s '¢ ¢i) ))T a

= ,[ s i (i))) T  (s i((i)))? ¢ i )  (S ( u< ))) (S ¢i( i, )) !V

since i (i) - y

__ n4 i - i•

Uniqueness of the solution follows from the convexity of the

feasible region
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since w + 0. But A(I )  is non-singular since A is LU

factorizable without pivoting. This is a contradiction. Therefore

i(A (1) ) must be non-singular.

3.3 Proof of Previous Lema

Nov that the sparsity patterns of L, N and U have been clearly

specified, we proceed to verify the assertions in Theorems 2.1 and 2.4.

Proof of Theorem 2.1

We first check feasibility of the stated solution. Since C Y

and SYi(W(t)) C Wts then I C i by (2.2.7). If sYi( (1)) 0 o,

then from (2.2.7)

i () = I () + [(s Y I(W(i)))T (sY I(W (t))M (Yi - $i °( t ) )

(s 1) i))T (SY, W(i)

+ *j ,(i) + ( - ()

" y1 "

If SYi(W(i)) -0, then 1 and w (i). 0. This means

that i(1) is feasible only if Yi - 0. But sYi(W(i))  0 implies

TYi(W(i)) 0 . Thus

( ) T-(W T i(U~ )- [T_ i i7 [T (
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Proof:

SXi(AWl)S) - i(A W( ) ]a

.- i(A(i)

since s (AL)) - s1i(A~i) by Lemma 3.2.1(b)

(. ' (A~i) [sXi(s)l ]

It now follows trivially that TXi(A(i)s) - [TXi(A(i)

[TXi(s)]. Now let X(Xi) -t l , ij, ..., i a) and assume et(A(i)

is singular. Then there exists a w e Rm  such that w . 0 and

VT- T[TXi(A(i))] - 0

Define w c in by

Wk wr if k c X(Xi) and k - ir

0 otherwise .

Let v - vTA(i). If s c x(Xi), s q then

v - wA(i)m - o ,
s rex(Xi) r rs q

and if . # X(X1), then by Lema 3.2.1(b), AMt - 0 for allre

r e X( 1 ) and hence va - 0. Therefore v - TA(') a 0 where w + 0
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V;-W; -7 7. :-- T -7 - 6 7. -C W., . - .i_ ___- .

Now eliminating the zero rows and columns J for j Yi we get

Si ( u(i)). [ji(U (i) ] [/i(s)]

Lm 3.2.3

If

A 1  A 1 ,

Am AI_, A I ~- AI, n
* 0

* S

A( I  - AI_ * * . ll*_ • i5

-1

-1!
.0

0
then

x WJ ( ) x i )
S ~(A i8s) - [gi(A~i)] [si()]

and

x ~ i i)i) xT I(A )), [T '(A i )  [T I(a)

Moreover Xi(A(i)) is non-singular.
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lai 3.2.2

if

U 1 1  U 12  u U~

u~i)u i-li-iu i1,n

10

0

SI

U (U S) -r -. ' Ui '

s [u~~)- S [5 i(8 )J)

sic S (U by definition.1a

S Y ~u~i [S~ ()
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the projection operator which sets to zero those elements of the matrix

with row index i for i J x(A), i.e., for H e

0 , if a z X(A)

. M 
otherwise

cz'

'-A nxn + txnSimilarly define S R + l

I 0 if c X(A) or p X(A)

SMa otherwise

We also define the associated collapsing operators T, T If

X(A) - "ilt i2, ..., imI

where m - rank A and i1 < i2 < *- < im

then define TA : Rn + e by

T A(v) - (Vill v 2 ' ... V i) where v- (vl, v2, ..., Vn)

'-A jnxn + mxm
and T :R *R by

H seeMMil,lI ili m

M M

9 I m'm
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4. A4 W -, R M74 't L. 7 T -- -,*-

(p+44)L
W Span[j : J Ux(Z ) U (i,p)}

MSpani AZ Ep + I )  Lp

- S:nZ x(Zi )}•

Therefore (c) is true for k - p.

Similarly

p N A(p+)
Xp "U Span{Z p , Zi }

- SpanX~p x(P- 1)  0i p

- Spanfx~~ IZ XZ lN

- Spant : J e x(Z u x(Zt )} by induction hypothesis

= Span{ZA : j C x(Zi 
)}

which verifies (d) for k - p.

Now deduce by induction that (c) and (d) are true for k - 0, 1,

... , n-I and hence (a) and (b) are true. 0

We now prove some sparsity results which will be used later in the

convergence analyses of Sections 4 and 5.

Notation

We already have SA : Rn  K , for some subspace A, defined

as the projection operator into the subspace A. This notation is

extended to matrices as follows: Let S Xn . XnK n be
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C~e(II): I ade

Since e ()we have

-LP (P-H)

an{Z z o}}l-

- Spanispanizi e p }, Span{Z ,z(I i

-L P 1  A()AP
- Span{SpanfZ i , 1  }, Spanfe pz p

pp

by induction hypothesis and e cZA
p

= Span{Span{Z J ~ )1 1 Z

- Span~spanfZA j C X(iLp )J, Span[z~ (p) ZA }

since j f X(ZP ) implies j < p

-SaipnZA j L£ ZAp+I) (p+I)

(i )}ppn
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:Cusm (11): 1 > p and ep  ZA(P)

Since ep j 2(P) we have

e TA(p+1) T e T.. e T p-1 T p TLp-1, eA et A, e = - eN, eiL - eLl

and

z A(P+) ZA(P) NP Np- 1  LP  Lp - 1

Then

P Span {ZI , (P)

-Span jL p1  A Lp-I

w : Span((Z i  ) } by induction hypothesis

A(p) -L p - 1 A(P)=Spanit fz :j X(Z I
- SpanihZ : j x(Z i  )}, Z }

SpanffZj~ + I_  : jE•X(Z ).,- }

_p I  A() API

since j C X(Z ) implies J < a and Z I  = Z t

Z (p+l) Lp

- Span(Z: j C x(Zi ) .

Therefore (c) is true for k - p. Similarly (d) is true for k = p.
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ZA Lo

,- ZA - Span[ j c X(Z

o A NoX i . z ia Span[Z j C X(Z

Thus (c) and (d) are true for k - 0.

Assume (c) and (d) are true for k - 0, 1, ... , p-I < n.

We shall consider three cases. Note that CP 0 for a < p
a

where J is defined in (3.1.2). Therefore

eTA(P+) eTA(P) eTN eTNP- , eTLP- eTLp-L, for a< p

and

ZA(p + l)  ZA (p ) , ZN P . ZN p - I , Z L P  Z L p - 1 o
a a a a a for _<p

Case (i): i < p

-y Span{ p  zA(

L-1  A(P
- Span{Z 1  A

(p)p-
o Span{Z p  . J X(ZLP)} by induction hypothesis

SA(P+l )  Lp LP-I
SpanZ i C x(ZI )} since j X(Z ) implies j C p.

Therefore (c) is true for k - p. Similarly (d) is true for k - p.
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Theorem 3.2.1

(a) Y - Span{Z : j C x(Z) 

(b) X - : X(z ) •

Proof: Let

NJ - r r j1 ... r, o < j _ n-I

LJ  - *** Or < n-I

I).i -L _A~j l

Y, Span{Z 1 , }
-- Nj  A (J+ 1)

"Xi MSPan{Z I ,Z }

Then Y, - and Xi - ei

We shall show by induction that

(k+i) k
-I A L -

(c) k - Span{Z1  : j C x(Zi )} , k - 0, 1, ... , n-I

and

(d) Xk - SpanZA :j e X(Z £ , k - O, 1, .., n-i

The statement of the theorem is (c) and (d) for k = n-1.

Consider the case k = 0
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1am 4.2.2

There exist e > 0, 6 > 0 such that if o(x,x) < e and

- *(i). < 26, then there exists a p > 0 (depending on 6)

such that

, . 2 < Ii - 1* 2 + 2p 2 [(,ca) 2 + IL*2 (I) _ u*(i),2]
=.th

for i - 1, 2, ..., n. Here L* denotes the ith  row of L* and

a - a(x,x).

Proof: Let w(i) Syi(w()). Then from (2.2.6) we obtain

(i) -(i)T _(i)T:: i 4>[ - ,i~i - > ) [z (i)T -¢i) ] + (i )¢tz i

(4.2.2)

Now

-MT 0,- OV (1) 12i)) [1 -(i)T -(i)l 2 I)i -Op) w I2
- p -T;i - i-li - 1 ( i) ! 2

w w A

< N i - OIt2 (4.2.3)

and
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,. n(yI _ ,[ wi() 4(1)1

(~i)) W _ (i)_

R. I(Y - Ats) + (s* U(s - )) A(i)T (i)

where A* is the ith row of A*
i

lyi - Asl IL*(U(t ) - U*(())sl
< - (i )  + ( )  (4.2.4)

II

Now using Lemmas 4.1 and 4.2.1 we get

A
NY, - A*so Ka(x,x) IS i(s), p A c (4.2.5)

_< Y< pa since Z(n ( i u pI n
Ow I p Is 1(8)

and using Lemma 4.2.1, we get

%y

)- U*i))s BL*ip Y(9(1 ) - ut(i))I Is (s)I
< -1

I I i p is i(s) I

": < pIl*TI, IUMi  - Ur*(i) ! (4.2.6)

Substituting (4.2.5) and (4.2.6) into (4.2.4) and then substituting this

result with (4.2.3) into (4.2.2) we get
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n *2 --2 _ *) I 
- _(i))1 2 + 1( - w(i) t  2

by orthogonality of vectors on right hand side of (4.2.2)

< n, - ,*)n2 + [iCPo+ pRL'l RU("t) - U*(i) 112

< - *)n + 2p2 [(K) 2 + L1N2 IU(i) - U*i) 2]

2 2 2since x yI < 21x 2 + 21yl2  0

The next lemma converts this result into a convenient form.

L 4.2.3.

There exist 6 > 0 and e > 0 such that if a(x,x) < e and

1  U(i) - *(i)l < 28 then there exist constants kl, k2 > 0 (depend-

ing on 6) such that

IDt - Dl < kIID- D 2 , for i <i < n

where

*2 i2

Di" Di and D*-
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Proof: Iu(') - U*(') < 26 implies nj(J) - 5*(l < 26

for j - 1, 2, ... , 1. Hence by LeAmma 4.2.3,

, - *, < ,0 - *,2+ 2p2 2Ga + 2,L.I2 P2,jj(() I

for j = 1, 2, ..., i. (4.2.7)

Let

i 2
Ri J1 j - *I- ID - DjI

Noting that U(j)- u*(J)12 < R -1, we get from (4.2.7),

R - R < r + k RJ_ (4.2.8)

2 222 2 2
where ro - 0 and rj - I j *12 + 2picr for j > 0 and k> 21L*jp

for j > 1.

Now iterating (4.2.8), we obtain

R < r _ + (l+k) R _

i
_ (I+)i r j
J=0

<K X r=.. , where K > max{(l+k) j 1
i.1i .1

That is
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2 2 2 2 22
J=O

<k2IDi - Dt12 + k2 a2

2 2 2 2
2 22

where k I 2 K and k 2 . 2n p 2 K K.

Now using the fact that a,b,c > 0 and a2 < b 2+c2  imply a < b+c,

we get the desired result.

Theorem 4.2.4 (Linear Convergence)

Given m a fixed positive integer and r e (0,1), there exists e > 0

such that if Ix0 - x*1 < e then Algorithm I produces a sequence x
k

for k - 0, 1, 2, ..., which satisfies

Ix - x*I < rixk - x*1 , for k - 0, 1, 2,

Proof: By Theorems 2.6.1 and 2.6.2 we can choose 1 > 0 such that if

Ix-x*I < c then there exists a constant c0 > 0 such that

IL(x) - L* + U(x) - U*3 < c0 IIx-x*l (4.2.8)

and If P0 A(x)Q0  is LU factorizable for some pivoting strategy

(P0,Q0), then P0 A*Q0  is LU factorizable. Without loss of

generality, we shall assume that the pivoting strategy, (P0,Q0 ), is the

identity throughout. Now choose 0 < e < e and 8 > 0 to satisfy

82

* . *.ii. ,,d/ Ad 2 i'* em i aro a at -. . . .. - - l~~- ~ *~



y(l+r) [ice + 2 6 (&+y)] < r(I-r) where y - max(IL*I, IU*I} (4.2.9)

-
a

-k_ )}e 26 . (4.2.10)([max(l, kim co + k2( I -k21j 6(..0

Note since kI , k2  depend on 6 we choose 6 first and then take

e small enough so (4.2.9) and (4.2.10) are satisfied.

Since

x* = x -x*- (A-) - 1 F(x k )

- (Ak) - 1 {[F(k) - F(x*) - F'(x*) (x -x*)1

+ [Ak - F'(x*)] (xk - x*)1

we have

Ix k+ 1 - x*3 < I(Ak)- I [NF(xk) - F(x*) - F'(x*) (xk-x*)u

+ lAk - F'(x*)I tIk - x*3} . (4.2.11)

Using the notation F'(x) - A(x) - L(x) U(x), we note that if

Ix-x*I < e < e,, then IL(x) - L* + U(x) - U*I < C0  < 26 by (4.2.8)

and (4.2.10). Hence IL(x) - L*I < 26 and IU(x) - * 26 and

IL(x)I < IL(x) - L*E + lL*I < 2 8 +y. Hence
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IAWx - A*I - IL(x) UWx - L* U*I

< ILWxI IUWx U*I + IL(x) -L*I IU*U

< (26+y)6 + 8y -26(M+y) .(4.2.12)

Now using the Banach Perturbation Lemma (Theorem 2.6.4) and

26(6+y) y(1+r) < I from (4.2.9), we obtain

-1 1+r
E[A(x)] I < y(-) .(4.2.13)1 r

We now use a triple induction to show that 11(k) is true for

k -0, 1, 2, ... , where

H(k) =-fix - x*I < r~x k _X*I and ID - D*I < 281
n n-

with Dkas defined in Lemma 4.2.3 . (4.2.14)

First we show H(O) is true.

By (4.2.8) and (4.2.10), IDO - DaD < 26 and from (4.2.11) and
n n-

(4.2.13)

Ix 1-x*E < Y( +r ) IF(x 0) F(x*) - F'(x*) (x0-*l+ 26(6I-y) I X1

1+r

< I~ ) Icc + 26(6+y)) Ox 0-x*I using (4.1.1)

< rix 0 x*I using (4.2.9)

Hence H(0) is true.
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Now assume H(k) is true for k - 0, 1, ... , pm-i. We shall first

verify that H(pm) is true and then, by induction, that H(k) is true

for k - pmsi, pmi2, ... , (p+l)m-1.

Since Ix k+  - x*5  < rixk - x*U for k - 0, 1, ... , pm-i, we have

that Ixpm - x*1 < e. Now since Ap m - A(xpm ) by definition of a,

we can show H(pm) is true in exactly the same way as was done for

H(0) above.

Now asume H(k) is true for k - pm, p.+l, ... , pm+J-1 with j < a.

Denoting q - pm+j-l, we first show IDq - D*I < 6 by induction on
n n-

rv i.

Note that by induction hypothesis on k we have

ID(k _ D! 2 , for 0 < k < q
n n

Hence

IDk- D*I<26, for 0 <k <q and 1 <i <n .
i i__

Thus

I(u k) ( 1W - (U) (0)1 < 26 for 0 <_ k_< q and I < i < n .

(4.2.15)

Therefore by Lemma 4.2.13

+1kID +  - nj* < k D * + k a for 0 < k < q-1, 1 < i < n

(4.2.16)

For i - 1,
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,0 - D41 < k1 l , 1- D + k28

< kq-1PID - q, + k + klq_ 1 + + kq-M )

< [[max(l, k) m Co + k 2 ( kI

< 28 by (4.2.10)

Now sume - D*- < 28 for 1 < I < i. Then ,(Uq)(i) - (U*)(i)
It I -

< 26 and by Lemma 4.2.3

'Dq - D* I < k IDq- 1 - DPl + k

1 - km

[[max(l, kl)lm co + k 2(l k1)]e by iteration

< 26 by (4.2.10)

Hence by induction on row i we now deduce Dq - D*H < 26. Now asn n-

in (4.2.12) and (4.2.13) above, we deduce that

IAq - A*U < 26(6+y) and I(Aq)-il I+r

since ILI - L* + Uq - U*, - lDq - D*I. Hence from (4.2.11)
n n
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nxq+ 1- x*n < Y(Ii) {IF(xq ) - F(x*) - F'(x*) (xq-x*)i

+ 2 6(6+y)I xq - x*I}

1+r(-r-) {kc + 2 8 (8 +y)} fix - !

< fixq - x*1 from (4.2.9)

Therefore H(q) is true and hence by induction H(k) is true for

k - pm, pm+1, ..., pm+m-1. Completing the induction we deduce that

H(k) is true for k - 0, 1, 2, .... D

Theorem 4.2.5

With the same hypothesis as in Theorem 4.2.4, the sequence x for

k - 0, 1, 2, ... Is m-step Q-superlinearly convergent to x*.

Proof: Setting p - am for a - 0, 1, 2, ... we have

N(Ap-A*) (xP+1 - xP)n < IAp - A i + 0 as p +

!xp + 1 - xPI

By Theorem 3.1 of Dennis and More (1974), this implies

Ip0 as p .

xp - x*
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Convergemce Aalysia for Algorithm I

Update II is a sparse version of an update presented in Johnson and

itria (1983). There it was demonstrated that if a certain bounded-

:erioration property was satisfied then the algorithm is linearly

ivergent. The following theorem is paraphrased from Johnson and

itria (1983) to conform with our notation.

Borm 5.1.1

If F(-) possesses the properties of Section 4.1 and the Update II

tisfies

IUk +  - U* + N -N *I < [1 + a1a(x k , x k+ )] IUk _ U* + Nk  N*I

+ a2(xk, xk+1) (5.1.1)

en there exist c - e(r) and 8 - 6(r) such that if

Ix - x*I < C

IU - U* + N0 - N*I < 6

(Nk, Uk) is defined by Update II for k > 0 , (5.1.2)

en the sequence {x k  defined by Algorithm II satisfies

Ox k+  - x*I < r ixk - x*I , for k - 0, 1, 2,

reover, INkI, IUkI, I(Nk)-lI and I(Uk)-11 are uniformly bounded.
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Hence, to establish linear convergence, it would be sufficient to

verify that the bounded-deterioration property (5.1.1) is true for the

sparse Update II.

Linm 5.1.2

There exists a constant k0 > 0 such that if a(x, x) < e for c

small enough, x - x+s and y - F(x) - F(x), then

INy - qsI < k0 a(x, x)I S (s) I

where N*, U* are the it h rows of N*, U* respectively.

Proof:

INpy- U*s, - IN*(y - A*s,

M I I Nj(Yj - A*s)I

where n X N(Z ) and A* is the j th row of A*

<k1 . (yj - A)s, where k, - max {IN*1)
j en) j C T1

ZA

< a . o(x, X) IS i()l by Lemma 4.1.1

zA
zi

<kI Ka(x, x) J S I(W)
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L
< k KCY(X, X) *rank(ZL is (IS

i

where A,- Span{ZA j c X(Z N}

k k0 a(x, x) is (s)I

where k 0 n and X,- A, by Theorem 3.2.1(b).

5.2.2

rhere exist constants p1I > 0, P2 > 0 such that if c(x, x) < e

e small enough, then

I P for I1< i<n.
P1 Is (v )I

: Let AM be as defined in Lemma 3.2.3. Then using Lemma

,we have

ii A*(i)s + G1 (x, -X, s) (5.1.3)

Gi (x ~ - :x, x, s) * for j < i-1 514

z A
gj(x, X, s)I. < sa(X, X) IS i(8)fl (5.1.5)
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From (5.1.3)

T x (v ) T xiI[A*(i si + T [G (x, X, 8)1 (5.1.6)

T i [A*(i) sJ - IT i (A*(i)1 l T i (s)] from Lemma 3.2.3 (5.1.7)

ad

xi i
IT [G (X, X, 8)II

z

< ici(x, X-) IT (8)5 where k-n max{Icj

xii

< i O(x, -x) IT (8)l since A, X, by Theorem 3.2.1(b)

(5.1.8)

ubstituting from (5.1.7) and (5.1.8) into (5.1.6) we obtain

IT(i ) Ti 1A()) + k ci(x, -X)] IT t (s)l

< p1i IT i(S)l where p1i is a constant chosen greater

x
than IT i(A*(i))s + ka

< p IT (S)U where p, max{KI (5.1.9)
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Now let MI 
= Tic*(1)). By Lemma 3.2.3, M is nonsingular. Thus

from (5.1.7)

x x x,
T (a) M H1 [T (v Mil H T [G (X, i, a)]

IT i(s), < IM1 , IT i(v )I + M1,I ko~x, x) IT (s)1 using (5.1.8)

Hence

(:: [1 - iU in o(x, x)] UTx'(s) I < wI lIrrx (v )•

If a is small enough so that 1 - IiiN ko(x, x) > 0, then

x x
IT (s)I < P2IT i(v )I

where

P2  -xx t  / o - -c 
I ix, z))} (5.1.10)

The result now follows from (5.1.9) and (5.1.10) by noting that for

* any v c En, ISA(v) - IT (v)I for any subspace A. 0

Theorem 5.2.3

Update II satisfies the bounded-deterioration condition (5.1.1) of

Theorem 5.1.1.
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Proof: We show the result for successive pairs (N,U) ii, U)

where x, x - x+s are the corresponding successive points and

y - F(x) - F(x).

, Denote

D -N - N* , D- N -

E -u , E-U U*

a* Ny -Us, a- Ny- Us

Then from (2.4.3)

i i(D i + E ) if Is (V)1 0

(D i+ E) -

(Di + E) - (vS t (v)T /INS I(vi ) 2 otherwise

'-' (5.1.11)

Since

.i i iy Uis

- (Diy - E s) + at

i i
-(D + .) i + a*

- (Di + EI) S i(v ) + 0& (5.1.12)

:d we have, for ISXi(vi)l + 0,
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(D +i) " (D1 + Ei) - [(D i + E ) vi + ,] [s ( )f /isjL(v 1 2

T T

(D1 + E1) J 1 ) - heev = Sl(v )•
viv vv

(5.1.13)

Thus for IsXI(vi)I + 0,

T T

D+ + i(  )2T . 3(Di + Ei) ( T -

viv viv
i i i i

2 I(Di + Ei)v i 1
2

" IDt + EtI - v2 (5.1.14)

and for IsXi(vi)u - 0,

ID + E I ID + EI . (5.1.1)

Let W c xf satisfy

D i+ E if Iv 1 0

Wi
T T

D i + El + a*, Vl/(Vi V) otherwise

and let

£7g {i IV rIn + 0)

Then
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,+ El N< IW, + [ 2]112

i e Iv i 
( 

2

But from (5.1.14) and (5.1.15)

2 2 I(Di + El) Iv 
2

IWI - ID + El - :1.n IVi 12

= (1-0) ID + El 
2 ,

where F21/
e(D 1 +E) 12 ND + EN2  0 < 6 < 1 (5.1.17)

and from Lemmas 5.2.1 and 5.2.2, for i c %,

xi
Iz:I ko ,(xx) is (s)N

IV,, <- 2 
k
0 P2 o(x,x) . (5.1.18)

Substituting from (5.1.17) and (5.1.18) into (5.1.16), we get

nD + ElN < V(1-) ND + EN + 0 a(x,x) where 0 - /n k0 P2  (5.1.19)

Thus the bounded-deterioration property (5.1.1) is satisfied with

a - 0 and a2
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Theorem 5.2.4

Algorithm II is Q-superlinearly convergent.

Proof: The strong form of the bounded-deterioration condition (5.1.19),

with a 0, is sufficient to ensure Q-superlinear convergence. The

proof proceeds among the same lines as Theorem 3.5 of Johnson and

Austria (1983) and will be omitted here. 0

6. Concluding Remarks

The non-cancellation assumption is essentially a non-degeneracy

assumption, similar to the case for linear programming. Without it,

Algorithm I is probably still convergent since periodic restarts are

necessary anyway. However, it seems unlikely that the Q-superlinear

convergence of Algorithm II will be preserved if we underestimate the

density of N and U. It is interesting that the use of the non-

cancellation assumption eliminates a problem encountered in the update

of Dennis and Karwil (1982). There it was necessary to forgo updating

any row for which the norm of the projection of the previous Newton

step, s, onto the sparsity pattern of that row was too small. For

Updates I and II we were able to demonstrate that these projections

never get too small relative to s.

The theoretical justification for Update II appears to be much

stronger than for Update I, since Q-superlinear convergence is ensured

without the need for periodic recalculation of the Jacobian matrix from
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scratch. However, it should be noted that this desirable property is

not achieved without cost. In general, N will be less sparse than L

and so Algorithm II will incur a greater storage cost than Algorithm I.

In some pathological cases, N can be full for an extremely sparse L,

for example, if

>0
1 1

L-
0 0

0 0

Fortunately, for sparse problems we have such greater leeway in choosing

a pivoting strategy than for full matrices - see Duff (1977), Reid

(1971) -- and the above example can usually be avoided even when A is

tridiagonal, by using appropriate row and column permutations.

It would be useful if an update could be found which also allowed

changes in the pivoting strategy, i.e., starting with (P,L,U) where

PA - LU for some permutation matrix, P, find an appropriate updated

triple (P,L,) where LUs - Py. This deficiency in Updates I

and II would seem to suggest that they are of limited value, since any

attempt at global application must quickly fail. However, they find a

useful application in the predictor-corrector continuation problem

(Allgower and Georg (1981)) for which
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(i) Many Newton-type problems must be solved so it is desirable

to use an inexpensive quasi-Newton method.

(ii) The level of difficulty of successive Newton problems can be

adaptively chosen and, hence, use of Newton's method may be

an expensive overkill.

(iii) The global problem is naturally broken down into a series of

local problems, each of which can be solved separately using

either Algorithm I or II, thus overcoming the problem of

having a fixed pivoting strategy in the updates.
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CRAPTU 4

Computational Experence

1. Introduction

The ideas of the preceding three chapters have been implemented in

a Fortran program. Data structures appropriate for sparse systems are

used throughout. For example, only the non-zero elements of the

Jacoblan matrix M are stored, and these are maintained in three arrays

A (double precision), INUN (integer) and JNUM (integer), where

M(I,J) A 0 If and only if there is some K such that A(K) - M(I,J),

INUM(K) - I and JNUH(K) - J. The LU factors of M are obtained by

Gaussian elimination using a threshold pivoting strategy with both row

and column permutations allowed. The subroutine, LU1FAC, which is part

of the LUSOL package (see Gill, et al. (1984)) was used. Obtaining the

NU factors explicitly (where N - L- ) consists essentially of

inverting the matrix L which results from the Gaussian elimination.

This is a quite expensive process requiring O(n 3) operations; it is

hoped that sparsity will reduce this to O(n 2) operations. The Jacoblan

matrix, M, is obtained by a finite difference approximation; the graph

coloring heuristics of Coleman and More (1981) are used to reduce the

number of function evaluations necessary for each matrix approximation.

2. Local Comparison

We first compare the local behaviors of the updates discussed in

Chapter 3. The following two problem types are taken from Broyden
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(1971), where they were used to compare the behavior of the sparse

Broyden method with Newton's method.

Type 1: fi(x) - (3 - kIxi)Xi + 1 - xi_ 1 - 2xt+ 1 , 1 i < n

Type 2: f (x) - (k + k 2 )X + I - k i+r2  (x + x 2 < i < n

f1 1 2 1 ~x1 3

For both types we have f : En + and xj - 0 for J < 1 or

J > n. The initial estimate of the solution in each case was taken to

be x ,where xi -1 for 1< i < n. The iterations were stopped

at x I where IxI - x < e and xj - r'I > e for j < I and e

given. Tables 1, 2, and 3 give the results for varying dimension and

values of the parameters k,, k2 and k3 . The following code is used for

type of iterative technique:

I : Newton's Method

2 : Dennis/Marwil Update

3 : Update I of Chapter 3 for LU factors

4 : Update II of Chapter 3 for NU factors

Only full Newton steps were taken. All three updates compared favor-

ably, in terms of the number of function evaluations, with respect to

Newton's Method. A comparison with the results of Broyden (1971) --

where a slightly different stopping criterion is used -- shows that

these updates require about the same number of iterations as the sparse

Broyden Update. Here, however, we have eliminated the need for a matrix

factorization at each iterate.
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3. The Contimuation Problem

The following seven test problems were used.

Problems 1 and 2

The homotopy

h(x,t) - f(x) - (1-t) f(x 0

is traced from (x ,0) to (x,). Problems I and 2 correspond

respectively to choosing f(.) from Types 1 and 2 of the previous

section.

Problem 3 (Watson (1979d))

We solve the linear complementary problem by the use of

Kangasarian's transformation (Mangasarian (1976)).

We have

f :n ,a~Rn

f(x) Ax + q , A . Enxm

A -1 6, Aij -- 4 for i-Jl -1

A - 1 for li-Jil - 2 and Aij 0 for li-Jl > 2

q - X(-I, 0, ... , 0) , x > 0

We wish to solve the following problem:
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x > 0, f(x) > O, xTf(x) 0 . (3.1)

Define g:Rn In' by

gW.(x) - f Wx 1 1 < i < n

and h :Rn+l + Rn by

h(x,X) - -X g(x) + (I-X)(x-x 0

0
We now trace the path {(x,X) : h(x,X) - 0) from (x ,0) to (x,1)

where x solves the linear complementary problem (3.1) (see Watson

(1979d)).

Problem 4 (Kellog, Li and Yorke (1976))

f : R

Pi(x) - ai + bi x x Y

where 0< ai,bi < I and

at'Pty i £ {1, 2, ... , n}

The data ail bit ail Pit Yi are obtained by random number

generation. A fixed point of f(*) is located by tracing the zero

curve of the homotopy

h(x,t) - - t f(x)

from the point (xO,0) - (0,0) to (x,1).
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Problem 5 (Saigal (1981))

The following boundary-value problem is solved by discretization

u" - (2u - 0.5t + 1)
3

u(O) = u(1) 0

On a mesh of n points we have x - u(jh), 1 < J < n where h - 1/(n+l)

and

fj(x) (xj - 2x + J - 2h2( - + I) 0 1< j < n

We solve f(x) - 0 by tracing the zero curve of the homotopy

h(x,t) - tf(x) + (1-t)x

0
from (x O0) = (0,0) to (x,1).

Problem 6

As in problem 5, we solve the following boundary value problem by

discretization on n points

u" + keu 0

u(O) - u() - 0

This is an example of a parametric problem in which we may be interested

in all solutions for X in some range.
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Table 10: Problem 7

No. of No. of Final No. of
Type of Predictor-Corrector Iterates at Function
Update Dimension Cycles Level t 1 Evaluations

11 9 13 3 438
22 9 18 4 204
33 9 12 7 165
44 9 12 7 164
41 9 13 4 264

11 39 11 3 451
22 29 18 5 291
33 39 * * *

31 39 13 5 289
44 39 * * *

41 39 13 5 289

• denotes failure of the algorithm to converge.

We used different starting points for the thirty-nine
dimensional problem and the nine-dimensional problem (see
Watson (1980b)).
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Table 9: Problem 6

No. of No. of Final No. of
Type of Predictor-Corrector Iterates at Function
Update Dimension Cycles Level t I Evaluations

11 100 4 1 40
22 100 4 1 40
33 100 4 1 40
44 100 4 1 40
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Table 8: Problem 5

No. of No. of Final No. of
Type of Predictor-Corrector Iterates at Function
Update Dimension Cycles Level t - 1 Evaluations

11 100 4 3 90
22 100 4 3 50
33 100 4 3 50
44 100 4 3 50

114



Table 7: Problem 4

No. of No. of Final No. of
Type of Predictor-Corrector Iterates at Function
Update Dimension Cycles Level t - I Evaluations

11 50 5 3 196
22 50 5 5 90
21 50 5 5 135
33 50 5 4 89
31 50 5 4 134
44 50 5 4 89
41 50 5 4 134

11 100 6 3 247
22 100 6 7 107
33 100 6 4 104
44 100 6 4 104
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Table 6: Problem 3

No. of No. of Final No. of
Type of Predictor-Corrector Iterates at Function
Update Dimension Cycles level t - 1 Evaluations

11 10 16 4 681
22 10 33 7 510
21 10 20 6 441
33 10 * * *
31 10 18 9 407
44 10 26 7 440
41 10 18 11 408

* denotes failure of the algorithm to converge.
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Table 5: Problem 2

k k 2 - -1.0; r1 .. - 1, n 50

0

No. of Final No. of

Type of No. of Predictor- Iterates Function

Update Corrector Cycles at t - 1 Evaluations

11 5 4 168

22 8 6 75

44 8 7 76

40 9 5 88

41 5 6 100
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Table 4: Problem 1

k1 - 1.0, x0 - (-1, -1, ... , -1)

No. of No. of Final No. of
Type of Predictor-Corrector Iterates at Function
Update Dimension Cycles Level t = 1 Evaluations

11 5 3 3 145
11 20 9 4 195
11 100 30 4 270
22 100 30 4 120
33 100 30 4 120
44 100 30 4 120
41 100 30 4 175
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Table 3, (continued)

No. of No. of

No. of Function No. of Function

Type of Iterates Evaluations Steps Evaluations

Update kI  k2  k3  C = 10-6 C 10- 6  10- 1 0  C 10-10

1 2 2 2 5 66 6 79
2 2 2 2 12 26 20 34
3 2 2 2 10 24 20 34
4 2 2 2 10 24 16 30

1 2 3 2 5 66 6 79
2 2 3 2 11 25 20 34
3 2 3 2 11 25 21 35
4 2 3 2 10 24 21 35

1 2 4 1 5 66 6 79
2 2 4 1 12 26 22 36
3 2 4 1 16 30 31 45
4 2 4 1 16 30 42 56

1 2 5 1 6 79 6 79
2 2 5 1 13 27 24 38
3 2 5 1 22 36 36 50
4 2 5 1 22 36 48 62

1 3 4 1 6 79 6 79
2 3 4 1 14 28 27 41
3 3 4 1 18 32 38 52
4 3 4 1 22 36 45 59

1 3 5 1 6 79 7 92
2 3 5 1 16 30 31 45
3 3 5 1 20 34 42 56
4 3 5 1 24 38 57 71
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Table 3: Type 2, dimension - 50

r I -r 2 w 5

No. of No. of

No. of Function No. of Function

Type of Iterates Evaluations Iterates Evaluations

Update k1  k2  k3  C 10- 6  
= 10- 6  e = 10-10  C = 10 10

1 1 1 1 4 53 5 66

2 1 1 1 8 22 17 31

3 1 1 1 8 22 13 27

4 1 1 1 7 21 13 27

1 2 1 1 5 66 6 79

2 2 1 1 10 24 18 32

3 2 1 1 9 23 16 30

4 2 1 1 9 23 16 30

1 1 2 1 5 66 6 79

2 1 2 1 8 22 29 33

3 1 2 1 10 24 19 23

4 1 2 1 9 23 17 21

1 3 2 1 5 66 6 79

2 3 2 1 23 27 39 43

3 3 2 1 13 17 26 40

4 3 2 1 14 18 26 40

1 2 3 1 5 66 6 79

2 2 3 1 11 25 20 34

3 2 3 1 13 27 28 42

4 2 3 1 16 30 26 40

1 3 3 1 5 66 6 79

2 3 3 1 12 26 55 69

3 3 3 1 16 30 39 43

4 3 3 1 15 29 32 36

1 2 2 1 5 66 6 79

2 2 2 1 17 31 26 40

3 2 2 1 11 25 22 36

4 2 2 1 11 25 25 39

1 1 2 2 5 66 6 79

2 1 2 2 13 27 26 40

3 1 2 2 12 26 20 34

4 1 2 2 10 24 25 39
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Table 2: Type 2, c - 10-10

k1 - k2 - k3 -1.0

No. of

Type of No. of Function
Update Dimension r I r2  Iterates Evaluations

1 50 1 1 6 31
2 50 1 1 27 32
3 50 1 1 19 24
4 50 1 1 18 23

1 50 3 3 6 57
2 50 3 3 14 23
3 50 3 3 19 28
4 50 3 3 17 26

1 50 5 1 6 55
2 50 5 1 --. 15 24
3 50 5 1 18 27
4 50 5 1 18 27

4

4.,
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Table 1: Type 1, e- 1010

No. of

Type of No. of Function
Update Dimension k1  Iterates Evaluations

1 10 0.5 5 26
2 10 0.5 13 18
3 10 0.5 14 19

4 10 0.5 14 19

1 10 2.0 6 31
2 10 2.0 16 21
3 10 2.0 16 21
4 10 2.0 17 22
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Efficient implementation of such a strategy requires further research

into the monitoring and control of the algorithm and was not attempted

here. We have demonstrated, as intended, that the use of quasi-Newton

methods for the sparse continu 'on problem can lead to an increase in

efficiency over more traditional methods.
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Problem 7 (Watson (1980b))

The following boundary value problem arises in the study of the

motion of a fluid squeezed between two parallel plates.

S(F'"' + 3f" +mf' f' - ff'"1 ) M f(4)

f(o) - f'(o) - 0, for (1) 1 1, f'(1) - 0

m - 0 (axisymmetric case)

We discretize on p points to obtain an n dimensional problem, where

n - 2p + 1. See Watson (1980b) for further details.

The first column of Tables 4 - 10 contains a two-digit number. The

first digit is the code for the update used on the corrector iterative

sequence; the second refers to the updating technique used at the end of

the corrector sequence to approximate the tangent direction. The

tangent approximation technique provided some favorable results (see

Table 7), but in general proved to be unreliable (as seen in Table 10).

The results of Tables 4 - 10 illustrate that substantial savings

can be achieved by using the less expensive updating techniques rather

than Newton's method. As with other quasi-Newton methods for non-linear

systems the extent of this usefulness depends on the degree of non-

linearity of the equations, with quasi-Newton methods becoming less use-

ful the more highly non-linear the system is. In practice, a truly

adaptive continuation strategy would allow for switching between quasi-

Newton and Newton methods or even sparse simplicial techniques.
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