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A HYBRID MODE AND A CLASSIFICATION
OF BEAM PLASMA INSTABILITIES

I. Introduction

There is considerable renewed interest in the old subject of the electron
stream interactions with plasmas. While the classical two stream instability
is quite well-understood, much of the current effort has been placed on
intense relativistic electron beams. Examples of areas of interest where such
a study is warranted include: electron beam heating of a dense plasma for
inertial confinement fusion dr‘iver‘;1 laser-plasma beat wave acceleration of

particles to ultra high energies;2’3 electron beam propagation under sub-

4,5 6

atmospheric conditions and in the case of a modified betatron accelerator,
the proposed method7 of injection and extraction of the electron beam by
creating a plasma channel; etc.

The diverse areas mentioned above encompass a multi-dimensional parameter
space which spans over many orders of magnitude. Depending on the objective
of an investigation, a theoretical analysis of beam-plasma interaction is’
necessarily limited in scope, as the electromagnetic effects, the relativistic
effects, and the coupling between the perpendicular and parallel motions,
among different species of particles, compete with each other. In this paper,

we attempt to classify various beam-plasma instabilitie38'12

according to the
electron beam energy and the electron beam density (relative to the background
plasma density). Domains of instability mechanisms are determined, within

each of which the instability growth rate and the minimum axial wavelengths

for the instabilities are displayed. Such a classification then provides an
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immediate determination of the nature and the importance of a particular
instability, once the beam energy, the beam density, and the background plasma
density are given. This would allow more ready refinement of the theory, if
necessary, as the dominant physical mechanisms are isolated in such a
classification.

During our survey of the parameter space, we identified an instability,
which we termed a hybrid instability. This instability is important for the
propagation of a long, thin relativistic electron beam into a tenuous
bacgground of ions. The phase (and group) velocity of the wave along the
beam, in the laboratory frame, is 1/2 of the speed of light. The growth rate
is proportional to the quarter powers of the electron density and of the ion
density, and inversely to the quarter powers of beam energy and of the ion
mass.

The hybrid instability could be important in the "ion focus regime",
where an intense electron beam propagates in a plasma channel, which is either
preformed or self-generated. If the plasma channel is tenuous, the beam
electrons electrostatically eject the plasma electrons from the beam path,
leaving behind the plasma ions which then guide the beam electrostatically.

An example where this hybrid instability is possibly a dominant one, is when
a preformed plasma channel is generated to extract an electron beam in a
modified betatron configuration, after the electron beam is fully accelerated.
(See examples below).

In this paper, we shall first present a simple physical argument which
leads to the dispersion relationship of the hybrid mode for a slab model. It
turns out that the simple dispersion relationship thus derived is an excellent

10-12

approximation to the full dispersion relationship, which incorporates all

electromagnetic and relativistic effects. We find that the dispersion
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relationship is also applicable to a cylindrical beam of small, but finite
cross sections [see Appendix].

To place the hybrid mode in a proper perspective, in Section III we
provide the classification scheme, based on the beam energy and beam density.
This classification identifies the domains for the hybrid mode, the Weibel
mode,13 and the classical two stream instabilities. In that section, we also
furnish a simple derivation of the Weibel mode for a relativistic electron
beam. The growth rates and the minimum axial wavelengths for the various
instabilities are catalogued for easy reference. Several examples of current
interest are given in Section IV to demonstrate the ready utilization of the
classification scheme established in Section III.

The basic assumptions are now stated. We assume that the external
magnetic field is unimportant. This is certainly true in the ion focus regime
mentioned above. The plasma and the beam are assumed collisionless. The
plasma is at rest, and both the plasma and the beam are cold. It is assumed
that there is no plasma return current., One may argue that such an assumption
is valid in the ion focus regime where the background plasma density is low.
The classification is based on a model of infinite uniform beam plasma
system. The latter assumption is relaxed in the Appendix. 1In fact, if
ki ~ 1/r§ >> k2 where kL is the perpendicular wave number, k is the axial wave
number and ry is the electron beam radius, the slab model provides an adequate
description for global modes of a sharp boundary model if k r_ is taken as a

lb

suitably quantized number greater than unity in order of magnitude.w’11 It

is within this context that our classification of instabilities is made. We
shall further discuss these basic assumptions, and the limitations they

impose, in the last section.

- - -.'. -§‘ '-'-"- R e R TR T e s ST e M e Tt At et Lt S . R ST et > . ~ ~ -
D Tt T e e T - . e

.t -
Lt K ORI "t . » - R A PR IR IR SRR Y SPUL UL S SR TR G T S I R AN A R N
PG SIPGIETIPLE SAP LIPS, RGPS R, P PR PL PPV PE PUPE. DU i TRl DR DAL WA U DN A WAL W SRy oAl T g Wl WAl W W Wy PR v e |




II. The Hybrid Mode

The dispersion relationship for the hybrid mode, together with the
physical picture, is now presented. For simplicity, we consider a one-
dimensional model. The approach is very similar to the one used to describe
simple plasma oscillations.

Consider an infinitely uniform electron beam propagating in the z-

direction with constant velocity v The beam is highly relativistic, i.e.,

o°
Y O> 1 (1)

where v = (1 - v§/02)1/2 is the relativistic mass factor and ¢ is the speed of

light. The beam is cold and is embedded in a uniform background of ions of

considerably lower density. The ions, of mass m;, are also cold and are :
notionless in equilibrium., We assume that there is a force balance for the f
ions and for the electrons in equilibrium. For the electrons the almost
perfect cancellation between the self electric field and the self magnetic
field, (for Y >> 1) together with the weak ionic background, would make a
perfect equilibrium of cold electronic flow plausible. For the ions, because
of their mass, we simply ignore whatever ionic motions which may have resulted
from the equilibrium electric field. If the characteristic time of the
instability is short compared with the free-fall time of the ions, one may
then ignore the external forces on the ions in the equilibrium states, to the
lowest approximation. This in fact can be shown to be the case through a
Vlasov description of the ionic responses. The effects of these equilibrium
ion motions may then be evaluated in a qualitative manner by, for example,
pretending that there is a "temperature" of the ions for the equilibrium.
Here, we just assume, for convenience, that such temperature is zero. Simply

stated, we assume that the unperturbed equilibrium fields are unimportant.

4




oo

., "EERNETY L A oE W

formmmmT T8

> S

.
.

.
.
-
-
i

.
v
¢
v
.

.

This is certainly true in the hypothetical situation of a completely
neutralized beam and plasma. The above, then, constitutes the working
hypothesis.,

To consider the small signal stability of such a beam-plasma system, we
focus mainly on the transverse motion of the beam since a beam electron is
more responsive to a transverse force than to a longitudinal force when the
beam is highly relativistic. Let Ee be the electron displacement, from its
equilibrium position, in the transverse direction, and Ei be the ion
displacement, also in the transverse direction [Fig. 1]. These displacements
then generate AC electric fields Ele and Eli' and AC magnetic fields Ble and
B;j. Here the subscripts e and i are used to denote that part of electric

field (or magnetic field) which is due to Ee and gi, respectively. Thus

IR Nn!e|nb£e, Ey = —Hw;elnpii (2)

e " ThyW™ o e (3)

where n, and n_ are, respectively, the beam electron and plasma ion density in

P
equilibrium and e is the electron charge. Here we assume that the ions are
singly ionized.

Equation (2) is obvious. B, as given by Eq. (3) may easily be obtained
by visualizing the dipole current layers labeled O and E in Fig. 1. Since
there is no unperturbed ion motion, B,; = 0, as shown in Eq. (3).

The linearized equations of motions for the electrons and ions then read
v

4---9-x(

%8 Ble * Byl A%

Yme£e= - |e|[Ele + E

......................
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Since we assume that there is no ionic motion in equilibrium, the Lorentz
force is absent for the ions [ef. Eq. (5)]. Further simplification is
possible by using Eq. (1) and by the assumption that the background plasma is

tenuous. By Eg. (1), E + (vo/c) x B = 0 since the self electric field and

le
the self magnetic field generated by the electronic dipole layer cancelled to

order 1/Y2, and Y is large {[cf. Fig. 1; also, Egs. (2), (3)]. The latter

le

assumption permits us to ignore Eli in comparison with Ele in Eq. (5). Thus,

Eqs. (U4) ana (5) are simplified to read

- 5
Yomeae |e|Eli = Um e npgi (6)
m é = + 1e(E = + Ugyye 2n £ (7)
i%i 1®1%1e Pl Bpber
For a perturbation with dependence exp (iwt - ikz), Ee = - (w - kvo)zge and

Ei = - wzzi. Using these expressions in Egqs. (6) and (7) and multiplying the

resultant equations, we obtain the dispersion relationship for the hybrid mode

2 2 2 2
w {w kvo) = uy wbi (8)
where
ws a lhreznp/mi (9)
wbi - uweznb/meY. (10)
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The instability growth rate may readily be obtained from a square root of Eq.

(8):

w=1§kv + 1 (wpwai'kzvs)vz. (11)
This dispersion relationship has been shown to be an excellent approximation
to that for a thin beam which is highly relativistic (8 = 1). The latter is
given by Eq. (A11) of the Appendix. The solution to Eq. (A11) is slightly
more general than (11) and is sketched in Fig. 2, where the real part w, and
2, 2 2 Y2w2.

the imaginary part w; are shown., In Fig. 2, n = / = /

Wh11 wp b Equation

(A11) reduces to Eq. (11) in the limit 8 = 1.
Several points for the hybrid mode are noteworthy: (a) The phase and
group velocity of the unstable waves equal to vo/2 = ¢/2. (b) The instability

is absent if the axial wavelength A satisfies the inequality

A = ar . _m . A = am (12)
k J H K
W Wy H
p oy

Here, we have used a subscript H to denote the critical axial wavelength for

the hybrid mode. (c) The instability growth rate, for k << kH' is given by

W, = w = /wpmbl (13)
which is independent of kL and of k. (d) We may more precisely state what we

meant by a "tenuous" ionic background. For (E, | <K 'Elel’ as we have assuned

1li
in deriving (7) from (5), we must have Ny lEgl >> np'Eil [ef. (2)]. This

inequality becomes

e A B S B des M
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if we use mz - - “p“b in (7). (e) While the dispersion relationship (11) 18
independent of kL, the transverse displacement is extremely important. An
analogous example would just be the simple plasma dispersion relation

m2 = mg, which is independent cof E (pbut displacements of particles parallel
to k are important).

At the risk of some redundancy, we paraphrase the above derivation for
the hybrid mode by a physical description of the instability mechanism, as
depicted in the sequence of events in Fig. 3. Suppose that a sheet of
electrons, whose unperturbed position is on the sheet labeled O as shown in
Fig. 3(a), is displaced to position labeled E, at a distance g from O.

Assume also that a sheet of ions is displaced to level I, by a distance

Ei from 0. Let gi > ge as shown in Fig. 3(a). If the electron beam is highly
relativistic, the force on the electron sheet E is due only to the electric
field Eli generated by the ion sheet I, since the self electric field Ele and
the self magnetic field Ble' which are generated by the dipole sheets E and O,
are canceled to order 1/Y2. Thus sheet E is accelerated toward sheet I, due
only to the ionic electric field.

Now consider the forces on the ion sheet I in Fig. 3(a). Sheet I is not
acted on by the electrons at all, since the electric field E:le and magnetic
field Ble (generated by Ee) are confined within the region between E and O.
(One may visualize this by imagining sheet E and O as capacitor plates, which
generate Ele’ and also as a dipole sheet current, which generated Ble)' Thus
sheet I is subject only to its own restoring force Eli‘ However, since the
ion background is tenuous, Eli is small. In other words, the ion sheet I in
Fig. 3(a) is not subject to any perturbed force, to the lowest order. Since E

8
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is accelerated toward I, as explained in the previous paragraph, E overtakes I
5 at a later time, as shown in Fig. 3(b).
In Fig. 3(b), Ee > gi. Now sheet E is not subject to any perturbed
force, to the order we are considering, since Ele and Ble canceled to order
. . 1/Y2, and Eli is confined only within I and 0. Thus once E surpasses I, as in
Fig. 3(b), E moves with a constant velocity. However, I is accelerated toward
- ) E, because of Ele (again, Eli is small because of the low background ion
density). Thus, at a later time I overtakes E, as shown in Fig. 3(c¢), and the
whole sequence repeats. Thus the electron sheet E and the ion sheet I
gradually deviate from their original position 0, and this is essentially the
- basgic mechanism which drives the hybrid mode.

The above physical description is in some respect similar to the one
given for simple plasma oscillations (w = mp). For example, the argument does
not require a detailed specification of the wave numbers, of the beam and
plasma dimensions and of the profiles. One may then be tempted to conclude
that the hybrid instability is a fundamental one as long as Yo >> 1 and

mbi/w§ >> 1. In fact, we shall show in the Appendix that essentially the same

dispersion relationship (8), or (11), is obtained for a cylindrical beam with
- a sharp boundary profile. -
We postpone to the next two sections for a discussion of the relationship i

of this hybrid mode and other beam-plasma instabilities.

III. A Classification of Beam Plasma Instabilities

To place the hybrid mode in the "general picture" of beam plasma |

interactions, we have conducted a limited search of the literature in which -

e & a 8 € 0,

the relativistic and electromagnetic effects have been treated. We found that

the recent work of Tajima,‘o Jones,11 and Shoucri12 are the closest to the I
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present one. The studies of Jones and Tajima are more general, as they
included bounded systems in cylindrical geometries. Their results firmly
establish the validity of the use of a slab model, if the beam radius Ty (or
thickness t) is sufficiently small, and if the perpendicular wave number kl in
the slab model is to be replaced by p/rb, where p is a quantized number of
order unity, (or larger for higher radial modes). Shoucr'i12 considered only a
slab geomtry, but he bbought out an interesting point regarding the coupling
Ei of electromagnetic and relativistic effects. We postpone to Section V for a
brief discussion of other literature.

- The three authors mentioned in the previous paragraph produced, among

other things, the same dispersion relationship. For example, the dispersion

relationship given in Eq. (20) of Shoucr'i12 is equivalent to the dispersion

10

relationship (40) of Tajima, which is in turn equivalent to that given in p.

1931 of Jones,11 who also noted such a correspondence. This dispersion

relationship, for the slab model, reads

BE=C (15)

where

2, 2 2,2
B = 1- wp/m wbll/g (16)

E=1- kzcz/w2 - k202/w2 - (w2 + wbz)/w2
L p L

(17

A R

(18)

P o)
£
o
-
[
]
— N
S
~
€
N
D
N
ML

Here, B represents the classical beam plasma interaction, E the

electromagnetic mode, and C the coupling of the two. In Eqs. (16)-(18), w

10
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is the frequency, k is the axial wave number, kl is the perpendicular wave
number, Q = w - kvo, mp is the plasma frequency of the background,
m2 = unezn /m_Y, and w = /Y. Note from Eq. (18) that C = 0 if

by b Ve’ b1l ~ Yoy "

kl = 0, or if wp = 0, or in the non-relativistic limit, in which case
Since the dispersion relation (15) is derived under the

W = w

bll by*
assumption that the unperturbed force on each of the particle species is
negligible, hereafter mp may stand for wpi or wpe depending on the case of
interest.

The dispersion relationship (15) D(m,ﬂ) = BE - C = 0, in the limit
kl - 1/rb >> k, is characterized just by two dimensionless parameters:
B = vo/c and n = mblf/wi. The first parameter reflects the beam energy (Eb)
and n the density ratio of the beam and the background plasma. This can be
seen by normalizing all frequencies with respect to mp, and all wave numbers
with respect to wp/vo. It is for this reason that we are able to classify the
beam plasma instability according to just two parameters 8 and n, over a wide
range as discussed below,

E. tensive numerical and analytical studies of the dispersion relationship
(15) lead to the classification shown in Fig. 4. In this figure, the n - Eb
plane is divided into five domains. In each of these domains, the growth

rates of the instability scale differently but the instability mechanism can

be described simply. For example, the hybrid mode examined in the previous

section falls in Domain V of Fig. 4. We shall now document the approximate
growth rates for these domains. We should also point out that the boundaries
between the domains are not sharp. The main use of this classification is
then to provide an {mmediate determination >f the instability of a given

system, once the beam energy and the bdbackg¢round plasma d-nsities are given.

11
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Some examples will be given in the next section. In all these examples, the

. approximate formulas given below have been favorably compared with the full

'l

» dispersion relationship (15).

- (A) BY < 1 (i.e., E < 212 keV).

If B8Y < 1, the beam is essentially non-relativistic. 1In this case,
C =~ 0 in (15), and the dispersion relationship for the classical two-stream
instability

. m2 " 2

. 2 2

. w Q

»

; is readily recovered from (15), regardless of the value of kl. We subdivide

5 . 2, 2

2 into two cases: n = mbll/mp < 1and n > 1.

g (A1) n< i (DOMAIN I)

ﬂ In this case, the background plasma density much exceeds the beam

- density. This is the typical case treated in most text books. The dispersion

. diagram is shown in Fig. 5. According to (19), the peak growth rate mi(max), .
- the cutoff wave number k,, and w_ are given by :

wi(max) - mp(/§/2) (r-|/2)1/3 = 0.687n1/3wp (20a)
k= (0 /v )01 + (3/2) n'/3] (20b)
. e p o
. w, = kVo. (20¢) .

- 12




This instability is absent for k > kc' The case (A1) is labeled as I in Fig.
4; the dominant instability being the weak beam classical two stream

instability.

(a2) n>1. (DOMAIN II)

In this case, the background plasma has a lower density than the beam.
The dispersion relationship (19) may also be analyzed using the standard
technique. The dispersion diagram is sketched in Fig. 6. The peak growth

rate, mi(max), the cutoff wave number kc, and w, for the unstable mode are:

1/6

mi(max) = 0,687 wpn (21a)
k, = (mp/vo)[n”2 + (3/2)n’/6] (21b)
w, = (kvo)/n. (21ce)

The scalings given in (21) are quite different from those in (20). Note,
however, that (20) and (21) yield the same result if n = 1. Equations (21)
characterize the parameter space labeled II in Fig. 4, where the beam
dominated classical two stream instability is prevalent.

The dispersion relationship (19) is well-known. It is unnecessary to
furnish here a simple physical picture to support the derivation of (19). We

now turn to the case where the relativistic effects are important.

(B) BY > 1 (i.e., E > 212 keV).

b

When the beam energy is sufficiently high, the relativistic effects, the

electromagnetic effects, and parallel and transverse motions are all coupled.

13




For BY > 1, we may subdivide into three domains according to n < 1/82Y2,

1/82Y2 < n«< 82Y2, and n > BZYZ. These three domains are labeled III, V, IV,

respectively., The approximate dispersion relationships, together with the

growth rates and kc, for each of these domains are displayed as follows.

(B1) n < 1/82Y2 (DOMAIN III)

This case corresponds to a tenuous relativistic electron beam embedded in

a dense background plasma. Extensive numerical solution to (15) suggests

that, in this case, we may approximate B = 1 - wi/wz,

E = - (kzc2 + ws + wbz)/w2 and C = - sziczwzw 2/wzﬂz. Then Eq. (15) yields

p oy
2 2 22 2
wp k ¢ B wpwlsz
1..__- 2
2 { 2 2 2} 2.2 (22)
w ke +w +uo w
o)

which, in the limit k2c2 >> m2 +w 2, reduces to
L p b}

2 22 2
wp B wpwb
] = — = . 2
> ——E-E—L (22a)
w w Q

If we normalize w = w/mp, Q = Q/wp, Eq. (22a) may be written as

1 - L L BYn (220)

where the parameter 82Y2n enters. Recall that we have in this subsection

assumed 82Y2n <1,

The dispersion curve according to (22) is sketched in Fig. 7. The

maximum growth rate wi(max). the critical kc' and w, are given by
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w, (nax) = 0.687 (8%v%m) V3, (23a)

P
ke = (a/v Ol + (3/2)(8%7%7) 73] (23b)
w, = kvo. (23e)
In (23a) and (23b),
2 2
k ¢
" L (24)
el 51
k ¢ +uwu +uw
P by
which reduces to n in the limit kiFZ >> mg + mbi. Note from Fig. 7 that as
k » 0, wy > BY/ﬁ&p, which is non-zero. This mode has been called a Weibel
mode,13'“l and is predominant in Domain III in the classification shown in
Fig. 4.
2.2
(B2) n>8y (DOMAIN 1IV)

This limit is the opposite as the case (B1). [cf. replace n by 1/n]. 1In

this limit we may approximate B ~ 1 - wblf/nz. E = - (kie2 + mi + wbi)/mz,

2222 2,22
cw

C=-28 kl wbl/w Q- , and (15) becomes
2 22 2 2
w k ¢ B w w
L ) —2 2L (25)
2 2 2 2 2 2. 2°
R kK ¢ w ot w w
L P by

For simplicity, we further assume kic2 > w2 + wbi to reduce (25) to an even

ko)

simpler form which is independent of kL:

2 22 2

- p
1 > o (26)

15

.......




The solution to (26) is sketched in Fig. 8; the maximum growth rate

mi(max). kc’ and w, are given by

wi(max) = 0.687 “p (87)2/3n1/6 (27a)
kg = (o/w)n'’2 + (3720812300 (270)
P
1
w, 14 5 kvo. (27¢)

The dispersion relationship (26) appears to be new. To gain some
understanding, we derive it simply as follows. Upon dropping Bli in Eq. (4),

we obtain

Ymege = - |e|[Ele + (vo/c)Ble + Eli]

or equivalently

2 2
- Ym Qg = -|e[(Ele/Yo + Eli) (28a)

where we have used the fact that the self field Ele is canceled by the Lorentz

force (vo/c) Bye Dy the factor 1/Y2. {ef. Fig. 1]. Again, neglecting Eyq in

comparison to E;, in (5), we have
- muw’E, = (e|E (28b)
19 51 T 1% 5 e

We now use the expressions E, = uw|e|nbge and E,, = - unlelnpgi in (28a) and

le
(28b). The dispersion relation

11

16




w W w
bll b

1 - —= .22 (29)
2 22
w Q

is then readily obtained from (28a), (28b). Aside from the factor 32 (which
has been assumed to be closed to unity in this subsection}), Eq. (29) is )
identical with (26). This simple derivation may be used to provide a physical
explanation of the instability, similar to that given in Fig. 3. Note that
while this derivation is very similar to that given for the hybrid mode, the

scalings of the growth rates for the two instabilities are different [cf.

Figs. 2, 8; Egqs. (13), (26)1].

(B3) 1/3272 < n< 32Y2 (DOMAIN V)

2 < n«< 32Y2. This is labeled as Domain V

The remaining domain is 1/82Y
in Fig. 4. The dominant instability for this parameter space is the hybrid
mode studied in detail in Section II. The simple dispersion relation was
given by Eq. (13) and sketched in Fig. 2 of that section. We note, from the
simple derivation given in Sec. II, that this domain is characterized by

Y > 1 and w, 2/w§ >> 1 [ef. Eqs. (1) and (14)]. The condition w 2/w§ > 1 is

by oy
2.2
just n >> 1/8°Y when B » 1.
Finally, we note that the claséification shown in Fig. 4 is symmetrical
about n = 1, This is reasonable if one views the beam plasma interaction in a
frame moving at the mean speed of the two species. We also stress that the

simple dispersion relations given for Domains (I) - (V) are strongly supported

by the numerical computation of the full dispersion relationship (15).

IV. Some Examples

In this section, we give a few examples on the use of the classification

schemes. These examples are drawn from laser accelerations of ultra-high
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energy particles.2'3 the plasma assisted injection and extraction of electrons
into a modified betatron.7 The simple formula and Fig. 4 provide ready
characterization of the instability, in terms of the growth rate and the
critical axial wave number (above which the system is stable). One example is
given to each of the Domains III, IV, V. [Domains I and II cover the more
familiar plasma interactions with a non-relativistic electron beam, and will

not be considered further in this section].

A. Laser Beat Wave Acceleration2

Consider the acceleration of an electron beam whose energy is 10 MeV.
Let ry = beam radius = 0.5 mm., Ib = beam current = 0.1A. This beam is

embedded in a background hydrogen plasma, of density n_ = 1016/cm3,

p
say.3 These parameters yield Y = 20.6, wp = “pe = 5,64 «x 1012 rad/sec.,
7 8 2, 2
Wiy T 3.11 x 10° rad/sec, wbl = 6.4 x 10° rad/sec. Then n = wbll/wp
= 3,03 x 10-11 which is much less than 1/Y282 a 2,36 x 10-3. Thus the

parameters lie within domain III.
The growth rates and critical wave numbers may be evaluated using Egs.

(23). We arbitrarily take kl = 1/r_. Then (24) yields n = n kLC/wp

-12 9 -1

* 0,106n = 3.22 x 10 Thus, Eq. (23) yields w, = 2.03 x 10° sec '. For a

pulse length rp = 3,33 x 10-10 sec, w

i
t. = 0.68, which is the total number of

I'p
e-folds during the beam pulse. Thus, the instability i{s very mild. The half
wavelength at k, is Ac/2 - w/kc = 0,017 em, according to (23b).

The instability growth rates [cf. (23a)] is proportional to the 1/3 power
of Ib/Y. Thus the conclusion given in the previous paragraph regarding the

unimportance of the instability remains valid for a substantially higher beam

current, or at a higher beam energy.
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B. Plasma Assisted Injection of Electron Beam in a Modified Betatron
Configuration

6

The modified betatron configuration®” consists not only of the usual

betatron magnetic field but also a strong toroidal magnetic field. To inject
an electron beam into the modified betatron, it is proposed to create a plasma
channel7 into which the electron beam propagates. In the ion focus regime,

mp = wpi.

To determine the extent of the beam ion interaction, consider, for
example, an electron beam of energy 1 MeV, of beam current 1 KA and beam
radius of 0.5 cm. Then 8 = 0.941, Y = 2.957, n_ =~ 2.7 x 10' '/e.c.,

1

W, = 5,7 x 109 rad/sec., w = 1,69 x 10 0 rad/sec. If the ion channel

bll by
is formed by benzene gas, m, = 78 x 1840 m, Take r1i = n,, then

N 7 2,2 3 . :
wp wpi 7.4 x 10" rad/sec. Thus n = mbll/wp 5.8 x 10°, Together with :
Eb = 1 MeV, we note that the parameters lie within Domain IV [ef. Fig. 4]. If

we arbitrarily take kl = 1/rb, then kic2 > w§ + wbi and the dispersion ;
relation (26) is a good approximation to (25). -

The growth rate and k, are given by Egs. (27a) and (27b). Using the
parameters given in the previous paragraph, we deduce w; = 4,3 x 108 sec”, 30
that during the time scale rp = 20 ns, say, corresponding to a single turn
injection time of the NRL modified betatron,15 the total number of e-folds of
the instability 1s Wity = 8.6. This suggests that the beam type Weibel mode
may be marginally important since the above analysis excludes stabilizing

influence such as betatron oscillation, external magnetic field, random ion
motion,17 the anharmonic property of the channel, and the convective nature of
the mode. Thus, the totai number of e-folds is expected to be somewhat less
than 8.6, and, as a result, be tolerable. From (27b), we have xc/z = n/kc

= 13.4 cm. This provides an estimate of the axial extent of the mode.
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C. Plasma Assisted Extraction of Electron Beam in a Modified Betatron

Configuration

The idea of using a plasma channel may also be adopted for the extraction
of an electron beam, after the latter has completed the acceleration phase in
a modified betatron configuration.7 Note that such an idea is especially
attractive for beam extraction, because the contamination of the chamber would
not become an issue.

To determine the interaction between the post-accelerated beam and the
channel ions, consider, again, an electron beam of current 1 KA, beam radius
Py = 0.5 cm, this again yields 0y = 2.7 X 101’/0.0. If benzene is usec, and

if ni = n then wy o= W = 7.4 x 107 rad/sec as in Subsection IV B. If the

b’ pi
energy of the beam is about 50 MeV, say, (Y = 100), then Wiy = 2.9 x 107
9 2, 2
rad/sec and wbl 2.9 x 10° rad/sec. The parameter n = wbll/“p = 0,152.

These values of (Eb. n) lie within Domain V in Fig. 4. Thus, the post-
accelerated beam is subject to the hybrid mode.
The growth rate and Ko for the hybrid mode are given by (11). Using the

8

above parameters, we have w, = * 4.6 x 10 sec-1. This growth rate is

17 “py
similar to that in Subsection B. However, here Ac/2 = -n/kc = 1m, which is
quite long. In fact, for parameters similar to the NRL modified betatron, the
length of the channel is always less than 60 cm, by geometrical
considerations. The relatively mild growth and, more importantly, the long

wavelength nature of the hybrid mode, render this method of beam extraction

attractive,

V. Discussions
In this paper, we classify beam plasma interaction according to just two

parameters: the beam energy and the beam-plasma density ratio. The

dispersion relationship {s fully electromagnetic and fully relativistic, and
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has been given by various authors. Here, we divide the parameter space into
several domains, in each of which the instability growth rate and axial scale
lengths are simply given. We stress the simplicity, the exposition of the
instability mechanism, and the ease with which such a classification may be
applied to a particluar situation. Examples are given.

While the classification given in this paper provides an immediate
assessment of the instability growth rates ---- over a wide range of bean
energy and of number densities, the following limitations should be kept in
mind. (a) The role of external magnetic fields have been ignored. In the ion
focus regime, this assumption may be argued to be valid. However, in many
other cases, this assumption cannot be made and the classification given nere
can no longer be used. Intuitively, the magnetic field may be ignored if
Q? << mi, where Qj and mj are respectively the relativistic cyclotron
frequency and the relativistic plasma frequency of the jth species. (b)
Perhaps equally restrictive is our over-simplification of the equilibrium
fields. The influence of the self fields on this classification remains to be
determined. (c) When the densities are high, collisional effects, which have
been neglected in this paper, may become important. (d) We have ignored
betatron oscillations of the beam electrons, and possible ionic motions in the
unperturbed states. These effects are likely to be stabilizing. (e) We have
not characterized the absolute or convective behavior of the instabilities.
From previous experience with beam instabilities, we anticipate that the
instability is mildly absolute, whose time asymptotic response behaves like
exp (ta), where o < a < 1, typically. However, inclusion of betatron
oscillations would tend to make the instabilities convective.? (f) We
conjecture that the details of the beam profiles are not very crucial in the

classification of beam instabilities. Experience suggests that the radial

21




scale length of the beam provides a convenient estimate for k-1. The details

would be less j.mport;ant:.g'11 Incidentally, in the classical two stream
instability, the presence (or absence) of discrete modes depends on the
sharpness of the boundaries. However, the time asymptotic response is just
equal to that associated with the highest local growth, regardless of the
profile.:16

Finally, we comment on a few works on electron-ion instabilities.
Manheimer17 provided a detailed calculation with the use of a self-consistent
equilibrium distribution for the ions. However, the electron inertia, which
is extremely important for the hybrid mode, is neglected (justifiably because

of the strong magnetic field he assumed). Buchanan18

includes the electron
inertia, but apparently he ignored the possible cancellation, between the Ele
and (vo/c)Ble, to order 1/72. as explained in Sec. II and Subsection IIIb,
Davidson and Uhm'? included the case of a strong magnetic field, and Uhm2°
recently concluded that two stream instabilities are unimportant for highly
relativistic beams.- Godfrey21 and his coworkers performed particle
Simulations in the ion focus regime. None of these authors gave the hybrid

2

mode nor the classification.2 as stressed in the present paper.
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Fig. 1 — Electron sheet E and ion sheet I displaced

: from their equilibrium position 0.
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Fig. 4 — Classification of beam plasma interaction. On the boundary between
Domain IV and V, 7 = 8%y2 and on that between III and V, 1/5 = g%y2.

26



‘ ‘b 814 Jo [ urewo(] 10j ‘J9QUINU JABM [BIXE
. pazijewliou Ayi jo uondunj e se £ouanbaij (x9dwod) pazijewou ayy — ¢ ‘g

* UGl + P/
: -

27

INIVINOQ




DR IR A A S A A

e e

b "814 Jo [f wewo( 10j ‘¢ i Ul SY — 9 ‘Bg

II NIVNOQ

usL =3d401S

/o

— — — —— — — — —— — — —— — —— — —

914 69°0

28

. ~ .
P Y

L S R SR
A A R
Aaus o 2 s 2 A s 2 g

. %
ot e®
“p

.

S . .
e e e
RN AN

R
A PRI ity
PUPES Pl U Py WL ¥

. T AL SR
e " AR I
(ORI R WP A




g
.....
.....

.n
~
‘-

.................................

(\

.......

- e
LRI
N

[

D Tttt e T e ettt
B S
PO T

it atR sl ot sruls it il i N

LR
- . “
- L) -
* . l‘t.. L
PO AT Y -

b 814 Jo [I] urewo(y 1oy ‘g ‘31 U sy — £ 814

A A{Nmém I+ 1 |./
-
™ /Ay

PP Y

N
L WS APN

a d

29

I NIivINOQ o

]
.
e
v @
R
‘s
.
.
.
'
.« *v
v ‘e
'
o e
o
v
o,
]
LI
.
[

ErS)

[T
-
O )
D

nt,
L& N

-

-"‘..D‘ )
aly

‘e

.
- -
-
.~.
LIS



A Y W N W v W NN e

b= e I aas

‘v 314 Jo A utewo(] 10§ ‘¢ B W sy — § g

o/t {Uphpd) G L + U

-

\

%m 1°ny

Il >>3d01S

AL NIvINOdQ

Ag

o/144,9)69°0

30

. PO SN

a~ ‘_".:"‘;'.' il '.'._’".-.'.- I

- e "
.
*, SO

" " .
2 e Stncdndandls

LS '. .

‘e

P TIPSl I




Appendix
HYBRID MODE IN A FINITE BEAM

In this appendix, we consider in some detail the interaction between 2a
relativistic electron beam, of radius Py and a background plasma, the latter
being infinite in extent. We focus on the hybrid mode. We show that the
growth rate given by Eq. (13) is also applicable when the beam is finite.
This study provides additional confidence in the replacement of
kl by p/rb, where p is some quantized number of order unity, or higher.

When the equilibrium self fields are ignored, the interactions of the
electron beam and a cold background plasma are described by the following

coupled differential equations:11

1 By P L Py

rI eT T3 E, e, 2 ar (A1)
1d ﬂd_.l}_.g'_z.?}.-a =-12E2d (A2)
ra 5 a 278 2" .2 o

Here, Ez and Bz are the rf field components of the T™ and TE modes, which are
coupled {f the azimuthal mode number % = 0. Small signal dependence of the
form f(r) exp (iwt - {6 - ikz) has been assumed. The symbols in (A1) and

(A2) are defined as

2 2 2 2 2 2 2 2 2 2
Kk =k “w/c;8=k -w/ +(w +w )ec (A3)
p bl
B2 2 2
w W
2 2 2 2 pb
-1 - W/ - /9% ¢ = ¢ - —E—k, AU
€ wpw W1 T = ¢ 292 (AY)
. w
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2 2
kew w (ke - wv /c)
b 0o

- P L
p > [ " + p ] (A5)

Consider first a local analysis of (A1). Take & = 0 for convenience and

replace d/dr by - ikl. Then Eq. (A1) yields
-k2 /s~ e =0 (A6)
1

which can easily be shown to be the dispersion relationship (15). It is also
quite clear that, in general, 1/r'b provides a natural transverse scale length
of the perturbations. In fact, one may use a normalized variable x = r/rb to
render (A1) and (A2) dimensionless.

For general %, and for a constant beam density up tor = Fhyo (and zero
for r > rb), a transcendental dispersion relationship,11 in terms of Bessel
functions, may be obtained from (A1) and (A2). This dispersion relationship
may be obtained by requiring that Ez and BZ be continuous at r = Ty but
E; and B; be discontinuous by an amount which is to be computed from an
integration of (A1) and (A2), due to a discontinuity in p. This dispersion

relationship may be simplified considerably under the assumption

2
2 2 2 2 2 c
Wy1go wp KL w, 3 < mbl << - (AT)
r
b
In this case, it reads
Jo(8) =0 (A8)
where
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imb rb/c
g = L = ) (49)

%
/. 22 2 22 v
1—-wfBw /8w
, p by

and A is the v-th zero of the Bessel function J,. To the lowest order in

v 2
mblrb/c (ef. (A7)], (A9) then yields
2
w B wb
1 - —BE—E—L - 0. (410)
2w

The solution to (A10) is

1 2.2.1/72
w =3 kvoz i (Bwp“b - k v ) (A11)

which is just the dispersion relation (11) for the hybrid mode [aside from the
factor 8, which has been assumed to be closed to unity in the derivation of
(11)]. The dispersion relationship (A11) is sketched in Fig. 2.

Finally, we remark that as long as (A7) is valid, the growth rate given
by the local analysis i{s anticipated to be valid also for a diffuse beam

profile, This has ilso been pointed out by Tajima.10
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