ELECTRICAL RELAXATION IN POLY(ETHYLENE OXIDE)

by

John J. Fontanella & Mary C. Wintersgill

Prepared for Publication

in

IEEE Transactions on Electrical Insulation (Proceedings of the Symposium on Dielectric Phenomena in Honor of the 70th Birthday of Prof. Robert H. Cole)

U. S. Naval Academy
Department of Physics
Annapolis, MD 21402

June 1985

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Audio frequency complex admittance (DR) has been used to investigate electrical relaxation in poly(ethylene oxide) (PEO). The complex admittance measurements were performed at seventeen frequencies from 10 to 100,000 Hz in approximately equal logarithmic intervals using a fully automated dielectric spectrometer and measurements were performed in vacuum over the temperature range 5.5-350K. Two relaxations are observed at low temperatures which is consistent with the literature.
In order to gain new information concerning the \(\gamma \) relaxation, measurements were made at -94, -91, and -88°C at pressures up to 0.2 GPa. The shift in the peak frequency with pressure and hence the activation volume are found to be extremely small. This result combined with other work implies that the relaxation is associated with the motion of very small segments of the polymer chain.
ELECTRICAL RELAXATION IN POLY(ETHYLENE OXIDE)

J. J. Fontanella, M. C. Wintersgill, P. J. Welcher, J. P. Calame
Physics Department
U. S. Naval Academy
Annapolis, MD 21402

C. G. Andeen
Physics Department
Case Western Reserve University
Cleveland, OH 44106
ABSTRACT

Audio frequency complex admittance (DR) has been used to investigate electrical relaxation in poly(ethylene oxide) (PEO). The complex admittance measurements were performed at seventeen frequencies from 10 to 100,000 Hz in approximately equal logarithmic intervals using a fully automated dielectric spectrometer and measurements were performed in vacuum over the temperature range 5.5-350K. Two relaxations are observed at low temperatures which is consistent with the literature. In order to gain new information concerning the relaxation, measurements were made at -94, -91, and -88°C at pressures up to 0.2 GPa. The shift in the peak frequency with pressure and hence the activation volume are found to be extremely small. This result combined with other work implies that the relaxation is associated with the motion of very small segments of the polymer chain.

Supplied keywords include:
I. INTRODUCTION

In previous papers [1-6], the authors have presented the results of audio frequency electrical relaxation (DR) measurements on "pure" PEO and PEO complexed with a variety of alkali metal and alkaline earth salts. In addition, thermally stimulated depolarization measurements have recently been reported [7]. In general, three relaxations are observed. The two lower temperature relaxations, α and γ, are those which have been most widely studied [1-15]. α is associated with the glass transition as was shown in a very early investigation [10]. At least four explanations of the γ relaxation have been suggested [15-20], the most likely of which are chain end hydroxyl groups [16] or a gauche minus-gauche plus transition [14]. In order to gain further information concerning the γ relaxation, high pressure measurements were carried out and the results are reported in the present paper.

II. EXPERIMENT

The polymer was obtained from Polysciences, MW 5×10^6 or 4×10^6. Some samples were prepared by dissolving the PEO in methanol at about 60°C. The resulting solutions were poured onto a teflon plate and allowed to dry in air. After completing the drying under vacuum at 60°C for 24 hours, aluminum electrodes were evaporated onto the resulting films. These films were then cut to form disks about 8 mm in diameter and 0.7 mm thick. Other "pure" samples were pressed at about 100°C using a Buehler Simplimet II press. Three terminal measurements were performed on the hot-pressed
samples which were approximately 25 mm in diameter and 1.5 mm thick. No
difference between the hot-pressed samples and the cast films was noted
other than small differences in the apparent real part of the dielectric
constant which was attributable to two terminal vs. three terminal
measurements.

The high pressure measurements were carried out in the vessel
described elsewhere [21]. The pressure fluid was a mixture of pentane and
Spinesstic 22 and the temperatures were achieved using a freon bath cooled
by gas from liquid nitrogen circulating through copper coils. The vacuum
measurements were performed in the dewar described elsewhere [2] and the
audio frequency complex impedance measurements were performed using a fully
automated bridge constructed by one of the authors (C.G.A.) which operates
at seventeen frequencies over the range 10-105 Hz.

III. RESULTS AND DISCUSSION

Typical results for the temperature dependence of the imaginary part
of the dielectric constant are shown in Fig. 1. The data are replotted in
Fig. 2 as a "conductivity" plot. The DC conductivity at room temperature
is on the order of 10-9 (ohm-cm)-1. This value is rather high and is
attributed to the presence of trace impurities in the sample.

Two strong peaks dominate the spectrum. The higher temperature
peak, α, occurs at about 223K and 10^3 Hz and is associated with the glass
transition [10]. This relaxation is interesting in that for most samples,
a peak is never observed in the ε'' vs frequency plot at any single
temperature in the frequency range 10 to 10^5
Hz, though it is observed in a temperature sweep as is obvious from Fig. 1. Further characteristics of this relaxation along with its pressure dependence will be given elsewhere [1].

The second strong feature, the γ relaxation has a peak at about 175K and 1000 Hz in an ε'' vs. T(K) plot. It is very broad as shown by the Cole-Cole plot in Fig. 3. In fact, the Cole-Cole parameter is about 0.69. However, the relaxation is slightly asymmetric and to properly treat the relaxation requires a more complex distribution of relaxation times. To analyze the vacuum data, the imaginary part of the two parameter Havriliak-Negami distribution was used [22]:

$$\varepsilon'' = \frac{\varepsilon_s - \varepsilon_\infty}{[1 + (\omega/\omega_p)^{\beta}]^{1-\alpha}}$$ \hspace{1cm} (1)

This expression was fit to the data using a least squares "reduced plot" technique. First, an arbitrary peak position and peak height and approximate values of α and β were chosen. Second, the data at a few temperatures were shifted to the vicinity of the arbitrary peak, the shifts being adjusted to give a "best fit" to the distribution. Third, the parameters were varied to "best fit" to the data. The second and third steps were repeated until all of the data had been treated. The results are shown in Fig. 4 where the data and best fit curve are plotted. The significant Havriliak-Negami parameters are $\alpha=0.567$ and $\beta=0.390$. It is obvious that the Havriliak-Negami distribution provides an excellent fit to the data.
The γ relaxation has been variously attributed to a "crankshaft mechanism" [17,18], "3-bond" or "4-bond" motions [19,20], chain end hydroxyl groups [16], or the tg⁺t⁺tg⁻t transition [14]. In order to gain further information concerning the γ relaxation, high pressure measurements have been carried out. Typical data are shown in Fig. 6. In order to determine the peak positions, and hence the relaxation times, the imaginary part of the Cole-Cole distribution:

\[
\epsilon^* = \frac{\epsilon_s - \epsilon_{\infty}}{[1 + (\omega/\omega_p)^{(1-\alpha)}]}
\]

was fitted to the data. As was discussed above, the Cole-Cole distribution is not sufficient to describe the complete relaxation. However, the objective of this part of the analysis is to measure the shift in peak position with pressure and the Cole-Cole distribution can be used for that purpose so long as the shifts are small and the fits are done in the same way for each pressure. Typical data and best fit curves are shown in
Fig. 5. The reciprocal of the peak position is plotted vs. pressure in Fig. 6 along with the best fit straight line. The slopes of the curves are tabulated in Table I for all of the data.

These data were used to calculate the activation volume via:

$$V^* = \frac{d\ln \tau}{dP}$$

(4)

and the results are listed in Table I. The activation volumes are extremely small. This result argues against multiple bond mechanisms such as the "crankshaft" or "4-bond" mechanisms. Rather, it provides support for either chain end hydroxyl groups or motion of very small segments of the polymer chain such as the $\text{tg}^+\text{t}\text{g}^-\text{t}$ mechanism.

In most of their previous papers on this subject, the authors have interpreted their data in terms of the latter reorientation mechanism. Although the authors cited preliminary, unpublished work in favor of chain end hydroxyl groups in two papers [2,6], that work is not complete at the present time. The authors have subsequently obtained some evidence against chain end hydroxyl groups [1]. Consequently, at the present time, the evidence favors assigning the γ relaxation to very small segments of the polymer chain.

V. SUMMARY

In summary, then, it is shown that the γ relaxation is asymmetric and thus not well described by a one parameter distribution. A very good fit to the data was obtained using the two parameter Havriliak-Negami
distribution. In addition, data on the pressure dependence of the \(\gamma \) relaxation peak are presented. Using a Cole-Cole fit to the data, the shifts in peak position as a function of pressure are evaluated and used to calculate the activation volume for the reorientation process. The small value for the activation volume argues against the mechanisms proposed to explain the \(\gamma \) relaxation in terms of motion of large segments of the polymer chain, such as the "4-bond" or "crankshaft" mechanisms. The data do not allow a distinction to be drawn between the "\(tg^+t\tau tg^-t \)" and the "chain end hydroxyl group" models, however, other work favors the former mechanism.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval Research.

REFERENCES

3. M. C. Wintersgill, J. J. Fontanella, J. P. Calame, D. R. Figueroa, and

11. K. Hikichi and J. Furuichi, "Molecular Motions of Polymers Having Helical Conformation. I. Poly(ethylene Glycol) and Polyoxymethylene." J.
ABSTRACTS DISTRIBUTION LIST, 359/627

M. Wrighton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Ald E. Mains
Weapons Support Center
Gt. Chemical Power Sources Division
Indianapolis, Indiana 47522

Ruby A.
(STOR)
68025 Forrestal Bldg.
Washington, D.C. 20595

A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Janet Osteryoung
Department of Chemistry
State University of New York
Stony Brook, New York 11240

Donald W. Ernst
Surface Weapons Center
I.R. 33
Naval Oak Laboratory
Silver Spring, Maryland 20910

James R. Moden
Underwater Systems Center
We 3632
Naval Undersea Warfare Center
New London, Connecticut 06320

Bernard Spielvogel
U.S. Army Research Office
A. Box 12211
Research Triangle Park, NC 27709

Aaron Fletcher
Weapons Center
We 3852
Fort Bliss, El Paso, Texas 79907

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Denton Elliott
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6170
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Boris Cahan
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106
ABSTRACTS DISTRIBUTION LIST, 359/627

. David Aikens
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

. A. B. P. Lever
Chemistry Department
Grock University
Ontario M3J1P3

. Stanislaw Szpak
Val Ocean Systems Center
33433, Bayside
San Diego, California 95152

. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19010

. L. Robertson
Manager, Electrochemical
and Power Sources Division
Naval Weapons Support Center
Came, Indiana 47522

. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

. Lesser Blum
Department of Physics
University of Puerto Rico
10 Piedras, Puerto Rico 00931

. Joseph Gordon, II
IBM Corporation
13/281
500 Cottle Road
San Jose, California 95193

. Hector O. Abruna
Department of Chemistry
Corny University
Ithaca, New York 14853

. Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

. Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, SO9 5NH ENGLAND

. Dr. E. Anderson
NAVSEA-56233 MC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

. Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

. Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

. Dr. D. Cipris
Allied Corporation
P.O. Box 3000R
Morristown, New Jersey 07960

. Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

. Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

. Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

. Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
4800 Calhoun Blvd.
Houston, Texas 77004
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. T. Katan
Lockheed Missiles and
Space Co., Inc.
P.O. Box 504
Sunnyvale, California 94088

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Mr. Joseph McCartney
Code 7121
Naval Ocean Systems Center
San Diego, California 92152

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
2100 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials
Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Doua</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. A. B. Amster</td>
<td></td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>DTNSRC</td>
<td>1</td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Figure 1. ε'' vs. T(K) for pure PEO. The curves (from left to right) are: medium dash-10 Hz; long dash-10^2 Hz; solid-10^3 Hz; chain link-10^4 Hz; short dash-10^5 Hz. Straight line segments connect the datum points which are not shown.

Figure 2. $\ln(\sigma(\text{ohm-cm})^{-1})$ vs. $1000/T (K^{-1})$ for pure PEO. The curves are: medium dash-10 Hz; long dash-10^2 Hz; solid-10^3 Hz; chain link-10^4 Hz; short dash-10^5 Hz. Straight line segments connect the datum points which are not shown.

Figure 3. Cole-Cole plot for the gamma relaxation in pure PEO at 170K. Also shown is the best fit Havriliak-Negami curve.

Figure 4. "Reduced plot" for the gamma relaxation in pure PEO. The data points and best fit Havriliak-Negami curve are shown. The peak position and strength are arbitrary.

Figure 5. Arrhenius plot of the peak shift for the results shown in Figure 4. Also shown is the best fit straight line.

Figure 5. $G/u (pF)$ vs. $\log_{10}(f(Hz))$ at 1 atm (squares) and 0.3 GPa (crosses) for the gamma relaxation in PEO at 182 K. Also shown are the best fit Cole-Cole curves.

Figure 6. $\ln(\tau(s))$ vs. P(GPa) for the gamma relaxation in pure PEO at 182 K. Also shown is the best fit straight line.
Table 1

Pressure derivative of the relaxation time and activation volume for the gamma relaxation at various temperatures for pure PEO.

<table>
<thead>
<tr>
<th>Sample #1 (Hot pressed)</th>
<th>T(K)</th>
<th>d(\ln \tau) / dP (GPa)^{-1}</th>
<th>\Delta V^* (cm^3/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>182</td>
<td>3.0</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>3.4</td>
<td>5.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample #2 (Cast film)</th>
<th>T(K)</th>
<th>d(\ln \tau) / dP (GPa)^{-1}</th>
<th>\Delta V^* (cm^3/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>179</td>
<td>2.9</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>3.1</td>
<td>4.7</td>
</tr>
</tbody>
</table>

ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Dr. Johann A. Joeblt
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060

Dr. Judith H. Ambrus
NASA Headquarters
M.S. RT5-6
Washington, D.C. 20546

Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 6B025 Forrestal Building
Washington, D.C. 20595

Dr. J. J. Brophy
Department of Physics
University of Utah
Salt Lake City, Utah 84112

Dr. Charles Martin
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217

Dr. Theodore Beck
Electrochemical Technology Corp.
3935 Leary Way N.W.
Seattle, Washington 98107

Dr. Farrell Lytle
Boeing Engineering and
Construction Engineers
P.O. Box 3707
Seattle, Washington 98124

Dr. Robert Gotscholl
U.S. Department of Energy
MS G-226
Washington, D.C. 20545

Dr. Edward Fletcher
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Dr. John Fontanella
Department of Physics
U.S. Naval Academy
Annapolis, Maryland 21402

Dr. Martha Greenblatt
Department of Chemistry
Rutgers University
New Brunswick, New Jersey 08903

Dr. John Wasson
Syntheco, Inc.
Rte 6 - Industrial Pike Road
Gastonia, North Carolina 28052

Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222

Dr. Anthony Sammells
Eltron Research Inc.
4260 Westbrook Drive, Suite 111
Aurora, Illinois 60505

Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. C. A. Angell
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. Thomas Davis
Polymer Science and Standards
Division
National Bureau of Standards
Washington, D.C. 20234

Ms. Wendy Parkhurst
Naval Surface Weapons Center R-33
Silver Spring, Maryland 20910