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ABSTRACT

Measurements were made of the true (black body) surface temperature
of a well-characterized metal-doped carbon-carppn composite during ir-
radiation with an intense, continuous-wave, COj-laser beamnplong with
spectrometric determination of the temporal variation of C, and C3
species appearing in the laser-induced plume in a high vacuum environ-
ment. Various analytical methods used for post-burn analyses, during
irradiation analyses, and material characterization are detailed.
Thermodynamic aspects are considered. A synopsis of the stages in
laser-beam/composite interaction derived from this study is included.
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MATERIALS AND PROCESS CHARACTERIZATION TO DETERMINE THE

EFFECT OF HIGH INTENSITY INFRARED LASER RADIATION ON A
COMPOSITE MATERIAL

Je S, Perkins, P. W. Wong, D. J. Jaklitsch, L. Elandjian
A. F. Connolly, S8~8 Lin, 1. P. Sheridan, R. M. Middleton
A. J. ZIni, C. E. D‘d” W. K. Ch’.n, and A. J. Coates

Army Materials and Mechanics Research Center
Watertown, MA 02172

INTRODUCTION

A wide variety of characterization methods have been used to
determine the effect of irradiating a specific composite material
with high intensity infrared laser radiation. The material, being a
meatal-doped carbon/carbon composite, was intractable to the usual
methods of analysis; the behavior under intense radiation was
unexpected and, at the time, unexplained; and the desirability of
computer modeling required knowledge of the principal mechanisas of
radiant energy absorption and redistribution.

This study of the effect of an intense infrared laser beam on a
high—temperature, metalated ceramic system became feasible by use of
relatively new and powerful analytical techniques.

The examination we performed can be divided into three areas of
concentration, these being Materisls Characterization, Laser
Testing, and Post-burn Analyses. Study of these was correlated with
data obtained from compilations, reports of experiments in the
receat l{terature, and information privately communicated.

An outline of the principal stages in the laser beal/latetial
interaction disclosed by this study is included.
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MATERIALS CHARACTERIZATION

Initial studies on the effect of laser beam interaction with a
metal-doped carbon/carbon composite showed that laser—produced front
and back face temperature measurements during irradiation were
reproducible providing material from a single sample source was used
but that substantial variation in the resistance of the samples to
damage occurred as different lots of material were tested. It thus
became obvious that only by characterization of the different test
samples would it be possible to unravel the effect of an intense
laser beam on this type of material.

The material was a laminate of carbon cloth layers
preimpregnated with a metal-containing rcsin. Different samples
contained three to as many as a hundred and forty layers. These
were successively subjected to curing, carbonizing, and graphitiging
cycles under pressure, a process which allowed for substantial
variation in the final products. These composite samples were
black, opaque, and insoluble in most solvents, and analyses of the
constituents required the development or refinement of special
analytical methods. Especially useful techniques proved to be:

X-Ray diffraction measurements that showed carbon cloth/resin
interaction during fabrication to produce varying amounts of the
tungsten carbide products that consolidate the samples, i.e., WC,
W,C, and B-WC,_x. These were produced at high temperatures by
removal of the hydrogen, oxygen, nitrogen, and some of the carbon
from the initial carbon, hydrogen, nitrogen, oxygen, and tungsten
containing resin (Figure 1).

FIRED WC RESIN
WC/C MATERIAL

=

(b)

Fig. 1. X-Ray diffraction patterns. (a) Resin fired to 2800°C
shoving initial WC converted to W,C; (b) resin on
carbon cloth similarly treated showing interaction of
W,C with cloth to produce 8-WC;-x and WC in final
composite, WC/C.

..............



Elemental analyses that showed substantial deviations from the

nominal W~content in a series of samples (Table 1) as well as uneven
distribution of the metallic compoment throughout an individual
sample.

Table 1. Variations in composition of eight nominally identical
samples of 3-ply WC/C containing an added ingredient.

c w X
11-1 86.1 8.7 4.4
11-2 83.6 9.1 4.9
11-3 85.1 9.3 5.0
11-4 83.4 10.1 4.8
11-5 86.4 8.7 4.5

11-6 76.7 12.7 6.0
11-7 76.5 12.5 5.0
11-8 80.2 6.8 5.5

X-Ray radiographs that also showed variations in the dis-
tribution of W in successive layers, the metal befng concentrated
near the top and bottom surfaces in some cases (Figure 2).

Fig. 2. X-Ray radiograph of 140-layer sample of WC/C showing
concentration of WC's near top and bottom surfaces.

X-Ray fluorescence measurements that verified an uneven
distribution of tungsten on the two surfaces, top and bottom, of a
nultilayered sample.

Appareat density measurements comparing samples cut from the
surface and from the core.

Metallograhic mounting of a sample, which otherwise appeared

nearly homogeneous, that revealed the known layered structure. It
also revealed another phase that either interpenetrated the layers
or was spread acrosg several adjacent layers during extended polish
of the surface (Figure 3).




Fig. 3. Metallograph of a mounted sample showing 0°/90° cloth
lay-up and a second phase (white).

LASER TEST DATA

During radiation with an intense continuous-wave (cw) COp-laser
beaa of 10.6-um wave length (a welding type laser), changes ia the
sample were monitored with:

Therwocouples which were buried at different depths under the
area to be irradiated;

Optical pyrometers, Si (0.9 um), Ge (1.45 um), and/or Barunes
(4.6 to 7.4 ym) focused on the front and/or back face of the sample
in the burn area;

A circularly variable filter for the infrared region monitoring
a small area of the front face from which true front face
temperatures could be derived by subsequent computer-matching with
temperature—~derived black body curves (Figures 4 and 5);

Video scans as well as high-speed cinematography, the former in
real time, the latter at 100, 200, or 400 frames per second, to
provide simultaneous records of each burn as viewed from the front,
side, and, in some cases, the back;

Spectrogcopy over the near UV to near IR region (200 to 1200 nm)
either using an integrating monochrometer, a drum camera, or an
optical multichannel analyzer (OMA), the last triggered to give
eight instaantaneous scans separated by selected equal time intervals
during the course of the laser runs which varied from three to ten
seconds in duration. These made possible the fdentification of
molecular or atomic species fn the plume, both adjacent and at a
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nominal distance from the irradiated surface, and, with the last two
instruments, over a temporal period after initiation of laser
radistion. A typical scan (FPigure 6) shows the emission spectra of
C2 and C3 lolcculu directly in front of the burn surface as viewed
from the side.

1300 x
1220 x
1100 X

7.5

1200 1200 13800 1800 2000 2200
WAVENUMBERS

Fig. 4. Plots of corrected experimental test—case data
" compared with "best-fit" Planck function and $100K
Planck functions. (OptiMetrics, Inc.)
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Fig. 5. True front-face temperatures of WC/C composite during
irradiation with a 10.6-um COj-laser in a 77-um vacuum
chamber. These were derived by Planck function fitting
of data measured using a circularily variable filter.
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Fig. 6. OMA scan of the C2 Swann bands and the nearly
continuous C3 emisgion bands seen from the side just
in front of the WC/C surface during laser irradiationm.

A visicorder trace of concurreant events tied all data together,
i.e., the front, intermediate, and back face temperatures monitored
by pyrometers and thermocouples, the triggering of OMA signals, the
“"on and off"” timing of the laser, and any other measureable signal
such as the rise and fall of pressure during laser runs in vacuum.

These records permitted review of the "in-situ” laser beam~
sample interaction during post-radiation analysis of each laser run.
They provided revealing temporal evidence of physical and chemical
changes produced by the onset and course of steady laser irradiation
of the sample. In addition, they allowed a study of continued
changes during the immediate post-radiation period involving
relaxation and redistribution of the absorbed electromagnetic
energy.

We conclude that during irradiation the following stages are the
most gsignificant:

Selective photo excitation, predominantly of the carbon
fabric by that portion of the beam absorbed and. not
reflected;

Multiphoton absorption of the low—energy 10.6-im photon
(3 kcal/mole) to activate rotational, vibrational, and
electronic transitions in carbon which produce
iacandescence and, when the radiation is intense or
sufficiently prolonged, sublimation of the carbon;




Melting of the tungsten carbides in the matrix by the
incandescent carbon cloth with release of postulated
carbon atoms (C;) from WC, forming tungsten-rich W,C which
then reacts with carbon in the matrix and cloth pertions
of the composite producing more molten WC that continues
to release carbon.

This i1s a highly endothermic, cyclic process that causes the cloth
to disappear (vaporize) if laser energy is sufficiently intense.

As the layer of liquid tungsten carbides becomes thicker, due
to the disappearance of the carbon substrate, the endothermic
reaction proceeds more rapidly. Simultaneously, the molten carbide
surface layer generally becomes smoother and reflects more of the
incident laser beam. These can counteract the accelerating effect
and the reaction slows down to a steady state.

The most significant agpect of this mechanism, we believe, is
the highly endothermic removal of monoatomic carbon (C;) by the
following mechanism: ’

At the liquid/vapor surface:

2 WC(1l) == W,C(l) + C(8) . AH= =5 kecal (1)

At the liquid/cloth surface:

W2C(1l) + C(cloth) ==+ 2 wWc(1) AH = +175 kcal (2)

C(cloth) --> C(g) AH = +170 kcal (3)

which 18 equivalent to an energy absorption of 60 kJ/g of carbon
released.

POST-BURN ANALYSES

Post-burn analyses strengthened our understanding of the
mechanisms and were accomplished by use of:

Scanning electron micrographs (SEM) and associated tungsten-
mapping by energy dispersive analysis of X-rays (EDAX) (Figure 7);

Scanning electron detector (SED) micrographs and scanning Auger
micrographs (SAM) which additionally map carbon, oxygen, and other
light elements as well as tungsten (Figure 8);

X-Ray diffraction that shows the varying content of WoC, B~WC,_y

and WC on quenched burns resulting from different amounts of energy
deposition (Figure 9);
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{b) W-distribution

Fig. 7. (a) Scanning electron micrograph and (b) an EDAX W-map
of the area near a laser burn on WC/C. Note the
l1iquid matrix phase, the attack on the side and end of
one carbon fiber, and the growth of carbon on the end
of a cooler nearby fiber.
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Fig. 8. (a) SED-produced micrograph of the edge of a laser
burn on WC/C and SAM-produced (b) C-map, (c) O-map,
and (d) W-map of the same area.
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Fig. 9. X-Ray diffraction patterns from burn surfaces produced
by differeant intensities of a COp-laser beam interacting

with WC/C. (a) 15 kW/cm?2, (b) 30 kW/cm?. The higher
energy flux intensifies the reaction of WyC with carbon

cloth to produce WC.
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, Optical photomicroscopy from metallographically prepared

o samples (Figure 10);

2’

-{ X-Ray radiography that reveals the movement of molten metal

. carbides within the burn craters (Figure 11) and can be used to
compare the relative amounts and distributions of W in the various ‘

- samples.

:} These tell a considerable amount about the course of mass

jj movement as a result of laser-beam action. Most importantly the

> information gained verifies the liquifaction of the tungsten
carbides, the changing composition of this liquid with increased

. radiant energy input, the segregation of the tungsten alloy at the

" edges of the burns, and the removal of carbon in the vapor state.

”

b

~ Fig. 10. Optical photomicrograph of the cross-section of a

: carbon wall formed downwind (to left) of a deeply

- penetrating laser—burn on WC/C in a 0.1 Mach wind

. tunnel.

3

| M .

':' .

3

2

Fig. 11. X-Ray radiograph of a laser-burned sample of WC/C
showing ring of WC's pushed to the edge during
radiation and droplets separating on the surface of
the burn during cooling.
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That the last named occurs is indicated by the spectra of C;
and C3 found immediately in front of the burn surface during laser
irradiation, the large amount of carbon trapped in the burn surface
vhen no burn—-through occurs, and the redistribution of carbon
downwind or in cooler parts of the carbon fiber composite. The
wvall downwind from the laser-produced cavity in Figure 10, for
example, 1is pyrolytic in character (i.e., layered) which occurs
vhen carbon is deposited from the vapor state.

The heavy ring of tungsten carbides about the burn in Figure 10
is indicative of mass flow during irradiation. The pressure
exerted on the molten tungsten—-carbon “alloy” due to gas evolution
is partly the cause of the ring appearing. The cohesive character
of this high melting fluid causes the thin residual film over the
burn surface to break into droplets and also to add material to the
ring.

The ring and the thin film remaining in the burn area
frequently crack on cooling to reliéve stresses but it is believed
this arrests further shattering of the material that survives. It
is also believed that thermal conduction through the cloth layers
and through some modified matrix compositions further limits
structural damage.

CORRELATION WITH OTHER EXPERIMENTS AND DATA

The final phase of this work involved the correlation of our
work with other experiments and data. This entailed examination of
the published literature, private comgunication with other
scientists, and personal observations during experiments in other
programs. This phase led to the use of the following:

Thermodynamic datal leads to equations (1), (2), and (3) which
« explain the high-energy absorption or "sink” that causes this
material to survive a heavy energy flux. .

The phase diagram of the tungsten-carbon alloy systemz (Figure
12) shows the peritectic character of WC. On melting, the
tungsten—carbon alloy becomes enriched in tungsten as it releases
carbon, probably atoa by atom.

° The concept of jet cooling applied to some plasmas explains the
fleeting disappearance of radiation due to dropping of radiation
producing electrons to the ground level as vapor particles approach
supersonic speeds in high vacuum3., Reradiation becomes possible as
this supersonic kinetic energy is converted into internal
electronic excitation with sudden deceleration to the velocity of
one Mach. Figure 13 fllustrates this effect.
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Fig. 12. Phase diagram of the tungsten-carbon system3.

Fig. 13. Free-jet expansion from vaporizing WC/C surface.
Radiating C, and C3 species close to the surface cool
as supersonic speeds are reached, become invisible,
and then reradiate strongly on deceleration to 1 Mach
producing a "Mach-disk".
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This final concept in the literature has let us infer the
locale and significance of C; formation at high energy inputs. We
propose that release of C; followed by formation of C, and C3 is
the dominant mechanism absorbing energy under such conditions.

Let us examine the structure of the radiant plume during
. COo-laser radiation of our composite in vacuum. Directly in fronmt

of the irradiated area is a small bright plume that disappears
farther from the surface and then blossoms into a large radiant
“"Mach disk” trailing into a diminishing tail "normal" to the
irradiated surface, even though the angle of the impinging beam may
fall at any angle up to 45° to the normal and produce the same
effect. There is a thin barrel-shaped shock-wave connecting the
perimeter of the burn area to the Mach disk not visible in this
photograph. The disappearance of the original radiating plume is
attributed to jet cooling.

We propose that the occurrence of the small radiating plume
attached to the burn surface is related to release of C, from
molten WC in this surface. This mode of vaporizing carbon absords
the maximum amount of energy since six bonds connecting the
graphitic carbon atoas must be severed instead of three or two of
the C-C bonds to release C; or C3 moities. If two C,'s were to
combine without escaping from the surface, the released energy of
combination could produce one photon of UV-energy detectable only
in the vacuum UV-region. However, if the combination energy is
distributed between both electron activation, which can result in
radiation, and kinetic energy as the new particles escape from the
surface and approach supersonic speeds, the formation of C; and C,
molecules can be occurring and produce this first bright plume. The
new molecules could then produce the spectra observed in Figure 6.

Consequently, an examination of these plumes as near to the
surface as possible in order to detect and measure any C, as well
as the C; and C3 already found there, would contribute to under-
standing the ablation mechaniam and determine the relative
importance of reflection and ablation for blocking the damage very
high intensity lasers are capable of producing.




SUMMARY

In this paper we have attempted to show the means we have
employed to reveal the nature of the interaction of a
high~intensity infrared laser beam with a specific material systenm.

We have divided this study into four phases:

(1) 1Initial material characterization
(11) "In situ” mass and energy changes during laser
irradiation of the sample
(1i1) Post-radiation analyses of burns and surrounding areas
(iv) Correlation with other experiments and data recorded in
the literature, directly observed, or reported in
private communications

which are fllustrated by descriptions of the analytical techniques
used and brief indications of the interpretations made of the
acquired data.

We have presented an outline of the principal stages in the
interaction of a particular laser (a cw 10.6~um COz~laser, welding
type) with a particular composite material (a carbon cloth laminate
with a pyrolysis-produced carbon and sintered mixed tungsten
carbide matrix), and described a proposal for understanding the
ablation mechanism involved.
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