AD-A156 935 THE DBTRBRSE UNIFORHIZRTION PROBLEH A SEED/DAYID
INTERFACECU) AIR FORCE INST OF TECH WRIGHT-PATTERSON
AFB OH J RULINO 1985 AFIT/CI/NR-835-44T

UNCLASSIFIED F/G 972

IlL2 & 2
=i.k
o C e
— =
=y Iy
,
® .'] | - .7

‘‘‘‘‘

prre— W I el I e e aua aul amary T T W W —r Y

v v 'fi'r""*

Ty
0
(o))
O
O
r-
| THE DATABASE UNIFORMIZATION PROBLEM:
Q A SEED/DAVID INTERFACE
. }-
G
h by
t.‘_ Joseph Aulino
F ELECTE
JUL15 1985 |

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science

1986 ' - =
DISTRIBUTION STATFMLNT A
Appsoved for publir reloase]

Disuibution Unlimited

)

078 FILE rppy

85 06 =24 0b6b

| A e A AR LA A DAt AN Sl St St it e e oo e am com e en e e o o ~
b HNCLASS
b SECURITY CLASLSIFICATION OF THIS PAGE (Whan D-ln‘l'nlnnl)‘
o REPORT DOCUMENTATION PAGE e KEAD INSTRUCTIONS
1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER

[AFIT/CI/NR 85-44T a4y NSE 7SS
4 4. TITLE (and Subtitle) 5 TYPE OF REPORY & PERIOD COVERED

The Database Uniformization Problem: A THESIS/D N
% Seed/David Interface /DIFRINI 2D

6 PERFORMING O3G. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Joseph Aulino

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS
AFIT STUDENT AT: University of Maryland

—r

Ty

m 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE

AFIT/NR 1986

WPAFB OH 45433 13. NUMBER OF PAGES
158

4. MONITORING AGENCY NAME & ADDRESS(!H ditlerent trom Controlling Oflice) 15. SECURITY CL ASS. (of this report)
UNCLASS

15a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AARALAUE B NN BIN An g e o amn o o

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, {1 ditlerent from Report)

5

18. SUPPLEMENTARY NOTES "J("‘ L e
APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1Y LYNN E. WOLAVER

Dean for Research and
oy Professional Deve]opmenﬂ
¢ +i-.) WFIT, Wright-Patterson x_ugoﬁ

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20 ABSTRACT (Continue on reverse aide tf necensary and [dentify by blotk number)

ATTACHED
!
FORM !
DD ,)i 73 1473 E£0ITION OF 1 NOV 6515 OBSOLETE UNCLASS
g SECURMTY CLASSIFICATION OF THIS PAGE (Wheo Data Entered) !

ABSTRACT

Title of Thesis: The Database Uniformization Problem:
A SEED/DAVID Interface

Joseph Aulino, Master cf Science, 19856

Thesis directed by: Dr. A. K. Agrawala
Professor
Department of Computer Science

Abstract: The database uniformization problem deals with creating a
common user interface for a collection of heterogeneous databases. The
DAVID Syﬁtem 8 a databas; ullanrag"ement system which is being
implemented by the National Aeropautics and Space Administration to
create such an interface. This paper deals with the implementation of
certain routines used by the DAVID System to interface with SEED, a

Codasyl database management system.

PP S e W

1

,.~,1-rw~v=—~,|vvvv

PP O N PN W DR S U Y W TR T W R S D S ST T U T I

DEDICATION:

This is dedicated to my wife Janet and my son Andrew.
With all my love...

——
~———

| Accession Fop i

NTIS geger =
PT1C 701 f

IS
fntenL e

| Uni)
‘ Just -

—_ . Sy
e — el Ly

Ef.’ - e e : ' .,."'
' ‘ s e
; LA ! N
4

N

M t

: ‘ 24 CC."

ii

ACKNOWLEDGEMENT:

This thesis would not have been possible without the continual support
and guidance of Dr. Barry E. Jacobs, NASA GSFC, Dr. A. K. Agrawala,
University of Maryland, Dr. John Welch, Catholic University, and Dr.
Isadore Brodsky, University of Puerto Rico at San Juan.

Table of Contents

Chapter 0. Introduction
0.0 The Uniformization Problem
0.1 Survey of the Literature
- 0.2 The DAVID System
r 0.3 SEED Interface for DAVID
. 0.4 An Outine of the Thesis

Chapter 1. Preliminaries
, 1.0 Introduction
m 1.1 Examples
1.2 Definitions
1.3 Primitive Processes
1.4 Some Common Tools

Chapter 2. Conversion of Schema
2.0 Introduction
2.1 An Example
2.2 The General Methodology
2.3 A Detailed Description
2.4 The Code

Chapter 3. Query Translation
3.0 Introduction
3.1 Apn Example
3.2 The General Methodology
3.3 A Detailed Description
3.4 The Code

Chapter 4. Traasaction Translation
4.0 Introduction
4.1 An Example
4.2 The General Methodology
4.3 A Detailed Description
44 The Code

Bibliography

iv

Section 1.1:
Figure 1.0a
Figure 1.0b
Figure 1.1a

Figure 1.1b

Section 1.2:
Figure 1.2
Figure 1.3

Section 1.4:

Figure 1.4
Figure 1.6
Figure 1.6
Figure 1.7

Section 2.2:

Figure 2.0
Figure 2.1

Section 2.4:

Figure 2.2a
Figure 2.2b
Figure 2.3

Section 3.1:

Figure 3.0
Figure 3.1
Figure 3.2

Section 3.2:

Figure 3.3

Figure 3.4
Figure 3.6a
Figure 3.5b

Al s Sheh Jhal Al Frrs o v e xv

IST OF FIGURES

e =

DBL DDL Definition.

DBL SCHEMA For Figure 1.0a.
DBL DDL Definition For a Recursive
Database.

DBL Schema For Figure 1.1a.

Seed Schema Defining HDBP.
Seed Sub—Schema.

Declarations of C Structures.

The Explanation of the C Structures.
A "Y" Network Figure.

A Graphic Representation of a Data
Structure.

Flow Chart for the Records Routine.
Flow Chart for the Sets Routine.

The C Code for the Records.
The C Code for the Sets Routine.
The C Code for the Subscm Routine.

An Example FIRSTW Routine.
An Example GRASP Routine.
An Example FILER Routine.

Flow Chart for the Firstwhere
Routine.

Flow Chart for the Grasper Routine.
Flow Chart for the Outpt Routine.
Flow Chart for the Filwrite

Routine.

P

T

Section 3.2 (cont):
Figure 3.6a -

Figure 3.6b -
Figure 3.7 -

Figure 38 -

Section 3.4
Figure 3.09a —

Figure 3.9b -

Figure 3.10 -
Figure 3.11a —
Figure 3.11b -

Section 4.1:
Figure 40 ~
Figure 4.1 -
Figure 4.2 -

Section 4.3:
Figure 4.3 -
Figure 4.4 -
Figure 4.6 -~
Figure 4.6 —
Figure 4.7 -

Section 4.4:
Figure 4.8a -
Figure 48b -

Figure 4.9 -

LIST OF FIGURES (cont)

Flow Chart for an Example FIRSTW
Routine.

Flow Chart for an Example NEXTW
Routine.

Flow Chart for an Example GRASP
Routine.

Flow Chart for an Example FILER
Routine.

The C Code for the Firstwhere
Routine.

The C Code for the Nextwhere
Routine.

The C Code for the Grasper Routine.
The C Code for the Qutpt Routine.
The C Code for the Filwrite Routine.

An Example MODITE Routine.
An Example DELETE Routine.
An Example INSERT Routine.

Flow Chart for the Idu Routine.

Flow Chart for the Inserter Routine.
Flow Chart for the MODITE Routine.
Flow Chart for the DELITE Routine.
Flow Chart for ithe INSRTN Routine.

The C Code for the Indelup Routine.
The C Code for the Idu Routine.
The C Code for the Insrt Routine.

vi

CASn e Siae Yt Maren 4 v e TR s - T — Ty

CHAPTER 0. INTRODUCTION

0.0 THE UNIFORMIZATION PROBLEM

The database uniformization problem is: given a collection of
distributed, heterogeneous databases, build a common user interface facility
that will support uniform access to the set of databases [12]. Solving this
problem would allow a user to access all of the information in the databases
without learning the different data manipulation languages. Further, it

should leave intact component databases and their existing software {10].

0.1 SURVEY OF THE LITERATURE

Many projects have focused on the database uniformization problem.
Most of these deal mainly with the global data manager. At UCLA,
projects by Cardenas [2] and Chu [3] use the Entity—Relationship (E—R)
model as the global model. Two other projects using the E~R model are
Nihon—Systemix’s Distributed Multi—Data Base ([14] and INRIA’s
Sirius—Delta [6].

There have also been projects dealing with remote, heterogeneous,
database management systems (DBMS). Two of these, CSIN [4] and
COSYS (1] may have been implemented. Designed at the University of
Grenoble, COSYS (COoperation SYStem) is not extensively documented. On
the other hand, CSIN (Chemical Substances Information Network) is a fairly
well described system. One feature of CSIN is that some of its component
systems are not general DBMSs. This causes some data to be accessible
only through direct contact with the local DBMS. It also resulted in a
global model which is less than the union of the component models. Finally,
(7] deals with eleven projects on uniform access to distributed DBMSs. Six

o e - . e c R L.
S SIS P ST S S W LA RT DU N I SN PP PP SRR A_:_‘_‘AJ--_JL.-;J

of these deal with interconnecting heterogeneous systems. The remaining five
cover the simpler problem of interconnecting homogeneous systems based on

the relational model.

0.2 THE DAVID SYSTEM
DAVID (Distributed Access View Integrated Database) is a system

allowing users to uniformly access distributed heterogeneous databases [9).
Its development is funded by the National Aeronautics and Space
Administration. Basically, DAVID is a database management system
(DBMS) built atop existing DBMSs and file management systems. Its front
end is Database Logic (DBL).

Simply put, DBL can be thought of as a uniform layer placed on
heterogeneous databases. In this way, it is used as a framework for solving
the database uniformization problem. DBL is used to construct a "Global
Data Manager" (GDM). It is the GDM which allows users the uniform
access to the distributed heterogeneous databases [12].

To accomplish its tasks, the GDM is divided into 8 basic processes.
These processes are:

The Global Model;

External to Conceptual Mapping;

Global Dictionary;

Report Generation;

External to Conceptual Translation;
Query Execution, Assembly, and Loading;
Process Control and Communication;
Local Data Manipulation Language (DML)
Dependent Processes.

The exact purpose of the different parts is explained in {10]. This thesis
deals with Local DML Dependent Processes. In particular, interfacing SEED
(a Codasyl DBMS) with DAVID.

PNP O PN

P S W W DY SRy bl hPP N U S VY PR UL N G WA W W Sl LD ULEY G Y WL Sy A o A e e lal o g

]

T YT TR T Ty T e TR TR e T e YT TR T R Y T v T eT Y Y TR T Y TR Ty T AT T TR T e T AT o o

The Local DML Dependent Processes are programs written in local
DMLs. These processes interface the GDM and local databases. The main
functions of these processes is to scan the databases, extract information from
the databases, enter data into DAVID’s own DBMS, test currently scanned
records to see if they satisfy some boolean condition, and transaction

processing.

0.3 SEED INTERFACE FOR DAVID

This thesis deals with implementing certain basic routines needed to
create the Local DML Dependent Processes for interfacing DAVID with a
Codasyl DBMS. The specific DBMS selected was SEED {8]. SEED is a
commercially available Codasyl DBMS used by the National Aeronautics and
Space Administration (NASA).

To create the interface, it is only necessary to identify databases and

create certain basic routines. These routines are described in section 1.3.
The routines created here are the basis from which the basic routines for
interfacing are made (10]. They allow (in a simple manner) creation of
routines to satisfy the requirements of Local DML Dependent Processes.

The work presented here deals with three basic areas essential to the
task of creating the interface. The first area is "Schema Conversion". This
requires creating a SEED schema given a DBL schema (these terms are
explained in the next chapter). The next area is "Query Translation". This
refers to the creation of certain basic routines which will make it possible to
convert from a DAVID query to a SEED query. Lastly, is "Transaction
Translation". This is the creation of routines needed to process transactions

on a SEED database given a transaction on a DAVID database.

0.4 AN OUTLINE OF THE THESIS

Chapter 1 gives the particulars on this thesis. This includes examples
of a DBL Data Description Language (DDL) Definition and a DBL Schema.
This chapter defines certain terms used through the thesis, explains in

greater detail the primitive operations needed to implement the
DAVID/SEED interface, and describes certain programming tools used. The
remainder of the thesis deals with the specifics of the implementation.
Chapter 2 details the implementation of the "Schema" conversion. Chapter
3 details the implementation of the automatic generation of code used in
translating queries on the database. Chapter 4 details the implementation of
the automatic generation of code wused in translating transactions on the

database.

et A e el el e m m T mteftat alaiateiaTlaloGat B % _n_a a_a- e a 2% oo

s A

record owns a recursive occurrence of another record. In this way, special

actions which need to take place can do so.

After this, control returns to the "relate" routine. Here, the correct
value of the "typr" field for each record is finally established. This is done
by counting the number of "hook" structures pointing to a "table" structure
and putting this number in the "typr" field of that "table" structure. The
"areset” routine is then called which performs its function as explained
above. The numbers put in the "rcnt" field of the table are used to
differentiate variables of recursive occurrences of a record from the record
itself. By using increasing numbers, a record may have several recursive
occurrences, but variables for each will be unique using the naming system
described in section 1.2.

This completes the creation of the schema data structure. A graphic
representation of the data structure for the recursive network of figure 1.1
appears in figure 1.7. The relationships established here model the DBL and
SEED schemas. Having completed the formation of the schema data
structure, control returns to the calling program and the process of schema

conversion can begin.

18

P e S N S W S M N SN N VT S, SR TRl WP Sy U Sy UL Y ST S AP ST N T S S

]

"relat" field indicating its selection will be made through one of its owners
(it is & child). In this system, once a record has been marked for selection
as a "parent” it cannot be changed (thus selecting things the most efficient
way). On the other hand, something marked with a "C" may be changed
often and eventually marked with a "P" if possible. There is also the
possibility that a table structure will have ~o pointer in its "for_write" field
and no value in its "relat" field. This indicates that the record is owned by
"SYSTEM" and selection will come via "SYSTEM".

While this is being done, the typr field of each table structure with a
typ field of "R" is incremented. Once this is done, recursive relationships
are established and counted. To do this, non—zero typr fields of all table
structures are set to 1, and the "recurfind" (for "recursive find") routine is
called. In recurfind, the schema structure is again traversed. It looks for
table structures which have a "typr" field of 1. It then looks for another
table structure meeting the following criteria. First, the second table
structure is pointed to by one of the "hook" structures in the list of hook
structures pointed to by the "for sets" field of the current "table" structure.
Second, the first table structure is pointed to by one of the "hook"
structures in the list of "hook" structures pointed to by the "for_sets" field
of the second "table" structure. If these two criteria are met, the second
"table" structure must represent the record used to link the record and its
recursive occurrence. So in this case, a "hook" structure is allocated. Its
"atab" field is set to point to the first "table" structure. The hook record
itself is then made part of a list of hook records pointed to by the "rhook"
field of the second record. Later, when the schema structure is being
traversed for the creation of the schema and various of the Fortran

programs, the fact that the "rhook" field =/= 0 will indicate that this

17

P . A . A Al A A . NP P NS UL L - DL U G I DU DT T I S Y

The records section of the DBL schema could actually be written in several
ways, each of which would change the way records were selected. Suppose
the sets were listed in the DBL schema as "A", "B", "C". The "A" record
would be selected via "SYSTEM_A", "B" would be selected via
"SYSTEM_B", and "C" would be selected through "B_C". The point being
that records are going to be selected in the order they appear in the DBL
schema. So if they are listed in the order "A", "C" "B". "A" will be
selected as before, "C" will now be selected via the set "A_C", and "B" will
be selected via "B C" where it will be selected as a parent of "C".
Selecting records as parents is advisable (in SEED) whenever possible as each
record can have only one of each type of parent. Selecting in this way can
then save search time. This is the general plan for how selects will be done.
What the relate routine does is establish the relationships necessary to
implement this plan.

The relate routine accomplishes the above by keeping track of where
records occur in table structures in relation to where they appear in item
structures. If a record name appears in an item structure, and the table
name that record appears in occurs before the table structure this item
structure is attached to, in that case, and that case only, the record will be
selected through one of its children. Hence, a pointer is established from the
"for_write" field of the current table structure, to the table structure
containing the name of the record found in the item structure. Also, the
table structure pointing to the item structure will have its "relat" field
marked as "P". This indicates it is the parent of the record through which
selection will be made. If a record name appears as a field of another
record, and the table structure containing that name appears after the

current table structure, the later table structure is marked with a "C" in its

16

B A At et Sl S R vy - R i

routines are related in that "relate" calls "recurfind" to make some of
the needed relationships. These relationships include determining which
records are members and which are owners of sets, which records own
recursive occurrences of other records, and the number of recursive
relationships a record is a member of. The basic formula for doing this
is to traverse the part of the schema structure already built and create these
relationships.

To do this, the schema is traversed table structure by table structure
and item structure by item structure. I an item structure has type "T" or
"R", the schema structure is re—searched until the table structure
corresponding to it is found. The original table structure is then added to
the list of structures which owns the current table structure. This is done
by allocating a hook structure whose "atab" field points to the original table
structure. If this is the first set to which the current table structure is a
member, the "for write" field of the table structure then points to the
"hook" structure just allocated. Otherwise, the hook structure is pointed at
by the "nhook" field of the last "hook" structure in the list of "hook"
structures pointed at by the "for_sets" field of the current "table" structure.
By doing this, all set relationships are established.

As the structure is traversed, it must also be determined through which
set the query on any particular record will be made. The single path
traversed to any record (though many may exist) will always be found in the
same way. This is derived from the DBL schema. A record will always be
selected through some set, it may participate in this set as a member or
owner. Most commonly selection will be through an owner. Selection can
be made through a member in the case of a "Y" network as in figure 1.6.

Here, the sets are "SYSTEM_A", "SYSTEM_B", "A_C" and "B_C".

15

B A M Al . m A et atal! mfmt mAm i R B e s e ma_ s e A a e e e e

certain of the table structures to represent particular relationships between
records. The particular fields of the table structures represent particular
things. The different representations are found in figure 1.5.

The "parser™ routine reads in the DBL schema. As it does so, it
stores the database name in the "dname" variable and the view name in the
"schem" variable. Then it begins parsing the remainder of the schema. As
it comes to each record name, it allocates a new "table" structure and puts
the record name into the structure. Next it reads the field names for the
particular record. It allocates an item structure filling the appropriate
elements of the structure as it does so. Each table structure is linked to the
list of the previously allocated table structures via the "ntable” field of the
last table structure. The "item" structures are linked to the list of item
structures pointed to by the the "to_items" field of the appropriate table
structure. Also, in the "parser” routine, if a field has a key entry of "1", a
special pointer is assigned to it so that when the SEED schema is created
later this field can easily be found. It is pointed to by the "to_key" field of
its "table™ structure or by the "nkey" field of the last key field read in for
this record. When the entire DBL schema has been input, the above has
been completed for all records of this database.

The "parser" routine then returns control to the main program,
returning as it does so a pointer to the first "table" structure allocated. By
following the pointers emanating from this structure all other "table"™ and
"item" structures can be reached. It is this combination of "table” and
"item" structures that (along with the "hook" structures to be assigned in
the "relate" and "recurfind” routines) make up the "schema" structure.

The relationships which make up the remainder of the schema

structure are created in the "relate®™ and "recurfind® routines. These

14

»

an "A". Here too, the same rules hold for forming variables for recursive
occurrences of records.

Having explained the naming conventions of variables, explanation of
the "declarer® and "commons" routines follows. "declarer" creates the
Fortran declaration of the counter variables used in the Fortran subroutines.
These variables are created according to the formula described above. The
routine keeps track of the length of the variables it creates and generates
continuation lines where necessary.

The "commons” routine is used to declare the common statement used
by every Fortran routine created. As in the "declarer" routine, this routine
keeps track of variable and line lengths and generates continuation lines
where necessary. Every record name is in this statement, every set name is
in it, every logical pointer is in it, and all currency pointers are in it. The
routine creates its variables by traversing the schema data structure and
outputting the appropriate declarations as it progresses.

This leaves only the "parser", "relate"” and "recurfind" routines to be
explained here. The "parser" routine takes a DBL schema from standard
input and puts it into the schema data structure, building the basics of the
structure as it goes along. To explain how this is to done, requires
understanding the schema data structure.

The schema data structure is made up of three separate structures; the
"table" structure, the "item" structure, and the "hook" structure. The
purpose of the entire structure is to represent a DBL schema. Each of the
separate structures also has a particular purpose. The individual structures
are as declared in figure 1.4. The table structure represents one record of
the database, the "item" structure represents a field of a record (either a

table field or an entry field), and the "hook" structure is to "connect"

[od

set name. These variables are formed by appending the name of the
member record to the name of the owner record and separating the two by
a "_". As an example, in the HDBP database, the "DOCTOR" record is
owned by the "HOSPITAL" record. These then form the set variable
"HOSPITAL_DOCTOR". For those records owned by "SYSTEM", the word
*"SYSTEM" replaces the set name of the owner. One of these types of
variables is created for each record, non_record field name, and for each set
defined in the database. The SEED processor automatically defines these
variables in the UWA when processing the SEED sub—schema.

There are some other variables which also have to be declared. The
first of these are the counter variables. These are used to count the of
number records queried before selecting one. Their final value can then be
used as a logical pointer to a record. For those records which have no
recursive occurrences, these variables are named by appending to the letter
"C" (for counter) the name of the record type they are to count. So for the
"HOSPITAL" record, the counter variable is "CHOSPITAL". H a record
has a recursive occurrence, then a number is also appended to the end of
the variable name. The number comes from the "rcnt" field which would
then be reduced. Hence, if another recursive occurrence has a counter
variable, it would then get the next lower number. If "rent" = 0, no
number is appended to the end. The way the "typr" field is assigned values
guarantees there will be as many numbers as occurrences of a record. As an
example, were there a recursive occurrence of the "HOSPITAL®" record its
counter might be named "CHOSPITALI1".

The variables to hold the currency pointers are formed in a similar
manner, the only difference being the first letter. Here the first letter is an
"N". Logical pointers are also formed in the same way with the first letter

o

append a number to the end of a variable in the Fortran routine. This is
done due to the way certain variable names are created (explained in detail
below). The "transf” routine generates code for switching the value of two
variables. In certain of the automatically generated Fortran routines, there is
the chance that the value of certain variables will be changed by "accident®.
This routine is used to generate code to specifically prevent this.

Two other important routines are the "gotowrite" routine and the
"gorite" routine. These routines generate the line numbers used to create
Fortran computed "go to" statements. "gorite" generates the line numbers
only. This is used by several routines. When used alone, the calling routine
must generate the words "GO TO" and the ending of the statement (ie ")"
and the variable controlling the statement). This routine needs starting
values in all variables, however, once started it will update all values as
needed. The routine automatically generates the correct continuation lines
where necessary.

The "gotowrite" routine is used to generate a complete computed go to
statement for the "outpt" routine (discussed later). It traverses the schema
structure and generates one line number for every field in the database,
every record in the database, every currency pointer in the database, and
every logical pointer in the database. This is done because any and all
possible information in the database may have to be output. For more
complete information, see sections 3.3 and 3.4.

There are certain variables needed to ensure all parts of the database
can be referenced correctly. First there are the variables representing records
and fields of those records (non—table or recursive occurrence fields). These
variables are the names of the records and fields as given in the DBL

schema. The next most basic type of variable is the variable representing a

11

T v

these basic "building block" routines. For more information on the primitive

pmceeeea‘ and how they are used see [10].

1.4 SOME COMMON TOOLS
The main routines used to implement this part of the DAVID project

are detailed in the appropriate sections of this thesis. However, there are
some routines basic to the other routines. These are detailed here and
referred to throughout the thesis.

Two basic routines for inputting data are the "namer" routine and the
"getint" routine. The namer routine takes in a pointer to a string and as a
"side—effect” enters a string in the location "pointed to" by the pointer.
This string comes from standard input. The routine returns the first
character from standard input after the string. @ The routine recognizes
certain string terminators in the standard input, these are: " """ and "#".
The blank is the normal string terminator. The ";" terminates one record’s
entry in the DBL schema. The "#" is used to terminate the entire DBL
schema. The "getint" routine reads an integer from standard input and
returns it to the calling program. This routine changes the standard input
to its integer representation.

Another function which returns an integer value is "how_big". It takes
a pointer to a string as input and returns the length of the string. The
"eqname" routine is another string oriented routine. It takes as input,
pointers to two strings. It returns a "1" if the strings are identical, "O"
otherwise.

The next two routines are the "areset" and the "transf® routines.
"areset” sets the "rcnt" field of all table structures in the schema structure

(explained below) equal to their "typr" field. The "rcnt" field is used to

10

-

schema, it is poesible to express any of the three types of databases
considered here. From this then, certain Fortran routines are made. These
routines make it possible to query the database, insert, modify, and delete

information, and generate the SEED schema and sub—schema.

1.3 PRIMITIVE PROCESSES

In implementing this interface, only certain operations need to be
implemented. These are called "primitive processes” (10]. Anything which
can be done in a DBMS can be built up from these processes. The
processes applicable to SEED are:

Project query;

Selection query;
Selection—Projection query;
Store—To—Database query;
Semijoin and Join query.

A e

The project query is having certain specific values "output" (in some
way) from each type of record in the database. For some records the
output may be null. The select query outputs every value from each record
of the database meeting certain criteria. Select—project queries output
certain specific values from each type of record in the database satisfying
certain criteria. Numbers 4 and 5 above, don’t have to be implemented for
SEED, but the output from numbers 1, 2, and 3 must be in a form which
can be used by DAVID.

These routines can be implemented using more basic tools. This thesis
deals with the creation of these more basic tools. These include procedures
for sequentially traversing a database, retrieving records from a database
based on currency pointers for thoee records, outputting information in a way
which facilitates interfacing with DAVID, and procedures for transaction

processing. The remainder of this thesis deals with the implementation of

0

M B ange s soas maas Shees Shate Enade Mhber Skl Shedh S SERd Mgl SeeanCii St M i

In addition to the SEED schema, there is the DBL schema. The DBL
schema is the conmstruct which was derived from the DBL DDL Definition
[10] (see figure 1.0 and figure 1.1). A DBL schemsa is not normally used by
a user of DAVID. DAVID uses a different construct called the DEFINE
CLUSTER {[11}. The DBL schema is a special construct used to convey the
definition of the database to the DBMS. A DBL schema contains the name
of the database, a view name for the database, and the actual database
definition.

Note how the ownership of records is expressed. The "DOCTOR" and
"BEDNR" records are expressed as fields of the "HOSPITAL" record. Also
the "PATIENT" record is expressed as a field of both the "DOCTOR" and
"BEDNR" tables. This indicates that these tables are "owned" by the
records in which they appear as fields. The first two names are the
database and view names respectively. The first name in each row is the
table name. This is followed by the field names and their descriptions. The
description of any field starts with the field name. This is followed by one
of a "T", an "R", a "C", an "I", or an "F". I followed by a "T" or an
"R", the field represents a table owned by this particular record. The "R"
means the table has a recursive occurrence somewhere in the database. If
the field is a table, then there is no more to the entry. The "C" indicates a
character field, the "I" indicates an integer field, and the "F" indicates a real

field. Whenever any of these three characters appear, they are followed by 2
integers. The first is the size of the field and the second is always a "1" or
"0". If a "1", it indicates the field is to be a key field, if a "0", it indicates
the field is not a key field. (Key field here refers a record being sorted on
this field.). |

It is the DBL schema on which everything else is based. Using this

DBMS, this type of record is said to be "system" owned. This is usually
represented by having the word "SYSTEM" somehow associated with the set.

Another type of structure here is the recursive record. A recursive
record i8 one which is owned by a record of the same type as itself. In
most if not all Codasyl DBMS, this ownership must be indirect [9]. That is,
a record of type "A" will have to own a record of type "B" which in turn
can then own a different record of type "A". Figure 1.1 is an example of
this. Here, a record of type COURSES owns a record of type PREREQ.
The record of type PREREQ then owns a record of type COURSES. The
first record of type COURSES is referred to as the "original® occurrence and
the record of type COURSES owned by the record of type PREREQ is
referred to as the "recursive" occurrence.

Another important aspect of the network DBMS is the schema. The
schema defines the database for the DBMS. It allows the DBMS to set—up
the data structures and the storage facilities necessary to construct the
database [8]. It can be thought of as a template for the Database. Figure
1.2 is the SEED schema defining the HDBP database of Figure 1.0.

In addition to the schema, there is the sub—schema. The sub—schema
determines exactly what part of the database will be available to the user at
any one time. The sub—schema corresponds with the external view of the
database [8]. It can be changed each time the database is referenced. Any
part or all of the database can be made available for referencing. In figure
1.3, there is an example sub—schema used to reference all records and sets
of our example database.

In SEED, the schema and sub—schema are processed by a
pre—processor. From the sub—schema, the pre—processor creates the United

Working Area (UWA) (8].

. RAPE S S . eaa e oalas A bl Y MIPULES WA W WL NP W W S AP ST G VRS ST S § PR S I Vil SN

various points. The differences between a DBL DDL Definition and a DBL
Schema are illustrated in the next section.

1.2 DEFINITIONS

The most basic term here is database. A database is nothing more
than a collection of data {5]. A database management system (DBMS) is an
automated method for referencing this data. In the course of this thesis,
' ol reference will be made to 3 distinct type of DBMS. These are the relational
DBMS, the hierarchical DBMS, and the network DBMS.

A relational DBMS can be thought of as a table whose rows are
i. referred to as "tuples" and columns as "attributes" {16]. In the hierarchical
| approach, data is represented as a simple tree where the "root" and each
E "leaf are different record types. Each "leaf® record type is "owned" by
E some other record type. Owning can be thought of as a path from one
record to another. While a record type may own any number of other
record types, each record type can have only one owner. Lastly, comes the
network approach. In this approach, data is represented as records and
links. Each record type is linked to some other record type in a set
relationship. As in the hierarchical approach, one record can be thought of

as owning another set. In the network approach, any record can have any
number of owners and/or members. Each single record may own many
other records of one type, hence "linking" those records together [9).

This thesis deals with the network case. There are several terms and
concepts which are unique to the network case. For instance, the "singular
set". A singular set is one owned by the DBMS itsef. The purpose for
this is to allow a database to have only one type of record and to link
different instances of this type of record together [15]. In most network

- R G e e Y S W R St Shate Miasiie it Bhas SAadin Sl M M i M AR 4 v A A Jaeui i i S A ~~

[‘ CHAPTER 1. PRELIMINARIES

1.0 INTRODUCTION

S This chapter covers preliminary information needed for the remainder of
ﬁ(‘ the thesis. Section 1.1 gives an example of a DBL DDL Definition and DBL
! schema derived from this definition. This is because the DBL schema serves
: as the basic input in this implementation. In section 1.2, certain basic
. definitions are given. Some of these definitions are basic database definitions,
F‘d some are definitions for terms unique to this thesis. There are certain
primitive operations from which the entire interface can be constructed.
&. Those operations, a brief explanation of them, and how they relate to this
work are given in section 1.3. Lastly, section 1.4 deals with some basic C

routines and data structures referred to throughout this thesis.

1.1 EXAMPLES

This section gives examples of DBL DDL Definitions (9] and the DBL
schemas derived from them. It is the DBL schema which is the input to
this implementation and which is "operated" on to get the required output.
There are two examples given here. These will be referenced throughout the
work as basic examples. The first example is of a "Y" petwork. Figure
1.0a gives the DBL DDL Definition and figure 1.0b gives the DBL schema.
The DBL schema is a stylized form of the Language and View Definitions of
the DBL DDL Definition.

The second example is another DBL DDL Definition and its DBL
schema. In this case, the example is for a network with a recursively owned
record. The example appears in figure 1.1a and figure 1.1b.

These two examples will be used throughout the thesis to illustrate

V(HDBP): VIEW DEFINITION
i S(HDBP): SCHEMA DEFINITION
[TABLE HOSPITAL = (NAME,CITY,ZIP,DOCTOR,BEDNR)
A TABLE DOCTOR = (DRNAME,DRNR,PATIENT)
TABLE BEDNR = (WARD,PATIENT)
TABLE PATIENT = (PNAME,DISEASE,AGE,SEX,VITS)

in L(HDBP): LANGUAGE DEFINITION
T(HDBP): TYPING DEFINITION

TYPE NAMTPE = {NAME,DRNAME PNAME} EBCDIC CHAR(30)
TYPE CITYP = {CITY} EBCDIC CHAR(30)
TYPE ZP#TPE = {ZIP} EBCDIC DEC(9)
TYPE DR#TPE = {DRNR} EBCDIC DEC(5)
TYPE BED#TPE = {BEDNUM} EBCDIC DEC(1)
TYPE WARDTPE = {WARD} EBDIC CHAR(20)
TYPE DISTPE = {DISEASE} EBCDIC CHAR(20)
TYPE AGETPE = {AGE} EBCDIC DEC(3)
TYPE SEXTPE = {SEX} EBCDIC CHAR(1)
TYPE VITPE = ({VITS} EBCDIC CHAR(80)

NONLOGICAL SYMBOLS DEFINITION
PREDICATE SYMBOLS

HOSPITAL-DOCTOR-BEDNR-PATIENT:
(NAMTPE,CITYP,ZP#TPE,DOCTOR,NAMTPE,DR#TPE,
BEDNR,BED#TPE,WARDTPE,PATIENT,NAMTPE,DISTPE,
AGETPE,SEXTPE,VIIPE) ~ FULL CLUSTER
PREDICATE SYMBOL

FUNCTION SYMBOLS
NONE

C(HDBP): CONSTRAINTS DEFINITIONS

C(HDBP,1): CONSTRAINT HOSPITAL:
ZIP-->CITY

C(HDBP,2): CONSTRAINT DOCTOR:
DRNR-->DRNAME

C(HDBP,3): CONSTRAINT BEDNR:
WARD,BEDNUM-->PATIENT

C(HDBP,4): CONSTRAINT PATIENT:
PNAME~->DISEASE,AGE,SEX VITS

Figure 1.0a A DBL DDL Definition for Database HDBP.

19

- - B - . L. . S - - L. - . . S
A S el NSO SISO DUUNT. SO SEE Wl Sl Shuly W Wl ¥ " T WY T W S A . . - . . Betnd

"iv*: |

HDBP ONE
HOSPITAL NAME C 30 1 CITY C 30 0 ZIP C 6 0 DOCTOR T BEDNR T;
DOCTOR DRNAME C 30 1t DRNR I 6 0 PATIENT T;
BEDNR BEDNUM I 10 1 WARD C 20 0 PATIENT T;
PATIENT PNAME C 30 1 DISEASE C 200 AGEI30SEXC 10
VITS C 80 O;#

Figure 1.0b A DBL Schema for Database HDBP.

20

B WP U I S S P S T PP, P SN SHUET ST S Wl WA W [T PN PRI G S VLR S S N W L.

VT

I

7T

T

TYTTRTTE TR TR T TRV

V(CATALOGUE): VIEW DEFINITION

S(CATALOGUE): SCHEMA DEFINITION
TABLE DEPT = (DNAME,DNR,COURSES)
TABLE COURSES = (CNAME,CNR,CREDS,PREREQ)
TABLE PREREQ = (COURSES,FILLER)

L(CATALOGUE): LANGUAGE DEFINITION
T(CATALOGUE): TYPING DEFINITION
TYPE DCNTPE = {DNAME,CNAME} EBCDIC CHAR(10)
TYPE DC#TPE = {DNR,CNR} EBCDIC DEC(3)
TYPE CRDTPE = {CREDS} EBCDIC DEC(1)
TYPE FILTPE = {FILLER} EBCDIC CHAR(1)

NONLOGICAL SYMBOLS DEFINITION
PREDICATE SYMBOLS
DEPT-COURSES-PREREQ:
(DCNTPE,DC#TPE,COURSES,DCNTPE,DC#TPE,
CRDTPE,PREREQ,COURSES,FILTPE)-FULL CLUSTER
PREDICATE SYMBOL

FUNCTION SYMBOLS
NONE

C(CATALOGUE): CONSTRAINTS DEFINITIONS
C(CATALOGUE;,1): CONSTRAINT DEPT:
DEPT-~->CATALOGUE
DNAME-->DNR
C(CATALOGUE,2): CONSTRAINT COURSES:
CNR-->CNAME,CREDS

Figure 1.1a A DBL DDL Definition for a Database
with a Recursive Occurrence.

CATALOGUE SCHED

DEPT DNAME C 3 1 DNR I 3 0 COURSES R;

COURSES CNAME C 101 CNR 13 0 CREDS I 1 1 PREREQ T;
PREREQ COURSES R FILLER C 1 O;#

Figure 1.1b The DBL Schema for the DBL DDL
Definition of Figure 1.1a.

21

4 e v v ———— . M e Auuth et Bt Se-in s Senme SRS Ssh S SMemn Sae JMNe Sree Sen Shan St SnaEhss e e e Shies Mes SN e Snm e
| = - N PR Rt A PN - - . - .

SCHEMA NAME IS HDBP.
AREA NAME IS BASIC_DATA_AREA.
AREA NAME IS POINTER _DATA_AREA.

RECORD NAME IS HOSPITAL
LOCATION MODE IS VIA SYSTEM_HOSPITAL
WITHIN BASIC_DATA_AREA.
NAME TYPE IS CHARACTER 30.
CITY TYPE IS CHARACTER 30.
ZIP TYPE IS CHARACTER 6.

RECORD NAME IS DOCTOR
LOCATION MODE IS VIA HOSPITAL_DOCTOR
WITHIN BASIC DATA_AREA.
DRNAME TYPE IS CHARACTER 30.
DRNR TYPE IS INTEGER.

RECORD NAME IS BEDNR
LOCATION MODE IS VIA HOSPITAL_BEDNR
WITHIN BASIC_DATA_AREA.
BEDNUM TYPE IS INTEGER.
WARD TYPE IS CHARACTER 20.

RECORD NAME IS PATIENT
LOCATION MODE IS VIA DOCTOR_PATIENT
WITHIN BASIC_DATA_AREA.
PNAME TYPE IS CHARACTER 30.
DISEASE TYPE IS CHARACTER 20.
AGE TYPE IS INTEGER.
SEX TYPE IS CHARACTER 1.
VITS TYPE IS CHARACTER 80.

RECORD NAME IS DNHDBP

LOCATION MODE IS VIA SYSTEM_DNHDBP

WITHIN POINTER_DATA_AREA.
DHDBP TYPE IS INTEGER.
NHOSPITAL TYPE IS INTEGER.
AHOSPITAL TYPE IS INTEGER.
NDOCTOR TYPE IS INTEGER.
ADOCTOR TYPE IS INTEGER.

* Figure 1.2 Page 1 of 3.

-
i

Ry hal S - " e

NBEDNR TYPE IS INTEGER.
ABEDNR TYPE IS INTEGER.
NPATIENT TYPE IS INTEGER.
APATIENT TYPE IS INTEGER.

SET NAME IS SYSTEM_HOSPITAL

MODE IS CHAIN LINKED PRIOR

ORDER IS SORTED

OWNER IS SYSTEM

MEMBER IS HOSPITAL MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS NAME
SET SELECTION IS THRU CURRENT OF SET.

SET NAME IS HOSPITAL_DOCTOR

MODE IS CHAIN LINKED PRIOR

ORDER IS SORTED

OWNER IS HOSPITAL

MEMBER IS DOCTOR MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS DRNAME
SET SELECTION IS THRU CURRENT OF SET.

SET NAME IS HOSPITAL_BEDNR

MODE IS CHAIN LINKED PRIOR

ORDER IS SORTED

OWNER IS HOSPITAL

MEMBER IS BEDNR MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS BEDNUM
SET SELECTION IS THRU CURRENT OF SET.

SET NAME IS DOCTOR_PATIENT

MODE IS CHAIN LINKED PRIOR

ORDER IS SORTED

OWNER IS DOCTOR

MEMBER IS PATIENT MANDATORY AUTOMATIC
LINKED TO OWNER
ASCENDING KEY IS PNAME
SET SELECTION IS THRU CURRENT OF SET.

Figure 1.2 Page 2 of 3.

23

e W W T W =] T a T % T v w W

'@

-

SET NAME IS SYSTEM_DNHDBP
MODE IS CHAIN LINKED PRIOR
ORDER IS NEXT
OWNER IS SYSTEM
MEMBER IS DNHDBP MANDATORY AUTOMATIC
LINKED TO OWNER
SET SELECTION IS THRU CURRENT OF SET.

Figure 1.2 Page 3 of 3.

Figure 1.2 An Example SEED Schema.

m

RECORD SECTION.
COPY ALL RECORDS.
SET SECTION.
COPY ALL SETS.

SUB-SCHEMA NAME IS ONE FOR FORTRAN OF SCHEMA HDBP.

Figure 1.3 An Example SEED Sub-—Schema.

ol

26

i struct hook {
struct hook *nhook;
struct table *atab;
B

struct table {
char aname|30];
char relat;
) int typr;
int rcnt;
int nr;
struct table *ntable;
struct table *for_write;
, struct hook *for_sets;
struct item *to_items;
struct item *to_key;
struct hook *rhook;

b

struct item {
: char iname{30};
char typ;
d int size;
struct item *nitem;
struct item *nkey;

};

Figure 1.4 Declarations of the C structures.

26

relat

typr

rcnt

ntable

T v v R A S

Explanation of the General Table Structure:

— A PARTICULAR TABLE’S NAME.

— THE SET RELATIONSHIP TO THE TABLE

IN THE SAME SET USED TO FETCH THIS
TABLE. VALUES MAY BE:

a) "P" — PARENT.

b) "C" — CHILD.

— VALUE = "0" : A NON-RECURSIVE TABLE;
VALUE > "0" : A RECURSIVE TABLE WITH
"TYPR" RECURSIVE
RELATIONSHIPS.

— USED AS A TEMPORARY STORAGE FOR TYPR
THE VALUE :IERE IS DECREASED EACH TIME

THE TABLE IS USED IN ONE OF ITS
RECURSIVE RELATIONSHIPS AND IT IS
RESET TO TYPR WHEN IT REACHES 0; SEE
THE SUBROUTINES "firstwhere® AND

"areset” TO SEE PRECISELY HOW IT’S

USED AND RESET.

— KEEPS TRACK OF A RECORDS POSITION IN
RELATION TO OTHER RECORDS. THIS IS
USED TO HELP DETERMINE IF A RECORD
OWNS OR IS OWNED BY ANOTHER RECORD.

— A LINK TO THE NEXT TABLE IN A LIST OF
TABLES IN THIS PARTICULAR CLUSTER.

for_write — USED TO LINK THE TABLE TO A TABLE

for sets

IT HAS A SET RELATIONSHIP WITH. IT
WILL BE FROM THIS SET THAT ALL
RECORDS OF THIS TABLE WILL BE
SELECTED.

— USED TO POINT TO A "HOOK" STRUCTURE
TO HOOK A TABLE TO EVERY OTHER TABLE

IT IS INVOLVED IN A SET WITH.

Figurel.b Page 1 of 3.

9.

10.

11.

—
- . T T Ty

to_items —~ POINTS TO A LIST OF ITEM STRUCTURES
WHICH WILL REPRESENT THE FIELDS OF
THIS TABLE.

to_key — POINTS TO THE KEY FIELD FOR THIS
TABLE IN THE LIST OF ITEM STRUCTURES.
THIS FIELD MAY IN-TURN POINT TO A
SECONDARY KEY FIELD WHICH IN TURN MAY
POINT TO A THIRD KEY FIELD ETC. IF
NO KEY FIELD IS GIVEN, THE FIRST
FIELD IS MADE THE KEY FIELD.

rhook — POINTS TO A "HOOK" RECORD TO LINK
TOGETHER ALL THE TABLES WHICH HAVE
A RECURSIVE RELATIONSHIP WITH THIS
ONE.

iname — THE NAME OF A PARTICULAR FIELD.

typ -~ THE TYPE OF THE FIELD. POSSIBLE VALUES ARE:
a) "I" — AN INTEGER FIELD.
b) "F" — A REAL VALUE FIELD.
c) "C" — A CHARACTER FIELD.
d) "T* — THE FIELD IS AN EMBEDDED TABLE.
e) "R" — THE FIELD IS AN EMBEDDED RECURSIVE
TABLE.

size — THE SIZE OF A GIVEN FIELD. THIS IS NOT
APPLICABLE TO FIELDS WHOSE TYP VALUES ARE
"T" OR "R".

Figare 1.6 Page 2 of 3.

28

4. nitem — A POINTER TO THE NEXT ITEM STRUCTURE IN A
LIST OF ITEM STRUCTURES.

5. nkey — A POINTER TO THE NEXT KEY IN THE LIST OF KEYS

FOR A GIVEN TABLE. SEE TABLE ABOVE FOR FURTHER
INFORMATION.

Explanation of the General Hook Structure:

1. nhook — USED TO "LINK LISTS" OF HOOK STRUCTURES.

2. atab — USED TO "POINT" AT TABLE STRUCTURES.

Figure 1.5 Page 3 of 3.

Figure 1.5 Explanations of the C Data Structures
Comprising the Schema Structure.

PR . . a4

LG S e e a4

SYSTEM

Figure 1.8 A Typical "Y" Network.

PUS IR R PP PP IPNE VPP S S R S WP SRR

Lt Sl Sl

PREREQ
NKEY
VATAER

|
|
+
|
|
)
|
I
|
{
|
|
\ = =m se ee me eo ee ! .- - .-
| - e - me == |
| | | K4 | t
| | ¢ ee e | Q@ ! |
| I | o<c | |
e mm e em ee ee aa 1 | I I += | !
45! | |] 1 Z2a |
W | | e L D) - == == == ! !
0) ! i |] | |
14 w> | | | 0 p 2 | | { !
2 = u| | | o} w > | | | |
a - x| l | w =w | [| |
QrozzZ 1 | 14 - I ! --
me mm e me e ee me 1 I D= Z22Z “ ”
| am em wm an aa == aa
| I o~ I |
{ -- - | | | | s= = omemm es e e
| [LR ST TR | | i |
| 1 o ! ! | w) |
|) | | |] ! - t >]
L R | 1 | | | | .| =W
X | } - == ee v me mm el I ! ! ! —t b~ !
w > | | | r ! I | | | L~ |
X - ! | w > | ! ! l So s e e me s e
4 - 1 1 i e [TV | | | | :
Q—~MmZZ | | I Z oy { ! ! |
= me ma me -e we .- “ | U=t Z2ZZ 1 “ ! “ ! Sm = wm e e-
N, -e A me e ee ee e _ R
| ! | | | |
I - .- | 1 | { ! |
S | [i i | ce ce te mr am me e
| | LR TIE L S Ll I | ! n |
| | I | | | w !
R | bt I | | 4] r !
w)) | | se =s sc e ee oo e | I 1 i'e w > !
z w > i ! I w) | I ! ! 3 - wo
g - w ! | | z w > | | ! o - |
Z x| | | I = w | ! ! | veo2Z2Z |
aumzzZ | | I r4 O o | ! = = e sm me me e-
el bl | | o -ZZ | | _.
LA | e me ee me s me ae i f
| | | { { B
} T se ms me we el mm oee | | | |
| | L LT P]
! \ | [)
! | [i = s t= =t e mm o= me
T T | N B : !
L t i “= s me - se es e == ee en ee ss ae ! § W
=y ! I | w | | ! -
T 1 i 1 -wmawm | | ! —
wxww> | | (B 1)) - ¥ | ! [w) wax
30 Wx ! | w Wwe ww > | ! w -2
- B.__IF.D | e | n J3WM - WK) -2 [Vt o 0]
o e ! 19 I =D V4 (5 B B o B (BT qx
W FOO0OO0OZI | oD Txax 19 e = 0
Q D= ZUL LI ! () -~ 0000 I ¢ | O O v 2Zu
Tt e I Q- =t Z0h W= | R
fe me o mm e ee mm o mn am me wm oem mm aa)
| | - o . 4
| | | S ! !
| ! T L T i !
I EE e RN L N L T T e S | !
| ! !
| L T L T L R s '

A o

NHOOK

LIPS S S .

31

]
'

Figure 1.7 A Representation of An Example Schema Data Structure.

FOR SETS

1 TO_ITEMS

RHOOK

TO FEY

*
*
]
v

CHAPTER 2. CONVERSION OF SCHEMA

20 INTRODUCTION

The purpose of this section is to explain my method of schema
conversion and to show how any database logic schema can be represented in
Codasyl by means of this conversion. In section 2.1, an example SEED
schema and sub—schema are presented. Certain constraints on the schema
and sub—schema and the general methodology of the conversion are given in
section 2.2. A detailed description of the C code is given in section 2.3.
Lastly, section 2.4 has the main C routines which implement the schema and

sub—schema conversion.

2.1 AN EXAMPLE

Figure 1.3 is an example of a SEED schema derived from the "Y"
network of figure 1.1. This schema is the desired output given the DBL
Schema for this example.

As mentioned in the last section, a sub—schema must also be produced.

The output sub—schema for the same figure is in figure 1.4.

2.2 THE GENERAL METHODOLOGY

This section of the thesis gives certain constraints on the schema and
sub—schema and the block description of the code used in schema conversion.
The next section will give the specific technical description of the code.
Flow charts for the code in these two sections can be found in figures 2.0
and 2.1. There is no flow chart for the subscm routine because of its
simplicity.

The schema conversion takes place within certain constraints. First, it

Voo :
R v
oL ook Y = :
Cr U {(®HOOK Y) . NHOOE !
P v
M
/ /
QUTFUT SFECIAL /
FOINTER S5ET /
!/
¥
¢ CLOSE
v FILE :
__vV__
i END !
Figure 2.1 Page 2 of 2.
Figure 2.1 The Flow Chart for the sets Routine.
46
!
a A v o o m s ‘s’ alac: 2md 3 I AP Y S RS VL SR SUPLIE S S S - ._J

START

SET LOOF
FARAMETER

/ OQUTFUT SET /
>/ WITH SYSTEM/

C/FOR_SETN-T-——-

JTHBEGIN N—-T-- -

4
4

/ OWNER

(8]

I
i

- - D>

-

SET LOOFP
FARAMETER

D

TREGIN

\
/HOOK Y\ -F = —~—

b
»
]
]

LNTAEBRLE

(#TBEGIN)

o = = e D

/ OUTPUT SET

WITH
/ (#HOOKY) . ATAE /

/

OWNEK

AS

4
/

45

PUBSD W e S Y S S .

P Ll S UL G R S G S

PO S S S S

PP

X

A R R Tt A e s

STETW

T

!
|
|
|
| R R L L L LT LI L |
! |
| | |
| I~ | }
i ! ~ - = ee m- | 1
} | ~ | | | |
| [N ! ~ 1 r | | |
| ! ~ | w ! w i | }
i | ~ | N | = | ! |
} ! - ~) b= =)] - J |
! ! 2 ~ 1 J0 | | Wz | | !
! [o aQ | ! o~ | | o ! 1
| J — | | - 1 2~ | ! |
[! JWW 1--> JL i----D —Z |- -- D |
| i o—=Z | | o> | o [| |
| ~ b g | ~ = | ! | wo | i
| ~ Z 1 ~ | | | PRI |
| AN | ~ | | | —~ o | |
| N ~ 1 | - J
| ! ~ I 1 * | |
! ! ! ! ~ | 1
| - ! ! l |
| | I R |
| PN | |
! Ve ~ | |
| -~ [~ | !
| VR w ! [
| > | == U = e e D !
! LN ¥ 4 !
| ~ (-] -~ |
! ~ e !
) ~N - - mm e |
! f j i
I ! ! w ! }
! ! | -4 |
| - ! [* |
1] | g | |
i SN } | !
! - ~ [nZ 1
! -~ 2 ~ | o '

-t | Z ~ |

.- e > o s= U == ss em e ve en e ee ce e Dy —2Z |-

w ~ | 0 = i

~ =N - | wom |

~ - | [+INTT

N | = 1

| —

| e i

| ~

i !

!

| Q
2

R T T T T T e Y

Figure 2.0 The Flow Chart for the records Routine.

44

[DRI W A T DUy

Ll ata

o b MR " N A, |
|\:’ ————————
/ AN 7/ / H
; \ A OQUTRUT 1
/TEEGIN -1 ---:/ RECORD / :
\N=/= O / / NAME / '
\ / l / i
\ / H H
= Y H
: / N :
N ; \ / :
/ QUTFRUT/ / FOR _ N=T————— +/ LOCATION MODE :
/FOINTER/ N WRITE / /15 VIA SYSTEM_ :
/RECORD / \=/= 0O/ / RECORD NAME .
/TO FILE/ \ A / ;
_______ / ' : :
' F H \
o v__ : :
H / / | H
: / LOCATION MODE / H H
H / 15 VIA RECORD / H '
! / _RECORD / ; '
: /i / : :
: : v :
' N '
; v SET LOOP H H
H v FARAMETER | H
y v ;
Figure 2.0 Page 2 of 3.
43

ST e T W T W oW W T T W v v

ul
-
D
Py
-

FILE

o
m
m
Z
()]
0 .
=
m
4
>

/ OUTFUT OVERHEAD/
/ INFORMATION TO /
/ THE FILE /

M
>
Py
D
X
m
—.
m
Py

-

Figure 2.0

Page 1 of 3.
42

——————y——y p—— T— s

"fprint{(fp,"\n COPY ALL SETS. \o"); "
Control then returns to the calling program where the "SUBSCHM" file is
closed. Now the conversion of the DBL schema to the Codasyl schema and
sub—schema is complete. An example of such a sub—schema can be found
in figure 1.4.

To summarize this section, | have detailed how the Codasyl schema
and sub—schema are created from the schema structure (which was in turn
created from the DBL schema). This comprises the schema conversion.

Next, the Fortran programs must be generated.

24 THE CODE

This section gives the main routines used in schema conversion. They,
as all code for the DAVID project, are written in the language "C". Here,
the "record", "sets", and "subscm" routines are given. The first two
routines create the SEED schema. These routines can be found in figure
2.2a and 2.2b, respectively. The "subscm" routine creates the general SEED

sub—schema. This routine can be found in figure 2.3.

BN S SadUNM A

the other hand, for_sets is not equal to zero, the variable "hooky" is assigned
the value of the for sets field in the structure pointed to by begin. Hooky is
now used to traverse hook structures linked together and "originating" from
the record pointed to by begin. For each record pointed to by "hooky", a
set will be created. The set will have the record pointed to by "hooky" as
the owner and to the record pointed to by "begin" as the member. So by
traversing this list of hook structures, all sets which have the record pointed
to by "begin" as a member will be created.

Finally, the singular set whose owner is "SYSTEM" (by definition) and
whose member is the pointer record is created. Upon creation of this set,
the Codasyl schema is complete. = Now control returns to the calling
program, the file which is accepting the schema is closed, and the next
procedure is started. An example of a schema created in this manner is in
figure 1.3.

The next procedure requires creation of a sub schema. Again the
"fopen" command is used to create a file for writing. In this case, the file
is named "SUBSCHM". Once the file is created, the "subscm" function is
called to create the sub_schema. This function also takes three arguments.
The first is the name of the schema in the "schem" variable, the second is
the view name in the "dname" variable, and the last is the pointer to the
"SUBSCHM" file in the variable "fp". The schema and view names are
used expressly for the purpose of giving the schema name and the view
name. The sub—schema is always for Fortran since the automatically
generated programs are in Fortran. The record section is then created by
the code:

"fprintf(fp,"\n COPY ALL RECORDS. "); "

Similarly, the set section is created with the statement:

40

P WU, VUL SIS SUNE SIS S T VU S L LI Wi W, ¥ O DAL Ir WG VA WAy Wy N W W W WO VI W iy Rl WP WPy

table structure. This process is repeated until all table structures and all
item structures have been visited. In this way, all records contained in the
DBL schema are converted to records in the Codasyl schema.

This does not quite complete the "records" function. The function next
creates the pointer record. This record is named DN[schema name]. Its
location mode is always as a singular set (that is via "SYSTEM_DN|schema
name|”). This is the only record within the "POINTER_DATA_AREA".
After these statements are entered into the "SCHEMA" file by means of
appropriate "fprintf® commands, two fields are created for each table
structure in the schema structure. These fields will contain the logical and
currency pointers. In SEED these must be of type integer. The actual
creation of these fields is done by traversing the table structures in the
schema structure and producing the fields as it goes along. Control then
returns to the main program and the "sets" function can be called to create
the necessary sets.

The "sets" routine takes three inputs. The pointer to the start of the
schema structure is passed in the "start" variable, the schema name is
passed in the "schem" variable and a pointer to the SCHEMA file is passed
in the "fp" variable. Here, the schema structure is traversed to create the
necessary sets. The schema name will be used to create the singular set
which has the pointer record. The file pointer will be used to reference the
output file.

This program begins by assigning to the "begin" variable the value of
the "start" variable. The table structures in the schema structure will again
be traversed. I the "for sets" field of the structure pointed to by begin is
0, then the set has one owner — "SYSTEM". In this case, a set whoee

owner is "SYSTEM" is created and given the applicable attributes. If, on

information about size of pages and other specific information but this is not
done. The reason is that it is not required (the system will do it
automatically) and it keepe the schema as simple as possible. This can and
might be changed later if necessary [13].

When this has been completed, the variable "tbegin” is assigned the
value of the variable "start®. Onmne at a time, the records and fields will be
created. First, the record is named. The name coming from the "aname"
field of the structure pointed to by tbegin. Next the location mode is
created. Location mode is via a set which has the record pointed to by
tbegin as a member. If there is no such set, the location mode is via
"SYSTEM_record name". For instance, if the record were called
"DOCTOR" and it was not owned by any other record then its location
mode would be via "SYSTEM_DOCTOR". On the other hand, suppose the
record i8 a member of one or more sets. Then the location mode via the
set whoese owner is pointed to by the ™or_write" field of the record pointed
to by the "tbegin" pointer. Since this is a data record (as opposed to a
pointer record), it will be ".. WITHIN BASIC DATA_AREA" and this

statement is inserted in the file.

Having accomplished this, the fields of this record must be created.
This is done by assigning the pointer in (*tbegin).to_items to the variable
"ibegin". Then for each item structure (whoee "typ" field =/= "T" or
"R") associated with this record, a field is created. The type of the field is
as designated in the typ field of the item structure pointed to by the
"ibegin" pointer. Once the field is printed, the next ome is reached by
following the pointer in the "nitem" field of the current item structure.
Once the last item structure of a record has been thus "visited", the
"tbegin" variable is updated to the value in the "ntable" field of the current

38 “—________________—-i

e -

schema data structure described in section 1.4. It will also cover specifically
how the schema and sub—schema are created.

First, in the main program a file to hold the schema is created. In the
example program listed this file is always called "SCHEMA". By
substituting a siring variable (containing a different name), for the word
"SCHEMA™" this file could be made to accept a general file name. This file
is created by use of a C "fopen" command and is opened for writing. This
function returns a pointer to the opened file which is assigned to the file
pointer variable "fp".

Once this has been accomplished, the "records" function is called. This
function will create the static and overhead information needed for the
schema. It will also create all the codasyl records based on the information
given in the schema structure. The original source of this information being
the DBL schema. The records function takes as input the schema and view
names. These are supplied in the variables "schem" and "dname". It
takes a pointer to the file to write to. This is supplied in the "fp" variable.
And, it takes a pointer to the schema structure which is passed in the
variable "start". The routine does not explicitly return anything but when it
is completed the file pointed to by "fp" has the required overhead and
records information.

The first thing done in the program is the creation of the schema name
and data areas as follows:

"print{(fp,"SCHEMA NAME IS %s" schem,);
fprintf(fp,"\nAREA NAME IS BASIC DATA_AREA \n");
fprintf(fp,"AREA NAME IS POINTER_DATA_AREA \n");"

This names the schema with the name of the DBL schema name. Next the
two data areas are named. When this is complete, the overhead/static

information of the schema is complete. It would also be possible to include

37

PP ORI P AP R LT W WO W Wy PR WPNE WP RUNE UYWL U DN WA Wy W PPN S T P PO - _ .y SN N TS

| g TR T pTTTTT—————— R —" " - 3 - CAY P s CEnSnr-Saie SRk Satne S Sl 4 Vﬁ*

AR

sets function. The sets function takes the same input as the records function

d and creates the set section of the schema. The process here again entails
traversing the schema structure. Here, as each table structure is "visited",
all the sets which have this table as a member record are created. One set
is created for each set which has that particular table structure as a member
record. If the for_sets pointer is null, the record is a member of only one
set and it is owned by "SYSTEM".

Once the structure has been traversed, one more set is created. This is

ol

a singular set whose member is the pointer record. This set has special
attributes described in the next section. These attributes will be identical for
all pointer records/sets in all SEED databases. This then completes the
schema conversion, control passes back to the main program, the file being
used in closed and creation of the sub—schema can begin.

The sub—schema creation also begins with the opening of a file for
writing. This file along with the schema name, and the view name is passed
to the subscm subroutine. Here, the most basic sub—schema is created. The
sub—schema name and the view name are printed and then all records and
sets are copied. This is all that will be required whenever the database is to
be opened. When this is done, conversion of the sub—schema is complete,

control returns to the main program, the file is closed, and the next section

of the program is entered.

2.3 A DETAILED DESCRIPTION

e

In this section, the code needed to performm the schema conversion is
A discussed in detail. The section will cover storage of the schema for later
" use by the SEED processor, specifically how the file for this is created. [t

will cover how the new schema is produced from the old in terms of the

. 2 4

Lamb 4

!7‘.

vl

w‘—v‘v

be filtered out. This filtering process can take place through either the filter
subroutine or in the output of data after the query. In either case, a
simple schema and sub—schema form has thus been adopted and it is this
form which gives the freedom to mirror the DBL schema in the SEED
schema while still meeting the restrictions mentioned above.

Having explained the constraints under which the schema and
sub—schema conversion is accomplished, the actual conversion is now
explained. The first process in schema conversion is to open a file for
writing. This file will hold the completed schema. Once completely written
to this file, the schema can then be "fed" into the SEED processor. A
pointer to this file is passed to a subprogram along with a pointer to the
schema structure to begin the schema conversion.

In the "records" subroutine, the conversion begins with output of
static/overhead information. This includes the schema name and two
working areas. Both the schema name and the working areas are required
by SEED. The working areas are used by "SEED" as buffers to handle data
during processing.

In this subroutine, the next thing to happen is the creation of all
records. These are created with the attributes described in the last section.
This is done by traversing the schema structure and creating one record for
each table structure within this larger structure. The fields of this record
are created from the information in the item structures.

Once the list has been traversed, one more record is created. This is
the record containing the appropriate pointer fields. This record contains
two fields for each table structure in the schema structure. One of these
fields is for a logical pointer and the other is for a currency pointer.

To create the sets needed in the schema, the main program calls the

36

LAme e e

M APt e can e S 2 . e £

selected through one of its pointers, this will not hinder the operation.

Fields of records are limited to one of three types: integer, real, or
character. Only the character fields are permitted formatting descriptors.
This allows any sort of data to be represented and still keeps the data as
straightforward as possible. In particular, the fields of records which will
contain pointers are represented as integers. The size information for real,
integer, and character types will be used when outputting the result of
queries.

Ordering is another attribute which is limited. All records must have a
sorted order or be ordered as "NEXT". Non-—pointer records will have a
sorted order. This will be on a field specified in the DBL schema. Pointer
records will be sorted as NEXT. All records will be "CHAIN LINKED
PRIOR" and "LINKED TO OWNER". This simplifies the conversion
process and facilitates traversing the database sequentially.

The last important attribute is how a member record is inserted into
the database. There are many permutations of this attribute possible. [
have chosen two possibilities here. For any set member, the record must be
either "MANDATORY MANUAL" or "MANDATORY AUTOMATIC". Al
data records are "MANDATORY MANUAL". For these records to exist,
they must be connected to a set and the connection must be made by means
of an explicit command. This is done to allow a record to be inserted into
one set in which it is a member while not being inserted into another set
where it can have membership. The pointer record wil be MANDATORY
AUTOMATIC since each time one is created it can only become a member
of the singular set for pointers.

In the same way the sub—schema is a "vanilla" sub—schema. It allows

access to all records and sets. It assumes that "unwanted" information will

oy Baand A e A P e WP S .. o < Lo o ° hd PP U G T S W Ul “ a4 - g b LY YR T WA SR W Y'Y -

must mirror the database logic schema as closely as possible. Next, the
facilities of the particular database used will be a subset of the total facilities
provided by SEED. This is done for several reasons:

1. Not all of the facilities will be needed.

2. It will simplify the conversion process.

3. It will keep schemas as uniform as poesible greatly
simplifying the automatic program generation.

Also certain facilities available in DAVID are not available in SEED.
However, these facilities, if requested, will have to somehow be "handled” by
SEED.

In order to satisfy the above constraints, the "vanilla® dat-base was
developed [10]. This is a database containing just enough elements of the
SEED DBMS to create a schema equivalent to the DBL schema. There has
to be enough elements to allow the schema to model any "legal® database.
The features which were selected for elimination were those unique to SEED,
those not utilized by the automatically generated programs, and those
features which were for any reason not needed.

The first attributes are the available areas. There are always only two
areas allowed. The first is the "basic_data area" where all data will be
interfaced. The second is the "pointer_data_area" where the currency aud
logical pointers will be interfaced. Currently, the area and page sizes for
these areas are the default sizes for the machine. The default sizes are
relatively small. With experience in using these routines, an efficient manner
of declaring sufficient area and page sizes should become evident [13|.

Location mode is through current of set or location mode of owner.
This will be sufficient for sequentially traversing the database. It does mean,
however, that care must be taken to ensure there is a current of a set before

any operation is attempted on it. In the case where a record must be

v—v—Tv

records(start,schem,fp)

/% JOSEFH AULINO */
/% DAVID FROJECT %/
/% MARCH 1984 */
/* */
/% THIS FROCEDURE WRITES ALL THE RECORDS NEEDED FOR ANY DATARASE %/
/% WHICH DAVID WILL STORE. IT DOES NOT ATTEMFT TO IMFLEMENT ALL =/
/% DF THE OFTIONS AVAILABLE TO RECORDS IN "SEED". HOWEVER, EACH «/
/% RECORD WILL "INHERIT" THE OPTIONS OF THE DATABRASE FROM WHICH %/
/% ITS FIELDS CAME. FOR INSTANCE, IF A FIELD CAME FROM A RECORD %/
/% IN WHICH DUFLICATES WERE NOT ALLOWED, THEN THIS FIELD CAN NOT =/

/% BE DUPLICATED SINCE THE SOURCE OF THE DATA WILL CONTAIN NO */
{ /#* DUFLICATES. */
b /*® */
f /% */
. /% LOCAL VARIABLES: */

/* * /
Eb /* 1. tbegin — USED TO TRAVERSE THE LIST OF TAEBLES. */
[/* 2. ibegin - USED TO TRAVERSE ALL LISTS OF ITEMS. */

struct table *start;

char scheml];

FILE =fpj;
struct table *tbeging;
struct 1tem *i1beginj;

223322222222 23 222222222 22222222 s Ry L ¥

J/ * */
L /% FIRST AlLL OF THE STATIC DATA IS OQUTFUT. */
. /* */

B2 222222222 2222222222222 222222 RSS2 L S ST N4

fprintf (fp," "3CHEMA NAME IS “s",schem);
fprintf (fp, "\nAREA NAME IS BASIC_DATA AREA.\n");
fpraintf {fp,"AREA NAME IS POINTER_DATA_AREA.\n");
® 22T TR TR R Ry NI E s T L Y
/ * */
/% NOW THE RECORDS ARE FRODUCED ONE AT A TIME. */
/ * */
IS TSR RS R R N YT TS S e

(]
Figure2.2a Page 1 of 3.

S 47

e P PP W W ST N T M T W . MY YR DY T W Y TS O T S WP Y W S T U T Wi T W R A T

‘V,v.vrvvv—j
:

b r

(Y

[

" tbegin = start;
while (tbegin !'= 0)

IEX2I222 222222 LSRRI S S S S22 S22 S22 2RSS E

/® */
/% HERE RECORDS, LOCATION MODES, AND AREAS ARE FRODUCED. =/
/* */

/IS I I B I I I 6 I I I I HE I I I I I I I I I I IS S S %/

fprantf (fp,"\nRECORD NAME IS Z%Zs", (*tbeg.in).aname);
fprintf(fp,"\n LOCATION MODE IS VIA");
1f ((#tbegin).for_write == 0)
fprintf (fp," SYSTEM_ %s", (#tbegin).aname) ;
else
fprintf{fp," %s _%s",(*(xtbegin).for_write).aname, (*¥tbegin).aname);
fprintf(fp,"\n WITHIN BASIC_DATA_AREA.");

7N I A I I I I WA I I I A I 6 I I I I I IE KB I IE I/

/* */
/% THE NEXT SECTION WRITES THE ITEMS FOR EACH RECORD. %/
/% */

IZZZZZIZIZSLLLSE RS RSSSSSSSSSSS LSS SIS ST SIS IS S S SR S S 2 2

1begin = {(*tbegin).to_items;
while (i1begin '=)
1f (((#1ibegin).typ '= "T') &% ((#ibegin).typ != "R’
fprintf (fp,"\n %s TYFE IS ", (#1begin).iname);
1¥ ((®xi1ibegin).typ == 'C")
fprintf (fp,"CHARACTER %d.", (*ibegin).size);
else
1f((#1begin).typ == 1)
fprintf (fp," INTEGER. ") ;
else

fprintf (fp,"REAL. ") ;

Y
P

1ibegin = (#ibegin).nitem;

v
J

tbegin = (*tbegin).ntable;

"o

fprintf (fp,"\n");

— —— - MRS SM M- SMtE Shsst Ihass Saats Saach MRS SRR S S Sunge B Megn g — ” TR —————

AR 2 IS ST T E SR FESRNER TSRS ISIL SIS SIS S SRS S S 2SR S 2 2 2 2
/ ® */
/% THE NEXT SECTION FPRINTS THE ~OINTER RECORD. THIS RECORD WILL ALWAYS x/
/% CONTAIN TWO FIELDS FOR EACH TAEBLE IN THE DATABASE. ONE FIELD WILL ®/
/% RE AVAILABLE FOR A GIVEN RECORD 'S CURRENCY FOINTER, THE OTHER FIELD %/
/% WILL BE AVAILAERLE FOR A LOGICAL FOINTER FOR A GIVEN RECORD. */
J* */
FO U NI W I U 3 I I I I IEIE 6 IE 36 I I I I I I I IS I W I I I I I RS

fprintf (fp,"\nRECORD NAME IS DNZs",schem);
fprintf (fp,"\n LOCATION MODE IS VIA SYSTEM_DNZs" ,schem) ;
fprintf(fp,"\n WITHIN FOINTER_DATA_AREA.");

fprintf(fp,"\n D%s TYFE IS INTEGER." ,schem);

tbegin = start;

while (tbegin '= 0)
fprintf (fp,'"\n N%s TYFE IS INTEGER.", (*tbegin).aname);
fprantf (fp,"\n A%s TYFE IS INTEGER.", (®*tbegin).aname);
tbegin = (#tbegin).ntables

returns

H /%’ e e END OF THE RECORDS ROUTINE L2 2 2

Figure 2.2a Page 3 of 3.

Figure 2.2a The records Routine C Code.

——"

o

-

TR W N Y TWEITOYTE OTTW TR TN TR T T e T e T weTaeTTYTTw Ty T v e e Pl T Y T e T W T vt oW«

sets(start,schem,fp)

% JOSEFH AULINO =/
/% DAVID FROJECT =/

/% MAY 1985 %/
/* */
;% THIS FROCEDURE WRITES ALL OF THE SETS NEEDED BY A SCHEMA. */
/% 1T DOES THIS RY FOLLOWING THE LIST FOINTED TO BY START. %/

/% THE RELATIONSHIF OF RECORDS IN THIS LIST WAS DEVELOFED BRY */
/% THE ROUTINE RELATE. IT WAS IN THAT ROUTINE THAT CORRECT */

/% SET MEMBERSHIF WAS ESTARLISHED. ®/
/* */
7% */
/% LOCAL VARIABLES: */
/ * */
/ * 1. begin - USED TO TRAVERSE THE TABRLE STRUCTURES. */
s * 2. follow — USED TD TRAVERSE THE TABLE STRUCTURES. */
/® Z. hooky - USED 7O TRAVERSE A HOOK STRUCTURE LIST. */

struct table #start;

char scheml];

FILE w»fpj;

struct table #*beqin, ¥follow;
struct hook *hooky;

begin = start;

IEZZITIEEE LSS E S SIS LSS S S S SSSSS S 2SS SES S SRS S S R LS X 2

/ * */
/% NOW FOR EACH MEMBER OF THE LIST THE CORRECT SET IS CREATED. #/
/* */

IS 2 EZE SIS EE2ESETZSSLSSSSSE SIS SIS SIS SIS SIS SSSSSSS S RS SR R L 22 2 2

fprantf (fp,"\n");
while (begin '=)

-
(8

1f ((%begin).for_sets == 0)

/A A I NI I I A A I IE I IE G I HE K I I I I I KN

/® */
/% IN THIS CASE THE SET IS "SYSTEM" OWNED. #/
/® */

IZZZIZZIZEZESSSEE IS SRSSSS S SIS S 2SS L 2 4

1]

-~

fprintf (fp,"\nSET NAME IS SYSTEM_%s", (#begin).aname) ;

fprintf (fp,"\n MODE IS CHAIN LINKED FRIOR");

fprintf(fp,"\n ORDER IS SORTED'") ;3

fprintf(fp,"n OWNER IS SYSTEM") g

fprintf (fp,"\n MEMBER IS %s MANDATORY AUTOMATIC", (#begin).aname);

fprintfifp,"\n LINKED TO OWNER") ;
fprintf{fp,"\n ASCENDING kKEY IS ");
1f ((#begin).to_key == 0)
fprintfi(fp,"%s" (¥ (#begin).to_items).iname);
else
fpraintf (fp,"%s"”, (#{(+xbegin).tao_key).iname);
fpraintf (fp,"\n SET SELECTION IS THRU CURRENT OF SET.\n");
else
hooky = (xbegin).for_sets;

/3 2 K b W I I H I T I I IE W I I IE I I I I N I IR RS

/% */
/% IN THIS CASE, A SET WILL BE CREATED FOR EACH SET OF WHICH +/
/% THIS RECORD IS5 A MEMBER. */
/® */

IEE 2RSS SRS SRR LSRR S s SRSEXS IS SRS SRR R R RN LS I

while (hooky '= o)
follow = (#hooky).atab:
fprantf (fp,"\nSET NAME I35 ")3;
fprintf{fp,"%s 7%s",(xfollow).aname, (*begin).aname) ;
fprantf (fp," \n MODE IS CHAIN LINEED PRIOR");
fprantf (fp,"\n ORDER IS SORTED");
fpraintf(fp,"\n OWNER I35 %“s", (¥follow).aname);
fprintf ifp,"\n MEMEBER IS %s MANDATORY AUTOMATIC", (#begin).aname);

fprintfifp,”\n LINKED TO OWNER") :
fprintf (fp,”\n ASCENDING KEY IS ");
i1f ((#begin).to_key == 0)
fprintf (fp,"%s",(*(*begin).to _1tems).iname) ;
else
fprintf(fp,"%s", (#(kbegin).to key).iname);
fprintf(fp,"\n SET SELECTION IS THRU CURRENT OF SET. \n")j
hooky = (*hooky) .nhook:

(9%

]
Fl

51

B R s Sy S SN NG S’ VU WY S Ve W iy W O S S U PP A a & m ma a‘a"mu o = .=

begin = (*begin).ntable;

+

/% END OF THE OQUTSIDE WHILE LOOF %/

/% % St I I I I I I I I I I I I I I I I 6 I I I I I I I It/

/*

*/

/% THE LAST SECTION OF CODE PRINTS OUT ONE SFECIAL SET. THIS SET =/
/% WILL BE USED T0O HOLD FOINTER INFORMATION AROUT EACH RECORD AND #/

/% SET.
/ *

*/
*/

J W3k 3 T W W AW I NI I I I I I I I I I I I I I I KRR

fprintf (fp,"\nSET NAME IS SYSTEM_DNLs" ,schem);

fprintf (fp,"\n
fprintf{fp,”"\n
fprintf(fp,”"\n
fprintf (fp,"\n
fprintf (fp,"\n
fprintf(fp,"\n

return;

N ‘B2 2.2 %4

MODE IS CHAIN LINKED FRIOR");

ORDER IS NEXT")j

OWNER IS SYSTEM") ;

MEMBER IS DN¥Xs MANDATORY AUTOMATIC", schem)gs
LINKED TO OWNER") ;
SET SELECTION IS THRU CURRENT OF SET.\n");

END OF THE SETS FROCEDURE. 222 ¥

Figure 2.2b Page 3 of 3.

Figure 2.2b The sets Routine C Code.

62

subscm(schem,dname, fp)

/% JOSEFH AULINO =/

/% DAVID FROJECT #*/

/% JUNE 1984 */

/% THIS FROCEDURE CREATES A SUBR-SCHEMA FOR ANY DATARASE DEFINED.
/% THIS SUR-SCHEMA WILL BE VERY SIMFLE AND MERELY OPEN ALL SETS
/% AND RECORDS FOR ACCESS. 1T TAKES IN THE SCHEMA NAME (schem),
/% THE SUB-SCHEMA NAME (dname), AND THE FILE (fp), TO FUT THE

/% DUTFUT INTO.

FILE #fp3
char scheml[], dnamel]l;

r
AN

fprintf (fp,"\nSUB-SCHEMA NAME IS %s FOR FORTRAN", dname);
fprintf(fp," OF SCHEMA %s.",schem);

fprintf (fp, "\nRECORD SECTION. ") j

fprintf (fp,"\n COFY ALL RECORDS.");

fprintf (fp,"\nSET SECTION. ")

fprantf (fp,"\n COFY ALL SETS.\M\n")j

return:

IR 2222 END OF THE SUBSCHM ROUTINE L2221 ¥

[

Figure 2.3 The subscm Routine C Code.

63

P VA R W U Ui W U i A v L e R PRI A R YRR Y00 VA Gy WL WU T PR WP W S

*/
*/
*/
*/
*/

CHAPTER 3. QUERY TRANSLATION

3.0 INTRODUCTION

This chapter deals with the automatically generation of programs used
to translate the basic queries. Fortran programs are used to interface with
SEED. C routines are used to generate this Fortran. There are 4 such

routines:
1. FIRSTWHERE;
2. NEXTWHERE;
3. GRASP;
4. FILER;

First, section 3.1 gives examples of each of 4 Fortran routines which might
be created. Section 3.2 contains the block descriptions of the C code and
Fortran code it creates. In section 3.3, the technical description of the C
and Fortran code is given. Lastly, section 3.4 gives the actual C routines

used to generate the Fortran code.

3.1 AN EXAMPLE

This section contains one example of each of the automatically
generated programs produced for the purpose of query tranmslation. The
examples are the routine which would be created for the non—recursive DBL
schema example of section 1.1. The first such program is the "FIRSTW"
routine. As stated previously, its purpose is to get the first instance of a
database meeting certain criteria. An example of this is in figure 3.0a.

The next example is the NEXTW routine. This finds the next
occurrence of a set of records in a database meeting certain requirements.
The corresponding example of this routine is in figure 3.0b.

The next example is the GRASP routine which would be generated for

b4

PGP PP SR U NP I S S S A P S S S U S U S0 W AT G S W S S S SRy S 1 -‘4'4_&4'4'A’.1‘_.'_¢'»J

the same database. This routine is illustrated in figure 3.1. The Grasp
routine, you will notice, has a different control structure than the FIRSTW
and NEXTW routines.

The last example is for the FILLER routine found in figure 3.2. This
routine uses a control structure similar to that of the GRASP routine. Note,

however, the difference in the number of items of interest here.

3.2 THE GENERAL METHODOLOGY

This section gives the block descriptions of code to query the data base.
This includes descriptions of both the C and Fortran code.

First, is a block description of the Firstwhere and Nextwhere code.
These two routines are described together because of their similarities.
Because of the similarities in these two routines, only a flow chart for
firstwhere has been included. It is in figure 3.3.

The first thing done is a file is opened (either FIRSTW.F or
NEXTW.F as appropriate). Next the overhead information is output to the
file. This information includes local variable declaration, parameter
declaration, subroutine header information, and a common statement. In
FIRSTW, the main part of the program is now created. However, in
NEXTW, the next thing made is a "GO TO" statement to the line where
execution should begin. At this point, the main body of both programs can
begin.

The programs are created by traversing the schema structure. At each
table structure, a fetch is generated {(either through child or parent as
appropriate). Also, if the particular record owns one or more recursive
records, a fetch is created for each of the recursive records through the
record in question. After each fetch has been generated, a call to FILTER

L e i R TS 7 W R N S5 SN SR S R . U SRR SPouie AP SO P S SO S U~ P P Wy 2 e LRSS F . WSROI NI S WUP S Wty VU W WP W Wy L,,J

PO W N S ST S

....... T ey e ———— —

is generated and the appropriate loops are generated. These loope are
explained more fully in the next section and can be understood by examining
the appropriate flow charts. Also, if a fetch is generated on any recursive
records, the appropriate variables are saved in the proper locations. Next,
the return and end statements are generated. Lastly, the file (FIRSTW.F or
NEXTW.F) is closed.

The GRASP routine creation also requires the traversal of the Schema
structure. A flow chart for the grasper routine (which created GRASP) is in
figure 3.4. To begin this routine, a file is opened (GRASP.F) and overhead
information is written. After the overhead information, comes the
terminating test for the loop. This is followed by creation of the computed
"GO TO" statement. Now the Schema structure can be traversed and the
subroutine written. At each table structure of the subroutine, a fetch (via
currency pointer) is generated. Once all of the table structures have been
visited and the proper fetches generated, a go to statement is created sending
control back to the termination condition line. Finally, the return/end
statements can be generated and the file closed.

The FILER code creation is very similar to the GRASP code creation.
It is created by the outpt and filwrite routines whose flow charts are in
figures 3.5a and 3.6b respectively. Again a file is opened and overhead
information output. This is also followed by the creation of the loop
termination statement and the computed "GO TO" statement. In this case,
there is more of the main body of code to generate. The main body again
is created as the schema structure is traversed. In this case, however, the
item structures must also be traversed. At each table structure, output
statement are created for two fields (the currency and logical pointers). At

each item structure, output statements are created for every non—table field

AP SO S SN SR S S Py PRSPPI wEP D WP Py -'-.L-'-A.{.Z_.';A._A.--“-‘..-J

of that record. Statements are also generated to output field of recursive
records without any additional calls to the routine. Once this has been
accomplished for the entire schema structure, a "GO TO" statement is
generated to return control to the loop termination line of code, the
return/end statements are created and the "FILER.F" file is closed.

The FIRSTW and NEXTW routines are the first Fortran routines
discussed. Flow charts for example FIRSTW and NEXTW routines are in
figures 3.6a and 3.6b respectively. These two routines are discussed together
because of their aforementioned similarity. The first record selected is the
first record listed in the DBL schema. A check is immediately made to see
if an error was made in selecting this record (ERRSTA is checked). If an
error was made, control returns to the code for the last record selected (to
the calling program if it’s the first record). If no error was made, FILTER
is called and the record is checked to see if it meets the required criterion.
I not, the next record of this type is selected and the process is repeated
until a record is found or ERRSTA =/= 0 (end of file). If a record is
found, the next type of record is selected. The process is repeated until one
type of each record has been selected or it is not possible to satisfy the
selection criterion in the database. Control then reverts to the calling
program.

The grasp routine is the next routine to be discussed. Its
accompanying flow chart is in figure 3.7. The grasp routine is controlled by
a while loop implemented by standard "GO TO" statements and a computed
go to statement. It takes in a vector of integers corresponding to the
records to be selected. These records can then be selected through their
currency pointers. It is assumed that the currency pointer for a record to

be selected is in the appropriate variable which is then used as a parameter

57

""""" F P DL IR DA I U T T NPT W UF W S TRy

PR S SRR S

for the call to the subroutine. The routine terminates when a zero element
is found in the vector.

The FILER routine is quite similar to the GRASP routine as is evident
from its flow chart (figure 3.8). This routine is controlled in the same
manner as the grasp routine. It does, however, have more possibilities in its
computed go to statement. The fields selected for output are output to the
same line and a line feed is output after the last record has been written.
Fields which may be output include all fields of all records and the pointers

(either currency or logical) for each record.

3.3 A DETAILED DESCRIPTION
This section is logically divided into two parts. First is the technical

description of the C code and then comes the technical description of the
Fortran code. The description of the C code will cover the main routines
used in producing the Fortran routines. The remainder covers the Fortran
routines produced by the C code.

The FIRSTW routine is created first. Creation begins with the opening
of a file to contain the created Fortran code. A pointer to this file along
with a pointer to the Schema structure is then passed to the firstwhere
subroutine. This is where the actual production of Fortran begins. It starts
with the output of the subroutine name and the parameters passed in. In
this case "SUBROUTINE FIRSTW(N,TEST)". This is followed by the
declaration of the variables... "INTEGER TEST,N". This is followed by
creation of the "counter" variables for this program. This done by the
"declarer” subroutine. This is followed by a call to the "commons"
subroutine creating the necessary commons statement.

Upon return from generating the commons statement, the counter

A S S .

variables are initialized. @ There is one counter variable for each record in
the table (including one for each recursive record). They are generated by
traversing the schema structure and generating them as you go from table
structure to table structure. These were declared earlier by declarer (see
section 1.4 For details). These statements are written to initialize the
counters to either the first logical pointer (in FIRSTWHERE) or the current
logical pointer (in NEXTWHERE). The counters are named here as they
are in "declarer" (see section 1.4 for details). The basic initialization
statement is output as:
"fprintf(fp,"\n C%s = 1" (*begin).aname)"
In the case of the recursive occurrence:

"fprint{(fp,"\n C%s%d = l",(‘begixél.aname,
(*begin).rent);"

generates the correct statement. In this case, rcnt is decremented and the
statement is repeated until rent = 0. When rcnt reaches zero, the loop
terminates and rcnt is reset with the statement "(*begin).rcnt =
(*begin).typr;"

At this point, the generation of the go to statement of the NEXTW
routine is explained. This statement is necessary to ensure execution begins
in the correct spot. Back in firstwhere, a variable called "count" keeps
track of the current line number being written. This would include counting
lines for those records selected through their parents but not for those
selected through their children. When the "GO TO" statement for beginning
the execution of the Nextwhere routine is to be created, a subroutine called
"findgo" is called. This counts all table structures whose relat field is not
"C". This count * 4 — 3 is the exact amount count would be too great if

there are any fields selected through their children. This figure is then

59

subtracted from the "count™ amount (which is returned by the firstwhere
routine) and the go to statement can be created. The only other difference
between the two programs is that firstwhere returns the value count and
nextwhere does not.

Next, the statements to fetch data can be generated. To generate the
fetch statements, the schema structure is again traversed. At each table
structure, the correct statement is generated based on one of three
possibilities [10}:

1. The record is being fetched as a child of some other
record.

2. The record is being fetched from one of its children.

3. The record is being fetched is recursive and being
fetched from one of its parents.

The first possibility occurs when the table structure has relat field of "C*.
[n this case, the code for the proper select is created by the "own" and
"ownwriter" routines. The "own" routine generates the find statements and
determines the sets owner (for selection purposes). The "own" routine takes
the following arguments:

1. fp — a pointer to the outout file;
2. begin — a pointer to a particular table structure
in the schema structure.
3. follow — the value of the (*begin).for_write field.
4. adder, count, last — used in numbering lines.
6. swap — used with recursive records:
"1* — if some variables in the Fortran code need
to be saved.
"0" — otherwise.

Either the owner is pointed to by (*begin).for_write or the owner is
"SYSTEM". The value of (*begin).for write is passed into the routine in the
"follow" variable. Following this, the ownwriter routine is called and the
remainder of the needed code is generated.

The "ownwriter" routine takes the same input arguments as the "own"

ST .NE. 1) GO TO 9999
FFF0

I = [+ 1

GO TO 1

CETURN

=ND

E
3
|W
[y
5
)
[1-]
L]
18
th

Figure 3.1 An Example GRASP Routine.

74

L L PP L-L.Lk_k_.*

SUBROUT INE GRASF (NRS,N, TEST)
LHTEGER NRS,N,I,TEST

CUMMON, BANE MHeME ,C 1YY, Z1IF ,NHDSFITAL ,AHOSFITAL ,1HOSFITAL,
Ly TEM _HUSFITAL , DRNAME , DRNR,,NDOCTOK,
ADOCTOR,DOCTOR ,HOSPITAL _DOCTOR, BREDNUM WARD,
NBEDNR AREDNRK , BEDNR , HOSF I TAL _EBEDNRK ,FNAME ,
DISEASE ,AGE ,SEX ,VITS ,NFATIENT ,AFATIENT ,FATIENT,
DUCTUR _FATIENT,
ERRETA,CRRECT ,CRRUNU ,CRCALC ,DE

IF «NRS(I) .EQ.) GO 170 9999

GU 10(2,3,4,5),
NFS D

CARLL FINDD (NHOSFITAL)

{F (ERRSTA _NE.) GO 1O 9999
Lall GET(HOSFITAL)

TEST = FILTERCCL)

P CTEST JNEL. 1Y 50 TO 7999
ol Ty 2970

Ll B INDD (HDGCTOR)

[F (EFRSTA .NE. ©O) GO 70O 9999
kLl GET(DOCTORD

IESF = FILTERZD)

IF D TEST JNE. 1 GO Y0 999
3) 14 P70

ALL FINDD iNBEDNRD

FGERKRSTA UNE. 0) GO TO 9999
HLL GET (BEDNR)

£E51 = FILTER(3)

F {IEST .NE. 1) GO 70 7999
0 10 9990

ALL FINDD(NFATIEND)

F (ERRSTA .NE. 0) GO TO 9979
ALL GETI(FATIENT)

EGST = FILIER(A)

. ————

CALL FINDV(HOSFITAL EBEDNR,NEXT)
CREDNR = CBEDNR + 1
GO 7O <9

NEEDNR = CREDNR
AREDNR = CURRNT ¢(HOSFITAL BEDNR)

CALL FINDV(DOCTOR _FATIENT,FIRST)

IF (ERRSTA .NE. ©) GO TO 10O
CALL GET(FATIENT)

TEST = FILTER(4)

IF (TEST .EC. 1) 50 TO 15

CALL FINDV(DOCTOR FATIENT ,NEXT)
CRATIENT = CFATIENT + 1
GO 70 1=

NFFATIENT = CFATIENT
AFATIENT = CURRNT (DOCTOR_FATIENT!

RETURN

END

Figure 3.0b An Example NEXTW Routine.

= X x x % x

SUBROUTINE NEXTW(N,TESI:
IMNIEGER TEST,N
INTEGER CHUOSFIfAL,CDOCTOR,CBEDNR ,CFATIEN

COMMON DANE S TAMECITY (ZIF (NHOSFI TAL ,AHOSF I TAL \HOSFI 1AL,
SY31EM _HOSFITAL ,DRNAME , DRNR NDOCTOR,
ADUOCTOR,DOCTOR,,HOSFITAL _DOCTOR, BEDNUM, WARD,
NEEDNR, AEEDNR , BEDNR ,HOSFITAL EREDNR,FNAME ,
DISEASE (AGE ,SEX VITS ,NFATIENT ,AFATIENT ,FATIENT,
DOCTOR FATIENT,

ERRSTA,CRRECT ,CRRUNU,CRCALC,DR

CHOSFITAL = NHOSFITAL
CDOoCTruk = NDOCTOR
CEEDNR = NBEDNRK
CFATIENT = NFATIENT

GO 1O 1o

CALL FINDVI{SYSTEM HOSFITAL,FIRST)
IFf "ERR3TA .NE. 7)) 6O TQ 9999
CALL GET (HOSFITAL)
TEST = FILTER (1)
IF (TEST .EQ. 1) GO O =
CALL FINDVIGYSTEM HOSFITAL (NEXT:
CHOSFIfAL = CHOSFITAL + 1
L0 10 1
NHOSFITAL = CHOSFITAL
AHOSFITAL = CURKRNT(SYSTEM HOSFITAL)

CALL FINDV UICSFITAL DOCTOR,FIRST)

IF «(ERRSTA JHNE. 7 0O TC &
Lralll BETDOCTOrD
FESl = Lo dizRw s

P C1EST kUL 1y GO TO 7
Cell FIRMDY CTIUGE T TAL DACTOR G MNEXT)
LDOCTOR = CDOCTOR + 1
GO 11 S
NDUCTOR = CDOCTOR
HDUCTOR = CURRNT (HOSF I Tl DOCTOR:

LAkl FINDY (HUSFITAL ZEDNR,FIRGT)

1 ERESTA JNEL. vy Ld T 4
LAl GETIREDNHTO
TE=1 = FILTER D

[v RS JROD. 1 GO TO 11

T 0w W oW WO UYATAT R TV RTR W OVYTR oW OTTEYYTY Y O OSTRLTRY I, YT

CALL FINDV(HOSPITAL EBEDNR,NEXT)
CREDNR = CBEDNR + 1
G0 g 92
NEEDMNR = CEREDNR
ABEDNR = CURRNT (HOSFITAL _BEDNR)

CALL FINDV(DOCTOR _FATIENT,FIRST)
IF (ERRS5TA .NE. O) GO 1O 14
CALL BGET(FATIENT)
TEST = [FILTER(4)
IF (1EST .EQ. 1) GO TO 15
CALL FINDV(DOCTOR _FATIENT ,NEXT)
CFATIENT = CFATIENT + 1
G50 O 1Z
NFATIENT CFRATIENT
AFATIENT = CURRNT (DOCTOR_FATIENT)

RETURN

END

Figure 3.0a Page 2 of 2.

Figure 3.0a An Example FIRSTW Routine.

70

PP PO GNP AT WD U N WIE WP YA SR WP GAr Wl W DA UHE W W S W

el ada aa ad

= X x XK X X

SUBROUTINE FIRSTW(N,TEST)
{NTEGER TEST,N
INTEGER CHOSFITAL ,CDOCTOR,CEEDNR,CFATIENT

COMMON. BANE / NAME ,CITY, ZI1P ,NHOSFITAL ,AHOSFITAL ,HOSFITAL ,
SYSTEM HOSFITAL , DRNAME , DRNR , NDOCTOR
ADOCTOR ,DOCTOR ,HOSPI TAL DOCTOR , BEEDNUM, WARD ,
NEEDNR , AREDNR , BEDNR , HOSF I TAL _EEDNR , FNAME ,
DI3EASE ,AGE,SEX,VITS,NFATIENT ,AFATIENT ,IFATIENT,
DOCTOR FATIENT,
ERRSTA,CRRECT , CRRUNU , CRCALC , DR

CHOSPITAL =
CDOCTOR = 1
CEREDNKR = 1
CFATIENT =

1

1

CALL FINDV(SYSTEM HOSFITAL,FIRST)
IF (ERRSTA .NE.) GO TO 9977
CALL GET(HOSFITAL)
TEST = FILTER(1)
Ir (7Tes1 .g0G. 1) GO TO =
CALL FINDVISYSTEM HOSFITAL (NEXT)
UCHOSFITAL = CHOSFITAL + 1
v TO 1
MUOSFITAL = CHGESFRITAL
HHOSF AL = CURRMT(SYSTEM HOTZFI 4l

CALL FINDVHOSFITAL DOCTOR,FIRST)

FOERRSTA JiE. vy LO TO 2
Calll GET(DCCTOR)
TEST = FILTER O

{fr <1E57 £, 1y GO 10 7

AL F INDY ISR ITAL . LOCTOR,HNEX T
CDOCTOR = CDOCTUR + 1

o TO o

MDCCTOR = CDOCTOR

~DOCTOR = CURRNT (HOSFITAL DOCTOR)

CALL FINDV (HOSPITAL EEDNR,FIRST)
[F {ERRSTA .NE.) GO 70O &
LAl GET (BEDNRD
TEST = FILiER(D
[F «TEST JEG. 1 60O TO 11

69

LS W Sl PO SO WU S WL W SR T W S WOV WAL VOIS ¥ W SO WY WIPE G U

The last and major difference with this routine is the number
correspondence scheme. There are many more "cases" here than there are
in the GRASP routine, consequently, the numbering scheme is more
complicated. "1" corresponds to the currency pointer of the first record in
the DBL schema. "2" corresponds to the logical pointer of the first record.
Assuming this particular record has n fields, the next n numbers will
correspond to the n fields of the record. The number n+1 corresponds to
the currency pointer of the next record listed in the DBL schema. The
number n+2 corresponds to this record’s logical pointer, etc. An exception
occurs if a record owns a recursive occurrence of another record. In this
case, before the next record gets assigned a number correspondence, the
recursive occurrence gets its numbering assigned. Then by loading the NRS
array with the appropriate numbers, the desired variables will be printed.
Again the termination condition is a 0 in the NRS array with the looping
structure the same as for the Grasp routine. Before returning to the main
program however, a "line feed" is output so any additional calls to this

routine will have output on the following "lines".

3.4 THE CODE

This section contains the code for the main "C" routines described in
this chapter. The specific routines contained here are the "firstwhere",
"nextwhere”", "grasper", "outpt", and "filwrite” routines. These do the tasks
explained in the first four sections of this chapter. The firstwhere and
nextwhere routines appear in figures 3.9a and 3.9b respectively. The grasper
routine appears in figure 3.10. and the outpt and filwrite routines appear in

figures 3.11a and 3.11b respectively.

68

parameters and has the same control logic as the GRASP routine. The
same variables must be checked upon return to the calling program. The
differences with this program are what this routine actually does, the number
correspondence for the computed go to statement, and the lack of any error
checking. I will discuss each of these features separately below.

The first difference is what is donme. Here appropriate variables are
output one set per line. By set here, | mean, the entire result of one call to
this routine. An appropriate variable could be any field of the database, any
currency pointer, or any logical pointer. These variables must be assigned
reasonable values if reasonable results are to be expected. The output is
controlled with format statements. The format descriptor is as given in the
DBL schema with appropriate conversion to match the Fortran requirements.
The only punctuation here is that variables are output with one space
between each. An typical example for a currency pointer might be:

"2 WRITE(6,3) NHOSPITAL
3 FORMAT(’+’,1X,110)
GO TO 9990"

An example for a character field might be:

"4 WRITE(8,6) NAME
5 FORMAT(’+’,1X,A30)
GO TO 9990"

These illustrate precisely what the typical statements look like and how the
output is controlled.

As you can see from above, there is no error checking for these
statements as there is in the FIRSTW/NEXTW and GRASP routines. This
is because these statements cannot really fail. The output can be "garbled"
if the user does not ensure variables to be output have reasonable values
before using this routine. It is suggested that this routine be used only after
using FIRSTW, NEXTW, GRASP, or the initial loading of the database.

- At m ol

The next line is a computed go to statement. It is controlled by the
value of the NRS(I) location. The numbers in this array must correspond to
the records in the database as follows: The first record in the DBL schema
corresponds with the number 1. If this record owns any recursive
occurrences of any records, the recursive occurrences get the next numbers in
the order they occur. The next record in the schema then gets the next
available number with any owned recursive occurrences being numbered as
before. This process is repeated until all records have been numbered. In
this way, a unique integer can be assigned to each record. Then the number
corresponding to each record can be loaded into the NRS array and when
NRS(I) = that number the computed go tc¢ will direct control to the correct
statement. The NRS array must contain 0 as the last entry to terminate
the loop.

This is followed by the CALL FINDD statement for each record type
(including recursive occurrences). The argument to the FINDD subroutine is
the currency pointer established in the FIRSTW/NEXTW routines. This
does not imply, these routines have to be run to use this routine. The only
requirement is that the N type variable have the correct currency pointer.
Both ERRSTA and TEST are tested for success. If they fail control goes to
statement labeled 9999. This is the return statement. If they both succeed,
control goes to statement 9990. In that case, the following is executed:

9990 I =1+1
GO TO 1

This increments "I" and control passes back to the termination test. When
one of the termination conditions is finally reached, control goes to line 9999
which is the return statement. Control then returns to the calling program.

Finally, the FILER routine is detailed. This routine takes the same

record there is no successful selection. Records may be selected by their
parent or child. If being selected from their parent, a FINDV is used with
the set name and either the word FIRST or NEXT (whichever is
appropriate). The same is true for selection through children except the call
is made to FINDO.

After a selection has been made completely successfully or has been
shown to be a complete failure, control returns to the calling program. Here
it is essential the user checks the value of the "TEST" and "ERRSTA"
variables to determinc if the selection was successful or not.

The GRASP routine takes in three arguments: "NRS", "N" arl
"TEST". "NRS" is a one dimensional array of integers, "N" is the size of
this array, and "TEST" is as in FIRSTW. NRS can have integers between
0 and the number of records in the database. The numbers in the different
positions of the NRS array correspond with the records of the database. The
exact numbering scheme is explained below.

As in FIRSTW, the arguments are declared, however here there is no
need for the counter variables. The same common statement appearing in
all the subroutines again appears here. These statements are followed by
initializing the local variable I to 1. This will be used to index into the
NRS array. After this the main part of the code can begin.

The next line is an [F statement controlling the program. It
implements a while loop. The statement which follows it will be executed
until NRS(I) = 0. This is the termination condition. When this occurs, the
return statement is executed and control returns to the calling program.
Control will also return to the calling program if "ERRSTA" ever becomes
non—zero or if TEST ever becomes zero. So again, the calling program must

carefully check these variables when control finally does return.

v

...........

have been assigned and there may not be a currency value for some record.

Beyond the arguments, there are the local variables formed by
appending a "C" to the front of the appropriate record name and an integer
to the back of the name in the case of recursive records. These will be used
to count for the logical pointers. @ The common statement contains all
variables referenced in the UWA. This includes the currency pointer
variables and the logical pointer variables. [mmediately after the common
statement, comes the initialization of the counter variables. In the FIRSTW
routine, they are initialized to zero. In the NEXTW routine, they are
initialized to the current value of the logical pointer. This value of course
comes in through the logical pointer in the common statement.

In the NEXTW routine, once this has been done a go to statement is
executed. This statement takes control to the last record selected by the
last call to either FIRSTW or NEXTW. The pnext record of this type is
then called on with a CALL FINDV. If this call is successfully executed (by
success conditions on both ERRSTA and TEST) the program then returns
successfully. If not, control passes to the CALL FINDV of the next to last
record selected and the next of this type of record is called upon for
selection. This process continues until a successful selection has been made
or until all records (up to the first one) have been unsuccessfully selected
and then the main program gets a return of failure.

In the FIRSTW routine, it is just the opposite. Control starts with the
outer most record. If this fails, a return of failure occurs. If it is successful,
the next record down is attempted. If this record fetch fails, control goes
back to the first record but now the NEXTW one of this type is called
upon. This process repeated over and over until one complete instance of

the cluster has been successfully selected or for every instance of one type of

p——

A o g

Filer, like grasp, is created by one pass through the schema structure.
Here, however, the output is longer. There must sufficient output statements
to output both the pointers for each record (currency and logical), plus the
value of each field of a record. This is accomplished through the traversal
and simple creation of the necessary statements. The only detailed point
here is that the output is done using "WRITE" commands and "FORMAT"
statements. The size and type information for the format statement exists in
the appropriate "ITEM" structure.

Having given the technical description of each of the C routines
applicable to this section, the equivalent description of the created Fortran
routines follows. This second part of this section, begins with a description
of the FIRSTW and NEXTW routines.

These routines takes as arguments the variables N and TEST. "N" is
the number of records (including the recursive occurrences) in the database.
"TEST" will be used to return a value. Upon return from the FILTER
routine, "TEST" will contain a 0 or 1 depending on whether or not the
query was successful. On return to the calling program both "TEST"
"ERRSTA" must be checked ("ERRSTA" for zero and "TEST" for one). A
fail on "ERRSTA" indicates that the DBMS had some "problem" doing the
requested select. The precise reason can be found by printing out the error
message associated with the number or looking up the number in a SEED
manual. A fail on TEST indicates that the FILTER criterion failed. I«
either fail, then the query was unsuccessful and the reason for its lack of
success can be determined by the value of the failing variable. Note here,
that if FIRSTW returns a failing condition for any reason, NEXTW should
not be called. Most likely, no harm would be done by calling NEXTW

however the result is indeterminate since pointer values may or may not

Ty, T, Ty T o W v oWt oW LYY LT T

recursive record. As the schema structure is traversed, the above two cases
are checked as each table structure is reached and the appropriate code is
generated. After that is accomplished, the "rhook" field of the particular
table structure is checked. If this field is not zero, the record it represents
is the owner of one or more recursive records. If this is the case, the list of
"hook" structures pointed at by the rhook field is traversed. For each of
these, code is generated to swap the necessary variables and own is called to
generate the find and other needed statements. After this, the return and
end statements are generated, areset is called to reset the rcnt fields and
control returns to the main program. Here the file in question is closed and
the next subroutine is called. In the case of Firstwhere, the value of
"count"” is returned for later use in Nextwhere. In nextwhere, nothing is
returned.

The "grasp" and "outpt" routines have a technical description almost
identical with those of the C routines described in the next chapter. The
only real difference is the precise wording of the output. In this section
then, only a slightly more precise description of these routines is given. For
more detail, the next section and the actual code should make this routine
clear.

For the grasp program, the schema structure is traversed and one select
(using the currency pointer) is created for each record. There i8 no need
here to worry about most relationships. The currency pointer indicates
precisely which record is to be selected. In the event of a recursive
occurrence, the correct record (the original or recursive) will be selected as
this is uniquely determined by the currency pointer. However, if you wish
to select an original record and a recursive occurrence then two calls must

be made to grasp. One to select each record.

—rY

v v

r'—.vv v r————r v

- - = v T D T e % e |

routine. It consists mainly of the print statements to create the actual
"find" statement needed.

As is evidenced here, when the execution gets here most of the
decisions have already been made. The only thing which really needs to be
done is to output to the file the necessary Fortran code. Two decisions
which are not obvious which are made here deal with the parameters swap
and last. If last is =/= 0, then it contains the line number for control of
the Fortran to go to in the event the "FINDV" returns an errsta =/=0.
On the other hand if last == 0, then this is the first record being selected
and by convention here, the "go to" will be to line number 9999 the last
line number in the program. The second decision deals with swap == 1 or
swap == 0. If swap == 1, the record being selected is a recursive record.
In this case when the Fortran code is executed, the variables filled by
fetching the original record will be overwritten. To prevent this, code is
generated to swap the values in these variables to other variables. The
variables the values are swapped to are named with their rcnt number as
described in section 1.4. A test for "ERRSTA == 0" is also created here.
This is done so that the swap will take place only when absolutely necessary.

The second possibility is that the record we want to write the "FIND"
for is being "selected" from one of its children. In this case, the subroutine
"ownee" is called. "Ownee" takes almost the same arguments as "own"
(except swap). As in the "ownwriter" routine, the code here is mostly print
statements. Here swap is not needed because as the schema structure is
built in relate, it is not possible for a recursive record to be selected via
anything except one of its parents. This being true if a record is selected
through one of its children, it cannot be a recursive occurrence.

This leaves only the possibility that code is being created for a

61

[

[8]
11

v oB

x X X 3 * a

SUBRUOUTINE FILER(NRS,MD

IMIEGER N(NRS(N) ,I

CUOMMON/ BANE S NAME ,CITY , ZIF ,NHOSFITAL ,,AHOSFITAL ,HOSFITAL ,
SYETEM _HOSFITAL DRNAME , DRNR ,NDOCTOR,
~»DOCTOR,DOCTOR,HOSFITAL _DOCTOR, REDNUM,WARD,
NBEDNR , AREDNR , BEDNR ,HOSFITAL _EBEDNR,FNAME ,
DISEASE,AGE ,3EX ,VITS NFATIENT ,AFATIENT ,FATIENT,

DOCTOR FATIENT,

ERRSTA,CRRECT ,CRRUNU ,CRCALC,DR

IF (NRS{I) .EQ.) GO 17O 9998

GO TO (2,4,5,3,10,12,14,14,18

40,
MRS (1)

WRITE (&,Z%) NHOSFITAL
FORMAT (+ 11X, 11O
GO0 TO 9270

WRITE (6,5 AHOSFITAL
FORMAT O + J1X,I1o)
50 TC 79720

WEITE ' &,7) NAME
FORMAT C + ,1X,AT0)
o0 0 7990
WRITE(S 7y CITY
FORMAT (7« L ATD)
L3 g 770

WRITE(6,11) ZIF
FOEMAT ("+ J1X,A5)
GO T 9990

WRITE(S,12) NDOCTOR
FORMAT (7 + " J1X,T10)
GiJ T 27270

WRITE (6,15) ADOCTOR
FORMET (o1 x, 110
GO TO 9770

,20,22,24,26,28,30,32,74, 36,33,

)

156
17

WRITE(5,17) DRNAME
FORMAT ¢+ ,1X,AZ0)
50 TO 9990

WRITE(5,17) DRNR
FORMAGT (v ,1X,15)
GO TO 9990

WRITE (6,21) NEEDNR
FORMAT (+ ,1X,110)
GO TO 77970

WRITE(6,2Z%) ABEDNR
FORMAT (+ 7 ,1X,110)
GO TO 9990

WRITE(5,25) BEDNUM
FORMAT ("+ ,1X,110)
GO TQ 2970

WRITE(6,27) WARD
FORMAT ("+ , 1 X ,A2D)
GO 70 29%0

WRITE(&,29) HFATIENT
FORMAT (' ¢° ,1X,110)
GO TQ 23990

WRITE(6,21: AFATIENT
FORMAT O + 7 . 1Xx,110)
50 10 99%0

E§

fr\vv—wwrv»w"

E
o
[}
[)
|O
Pty
|QD

v

-
PR

8
9

40
41

9950

3593
5997

WRITE (6,33) PNAME
FORMAT (" +' J1X,AS0O)
GO TO 9990

WRITE (&6,35) DISEASE
FORMAT (" +° ,1X,A20)
GO ro 2990

WRITE(&,37) AGE
FORMAT ¢ + ,1X,1I3)
GO TO 7970

WRITE(56,37) SEX
FORMAT (' + ,1X,A1)
GO TO 9990

WRITE(5,41) VITS
FORMAT (' +° ,1X,A80)
GO TO 9990

I =

I + 1
GO 70 1

WRITE(L,7979)
FORMAT (" /")
FETURN

END

Figure 3.2 An Example FILER Routine,

i ——

77

"

QUTFUT
INITIALIZATION /

/
OF COUNTER

/

/

'
’

.r.

\,
N

OFEN
%

CUTFUT

/ OVERHEAD
GEGIN

/
,/
INFORMATION /

/
v INITIALIZE

;

t
)
]
D

BEGIN.NTAELE

I
'
]
'

ol
L
ol

®

g
a,
«
o

A ala m " aa?

78

i T o e

«
)

PN Y ¥

79

v

A
i ~
| ~
| - ~
| - ~
I I ~
| = W = i
) b R Z 1
i owagw !
~ N e |
~ DL = mmmn em mm me e e D
~ w | |
N | |
! ~ | |~ i
i ~ | ~ i
- | ~ i
; ; 1 ™~ i
| N | ~ !
| s . ~ | aQ | |
! -~ Z - = | - o | |
1 =T | i e .
} btz --Ww--> LU 1----=--D>
! ~ wwn ! =w
| ~ooE - | 2 d |
| ~ 7 ! owg |
| ~) = '
1 | ~ > [
. e e em | ! ~ |
| | el ~
I | i | ~
! ! N
2 - | ' 20N
— | —
ML e e - D mn el VR LA L L R
Wk w o~
o ~Nd s
! ~

e

/
'

/ OUTFUT
*/SELECT OF /

\—J——-=

BEGIN
7/« RHAOkK

;

BEGIN. FIQUK

HOOK.

’
!

|
|
|
“
|
i
]
|
| i b
“~ | H I
w W~ | | i
>0 | | W]
-z | [o i !
ww I t g ! {
r&e | I I | |
I } Nz i !
O3 i--=--2> v e D !
wa | € | |
rQ 1] Qg 1 1
~0 | oo 1 |
~ [S | i
“~ | | |
- = aa a- - ma mm oa- _
| | {
| ! |
~ ! w | |
~ | J |
| €| i
| I | |
-~ t o | |
! nz i i
Il ce L ommmm e e e DS [L
~ 2 Z
] | —
- | ma
- | w u
! &o
|

O

Figure 3.3 Flow Chart for firstwhere Routine.

u
-
>
Py
-

-
gl
m

/ OQUTFUT /
/ UVERHEAD /
/ INFORMATION /

/ QUTFUT START OF
/ COMFUTED GOTO s
/S STATEMENT i

FEGIN =
START

Figure 3.4 Page 1 of 4.

81

PO - p Aas s P ORI AT PR IPE. YL AP IS A P U S ST . S PGP U SO Sl G S0 W S -'.‘;‘Aa‘_'L;.i

D>

/ QUTRUT NR /

/

-/ FOR GOTO

FBEGINN-T- -

{
|
!
|
|
~ |
| |
| !
I | i
| |
! LR
b=- == 2 w
I ! >
| ! <
! | V4
| i -
| |
~ -— .-
o~
I - o-- -
N~

s

(*BEGIN) . RHOOK

/

/ DUTFUT

|
|
~ |
S |
~ |
| t
i e | |
aQ | |
wao | | I
b= e - D
i | | |
Z0 | | w
m | [
“ | | <L
TN | i i
| ~. ! —
| |
[R,
|
!
N

/ TRAVE!L.
/

2 of 4.

Figure 3.4 Page

82

2

PR T SO I 1

P U TSP GNNE P SRt

5]

RN W TR N I

W N

-

T N e s S

L2 e A il iieads St)

LSladi Sl il Sadh £

START

BEGIN

l
|
!
|
[
\ |
! t
[|
| {
i |
! J I~
! 1 | ~~ - oms em =s i
| | 1 . i t :
| | | ~ | o !
| | | ~ ! Q i
| | I m t 3 | i .
1 | | T+~ | l z | | '
i ! | Zx | ! = | i i
| { { - = | I LI ! i
! | | 3 o | ~ i i
! | | oL Q | == 2> g -2 !
| 1 | Qg | | w !
i | | 220 | | A4 D> 1 ;
1 | [D=0 | | w <L | !
| I ~ L wm | > | 1
t | ~ [| T - i
! | ~ | | r | '
RN .o me e] N | =~ !
! ' ~ | { ! ! ~ | ! R j
| ! ~ ! | ! | B T | ! i
! | ~ | | 1 - | w i
! ! ~ { t | 1 | J | i
! | m | | W | i | o) i
! | T Q- | | o i | RS | [SOE| 1
| ! X | | o | | e ~ 1 -
! ! | S | I 1 i -~ i e | =z | '
j !) & I | Z | i ! L !
| ! i Q j=e e D> o fem e ae T > R T L L ~ ==
! ! Q0 | ! o~ 1 [| Wz ot
] ! 220 | 1 Z | ~ (L[| I -
! ! QO=wm | | - N = ~ | Z WU
i ~ wm ! | wm ot ~ 7 [- u !
: ~ T ! | >w i | |Saes B
! ~ ! | T &o ! w = |
! ~ ! | o *x ! | o~ |
' | o | L { ! |
! | ! | =- == --
| I . e e .-
: b=
i [
| f
| N
i 2 TN
.. |
e e e D 0~ i
Wl
~ 0 -
~ 7

P VA VAN VA A VR U N Uy Wy S S Sy

P VS Gl S W . S . V. U

m .
= <
lw]

S
PPy Sy W |

DQUTFUT RETURN
% [/350C 3TMTS

T— " - . - PR -

5
2
|.°’
-~
£
o
Db
12,
s

Figure 3.4 Flow Chart for grasper Routine.

CEIREY SN W U S W NI U DIG WP G G W 1

/- 7
/ BUTFUT /
s OVERHEAD /
+ INFORMATION /

/ OUTFUT /
7 COMFUTED GOTO !
STATEMENT /

i BEGIN =
T oTART

4

Figure 3.56a

P I Y

Page 1 of 3.
86

1
3
]
'
]
'
]
'

46
v
{#TRAVEL) . NHOOK

TRAVEL

1
¥
1
+
1
1
n
'

N

3/

P 3

)
+ TRAVEL
/
N

i (#BEGIN) . NHOOK

,,__T____,

\

\%
+BEGINA
/

=/ =0/

£

\

B T T e T P

[
s
:
B

v (xBEGIN) .NTABLE

ol
L
ol

@
J
a.

]
™

UUTFUT RETURN
L oA5500C STMES

n
~
m

m
yd
e}

Figure 3.5a Page 3 of 3.

Figure 3.6a Flow Chart for the outpt Routine.

»

[

]

)

»

[
p——1

el - St - -

T oT——— _p— P . - T aT——y— n e —T———

46
M
' [= v
, N STy :
-1 N b=/ JUTFUT WRITE 7 '
N . L FORMAT STMT / ;
‘ . FOR FOINTERS / '
F D ;
: N ,
: v L= 1 + 1 :
:) ,
R e]
RAVEL = ,
sfRfH) LTy TTEMS :
v N
\ / / H
. / N S OUTFUT WRITE ’ :
ik EL - /IRAVEL =/= N~--1--—- 7/ & FORMAT 3TMTS / '
2= \UTTOURURY S / FOR THIS {TEM
/ S
: \ /)
; . ;
’ F Vvi

v TRAVEL =
V(e TRAVELY UNITEM

<

CETURN Tl '
UUTE D udl Lag :

Figure 3.5b Flow Chart for filwrite Routine.

88

PRPRL ISR SN SR WORE APTRPE 3 - [T TR WU W WP O | et PP A‘AAAAAAl

AD-A156 955 THE DATABASE UNIFORMIZATION PROBLEM: A SEED/DAYID
1 ERFHCE(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON
OH J AULINO 1985 AFIT/CI/NR-85-44T
UNCLRSSIFIED F/G 972

Lo kg ke
=l
L iz
= |
2 it e
M|CSO)C0PY‘ RESOLSHO‘I.\J IuSST :S,H‘AE“
E. -)) —_—

_” mE me me wm @e e A e a8 Sn w= S l4l
; e me e |
_ | [|
{] Jd | _
| 1 T | f
|] []
1 \ - }
. I i | _
_ I 0 | f
- I | =0 | i
X I { 2T l-=> |
$ 1 bow
: I] Z2F |
1 i | w ol
! i Qe |
p _ -
! [| o= >
_ I w1
: i I I
! - em e -
i -,
. " “
r t i
1 i P i . em - ; |
1 { i I { | { ! o
I | o~ | | T ! s
| ozl - . :
i - .
_ b | I 1 g | i —
[TR I _ 0 | s~
I = RN oA P SN
| T - ~ | m o -0
! i o= b T N 1G] A
_ | w 1=-=-> m e D T e TN -l D
_ _ I w o [T TR B X~ @
f [<~k - | -1 T S
| | | ~N | aon | | ~N pc
| o I Zw | |
[(W P =0 | P
i b | TR N
1 1o _ 1o
| 1 I . mm e e X
e | =
_ | _
| : |
i i !
{ i !
i i !
I I !
(! :
I I _
| (i | i
i i W |
_ I { i
i - _ _
| -) N i
I I f - - ~ A
o= _ a 1 a
P x| [=@ | -
i € f==D> U0 [e---==> 0 L T ey
o= T x
1w =T T~
) !) W E | ST
] w1 ~ -
== ¢
! 20 | P
| >
|owin i
i i !
[4
[

'.bLV#»b».lr g

R T Tl

Aaagl ot aout uas oanc

pe

LR~ 2 et e

-3

TEST = FILTER(2) !

e R L I L T

FIND NEXT
HOSFITAL

< ~——F=/TEST \

DUCTOR

v

FATIENT
=/= Q/f

-/ERRSTAN

\

FIND FIRST
DOCTOR

BT

w2

NEXT |

DOCTOR

FIND
Vv

P

U]

v
/TEST \=—F-~—>3
v

T
FILTER (D)

TE

. ®% ma ®r we %= Aan e me &R e ee em == v

ol
3l

[

g

3

]

W —————y

PPN P P P PPN

—————— e — =

)
]
]
]
]
'
]
'
]
»
)
*

O/
/
\
| 4

- -2 D

v
/
/TEST \-—-3
\

IND
EDNR
‘AT IENT
N =/

\

\

F
E
F
v
/ERRSTAN-T-%

FILTER(4)

TEST

/
Page
Figure 3.6a An Example Flow Chart for a FIRSTW Routine.

Figure 3.

e R T TSR UR RN S A I S

f W

e T T —— - — —— v v~

ol St Zheus st g At St ik Badt

FIND FIRST

]
]
]
’

SYSTEM_HOSFITAL

'
0
1
’

! TEST = FILTER(1)

R

/ERRSTA

Q

\=/=

SYSTEM_HOSPITAL

+
»

[]
L]

S S

FIND FIRST

em b em o= e e am am mm mm e e = oma s ee == oo me == s e em = D

|
!
{
!
|
!
|
| =
|
1w
“ r4
I Q
-4
] -t
[N
!
!
|
|
|
|
1
{
TR
|
f
Ve
-~
- =
-2 m
w
~N
/
~
P
[]

Y
e
~
.
4
K
..
..
o
-
.q
- - ~ . .
| | o3l A
e | , | 4
S | T - !
Q| _ - K
[=] N 1
a | T~
L_ | mm z _.m 1
(
q l----==D> XM —u -2 a A
- (VAR 0 1
— | ~wt -~ o K
w | | ~ 7 d .
g1 P |
o
T o0 4 .
- "
o a=] « o ..4
1 =)
) - Y
" i
i 1
“ 9
| Y
i J
I
i h
_ o
]
]
" e . 1
)
]

S S S e

AL AR

- N T -—

Ty

Y

e T I T T T T T

]
+

FIND NEXT
HOSFITAL

{-——F-/TEST \

DOCTOR

e — e ——n

NEXY

IND
DOCTOR
FATIENT

[y
¥

= O/
/
e eF -

- S

FIND FIRST 1
/TEST

DOCTOR
¢ PATIENT

Y
£~T--/ERRSTA\
/
T
't FILTER(D)

|
> ~ - | ~ '
! - | 1] -~
| | 0]
! 1 -
R _
i
|
1
|
!
]

20of 3.

Figure 3.6b Page

PG S VY

MK Vel Wl VOl W W SO

i i aiii S ik G

g e Slua S Mane auy S

TR g —r—w——~—

e ———

4
'
]
.
1]
[
¥
»

ATIENT

B T T,

\
Q/

O TR

FTEST N\N——==
T
v

Vv
/
FERRSTAN-T—

\
FILTER(4) .

=/

. am e me ,E e Sm s ®® e e= =4 = mm mm am mm = —= am e®® aa e V

!
|
!
!

FETURN

=]

Figure 3.6b Page 3

Figure 3.6b An Example Flow Chart for a NEXTW Routine.

PP S WD W

S

LI,

o

o T T e e

/NRS(I)\

/NRS (1) \—~F =%

FINDD

1 3

vV NRS(I)

/= O/

5 JERRSTAN —~F == ==~ ===
\ =

CURRENT
HOSFITAL

— o — ——— e e e e e

Vv NRS(ID)

1
'

FINDD

5 /ERRSTAN~ -F—#————o— oo

\

CURRENT |

DOCTOR

Qs

=,=

e D

_F-+,,

— /ERRSTA\ -
\N =/=)/

]
1
]
'
.
1

FINDD
CURRENT
BEDNR

- T
- *
_ !
.

]

)

vV NRS(I)

e em mm e a2 D
)
'
|
AN I
|
1
H
!

e L T 3

U |

ol
Bl

l_

96

")

FINDD

= 4

V NRS(I)

|
| -t
|
B LI Tl S
. I
| | —
! !
| ! 1]
| \
!) L)
| |
| [,
|
(
$ e emme e =e D
| |
i i
m [
[1
LTS |
I DN]
- |
mn |
L~ == F--D>1I
i ||]
] 4 |
~ 7 |
| |
| |
. == e |
| !
| [
= |
Z2Z | |
ww | |
[V | |
Z = |1 |
2 [
o ! i
t |
.- e -- !
|
| |
! |
| i
] |
| |
[|
| |
1 |
! I
|)
| |
| 1
"
1
1
|
|
|
|
I
)
|
1
e 3

il
S

ol
al

§

™~
3

Figure 3.7 A Flow Chart for an Example GRASP Routine.

UL P U YD A P YA Dy W SRR SR S TPy

WP AT T TP SR AT R W WP S T X

R W G Y

T

NRSCIN\

[y
/NRS (1) \-F-—

1

VvV NRS(I)

- e me aa ==

|
|
|
|
|
|
|
f
[
I |
o
~ 1 1
[I |
2w ot
am 1l
- |
2 ||
cz I
i
|
| 4
|
! H
|
1 -~
| —
| ~
! 10
! i 4
“ -4
| =e == D>

OUTFUT e
AHOSFITAL !

— e ————— h

-~
e

vV NRS(I)

b
¥

QUTFUT

[
[
b
[
[
[
[
[
[
[
[

<

I

-

wn

V4

Z

-~ D>

QuUTFUT
CITY

v NRS (1)

QUTFUT
Z1F

= 5

v NRS(])

OUTFUT
NDOCTOR

ul

Vv

o5l
L]
ol

8

Q
o)

97

o e a

PTPrCOw e

QuUTFUT

ADOC TOR

)
’
[l
’
[l

8

Y NRS (D)

OuUTFUT
DRNAME

o P

vV ONRS (D)

|
|
i
)
!
|
)

QUTFUT

10

V NRS{D)

QUTFUT
1 NBEDNR

Lt
N

VONRSOD)

————-%! QUTPUT

o
I
I
ol
o1
Z 1|
aQ o
w ool
o o4
I i
b

€4

-

1

-t

"

14

OUTFUT

BEDNUM

OUTFUT

Pt <
- -
|
Wi 1]
|
-~ | -~
- | -
~ a A
n)]
o ! L
Z _ z
e S =

OUTFUT

NFATIENT

[]
1
]
v
#

OQUTFUT

AFATIENT

v

98

PRI WP S AV U S TP G

s g e g g ..

e L yapy—

A e a4

v

QUTFUT
FNAME

vV NRS(I)

GQuUTFUT
DISEASE

]
'
1]
'
]
1
[]
'

OUTFUT
AGE

ouTFUT
SEX

]
+
]
'

Q)

- D
=

vV NRS(I)

QUTFUT
VITS

/ QUTFUT

V
I
v

ool
Gt
ol

Q
™

m

Page
Figure 3.8 A Flow Chart for an Example FILER Routine.

~
< - . an
™~ ! |
o o ez
w ot
w)= -2 o I
w ! | - !
! oo
w ! oo
Z ! i
- .. e e
4 !
~ !
~

twhere(start,fp)

OSEFH AULINO */
VAWVID FROJECT =/
IAY 1984 */

*/
‘HIS FROCEDURE CREATES FIRSTWHERE (CALLED FIRSTW) SUEBROUTINES.
HE FIRSTW ROUTINES CREATED ARE USED 7O EXTRACT THE FIRST
ICCURRENCE 0OF EACH RECORD IN A DATAEBASE WHICH MEETS CERTAIN
RITERIA. THE CRITERIA I5 JUDGED IN THE FILTER SUBRROUTINE
WHICH 1S CALLED EUT NOT WRITTEN HERE) . THE ROUTINE TAKES AS
NFUT A FOINTER THE MAIN DATA STRUCTURE AND A FPOINTER TO THE
ILE USED FOR OUTFUT. IT RETURNS A VALUE CALLED "SET" USED BY
'OUTINE NEXTWHERE 7O DETERMINE WHERE EXECUTION OF THE FORTRAN
'ROGRAM CREATED RY NEXTWHERE SHOULD BEGIN.

OCAL VARIARLES:

1. begin - USED TO TRAVERSE A LIST OF TABLE STRUCTURES.

2. follow - USED TO TRAVERSE A LIST OF TABLE STRUCTURES.

3. contin — USED TO TRAVERSE A LIST OF TABLE STRUCTURES.

4. travel — USED TO TRAVERSE A LIST OF HOOK STRUCTURES.

S. adder - HELFS GENFRATE THE FROFER LINE NUMEBERS EY OWN
AND OWNEE.

4. count - HELFS GENERATE LINE NUMBERS AS IN ADDER.

. last - HELFS GENERATE LINE NUMBERS AS IN ADDER.
8. swap — INDICATES WHEN FORTRAN VARIARLES MUST BE
FROTECTED FROM BREING OVERWRITTEN.

I0M- STANDARD SUERROUTIMNES USED:

1. commans - FOR CREATING THE NECESSARY COMMON STATEMENT.
2. Gwn FOR CREATING SECTIONS OF CODE FOR "GETTING" A
RECORD GIVEN ITS FARENT.
z. awnee FOR CREATING 3ECTIONE OF CODE FOR "GETTING" A
WICORD GIVEN ONE OF IFS "CHILDREN™.
3. decl arer USED TO DECLARE CERTAIN COUNTER VARIABLES.
S. areset UGED TO RESET THE VALUE OF THE "TvFR" FIELD.

ict table #*start;
I»fp;

ict table *begin, #*follow:
wct i1tem ®conting

ict hoot xtravel;

adder , count, last;

SWap s

PAE ST YN SO VORI SPUE SR STy

*/
*/
*/
*/
®/
*’/
*/
* /
%/
*/
*/
*/
*/
*/
*/
*/
*/
*®/
*/
*/
*/
®/
*/
*/
* /
*/
*/
*/
®/
*/
*/

T gy . B ITERIpIN——————~ T — r——

[ZXITXTTEETEESSSITISEESSS LSS IS S S A SR S SR R R AR R R RS R R EE XS

*/
4E NEXT SECTION OF CODE CREATES THE FINAL GO TO STATEMENTS =/
WD THE. END OF THE FORTRAN SURROUT INE. */

*®

KRB U MMM MK NN IE R I K MR I I N I R RN RS

Atf(fp,"\n\n P90 I = I + 1");

Atf(Fp," N GO TO 1");

EfFCfp,"Nnan 27793 WRITE(S,7797) ") ;

Atf (fp, "0 999 FORMAT(") ")

Ttfifp, N RETURNNNn N END ") 3
et {start);

s

SRR END OF THE OUTFT ROUTINE XKW/

Figure 3.11a Page 3 of 3.

Figure 3.11a The outpt Routine C Code.

114

gl SAG MR Saul -l o aet

act table #*begin;
act hook *travel;s
numb ;

(EEEE R R R AEEE SR EEEESENSEEE LSS SRS RS R SR R R R AR b gk & bR g k)

.
SIRST, THE STATIC INFCRMATICN, COMMON STATEMENT, AND #/
ITHER OVERHEAD INFCORMATIOW I35 WRITTEN. L.

%/

[(FEFF N XS A EEIEESESEESESS R LS SRS AR S SRR REEE R R EREEE R EE R R ENXE I

> = 23

tntfFifp," NN SUBRCUTINE FILER(NRS,M) "33
tntf(fp, " \nian INTEGER N,NRSMN) ,I") g

nons (start fp)g

intf (fp, "0 I = 1"23

intfifp,"nin | IF {(NRS(I) .EQ. O) GO TO 9998");

owriteistart,fp);

IEZ S EE S 2SS SR SRR R R SR s XA 2SS RR R Rt s SREE E X)

*/

JEXT, FOR EARCH TABLE AND ALL FIELDS OF THAT TABLE A WRITE =/
STATEMENT 15 FRODUCED. IF A TABLE IS A LINK FGOR A */
"RECURSIVE"” TARLE, THE FIELDS OF THAT NODE ARE ALSO ®/
JUTrFUT. */
*/

[FEZE SRR EESE SRS S SE S SRR RS R R R EERERE R LRSS EREE R EEE R SRR

le {begin '= o)

filwrite(fp,.begin nunb’ 3

1f {{4begini.rhack '= Q)
travel = {(»*begin).rhook;
while (travel '= Q)

r
[

filwrite(fp, (#travel’.atab,%numb);
travel = (#travel).nhook;

segin = (#begin).ntable;

Figure 3.11a Page 2 of 3.

S R P SOUER SR VA S SUUPV. JON. S PO, VO - o WS SR P SR S O e P R S S SO SO S Sy

o B i B Snse S dn Shant S S e A E AT e 4 MMM rE e Pp———— T ——

tptistart, fp)

JOSEFH AULING #/
DAVID FROJECTY w/
JUNE 1784 */

*
THIS FROGRAM CREATES A FORTRAN QUTFUT FROGRAM FOR EACH DATA #/
BASE CREATED FOR THE "SEED" DBEMS. THE FROGRAM IS5 DESIGNED %/
(CURRENTLY) 10 RUN IN A "UNIX'" ENVIRDNMENT. IT DUTFUTE THE %/

REQUIRED FIELDS FROM THE DEMS (INCLUDING FOINTERS IF *,
DESIRED) . THE FORTRAN FROGRAM TAEES AS INFUT A& VECTOR %/
"NRSY OF GIZE "N“. THE NUMBERS IN (HIS VECTOR CORRESFOND */
TO FIELDS/TAEBLES OF (HE DATARASE. FOR INSTANCE, 1 EQUALS %/
FHE CURRENCY FOINTER OF THE FIRST TABLE, 2 EQUALS THE L 4
LOUGICAL FOINTER 7OR THE FIRST TABLE, T EQUALS THE FIRST * /
FIELD OF THE FIRST TARLE,...N EQUALS THE Nth FIELD OF THE */
FIRST TAEBLE, N+1 EQUALS THE CURRENCY FOINTER OF THE Znd */
TABLE, N+2 EQUALS THE LOGICAL FOINTER OF THE 2nd TABLE ETC. =/
SHOULD THE AFFLICABLE NUMEBER AFFEAR ANYWHERE IN THE "NRS" */
VECTOR, THE CORRESFONDING ENTRY WILL BE FRINTED AT THAT ®/
FOINT. ENTRIES ARE FRINTED ON ONE ROW FER CALL TO THE */
FORTRAN FROGRAM. THE TERMINATION CONDITION FOR THE FORTRAN */
CROCEDURE IS A "O” ENTRY IN THE "NRS" VECTOR. */
*/

%/

LOCAL VARIARBLES: *)
.y

1. begin - TRAVERSES A LIST OF TABLE STRUCTURES. */

2. travel - TRAVERSES A LIST OF HOOK STRUCTURES. %/

~. aumb - USED TO DENOTE A LINE NUMBER. #*

*x/

*/

NON-STANDRRED SUBRROUTINES USED: */
%/

i. comnons - WARITES THE NECESSARY COMMON STATEMENT. */

. gotowrite - WRITES THE NUMBERS OF THE COMFUTED ./
GOTO STATEMENT USED IN THE FJRTRAN */

FROGRAM, */

Ze filwrite - WRITES ALL THE QUTFUT STATEMENTS USED */

BY THE FORTRAN FROGRAM. */

3. areset - RESETS THE "RCNT" FIELD OF EACH TARLE ®/
STRUCTURE AS THE LAST THING DONE IN THE *x/

FROGRAM. */

ruct table #start;
LE *fp;

112

1f ((#{%travel).atab).rcnt '= 0)

transf ((#travel).atab,fp);
fprintf(fp,"\n GO TO 299720\n");
1f ((x(#travel).atab).rcnt '=)

(k{#ttravel).atab).rcnt---3
travel = {(strave!l).nhook;

3 /% END OF THE WHILE TRAVEL '= O LOOF =/
} /% END OF THE IF BEGIN... =/

begin = (%begin).ntable;

2222222222322 223X LRSS ISR SRS L L L 2 4

*/
* _LASTLY, THE LAST LINES OF THE FORTRAN FROGRAM ARE OUTFUT %/
» TO INCLUDE THE FINISHING OF THE "WHILE" LOOF AND THE ®/
¥ RETURN STATEMENT. */
* */
(12323223322 S R N e R Y I T T F TR EL T v

printfifp,"\n\xn 779720 1 =1 + 1");
praintf (fp,"\n GO 170 1");

printy {(fp,"\n\n 2779 RETURN");
prantf (fp,"\n\n EMDNNAN") 3

reset (start);
eturn;g

SRR EMD OF THE GRASFER ROUTINE KRR

Figure 3.10 Page 4 of 4.

Figure 3.10 The grasper Routine C Code.

111

MEZEIEITIERTTTLSSI TR SIS TTLETLETELISSISSISS SIS S R 2 BN 3
/* %/
/% THE NEXT SECTION OF CODE GENERATES THE ACTUAL FETCHES #/
/% AND "“GETS" AS NEEDED. IT IS ALSD HERE THAT TRANSF IS *
/% CALLED I¥ NEEDED. ®/
7 */
SRR RN I W R A AR I N AU I K I AR

begin = start;

addon = 13

numb = 23

while (begin '= 0)
fprantf (fp,"\n “d CALL FINDD{N%Zs" ,numb, (¥begin).aname) ;
1F ({(*begin).rcnt !'= 0O)

fprintf(fp,"id", (*begin).rcnt);
fprintf (fFp,")");

fprintf(fp,"\n IF (ERRSTA .NE. ©) GO TO 9999");
fprantfifp,"\n CALL GET(%s)", (*begin! .aname) ;
fprantf (fp,"\n TEST = FILTER(%d)" ,addon);
fprintf(fp,"\n IF (TEST .NE. 1) GO 1Q 2999");
aumb++3

addon++;

if ((#begin).rcrnt =)
transf (begin, fp);
fprintfifp, " \n GO TO 2920Nn")
1f (i®¥begin).rcnt '= Q)
{*begin).rcnt-—3

1f f(¢begin) .rhook '= i)
) travel = (#bzgin’ .rhook;
while “tra.el "= 0)
‘ iprantf{fp,"n "d CALL FINDD{NYZs" ,numb, (*(*xtravel).atab).aname):
1 f ((#(#*travel,.atab).rent '= O)

fprintf(fp,"%d", (#(%travel).atab).rcnt);
fprantf (fp,") ") ;

tprintf (fFp,"\n IF (ERRSTA .NE.) GO 10 9999");
tprintf(fp,"\n CALL GET(%s)", (#(#travel).atab).aname);
fprintf(fp,"n TEST = FILTER(%d) " ,addon) ;

iprintf (fp,"n IF (TEST .NE. 1) GO TO 9999":i;

numb++3

agdont+;

12
o

Figure3.10 Page 3

110

Ty

/W30 3 3N 3 36 33 3 3 3 3 I I I A b 6 I 3 3 3 I 36 3 36 I I B I I I 6 36 I I W NI I I I IR/

/ */
/% FIRST THE HEADING AND OTHER STATIC INFORMATION I3 WRITTEN. x/
/* */

SRR W N K TN NI NN B A U X ORI I I N N I I R R/

SUBROUT INE GRASP (NRS,N,TEST) ") ;
INTEGER NRS,N,I,TEST");

fprintf(fp,"\n\n
fprantfifp,"\nin

commons (start,fp);

fprintf (fp,”"\n\n TEST = 1");

fprintf(fp,"\n\n I = 1");

fprintf(fp,”"\n\n 1 IF (NRS(I) .EQ. ©O) GO TO 9999");
fprintf (fp,"\n\n GO TO(");

/W NI I I I I KT IS I I I I I B I 6 I 6 I I IS

/ ® */
/% NEXT BY TRAVERSING THE DATA STRUCTURE AND USING GORITE %/
/7% THE COMFUTED GO TO STATEMENT IS CREATED. */
/% */

/W3 N3NNI 6 I I I I 6 I B IE I I I I I I 6 I I I I I I I I I I I I I I I I I/

begin = start;
numb = 23

incre = 13

adder = 23

sum = 123

while (begin '= O)

gorite(fp,&sum,%adder ,numb,i1ncre):

if ({*begin).rhook ‘=)
travel = (*begin).rhook;
while (travel '!'=)

-
(Y

gorite(fp,%sum,%adder ;*numb,incre);
travel (%travel) .nhook;

[

3
2

begin (*begin).ntable;
fprintf{fp,") ,\n * NRS(I)\n");

Figure 3.10 Page 2 cf 4.

109

e o

AR Sl S W W

T T ——— - prTTT——— e T ———

grasper (start,fp)

/% JOSEFH AULINO ®/
/% DAVID FROJECT »/
/# MARCH 1984 */
i ® *
/% THIS FROCEDURE WRITES THE FORTRAN CODE TO RETRIEVE aANY RECORD %/
/% FROM THE DATARASE GIVEN ITS CURRENCY FOINTER. TO DO THIS THE #/
/% FORTRAN CODE WILL TAKE AS INFUT THE VECTOR "NRS" 0OF SIZE "N". #/
% THIS VECTOR WILL CONTAIN NUMBERS CORREGPONDING TGO THE RECORDS #/
/% TO BE FETCHED. TO RETRIEVE THE FIRST RECORD YOU WOULD #/
% INCLUDE THE NUMBER t IN THIS YECTOR, THE SECOND RECORD WOULD =/
/% BE NUMBER 2 AND 50 ON. IT ALSD FRESUFFOSES THAT THE CURRENCY */
/% FOINTER FOR ANY RECORD [S IN ITS AFFROFRIATE VARIABLE - THAT »/
/% BEING THE VARIABLE WITH THE SAME NAME AS THE RECORD BUT WITH w/

/% AN U"N" IN FRONT OF IT. */
/S * */
/ * */
/% LOCAL VARIABLES: */
/® */
/S * 1. begin - TRAVERSES A LIST OF TABLE STRUCTURES. */
/* 2. numb — USED BY GORITE TO HELP FRODUCE LUINE NUMBERS. ®/
VE 3. incre — USED BY GORITE TO HELF FRODUCE LINE NUMEERS. %/
/ * 4. adder - USED RBY GORITE TO HELF FRODUCE LINE NUMBERS. * /
/® S. sum - USED BY GORITE TO HELF FRODUCE LINE NUMBERS. */
/% 9. addon ~ SFECIFIES WHAT RECORD I3 BEING SENT T4 THE */
/* FILTER. */
/% */
/* * /
/% NON--STANDARD JSUBROUTINES USED: L 4
/S ® * /
/% 1. commons FPRODUCES THE NECESS3ARY COMMON STATEMENT. */
/* 2. gorite - FRODUCES THE NUMEBERS IN THE COMFUTED GO 1O */
. * STATEMENT. *,/
o . transt TIMANSFERS THE VALUES OF CERTAIN VARIABLES TO =/

* ICMFORARY STORAGE (IN THE FORIRAN CODE)Y TO *
/% PREVENT THEM FROM BEING OVERWRITTEN. ®/
/#* 4, areset RESETS THE Tv¢FR FIELD OF TABLE STRUCTURES. */

struct table =®»start;

FILE *fp;

struct table *beging;

int numb, 1ncre, adder, sum, addon;
struct hook stra.el;

Figure 3.10 Page 1 of 4.

e ma e s L o e e s s e e e e e e e e e ane B a I P

if ((xbegin).rhock !'= Q)
{ sSwap = 13
travel = (*begin).rhook;
while (travel != Q)
{ contin = (#(®xtravel).atab).to_items;
while (contin '= O)
1f ((({xcontin).typ '= 'TH&&((*contin).typ '= R'))
fprintf (fp,"\n “ed" , (#¥contin) .1name, (*(*travel).atab).rcn);
fprintf(fp," = %s",(*¥xcontin).iname);
contin = (#contin).nitem;
fprintf(fp,"”\n A") s

fprintf(fp,"%s’d =A",(*(*xtravel).atab).aname, (*{#travel).atab).rcnt)
fprintf (fp,"%s" (#(#travel).atab).aname);

fprintf (fp,"\n N') 3

fprintt(fp,"%s’hd = N", (#(#travel).atab).aname, (#(*travel).atab).rcnt);
fprintf(fp,"%s", (#{#travel).atab).aname);

fprintf (fp,"\n ITEMF = ChLs",(#(#travel).atab).aname);
fprintf(fp,"\n “s", (®#(®xtravel).atab).aname) ;

fprintf(+p," = CisZd", (#(%¥travel).atab).aname, (*(#travel).atab).rcnt);
fprintf(fp,"\n Chs",(#(%travel).atab).aname);

fprantf(fp,"%d = ITEMP",(x{(#travel).atab).rcnt);

follow = (#travel).atab;

owni(fp,follow,begin,adder ,count,last,swap);
adder ++;

last = count + 1;
count = count + 4;
{(#(*travel).atab).rent—--;
travel = (#travel).nhook;
Swap = J%
begin = (*begin).ntable;

*

fprintf(fp,"\n 9799 RETURN\NR");

fprintf(fp,”"\n ENDA\N") ;

areset (start) ;

returng

H /%K% END OF THE NEXTWHERE ROUTINE LA R 2 L

Figure 3.0b Page 4 of 4.

Figure 3.9b The nextwhere Routine C Code.

ol

T —————— N N N R R R R e T IR m—" — ——T

begin = (#begin).ntable;
fprantf (fp,"\n");
tindgo(start,set);

/B2 EITSZLIEISZ ST S S LSS ESS S SRS LIS SIS SIS S S X 4

/® ® /
S % NOW THE REMAINDER OF THE CODE IS GENERATED JUST AS IT WAS */
/% IN THE "firstwhere" ROUTINE. */
/ ® */

/%% B S A 3 3 3 Wt b I 6 I A3 3 A 9 I W I I I I I I 6 3 I I 6 IE b 6 I I I It W IE I I K I I %

begin = start;
adder = 13

count = 13

last = O3

sSwap = 03

while (begin !'=)
,

.

1§ (((#begin).relat = 'C') i ((xbegin).relat = ~ "))
follow = (#begin).for_writes;
own(fp,begin,follow,adder ,count,last,swap);
adder ++3
last = count + 13
count = count + 4;

el se
follow = {(*begin).for_write:

ownee(fp,begin,follow,adder ,count,last);
adder ++;
count = count + 4;

[

A3 2222222222222 222222 X222 X2l E I

/I ® */
~#% THE LAST SECTION OF CODE GENERATES THE CODE NEEDED T0O =/
/% FETCH A RECURSIVE RECORD. THIS WILL INCLUDE */
/% FROTECTING ANY VARIABLES ALREADY HOLDING VALUES. L
/® */

IZZ2ZZE 2SS 2RSSR SIS XSRS 22X 2 SRR R R R] 2

Figure 3.9b Page3 of 4.

pr— g TR —— " LA R S i S A M adhi R ¥) T ==

struct hook #*travel;
int adder, count, last;
1int swap:s

A2 ST SZZSSSSS2SSE LSS AR SR 22 222 22 2 RS 2 S 4

/® */

/% FIRST THE STATIC INFORMATION IS CREATED. THIS INCLUDES =/
s /% (RBUT IS NOT LIMITED 7T0) THE INFORMATION CREATED RY */
; /% "commons" AND "declarer". */
3 7 * */

IR ISR S22 2SS S 2RSS SIS SRS 222222 X2 2 22 2 2 4

fprintf (fp,"\n SUBROUTINE NEXTW(N,TEST)\n");
fprintf (fp,"“\n INTEGER TEST,N");

(fprintf{fp,"\n");

declarer (start,fp);

fprantf (fp,"\n");

commons {(start,fp);

fprintf(fp,"\n");

IR Z I TR SRS XS SRS SRS SS SIS SRS S L LS 22 4

/ * */
/% NEXT THE COUNTERS ARE INITIALIZED 7O THEIR VALUES AFTER THE x/
/% LAST CALL TO "rnextwhere"' or "firstwhere". ALSO, "findgo" */
+% I3 CALLED TO CREATE THE "GO TO" STATEMENT TO DETERMINE */
/% WHERE EXZCUTION SHOULD EBEGIN. x/
I %/

/AR MR N Nt a0 I3 I 3 B I B I I I I I 3 M I N B/

begin = start;
while ‘begin '=

,
[

fprintfuitp, " 0 C%s = Nis", (*begin).aname, (*begi1n).aname) ;
1f vumpegin) L typr = 0)

3
(8

while ((#begin).rcnt '= o)
fprantf(fp,"\n C¥%s", (*beg1n) .aname) ;
fprintf(fp,"%d = N¥%sid", (#begin).rcnt, (tbegin).arname, (*¥begin).rcnt);
(*begin).rcnt- -3

s
2

‘*begim).rcnt = {(#begin).typr;

neitwhere(start,set, fp)

/% JOSEFH AULINO =/
/% DAVID FROJECT =/

/% JUNE 1984 "/

/% *,/

/% THIS FROCEDURE GENERATES THE FORTRAN TO GET THE NEXT =/
/% RECORD FRDM ANY DATABASE FOR WHICH A SCHEMA AND A */
/% FIRSTWHERE ROUTINE HAVE EEEN GENERATED. IT 1S *®/
/% AFTER "firstwhere" I3 CALLED. THE CODE GENERATED IS #®/
7% NEARLY IDENTICAL FCR THE CODE FOR "firstwhere". THE =/

/% MAJOR DIFFERENCE IS WHERE IN THE CODE THE EXECUTION %/
/% ACTUALLY BEGINS. IN "nextwhere" THE EXECUTION BEGINS */
/% AT THE LOWEST "LEVEL" FOSSIBLE AND WORKS BACK UP TO %/

/% THE HIGHEST LEVEL AS NEEDED. */
/* */
/% LOCAL VYARIABLES: */
/* */
/* 1. begin - USED TO TRAVERSE A LIST OF TABELE */
/* STRUCTURES. */
Ve] 2. follow - USED TO TRAVERSE A LIST OF TABLE */
/ * STRUCTURES. */
/*® . contin - USED TO TRAVERSE A LIST OF TABLE */
/® STRUCTURES. */
/* 4, adder - USED IN SETTING LINE NUMEBERS. */
/® S. count - USED IN SETTING LINE NUMBERS. */
e 6. last - USED N SETTING LINE NUMEBERS. */
/*® 7. swap - INDICATES WHEN A FORTRAN VARIABLE */
/*® MUST BE FROTECTED FROM REING */
/ #* OVERWRITTEN. */
/S * »/
/% NON--STANDARD SUBROUTINES USED: */
;% %/
; ® 1. findgo - DETERMINES THE LINE NUMEER WHERE */
; w THE FORTRAN FROGRAM SHOULD BEGIN. */
s S 2. areset USED TO RESET THE "TYPR" FIELD. */
/ * 3. declarer - DECLARES COUNTER VARIABLES. */
/* 4, commons -~ CREATES THE NECESSARY COMMON */
;» STATEMENT. */

struct table #*start;

int set;

FILE #%¢fp;

struct table *beqin, *follow:
struct 1tem #contin;

Figure 3.9b Page 1 of 4.

fprintf(fp,"\n A" g

fprintf(fp,"%siZd = A", (®x(#travel).atab).aname, (*i*travel).atab).rcnt);

fprintf(fp,"%s", (#(#travel).atab).aname) ;
fprintf{fp,"\n MY 3

fprintf(fp,"%ls
fprintf(fp,"%s",{(*(%*travel).atab).aname);

“d = N",{x{(xtravel).atab).aname, (#{*travel).«tab).rcnt);

fprintf{fp,"\n ITEMF = CUs”" (¥ {(#travel).atab).aname) ;

fprintf(fp,"\n C")s
fFprintf {fp,"%

!-5
fprintf (fp,"%d", (#(*travel).atab).rcnt);

fprintf(fp,"\n Chs" , (% (*travel).atab).aname) ;

fprintfifp,"% ITEMF" , (% (®travel).atab).rcnt);
follow = (*travel).atab;

own (fp,follow,begin,adder,count,last,swap);
adder ++3;

last = count + 1;
count = count + 4;
(®# (*travel).atab) .rent——3
travel = (#travel).nhook;
swap = j
begin = (#*begin).ntable;

3 /% END OF THE WHILE LOOP %/

fprintf (fp,"\n 29992 RETURNAN")
fprintf(fp,"\n END\R"™)

areset (start); /% THE VALUE OF THE “TYFR" FIELD IS RESET.

return(count)

Y

> SRR R END OF THE FIRSTWHERE ROUTINE it L 8 04

P

Figure 3.9a Page 4 of 4.

Figure 3.9a The firstwhere Routine C Code.

103

Cis" (% {xtravel).atab).aname, (¥ (#travel).atab).aname) ;

*/

Ivrvv

begin = start;
adder = :
count = 13
last = 0;
swap = 03
while (begin '=)
B if ({(#¥begin).relat == C') i ({xbegin).relat == ~ "))
{
follow = (*begin).for_write;
own(fp,begin, follow,adder ,count,last,swap);
adder++;
*;a last = count + 1;
count = count + 4;
else
L {
follow = (%begin).for_write;
[) cwnee (fp,begin,follow,adder ,count,last);
adder ++;
count = count + 4;
I T e e e A Y I Y

/ * */
/% THE NEXT SECTION OF CODE IS USED TO GENERATE THE SFECIAL =/
. # CODE MNEEDED IF A "LINE" NODE I3 REACHED. THIS I3 NEEDED =/
, % TO SAVE ANY VARIAEBLE WHICH MAY BRE "OVERWRITTEN" WHEN THE #/
s "RECURSIVE" RECORD IS "FETCHED". */
/ # %/
J R R N I WU R 06 I I A6 I 3 06 36 I I I I I I 36 I T I B I I b I 6 I I €I KKK/

cusbegain) crhook '= D)

TN ad
-*

swap = 13
travel = (ibegin).rhbook;
while i‘tra.el '=)
contin = (x(xtravel).atab).to_1tems;
while (contin !'= 0)
if (((¥cantin).typ '= T') 2% ((#contin).typ '= "R
fprantf (fp,"\n “s", (¥contin).iname) 3
fprintf(fp,"i%d = Ys",(#(%travel).atab).rcnt, (¥contin).iname);
contin = (xcontin).ni1tem;

Figure 3.9a Page 3 of 4.

102

b

o

-

r.—, "-m~ g W T m— - ———

/*****************************f*********l***********l**********f***i**i*i*i**/

/* */
/% FIRST THE STATIC INFORMATION COMMON 7O AL_ FIRSTW SUBROUTINE IS5 WRITTEN. =/
/% %/

/****l****l********i****k*************!*********‘****hf*i*t**é***f****f****if/

fprintf(fp,"\n SUBROUTINE FIRSTW(N,TEST)\n")}
fprintfifp,"\n INTEGER TEST,N")
iprintf(fp,""\n");

f*l********************l*********************i&****l****&*{&*********l*/

! ® */
/% NEXT COMMONS IS CALLED TO WRITE OQUT THE REQUIRED COMMON STATEMENT */
/% AND DECLARER IS5 CALLED 70 WRITE QUT THE NECESSARY VARIABLES. */
/S *® */

/*****************ii******i**********&*******&**%*******ilii**%****i***/

declarer (start,fp);
fprantf(fp,"\n"1;
commons (start,fp);
fprantf{fp,"\n");

/****************l***l***************{&***********************&****&****/

/',* ‘/
/% NOW USING OWN AND OWNEE AND THE RELATIONSHIFS DEVELOFED IN "RELATE" %/
/% THE REMAINDER OF THE SURROUTINE I3 GENERATED. */
VE 3 *

B AR E AR RIS S IR TS AT R LTS SRR R g R R
begin = start;

while (begin '=)

4
v

fprantfi{fp,"\n %5 = 1", (*begin).aname);
if (J{¥begin).typr = 1)
while ({xbegin).rcnt ‘= O)
fprintf{tp,"\n C¥%s%d = 1", (#*begin).aname, (¥begin) .rcnt) :

(¥begin) .rcnt-—;

4
K

{(xbegin).rcnt = (#begin).typr;

;)
’

begin = (#begin).ntable;

fptintf(fp,"\n") ;

101

. . - . ’ . -. . - . - . . « . - - - o ' . . ° t .
e ettt noibdiodiitaininnintbetich dtedutebinietubadotbonheninsbentenienenshatstiitusinilainn sasines

filwrite(fp,path,numb)

/% JOSEFH AULINGC =/
<% DAVID FROJECT =/

/% JUNE 1584 */

/% %/

/% THIS FROCEDURE WRITES THE CODE TO "WRITE" ONE RECCRD AND ALL ITS =/
/% FIELDS TO A FILE. I7 IS USED BY THE FROCEDURE QUTFT. QUTFT */
7% CALL FILWRITE ONE FOR EACH RECORD AND ONCE FOR EACH OCCURRENCE */
/¥ OR A RECORD IN A RECURSIVE RELATIONSHIP. */
/% L 4
.-"'* */
/% LOCAL YARIARLES: */
/ ® */
/% 1. 1 - A LOOF COUNTER. */
/% 2. temp - HELFS3 SET A FIELD SIZE. */
/S * R travel - TRAVERSES & LIST OF ITEM STRUCTURES. * /
IR */
J* */
/% NOTE - */
/® ®/
e 1. path —~ FOINTS TO A FARTICULAR TABLE STRUCTURE. */
/ * 2. numb - DESIGNATES A LINE NUMBER. */

FILE #fp;
struct table =xpath;
int #frumbi:

1, temps
uct 1tem stravel;

IS RIS RTINS ESESESES TSI ISIESSSE S S S SRS SR R R R RN ERS RS R L E S S ¥

s * . */
S FIRST THE WRITE STATEMENTS FOR THE 2 MOINTERS FOR EACH RECORD »/
/% ARE TRCOUCED. X
S *,

YIS IR RS SIS RSSIEIRSIS SIS SIS SS LSS LSRR SRR RS RN AR EESEEEEE RS S S

for (1 = O3 1 < 235 1++)

fprintf (fp,"\n\n %d WRITE(S,%d) ", #pumb, ¢snumb+ 1) ;
1f 1 == G

fprintf {fp, " "N">;
eice

fpranmbtf (fp,

WAy
L] ! q

116

A y PO P S PRI, .

TN

[N
3
S

fprintf(fp,"%s", (¥path).aname) ;

if((xpath).rcnt !'= 0)
fprintflfp,"%Zd", (*path).rcnt);

fprintf(fp,"\n %“d FORMAT (" + " ,1X,I10) ", *numb+1) ;
fprintf (fp,"\n GO TO 9990");
*¥numb = %Xnumb + 23
p
VAL 2 s R R R R R R A T LT T T RS RSP Y ey
L /® */
%;a /% NEXT QUTFPUT STATEMENTS ARE CREATED FOR EACH NON-TABLE */
/% FIELD OF A RECORD. »*/
/* */
/33U I I 6 U U636 I I A I 6 U6 T B I I A I I I 36 I 6 N S

travel = (#path).to_1tems:
while (travel '= O)
if (({(*¥travel).typ '= 'T') 2% ((*travel).typ '= "'R"))
fprintf (fp,"vn\n %“d WRITE(6,%d) ",*numb,*numb+1) ;

fprintf (fp,"%s", (xtravel).iname’;

if ((¥path).rcnt '= 0)
fprintf (fp,"%d" , (*path) .rcnt);

fprintf (fp,"\n “d FORMAT (" + J1X,",%numb+1);
1f L(#travel).typ == 'C")
fprairnt & fo,"A") 3
17 ((eby aveldobtyp == "17)
foranmbtfifp,"I");
17 (iwtravel) . .btyp == "F)

tprintf(fp,"F") 3

fprintf (fp,"%d", (*travel).size);

1t (ixtravel).typ == "'F")
Lemp = ((#travel).size)/2;
fprintfifp,".%d" ,temp);
fpriontf(fp,")\n GO TC 9990");

E
)
w
—
P
(-
g
-4
®
o
=8
IOD

P rr——— P - — v ————

numb = ##numb + 2;
3} % END IF (#TRAVEL).TYP... %/

travel = (#travel).nitem;

(99

1f ({(*path).rcnt > O
{*path).rant -3

returni

i”a H IR ii2t; END OF THE FILWRITE ROUTINE LA a2 2
k.

Figure 3.11b Page 3 of 3.

Figure 3.11b The filwrite Routine C Code.

117

» CHAPTER 4. TRANSACTION TRANSLATION

4.0 INTRODUCTION

This chapter deals with the purpose of the C code used to create those
Fortran routines which can effect the database. The main C routines which
handle this are idu, indelup, and inserter. The general purpose of these
routines is to create Fortran programs which can modify the database.
These C routines make this possible by creating Fortran code to call the
proper SEED defined subroutines to perform these operations.

In section 4.1, examples of each of the Fortran routines created are
given. Section 4.2 discusses the general methodology for this creation and
for the operation of the created routines. Next, section 4.3 gives the
technical description of the C code and the Fortran code it creates. Lastly,

section 4.4 gives the mainn C routines discussed.

41 AN EXAMPLE

This section contains one example of each of the Fortran routines
created to oallow implementation of transaction transiation. These routines
are based on the non—recursive network DBL schema of section 1.1. The
first of them is the basic routine to modify information in the database.
This routine is named MODITE and an example of it is in figure 4.0.

The next example is for the basic routine to delete records (figure 4.1).
This is also based on the non—recursive DBL schema in section 1.1. Note
the similarities between this routine and the modify routine above.

The last example is for inserting new records into the database
(figure 4.2). This routine is based on the same DBL schema as the

other two. The differences between this routine and the two above are

118

discussed in section 4.3 of this thesis.

42 THE GENERAL METHODOLOGY

The indelup routine acts as a "router" to idu. It "tells" idu whether to
produce the delete routine or the modify routine. The routine opens the files
for the delete and modify routines respectively. It then calls the idu routine
to create the Fortran to delete or modify records. Then the current open
file is closed. The difference between results is that idu is passed the name
of the SEED subroutine. If passed "DELALL", it creates the delete routine.
If passed "MODIFY", it creates the modify routine.

The idu routine traverses the schema structure and creates the
necessary subroutine and error checking statements. The control mechanism
created for the Fortran routines is similar to grasp’s. The subroutine names
created for the FORTRAN routines are derived from the SEED subroutine
calls used in the respective routines. @ The control structure and the
numbering correspondence for records is the same for both the delete and
update routines.

The insert routine is more complex. Here recursive records must be
considered and the actual inserts must be done in terms of sets. This
entails ensuring that a record is inserted into all appropriate sets. It is
simplified some by the "vanilla" nature of the database. This routine creates
the necessary overhead statements and then the remainder of the code. The
code is created by traversing the schema structure. For each table structure
a store is created. Then by traversing the list of hook records pointed to by
the for_sets field, inserts into all appropriate sets are created. If the rhook
field is not zero, this is followed by creation of stores and inserts to recursive

records. In this way, the created Fortran program can insert any record of

119

P W . PR N WS NS SO U UL VAR VR S SNt GO S P S S S ¥ LLL#‘A-A"A-‘A‘L‘.L'-_;J

N e e ana e e e e .m P . o . a CABe. Sies S Juams mavan 4 g " "y

any type into the database.

This is all that the C routines do in this process. The Fortran
routines which they create will be what actually effects the database. These
routines are described next.

MODITE is the routine to modify records in an existing database. It
takes a NRS array and a dimension argument as input. NRS is used to
control a computed goto statement and while loop with "0" as the loop
terminator. A successful update can be tested by checking the value of the
ERRSTA variable. The user must ensure the main program has the correct
currency of the record or records to be modified. To modify recursive
occurrences of a record, the routine may have to be called twice; once to
modify the "original" record and once to modify the recursive occurrence.

DELITE takes the same arguments as the MODITE and has the same
control structure and number correspondences. The above precautions also
apply. Here the cautions are stronger, since it is possible to lose records and
any records owned by them. For recursive records to be deleted, a separate
call to this routine is needed.

INSRTN is the routine for inserting new records into the database.
This has the same control structure as the other two routines but the
number correspondence scheme is more complex. The precautions hold here
also but are not as serious since if a mistake is made most likely an error
will result and no information will be lost. There are limitations however.
These are imposed by the vanilla nature of the database. The most
important one is that when any record is inserted it is inserted into all sets
in which it is a member (excluding sets where it has a recursive occurrence).
Hence, "selective" insertions are not possible. However, in later versions this

will most likely be changed.

LN Saa aam sa

This ends the block description of the code. In the last two sections, I
give a technical description of the code. This description includes discussions
of the problems mentioned above and requirements of the main program
relating to these subroutines. Also, input arguments and output of these two

routines is discussed.

4.3 A DETAILED DESCRIPTION

Indelup is the first routine discussed here. It is called from the main

program. It’s sole argument is a pointer to the schema structure. This is a
simple program used as a router to enable idu to create the two Fortran
routines DELITE and MODITE. The routine consists of opening the
appropriate files, calling idu with the proper parameters, and closing the
appropriate files. Control then returns to the main program. Upon return
to the main program, two files have been created with one Fortran routine
in each.

The variable "fp" is a pointer to the file opened by the fopen function.
The variable "start" points to the schema structure and the string
("DELALL" or "MODIFY") gives the name of the SEED subroutine call to
be used in the Fortran code to be created. Note, that in the two calls to
the "idu" routine, fp points to different files for the output and the call
contains different strings which will be written out later in the creation of
the Fortran program.

The idu routine is the routine which actually produces the Fortran code
(for a flow chart refer to figure 4.3). The idu routine takes in three
parameters matching the three passed by indelup. They are called here "{p"
(as in indelup), "start" (as in indelup), and "srutine” which holds the value

of the string passed in.

121

LS S X N |

PG WO WU VT WEL

- " _— . g " » - - -r v ————

The start of the code creates the header and overhead information.
Note that the subroutine name of the routine being created comes from the
string passed in from indelup concatenated with "ITE". In this way, unique
subroutine names are created for the Fortran routines being written. At the
same time, these routines have names which relate to their purpose.

This code is followed by a call to the commons routine. After the
common statement has been created, the loop initialization and control
statements are created followed by creation of the computed go to statement.
The loop statements are as in GRASP. The computed go to statement is
created by traversing the schema structure. As each table structure is
visited, a number is written in the computed go to statement corresponding
to the line number to go to in that case. This is done by calling the gorite
routine. The statement is completed by the code:

"fprint{(fp,"),\n * NRS(N)");"
The continuation line is created to ensure that the 72 column restriction of
Fortran is met.

The remainder of the routine traverses the schema structure and creates
the necessary code. As each table structure is visited, statements are
generated to create a call to the proper SEED subroutine, check for errors
and continue in the loop if no errors are found The variable "numb" holds
the appropriate line number. This is incremented by one after each table
structure is visited. "srutine" has the value of the string which is the name
of the SEED subroutine to be called. This was passed in from the idu
routine.

Once this has been completed for each table structure in the schema
structure, the final statements are written and the control returns to the

indelup routine. The final statements for this routine are identical to those

122

of GRASP and are produced in the same manner. When control returns to
the indelup routine, either the second call to idu is made or control reverts
to the main program. After each call to idu is made, the appropriate file is
closed. Upon return to the calling program, the MODITE and DELITE
subroutines have been completed and are available in their respective files.

The "inserter" routine produces the Fortran code for the "INSRTN"
routine. Figure 4.4 gives the flow chart for the inserter routine. Inserter
takes two arguments as input; "fp" and "start”. "fp" is a pointer to the file
where the resulting Fortran routine should be output. "start" is the pointer
to the schema structure. The routine begins by producing the subroutine
heading, the common statement, and the control structure. The control
structure for the Fortran program is created by creating a while loop
(created with a goto statement) and by creating a computed go to statement.
Next, the schema structure is traversed. As each table structure of the
schema structure is visited, gorite is called, and the correct line number is
written into the go to statement. If the rhook field of the table structure
being visited =/= 0, then the list of hook structures pointed to by the
rhook field, is traversed and a number is written in the computed goto
statement for each hook structure in the list. This will allow inserts into
recursive records in the Fortran program.

Now, the schema structure is again traversed to create the actual code.

For each tables structure in the schema structure the following code is

generated:
"fprintf(fp,"\n %d CALL STORE(%s)",numb,(*begin).aname);
fprintf(fp,"\n IF (ERRSTA .NE. 0) GO TO 9999");"

The "numb" variable contains the appropriate line number to ensure that it

will agree with the line number in the computed go to statement.

123

[P I RN P YD Sy W A P T 4 L o PP L P S L S S R . V- -'g;__L._k>~._-l

As each table structure is visited there are three possibilities to
consider. The first case is where the code being created is to insert a record
into a set whose only owner is system. This is the simplest case. Here the

code to create the proper Fortran is simply:

"fprintf(fp,"\n CALL INSERT(SYSTEM %s)",(*begin).aname);
fprintf(fp,"\n IF (ERRSTA .NE. 0) GO TO 9999");
fprintf(fp,"\n GO TO 9990\n");"

The next case is more complicated. Here code is created where the
record is part of at least one non—system owned set. In this case, a call to
insert is generated for every set having this record as a member excluding
those sets where it is a recursive occurrence. This is done by traversing the
list of hook structures pointed to by the "for sets" field of the table
structure being visited. As each hook structure is visited, if the rhook field
of the table pointed at by the hook structure is 0O, then the record is
inserted into that set. If the rhook field =/= 0, then the table in question
owns the recursive occurrence of some record as a member. So the list of
hook structures pointed at by the rhook field is traversed. If the table
pointed at by the begin structure is pointed at by one of these hooks, no
insert is created. This is because the table has a recursive relationship with
this other table. If no such relationship exists, then an insert is created.

The last case is where a record is to be inserted into a set where it
has a recursive occurrence. In this case, the rhook field of the table
structure pointed to by begin is examined. If it is =/= 0O, then the list of
hook structures pointed at by the rhook field is traversed. For each table
structure pointed at by a hook structure in this list, a "STORE" command
and an "INSERT" are created. The recursive record here is inserted into
the set owned by the record whose name is stored in the table structure

pointed by the begin variable.

2 e Btomelvmionsiindiemintasrinss i o te FVPIP PR DY DR S0 DN T APV LG S S S PERD LY U T VAl U WA UL el Yl WL 1 "'.;j

D e oy L s e o i aean g ’ g AN A S S0 L e L SRt

This completes the third possibility for the type of inserts to be
performed. There are of course other options which are available for a
normal insert into a SEED database. These options have not been made
available here. This is in keeping with the vanilla nature of the schema
and database.

The above three cases are considered for each of the table structures in
the schema structure. Once the entire structure has been traversed, the final
information ending the Fortran coatrol structure (including the "RETURN®"
and "END" statements) are output and control return to the main program.
In the main program, the file which now contains the "INSRTN" routine is
closed.

This completes all technical description of C code. The last code
discussed depth is the Fortran code created by these C routines. Sample
flow charts for the three routines can be found in figure 4.5 (MODITE),
figure 4.6 (DELITE), and figure 4.7 (INSRTN). The technical description of
these routines follows.

The "DELITE" routine is used to delete records from the database.
The main program which calls this routine will have to have certain
restrictions. Before a record is deleted, the user must be sure that the
correct record to be deleted is the current record. This could be done by
calling FIRSTW and supplying the correct FILTER routine. Also in the
main program, the NRS array must be filled. This requires, the following
numbering scheme. For both DELITE and MODITE, the first record in the
DBL schema corresponds to the number 1, the second record to the number
2, etc with the nth record corresponding to the number n. If there is a
recursive occurrence of a record type, only the original or the recursive

occurrence can be deleted in one call to DELITE. So to delete both a

126

......

P g vy ——v‘

record and the recursive occurrence of the same record type would take two
calls to the DELITE routine with the same number used in the NRS array
to delete the appropriate records. Before the first call to this routine,
either the record or its recursive occurrence must be the current record of
the type. Then before the second call to the routine, the currency of this
type of record must be changed to reflect the other record’s currency. These
restrictions are also true of the MODITE routine.

One final note about using the DELITE routine. Whenever this routine
is called, assuming everything is done correctly, the appropriate records will
be deleted. In addition, all records owned by the deleted record will be
deleted if they have no other owner. To ensure these records are not lost
unless the user want them lost, the user should be sure that any such
records are given another owner.

The DELITE routine takes in two arguments. The first is the "NRS”
array containing the numbers corresponding to the records. The last entry
in this array must be 0. This will be used to terminate the looping in the
routine and cause control to pass back to the calling routine. The second
argument "N" is the size of the "NRS" array.

The program begins execution by initializing the variable "I" to 1.
This will be used to index through the "NRS" array. Then the test is made
to see if NRS(I) = 0. If so, control passes to the return statement. If not,
control passes to the computed go to statement. Control then goes to the
line number for the appropriate record. The appropriate record is
guaranteed by the correspondences between numbers and records as described
above.

At each of the different line numbers, a call is made to the subroutine

"DELALL" with an argument of the appropriate record name. After each

A m . m s a_ s s "

a8 W A A 3 e e PSSR T IR, WA WY T S - PR IS) . .l PRI . S TP S i P

LAG Sl Janes s Sheaad TP——————— "’ o - v T — ——v

call, the "ERRSTA" variable is checked to ensure there is no error. If there
is an error control passes to line numbered 9999 and control returns to the
main program. If not, control passes to line 9990. Here the variable I is
incremented and control returns to line 1. At line 1, the process repeats
until some termination condition is reached. @ Upon termination, control
returns to the calling program and the records whose numbers appeared in
the NRS array have been deleted.

The differences in the DELITE routine and MODITE routine are small.
The restrictions mentioned above for DELITE hold for MODITE. The
control structure down to the number correspondences for records are the
same. The obvious difference is that something different is being
accomplished. In terms of the routines, this amounts to "DELALL" being
replaced by "MODIFY". The other real difference is an added restriction on
MODITE. Here, the data to be updated, must be input into the correct
variables before the routine is called. This would normally be done with a
read into these variables. Upon return to the calling program, the records
would be updated instead of deleted. Other than this, these two routines are
identical. Of course, in this routine, there is no worry about losing any
records by accident as in the DELITE routine, however, the user should be
aware that once information has been changed it can no longer be recovered
by the system.

The INSRTN routine is very similar to the other two routines. It
takes in the same two variables with the same meanings. It contains the
same declaration and common statement. It has the same control and
looping structure. The first restriction on using this routine is that the user
must be sure to load the information of a record into the appropriate

variables before calling the routine. The routine will not check this but will

127

assume it has been done. The second restriction is that any record which
will be an owner of a set into which an insertion is made must have the
correct currency.

Since records and recursive occurrences of records will have different
owners, the number correspondences must have facility to determine which is
being inserted. Therefore, in this case the number correspondence is different.
The first record in the DBL schema is assigned the number one. If it is not
the owner of any recursive occurrences of any other records, then 2
corresponds to the second record in the DBL schema. If it is the owner of
a recursive occurrence of another record, the first such record listed
corresponds to the number 2, the second to the number 3 and so on up to
n. Then n+1 would correspond to the second record and the entire process
would repeat itself.

A difference between this and the other two programs, is that it takes
calls to two different SEED routines to accomplish one insert. For each
record to be inserted, there will always be one call to the "STORE" routine
to make this information the currency of the record to be inserted. There
will then be ome call to "INSERT" for each set this record is to be a
member of.

This brings up the problem of which sets to make a record a m+mber
of. The convention is, if a particular record is not a recursive occurrence of
a record type, it is inserted into all sets with which it does not have a
recursive relationship. This is used to preserve the vanilla nature of the
database. This method requires only one decision to be made, which
records to insert. Another possibility here would be to allow selection as to
which sets to insert a record into. This could be done by simply changing

the numbering correspondence for the computed goto statement and adding a

128

P SR LS PP S it O W N PR I Ul TS VY S S SR U, S - WP N S S

)
¥
]
1
]
'
[
'
[l
'
'
)
'
'
]
[
i
'

S /ERRSTAN--F——=—- - ==

+
'
]
1

DELALL
CURRENT
HOSFITAL

1

MRS (1)
RS (1)

v
v

'

)N —-F-— /NRS (I

5¢

me b —e s mm ma e oo me e am

.
)

JERRSTAN-—F—4——- e —— -

CURRENT

DOCTOR

'
’

)

DELALL
CURRENT

BELMNR

+
'

Vv NRS(1)

R

r

cw

142

Y Vv NRS(I) = 4 ! MODIFY ; | .
' - . . ¢ CURRENT 1 - ZERRSTAN F oA -- - -
: COeRATIENT o= =S !
' L ! \ ; :
’ T :
’ i)
L Vo
'I‘
! H I =1 +« | | H
TURN Y i ‘

:
F
I
g
®
(M
12
o

Figure 456 A Flow Chart for an Example MODITE Routine.

141

T sy

SNRS O

F

MRS ()

[

F —_— -

)/

1

/ERRSTAN -

10D IF v H
LURRENT
UG T TAL

>,
v

B L, e

[
'
'
]
+

TURKENT

MODIF ¢
DUL T CR

,
'
— —
‘-
<L [
v =
‘. iy
) R -

_—— - --

'
1
v
i
v
B T

b

JERRSTAN -

'

'
'
'
'
)
'

MUDILFY
CURRENT
AEDNR

fa

'
[]
)
[
’
]
1
'

2 NRS (D)

[

X1
Qg
ol

(
J
a.

W
-

&

=

140

B

PO AP AT W U WY W ST R

PN W W VIl WS WPy

"

o

Ur INSERT

—
]

ouT

S

-~ T
i

CEINDERA

e T e em e e

|
!
+
1
[
T |
H)
1
| I
.. I
| |
o B i i
~ | | ! |
~ | | { {
L ' | | ! '
> i | KO |
- | | Q0 i i :
nw ! | o i | !
[CAR I \ I ! } !
ao2Z) | z | i i
uow | | o | !
w @x l-= 2 ~ == D> .
i ! | N |
s | 1 w
03 | | ra | .
L B | wzZ i !
a | | a - i
1 ! 2 b | e - = e !
S ! | — | | t '
~ | u - | | u !
) 1 _ L _ i
smome e ee | v
I T |
~ ! - |
~ | = |
= ! LI
mm L omm mmem e es e D ~ |-
1l 1 i
~ ! -
[[20 i
g | — 1
| m
! bl % !
| 2o
! i

ROTURN 7

aUTEur

<
3l

(<]

e'
A
=,
<

:

Figure 4.4 The Flow Chart for the inserter Routine.

139

PP LA S Y LI WA WA GO W W e .

e =

ARl Sl o S Bt s ar

i TRAVEL =

Fom

T-- = {xBEGIN) . N-o-

» BEEGINAN

s}

CZETS

(#REGIN) .FOR

Qs

/

_SETS =

N,
A}

“POR

R N

- b ma

.. - --

/
’

S/ (*TRAVEL) . \N-T~ .
\{®ATAR)

/TRAVEL \N—-T-

/7 OQUTFRUT

/

R.0.

s\

/

INSERT 10O

J

’
’

/ OUTFUT INSERT

/ TO SET

Y,

SINGULAR 3SET

;

i
|
i
un (
Qo
(] !
= |
z |
. !
~ 1D

o
w
> |
[G|
[E A
-
A i
-
I

|

|

'

|

|

I

PR .lv;

1

VEEEGINY (RHOOK

~
L)
ol

Q

g
a,
-
~

138

VAR P

LIPS |

PO ST A T W

auTeEdT

/
7

~
L
ol

@

:
a.
-
-

137

:/ NR FOR
GO TO

(*TRAVEL) . NHQOE

_
I [.| i
I | i |
.- e | . 1 > !
I | I t a8 |
! | ! “~ } i e e e am |
~ ! W | i ~ | - i ! !
AN | | t | ' ! | |
~) (W i - . e s - | | '
14 I I I ! [{ Lt i |
i i | o ! | ' | J ! I
o i | [| RN 1 Wl '
- I o~ | ‘ ~] I | |
0 0 | 2 | ! e] i - i
L. | =] | Z !
b~ 1=~ D> W@ l-- == - D> > R T e P R
22w | > W < . -
0 | I | ~ il n i
~ (U | ok | S b e a
| ! - | ~N - P
f I i —

»
]
v
'
'
'
1
]
\

(IS

T

“e e® mm me ha wm a;m em ms —m as mE e mm es -m ma % mn em ma ma as e aa 3

v
SBEGINN
Ff

e m s
R NV Y

9]
_-‘
D
o
-1

mg
=T
~m <
mzZ

/ OUTFUT /
/ OVERHEAD 7
7/ INFORMATION /

/ QUTFUT START OF /
© COMFUTED GOTO

/ STATEMENT i
/ ;

~

v BEGIN
v START

Figure 4.4 Page 1 of 4.

136

\

v DUTFUT RETURN

i % AGS0C 3TMTS

O
r~
o
w
m

E?
3
I:“
w
5
@
(V)
1=%
|(D

Figure 4.3b The Flow Chart for the idu Routine When
It Produces the DELITE Routine.

W W T

STaRT

=
- 2

EEGIN

! e B —m ee e aw e ca EmEm B wme WS wh @6 e ee ww
)
|
i | = = -
. |
! t
]
!]
i i [N
| | | ~
| | |
| |
' | |
| | |
i i 1 <
) t |
i | | o
! 1 [
i 1 YR
! | I [y
I | | 3
' | | Q
\ | ~
| | ~
I |
| b~ “m me e e |
| I ~ | | i
! | ~ I | |
| | ~ | | |
| ! - | | |
1 | aw | | O |
! | T Z - | | Q i !
! | I X | | 0 1 1 g
i ! b - i I | ! ~
i | J40 | i =
! | aJd 1--D o e e D
| | =-a g | | o~ |
! | 3340 | Z | ~
| f w1 { e | ~
i ~ am | | wa
| ~ T | >w
i ™~ { { g & |
1 oo | it S
| f | =
! | | i
| ! a ma mmaa
. b=
' i
. 1
) P
| el MN ”.
. = 1
R S s N T TR
w
Sl
~ 7

™~
~
am
Z -
TE
-
R0
|
<O
-0
w o
oy
T
~
~

/TRAVEL \N——-T--.

|
]
~. !
| |
f |
| '
| |
| |
f-= 2 i
| |
| | -l
| I L
| | >
| 1 I
| | i
I | -
~o _
~
O T

+
¥
1

. NHOCHE

(*TRAVEL)

+
'
]
1

. e= aa >

- T

¢ (#*BEGIN) .NTABLE

. e —= e >

o5
Yoy
ol

&
A
«
«

134

U PP P PN VT TG WP U W

. e E oA
e ad atad a8 .

P

L

o

Bttt

DI S W T Y T

w
—1
D
]
—f

-
r - C.
m i

4 OUTRUT /
s OVERHEAD ;
/ INFORMATION /

/ BUIFUT START OF /
COMFUTED GOTO /
/ STATEMENT /

~

[a¥
m
(73]
r—
-
yd

it

; " / QUTFUT NR v
JEBEGINMN -T---%/ FOR GQTO /

\=/= U/ /e / ;
v/ ; ;
S v '
f ! ; ;
: ! BEGIN = ' ;
: ! (*BEGIN) .NTABLE :
: v E
'J - -_—— - —— — — _———— — :

’ SUBROUTINE INSRTN (NRS,N)
. [MTEGER N, NRS, I

COMMON EANE /NAME ,C Ty ZIF NHOSFITAL ,AHOSE T TAL L HOSE T TrL,
S eSTEM LUSE I TAL ,, DRNAME , DRNR , NDOL I Of¢,
ALUC TOR ,, DOCTOR , HOSF 1 TAL DOCTOR , EEDNUM , WARD ,
MEEUNR , SEEDNR , BEDNF , HOSFI TAL BEDNR , FNAME ,
DICEASE ,RGE ,SEX, VI TS, HFATIENT JAFAT TENT ,FATIENT,
OULTOR FATIENT,
ERKRSTA,CRRELT , CRRUNU,CRCALL , DB

» 2 X A o X%

1 IF WNRS«I) JEQ.) 60 1Q 2999

GO TO (2,3,4,5,
* NRS ()

J

[] 2 LALL STCRE CIGSFITAL?

IF (ERRSTA .HE.) GO TO 9999
LALL TNSERT(SYSTEM _HOSFITAL)
IF (ERRSTA .NE. 0) QO 10 7999
GO TC 2990

p “mLL STOFE (DOCTOR)

IF 'EFRSTA .NE. 0) GO TQ 3997
Call INSERT (HOSFITAL _LOCTOR)
IF (ERRSTA .NE. w3 GO TC 7997
G110 2990

q UALL OGTORE (DELNRD
(F tERRSTA NE.) GO TO 9999
UmLi INGERT (OS5I TAL _EBEDNR)
IF YERRSTA JHE. ©) GO 74O 9999
GO 10 7370

CALL SIDRE(FATIENT)

IF (ERRSTA .NE.) 6O TQO 7999
ChLl INSERT(DOCTOR_FATIENT)

IF (ERRSTA .NE.) GO 19 27999
50 TO 2990

L1

2990 1 I+ 1
GO o 1
9999 RETURN

END

Figure 4.2 An Example INSRTN Routine.

! 132

i L RN . PR Y R Y P O U PV W L.

t,

L

SRR

¥ » X X X %

SUBRGUTINE DELITE (NRS,N)

INTEGER N, NRS(N), I

COMMON, BANE , NAME ,CITY, ZIF NHOSFITAL ,AHOSF I TAL ,HOSF I TAL ,
5/3TEM HUSFITAL , DRNAME , DRNF ,NDOCTOR,
ADOCTOR, DOC TOR ,HOSF I TAL DUCTOR , EEDNUM, WARD ,
NEEDNR , AREDNR , REDNR .HOSF I TAL _BEDNRK, "NAME ,
DISEASE,AGE ,SEX ,VITS,NFATIENT ,AFATIENT ,FATIENT,
DUCTOR _MaTIENT,
ERRSTA,CRRECT ,CRRUNU, CRCALC,DE

I = 1

IF (NRS({I) .E@. 0) GO TO 2999

GO TO (2,3,4,5),
NRS (N)
CALL DELALL (HOSFITAL)
[F (ERRSTA .NE. 0) GO TO 9999
GO 10 7990

CALL DELALL (BOCTOR)
IF (ERR3TA .NE.) GO 7O 9999
GO T 2990

CALL DELALL (REDNR)D
IF (ERRSTA .NE. ©) O 0 9992
GG TO 9790

CALL DELALL(FATIENT)

IF "ERRS3TA .NE. ¢) GO TQ 5999
GO 10 7930

Gd 13 1

"ETURN
END

Figure 4.1 An example DEl.. _ Routine.

CUEBROUTINE MODITE (NRS,N)
INTEGER N, NRS(N), I

COMMON. SANE - MAME ,CITY, Z1F ,NHOSF I TAL , AHOSF I 1AL ,HUSF I 1AL,
S¢3TEM HUOSFITAL , DRNAME , DRNR ,NDOCTOR,
ADOCTOR,DOCTOR . HOSF 1 TAL _DOCTOR, EEDNUM , WARD ,
NEEDNR , AREDNK , REDNR , HOSP I TAL EBEDNR , FNAME ,
DISEASE ,AGE ,SEX ,VITS ,NFATIENT ,AFATIENT ,FATIENT,
DOCTOR_PATIENT,

ERRSTA, CRRECT ,CRRUNU, CRCALC , DE

x X x X X X

Y 1 IF (NRS(I) .EQ. O) GO 170 93999

GO TOQ (2,3,4,5),
{ * NRS (N)
. CALL MODIFY (HOSFITAL)
& IF (ERRSTA .NE. ©0) GO TO 9999

k3

® GO T8 9970

= CALL MODIFY (DOCTOR)
IF (ERR3TA .NE. O) 56O 70O 999%
GO TO Z290

4 Call MabDIF v (BEDNR
IF (ERRSTA .NE. O) GD TO 7999
D3 T 77970

ALl MODIFY (FATIENT?
{(F (ERRETA .NE. Q) GO 70 7999
0 T0O 77290

w

PRIV [= 1 + 1
(BT RE S A

77?7 FRETLURN
END

Figure 4.0 An Example MODITE Routine

w —— T T —— e ——-

'
r

few additional lines of code. It may be added in future implementations.
Other than these differences, the routine is very similar to the other

two. Should an insert fail, by checking the value of the ERRSTA variable

in the calling program, the exact cause of failure can be determined. Again

on termination, control returns to the main program. At that time, either

ERRSTA =/= 0 or an error has occurred. Again, the exact cause for the
[error can be discovered by checking the value of the ERRSTA variable.

44 THE CODE

This section gives the main "C" routines described in this chapter.
%—. These are the "indelup", "idu", and "insrt" routines. Figure 4.3a gives the
code for the indelup routine, figure 4.3b gives the code for the idu routine,

{ and figure 4.4 contains the code for the insrt routine.

|

|

i

LR I R TP P

|

|

|

1

|

“
e IR
u |
w i
! t
N |
s G N '
b |
ol ;
TS e e D
[y | i
ol - !
b !
N 1
i |
| I
e ee e e o |
{ | |
! | |
| = !
| 422 | |
| o !
t L (f = ! i
| AL~ | 1
| wax i !
| aouow | i
] 1 i
T _
1 i
o '
- i
el i
m !
&x i i
- !
) 1
-—-2 !
|
!
!
}
|
w

{ |

] |

i |

- Ir_

“e I3 me te ce ma me e e e wa T

|

|

|

1

»[I}.}L ; irprr. 4

-~
+
=
1
—
2
V4
2
-
L
o

il
St
3l

[
]
o

©
-

:

Figure 4.6 A Flow Chart for an Example DELITE Routine.

143

intbahadeand A A ao o

PO G N G, W |

2

v

Ty

“. mm mre Gw EmE e % me T am BE WME ME e =R mh me ®® mE mm ve mEm mm me e, M- wm mm mm me =" ma ee mw . - ..
w)
L
! 4
. - D .
I . .
! 1
I]
! | 3
‘ | A
| 9
i -
| -

m

|
T L

|

|

/

D

HOSPITAL

STORE
/ERRETA\N-F-————~—=1
/ERRSTAN-F-—-—

0

\
INSERT
HOSFITAL

SYSTEM
T
v
Page
144

7

1

NRS(I)

Figure 4.

“we mm e e me =% mam mm = mm a- == ma r- em =% me ce me =% me == mm we e s .o >

S/NRS I N
v

me c= me e e e e mm em e ee ma me s me ra me m oae mm ea m= me ae me = aa D

!
|
t L
w L
V -
- o
by
- <
0 - - : g
[V
N 9
by 4

A
v
v

— T v

Wy

I T T S,
T3 e ma mm ea -

DOCTUOR

STORE

]
'
1
1
]
+

JERRSTAN-F———m ==

l-Tl.llv

; 2
04
0o
!
~
]
¢
Vg
2,
v | e we mm aw em cm e me mm ew e aw
”Iv cm mw e mn mE erm ee em wm mem e e -

INSERT

HOSFITAL
DOCTOR

]
)
1
b

_.
|
I
|
1
1
i
P
|

/ERRSTAN-F——————~
§

b s D>

3TORE
EEDNR

e ae we me ce ee mm he me e D

e e me e ee o me ae em ee D>

N

e e D

Y
/ERRSTA®

f

[

|

(1.

!

-~

-

n i

[V |

Z |

!
em e er re v nmn mm me am mm er mm om= ee T3 b e ah se ae es mm =n ee e a- >
m am m= em e ee m= ma mm e em en m= ee e mm ome aa mm e mm me =a me —s e D

145

PN AP G Y

[

T vy

S me e i ee he 2t me ae e em e me cm me me an me aa == mm me o mo ae ee me e o e e mm e e ie e e oo e me e ce e s --
mm TN tm e e ih e em ek el e en se e ee me e cl e e me ms e e = ee me e me e me e me ae e mm me ma mm e omm e m omm e oo T

- e ee e D

+
'
[]
'
)
1
i
1
1
'
]
[
1
'
]
]
]
'
1
'
¢
'
]
*
]
'
[
)
i
.
'

- Vll “e " .- = ee =e aa

I I R e L

/

e e D> e - D

ERT
CTOR
“ATIENT

RRSTAN F -
3

FATIENT
)

STORE
JERRSTAN-F === ———=31
)

HOSFITAL
JERRSTA\N —F———— -~

v
INSERT
CEDNK

IN
0
/
1
Page
146

\

. e e e e e e ~
] . |
< -
(| Mm p
|
= I = r
~ |
n »
x| e
Z |
)
Y
oy
..L
-
.AAL
-
4
‘-L
" D> mm ee en s e e en e e ee ee s s e ea o cm e e me mn e me em an e me e e e mm e e e om ae me am mm e e e ee e T -

| SO SO ST N

. e 1% a BNt DR - ° e.... ..®

TP T T

1
]
]
)
[]
'
[]
]
'
]
1
¥
]
[
|
]
t
t
)
]
'

<
LY
ol

®

g
A
™~
-«

:

Vv
INSERT
BEDNKR
/JERRSTAV-F-——-—=-——=
3 0
147

+
]
[
1
[
'
[
*
]
»

4
Figure 4.7 A Flow Chart for an Example INSERTN Routine.

]
i
A
i
j
|
i
]
w
t

B e T T L T T U N

indelup (start)

/% JOSEFH ~ULIND »/
A DAVID FRUJECT w/

/% JUNE 15849
S ®

*/
®/

+#% IH1S FROCEDURE CONTROLS THE FRODUCTION OF TWO FORTRAN
/% SUBROUT INES USED EBY EVERY DATABASE. THE TwWO

% SUBROUTINES ARE SIMILAR.

/% CALLING A DIFFERENT SUBROUTINE IS ACHIEVED BY SENDING
/% THE FROGRAM WHILH ACIUALLY FRODUCES THE FORTRAN THE
/* NAME OF THE FROGRAM YOU WANT FRINTED.

- # [HE FROGRAM WHICH DOES THE ACTUAL PROGRAM CREATION IS

/% CALLED IDU.

/% UOR UFDATE A

/*
Il *

IT FRODUCES A FROGRAM 10 DELETE FROM
"SEED" DATARASE.

/# LOCAL YARIABRLES:

;%

/* 1. fopen - OFENS A NEW FILE FOR WRITING.

;/* 2. fp
/i *
/%

- FOINTS TO THE AROVE FILE.

7% NGN--STANDARD SUBROUTINE USED:

S ®

. ® t. 1du

s &

DUOES [HE FURTRAN GENERATION FOR THIS
FIUT INE.

struct table =sxstartg

FILE ®faopen (),

2fps
tp =~ *ropen:"LELAL.E " ."w") g
idu(fp,start, "DELRALL"):

fclcsevtprs

fp = fopen "MODIF.F","w'");

1iduifp,start,
tcluse(tp) g

returmg

R ZE N4

l-'-'g‘.'- 4. L3 1’ o,

“MODIFY");

LMD OF THE IMDEL!YE ROUTINE ok

Figure 4.8a The indelup Routine C Code.

148

THE DIFFERENCE BETWEEN THEM IS
/% WHICH "SEED" SUBROUTINE THE FORTRAN ROUTINE IS 10 CALL.

x
* /
*/
* /
*/
*/
®/
*
%/
x/
*/
*/
*/
*/
*/
*/
*/
*/
*
X/
% /
*)/

| S e N e A T ™ CaME I e tul il st

1iducfp,start,srutine)

s % JOSEFH AULING */
/% DAVID FROJECT w*/

/% JUNE 1784 L34

;o ®

~# THIS ROUTINE MAKES A SUBROUTINE WHICH CAN DELETE OR UFDATE ®/
/% INFORMATION IN A DATABRASE. IT DETERMINES WHICH SUEBROUTINE TO =/
/% MAELE BY THE VALUE OF THE STRING IN SRUTINE. THE FORYRAN CODE %/
/4 GENERATED DECILES WHICH RECORD I3 TO BE UFDATED UR DELETED RY w»/
/% VALULS PASSED [N THE JECTOR NRS, %/
;% * .
/S * ® /
/% LUCAL VARIADRLES: %,
/ ® * /
;% 1. begin - TRAVERSES A LIST 0OF TABRLE STRUCTURES. %/
/ * 2. numb - USED BRY GORITE TO HELF FRODUCE L INE NUMEBERS. *
/* . adder USED BY GORITE 10 HELF FROUUCE L INE NUMEERS. */
/* 4, sum USED BY GORITE 70 HELF FRODUCE L INE NUMERERS. L 34
/ * 5. incre - USED BY GURITE 10 HELY FRODUCE LINE NUMBERS. %/
/#* */
;# -
/% NON STANDARD SUBROUTINES USED: */
; * */
o 1. commons - T GENERATE THE NEEDED COMMON STATEMENT. %/
/ * 2. gorite - TO GENERATE THE NUMEBERS NEEDED R3Y THE */
7 * COMF"'TED GO TO STATEMENT. */
FILE #fp;3s

struct table »start;g

char =zrutinell;

struct table *beging

1tnt nuwmb, adder, sum, tncres

Y R A R T T R N Y 2 2 ¥4

B 3 ®/

/% FIRST, [HE ZASIC OVERHEAD INFORMATION IS5 WRITTEN. #*/

s ® ®/

J ORI S U B 06U 666 IO 0 I IE I I I 00 KT

fprantf . fp,"\n\n SUBROUTINE “cZchclTE",srutinelol,srutinelll,srutinelll);

fprintffp, " (NRS,N) ") ;
fprintfifp," "\n\n INTEGER N, NESN)Y, Iwn'")g

commonz(start,fp);

:
]
S
[o o)
o
5
o
o
}=4
1

LS Al i

fFprintf {fp," " \n I = 1");

fprantf«fp,"\n\n 1 IF (NRS(I) .EQ.) 60O TO 2999");
aumb = 23

adder = I;

sum = |3

wncre = 1g

EEEITEIEEIEESESEESSS SRS SRR SRR AR RS R RS ER R R XL I

/& * /7
/% NEXT, THE COMFUTED GO TO STATEMENT IS CREATED. %/
/% */

IE X222 IS ST EIS S SSS SR E RSS2 LSS AR SS ST S E T L S 4

fprintf{fp,"\n\n GO 0 (");
begin = start;
while {(begin !'= Q)

r
(¥

goritte{fp,isum,%adder ,&numb,incre);
begin = (%begin).ntable;

)
Ed

fprintf (fp,") ,\n * NRS (N) ") 3

SRR NI U I IE 36 I I I I IEIE I IS T I I I I A I I I R IE I I IE N I 66 I NN/

% t ¥4
;% THE MEXT SECTION OF CODE FRODUCES THE FORTRAN CALLS TO DO »/
/* WHATEVER 15 BEING REQUESTED WHETHER IT BE A DELETE, */
S % O UFDATE. *®/
S % ey

IR FEREEEEESEE SRS SSSSEEEE R RS A SRS EE RS RS R SR EEEERER R XX R I

unty = 23
begin = start;

while (begin '= 0)
fprintf(fp,"\n %d CALL %s(%s)" ,numb,srutine, (¥begin).aname’;
fprintf (fpy"\n IF (ERRS5TA .NE.) G0 TO 2797");
fprintf(fp,"\n GO TO 9990\n");
numb ++3 :
begin = {(#*btegin).ntable;

[

150

[2 PP P s P VT T G SR e i .'.‘-.‘l.illv " o S AP . TP PR U R Y L‘-L‘L'L’Q

T N WA O U A3 36 0E 3 IR I IE 36 T 6 3 I I 06 I U 0 I U O 3 3 A K R LR/

%/
THE LAST SECTION OF THIS CODE FRODUCES THE »/
ENDING OF THE FORTRAN CODE. %/
%/

r

22322 22233332 ST ERRTST SRR ERS S SRS 2SS R L0 2

waintfifp,"\n 7790 I = 1T + 1");
wraintf (Fp,"\n GO 10 1") 3
wriatf (fFp,"\n\n 7792 RETURN");
wrantf (fp, "\ END\N\N") 3
stuerng
/R KRR END OF THE IDU ROUTINE LE A &2 ¥

Figure 4.8b The idu Routine C Code.

151

P LIV LAY YL S U ST TIPS E Wy S Y

erter (fp,start)

JOSEFH AULINO */
DAVID FROJECT #~
JUNE 1584 L

X/
THIS FROCEDURE CREATES THHE FORTRAN CODE NEEDED TG FROFERLY
INSERT ANY NEW RECORL INTO ALL AFFROFRIATE SETS IN A
"SEED" DATARASE. THE FORTRAN FROGRAM TAFKES IN A VECTOR OF
aF NUMEBERS WHICH CORRESFOND 70 THE RECORD TO BE INSERTED.
THIE VECTOR IS USED BY A COMFUTED "GO 70" STATEMENT 71O
ACHIEVE T!IE DESIRED RESULT.

LOCAL VARIABLES:

1. sum - USED BY GORITE TO HELF CREATE LINE NUMBERS.

. adder - USED RY GORITE TO HELF CREATE LINE
NUMBERS.

pumb -- USED BY GORITE TO HELF CREATE LINE NUMBERS.

incre — USED RY GORITE TO HELF CREATE LINE
NUMBERS.

flag — DETERMINES WHAT RECORDS ARE INSERTED IN

WHICH SETS.

begin - THRAVERGES A LIST OF TABLE STRUCTURES.

travel - TRAVERSES A LIST OF HDOK STRUCTURES.

. finder FOINTS TO A HOOK STRUCTURE.

8|

£

&)

N

NON-STANDARD SULGROUTINES USED:

. <ommaons - FRODUCES THE NECESSARY COMMON STATEMENT.
. gorite - FRODUCES THE NUMEERS USED IN THE CCMFUTED
G0 1O STATEMENT.

tiore

E %xfp;
act table xztar t;

swin, adder, numt, 1ncre, flag;
uct table #begin;
vuct hook »travel, #finder;

FIRST TIE STATIC OVERHEAD FORTRAN INFORMATION IS5 WRITTEN #/
AND ZERTAIN VARIABLES ARE INITIALIZED. %/

antf Cfp,"\n\in SUBRQUTINE INSRIN(NRS,,N; “n'");
inti(fpy, " INTEGER My, NRS, I.n');

E
3
’:“
©
5
L
12,
|0‘

152

x/

»/
%/
*/
x/
*/
*/
*/
*/
%/
* /
*/
*/
x/
*/
*/
*/
*/
*/
* /
*®/
*/
*/
*/
*/

1]
o
t,

|
M
—ar | | ae
a

10 3 I 0 3 B 06 I 3 0 0 B M I M I 063 I IE B I I N I I 66 I 3 I A B R R %S

*/
ZXT, THE COMMON STATEMENT IS WRITTEN BY THE SUBROUTINE x*/
ZOMMONSG" AND THE SUBRQUTINE "GOTORITE" IS USED TO %/
SEATE THE COMFUTED GO TO STATEMENT. * /
*/

3222322 XXX X223 2222222222 S S ST R S 2 4

onsistart,fpl;

ntffp,"N\n\n I = 1\n\n");

ntf(fp,"” 1 IF (NRS(I) .EQ. Q) GO TO 2999\n");
At e (fpy"in GO 1O (")g

n = start;

e (beqgin !'=)

oritei{fp,&sum,%adder ,%numb,1ncre);
f {{*begin).rhook '= Q)

travel = {(¥begin?.rhook;
while (travel !'= o)

s
L

gorite{fp,%sum,%adder ,%numb,1ncre);

travel = (#travel).nhook;

2gin = (*begir).ntable;

ntfifp,"),\n * NRS(I)\n") 3

W UE 666 I IR IE I I I I JE 66 B B U6 U 06666 N I I RN N KRR
%/

ExXT, THE ACTUAL CODE IS FRCDUCED TQ STORE (CREATE) =/

EW RECORDS AND INSERT THEM IN THE FROFER S5ETS

ASED CON TIHIE INFORMATION GIVEN IN THE NRS VECTOR. w/
L4

[FZREREFEEEZSSISEIS RS SESL S XL ISR SRR R L SRS R 00 8 L R R0 Ak 8

Figure 4.9 Page 2 of 5.

153

PO I

0 San Sihe JENh Shame S

- M.

= start;
{begin '= O)
rantf (Fp, "N ld CALL STORE (%Zs) " ,numb, {¥begin)’ .aname) ;
rintfifp,"”\n I (ERR3TA JNE. @) GO 1O 92397");
30RO U I I 3 U0 0 U6 0630 0 RN
*/
SE 1: THIS RECORD IS OWNED ONLY BY SYSTEM. =/
*

2 NI KB IE N K AN K IEIE A I I 6 I KRN/

((#begin).for_sets == 0)

fprintf (fpy"\n CALL INSERT(SYSETEM_%s) ", (®#begin).aname);
fprantf(fp,"\n IF (ERRSTA .NE. D) GO TO 99299'");
fprantf(fp,"\n GO 7O 99%20\n") ;

(3222222232222 ARSE LSS SIS SR LRSS S S S S S S ST S R I

* /

SE 2: THE RECORD IS OWNED BY AT LEAST ONE OTHER RECORD. %/
HERE THE RECORKRD WILL RE INSERTED INTO ALL SETS */

IM WHICH IT IS NOT A RECUREIVE MEMBER. */

®/

IEEZ BRSNS SREESS S S SRS LSS S S22 R s st E R Rt R R X EE R T

se
travel = {(*begin).for_sets;
whitie (travel '= Q)
flag = 13
1f {((®:%travel).atab).rhook '= O
finder = (%{*travel).atab).rhook;
flag = Q;
while (finder !'= O)

-
(¥

if ((#finder).atab == begin)

'd
(8

e

154

U e, AP W R Dot diamadh: L S S V. TSP SO S G SO S W o M e oo .

else
finder = (¥finder).nhook;
1f {((flag ==)y || ((x(#xtravel).atab).rbhook == 0))
fprintf (fp,"\n CALL INSERT (") 3
fprintf(fp,"%s_Us)",(k(*xtiravel).atab).aname, (¢begin’ .aname?;
fprintf (fp,"\n IF (ERRSTA .NE. 0) GO 79O 9997");
travel = (®travel).nhook;
feprintf (Fp,y"\n GO TO 9990\Nn") ;

S I I I I I W A A I I W I I I I I W I IS I I IE I I I I I NI I I NS

*/
E T: THIS CASE TAKES CARE OF THE FOSSIBILITY THAT THIS »/
A RECURSIVE INSERT. x/
%/

IZZEESEE NSRS SRS E RS EESEE LRSS R SRS ELLESLELEEEESLLESSE SRR X

f ((xbegin).rhook '= O)
numb r+3
finder = (#begin).rhook;
whilie (finder '=)
fpraintf{fp,"\n “d CALL STORE(“Ls) " ,numb, (¥ (*finder) .atab).aname)
Tpraintfifp, "N IF (ERRSTA .NE. 9) GO T0O 97997");
fprintf (fp,"\n CALL INSERT (")
fprintf (fp,"lis s ", (#beginl.aname, (¥ {(#finder).atab).aname);
fprintfifp,"\n IF (ERRSTA .NE. O) GO TQ 93999");
fpraintf (fp, " W0 GO 7O 990\n");
finder = (#finder).nhooks
mb+ -+
gin = (*begin).ntable;

158

IZZXTIETIT SIS IS SIZ ISR SIS SIS S S S S R SR RS R E R SRS T

*/
¥, THE REMAINING STATIC INFORMATION I3 WRITTEN =/
HE FORTRAN PROGRAM IS5 COMFLETE. */

x/

(22222 XTSRS E S SIS ST ETSS ST ESSE SR SR R S 2 RN L X S

fp,"\n 9990 I =1 + 1");
fp,"\n GO TO 1");

fp, " n\n 7979 RETURN");
fp,"\n\n END\R\R") 3

Rl A END OF THE INSERTER ROUTINE L S

Figure 4.9 The inserter Routine C Code.

156

(1]

(2]

(3]

(4]

(8]

(6]

[7

(8]

[9)

[10)

BIBLIOGRAPHY

Adiba, M. and D. Portal, "A Cooperation System for
Heterogeneous Database Management System®, INFORMATION
SYSTEMS, Vol. 3, 1978, pp. 209—-216.

Cardenas, A. and M. H. Perahesh, "Database Communication
in a Heterogeneous Database Management System Network",
INFORMATION SYSTEMS, Vol. 6, 1980, pp. 66—79.

Chu, W. and V. T. To, "A Hierarchical Conceptual Data
Model for Data Translation in a Heterogeneous Database
System"”, in Chen P. P. (ed.), ENTITY RELATIONSHIP
APPROACH TO SYSTEM ANALYSIS AND DESIGN,
North—Holland, Amsterdam, 1980, pp. 568—8615.

Computer Corporation of America, "A Prototype Chemical
Substances Information Network”, Technical Report No.
CCA-77-19, Contract No. EQ8AC028, August 21, 1979.

Date, C.J., AN INTRODUCTION TO DATABASE SYSTEMS,
3rd. edition, Addison—Wesley Publishing Co., Reading, Mass.
1982, pp. 1-50.

Esculier, C. and A. M. Glorieux, "The Sirius—Delta

Distributed DBMS", in Chen P. P. (ed.), ENTITY RELATIONSHIP
APPROACH TO SYSTEM ANALYSIS AND DESIGN,
North—Holland, Amsterdam, 1980, pp. 616—624.

Gligor, V., T. Jacobs, and G. Luckenbaugh, "The Interconnection
of Remote Hetergeneous DBMS; Project Survey Recommended
Approach, Selection Criteria", NBS Contract No. NB80O6BCA0367,
April 6, 1981.

International Databas Systems Inc., SEED USER MANUAL,
Philadelphia, Pa. 19103, August 1980.

Jacobs, Barry E., APPLIED DATABASE LOGIC . FUNDAMENTAL
DATABASE ISSUES, Prentice—Hall Inc., Englewood Cliffs,
N.J. 07632 (Publication Forthcoming).

———————————————— , APPLIED DATABASE LOGIC II:
HETEROGENEOUS DISTRIBUTED QUERY PROCESSING,

Prentice—Hall Inc., Englewood Cliffs, N.; 07632
(Publication Forthcoming).

(13]

(14]

(15]

———————————————— , APPLIED DATABASE LOGIC IV: THE
DAVID SYSTEM, Prentice—Hall Inc., Englewood Cliffs, N.J. 07632
(Publication Forthcoming).

Jacobs, Barry E. and Thomas E. Jacobs, "On the Functional
Requirements of a Global Data Manager for a Set of
Distributed Heterogeneous Databases I®, Technical Report
TR-1068, University of Maryland, College Park, Md. 20742.

Syito, Regina, "ERB—6 Data Inventory”, National Aeronautics
and Space Administration Technical Manual Nr. 82176,
NASA, Goddard Space Flight Center, Greenbelt, Md. 20771.

Tsubaki, M. and R. Hataka, "Distributed Multi—Database
Environment with a Supervisory Data Dictionary Database",
in Chen P. P. (ed.), ENTITY—-RELATIONSHIP APPROACH
TO SYSTEMS ANALYSIS AND DESIGN, North—Holland,
Amsterdam, 1980, pp. 626—6486.

Uliman, Jeffrey D., PRINCIPLES OF DATABASE SYSTEMS,
Computer Science Press, Rockville, Md. 20850, 1982.

168

A

S e . . L e e L e e . PRI . . S ST R SR SN S I .Y ,-L.";j

‘}L‘vz.‘ . ."’i

{

