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ABSTRACT

Title of Thesis: The Database Uniformization Problem:
A SEED/DAVID Interface

Joseph Aulino, Master of Science, 1985

Thesis directed by: Dr. A. K. Agrawala
Professor
Department of Computer Science

Abstract: The database uniformization problem deals with creating a

common user interface for a collection of heterogeneous databases. The

DAVID Sy tem is a database management system which is being

implemented by the National Aeronautics and Space Administration to

create such an interface. This paper deals with the implementation of

certain routines used by the DAVID System to interface with SEED, a

Codasyl database management system.
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CHAPTER 0. INTRODUCTION

0.0 THE UNIFORMIZATION PROBLEM

The database uniformization problem is: given a collection of

distributed, heterogeneous databases, build a common user interface facility

that will support uniform access to the set of databases [121. Solving this

problem would allow a user to access all of the information in the databases

without learning the different data manipulation languages. Further, it

should leave intact component databases and their existing software [101.

0.1 SURVEY OF THE LITERATURE

Many projects have focused on the database uniformization problem.

Most of these deal mainly with the global data manager. At UCLA,

projects by Cardenas (2] and Chu [31 use the Entity-Relationship (E-R)

model as the global model. Two other projects using the E-R model are

Nihon-Systemix's Distributed Multi-Data Base [141 and INRIA's

Sirius-Delta [6.

There have also been projects dealing with remote, heterogeneous,

database management systems (DBMS). Two of these, CSIN [41 and

COSYS ill may have been implemented. Designed at the University of

Grenoble, COSYS (COoperation SYStem) is not extensively documented. On

the other hand, CSIN (Chemical Substances Information Network) is a fairly

well described system. One feature of CSIN is that some of its component

systems are not general DBMSs. This causes some data to be accessible

only through direct contact with the local DBMS. It also resulted in a

global model which is less than the union of the component models. Finally,

(7] deals with eleven projects on uniform access to distributed DBMSs. Six



of these deal with interconnecting heterogeneous systems. The remaining five

cover the simpler problem of interconnecting homogeneous systems based on

the relational model.

0.2 THE DAVID SYSTEM

DAVID (Distributed Access View Integrated Database) is a system

allowing users to uniformly access distributed heterogeneous databases [9).

Its development is funded by the National Aeronautics and Space

Administration. Basically, DAVID is a database management system

(DBMS) built atop existing DBMSs and file management systems. Ita front

end is Database Logic (DBL).

Simply put, DBL can be thought of as a uniform layer placed on

heterogeneous databases. In this way, it is used as a framework for solving

the database uniformization problem. DBL is used to construct a "Global

Data Manager" (GDM). It is the GDM which allows users the uniform

access to the distributed heterogeneous databases [121.

To accomplish its tasks, the GDM is divided into 8 basic processes.

These processes are:

1. The Global Model;
2. External to Conceptual Mapping;
3. Global Dictionary;
4. Report Generation;
5. External to Conceptual Translation;
6. Query Execution, Assembly, and Loading;
7. Process Control and Communication;
8. Local Data Manipulation Language (DML)

Dependent Processes.

The exact purpose of the different parts is explained in (101. This thesis

deals with Local DML Dependent Processes. In particular, interfacing SEED

(a Codasyl DBMS) with DAVID.
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The Local DML Dependent Processes are programs written in local

DMIA. These processes interface the GDM and local databases. The main

functions of these processes is to scan the databases, extract information from

the databases, enter data into DAVID's own DBMS, test currently scanned

records to see if they satisfy some boolean condition, and transaction

processing.

0.3 SEED INTERFACE FOR DAVID

This thesis deals with implementing certain basic routines needed to

create the Local DML Dependent Processes for interfacing DAVID with a

Codasyl DBMS. The specific DBMS selected was SEED [8]. SEED is a

commercially available Codasyl DBMS used by the National Aeronautics and

Space Administration (NASA).

To create the interface, it is only necessary to identify databases and

create certain basic routines. These routines are described in section 1.3.

The routines created here are the basis from which the basic routines for

interfacing are made [101. They allow (in a simple manner) creation of

routines to satisfy the requirements of Local DML Dependent Processes.

The work presented here deals with three basic areas essential to the

task of creating the interface. The first area is "Schema Conversion". This

requires creating a SEED schema given a DBL schema (these terms are

explained in the next chapter). The next area is "Query Translation". This

refers to the creation of certain basic routines which will make it possible to

convert from a DAVID query to a SEED query. Lastly, is "Transaction

Translation". This is the creation of routines needed to process transactions

on a SEED database given a transaction on a DAVID database.

3



0.4 AN OUTLINE OF THE THESIS

Chapter 1 gives the particulars on this thesis. This includes examples

of a DBL Data Description Language (DDL) Definition and a DBL Schema.

This chapter defines certain term used through the thesis, explains in

greater detail the primitive operations needed to implement the

DAVID/SEED interface, and describes certain programming tools used. The

remainder of the thesis deals with the specifics of the implementation.

Chapter 2 details the implementation of the "Schema" conversion. Chapter

3 details the implementation of the automatic generation of code used in

translating queries on the database. Chapter 4 details the implementation of

the automatic generation of code used in translating transactions on the

database.

4



record owns a recursive occurrence of another record. In this way, special

actions which need to take place can do so.

After this, control returns to the "relate" routine. Here, the correct

value of the "typr" field for each record is finally established. This is done

by counting the number of "hook" structures pointing to a "table" structure

and putting this number in the "typr" field of that "table" structure. The

"areset" routine is then called which performs its function as explained

above. The numbers put in the "rcnt" field of the table are used to

differentiate variables of recursive. occurrences of a record from the record

itself. By using increasing numbers, a record may have several recursive

occurrences, but variables for each will be unique using the naming system

described in section 1.2.

This completes the creation of the schema data structure. A graphic

representation of the data structure for the recursive network of figure 1.1

appears in figure 1.7. The relationships established here model the DBL and

SEED schemas. Having completed the formation of the schema data

structure, control returns to the calling program and the proces of schema

conversion can begin.

18



"relat" field indicating its selection will be made through one of its owners

(it is a child). In this system, once a record has been marked for selection

as a 'parent" it cannot be changed (thus selecting things the most efficient

way). On the other hand, something marked with a "C" may be changed

often and eventually marked with a "P" if possible. There is also the

possibility that a table structure will have . o pointer in its "forwrite" field

and no value in its "relat" field. This indicates that the record is owned by

'SYSTEM" and selection will come via "SYSTEM".

While this is being done, the typr field of each table structure with a

typ field of "R" is incremented. Once this is done, recursive relationships

are established and counted. To do this, non-zero typr fields of all table

structures are set to 1, and the "recurfind' (for "recursive find") routine is

called. In recurfind, the schema structure is again traversed. It looks for

table structures which have a "typr" field of 1. It then looks for another

table structure meeting the following criteria. First, the second table

structure is pointed to by one of the "hook" structures in the list of hook

structures pointed to by the "for-sets" field of the current "table" structure.

Second, the first table structure is pointed to by one of the "hook"

structures in the list of "hook" structures pointed to by the "forsets" field

of the second "table" structure. If these two criteria are met, the second

'table" structure must represent the record used to link the record and its

recursive occurrence. So in this case, a "hook" structure is allocated. Its

"atab" field is set to point to the first "table" structure. The hook record

itself is then made part of a list of hook records pointed to by the "rhook"

field of the second record. Later, when the schema structure is being

traversed for the creation of the schema and various of the Fortran

programs, the fact that the "rhook" field -/' 0 will indicate that this

17



The records section of the DBL schema could actually be written in several

ways, each of which would change the way records were selected. Suppose

the sets were listed in the DBL schema as "A", "B", "CO. The "A" record

would be selected via "SYSTEMA", "B" would be selected via

"SYSTEM B", and "C" would be selected through "BC". The point being

that records are going to be selected in the order they appear in the DBL

schema. So if they are listed in the order "A", "C",7 "B". "A" will be

selected as before, "CO will now be selected via the set "AC", and "B" will

be selected via "BC" where it will be selected as a parent of "C".

Selecting records as parents is advisable (in SEED) whenever possible as each

record can have only one of each type of parent. Selecting in this way can

then save search time. This is the general plan for how selects will be done.

What the relate routine does is establish the relationships necessary to

implement this plan.

The relate routine accomplishes the above by keeping track of where

records occur in table structures in relation to where they appear in item

structures. If a record name appears in an item structure, and the table

name that record appears in occurs before the table structure this item

structure is attached to, in that case, and that case only, the record will be

selected through one of its children. Hence, a pointer is established from the

"for-write" field of the current table structure, to the table structure

containing the name of the record found in the item structure. Also, the

table structure pointing to the item structure will have its "relat" field

marked as "P". This indicates it is the parent of the record through which

selection will be made. If a record name appears as a field of another

record, and the table structure containing that name appears after the

current table structure, the later table structure is marked with a "C" in its



routines are related in that "relate" calls "recurfind" to make some of

the needed relationships. These relationships include determining which

records are members and which are owners of sets, which records own

recursive occurrences of other records, and the number of recursive

relationships a record is a member of. The basic formula for doing this

is to traverse the part of the schema structure already built and create these

relationships.

To do this, the schema is traversed table structure by table structure

and item structure by item structure. If an item structure has type "T" or

"R", the schema structure is re-searched until the table structure

corresponding to it is found. The original table structure is then added to

the list of structures which owns the current table structure. This is done

by allocating a hook structure whose "atab" field points to the original table

structure. If this is the first set to which the current table structure is a

member, the "forwrite" field of the table structure then points to the

"hook" structure just allocated. Otherwise, the hook structure is pointed at

by the "nhook" field of the last "hook" structure in the list of "hook"

structures pointed at by the "for-sets" field of the current "table" structure.

By doing this, all set relationships are established.

As the structure is traversed, it must also be determined through which

set the query on any particular record will be made. The single path

traversed to any record (though many may exist) will always be found in the

same way. This is derived from the DBL schema. A record will always be

selected through some set, it may participate in this set as a member or

owner. Most commonly selection will be through an owner. Selection can

be made through a member in the case of a "Y" network as in figure 1.6.

Here, the sets are "SYSTEM_A", "SYSTEMB", "A_C" and "BC".

15



certain of the table structures to represent particular relationships between

records. The particular fields of the table structures represent particular

things. The different representations are found in figure 1.5.

The "parser" routine reads in the DBL schema. As it does so, it

stores the database name in the "dname" variable and the view name in the

"schem" variable. Then it begins parsing the remainder of the schema. As

it comes to each record name, it allocates a new "table" structure and puts

the record name into the structure. Next it reads the field names for the

particular record. It allocates an item structure filling the appropriate

elements of the structure as it does so. Each table structure is linked to the

list of the previously allocated table structures via the "ntable" field of the

last table structure. The "item" structures are linked to the list of item

structures pointed to by the the "toitems" field of the appropriate table

structure. Also, in the "parser" routine, if a field has a key entry of "1", a

special pointer is assigned to it so that when the SEED schema is created

later this field can easily be found. It is pointed to by the "tokeys field of

its "table" structure or by the "nkey" field of the last key field read in for

this record. When the entire DBL schema has been input, the above has

been completed for all records of this database.

The "parser" routine then returns control to the main program,

returning as it does so a pointer to the frmst "table" structure allocated. By

following the pointers emanating from this structure all other "table" and

'item" structures can be reached. It is this combination of "table' and

"item" structures that (along with the 'hook" structures to be assigned in

the "relate" and "recurfind" routines) make up the "schema" structure.

The relationships which make up the remainder of the schema

structure are created in the "relate" and "recurfind" routines. These

14



an "A". Here too, the same rules hold for forming variables for recursive

occurrences of records.

Having explained the naming conventions of variables, explanation of

the "declarer" and "commons" routines follows. "declarer" creates the

Fortran declaration of the counter variables used in the Fortran subroutines.

These variables are created according to the formula described above. The

routine keeps track of the length of the variables it creates and generates

continuation lines where necessary.

The "commons" routine is used to declare the common statement used

by every Fortran routine created. As in the "declarer" routine, this routine

keeps track of variable and line lengths and generates continuation lines

where necessary. Every record name is in this statement, every set name is

in it, every logical pointer is in it, and all currency pointers are in it. The

routine creates its variables by traversing the schema data structure and

outputting the appropriate declarations as it progresses.

This leaves only the "parser", "relate" and "recurfind" routines to be

explained here. The "parser" routine takes a DBL schema from standard

input and puts it into the schema data structure, building the basics of the

structure as it goes along. To explain how this is to done, requires

understanding the schema data structure.

The schema data structure is made up of three separate structures; the

"table" structure, the "item" structure, and the "hook" structure. The

purpose of the entire structure is to represent a DBL schema. Each of the

separate structures also has a particular purpose. The individual structures

are as declared in figure 1.4. The table structure represents one record of

the database, the "item" structure represents a field of a record (either a

table field or an entry field), and the "hook" structure is to "connect"

13



set name. These variables are formed by appending the name of the

member record to the name of the owner record and separating the two by

a "_*. As an example, in the HDBP database, the "DOCTOR" record is

owned by the "HOSPITAL" record. These then form the set variable

"HOSPITALDOCTOR". For those records owned by "SYSTEM", the word

"SYSTEM" replaces the set name of the owner. One of these types of

variables is created for each record, nonrecord field name, and for each set

defined in the database. The SEED processor automatically defines these

variables in the UWA when processing the SEED sub-schema.

There are some other variables which also have to be declared. The

first of these are the counter variables. These are used to count the of

number records queried before selecting one. Their final value can then be

used as a logical pointer to a record. For those records which have no

recursive occurrences, these variables are named by appending to the letter

"C" (for counter) the name of the record type they are to count. So for the

"HOSPITAL" record, the counter variable is "CHOSPITAL". If a record

has a recursive occurrence, then a number is also appended to the end of

the variable name. The number comes from the "rcnt" field which would

then be reduced. Hence, if another recursive occurrence has a counter

variable, it would then get the next lower number. If "rcnt" = 0, no

number is appended to the end. The way the "typr" field is assigned values

guarantees there will be as many numbers as occurrences of a record. As an

example, were there a recursive occurrence of the "HOSPITAL" record its

counter might be named "CHOSPITALl".

The variables to hold the currency pointers are formed in a similar

* manner, the only difference being the first letter. Here the first letter is an

IN". Logical pointers are also formed in the same way with the first letter

12



0

append a number to the end of a variable in the Fortran routine. This is

done due to the way certain variable names are created (explained in detail

below). The "trans routine generates code for switching the value of two

variables. In certain of the automatically generated Fortran routines, there is

the chance that the value of certain variables will be changed by "accident".

This routine is used to generate code to specifically prevent this.

Two other important routines are the "gotowrite" routine and the

'goritel routine. These routines generate the line numbers used to create

Fortran computed 'go tow statements. "gorite' generates the line numbers

only. This is used by several routines. When used alone, the calling routine

must generate the words "GO TO" and the ending of the statement (ie ')'

and the variable controlling the statement). This routine needs starting

values in all variables, however, once started it will update all values as

needed. The routine automatically generates the correct continuation lines

where necessary.

The 'gotowrite' routine is used to generate a complete computed go to

statement for the 'outpt' routine (discussed later). It traverses the schema

structure and generates one line number for every field in the database,

every record in the database, every currency pointer in the database, and

every logical pointer in the database. This is done because any and all

possible information in the database may have to be output. For more

complete information, see sections 3.3 and 3.4.

There are certain variables needed to ensure all parts of the database

can be referenced correctly. First there are the variables representing records

and fields of those records (non-table or recursive occurrence fields). These

* variables are the names of the records and fields as given in the DBL

schema. The next most basic type of variable is the variable representing a

11



these basic "building block" routines. For more information on the primitive

processes and how they are used see (10].

1.4 SOME COMMON TOOLS

The main routines used to implement this part of the DAVID project

are detailed in the appropriate sections of this thesis. However, there are

some routines basic to the other routines. These are detailed here and

referred to throughout the thesis.

Two basic routines for inputting data are the "namer" routine and the

"getint" routine. The namer routine takes in a pointer to a string and as a

"side-effect" enters a string in the location "pointed to" by the pointer.

This string comes from standard input. The routine returns the first

character from standard input after the string. The routine recognizes

certain string terminators in the standard input, these are: " ",";", and "#".

The blank is the normal string terminator. The ";" terminates one record's

entry in the DBL schema. The ,#, is used to terminate the entire DBL

schema. The "getint" routine reads an integer from standard input and

returns it to the calling program. This routine changes the standard input

to its integer representation.

Another function which returns an integer value is "how-big". It takes

a pointer to a string as input and returns the length of the string. The

"eqname" routine is another string oriented routine. It takes as input,

pointers to two strings. It returns a "1" if the strings are identical; "0"

otherwise.

The next two routines are the "areset" and the "trans" routines.

"areset" sets the "rcnt" field of all table structures in the schema structure

(explained below) equal to their "typr" field. The "rcnt" field is used to

* 10
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schema, it is possible to express any of the three types of databases,

considered here. From this then, certain Fortran routines are made. These

routines make it possible to query the database, insert, modify, and delete

information, and generate the SEED schema and sub-schema.

1.3 PRIMITIVE PROCESSES

In implementing this interface, only certain operations need to be

implemented. These are cald"primitive prcse"(101. Anything which

can be done in a DBMS can be built up from these processes. The

processes applicable to SEED are:

1. Project query;
2. Selection query;
3. Selection- Projection query;
4. Store- To- Database query;
5. Semijoin and Join query.

The project query is; having certain specific values "output" (in some

way) from each type of record in the database. For some records the

output may be null. The select query outputs every value from each record

of the database meeting certain criteria. Select-project queries output

certain specific values from each type of record in the database satisfying

certain criteria. Numbers 4 and 5 above, don't have to be implemented for

SEED, but the output from numbers 1, 2, and 3 must be in a form which

can be used by DAVID.

These routines can be implemented using more basic tools. This thesis

deas with the creation of these more basic tools. These include procedures

for sequentially traversing a database, retrieving records from a database

based on currency pointers for those records, outputting information in a way

which facilitates interfacing with DAVID, and procedures for transaction

processing. The remainder of this thesis deals with the implementation of

9



In addition to the SEED schema, there is the DBL schema. The DBL

schema is the construct which was derived from the DBL DDL Definition

[101 (see figure 1.0 and figure 1.1). A DBL schema is not normally used by

a user of DAVID. DAVID uses a different construct called the DEFINE

CLUSTER (llj. The DBL schema is a special construct used to convey the

definition of the database to the DBMS. A DBL schema contains the name

of the database, a view name for the database, and the actual database

definition.

Note how the ownership of records is expressed. The 'DOCTOR" and

"BEDNRO records ae expressed as fields of the "HOSPITAL" record. Also

the "PATIENT" record is expressed as a field of both the "DOCTOR" and

"BEDNR" tables. This indicates that these tables awe "owned" by the

records in which they appear as fields. The first two names are the

database and view names respectively. The first name in each row is the

table name. This is followed by the field names and their descriptions. The

description of any field starts with the field name. This is followed by one

of a "TO, an "R", a "C", an "I", or an "FR. If followed by a "T" or an

"RO, the field represents a table owned by this particular record. The "R"

means the table has a recursive occurrence somewhere in the database. If

the field is a table, then there is no more to the entry. The "C" indicates a

character field, the "I" indicates an integer field, and the "F" indicates a real

field. Whenever any of these three characters appear, they are followed by 2

integers. The first is the size of the field and the second is always a "1"m or

"0. If a "1", it indicates the field is to be a key field, if a "0", it indicates

the field is not a key field. (Key field here refers a record being sorted on

this field.).

It is the DBL schema on which everything else is based. Using this

8



DBMS, this type of record is said to be "system" owned. This is usually

* represented by having the word "SYSTEM* somehow associated with the set.

Another type of structure here is the recursive record. A recursive

record is one which is owned by a record of the same type as itself. In

most if not all Codasyl DBMS, this ownership must be indirect [91. That is,

a record of type "A' will have to own a record of type 'B" which in turn

can then own a different record of type 'A'. Figure 1.1 is an example of

A| this. Here, a record of type COURSES owns a record of type PREREQ.

The record of type PREREQ then owns a record of type COURSES. The

first record of type COURSES is referred to as the "original' occurrence and

* the record of type COURSES owned by the record of type PREREQ is

referred to as the "recursive' occurrence.

Another important aspect of the network DBMS is the schema. The

schema defines the database for the DBMS. It allows the DBMS to set-up

the data structures and the storage facilities necessary to construct the

database [8). It can be thought of as a template for the Database. Figure

1.2 is the SEED schema defining the HDBP database of Figure 1.0.

In addition to the schema, there is the sub-schema. The sub-schema

determines exactly what part of the database will be available to the user at

any one time. The sub-schema corresponds with the external view of the

database (8]. It can be changed each time the database is referenced. Any

part or all of the database can be made available for referencing. In figure

* 1.3, there is an example sub-schema used to reference all records and sets

of our example database.

In SEED, the schema and sub-schema are processed by a

pre-processor. From the sub-schema, the pre-processor creates the United

Working Area (UWA) 181.

7
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various points. The differences between a DBL DDL Definition and a DBL

* Schema arm illustrated in the next section.

1.2 DEFINITIONS

The most basic term here is database. A database is nothing more

than a collection of data (51. A database management system (DBMS) is an

automated method for referencing this data. In the course of this thesis,

reference will be made to 3 distinct type of DBMS. These are the relational

DBMS, the hierarchical DBMS, and the network DBMS.

A relational DBMS can be thought of as a table whose rows are

referred to as Ituples" and columns as "attributes" 1151. In the hierarchical

approach, data is represented as a simple tree where the "root" and each

"leaf' are different record types. Each "leaf' record type is "owned" by

some other record type. Owning can be thought of as a path from one

record to another. While a record type may own any number of other

record types, each record type can have only one owner. Lastly, comes the

network approach. In this approach, data is represented as records and

links. Each record type is linked to some other record type in a set

relationship. As in the hierarchical approach, one record can be thought of

as owning another set. In the network approach, any record can have any

number of owners and/or members. Each single record may own many

other records of one type, hence "linking" those records together (91.
This thesis deas with the network case. There are several term and

concepts which are unique to the network cas. For instance, the "singular

set". A singular set is one owned by the DBMS itself. The purpose for

*this isto alow adatabasetohave only one type of record and to link

different instances of this type of record together 1151. In most network

[-~



CHAPTER I. PRELIMINARIES

I
1.0 INTRODUCTION

This chapter covers preliminary information needed for the remainder of

the thesis. Section 1.1 gives an example of a DBL DDL Definition and DBL

schema derived from this definition. This is because the DBL schema serves

as the basic input in this implementation. In section 1.2, certain basic

definitions are given. Some of these definitions are basic database definitions,

some are definitions for terms unique to this thesis. There are certain

primitive operations from which the entire interface can be constructed.

Those operations, a brief explanation of them, and how they relate to this

work are given in section 1.3. Lastly, section 1.4 deals with some basic C

routines and data structures referred to throughout this thesis.

1.1 EXAMPLES

This section gives examples of DBL DDL Definitions [91 and the DBL

* schemas derived from them. It is the DBL schema which is the input to

this implementation and which is "operated" on to get the required output.

There are two examples given here. These will be referenced throughout the

work as basic examples. The first example is of a "Y" network. Figure

1.Oa gives the DBL DDL Definition and figure 1.0b gives the DBL schema.

The DBL schema is a stylized form of the Language and View Definitions of

the DBL DDL Definition.

The second example is another DBL DDL Definition and its DBL

schema. In this case, the example is for a network with a recursively owned

record. The example appears in figure 1.la and figure 1.lb.

These two examples will be used throughout the thesis to illustrate

05



0(DP:VEWDFNTO

V(HDBP): VIE DEFINITION

TABLE HOSPITAL = (NAM E,CITY,ZIP, DOCTOR, BEDNR)
TABLE DOCTOR = (DRNAME,DRNR, PATIENT)
TABLE BEDNR = (WARD,PATIENT)
TABLE PATIENT = (PNAME,DISEASE,AGE,SEX,VITS)

L(HDBP): LANGUAGE DEFINITION
T(HDBP): TYPING DEFINITION

TYPE NAMTPE = {NAME,DRNAME,PNAME) EBCDIC CHAR(30)
TYPE CITYP =(CITY) EBCDIC CHAR(30)
TYPE ZP#TPE =(ZIP) EBCDIC DEC(9)
TYPE DR#TPE =(DRNR) EBCDIC DEC(5)
TYPE BED#TPE =(BEDNUM) EBCDIC DEC(1)
TYPE WARDTPE =(WARD) EBDIC CHAR(20)
TYPE DISTPE { DISEASE) EBCDIC CHAR(20)
TYPE AGETPE =(AGE) EBCDIC DEC(3)
TYPE SEXTPE =(SEX) EBCDIC CHAR(1)
TYPE VITPE = VITS) EBCDIC CHAR(80)

NONLOGICAL SYMBOLS DEFINITION

d PREDICATE SYMBOLS

HOSPITAL- DOCTOR- BEDNR- PATIENT:
(NAMTPE,CITYP,ZP#TPE,DOCTOR,NAMTPE,DR#TPE,
BEDNR,BED#TPE, WARDTPE, PATIENT, NAMTPE,DISTPE,
AGETPE,SEXTPE,VIIPE) - FULL CLUSTER

PREDICATE SYMBOL

FUNCTION SYMBOLS
NONE

* C(HDBP): CONSTRAINTS DEFINITIONS
C(HDBP,1): CONSTRAINT HOSPITAL:

ZIP- ->CITY

C(HDBP,2): CONSTRAINT DOCTOR:
DRNR-->DRNAME

* C(HDBP,3): CONSTRAINT BEDNR:
WARD,BEDNUM-- >PATIENT

C(HDBP,4): CONSTRAINT PATIENT:
PNAME- ->DISEASE, AGE,SEX VITS

Figure 1.Oa A DBL DDL Definition for Database HDBP.



HDBP ONE
Sil HOSPITAL NAME C 30 1 CITY C 30 0 ZIP C 5 0 DOCTOR T BEDNR T;

DOCTOR DRNAME C 30 1 DRNR 1 5 0 PATIENT T;
BEDNR BEDNUM 1 10 1 WARD C 20 0 PATIENT T;
PATIENT PNAME C 30 I DISEASE C 20 0 AGE 1 3 0 SEX C 1 0

VITS C 80 0;#

Figure 1.0b A DBL Schema for Database HDBP.

iJ2

02

" "S, . .", . • . .. . .i'



V(CATALOGUE): VIEW DEFINITION
S(CATALOGUE): SCHEMA DEFINITION

TABLE DEPT = (DNAME,DNR,COURSES)
TABLE COURSES - (CNAME,CNR,CREDS,PREREQ)
TABLE PREREQ - (COURSES,FILLER)

L(CATALOGUE): LANGUAGE DEFINITION
T(CATALOGUE): TYPING DEFINITION

TYPE DCNTPE = {DNAME,CNAME) EBCDIC CHAR(10)
TYPE DC#TPE = {DNR,CNR) EBCDIC DEC(3)
TYPE CRDTPE = {CREDS) EBCDIC DEC(1)
TYPE FILTPE = (FILLER) EBCDIC CHAR(l)

NONLOGICAL SYMBOLS DEFINITION
PREDICATE SYMBOLS
DEPT-COURSES-PREREQ:

(DCNTPE,DC#TPE,COURSES,DCNTPE,DC#TPE,
CRDTPE,PREREQ,COURSES,FILTPE)- FULL CLUSTER

PREDICATE SYMBOL

FUNCTION SYMBOLS
NONE

C(CATALOGUE): CONSTRAINTS DEFINITIONS
C(CATALOGUE,1): CONSTRAINT DEPT:

DEPT-- >CATALOGUE
DNAME-->DNR

C(CATALOGUE,2): CONSTRAINT COURSES:
CNR-->CNAME,CREDS

Figure 1.1a A DBL DDL Definition for a Database
with a Recursive Occurrence.

CATALOGUE SCHED
DEPT DNAME C 3 1 DNR I 3 0 COURSES R;
COURSES CNAME C 10 1 CNR I 3 0 CREDS I 1 1 PREREQ T;
PREREQ COURSES R FILLER C I 0;#

Figure L.lb The DBL Schema for the DBL DDL
Definition of Figure ila.
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SCHEMA NAME IS HDBP.
AREA NAME IS BASICDATAAREA.
AREA NAME IS POINTERDATAAREA.

RECORD NAME IS HOSPITAL
LOCATION MODE IS VIA SYSTEMHOSPITAL
WITHIN BASICDATAAREA.

NAME TYPE IS CHARACTER 30.
CITY TYPE IS CHARACTER 30.
ZIP TYPE IS CHARACTER 5.

RECORD NAME IS DOCTOR
LOCATION MODE IS VIA HOSPITALDOCTOR
WITHIN BASICDATAAREA.

DRNAME TYPE IS CHARACTER 30.
DRNR TYPE IS INTEGER.

RECORD NAME IS BEDNR
LOCATION MODE IS VIA HOSPITALBEDNR
WITHIN BASICDATAAREA.

BEDNUM TYPE IS INTEGER.
WARD TYPE IS CHARACTER 20.

RECORD NAME IS PATIENT
LOCATION MODE IS VIA DOCTORPATIENT
WITHIN BASICDATAAREA.

PNAME TYPE IS CHARACTER 30.
DISEASE TYPE IS CHARACTER 20.
AGE TYPE IS INTEGER.
SEX TYPE IS CHARACTER 1.
VITS TYPE IS CHARACTER 80.

RECORD NAME IS DNHDBP
LOCATION MODE IS VIA SYSTEMDNHDBP
WITHIN POINTERDATAAREA.

DHDBP TYPE IS INTEGER.
NHOSPITAL TYPE IS INTEGER.
AHOSPITAL TYPE IS INTEGER.
NDOCTOR TYPE IS INTEGER.
ADOCTOR TYPE IS INTEGER.

Figm 1.2 Pag of 3.
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T

NBEDNR TYPE IS INTEGER.
ABEDNR TYPE IS INTEGER.
NPATIENT TYPE IS INTEGER.
APATIENT TYPE IS INTEGER.

SET NAME IS SYSTEMHOSPITAL
MODE IS CHAIN LINKED PRIOR
ORDER IS SORTED
OWNER IS SYSTEM
MEMBER IS HOSPITAL MANDATORY AUTOMATIC

LINKED TO OWNER
ASCENDING KEY IS NAME
SET SELECTION IS THRU CURRENT OF SET.

SET NAME IS HOSPITALDOCTOR
MODE IS CHAIN LINKED PRIOR
ORDER IS SORTED
OWNER IS HOSPITAL
MEMBER IS DOCTOR MANDATORY AUTOMATIC

LINKED TO OWNER
ASCENDING KEY IS DRNAME
SET SELECTION IS THRU CURRENT OF SET.

SET NAME IS HOSPITALBEDNR
MODE IS CHAIN LINKED PRIOR
ORDER IS SORTED
OWNER IS HOSPITAL
MEMBER IS BEDNR MANDATORY AUTOMATIC

LINKED TO OWNER
ASCENDING KEY IS BEDNUM
SET SELECTION IS THRU CURRENT OF SET.

SET NAME IS DOCTORPATIENT
MODE IS CHAIN LINKED PRIOR
ORDER IS SORTED
OWNER IS DOCTOR
MEMBER IS PATIENT MANDATORY AUTOMATIC

LINKED TO OWNER
ASCENDING KEY IS PNAME
SET SELECTION IS THRU CURRENT OF SET.

Figure 1.2 PKe 2 of 3.

23



SET NAME IS SYSTEMDNHDBP
MODE IS CHAIN LINKED PRIOR
ORDER IS NEXT
OWNER IS SYSTEM
MEMBER IS DNHDBP MANDATORY AUTOMATIC

LINKED TO OWNER
SET SELECTION IS THRU CURRENT OF SET.

Figre 1.2 Page 3 of 3.

Figure 1.2 An Example SEED Schema.
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SUB-SCHEMA NAME IS ONE FOR FORTRAN OF SCHEMA HDBP.
RECORD SECTION.

COPY ALL RECORDS.
SET SECTION.

COPY ALL SETS.

Figure 1.3 An Example SEED Sub-Schema.

25
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struct hook{
U struct hook *nhook;

struct table *atab;

struct table{
char aname[301;
char relat;

AI jut typr;
jut rent;
int nr,
struct table *ntable;
struct table *for-write;
struct hook *for -sets;
struct item 'to-items;
struct item 'to-key;
struct hook *rhook;

struct item{
char iname[301;
char typ;
iut size;
struct item 'nitem;
struct item 'ukey;

Figure 1.4 Declarations of the C structures.
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Explanation of the General Table Structure:

1. anfame - A PARTICULAR TABLE'S NAME.

2. relat - THE SET RELATIONSHIP TO THE TABLE
IN THE SAME SET USED TO FETCH THIS
TABLE. VALUES MAY BE:

a) "P' - PARENT.
b) "CN - CHILD.

3. typr VALUE = "0" : A NON-RECURSIVE TABLE;
VALUE > "0" : A RECURSIVE TABLE WITH

"TYPR" RECURSIVE
RELATIONSHIPS.

4. rcnt - USED AS A TEMPORARY STORAGE FOR TYPR
THE VALUE Y.ERE IS DECREASED EACH TIME
THE TABLE IS USED IN ONE OF ITS
RECURSIVE RELATIONSHIPS AND IT IS
RESET TO TYPR WHEN IT REACHES 0; SEE
THE SUBROUTINES "firstwhere" AND
"areset" TO SEE PRECISELY HOW IT'S
USED AND RESET.

5. nr - KEEPS TRACK OF A RECORDS POSITION IN
RELATION TO OTHER RECORDS. THIS IS
USED TO HELP DETERMINE IF A RECORD
OWNS OR IS OWNED BY ANOTHER RECORD.

6. ntable - A LINK TO THE NEXT TABLE IN A LIST OF
TABLES IN THIS PARTICULAR CLUSTER.

7. for-write - USED TO LINK THE TABLE TO A TABLE
IT HAS A SET RELATIONSHIP WITH. IT
WILL BE FROM THIS SET THAT ALL
RECORDS OF THIS TABLE WILL BE
SELECTED.

8. for sets - USED TO POINT TO A "HOOK" STRUCTURE
TO HOOK A TABLE TO EVERY OTHER TABLE
IT IS INVOLVED IN A SET WITH.

Figurel.2 Page I of 3.
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9. toitems - POINTS TO A LIST OF ITEM STRUCTURES
WHICH WILL REPRESENT THE FIELDS OF
THIS TABLE.

10. to-key - POINTS TO THE KEY FIELD FOR THIS
TABLE IN THE LIST OF ITEM STRUCTURES.
THIS FIELD MAY IN-TURN POINT TO A
SECONDARY KEY FIELD WHICH IN TURN MAY
POINT TO A THIRD KEY FIELD ETC. IF
NO KEY FIELD IS GIVEN, THE FIRST
FIELD IS MADE THE KEY FIELD.

11. rhook - POINTS TO A "HOOK" RECORD TO LINK
TOGETHER ALL THE TABLES WHICH HAVE
A RECURSIVE RELATIONSHIP WITH THIS
ONE.

Explanation of the General Item Structure:

I. iname - THE NAME OF A PARTICULAR FIELD.

2. typ - THE TYPE OF THE FIELD. POSSIBLE VALUES ARE:
a) "I" - AN INTEGER FIELD.
b) "F' - A REAL VALUE FIELD.
c) "C" - A CHARACTER FIELD.
d) "Tv - THE FIELD IS AN EMBEDDED TABLE.
e) "RO - THE FIELD IS AN EMBEDDED RECURSIVE

TABLE.

3. size - THE SIZE OF A GIVEN FIELD. THIS IS NOT
APPLICABLE TO FIELDS WHOSE TYP VALUES ARE
"T" OR "RO.

Firure 1.5 Page 2 of 3.
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4. nitem - A POINTER TO THE NEXT ITEM STRUCTURE IN A
LIST OF ITEM STRUCTURES.

S. akey - A POINTER TO THE NEXT KEY IN THE LIST OF KEYS
FOR A GIVEN TABLE. SEE TABLE ABOVE FOR FURTHER
INFORMATION.

Explanation of the General Hook Structure:

1. nhook - USED TO "LINK LISTS" OF HOOK STRUCTURES.

2. atab - USED TO "POINT" AT TABLE STRUCTURES.

Figure 1.5 Page 3 of 3.

Figure 1.5 Explanations of the C Data Structures
Comprising the Schema Structure.
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START v--A

V

- DEPT -- > :DNAME -- > DNR --..,COURSES:

-C ::I R
*,0; ' : :3 : 0c)

: C) :NITEM:---: NITEM: -- : :NITEM
:1 : ' ', NKEY NKEY :NKE

, .--- NTABLE ---I - -

:FORWRIrE:
:FOR SETS
iTO_ ITEMS -- >:
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, * :RHOOK
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I Im I

+----- :COURSES -- > :CNAME: -- >CNR -- >CREDS .:PREREQ:

* :C :C I. : I " T
:Ii : : 3 : i :10 :0

, A :NITEM--- A .NI-EM.--A :NITEM :-- INITEM :
, , : :NKEY :NKEY : NKEY :NKEY

* : •-N-Ir ABLE : : : '
,:.-+--,FOR WRITE.

:FOR SETS -----------------------------------------
:TO ITEMS -- ::NHOOK:--.:
:rO EY -- :'ATAB :---------
:RHOOK v :, '

- - - - - - - -- -

INHOO..

v ': I ATAB
.F'REREQ -- :COURSES: -- :FILLER:
C :R ,C

.) *:o , ': 1
:NITEM :--- :NITEM

SNKEY dNWEY
NrABLE :

----- FURWRITE:
FOR SETS ------ +-------------------------NHOO
TO ITEMS U--;.ATAB ', - - - - --

:rODEY .
RHOOF

,NHOOQ:
,'ATAB1

Figure 1.7 A Representation of An Example Schema Data Structure.
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CHAPTER 2. CONVERSION OF SCHEMA

2.0 INTRODUCTION

The purpose of this section is to explain my method of schema

conversion and to show how any database logic schema can be represented in

Codasyl by means of this conversion. In section 2.1, an example SEED

schema and sub-schema are presented. Certain constraints on the schema

and sub-schema and the general methodology of the conversion are given in

section 2.2. A detailed description of the C code is given in section 2.3.

Lastly, section 2.4 has the main C routines which implement the schema and

sub-schema conversion.

2.1 AN EXAMPLE

Figure 1.3 is an example of a SEED schema derived from the "Y"

network of figure 1.1. This schema is the desired output given the DBL

Schema for this example.

As mentioned in the last section, a sub-schema must also be produced.

The output sub-schema for the same figure is in figure 1.4.

2.2 THE GENERAL METHODOLOGY

This section of the thesis gives certain constraints on the schema and

sub-schema and the block description of the code used in schema conversion.

The next section will give the specific technical description of the code.

Flow charts for the code in these two sections can be found in figures 2.0

and 2. 1. There is no flow chart for the subecm routine because of its

simplicity.

The schema conversion takes place within certain constraints. First, it
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_V_

, END

Figur 2.1 Page 2 of 2.

Figure 2.1 The Flow Chart for the sets Routine.
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/ ' / \

/ / TYP \ / OUrFUT /
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/ TYPE/SIZE /

V

V
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(*IBEGIN).NITEM

TBEGIN= S V
(*TBEGIN).NTABLE

END ----------------------------

Figre 2.0 Pg 3 of 3.

Figure 2.0 The Flow Chart for the records Routine.
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Figure 2.0 P 2 of 3.
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START

- -- - - -

OPEN SCHEMA
FILE

_V_

/OUTPUT OVERHEA~D/
/INFORMATION TO/

/THE FILE/

V
*SET LOOP
PARAMETER

V

Figure 2.0 Page 1of 3.
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"fprintf(fp,"\n COPY ALL SETS. \n"); "

Control then returns to the calling program where the "SUBSCHM" file is

closed. Now the conversion of the DBL schema to the Codasyl schema and

sub-schema is complete. An example of such a sub-schema can be found

in figure 1.4.

To summarize this section, I have detailed how the Codasyl schema

and sub-schema are created from the schema structure (which was in turn

created from the DBL schema). This comprises the schema conversion.

Next, the Fortran programs must be generated.

2.4 THE CODE

This section gives the main routines used in schema conversion. They,

as all code for the DAVID project, are written in the language "C". Here,

the "record", "sets", and "subscm" routines are given. The first two

routines create the SEED schema. These routines can be found in figure

2.2a and 2.2b, respectively. The "subscm" routine creates the general SEED

sub-schema. This routine can be found in figure 2.3.
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the other hand, forsets is not equal to zero, the variable "hooky" is assigned

the value of the forsets field in the structure pointed to by begin. Hooky is

now used to traverse hook structures linked together and "originating" from

the record pointed to by begin. For each record pointed to by "hooky", a

set will be created. The set will have the record pointed to by "hooky" as

the owner and to the record pointed to by "begin" as the member. So by

traversing this list of hook structures, all sets which have the record pointed

to by "begin" as a member will be created.

Finally, the singular set whose owner is "SYSTEM" (by definition) and

whose member is the pointer record is created. Upon creation of this set,

the Codasyl schema is complete. Now control returns to the calling

program, the file which is accepting the schema is closed, and the next

procedure is started. An example of a schema created in this manner is in

figure 1.3.

The next procedure requires creation of a subschema. Again the

"fopen" command is used to create a file for writing. In this case, the file

is named "SUBSCHM". Once the file is created, the "subecm" function is

called to create the sub-schema. This function also takes three arguments.

The first is the name of the schema in the "schem" variable, the second is

the view name in the "dname" variable, and the last is the pointer to the

"SUBSCHM w file in the variable "fp". The schema and view names are

used expressly for the purpose of giving the schema name and the view

name. The sub-schema is always for Fortran since the automatically

generated programs are in Fortran. The record section is then created by

the code:

"fprintf(fp,"\n COPY ALL RECORDS. "); "

Similarly, the set section is created with the statement:
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table structure. This process is repeated until all table structures and all

item structures have been visited. In this way, all records contained in the

DBL schema are converted to records in the Codasyl schema.

This does not quite complete the "records" function. The function next

creates the pointer record. This record is named DN[schema name]. Its

location mode is always as a singular set (that is via "SYSTEMDN[schema

name]"). This is the only record within the "POINTERDATAAREA".

After these statements are entered into the "SCHEMA" file by means of

appropriate "fprintf" commands, two fields are created for each table

structure in the schema structure. These fields will contain the logical and

currency pointers. In SEED these must be of type integer. The actual

creation of these fields is done by traversing the table structures in the

schema structure and producing the fields as it goes along. Control then

returns to the main program and the "sets" function can be called to create

the necessary sets.

The "sets" routine takes three inputs. The pointer to the start of the

schema structure is passed in the "start" variable, the schema name is

passed in the "schem" variable and a pointer to the SCHEMA file is passed

in the "fp" variable. Here, the schema structure is traversed to create the

necessary sets. The schema name will be used to create the singular set

which has the pointer record. The file pointer will be used to reference the

output file.

This program begins by assigning to the "begin" variable the value of

the "start" variable. The table structures in the schema structure will again

be traversed. If the "for-sets" field of the structure pointed to by begin is

0, then the set has one owner - "SYSTEM". In this case, a set whose

owner is "SYSTEM" is created and given the applicable attributes. If, on
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information about size of pages and other specific information but this is not

done. The reason is that it is not required (the system will do it

automatically) and it keeps the schema as simple as possible. This can and

might be changed later if necessary (13.

When this has been completed, the variable Ntbegin" is assigned the

value of the variable "start". One at a time, the records and fields will be

created. First, the record is named. The name coming from the "aname*

field of the structure pointed to by tbegin. Next the location mode is

created. Location mode is via a set which has the record pointed to by

tbegin as a member. If there is no such set, the location mode is via

"SYSTEMrecord name". For instance, if the record were called

"DOCTOR" and it was not owned by any other record then its location

mode would be via "SYSTEMDOCTOR". On the other hand, suppose the

record is a member of one or more sets. Then the location mode via the

et whose owner is pointed to by the "forwrite" field of the record pointed

to by the "tbegin" pointer. Since this is a data record (as opposed to a

pointer record), it will be "...WITHIN BASICDATAAREA" and this

statement is inserted in the file.

Having accomplished this, the fields of this record must be created.

This is done by assigning the pointer in (*tbegin).to_items to the variable

"ibeginw. Then for each item structure (whose "typ" field -/= "T" or

"R") associated with this record, a field is created. The type of the field is

as designated in the typ field of the item structure pointed to by the

"ibegin" pointer. Once the field is printed, the next one is reached by

following the pointer in the "nitem" field of the current item structure.

Once the last item structure of a record has been thus "visited", the

"tbegin" variable is updated to the value in the "ntable" field of the current
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schema data structure described in section 1.4. It will also cover specifically

how the schema and sub-schema are created.

First, in the main program a file to hold the schema is created. In the

example program listed this file is always called "SCHEMA". By

substituting a string variable (containing a different name), for the word

"SCHEMA" this file could be made to accept a general file name. This file

is created by use of a C "fopen" command and is opened for writing. This

function returns a pointer to the opened file which is assigned to the file

pointer variable "fp".

Once this has been accomplished, the "records" function is called. This

function will create the static and overhead information needed for the

schema. It will also create all the codasyl records based on the information

given in the schema structure. The original source of this information being

the DBL schema. The records function takes as input the schema and view

names. These are supplied in the variables "schem" and "dname". It

takes a pointer to the file to write to. This is supplied in the "fp" variable.

And, it takes a pointer to the schema structure which is passed in the

variable "start". The routine does not explicitly return anything but when it

is completed the file pointed to by "fp" has the required overhead and

records information.

The first thing done in the program is the creation of the schema name

and data areas as follows:

"fprintf(fp,"SCHEMA NAME IS %s",schem,);
fprintf(fp,"\nAREA NAME IS BASICDATAAREA \n");
fprintf(fp,"AREA NAME IS POINTERDATAAREA \n");"

This names the schema with the name of the DBL schema name. Next the

two data areas are named. When this is complete, the overhead/static

information of the schema is complete. It would also be possible to include
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sets function. The sets function takes the same input as the records function

and creates the set section of the schema. The process here again entails

traversing the schema structure. Here, as each table structure is "visited",

all the sets which have this table as a member record are created. One set

is created for each set which has that particular table structure as a member

record. If the for_sets pointer is null, the record is a member of only one

set and it is owned by "SYSTEM".

Once the structure has been traversed, one more set is created. This is

a singular set whose member is the pointer record. This set has special

attributes described in the next section. These attributes will be identical for

all pointer records/sets in all SEED databases. This then completes the

schema conversion, control passes back to the main program, the file being

used in closed and creation of the sub-schema can begin.

The sub-schema creation also begins with the opening of a file for

writing. This file along with the schema name, and the view name is passed

to the subscm subroutine. Here, the most basic sub-schema is created. The

sub-schema name and the view name are printed and then all records and

sets are copied. This is all that will be required whenever the database is to

be opened. When this is done, conversion of the sub-schema is complete,

control returns to the main program, the Mile is closed, and the next section

of the program is entered.

2.3 A DETAILED DESCRIPTION

In this section, the code needed to perform the schema conversion is

discussed in detail. The section will cover storage of the schema for later

use by the SEED processor, specifically how the file for this is created. It

will cover how the new schema is produced from the old in terms of the
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be filtered out. This filtering process can take place through either the filter

* subroutine or in the output of data after the query. In either case, a

simple schema and sub-schema form has thus been adopted and it is this

form which gives the freedom to mirror the DBL schema in the SEED

schema while still meeting the restrictions mentioned above.

Having explained the constraints under which the schema and

sub-schema conversion is accomplished, the actual conversion is now

l~e explained. The first process in schema conversion is to open a file for

writing. This file will hold the completed schema. Once completely written

to this file, the schema can then be "fed" into the SEED processor. A

* pointer to this file is passed to a subprogram along with a pointer to the

schema structure to begin the schema conversion.

In the "records" subroutine, the conversion begins with output of

- static/overhead information. This includes the schema name and two

working areas. Both the schema name and the working areas are required

by SEED. The working areas are used by "SEED" as buffers to handle data

lid during processing.

In this subroutine, the next thing to happen is the creation of all

records. These are created with the attributes described in the last section.

This is done by traversing the schema structure and creating one record for

each table structure within this larger structure. The fields of this record

are created from the information in the item structures.

Once the list has been traversed, one more record is created. This is

the record containing the appropriate pointer fields. This record contains

two fields for each table structure in the schema structure. One of these

fields is for a logical pointer and the other is for a currency pointer.

To create the sets needed in the schema, the main program calls the
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selected through one of its pointers, this will not hinder the operation.

Fields of records are limited to one of three types: integer, real, or

character. Only the character fields are permitted formatting descriptors.

This allows any sort of data to be represented and still keep's the data as

straightforward as possible. In particular, the fields of records which will

contain pointers are represented as integers. The size information for real,

integer, and character types will be used when outputting the result of

queries.

Ordering is another attribute which is limited. All records must have a

sorted order or be ordered as "NEXT". Non-pointer records will have a

sorted order. This will be on a field specified in the DBL schema. Pointer

records will be sorted as NEXT. All records will be "CHAIN LINKED

PRIOR" and "LINKED TO OWNER". This simplifies the conversion

process and facilitates traversing the database sequentially.

The last important attribute is how a member record is inserted into

the database. There are many permutations of this attribute possible. I

have chosen two possibilities here. For any set member, the record must be

either "MANDATORY MANUAL" or "MANDATORY AUTOMATIC". All

data records are "MANDATORY MANUAL". For these records to exist,

they must be connected to a set and the connection must be made by means

of an explicit command. This is done to allow a record to be inserted into

one set in which it is a member while not being inserted into another set

where it can have membership. The pointer record will be MANDATORY

AUTOMATIC since each time one is created it can only become a member

of the singular set for pointers.

In the same way the sub-schema is a "vanilla" sub-schema. It allows

access to all records and sets. It assumes that "unwanted" information will
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must mirror the database logic schema as closely as possible. Next, the

ri facilities of the particular database used will be a subset of the total facilities

provided by SEED. This is done for several reasons:

1. Not all of the facilities will be needed.
2. It will simplify the conversion process.
3. It will keep schemas as uniform as possible greatly

simplifying the automatic program generation.

Also certain facilities available in DAVID are not available in SEED.

However, these facilities, if requested, will have to somehow be "handled" by

SEED.

In order to satisfy the above constraints, the "vanilla' dat-base was

developed [101. This is a database containing just enough elements of the

SEED DBMS to create a schema equivalent to the DBL schema. There has

to be enough elements to allow the schema to model any "legal" database.

The features which were selected for elimination were those unique to SEED,

those not utilized by the automatically generated programs, and those

features which were for any reason not needed.

The first attributes are the available areas. There are always only two

areas allowed. The first is the "basicdata_area" where all data will be

interfaced. The second is the "pointerdata area" where the currency aid

logical pointers will be interfaced. Currently, the area and page sizes for

these areas are the default sizes for the machine. The default sizes are

relatively small With experience in using these routines, an efficient manner

of declaring sufficient area and page sizes should become evident 1131.

Location mode is through current of set or location mode of owner.

This will be sufficient for sequentially traversing the database. It does mean,

however, that care must be taken to ensure there is a current of a set before

any operation is attempted on it. In the case where a record must be
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4 records(start,schem,fp)

/* JOSEPH AULINO */
/* DAVID PROJECT */
/* MARCH 1984 */
/ * ,I

/* THIS PROCEDURE WRITES ALL THE RECORDS NEEDED FOR ANY DATABASE *I
/* WHICH DAVID WILL STORE. IT DOES NOT ATTEMPT TO IMPLEMENT ALL *1
/* OF THE OPTIONS AVAILABLE TO RECORDS IN "SEED". HOWEVER, EACH */
,,* RECORD WILL "INHERIT" THE OPTIONS OF THE DATABASE FROM WHICH */
/* ITS FIELDS CAME. FOR INSTANCE, IF A FIELD CAME FROM A RECORD */
/* IN WHICH DUPLICATES WERE NOT ALLOWED, THEN THIS FIELD CAN NOT *I
/* BE DUPLICATED SINCE THE SOURCE OF THE DATA WILL CONTAIN NO */
,* DUPLICATES. */
/* *I

1* *I

/* LOCAL VARIABLES: *I
1* */

* /* 1. tbegin - USED TO TRAVERSE THE LIST OF TABLES. */
1* 2. ibegin - USED TO TRAVERSE ALL LISTS OF ITEMS. */

struct table *start;
char schem[];

FILE *fp;

struct table *tbegin;
struct item *ibegin;

**********************************************

i* */

/* FIRST ALL OF THE STATIC DATA IS OUTPUT. */
/* *1

I *******************************************I

fprintf(fp,"SCHEMA NAME IS %s",schem);
fprintf(fp,"\nAREA NAME IS BASICDATAAREA. \n");
fprintf(fp,"AREA NAME IS POINTERDATAAREA.\n");

* /*************************************************

1* */

/* NOW IHE RECORDS ARE FRODUCED ONE AT A TIME. */
/* */

Figue2.2a Pg Iof 3.
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tbegin = start;
while frbegin 1=0)

/* HERE RECORDS, LOCATION MODES, AND AREAS ARE PRODUCED. *

fprintf(fp,"\nRECORD NAME IS Zs",(*tbeg ,n).aname);

tifprintfi(fp,"\n LOCATION MODE IS VIA");
if ((*tbeqin).for _ write == 0)

fprintf(fp," SYSTEMXs",(*tbegin).aname);
el se

fprintf(fp," Xs_%s",(*(*tbeqin).for -write).aname,(*tbeqin).aname);
fprintf(fp,"\n WITHIN BASICDATAAREA.");

/* IHE NEXr SECTION WRITES THE ITEMS FOR EACH RECORD. *

ibeqin = (*tbeqin).to_ itemns;

* while (ibeqin =U

if (U(*ibeqin).typ 1='T') && ((*ibegin).typ R'))

fprintf(fp, \n %.s TYPE IS ",(*ibeqin).iname);

if ((*ibegin).typ == C')
fprintf(fp,"CHARACIER Yd.",(*ibegin).size);

el se
* if((*ibegin).typ 1 I)

fprintf(fp,"INTEGER.");
el se

fprintf(fp,"REAL.");

'begin = (*ibegin).nitem;

tbeqin = (*tbegin).ntable;
fprintf(fp,"\n");

Figure 2.2a Page 2of 3.
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/ ****-****- . N-. .-K.-K.X,-X*- KX****-*-.--************************* ****** ** *************i

/* */

/* THE NEXT SECTION PRINTS THE 7?OINTER RECORD. THIS RECORD WILL ALWAYS */

/* CONTAIN TWO FIELDS FOR EACH TABLE IN THE DATABASE. ONE FIELD WILL */

/* BE AVAILABLE FOR A GIVEN RECORD'S CURRENCY POINTER, THE OTHER FIELD */
/* WILL BE AVAILABLE FOR A LOGICAL POINTER FOR A GIVEN RECORD. */
/.* */

fprintf(fp,"\nRECORD NAME IS DNs",schem)z

fprintf(fp,"\n LOCATION MODE IS VIA SYSTEMDNs",schem);

fprintf(fp,"\n WITHIN POINTERDATAAREA.");
fprintf(fp,"\n Ds TYPE IS INTEGER.",schem);

tbegin = start;
while (tbegin '= 0

fprintf(fp,"\n Ns TYPE IS INTEGER.",(*tbegin).aname);
fprintf(fp,"\n As TYPE IS INTEGER.",(*tbegin).aname);

tbegin = (*tbegin).ntable;

return;

END OF THE RECORDS ROUTINE

Figure 2.2a Page 3 of 3.

Figure 2.2a The records Routine C Code.
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sets(startschem,fp)

* JOSEPH AULINO */

/* DAVID PROJECT */
/* MAY 1985 */
i * *1

'* THIS PROCEDURE WRITES ALL OF THE SETS NEEDED BY A SCHEMA. */
/* IT DOES THIS BY FOLLOWING THE LIST POINTED TO BY START. *1
/* THE RELATIONSHIP OF RECORDS IN THIS LIST WAS DEVELOPED BY */
/* TiHE ROUTINE RELATE. IT WAS IN THAT ROUTINE THAT CORRECT */
/* SET MEMBERSHIP WAS ESTABLISHED. */
/. *

/* LOCAL VARIABLES: */
1 e *

/* 1. begin - USED TO TRAVERSE THE TABLE STRUCTURES. */
/* 2. foallow - USED TO TRAVERSE THE TABLE STRUCTURES. */

/* 5. hooky - USED TO TRAVERSE A HOOK STRUCTURE LIST. */

struct table *start;
char schem[];

FILE *fp;

struct table *begin, *follow;
struct hook *hooky;

begin = start;

/. */

/* NOW FOR EACH MEMBER OF THE LIST THE CORRECT SET IS CREATED. */
/. */

i * ** *******************************************************i

fprintf(fp,"\n");
while (begin 1= Q)

if ((*begin).-forsets == 0)

*I* *i/

/* IN THIS CASE THE SET IS "SYSTEM" OWNED. */
/. */

* / ******************************************/

Figure 2.2b Page 1 of 3.
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fprintf(fp,"\nSET NAME IS SYSTEM_%s*, (*beqin) .aname):
fprintf(fp,"\n MODE IS CHAIN LINKcED PRIOR"):
fprintf(fp,"\n ORDER IS SORTED");
fprintf(fp,"\n OWNER IS SYSTEM");
fprintf(fp,"\n MEMBER IS %s MANDATORY OUTOMATIC",(*beqin).aname);,
fprintf(fp,"\n LINKED TO OWNER");
fprintf(fp,"\n ASCENDING KEY IS";
if ((*begin).to key == U)

fprintf(fp,"Xs",(*(*begin).to _items).iname);
el se

fprintf(fp,"Xs",(*(*beqin).to_key).iname);
Itfprintf:(fp,"\,n SET SELECTION IS T1IRU CURRENT OF SET.\n");

el se

hooky = (*begin).for_sets;

/* IN THIS CASE, A SET WILL BE CREATED FOR EACH SET OF WHICH *
/* THIS RECORD IS A MEMBER. *

while (hooky '=0)

follow = (*hooky).atab;
Fprintf(fp,"-\nSET NAME IS")
fprintF(fp,"X"s_%s",(*follow).aname,(*bein.ana3me);
fprintf(fp," ,n MODE IS CHAIN LINKED PRIOR");
fprxntf(fp,"\n ORDER IS SORTED");
fprintf(fp,'\n OWNER I3 %s",(*follow).aname);
(print! tfp,"X n MEMBER IS Ys MANDATORY AUTOMATIC"j(*beqxn).aname):

fprintf~fp,"\n LINF'ED TO OWNER");
fprxntf~fp,"\n ASCENDING KEY IS")
if ((*begin).to key == C0

fprintf(fp,"Ys",(*(*beqin).to items).iname);
el se

fprintf(fp,"7s",(*(*begin).to_ key).iname);
fprintf(fp,"\n SET SELECTION IS IHRU CURRENT OF SET. sn");
hooky =(*hooky).nhook;

Figure 2.2b Page 2 of 3.
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begin = (*begin).ntable;

/* END OF THE OUTSIDE WHILE LOOP */

/ * ******************************************************************

/. */

/* THE LAST SECTION OF CODE PRINTS OUT ONE SPECIAL SET. THIS SET */

/* WILL BE USED TO HOLD POINTER INFORMATION ABOUT EACH RECORD AND */

/* SET. */
/* */

/ ****** *************************************************************

fprintf(fp,"\nSET NAME IS SYSTEMDNs",schem);
fprintf(fp,"\n MODE IS CHAIN LINKED PRIOR");

fprintf(fp,"\n ORDER IS NEXT");
fprintf(fp,"\n OWNER IS SYSTEM");
fprintf(fp,"\n MEMBER IS DNs MANDATORY AUTOMATIC", schem);

fprintf(fp,"\n LINKED TO OWNER");

fprintf(fp,"\n SET SELECTION IS THRU CURRENT OF SET.\n");

return;

/***** END OF THE SETS PROCEDURE.

Figure 2.2b Page 3 of 3.

Figure 2.2b The sets Routine C Code.

62



subscm(schem,dname,fp)

/* JOSEPH AULINO */
/* DAVID PROJECT */
/* JUNE 1984 */

/* THIS PROCEDURE CREATES A SUB-SCHEMA FOR ANY DATABASE DEFINED. */

/* THIS SUB-SCHEMA WILL BE VERY SIMPLE AND MERELY OPEN ALL SETS */

/* AND RECORDS FOR ACCESS. IT TAKES IN THE SCHEMA NAME (schem), */

/* THE SUB-SCHEMA NAME (dname), AND THE FILE (fp), TO PUT THE */

/* OUTPUT INTO. */

FILE *fp;
char schem[], dname[];

fprintf(fp,"\nSUB-SCHEMA NAME IS %s FOR FORTRAN", dname);

fprintf(fp," OF SCHEMA %s.",schem);

fprintf(fp,"\nRECORD SECTION.");
fprintf(fp,"\n COPY ALL RECORDS.");

fprintf(fp,"\nSET SECTION.");
fprxntf(fp,"\n COPY ALL SETS.\n");

return;

END OF THE SUBSCM ROUTINE

Figure 2.3 The subecm Routine C Code.
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CHAPTER 3. QUERY TRANSLATION

3.0 INTRODUCTION

This chapter deals with the automatically generation of program used

to translate the basic queries. Fortran programs are used to interface with

SEED. C routines are used to generate this Fortran. There are 4 such

routines:

1. FIRST WHERE;
2. NEXT WHERE;
3. GRASP;
4. FILER;

First, section 3.1 gives examples of each of 4 Fortran routines which might

be created. Section 3.2 contains the block descriptions of the C code and

Fortran code it creates. In section 3.3, the technical description of the C

and Fortran code is given. Lastly, section 3.4 gives the actual C routines

used to generate the Fortran code.

3.1 AN EXAMPLE

This section contains one example of each of the automatically

generated programs produced for the purpose of query translation. The

examples are the routine which would be created for the non-recursive DBL

schema example of section 1.1. The first such program is the "FIRSTW"

routine. As stated previously, its purpose is to get the first instance of a

database meeting certain criteria. An example of this is in figure 3.0a.

The next example is the NEXTW routine. This finds the next

occurrence of a set of records in a database meeting certain requirements.

The corresponding example of this routine is in figure 3.0b.

The next example is the GRASP routine which would be generated for
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the same database. This routine is illustrated in figure 3.1. The Grasp

routine, you will notice, has a different control structure than the FIRSTW

and NEXTW routines.

The last example is for the FILLER routine found in figure 3.2. This

routine uses a control structure similar to that of the GRASP routine. Note,

however, the difference in the number of items of interest here.

3.2 THE GENERAL METHODOLOGY

This section gives the block descriptions of code to query the data base.

This includes descriptions of both the C and Fortran code.

First, is a block description of the Firstwhere and Nextwhere code.

These two routines are described together because of their similarities.

Because of the similarities in these two routines, only a flow chart for

firstwhere has been included. It is in figure 3.3.

The first thing done is a file is opened (either FIRSTW.F or

NEXTW.F as appropriate). Next the overhead information is output to the

rile. This information includes local variable declaration, parameter

declaration, subroutine header information, and a common statement. In

FIRSTW, the main part of the program is now created. However, in

NEXTW, the next thing made is a "GO TO" statement to the line where

execution should begin. At this point, the main body of both program can

begin.

The program are created by traversing the schema structure. At each

table structure, a fetch is generated (either through child or parent as

appropriate). Also, if the particular record owns one or more recursive

records, a fetch is created for each of the recursive records through the

record in question. After each fetch has been generated, a call to FILTER
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is generated and the appropriate loops are generated. These loops are

explained more fully in the next section and can be understood by examining

the appropriate flow charts. Also, if a fetch is generated on any recursive

records, the appropriate variables are saved in the proper locations. Next,

the return and end statements are generated. Lastly, the file (FIRSTW.F or

NEXTW.F) is closed.

The GRASP routine creation also requires the traversal of the Schema

structure. A flow chart for the grasper routine (which created GRASP) is in

figure 3.4. To begin this routine, a file is opened (GRASP.F) and overhead

information is written. Alter the overhead information, comes the

terminating test for the loop. This is followed by creation of the computed

"GO TO" statement. Now the Schema structure can be traversed and the

subroutine written. At each table structure of the subroutine, a fetch (via

currency pointer) is generated. Once all of the table structures have been

visited and the proper fetches generated, a go to statement is created sending

control back to the termination condition line. Finally, the return/end

statements can be generated and the file closed.

The FILER code creation is very similar to the GRASP code creation.

It is created by the outpt and filwrite routines whose flow charts are in

figures 3.5a and 3.5b respectively. Again a file is opened and overhead

information output. This is also followed by the creation of the loop

termination statement and the computed "GO TO" statement. In this case,

there is more of the main body of code to generate. The main body again

is created as the schema structure is traversed. In this case, however, the

item structures must also be traversed. At each table structure, output

statement are created for two fields (the currency and logical pointers). At

each item structure, output statements are created for every non-table field
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of that record. Statements are also generated to output field of recursive

records without any additional calls to the routine. Once this has been

accomplished for the entire schema structure, a "GO TO" statement is

generated to return control to the loop termination line of code, the

return/end statements are created and the "FILER.F" file is closed.

The FIRSTW and NEXTW routines are the first Fortran routines

discussed. Flow charts for example FIRSTW and NEXTW routines are in

figures 3.6a and 3.6b respectively. These two routines are discussed together

because of their aforementioned similarity. The first record selected is the

first record listed in the DBL schema. A check is immediately made to see

if an error was made in selecting this record (ERRSTA is checked). If an

error was made, control returns to the code for the last record selected (to

the calling program if it's the first record). If no error was made, FILTER

is called and the record is checked to see if it meets the required criterion.

If not, the next record of this type is selected and the process is repeated

until a record is found or ERRSTA =/= 0 (end of file). If a record is

found, the next type of record is selected. The process is repeated until one

type of each record has been selected or it is not possible to satisfy the

selection criterion in the database. Control then reverts to the calling

program.

The grasp routine is the next routine to be discussed. its

accompanying flow chart is in figure 3.7. The grasp routine is controlled by

a while loop implemented by standard "GO TO" statements and a computed

go to statement. It takes in a vector of integers corresponding to the

records to be selected. These records can then be selected through their

currency pointers. It is assumed that the currency pointer for a record to

be selected is in the appropriate variable which is then used as a parameter
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for the call to the subroutine. The routine terminates when a zero element

is found in the vector.

The FILER routine is quite similar to the GRASP routine as is evident

from its flow chart (figure 3.8). This routine is controlled in the same

manner as the grasp routine. It does, however, have more possibilities in its

computed go to statement. The fields selected for output are output to the

same line and a line feed is output after the last record has been written.

Fields which may be output include all fields of all records and the pointers

(either currency or logical) for each record.

3.3 A DETAILED DESCRIPTION

This section is logically divided into two parts. First is the technical

description of the C code and then comes the technical description of the

Fortran code. The description of the C code will cover the main routines

used in producing the Fortran routines. The remainder covers the Fortran

routines produced by the C code.

The FIRSTW routine is created first. Creation begins with the opening

of a file to contain the created Fortran code. A pointer to this file along

with a pointer to the Schema structure is then passed to the firstwhere

subroutine. This is where the actual production of Fortran begins. It starts

with the output of the subroutine name and the parameters passed in. In

this case "SUBROUTINE FIRSTW(N,TEST)". This is followed by the

declaration of the variables... "INTEGER TEST,N". This is followed by

creation of the "counter" variables for this program. This done by the

"declarer" subroutine. This is followed by a call to the "commons"

subroutine creating the necessary commons statement.

Upon return from generating the commons statement, the counter
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variables are initialized. There is one counter variable for each record in

the table (including one for each recursive record). They are generated by

traversing the schema structure and generating them as you go from table

structure to table structure. These were declared earlier by declarer (see

section 1.4 For details). These statements are written to initialize the

counters to either the first logical pointer (in FIRSTWHERE) or the current

logical pointer (in NEXTWHERE). The counters are named here as they

are in "declarer" (see section 1.4 for details). The basic initialization

statement is output as:

"fprintf(fp,"\n C%s = I",(*begin).aname)"

In the case of the recursive occurrence:

"fprintf(fp,"\n C%s%d = 1 ",(begin).aname,
(*begin).rcnt);"

generates the correct statement. In this case, rcnt is decremented and the

statement is repeated until rcnt = 0. When rcnt reaches zero, the loop

terminates and rcnt is reset with the statement "(*begin).rcnt -

(*begin).typr;"

At this point, the generation of the go to statement of the NEXTW

routine is explained. This statement is necessary to ensure execution begins

in the correct spot. Back in firstwhere, a variable called "count" keeps

track of the current line number being written. This would include counting

lines for those records selected through their parents but not for those

selected through their children. When the "GO TO" statement for beginning

the execution of the Nextwhere routine is to be created, a subroutine called

"findgo" is called. This counts all table structures whose relat field is not

"C". This count * 4 - 3 is the exact amount count would be too great if

there are any fields selected through their children. This figure is then
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subtracted from the "count" amount (which is returned by the firstwhere

routine) and the go to statement can be created. The only other difference

between the two programs is that firstwhere returns the value count and

nextwhere does not.

Next, the statements to fetch data can be generated. To generate the

fetch statements, the schema structure is again traversed. At each table

structure, the correct statement is generated based on one of three

poesibilities [10):

1. The record is being fetched as a child of some other
record.

2. The record is being fetched from one of its children.
3. The record is being fetched is recursive and being

fetched from one of its parents.

The first possibility occurs when the table structure has relat field of "C'.

In this case, the code for the proper select is created by the "own" and

Rownwriter" routines. The "own" routine generates the find statements and

determines the sets owner (for selection purposes). The "own" routine takes

the following arguments:

1. fp - a pointer to the outout file;
2. begin - a pointer to a particular table structure

in the schema structure.
3. follow - the value of the (*begin).forwrite field. S

4. adder, count, last - used in numbering lines.
6. swap - used with recursive records:

'1' - if some variables in the Fortran code need
to be saved.

"0" - otherwise.

Either the owner is pointed to by (*begin).for_write or the owner is

"SYSTEM". The value of (*begin).for_write is passed into the routine in the

"follow" variable. Following this, the ownwriter routine is called and the

remainder of the needed code is generated.

The "ownwriter" routine takes the same input arguments as the "own"
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S1 .NE. 1)~ GO TO 9999

F,, f URFN

LiND

Figure 3.1 Page 2 of 2.

Figure 3.1 An Example GRASP Routine.

74



W-DBROUrINE GRASF NRS,N, TE3_T>

LWIEGER NRS,N,X,TEST

CUI-WION/ LWON ,-41E ,C I ~I, Z IF', NHDSF' I IAL , AHOSP'I TAL, 10SF, I T. AL,
1-,SI EM f IUSF I TAL, ORNME, DRNR, NDOC TOR,

ADOL10R,D0E[OR,H0SPITLDOCT0R,BEDN4UM,WAFD,
NBEEDNR, S.E(EDNF * E4ED)NR, HAUSF I TAL _D3EDNR, ,F'NME,
DI3EASE,AGE,S-EX,VII,NFATIENTpFATIENT,FAT HItr,
L)UC [ORF-F gI EN F,
ERRS 1 A, Lh:RECT ,CRRUNU CRCALC , DE

JEST =I

I I

IF tNR'S(I) .EL. _)) (30 TO 9999

N,4F.'S (I )

CALL F INDDNHOSF1TA~L)
IF kERFkTA .NE. o) GO TO 9999
L"~LL GETMOHSPI UAL)
IL'3I FfLrER(1)
'F f E31I NE. I)130G TO Y999

Iu '9(

_-iLL FINDDiPNDuiCTOR.'
IF -,EFRvsrA .NE. C)) GO TO 9999
_"LL GEr(DOCrOR)
JEST FILrER2

IF 1E-I . NE. I GO ! 0 q999
i 0 97

-ALL F INDDrj.NFEDNR)
.F 'tLkF'SI. NE. (-) G0 TO 9999
_i-LL GET (EEDNR)
ES1 = FILTER(3)
F: l EST .NE. 1) GO0 TO 9999
dl0 10 9990

AILL FINDD NF'AT ENT)
F (ERF'SF4 .NE. () GO TO 9999
ALL GET(Fgd LENT)
Eisr FILIERP(4)

Figure 3.1 Pag I of 2.

73



CA~LL FINDV(H0SPIT#ALEEDNR,NEXT)
CBEDNR = CBEDNR + I

GO TO 9
NUEDNR = CBEDNR

ASGEUNR L UFRkNT (HOSFI TAL _ EEDNR)

CALL FINDV(DOCTORFAT1ENT,FIRST)
IF (EFRSIA NE. f,-) GO TO 10

CA~LL GETWFT I ENT)
TEST = FILTER(4)
IF (TEST .EO. 1) SO TO 15
CALL FINDY (DOC rOR _FTIEN r,rEXT)

CFPTIENT = CFATIENT + I
GO TO I-,

NPATIENT = CPATIENT
APATIENV CURRNT(DOCTOR PATIENT'

RETURN

END

Figure3.Ob Page 2 f 2.

Figure 3.Ob An Example NEXTW Routine.
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3UEBkOUTINE NEXTW(N,TE-3I-

I.NrEGiER TEST,N

INTEGER~ C.11LDLF FAL ,CDtCTOR ,CBEDNR,GFATIEN

LG~i0N~-i~*;~rE~iI 'ZIP NHOSFI b-AL, AHOSFI VAL,HOS-FI IAL,
5--"'S1EM -HOSFIl-L,DRNAME,DR.NR,N4DOCTOR,
ADOC EOR,DC-rOR,HlOSPF L -LDOCTOR,4EDNUM,WI-1 RD,
NBEDN4RAEEI4R,BEDNR,HOSF'ITcALBEDNR,FNtME,
LDISEASE.A6E,SEX ,YIT-3,NFATIEN4T,AFATIENT,F-'ATIENT.
DocrOR.F'ATIENT,
EFRS F -,CRREC V ,C RRUNU,CRCALC,D4

L I OSF'I T(L = NHOSF I TL
CDOCrJR = NDOCTOR
LEBEDNR = NBEDNR
CPgTi EN I =NFPAT ENT

GO ro I (-

CALL FINDV(SYSTEM H0SPITAL,FIRST)
IF ,EF-,RSTA .NE. (--) GO TO 9999
CAZLL GET (HOSPITAL)
!ESF FILIER%1)
IF (TEST .ED. 1) GO FO
CALL F1tI'DV' "3TSEM H!OSPITAL,NEXr%
CHOc-FIrVIL =CHOSPITAL v- 1

NI4OSPITA2L = CHOSFITPAL
AHD'SF ITAL = LLIRRNT (SYSTEM -HOSF' I TALI

i.-LL F INDY(1111K,-F'ITAYL -DOCCOR, F IF:ST
IF EFRSIA WF-. -)t L T L
L"-LL GL r hLUZL I Oif,'
I SFz -IL rP
IF tJEST .EL. 1) LGO TO 7
t,L.L FIrD UF TLDOCIOR,rlEXT)

LOOCTOR =CDOCrOR + 1
GO 1O 5

r [D~cOR = CDOCTOR
,,DIW bR =CURRNT (HOSF'11 [HL DOE FOF:,

I.LL FlINOV (ILl-2ISEi 4-L EDED!4R 1,F1RST)
V EPPSF'5 NrE. Gd[i 6

1 ILL 0E T ,. [:L~r[I.

L'.-LGI . LU. 1I L 0 F I I

Figure 3.Ob Page 1 of 2.
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CA~LL FINDV(HOSPITAL _EEDNR,NEXT)

CBEDNR = CEBEDNR + I

GO ro 9
NDEDNR LEIBEDNR

ABEDNR =CU,F.PNT tf10SF1 rAL_1LEL~r4R)

CALL FINDV(DIJCTOR F'ATIENT,FIRSI)
IF .ERRSTA NrE. -0) 30 f] 1o

CALL tET(FATIENT)
IESF - ILTEIF(4)
IF (1EST *EQ. 1) GO T0 15

CAILL F INDvY(DUCT0R-FF ~I ENT, NEXT)
CPATIENT = LFATIENT 1- 1

GO ro 1-7
NF'ArIENT = LPATIENT

AF'AFIENT = UFRRNTDOCTORFATIENT)

199 RETURN

END

Fiur 3.Oa Page 2 of 2.

Figure 3.Oa An Example FIRSTW Routine.
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SUB~ROUTINE FIRSTW(N,TEST)

It4rEGER TEST,N

INTEGER' CIIOSPFI TAL,CD0CT0R,CBEDNRCPATIENT

CC-JMMCON,'ENt/AE I-YZPNHSIT AHSIA4VOS'L,
* SYSTEM HOSPITAL,DRNAMEDRNR,NDOCTOR
* MDOCTFOR ,DOCTOR,HiOSPI TALDOCTOR ,BEDNUM,WARD,
* ~NEEDNR , BEDNR1 BEDNR ,HOSP I TAL EDNR,F'NAME,

* DOCTORFATIENT,
ERRsrA~,CRREcr,CRRUNU,CRCALC,DB

CH OSP I TA = 1
CDOCTOR 1
CBEDNR I

CPATIENT = I

CA~LL FINDV(SYSTEM [IOSPITAL,FIRST)
IF (ERRSr~ .NE. 1f11 GO TO 999
CALL GETMfOSF'ITAL)
IESU = FILTERWl
IF (TEST .ED. 1) GO TO

CAWLL F INDJy"t S-rSTEM --HOSPI TAL, NEX T)
L-:1HOSF I TAL LHOS I TAL +- 1
60 To1 I
'41i105F I TAL = C]UJ-F I TrAL

"-mcSrI I HL = CULWRN f CK3'KS FEM-HOCR! ;z-L.)

CALL F INDVY4OSFITAL-DOCTOR,FIR '3T)
'F (EkW'iA .hL. ': L 0 TO

t-.LGET (DOCTORF

IF 1)E~ .EC0 O 7
1. #, L. L F 1 11 j P3FI I AL IjOC TOR,rJEX V)
LDOC FOR CUOLTUR +-I
7TO
NDOCTOR =CDOCTOR

ADO~CTOR =CURRNT(HOSPIrAL DOCTOR)

CALL FINDV(HOSPITAL EBEDNR,FIRST)
IF *EF<RSTA .NE. i-) GO 10 6

CA2LL GET (EUEIPJF
TEST IL ( F
IF (MUST .L0. P GO TO 11

Fiur 3.Oa Page 1 of 2.



The last and major difference with this routine is the number

correspondence scheme. There are many more "cases" here than there are

in the GRASP routine, consequently, the numbering scheme is more

complicated. "1" corresponds to the currency pointer of the first record in

the DBL schema. "2" corresponds to the logical pointer of the first record.

Assuming this particular record has n fields, the next n numbers will

correspond to the n fields of the record. The number n+I corresponds to

the currency pointer of the next record listed in the DBL schema. The

number n+2 corresponds to this record's logical pointer, etc. An exception

occurs if a record owns a recursive occurrence of another record. In this

case, before the next record gets assigned a number correspondence, the

recursive occurrence gets its numbering assigned. Then by loading the NRS

array with the appropriate numbers, the desired variables will be printed.

Again the termination condition is a 0 in the NRS array with the looping

structure the same as for the Grasp routine. Before returning to the main

program however, a "line feed" is output so any additional calls to this

routine will have output on the following "lines".

3.4 THE CODE

This section contains the code for the main "C" routines described in

this chapter. The specific routines contained here are the "firstwhere",

"nextwhere", "grasper", "outpt", and "filwrite" routines. These do the tasks

explained in the first four sections of this chapter. The firstwhere and

nextwhere routines appear in figures 3.9a and 3.9b respectively. The grasper

routine appears in figure 3.10. and the outpt and filwrite routines appear in

figures 3.11a and 3.lb respectively.
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parameters and has the same control logic as the GRASP routine. The

same variables must be checked upon return to the calling program. The

differences with this program are what this routine actually does, the number

correspondence for the computed go to statement, and the lack of any error

checking. I will discuss each of these features separately below.

The first difference is what is done. Here appropriate variables are

output one set per line. By set here, I mean, the entire result of one call to

this routine. An appropriate variable could be any field of the database, any

currency pointer, or any logical pointer. These variables must be assigned

reasonable values if reasonable results are to be expected. The output is

controlled with format statements. The format descriptor is as given in the

DBL schema with appropriate conversion to match the Fortran requirements.

The only punctuation here is that variables are output with one space

between each. An typical example for a currency pointer might be:

"2 WRITE(6,3) NHOSPITAL
3 FORMAT('+',IX,II0)

GO TO 9990"

An example for a character field might be:

"4 WRITE(e,5) NAME
5 FORMAT('+',IX, A30)

GO TO 9990"

These illustrate precisely what the typical statements look like and how the

output is controlled.

As you can see from above, there is no error checking for these

statements as there is in the FIRSTW/NEXTW and GRASP routines. This

is because these statements cannot really fail. The output can be "garbled"

if the user does not ensure variables to be output have reasonable values

before using this routine. It is suggested that this routine be used only after

using FIRSTW, NEXTW, GRASP, or the initial loading of the database.
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The next line is a computed go to statement. It is controlled by the

value of the NRS(I) location. The numbers in this array must correspond to

the records in the database as follows: The first record in the DBL schema

corresponds with the number 1. If this record owns any recursive

occurrences of any records, the recursive occurrences get the next numbers in

the order they occur. The next record in the schema then gets the next

available number with any owned recursive occurrences being numbered as

before. This process is repeated until ail records have been numbered. In

this way, a unique integer can be assigned to each record. Then the number

corresponding to each record can be loaded into the NRS array and when

NRS(I) = that number the computed go t(, will direct control to the correct

statement. The NRS array must contain 0 as the last entry to terminate

the loop.

This is followed by the CALL FINDD statement for each record type

(including recursive occurrences). The argument to the FINDD subroutine is

the currency pointer established in the FIRSTW/NEXTW routines. This

does not imply, these routines have to be run to use this routine. The only

requirement is that the N type variable have the correct currency pointer.

Both ERRSTA and TEST are tested for success. If they fail control goes to

statement labeled 999. This is the return statement. If they both succeed,

control goes to statement 9990. In that case, the following is executed:

9990 1=1I+ 1
GO TO I

This increments "I" and control passes back to the termination test. When

one of the termination conditions is finally reached, control goes to line 999

which is the return statement. Control then returns to the calling program.

Finally, the FILER routine is detailed. This routine takes the same
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record there is no successful selection. Records may be selected by their

parent or child. If being selected from their parent, a FINDV is used with

the set name and either the word FIRST or NEXT (whichever is

appropriate). The same is true for selection through children except the call

is made to FINDO.

After a selection has been made completely successfully or has been

shown to be a complete failure, control returns to the calling program. Here

it is essential the user checks the value of the "TEST" and "ERRSTA"

variables to determine if the selection was successful or not.

The G.A,,,P routine takes in three arguments: "NRS", "N", a I

"TEST". "NRS" is a one dimensional array of integers, "N" is the size of

this array, and "TEST" is as in FIRSTW. NRS can have integers between

0 and the number of records in the database. The numbers in the different

positions of the NRS array correspond with the records of the database. The

exact numbering scheme is explained below.

As in FIRSTW, the arguments are declared, however here there is no

need for the counter variables. The same common statement appearing in

all the subroutines again appears here. These statements are followed by

initializing the local variable I to 1. This will be used to index into the

NRS array. After this the main part of the code can begin.

The next line is an IF statement controlling the program. It

implements a while loop. The statement which follows it will be executed

until NRS(I) = 0. This is the termination condition. When this occurs, the

return statement is executed and control returns to the calling program.

Control will also return to the calling program if "ERRSTA" ever becomes

non-zero or if TEST ever becomes zero. So again, the calling program must

carefully check these variables when control finally does return.
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have been assigned and there may not be a currency value for some record.

Beyond the arguments, there are the local variables formed by

appending a "C" to the front of the appropriate record name and an integer

to the back of the name in the case of recursive records. These will be used

5to count for the logical pointers. The common statement contains all

variables referenced in the UWA. This includes the currency pointer

variables and the logical pointer variables. [mmediately after the common

A statement, comes the initialization of the counter variables. In the FIRSTW

routine, they are initialized to zero. In the NEXTW routine, they are

initialized to the current value of the logical pointer. This value of course

comes in through the logical pointer in the common statement.

In the NEXTW routine, once this has been done a go to statement is

executed. This statement takes control to the last record selected by the

last call to either FIRSTW or NEXTW. The next record of this type is

then called on with a CALL FINDY. If this call is successfully executed (by

success conditions on both ERRSTA and TEST) the program then returns

successfully. If not, control passes to the CALL FINDV of the next to last

record selected and the next of this type of record is called upon for

selection. This process continues until a successful selection has been made

or until all records (up to the first one) have been unsuccessfully selected

and then the main program gets a return of failure.

In the FIRSTW routine, it is just the opposite. Control starts with the

outer most record. If this fails, a return of failure occurs. If it is successful,

the next record down is attempted. If this record fetch fails, control goes

back to the first record but now the NEXTW one of this type is called

upon. This process repeated over and over until one complete instance of

the cluster has been successfully selected or for every instance of one type of
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Filr, ikegrasp, is created by one pass through the schema structure.

Here hoeve, te otpu islonger. There must sufficient output statements

to utpt bth he oinersforeach record (currency and logical), plus the

valu ofeac fild f arecrd.This is accomplished through the traversal

and simple creation of the necessary statements. The only detailed point

here is that the output is done using "WRITE" commands and "FORMAT"

statements. The size and type information for the format statement exists in

the appropriate "ITEM" structure.

Having given the technical description of each of the C routines

applicable to this section, the equivalent description of the created Fortran

*routines follows. This second part of this section, begins with a description

of the FIRSTW and NEXTW routines.

These routines takes as arguments the variables N and TEST. "N" is

* the number of records (including the recursive occurrences) in the database.

"TEST" will be used to return a value. Upon return from the FILTER

routine, "TEST" will contain a 0 or 1 depending on whether or not the

query was successful. On return to the calling program both "TEST"

"ERRSTA" must be checked ("IERRSTA" for zero and "TEST" for one). A

fadl on "ERRSTA" indicates that the DBMS had some "problem" doing the

* requested select. The precise reason can be found by printing out the error

message associated with the number or looking up the number in a SEED

manual. A fail on TEST indicates that the FILTER criterion failed. If

* either fail, then the query was unsuccessful and the reason for its lack of

success can be determined by the value of the failing variable. Note here,

that if FIRSTW returns a failing condition for any reason, NEXTW should

*not be called. Most likely, no harm would be done by calling NEXTW

however the result is indeterminate since pointer values may or may not
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recursive record. As the schema structure is traversed, the above two cases

jd are checked as each table structure is reached and the appropriate code is

generated. After that is accomplished, the "rhook" field of the particular

table structure is checked. If this field is not zero, the record it represents

is the owner of one or more recursive records. If this is the case, the list of

"hook" structures pointed at by the rhook field is traversed. For each of

these, code is generated to swap the necessary variables and own is called to

generate the find and other needed statements. After this, the return and

end statements are generated, areset is called to reset the rcnt fields and

control returns to the main program. Here the file in question is closed and

the next subroutine is called. In the case of Firstwhere, the value of

"count" is returned for later use in Nextwhere. In nextwhere, nothing is

returned.

The "grasp" and "outpt" routines have a technical description almost

identical with those of the C routines described in the next chapter. The

only real difference is the precise wording of the output. In this section

then, only a slightly more precise description of these routines is given. For

more detail, the next section and the actual code should make this routine

clear.

For the grasp program, the schema structure is traversed and one select

(using the currency pointer) is created for each record. There is no need

here to worry about most relationships. The currency pointer indicates

precisely which record is to be selected. In the event of a recursive

occurrence, the correct record (the original or recursive) will be selected as

this is uniquely determined by the currency pointer. However, if you wish

to select an original record and a recursive occurrence then two calls must

be made to grasp. One to select each record.
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routine. It consists mainly of the print statements to create the actual

"find" statement needed.

As is evidenced here, when the execution gets here most of the

decisions have already been made. The only thing which really needs to be

done is to output to the file the necessary Fortran code. Two decisions

which are not obvious which are made here deal with the parameters swap

and last. If last is =/= 0, then it contains the line number for control of

i the Fortran to go to in the event the "FINDV" returns an errsta =/=0.

On the other hand if last == 0, then this is the first record being selected

and by convention here, the "go to" will be to line number 9999 the last

line number in the program. The second decision deals with swap == 1 or

swap == 0. If swap == 1, the record being selected is a recursive record.

In this case when the Fortran code is executed, the variables filled by

fetching the original record will be overwritten. To prevent this, code is

generated to swap the values in these variables to other variables. The

variables the values are swapped to are named with their rcnt number as

described in section 1.4. A test for "ERRSTA =- 0" is also created here.

This is done so that the swap will take place only when absolutely necessary.

The second possibility is that the record we want to write the "FIND"

for is being "selected" from one of its children. In this case, the subroutine

"ownee" is called. "Ownee" takes almost the same arguments as "own"

(except swap). As in the "ownwriter" routine, the code here is mostly print

statements. Here swap is not needed because as the schema structure is

built in relate, it is not possible for a recursive record to be selected via

anything except one of its parents. This being true if a record is selected

through one of its children, it cannot be a recursive occurrence.

This leaves only the possibility that code is being created for a
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j Q-UE4ROUIINE FILER(NRS,[A)

INTEGER N,NRS(N) ,1

,YLOMMON D~rJ*: NAME, C I Pe, ZIP, NHOSF I TAL, AHOSFI TL, HOSF I AL,

2ST Lt I -HOS TL, DRNAME, DFNR, NDOCTOR,
FHDOCTOR,DOCTOR,HOSPITAL DOCTOR,EBEDNUM,WARD,

*NBEDN-R, AEDPR,4EDNR, HOSI TL_EDNR, FNAME,

* DOC TOR PAT~IENT,
* ERRF.S I A ,CRREC rT, CRRUNU , IZFCgLC, ,

1 IF (NRS(I) .EQ. (--) GO TO 99983

GO TO(,,,,01,4 5 3202,42,8:,2:,s 8
* 4()

* NRS ()

2 WRIIE(-,-T) NHOSFITAsL
F! CIRMATC*- , 1 (-))
GO0 TO 999C,

4 WFITE(6,5J) A~iU3:FlI AL
2F R r AT 1 X IX I1-))

WvJF1ILI E 7) NAME

F0: M A f I xY

50 TO 9990

1-' RFrE(6,17TJ NDOCTOR
* i F OFMATI + 'I X, I I ))

14 JWPIT E 61 S D ~OC C0 -

Figure 3.2 Page 1of 3.
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16~ WFITE(6,17) DRNAME

17 FORMAT( +',1X,Af-0)
GO TO 9990

13 WIIE(6,1'7) DRNR

is DGO TO 9990-

2() WRITE(6,21) NE4EDNR
21 FORMAT( +,X1)

GO TO 7990

tI 22 WRITE(6,2- ) AEDNR
LIT FORMAT( f',IX,110-)

GO TO 999C0

24 WRITE(6,25) ENU
25 FORMAT +', IX,I110))

* GO TO 9990

-6 WRITE(6,27) WARD
FORMAT( iA

GO TO 9990--

23 WRITE(6 ,29) HPA4TIENT
29 FOiRMAr('-',1X,Il1W)

GO TO 99

WRITE(6,71 AFATIENr

GO0 10 999f0

Figure 3.2 Page 2of 3.
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* -- WRITE(6,33) PNAME
-- FORMAT('+',IX,A30)

GO TO 9990

4 WRITE(6,55) DISEASE

-.5 FORMAT( ,1X,A20)

1 Go rO 9990

-.6 WRITE(6,-7) AGE
-7 FORMAT( +- iX,I13)

GO TO 99'70

S 38 WRITE(6,39) SEX
3 FORMAT( '+', IX,A1)

GO TO 9990

4() WRITE (6,41) 'ITS
41 FORMAT(' ' ,1X ,A80)

GO TO 9990

9990 I = I + 1
GO TO 1

?998 WRITE(6,9999)
j 9999 FORMAT('/')

RETURN

END

Figure 3.2 Page 3 of 3.

Figure 3.2 An Example FILER Routine.
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START

OFEN
F ILE

V

/ /

/ OUTPUT /
, OVERHEAD /

/ INFORMATION /
/

V

INITIALIZE

BEGIN =
S tAR r

~s~rxi

V, /

./ , / OUTPUT

BEGIN r -- INITIALIZATION /
=/= U_ / ,OF COUNTER

F
', V

BEGIN

BEGIN. NtABLE

V

Figure 3.3 Page 1 of 3.
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V

*, BEGIN =

*, STA2Rr

V / '\ /

/ \ / \ / OUTPUT /

BEGIN\-r--iBEGIN.',-1--->/ SELECT I
\== 0/ \RELAT / / VIA /

\ / \="C"/ / PARENT /

F F

V -
* ~ /

/ OUTPUT /
/SELECT /

, VIA CHILD /

S V
------- ---

S.) V

Figure 3.3 Page 2 of 3.
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V

H OO< =

BEGIN.ILOu

v
*/ \/ /

/ BEGIN \ / OUTPUT /
/.RHOOK \-r---> /SELEU.T OF /
\ =/= a_) / /RECURSIVE /

/ OCCURRENCE,'
', /

F

V -

', HOOIK= '

a HOOFK. NHOOt :

BEGIN - ----------

BEGIN. N tABLE

END

Figu 3.3 Page 3 of 3.

Figure 3.3 Flow Chart for firstwhere Routine.
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START

OPEN
F ILE

_V_
/ /

/ OUTPUT /

/ OVERHEAD /
/ INFORMATION /

/ /

V
/

/ OUTPUT START OF
/ COMPUTED GOTO
STAFEMENF

o,

EEGIN =

S I ART

Figure 3.4 Page 1 of 4.

81



V

V / /

\ / OUTPUT NR /
/BE 1IN\- - / FOR GOTO /
\-=/= ,c)/ / /

F V

TRAVEL=
(*BEGIN).RHOOV:

V

/ \/OUTPUT
/TRAVE!. \--T-- :/ NR FOR

, =/= 0- / / GO TO
•- --/ - /

F
: V

FRAVEL=
(*TRAVEL) .NHOOI:;!

* BEGIN

Es(EGIN).NrABLE

VV

v

Figure 3.4 Page 2of 4.
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BEGIN = START

)/

/ OUTPUT A
/BEGIN\--T---~ FINDD AND /

x~ =i~ui /Assoc sirirs/

F
V
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,twhere (start, fp)

OSEPH AULINO */
IAVID PROJECT */

lAY 1984 ,1
*/

HIS PROCEDURE CREAIES FIRSTWHERE (CALLED FIRSTW) SUBROUTINES. */
HE FIRSTW ROUTINES CREATED ARE USED TO EXTRACT THE FIRST
iCCURRENCE OF EACH RECORD IN A DATABASE WHICH MEETS CERTAIN */

RIrERIA. THE CRITERIA IS JUDGED IN THE FILTER SUBROUTINE */
WHICH IS CALLED BUT NOT WRITTEN HERE). THE ROUTINE TA[:ES AS */
NPUT A POINTER [HE MAIN DATA STRUCTURE AND A POINTER TO THE */

ILE USED FOR OUTPUT. IT RETURNS A VALUE CALLED "SET" USED BY */
:OUTINE NEXTWHERE TO DETERMINE WHERE EXECUTION OF THE FORTRAN */
'ROGRAM CREATED BY NEXTWHERE SHOULD BEGIN. */

,/

OCAL VARIABLES: */
*/

1. begin - USED TO TRAVERSE A LIST OF TABLE STRUCTURES. */
2. follow - USED TO TRAVERSE A LIST OF TABLE STRUCTURES. */
3'. contin - USED TO TRAVERSE A LIST OF TABLE STRUCTURES. */

4. travel - USED TO TRAVERSE A LIST OF HOOK STRUCTURES. */
5. adder - HELPS GENERATE THE PROPER LINE NUMBERS BY OWN */

AND OWNEE. */
6. count HELPS GENERATE LINE NUMBERS AS IN ADDER. */
7. last HELPS GENERATE LINE NUMBERS AS IN ADDER. */
8. swap - INDICATES WHEN FORTRAN VARIABLES MUST BE

F'ROTECTED FROM BEING OVERWRITTEN. *1
*/

ION- STANDARD SUBROUTINES USED: */
*/

1. commons - FOR CREATING THE NECESSARY COMMON STATEMENT. */
.wn FOR CREATING SECTIONS OF CODE FOR "GETTING" A */

RECORD GIVEN ITS PARENT. */
-rwnee FOR CREATING SECTIONS OF CODE FOR "GETTING" A */

REJCURD GIVEN ONE OF ITS "CHILDREN".
4. declarer USED TO DECLARE CERTAIN COUNTER VARIABLES. */
5,. areset USED TO RESET THE VALUE OF THE "TYFR" FIELD. */

ict table *start;
*fp;

ict table *begin, *follow;
tct item *contin;
ict hook *tra,.el
adder, count, last;
swap;

Figr 3.9a Page 1 of 4.
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*/

-IE NEXT SECTION OF CODE CREATES THE FINAL GO TO STATEMENTS *
qD rHE. END OF THE FORTRAN SUBROUTINE.

it f ( fp, " \i- '\ 99() I = I , "
itf (fp,'",n DO TO 1"):
-.tf (fp, 'n-,r, 9 93 WRITE(6,7999));
itf(fp,.'\n 9999 FORMAT(','')");
itffp,",n RETURNXn END'\nr\n");

t (start) ;

END OF THE OUTF'T ROUTINE

Figure 3.11a Page 3 of 3.

Figure 3.11a The outpt Routine C Code.
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ict table *begin;

i-ct hook *travel;
numb;

* * N-N 6 * N- N-N-N-N-N- N * * N--N N- -t -N- * * * * * *** * * * ,

7 IF<ST. THE SrArIC INFCRMATION, COMMON STATEMENT, AND ,,

])HER OVERHIEAD INFORMATION IS WRITTEN. *;

intF(fp,"\n',n SUBROUTINE FILER(NRS,N)");

intf (fp,"Ir, ,n INTEGER N,NRS(N) , I");
nons(start fp) ;
Lntf (fp, "'i I = I"q
intf(fp,'\rn',n 1 IF (NRS(I) .EQ. J) GO TO 99981);

writetstart,fp)

'IEXT, FOR EACH TABLE AND ALL FIELDS OF THAT TABLE A WRITE */
STATEMENT IS PRODUCED. IF A TABLE IS A LINK FOR A */
"RECURSIVE" TABLE, THE FIELDS OF THAT NODE ARE ALSO */

JUFrUT.

in = start;

le (begin 1= J)

filwrite(fp,beln,&nulnb) ;
if ( *begin).rhock = )

travel = (*begin).rhook;

while (travel != 0)

filwrite(fp,(*travel,.atab,&.numb);
travel = (*travel) .nhok;

oeqin (*begin).ntable;

Figu 3.1a P 2 of 3.
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tpt (start~fp)

JOSEPH AULINO */
DAVID PROJECT */
JUNE 1784

TfIIS PROGRAM CREATES A FORTRAN OUTPUT PROGRAM FOR EACH DATA */

BASE CREATED FOR FHE "SEED" DBMS. THE PROGRAM IS DESIGNED */
(CURRENTLY) 10 RUN IN A "UNIX" ENVIRONMENT. IT OUTPUTS THE */
REQUIRED FIELDS FROM THE DBMS (INCLUDING POINTERS IF
DESIRED). TIlE FORTRAN PROGRAM FAKES AS INPUT A VECTOR
"NRS" OF SIZE "N". THE NUMBERS IN FHIS VECTOR CORRESPOND */
TO FIELDS/TABLES OF 1HE DATABASE. FOR INSTANCE, 1 EQUALS */
[IHE CURRENCY POINTER OF FHE FIRST [ABLE, 2 EQUALS THE
LUGICA. L FOINTER FOR [IE FIRST TABLE, 3 EQUALS THE FIRST */
FIELD OF THE FIRST TABLE,...N EQUALS THE Nth FIELD OF THE */

FIRST FABLE, Nf EQUALS THE CURRENCY POINTER OF THE 2nd */
TABLE, N+2 EQUALS THE LOGICAL POINTER OF THE 2nd TABLE ETC. */
SHOULD THE APPLICABLE NUMBER APPEAR ANYWHERE IN THE "NRS" *1
VECTOR, IHE CORRESPONDING ENTRY WILL BE PRINTED AT THAT */
POINT. ENTRIES ARE PRINTED ON ONE ROW PER CALL TO THE
FORTRAN PROGRAM. THE TERMINATION CONDITION FOR THE FORTRAN */
PROCEDURE IS A "U" ENTRY IN THE "NRS" VECTOR. */

*/

LOCAL VARIABLES:

I. begin TRAERSES A LIST OF TABLE STRUCTURES. */

2. travel - TRAVERSES A LIST OF HOOK STRUCTURES. *I
nuLrsb USECD TO DENOTE A LINE NUMBER.

* /

NJON-3TANDORD SUBROUTINES USED:

1. commons - WRITES THE NECESSARY COMMON STATEMENT.
2. gotwrite WRITES THE NUMBERS OF THE COMPUTED */

GOTO STATEMENT USED IN THE FORTRAN *1
FROGRAM. /

~3. filwrite - WRITES ALL THE OUTPUT STATEMENTS USED */

BY THE FORTRAN PROGRAM. */
4. areset - RESETS THE "RCNT" FIELD OF EACH TABLE */

STRUCTURE AS THE LAST THING DONE IN THE */
PROGRAM. *1

rLct table *start;
LE *fp;

Fiug 3.11a Page 1 of 3.
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if ((*(*travel).atab).rcnt 0)
transf ((*travel).atab,fp);

fprintf(fp,"\n GO TO 9990\n");

if ((*(*travel).atab).rcnt != 0)
( *(*tr-a,el) .atab).rcnt---;

travel = (*traveI) .nhook;

3 1* END OF THE WHILE TRAVEL != 0 LOOP */
1 i* END OF THE IF BEGIN... */

begin = (*begin).ntable;

********* **********************************************/

* */

* LASTLY, THE LAST LINES OF THE FORTRAN PROGRAM ARE OUTPUT */
* TO INCLUDE THE FINISHING OF THE "WHILE" LOOP AND THE */
* RETURN STATEMENT.
* */

printf (fp,\n\n 9990 I = I + 1");
prlntf(fp,"\n GO TO 1");

printt (fp,"nmn 9199 RETURN");
printf (fp,"\n',n END~n\n") ;

reset (start)

et urn;

END OF THE GRASPER ROUTINE

Figur 3.10 Page 4 of 4.

Figure 3.10 The grasper Routine C Code.
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/* THE NEXT SECTION OF CODE GENERATES THE ACTUA~L FETCHES *

/* AND "GETS AS NEEDED. IT IS ALSO HERE THAT TRANSF IS *

/14 CALLED 1F NEEDED.

begin = start;

addon = 1;
numifb = ;

while (begin 1=0)

fprintf(fp,"\n %~d CALL FINDD.NY.s",nLumb,(*begin).aname);
if ((*1begiri).rcnt 1-0

fprintf (fp," Zd", (*begin) .rcnt);
f pr in t f(fp, ) ;
fprintf(fp,'\n IF (ERRST~ .NE. 0) GO TO 9999');
fprintf~fp,'\n CALL GET(%s)s.(*begin).aname);
fprintf(fp,'\n TEST = FILTER(*/'d)",addon);
fprintf(Fp,"\n IF (TEST .NE. 1) GO 10 9999");
nuimb++.-
addon+4-;

if . (*begin).r,-Frt1=0

tra~sf (begin, fp);
fprintf (fp,"\n G0 TO 99901,n");
if ((*beqin).rcnt '=()

ife*Leqird .rcnt--

tr~ueI - (*tegi).rhobok;

"Vi e -, )

iprintf (fu, 'n %d CALL FINDD(N/%s",r-iurnb,(*(*travel).atab).aname);.

if (,*k*tr ve1.atab).rcnt 1=0)

Fprintf(fp,"%d",(*(*travel).atab).rcnt);
f pr intf (f p, ") );
fiprintf(fp,"\n IF (ERRSTA .NE. 0) Go To 9999-);
fprintf(fp,"\n CALL GET('.s)", (*(*trave).ab).aname);
fpi-intf(fp,"',n TEST = FILTER(7.d)",addon);
-printf~fp,"'n IF (TEST .NE. 1) GO TO 9999");

n LimTb++;
,-ddcin +- 4-;

Figure3.10 PW 3 of 4.
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/* FIRST THE HEADING AND OTHER STATIC INFORMATION IS WRITTEN. */
1* */
.,' *******W- l-***- * - ******* **-************* ** ***-*-***-***-* *** * N * *** ** **** W ** /

fprintf(fp,"\n\n SUBROUTINE GRASP(NRS,N,TEST)");
fprintf(fp,"'n\n INTEGER NRS,N,I,TEST');

commons(start,fp);
fprintf(fp,"\n\n TEST = 1");

fprintf(fp,"'\n\n I = 1");
fprintf(fp,"\n\n 1 IF (NRS(I) .EQ. 0) GO TO 9999");

fprintf(fp,"\n\n GO TO(");

/ **********************************************************/

/. */

/* NEXT BY TRAVERSING THE DATA STRUCTURE AND USING GORITE */
/* THE COMPUTED GO TO STATEMENT IS CREATED. */

I* */

i **** ********* ***********************************************

begin = start;
numb = 2;
incre = 1;
adder = 1;
sum = 12;

while (begin != 0)

gorite(fp,&sum,&adder ,&numb,incre);

if ((*begin).rhook = C/)

travel = (*begin).rhook;
while (travel != C)

gorite(fp,&sum,&adder,&numbincre);

travel = (*travel).nhook;

begin = (*begin).ntable;

fprintf (fp, " ) ,\n NRS(1) \n");

Figure 3.10 Page 2 cf 4.
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grasper (start,fp)

/* JOSEPH AULINO */
/* DAVID PROJECT */
'* MARCH 1784 */
/* *

/* THIS PROCEDURE WRITES THE FORTRAN CODE TO RETRIEVE ANY RECORD *
/* FROM THE DATABASE GIVEN ITS CURRENCY POINTER. TO DO THIS THE */

/* FORTRAN CODE WILL TAKE AS INPUT THE VECTOR "NRS" OF SIZE "N". */

,* THIS VECTOR WILL CONTAIN NUMBERS CORRESPONDING TO THE RECORDS *'

/* UO BE FETCHED. rO RETRIEVE THE FIRST RECORD YOU WOULD
/* INCLUDE THE NUMBER 1 IN THIS VECTOR, THE SECOND RECORD WOULD */

/* BE NUMBER 2 AND SO ON. I1 ALSO PRESUPFOSES THAT THE CURRENCY */

/* POINTER FOR ANY RECORD IS IN ITS APPROPRIATE VARIABLE - THAT ,x

/* BEING THE VARIABLE WITH THE SAME NAME AS THE RECORD BUT WITH */
/* AN "N" IN FRONT OF IT. */
1* */
/. */

/* LOCAL VARIABLES: */
/, */

/* 1. begin - TRAVERSES A LIST OF TABLE STRUCTURES. */
/* 2. numb - USED BY GORITE TO HELP PRODUCE LINE NUMBERS. */

/* 3. incre - USED BY GORITE TO HELP PRODUCE LINE NUMBERS. */
/* 4. adder - USED BY GORITE TO HELP PRODUCE LINE NUMBERS. */
/* 5. sum - USED BY GORITE TO HELP PRODUCE LINE NUMBERS. *I
I*- 'o. addon - SPECIFIES WHAT RECORD IS BEING SENT TO THE */
/* FILrER. *,/

/* NON-STANDARD SUBROUTINES USED:
,;* */

/* 1. commons PRODUCES THE NECESSARY COMMON STATEMENT. *I
2. gorite - PRODUCES THE NUMBERS IN THE COMPUTED GO TO

I S 31A E MEN . * ,
, trar,sf RANSFERS TH4E VALUES OF CERTAIN VARIABLES TO *I

* ICr1FORARe STORAGE (IN THE FORIRAN CODE) ro ,,,
,PREVENT TIHEM FROM BEING OVERWRITTEN.

4. areset RESETS THE TYPR FIELD OF TABLE STRUCTURES. */

struct table *start;
FILE *fp;

Struct table *begin;
int numb, incre, adder, Sum, addon;
strLICt hoo. *travel;

Figure 3.10 Page 1 of 4.
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if ((*begjn).rhook != 0)
swap =1

travel =(*begin).rhookl;

while (travel C)
{contin = (*(*travel).atab).to-items;

while (contin U

if ((*contin).typ '='T')&&.((*contin).typ R'))

fprlirtf(fp,"\n XsYd",(*contin).lname,(*(*travel).atab).r-cn);

fprintf(fp," = '1.s",(*contin).iname);

contin = (*contin).nitem;

fprintf (fp,'\nA"
fprintf(fp,"Ys~d =A%(*(*travel)..atab).aname,(*(*travel).atab).r-cnt);
fprintf(fp,Y.5',(*(*travel).atab)..aname);-
f pr intf (f p,'"\n No')
fprintf(fp,').s~d = N",(*(*travel).atab).aname,(*(*travel).atiib).rcnt);
fprintf(fp,"%s",(*(*travel).atab).aname);
fprintf~fp,"'\n ITEMP = C7s",(*(*travel).atab).aname);
fprintf(fp,"\n C""s",(*(*travel).atab).aname);
fprintf(fp," = C/s%d", (*(*travel).atab).aname,(*(*travel).atab).rcnt);
fprintf(fp,"\n Cs,(*(*travel).atab).aname);
fprintf(fp,'Xd = IrEMP',(*(*travel).atab).rcnt);
follow = *travel).atab;
OWF (fp,f oliow~begin adder ,count, last swap);
adder+-*+;

last LCout +4 1.

coun~t =count +*4
(*(*travel).atab).rcnt--;
trav.el = (*travel) nhook;

s wa p
begin f*beqln).ntable;

fprintf(fp,'\n 9799 RETURNWn');
fprintf(fp,"'\n END\n");
areset(start);
r e tUrn;

END OF THE NEXTWHERE ROUTINE

Figure 3.9b Page 4 of 4.

Figure 3.9b The nextwhere Routine C Code.
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begin = (*begin).ntable;a
fprintf(fp,"\n");
findgo(start,set);

/***************************************************************

,* NOW THE REMAINDER OF rHE CODE IS GENERATED JUST AS IT WAS */

/* IN THE firstwhere" ROUTINE. */
1* *1
/****** ********************************************************

begin = start;
adder = 1;
count = 1;
last = 0;
swap =;

while (begin != 0)
F

if (((*begin).relat 'C') ((*begin).relat = ")

follow = (*begin).forwrite;
own(fp,begin,follow,adder,count,lastswap);

ctdder++;
last = count + 1;

count = count + 4;

el se

follow = (*begin).for_write;
ownee(fpbegin,followadder,count,last);

adder -+;
count = count + 4;

/*********************N*************************************
/* *1

* THE LAST SECTION OF CODE GENERATES THE CODE NEEDED TO */

/* FETCH A RECURSIVE RECORD. THIS WILL INCLUDE
i* PROTECTING ANY VARIABLES ALREADY HOLDING VALUES. */

Figure 3.9b Page3 of 4.

106



struct hook *travel;
int adder, count, last;
int swap;

/* */

/* FIRST THE STATIC INFORMATION IS CREATED. THIS INCLUDES */

/* (Bur IS NOT LIMITED TO) THE INFORMATION CREATED BY */

/* "commons" AND "declarer". */
1* *1a

fprintf(fp,"\n SUBROUTINE NEXTW(N,TEST)\n");
fprintf(fp,"kn INTEGER TEST,N");

fprintf (fp,"\n");
declarer (start,fp);

fprintf (fp, " \ n" ) ;
commons(start,fp);
fprintf (fp, "\n")

/ ********** ****** ************************************************

/* NEXr THE COUNTERS ARE INITIALIZED TO THEIR VALUES AFTER THE */
,* LAMt CALL TO "nextwhere" or "firstwhere". ALSO, "findgo" */

/* IS CALLED TO CREATE 111E "GO TO" STATEMENT TO DETERMINE */

/* WHERE EXECUI ION SHOULD DEGIN. *1
,* "1

begin = Lart;
w'hi le Lbeqin-

{pr 1tf kfp, ' C/.s = Ns" (*beqin) .aname, (*begmrl * .anarMe);

if \-.*beglrI) .Lpr

while ((*begin).rcnt =0)

[ p"intf(fp,"\n Cs",(*begin).aname);
fprintf(fp,"%d = N's.d", (*begin).rcnt, (*begin).aname, (*begin).rcnt);
(*beg i) .rcrit--:

-*begin).rcnt = (*begin).typr;

Figure 3.9b Page 2 of 4.
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k* nextwhere(start,set,fp)

/* JOSEPH AULINO */
/* DAVID PROJECT */
,* JUNE 1964 */

* THIS PROCEDURE GENERATES THE FORTRAN TO GET THE NEXT */

/* RECORD FROM ANY DATABASE FOR WHICH A SCHEMA AND A *1
1* FIRSTWHERE ROUTINE HAVE BEEN GENERATED. IT IS */
/* AFTER "firstwhere" IS CALLED. THE CODE GENERATED IS */
/* NEARLY IDENTICAL FOR THE CODE FOR "firstwhere". THE */
/* MAJOR DIFFERENCE IS WHERE IN THE CODE THE EXECUTION */

/* ACFUALLY BEGINS. IN "nextwhere" THE EXECUTION BEGINS */
I * AT THE LOWEST "LEVEL" POSSIBLE AND WORKS BACK UP TO *1
/* THE HIGHEST LEVEL AS NEEDED. */
1* */

/* LOCAL VARIABLES: */
1* */

/* 1. begin - USED TO TRAVERSE A LIST OF TABLE */
/* STRUCTURES. */

/* 2. follow - USED TO TRAVERSE A LIST OF TABLE
1* STRUCTURES. */
/* 3. contin - USED TO TRAVERSE A LIST OF TABLE */
/* STRUCTURES. */
/ 1* 4. adder - USED IN SETTING LINE NUMBERS. */
1I I* 5. count - USED IN SETTING LINE NUMBERS. */
* b. last USED IN SETTING LINE NUMBERS.

I* 7. swap - INDICATES WHEN A FORTRAN VARIABLE */
/* MUST BE PROTECTED FROM BEING */
1* OVERWRITTEN. *I

/* */

/* NON--STANDARD SUBROUTINES USED: */

1. findgo - DETERMINES THE LINE NUMBER WHERE *1

THE FORTRAN PROGRAM SHOULD BEGIN. */
'* 2. areset USED TO RESET THE "P/PR FIELD. ,I

/* 3. declarer DECLARES COUNTER VARIABLES. */

/* 4. commons CREATES THE NECESSARY COMMON *!
STATEMENT. */

struct table *start;
int set;
FILE *fp;

*

struct table *begin, *follow;
struct item *contin;

Figure 3.9b Pae of 4.
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fprintf (fp,"\n A
~1fprintf(fp,'%ssd A ",(*(*travel).atab).anarnie,(*(*travel).atab).rcnt);

fprintf(fp,'Ys",(*(*tr-avel).atab).alame);
fprintf (fp,'\n N ") ;
fprintf(fp,7.s'1d = N",(*(*travel).atab).aname,(*(*trave1m).eatab).rcit);
fprintf(fp,"%s"1 (*(*trave1).atab).aname);-
fprintfkdp,"\n ITEMP = C/.s",(*(*travel).atab).aname);

fprintf (fp,"\n C.
FpriLntf(fp,"*"s = C's,(*(*trave).atab.aname,(*(*trae).atab).ana~e);

fprintf(fp,'\n C7.",(*(*travel).atab).anarie);
fprirtf(Fp,"%d = ITEMP",(*(*tra-vel).atab) .rcnt);

follow = (*tratvel).atab;
own(fp,follow,begin,adder,count,laSt,SWap);
adder+;
last Count + 1;
coun~ft =counlt + 4;

(*(*travel).atab).rcnt--;

travel =(*travel).nhook.;

swap =0
begin. (*beqin).ntable;.

3 * END OF THE WHILE LOOP *

fprintf(fp,'\n 9999 RETURN\n");
fprintf(fp,'\n END\n')

aceset(start); /* T1HE VALUE OF THE "TYPR" FIELD IS RESET. *

return (count);

END OF THE FIRSTWHERE ROUTINE

Figure 3.9a Fage of 4.

Figure 3.9a The firetwhere Routine C Code.
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* begin = start;
* adder = 1;

count = 1;
last = 0;
swap = 0;

while (begin '= 0)

if (((*begin).relat == C') : ((*begin).relat =
r

follow = (*begin).for write;
own (fp,begin, follow, adder, count, last, swap);
adder++;
last = count + I;
count = count + 4;

else
r

follow = (*begin).for_write;
* ownee(fp,begin,follow,adder,count,last);

adder++;
* count = count + 4;

I,* *1

/* THE NEXT SECTION OF CODE IS USED TO GENERATE THE SPECIAL */
, CODE NEEDED IF A "LIN0" NODE IS REACHED. THIS IS NEEDED */

* TO SAVE ANY VARIABLE WHICH MAY BE "OVERWRITTEN" WHEN THE */

'* 'ECURSIVE" RECORD IS "FETCHED". */
i, */
/ ******* * ****************************************************/

i t .kwbegin) .rhoo'k = ' )

swap = i;
travel = ( begin) .rhook;

* while -tra,el 1= 0)

contin = (*(*travel).atab).to items;

while (contin 1= 0)

if (((*contin).tvp '. T') . ((*contin).tvp 'R'))

fprintf(fp,"',n %s",(*contin).inamfe);

fprintff(fp,"'.d = s",(*(*travel).atab).rcnt,(*contin).iname);

contin = (*contin).nitem;

Figu 3 .9a Pa ge 3of 4.
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1* *
I* FIRST THE STATIC INFORMATION COMMON TO ALL FIRSTW SUBROUTINE 1S WRITTEN. *i

fprintf(fp,"\n SUBROUTINE FIRSTW(N,TEST)\n");
fprintfc(fp,"',n INTEGER TEST,N");
Fpri ntf (Fp,"'n

/ * *i

v* NEXT COMMONS IS CALLED TO WRITE OUT THE REQUIRED COMMON STATEMENT */
;J- /* AND DECLARER IS CALLED TO WRITE OUT rHE NECESSARY VARIABLES. */

i'/,

declarer (start, fp);
fprintf (fp,"\n");

* commons(start,fp);
fprintf (fp, "\n"

I* NOW USING OWN AND OWNEE AND THE RELATIONSHIPS DEVELOPED IN "RELATE" *
/* THE REMAINDER OF THE SUBROUTINE 13 GENERATED. .// * 

./

begin = start;

while (begin =)

. Fprntf(Fp,"\n LC.s 1",(*beqin).aname):
if 4.*begin).tiypr Li)

while ((*beqin .rcnt '=0)

Fprintf(fp,"\n C%sd = I",.*begxn).aname,*begin).rcnt);.
(*begin) .rcnt--;

(*begin).rcnt = (*begiri).typr;

* begin = (*begin).ntable;

fptintf (fp, " )

• Figur3 P 2 of 4.
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Fi lwrite(fp,path,numb)

/* JOSEPH AULINO */
* DAVID PROJECT */

,* JUNE 1984 */

/* THIS PROCEDURE WRITES THE CODE TO "WRITE" ONE RECORD AND ALL ITS */
/* FIELDS TO A FILE. IT IS USED BY THE PROCEDURE OUTPT. OUTPT *I

* CALL FILWRITE ONE FOR EACH RECORD AND ONCE FOR EACH OCCURRENCE */

1* OR A RECORD IN A RECURSIVE RELATIONSHIP. */
" - iF /

i* LOCAL VARIABLES: *I

1* 1. i - A LOOP COUNTER. *I
I/* 2. temp - HELPS SET A FIELD SIZE. *I
1* 3. travel - TRAVERSES A LIST OF ITEM STRUCTURES. *-
/N. */

* /* NOTE -- *I
/.* *I

/*- 1. path - POINTS TO A PARTICULAR TABLE STRUCTURE. */

/* 2. numb - DESIGNATES A LINE NUMBER. */

FILE *fp;
struct table *path;
int Arumb;

int i , tenp;

=trutC item *traei

* FIRST THE WRITE STATEMENTS FOR THE 2 F'OINTERS FOR EACH F:ECOD *-/

/* ARE F ,(ECDUCED. *
* ,* N-

*N*N-***********N **N*******N-*-*-**N********************~***-******-

for (i = (); i 2, i++)

0 fpr-intf (fp,"\n\n %/d WRIIE(6,%d) ",*nLurmb,*numbf );
•i f .,i == ,U)

fpri ntf (fp, "N"''
]]] •el se

-pr int f (fp,"A"

Figure 3.11b P 1 of 3.
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fprint f(f.p,"Ys"(*path).aname);

if((*path).rcnt 1= 0)
fprinitf(fp,"%d',(*path).rcnt);

fprin-tf(fp,"\n %di FORMAT( '1' ,1XIl0))",*nLlmb+l);
fpriritf(fp,"\s GO TO 9990");
*nu~mb = *nLlmb + 2;-

/ * NEXT OUTPUT STATEMENTS ARE CREATED FOR EACH NON-TABLE *
/*u FIELD OF A RECORD. -

* travel = (*path).to -items;
while (travel '= 0)

if (((*travel).tv(p T') && ((*travel).typ 'R)

fprmntf (fp,"\In\n %d WRITE(6,Xd) ',*nutmb,*numb+l);
fprintf (fp, "Xs', (travel).-inamne) ;

H((*path).rFnt 0
fpri~itf(fp,"%d",(*path).rcnt);

fpin{(f,\nT FORMAT( ' IX 1X"*nLtmb+1);

if ((*Lravel).Lp~ 'C')
fpri rt f , p, "A")

1: ('*travel).p~ 'F')
* fprintf (fp, "F");

fprirtf(fp,"Xd",(*travel).-size);
it (('*travel).typ =='F')

Lemp = ((*travel).size)/2-;
* fprintf -fp,".%d",temp);

fprinitf (fp,")'\n GO To 9990");

* Figure 3ll1b Page 2of 3.
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*numb = *numb + 2;

} ,* END IF (*TRAVEL).TYP...

travel = (*tra.'el).nitem;

if ((*path).rcnt : )
(*path) rcnt---;

return;

END OF THE FILWRITE ROUTINE

Figure 3.11b Page 3 f 3.

Figure 3.1lb The filwrite Routine C Code.

0
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CHAPTER 4. TRANSACTION TRANSLATION

4.0 INTRODUCTION

This chapter deals with the purpose of the C code used to create those

Fortran routines which can effect the database. The main C routines which

handle this are idu, indelup, and inserter. The general purpose of these

routines is to create Fortran programs which can modify the database.

h~7~JThese C routines make this possible by creating Fortran code to call the

proper SEED defined subroutines to perform these operations.

In section 4.1, examples of each of the Fortran routines created are

*given. Section 4.2 discusses the general methodology for this creation and

for the operation of the created routines. Next, section 4.3 gives the

technical description of the C code and the Fortran code it creates. Lastly,

section 4.4 gives the minann C routines discussed.

4.1 AN EXAMPLE

This section contains one example of each of the Fortran routines

created to oallow implementation of transaction translation. These routines

are based on the non-recursive network DBL schema of section 1.1. The

* first of them is the basic routine to modify information in the database.

This routine is named MODITE and an example of it is in figure 4.0.

The next example is for the basic routine to delete records (figure 4.1).

* This is also based on the non-recursive DBL schema in section 1.1. Note

the similarities between this routine and the modify routine above.

The last example is for inserting new records into the database

*(figure 4.2). This routine is based on the same DBL schema as the

other two. The differences between this routine and the two above are



discussed in section 4.3 of this thesis.

4.2 THE GENERAL METHODOLOGY

The indelup routine acts as a "router" to idu. It "tells" idu whether to

produce the delete routine or the modify routine. The routine opens the iles

for the delete and modify routines respectively. It then calls the idu routine

to create the Fortran to delete or modify records. Then the current open

ile is closed. The difference between results is that idu Is passed the name

of the SEED subroutine. If passed "DELALL", it creates the delete routine.

If passed "MODIFY", it creates the modify routine.

The idu routine traverses the schema structure and creates the

necessary subroutine and error checking statements. The control mechanism

created for the Fortran routines is similar to grasp's. The subroutine names

created for the FORTRAN routines are derived from the SEED subroutine

calls used in the respective routines. The control structure and the

numbering correspondence for records is the same for both the delete and

update routines.

The insert routine is more complex. Here recursive records must be

considered and the actual inserts must be done in terms of sets. This

entails ensuring that a record is inserted into all appropriate sets. It is

simplified some by the "vanilla" nature of the database. This routine creates

the necessary overhead statements and then the remainder of the code. The

code is created by traversing the schema structure. For each table structure

a store is created. Then by traversing the list of hook records pointed to by

the for-sets field, inserts into all appropriate sets are created. lIthe rhook

field is not zero, this is followed by creation of stores and inserts to recursive

records. In this way, the created Fortran program can insert any reord of



any type into the database.

This is all that the C routines do in this process. The Fortran

routines which they create will be what actually effects the database. These

routines are described next.

F MODITE is the routine to modify records in an existing database. It

takes a NRS array and a dimension argument as input. NRS is used to

control a computed goto statement and while loop with "0" as the loop

terminator. A successful update can be tested by checking the value of the

ERRSTA variable. The user must ensure the main program has the correct

currency of the record or records to be modified. To modify recursive

occurrences of a record, the routine may have to be called twice; once to

modify the "original" record and once to modify the recursive occurrence.

DELITE takes the same arguments as the MODITE and has the same

jcontrol structure and number correspondences. The above precautions also

apply. Here the cautions are stronger, since it is possible to lose records and

any records owned by them. For recursive records to be deleted, a separate

d call to this routine is needed.

INSRTN is the routine for inserting new records into the database.

This has the same control structure as the other two routines but the

number correspondence scheme is more complex. The precautions hold here

also but ame not as serious since if a mistake is made most likely an error

will result and no information will be lost. There are limitations however.

These are imposed by the vanilla nature of the database. The most

important one is that when any record is inserted it is inserted into all sets

in which it is a member (excluding sets where it has a recursive occurrence).

Hence, "selective" insertions are not possible. However, in later versions this

will most likely be changed.
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This ends the block description of the code. In the last two sections, I

give a technical description of the code. This description includes discussions

of the problems mentioned above and requirements of the main program

relating to these subroutines. Also, input arguments and output of these two

routines is discussed.

4.3 A DETAILED DESCRIPTION

Indelup is the first routine discussed here. It is called from the main

program. It's sole argument is a pointer to the schema structure. This is a

simple program used as a router to enable idu to create the two Fortran

routines DELITE and MODITE. The routine conzists of opening the

appropriate files, calling idu with the proper parameters, and closing the

appropriate files. Control then returns to the main program. Upon return

to the main program, two files have been created with one Fortran routine

in each.

The variable "fp" is a pointer to the file opened by the fopen function.

The variable "start" points to the schema structure and the string

("DELALL" or "MODIFY") gives the name of the SEED subroutine call to

be used in the Fortran code to be created. Note, that in the two calls to

the "idu" routine, fp points to different files for the output and the call

contains different strings which will be written out later in the creation of

the Fortran program.

The idu routine is the routine which actually produces the Fortran code

(for a flow chart refer to figure 4.3). The idu routine takes in three

parameters matching the three passed by indelup. They are called here "fp"

(as in indelup), "start" (as in indelup), and "srutine" which holds the value

of the string passed in.
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The start of the code creates the header and overhead information.

Note that the subroutine name of the routine being created comes from the

string passed in from indelup concatenated with "ITE". In this way, unique

subroutine names are created for the Fortran routines being written. At the

same time, these routines have names which relate to their purpose.

This code is followed by a call to the commons routine. After the

common statement has been created, the loop initialization and control

statements are created followed by creation of the computed go to statement.

The loop statements are as in GRASP. The computed go to statement is

created by traversing the schema structure. As each table structure is

visited, a number is written in the computed go to statement corresponding

to the line number to go to in that case. This is done by calling the gorite

routine. The statement is completed by the code:

"fprintf(fp,"),\n * NRS(N)");"

The continuation line is created to ensure that the 72 column restriction of

Fortran is met.

The remainder of the routine traverses the schema structure and creates

the necessary code. As each table structure is visited, statements are

generated to create a call to the proper SEED subroutine, check for errors

and continue in the loop if no errors are found The variable "numb" holds

the appropriate line number. This is incremented by one after each table

structure is visited. "srutine" has the value of the string which is the name

of the SEED subroutine to be called. This was passed in from the idu

routine.

Once this has been completed for each table structure in the schema

structure, the final statements are written and the control returns to the

indelup routine. The final statements for this routine are identical to those
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of GRASP and are produced in the same manner. When control returns to

the indelup routine, either the second call to idu is made or control reverts

to the main program. After each call to idu is made, the appropriate file is

closed. Upon return to the calling program, the MODITE and DELITE

subroutines have been completed and are available in their respective files.

The "inserter" routine produces the Fortran code for the "INSRTN"

routine. Figure 4.4 gives the flow chart for the inserter routine. Inserter

takes two arguments as input; "fp" and "start". "fp" is a pointer to the file

where the resulting Fortran routine should be output. "start" is the pointer

to the schema structure. The routine begins by producing the subroutine

heading, the common statement, and the control structure. The control

structure for the Fortran program is created by creating a while loop

(created with a goto statement) and by creating a computed go to statement.

Next, the schema structure is traversed. As each table structure of the

schema structure is visited, gorite is called, and the correct line number is

written into the go to statement. If the rhook field of the table structure

being visited =/= 0, then the list of hook structures pointed to by the

rhook field, is traversed and a number is written in the computed goto

statement for each hook structure in the list. This will allow inserts into

recursive records in the Fortran program.

Now, the schema structure is again traversed to create the actual code.

For each tables structure in the schema structure the following code is

generated:

"fprintf(fp,"\n %d CALL STORE(%s) ",numb,(*begin).aname);
fprintf(fp,"\n IF (ERRSTA .NE. 0) GO TO 9999");"

The "numb" variable contains the appropriate line number to ensure that it

will agree with the line number in the computed go to statement.
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As each table structure is visited there are three possibilities to

consider. The first case is where the code being created is to insert a record

into a set whose only owner is system. This is the simplest case. Here the

code to create the proper Fortran is simply:

"fprintf(fp, "\n CALL INSERT(SYSTEM %s) ",(* begin) .aname);
fprintf(fp,"\n IF (ERRSTA .NE. 0) GO TO 9999");
fprintf(fp,"\n GO TO 999O\n");"-

The next case is more complicated. Here code is created where the

record is part of at least one non-system owned set. In this case, a call to

insert is generated for every set having this record as a member excluding

those sets where it is a recursive occurrence. This is done by traversing the

list of hook structures pointed to by the "forsets" field of the table

structure being visited. As each hook structure is visited, if the rhook field

of the table pointed at by the hook structure is 0, then the record is

inserted into that set. If the rhook field =/= 0, then the table in question

owns the recursive occurrence of some record as a member. So the list of

hook structures pointed at by the rhook field is traversed. If the table

pointed at by the begin structure is pointed at by one of these hooks, no

insert is created. This is because the table has a recursive relationship with

this other table. If no such relationship exists, then an insert is created.

The last case is where a record is to be inserted into a set where it

has a recursive occurrence. In this case, the rhook field of the table

structure pointed to by begin is examined. If it is =/= 0, then the list of

hook structures pointed at by the rhook field is traversed. For each table

structure pointed at by a hook structure in this list, a "STORE" command

and an "INSERT" are created. The recursive record here is inserted into

the set owned by the record whose name is stored in the table structure

pointed by the begin variable.
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This completes the third possibility for the type of inserts to be

performed. There ae of course other options which are available for a

normal insert into a SEED database. These options have not been made

available here. This is in keeping with the vanilla nature of the schema

and database.

The above three cases are considered for each of the table structures in

the schema structure. Once the entire structure has been traversed, the final

information ending the Fortran control structure (including the "RETURN"

and "END" statements) are output and control return to the main program.

In the main program, the file which now contains the "INSRTN" routine is

closed.

This completes all technical description of C code. The last code

discussed depth is the Fortran code created by these C routines. Sample

flow charts for the three routines can be found in figure 4.5 (MODITE),

figure 4.6 (DELITE), and figure 4.7 (INSRTN). The technical description of

these routines follows.

The "DELITE" routine is used to delete records from the database.

The main program which calls this routine will have to have certain

restrictions. Before a record is deleted, the user must be sure that the

correct record to be deleted is the current record. This could be done by

calling FIRSTW and supplying the correct FILTER routine. Also in the

main program, the NRS array must be filled. This requires, the following

numbering scheme. For both DELITE and MODITE, the first record in the

DBL schema corresponds to the number 1, the second record to the number

2, etc with the nth record corresponding to the number n. If there is a

recursive occurrence of a record type, only the original or the recursive

occurrence can be deleted in one call to DELITE. So to delete both a
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record and the recursive occurrence of the same record type would take two

calks to the DELITE routine with the same number used in the NRS array

to delete the appropriate records. Before the first call to this routine,

either the record or its recursive occurrence must be the current record of

the type. Then before the second call to the routine, the currency of this

type of record must be changed to reflect the other record's currency. These

restrictions are also true of the MODITE routine.

One final note about using the DELITE routine. Whenever this routine

is called, assuming everything is done correctly, the appropriate records will

be deleted. In addition, all records owned by the deleted record will be

deleted if they have no other owner. To ensure theme records are not lost

unless the user want them lost, the user should be sure that any such

records are given another owner.

The DELITE routine takes in two arguments. The first is the "NRS"f

array containing the numbers corresponding to the records. The last entry

in this array must be 0. This will be used to terminate the looping in the

routine and cause control to pass back to the calling routine. The second

argument "N" is the size of the "NRS" array.

The program begins execution by initializing the variable "I" to 1.

This will be used to index through the "NRS" array. Then the test is made

to see if NRS(I) = 0. If so, control passes to the return statement. If not,

control passes to the computed go to statement. Control then goes to the

line number for the appropriate record. The appropriate record is

guaranteed by the correspondences between numbers and records as described

above.

At each of the different line numbers, a call is made to the subroutine

"DELALL" with an argument of the appropriate record name. After each
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call, the "ERRSTA" variable is checked to ensure there is no error. If there

is an error control passes to line numbered 999 and control returns to the

main program. If not, control passes to line 9990. Here the variable I is

incremented and control returns to line 1. At line 1, the process repeats

until some termination condition is reached. Upon termination, control

returns to the calling program and the records whose numbers appeared in

the NRS array have been deleted.

The differences in the DELITE routine and MODITE routine are small.

The restrictions mentioned above for DELITE hold for MODITE. The

control structure down to the number correspondences for records are the

same. The obvious difference is that something different is being

accomplished. In terms of the routines, this amounts to "DELALL" being

replaced by "MODIFY". The other real difference is an added restriction on

MODITE. Here, the data to be updated, must be input into the correct

variables before the routine is called. This would normally be done with a

read into these variables. Upon return to the calling program, the records

would be updated instead of deleted. Other than this, these two routines are

identical. Of course, in this routine, there is no worry about losing any

records by accident as in the DELITE routine, however, the user should be

aware that once information has been changed it can no longer be recovered

by the system.

The INSRTN routine is very similar to the other two routines. It

takes in the same two variables with the same meanings. It contains the

same declaration and common statement. It has the same control and

looping structure. The first restriction on using this routine is that the user

must be sure to load the information of a record into the appropriate

variables before calling the routine. The routine will not check this but will
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assume it has been done. The second restriction is that any record which

will be an owner of a set into which an insertion is made must have the

correct currency.

Since records and recursive occurrences of records will have different

owners, the number correspondences must have facility to determine which is

being inserted. Therefore, in this case the number correspondence is different.

The first record in the DBL schema is assigned the number one. If it is not

the owner of any recursive occurrences of any other records, then 2

corresponds to the second record in the DBL schema. If it is the owner of

a recursive occurrence of another record, the first such record listed

corresponds to the number 2, the second to the number 3 and so on up to

n. Then n+1 would correspond to the second record and the entire process

would repeat itself.

A difference between this and the other two programs, is that it takes

calls to two different SEED routines to accomplish one insert. For each

record to be inserted, there will always be one call to the "STORE" routine

to make this information the currency of the record to be inserted. There

will then be one call to "INSERT" for each set this record is to be a

member of.

This brings up the problem of which sets to make a record a ri>fzber

of. The convention is, if a particular record is not a recursive occurrence of

a record type, it is inserted into all sets with which it does not have a

recursive relationship. This is used to preserve the vanilla nature of the

database. This method requires only one decision to be made, which

records to insert. Another possibility here would be to allow selection as to

which sets to insert a record into. This could be done by simply changing

the numbering correspondenice for the computed goto statement and adding a
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Figure 4.5 Page. 2 of 2.

Figure 4.5 A Flow Chart for an Example MODITE Routine.
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\=I= Ui TO RECURSIVE /

x I , OCCURRENCE /

F
: V

*, ,FINDER =

*, (*FINDER).NHOOK ',

V V

* I ..... . . . . . . . :
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(*BEGIN) .NTABLE

•UUIIU[- RETURN /

-,-SOC 5 TMTS '
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Figure 4.4 Page 4 of 4.

Figure 4.4 The Flow Chart for the inserter Routine.
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E:EOINj\ 1- ( BEGIN W F-- TRAVEL
-==\OR _SETS =(*BEGIN) FOR S:ET,--

J/

F

Iv

/ / /TRA~VEL \-T--./(*rRgAVEL).\-T-.:
O ,UTP'UT /i\(*A

E INSERT TO .. " TVR.O.
SING=ULAR SET / F

Iv, ,I/v '

- -- - - - - -- F -.- - - - --

-i I

/OUTPUT INSERT ~
/TO SET

* TRAVEL
*!RAVEL) NHOI.

k*F:EGIN) .RHOOK

VVV

Figr 4.4 Page 3 of 4.
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V / I*BEGS1J4 T FDR SOTO

'a

I a

F
rRA'JEL =

* (*BEGIN) . RHOO:.

S,

/ \ I/

' ' OUTPUT /
YTRAVEL \--T-- :/ NR FOR

'. -'- 0 / / GO TO /

F V

TRAVEL=
',(TRAV.,EL) . NHOOK '

kBEG IN) .N14flE:LL- V

BEGIN = START

Figure 4.4 Page 2of 4.
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/OUTPUT
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E:EGIN
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Figure 4.4 Page 1 of 4.
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V

* OUTPUT RETURN
S.. MASSOC S MTS

CLOSE
FILE

V

END

Figure 4.3 Page 3 of 3.

Figure 4.3b The Flow Chart for the idu Routine When
It Produces the DELITE Routine.
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V 
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* I

V
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\/ /aa

FI
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(* TRAVEL) .NHOOti.
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Fg 4 3 Page2 of 3.
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f
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Figure 4.3 Pge 1 of 3.
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r a AJIROUTINE NR (RS)
IINFEGER N, NRS, I

COMMON [ANT*~NM L FNOF A ~OP ~~3I1L
* ~LI~i L-FIri4L,DF:NAME,CRNR,tJDULT13fb,

"UO I R O P AS ;A DOC I LE:EDNJM, W t),
* ~~NIELUNR ABEEDNR , EDNF , HLSPI TA-L EBEDNfR, FNAtIE,

*DUL FUR F-A II EN[F,
EkKS1A,LkxEL1 ,CF.RUNU,CRCAiLCDB~

I IF NRSkl) .. 0) G10 V 999

GO TO (,.45
.NRS ( I

L 2 ALL S FRE C IOSF II AL
IF (ERRSTA WrE. (J) GO T O 9 999
CALL IN-SERT (SYSTEMHOS"I rAL)
IF (ERRSTA .NE. kj) 60 T0 r?999
GO To 999O-

HLL Su3FEkDocr0R)
IF Er-RSFA .NE. f-) GO TO 31?1-9
D-HLL INSERT.H0FIY'L_LUOCTOR)
IF ERR31A .NE. :_)1 10 TO p79r99

La; i0 -/99t)

4 CALL S)rORE:-DEL:NR'i
IF ERPFAf .. 4E. o) L30 TO 99'?9

L,.LINSERT -,fO03f-I1AL _ EEDNR)
IF "EVRSIA .11E. ()) GO TO 9999

* 5 CALL SIOREF'ATIENT)
IF (ERRSrA .NE. (J) GO TO 9999
CA-LL INSERT(DOCTORPATIENT)
IF (ERRSTA .NE. 0) GO TO ?999
SO0 T0 9990

3 99(j I = I +- 1
GO0 [0 1

9999 RErURN

EN4D

Figure 4.2 An Example LNSRTN Routine.
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SUB~ROUTINE DELITE(NRS,N)

INTEGER N, NRS(N), I

CUMMO,'F3N[ NAPME ,L I Y , IF, NHOSPITALAHOSP I -. L,HOSF IT TAL,
* ~ 3fEM HOSFI TL ,DRNAME, DRNf 'NDOCTJR,

* DOCTOR,DOCFCR,HOSFIfA4L -DCJCTORE:EDNUM,W"-RD,
* N~rBEDt4R ,ABEDNR. EEDNR .HOSF-I rLEBEDNR ,F'NAME,

DISAE AGSE, TNA ET ;, E r ATI lEIN ,
*DUC IOR PF I1 ENTr,

ERRs rA4 ,CRREC T ,RRUNU,CRCALC ,DEC

I IF tNRS(I) .EQ. 0-) GO TO 9999

* 'RS(N)

2 CALL DELALL(HOSPITAL)
* IF (ERRSTA NE. (-) GO TO 9799

GO TO 9990

CA1LL DELALL'(DOCTOR)
IF eERRSTA NE. 0) GO TO 9999
GO T13 ?99(j

4 CALL LELtALL(BEDNR)
IF (ERRSTA NE. C)) 6SO [0 9?999
GO TO ?Q90

CALL DELALL FP dIENr)
IF EF.RSTA INE. 0)GO TO -)999
00 TO ?990)

13'] 10 1

END

Figure 4.1 An example DE...-' Routine.
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--UBROUTINE MODITE(NRS,N)

!r*FEGER N, NRS(N) , I

LUrIMUN, 2A'Nt ;'JAiME, ,CI TY,Z IP, NHOF'IT TgL pHOSF' IAL, ,HU'SF I I A'
Sr'rM !O'FIT L, DRN4AME, DRNR, NDOCTOR,

ALOCTOR,DOCTORHOS-F'I FLDOCTOR,'EDNUM,WARD,
NEBED1 R,A~BEDNf_%, EDNR,HOSPI TAL-BEDNR,F'gAAME,
D*SAE 4ESXV TSN'TETA'TETFA lENT,
DOCTORPATIENT,

* ~ERRSTA, LRRECI, CRRLJ~tJ,LRCALC, OB

ra I IF (NRS(I) .EQ. 0) GO 10 9999

GO TO (2,-',4,5) ,
* NRS(N)

2 CALL MODIFY(HOSFITAL)
IF (EIRRETA .NE. (0) GO TO 9999

* GO 10 9990

* CALL MODIFY (DOCTOR)
IF (ERRSFA PJE. (0) GO TO 9999
GO TO -990-

4 CA~LL NODIFY(DEDNR)
IF (ERRSTA NE. 0--) GO TO 999c',

- 5 NALL MUDIFY(PATIENT,
IF - fR3r4 .NE. 0 GO TO ?999
_O T0 799C0

G, U 1

ew?9 ~ IfIE Fl:!RtN

Figure 4.0 An Example MODITE Routine
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few additional lines of code. It may be added in future implementations.

i jOther than these differences, the routine is very similar to the other

two. Should an insert fail, by checking the value of the ERRSTA variable

in the calling program, the exact cause of failure can be determined. Again

on termination, control returns to the main program. At that time, either

ERRSTA =/= 0 or an error has occurred. Again, the exact cause for the

error can be discovered by checking the value of the ERRSTA variable.

4.4 THE CODE

This section gives the main "C" routines described in this chapter.

* These are the "indelup", "idu", and "insrt" routines. Figure 4.3a gives the

code for the indelup routine, figure 4.3b gives the code for the idu routine,

and figure 4.4 contains the code for the insrt routine.

d

0

S

0

S
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V V NRS(I) =4 DELALL / V
... . . . CURRENT -- "ERRSTA' -F--+

FATI ENT ,'= , ,

T

v V

RETURN I=I*1

V

Figure 4.6 Page 2 of 2.

Figure 4.6 A Flow Chart for an Example DELITE Routine.
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v
I, /

T V NRS(I) 1 STORE
------------------------------------ HOSPITAL

V

/ERRSTA\-F

V

/ERRSTA\-F--

\ = C) /

V

0

Figure 4.7 Pgeiof4
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V NRS(I) =2 STORE '
.. . .........-.. DOCTOR

v

--- - -

/ g

\= HO /

*

I I

*INSERT
*HOSE'IUrAL _

0 DOCTOR I

* I I

v
*/ \

/ERRSTA\-F - -

I /

T

NRS(I) = STORE
BEDNR ,

* I I,

SV I
S/ I\

S/ ERRS TA ",,-F. -

* \ = s 0 I

I I / I

. VI V V

~~Figure 4.7 f~g 2 of 4.
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INSERT

.'.EDNR

Ki 0VPI

/ \

/ERRSTA\-F---------
\ = Ul /I

T

v

II

VNRS(I) =4 /STORE F -
--- -- ----- PATIENT

i

r

INSERT
DOCTOR

I \

/ERRSTA\ F---

/\ /

T
I Il

Figure 4.7 Page 3of 4.
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INSERT
BEDNR_

SPATIENT

v

/ERRSTA -F---------
', = 0 / I ,

\ / °,

T Ia

V _

RE tURN

Figure 4.7 Page 4 of 4.

Figure 4.7 A Flow Chart for an Example INSERTN Routine.
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irdelup (start)

JOSEPH 4UI-INO */
* DAVIL '-RoJECr *

1* JUNE t'784 */

* IHIIS FROCEDURE CONFROLS THE PRODUCTION OF I WO FORTRAN *;

/* SUBROUTINES USED BY EVERY DATABASE. THE TWO */

/* SUBROUTINES HRE SIMILAR. ]HE DIFFERENCE BETWEEN THEM IS *i

,* WHICH "SEED" SUBROUIINE THE FORTRAN ROUTINE IS 10 CALL. .1

* LALLING A DIFFERENI SUBROUTINE IS ACHIEVED BY SENDING A-

H* E PROGRAM WHICH ACIUALLY PRODUCES THE FORTRAN FHE */

/* NAME OF ]HE FRUGRAM YOU WANT PRINTED. *1
* HE PROGRAM WHICH DOES THE ACTUAL PROGRAM CREATION IS *1

* CALLED IDU. Ir PRODUCES A PROGRAM 10 DELETE FROM *1

/* OR UPDATE A "SEED" DATABASE. */

1* *1

1* LOCAL VARIABLES:
/* *I

I* 1. fopen - OPENS A NEW FILE FOR WRITING. *I
2. fp - POINTS TO THE ABOVE FILE. *I

/* NON- Sh-INDARD SUBROUTINE USED: */

* I. idu - DOES ,!HE FORTRAN GENEFPATION FOR THIS *1

* F:OUI INE. *.

str-uct table *start;

FfLE * pe, *f p.

tp = opei, ."LI L. """)

f icse, pi ;

fp = openk"MODIF.F",w");
idukp,start, "MODIFY");

c I e (f p)

r etUr n;

L)ND JF ,HE 1tDEL!Jf- <UTINE

Figure 4.8a The indelup Routine C Code.
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idu ( fp,start ,srutine)

,* JOSEPH AULINO */
/* DAVID FROJECr

/* JUNE '784

THIS ROUTINE MA;::ES A SUBROUTINE WHICH CAN DELETE OR UFDATE
INFORMATION IN A DATABASE. IT DETERMINES WHICH SUBROUTINE TO

/* MAKE BY [HE VALUE OF THE STRING IN -RUTINE. THE FORIRAN CODE *i

/* GENERATED DECIDES WHICH RECORD IS [0 BE UF'DArED JR DELETED BY
/* VALUES ,ASSLD IN rH1E VECIOR NRS. /

/* * /

•'* LOCAL '"RIABLES:
/* *

I . begin TRAVERSES A LIST OF IABLE STRUCTURES.
I* 2. numb USED BY GORITE TO HELF PRODUCE LINE NUMBERS. *

1* .. adder USED BY GORITE O fHELF PRODUCE LINE NUMBERS. */
/* 4. sLIm USED BY GORITE TO HELP PRODUCE LINE NUMBERS. *,

/ . incre - US.ED BY GORIFE [0 HELP PkODUCE LINE NUMBERS. *1
/* *I

* NON S[ANDARD SUBROUTINES USED:
/* *

I. commons TO GENERATE THE NEEDED COMMON STATEMENT. *1
I* 2. gorite TO GENERATE TIHE NUMBERS NEEDED "Y [HE *1

I* COMF" FED GO TO STATEMENT. *I

FILE *fp;
S&lFLtL table *start:
char srutire[];

=-truct table *begin;
IinL num{fb, adder, SuM, incre;

/* FIRST, [HE DASIC OVERHEAD INFORMATION IS WRITTEN. *i

fprilntf .fp,"\n\n SUBROUTINE %cT.c'cIlE",srutlne(.iJ,srLtine[l],srutine[2]);
fprintf Fp, "(NRS,N) ") ;

fprintf(fp,"\n',, INTEGER N, NRS(N), I n"l,

commons (mtar tfp)

Figure 4.8b Page I of 3.
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Fprintf (fp,"\n I = 1);
Fprintf kfp,"\n\n 1 IF (NRSU() .EQ. 0) GO TO 9999";

.dder =
--um = 2

Lricre = 1;

/ *

/* NEXT, T4E COMPUTED GO TO STATEMENT IS CREATED. */
1* */

fprintf(fp,"\n\n GO ro (");

begin = start;

while (begin '= 0)

gorite(fp,&sum,&adder, &numb,incre);
begin = (*begin).ntable;

fprintf (fp,') ,\n * NRS(N)") ;

/ ** ****************************** * l******/

,* TIlE NEXT SECTION OF CODE FRODUCES THE FORTRAN CALLS fO DO */
'* WHATEVER IS BEING REQUESTED WHETHER IT BE A DELETE, *I

" *R UPDATE. */

begin = start;

while (begin = 0)

fprintf (fp,"\n %d CALL %s(%s) " ,nu mb,srutine, '*begin) .aname);
Fprintf(fp,"\n IF (ERRSTA .NE. -) GO 10 97 ' ;
iprirtf1 (fp,"\n GO TO Q99\n';
numb ti-;
begin (*Leqin).ntable;

Figure 4.8b Page 2 of 3.
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TIE LAST 3ECTION OF THIS CODE PRODUCES THE N/

* ENDING OF THE FORTRAN CODE. */
r

*, * ** ** * ** N-* *, ,* t* *************/

)r intf (fp," \n ??9'h I = I +- I );
irintf (fp,'n GO fO 1");

)r itf (fp, ",nn 979 RETURN")

,rlntf(fp,'n END\n\n");

END OF THE IDU ROUTINE

Figure 4.8b Page 3 of 3.

Figure 4.8b The idu Routine C Code.
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erter (fp,start)

JOSEPH AULINO *l
DAVID PROJECT *,"

JUNE 1984

THIS PROCEDURE CREATES THE FORTRAN CODE NEEDED TO PROPERLY */
INSERT ANY NEW RECORD INTO ALL APPROPRIATE SETS IN A *,

"SEED" DATABASE. THE FORTRAN PROGRAM TAKES IN A VECTOR 3F */
OF NUMBERS WHICH CORRESF'OND TO THE RECORD TO BE INSERTED. */
THIS VECTOR IS USED BY A COMPUTED "GO TO" STATEMENT TO */
ACHIEVE THE DESIRED RESULT. */

LOCAL VARIABLES:
,/

1. SLim - USED BY GORITE TO HELP CREATE LINE NUMBERS. */
2. adder - USED BY GORITE TO HELP CREATE LINE */

NUMBERS. */
numb - USED BY GORITE TO HELP CREATE LINE NUMBERS. */

4. ihcre - USED BY GORITE TO HELP CREATE LINE */

NUMBERS. */
5. flag - DETERMINES WHAT RECORDS ARE INSERTED IN */

WHICHI SETS. *I

6. begin FRAVERSES A LIST OF TABLE STRUCTURES. *1
7. travel - TRAVERSES A LIST OF HOOK STRUCTURES. *1
. Finder POINTS [0 A HOOt: STRUCTURE. *1

*/I

NON-STANDARD SUBROUTINES USED:
*/

-. ommons - PRODUCES THE NECESSARY COMMON STATEMENT. */
2. gorite PRODUCES THE NUMBERS USED IN THE CCMPUTED */

GO [0 STATEMENT. *I

E *fp;
uct ta ble x=tai" t;

skin, adder, rtkib, incre, flag;
ucL table *begin;
LiCt hoot: *travel, *finder;

FIRST T!IE STATIC OVERHEAD FORTFAN INFORMATION IS WRITTEN *,

AND TERTAIN VARIABLES ARE INITIALIZED. */

intf (fp,"',n',;-, .UErfWUTINE INSi-rN(NRS,N '-,n");
It (F p, ' \r I N IEGER N, NRS- I' n" ;

Fiu 4-9 Page 1f 5.
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L=

EXT, T14E COMMON STATEMENT IS WRITTEN BY THE SUBROUTINE *I

_OMMONS" AND THE SUE{ROUTINE "GOTORITE" IS USED TO */
X'EATE THE COMPUTED GO TO STATEMENT. */

,/

Dns(start,fp) ;

-)tf (fp,"\n\n I = l\n\n");
ntf(fp," 1 IF (NRS(I) .EQ. 0) GO TO 9999\n");

ntf (fp, ',n GO TO ( );
n = start;
e (begin )

Dritefp,.mum,&adder,&-numb,incre);

f .(*beqin) .rhook '= 0)

travel = (*begin).rhook;

while (travel

gorite(fp,&sum,&adder,&nuLmb,1ncre);
tr-avel = (*travel).nhook;

egin = (*begin).ntable;

ntf (fp, ,,n NRS(I) \n") ;

* /

EXT, THE ACTUAL CODE IS PRODUCED TO STORE (CREATE) */

EW RECORDS AND INSERT THEM IN THE PROPER SETS */

ASED ON T:IE INFORMATION GIVEN IN THE NRS VECTOR. */
,/

Figure 4.9 Page 2 of 5.
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= start;
(begin '= 0)

rntf (fp,"'In %d CALL STOREU%s)",numb,(*begin).anare);

rirtf (fp,"\n IF (ERRSJA .1E. 0) GO FO 9999");

*** ** ** ** ********* **** ** ** * *** ** * **** ****** * **

*!/

SE I: THIS RECORD IS OWNED ONLY BY SYSTEM. *I
* /

((*begin).for sets == 0)

fprintf(fp,"\n CALL INSERT(SYSTEM_%s)",(*begin).aname);
fprintf(fp,"\n IF (ERRSTA .NE. 0)) 00 TO 9999");

fprintf(fp,',n GO TO 9990\n");

*/

SE 2: THE RECORD IS OWNED BY AT LEAST ONE OTH4ER RECORD. *1
HERE TIE RECORD WILL BE INSERTED INTO ALL SETS
IN WHICH Ir IS NOT A RECURSIVE MEMBER. */

se

travel = (*begin).forsets;
wthile (travel '= 0)

f1ag I I
iF ((**trael).atab).rhook 0)

finder = (*(*travel).atab).rhook;

flag = 0;
while (finder != 0)

if ((*finder).atab begin)

finder = 0;
f-lag = 1;

Figum 4.9 Pa&e 3 of 5.
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else
finder (*finder).nhook;

if((LA = U ((*(*travel).atab).rhoo. (1)

fprintf'fp,"\n CALL INSERT(");

fprintf(fp,'\n IF (EFRRSTA .NE. C0 GO TO 9999");

travel = (*travel).nhook.

fprintf(fp,"\ln GO TO 9990\n");

E 7:THIS CASE TAI::ES CARE OF TH4E POSSIBILITY THAT THIS *
A RECURSIVE INSERT. *

f ((*begin).rhook '= C-))

rR~mb v- t-
finder =(*begin).rhook;
vhila ,finder

fprintf(fp,"'\n %d CALL STORE(Xs)",nuimb,(*(*finder).atab).aname-)
fprintf fp,"'n IF CEF(RSTA .NE. (.-) GO0 TO 9999");
Fprintf (fp,'1r' CALL INSERT(");
! rvint If p, "'.s %s) ", (*beqin).arname,(*(*findler).atab).a-iame);
fprxntf (fp,'\n. IF (EF<RSTA NI'E. (0 GO TO 3999");
f P.- nt f (f p,". GO TO 9990\n");
fiinder =(*finder).nhook-:

mb + +;

gin = (*begin).ntable;

Figr 4.9 Pao 4 ofS.
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.Y, THE REMAINING STATIC INFORMATION IS WRITTEN */
HE FORTRAN PROGRAM IS COMPLETE. */

*/

.- ** .N *** *** ************************ ****-***.

fp,"\n 99()-0 I = I *- I");

fp,"\n GO TO 1");
fp,"',n\n '999 RETURN");
fp,"\n\n END\n\n") ;

END OF THE INSERTER ROUTINE

Figure 4.9 Pg 5 of 5.

Figure 4.9 The inserter Routine C Code.
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