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CHAPTER I
INTRODUCTION

1.1 OBJECTIVES AND SCOPE

The objective of this dissertation is to develop a method for
determining the first and second moments of the dynamic response of
structural systems with random parameters.

The randomness in the response of structural systems is due to two
primary factors. The first of these is the randomness in the loading
which has been discussed extensively in the past. The other is the ran-
domness associated with the structure and has ucually been ignored in
computing the moments of the response.

The dissertation will develop a new method for including the struc-
tural uncertainties directly in the computation of the response moments.

The systems under study are limited to those with linear, elastic
properties. The random structural properties considered are the stiff-
ness and damping. The response parameters of interest are the deflec-
tions at key points on the structure. The desired results are the mean
and covariances of the deflections as functions of time.

The method developed will not require knowledge of the distribution
of the structural parameter other than their means and variances. Sim-
ilarly the distribution of the response wiil not be computed. For the
computation of first passage probabilities the response will be assumed
Gaussian.

1.2 MOTIVATION
The randomness 1n structural parameters, such as stiffness,

strength and dampting, has long been realized by designers., For typical
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structures which are designed to resist normal fluctuations in environ-
mental Toads, such uncertainties may be safely accounted for by using
censervative values for the stiffness or strength rather than the mean
values. However, for structures which must resist extreme loads such as
earthquakes, accidental blast, or weapons effects, such a conservative
approach is often economically impractical. A preferable approach
establishes a probability of failure that is deemed acceptable, and the
structure is designed to insure such a probability is not exceeded.

For the engineer to design a structure with a specific probability
of failure three things are required. The first of these is a probab-
ilistic description of the loading; secondly, the probabilistic charac-
terization of the structure is required. Third, and the most difficult,
is a method for computing the moments of the response and, hence, the
probability of failure.

The probability of failure is the probability that a response par-
ameter will exceed an allowable value which may or may not be a random
variable. When the allowable value is deterministic the moments of the
response plus the assumption or computation of its distribution function
will be sufficient to compute the probability or failure. When the

allowable value is a random variable then the joint distribution of the

_ allowable value and the response valu2s is required.

E ‘ Typical response parameters of interest in cumputing structural

h. failure include strains, stresses, displacements, velocities, accelera-
tions, number of stress reversals and ductility ratios. Strains,

i stresses and ductility ratios are usually of interest when examining the

o possibility of overload resulting 1n breaking of a member. Stress
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reversals may be of interest in examining fatique failure. Displace-
ment, velocity and acceleration are of interest when examining
stability, service or shock isolation type failures. For example when
the deflection of a shock isolated piece of equipment exceeds available
rattlespace the system may be assumed to have failed. Similarly a tall
building may suffer a service failure if the displacement of the upper
floors in high winds results in the occupants feeling uncomfortable.
This type of failure may occur when the stresses and strains are still
well below a dangerous level.

While much work has been done in the area ./ load modeling for
earthquakes, wind and blast loads, and in the caiculation of the res-
ponse of deterministic systems to random loads, little has been done in
establishing techniques for computing the response moments in the pres-
ence of randomness in the structural parameters.

Recent studies described in the literature review which follows
have concentrated on quantifying the structural uncertainties, but not
on their effects on response uncertainties.

1.3 LITERATURE REVIEW

This review deals with studies on the theory and calculation of
random dynamic structural response. Books of general interest will be
discussed first followed by papcms d_aling with the quantification of
structural uncertainties. Papers involving the computation of response
characteristics in the presence of structural uncertainties will then be
discussed. Finally, some papers dealing with the first passage and peak
values of structural response will be reviewed.

The theory of random vibrations of linear elastic structures with

deterministic mass, damping and stitfness properties is well developed.
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The equation of motion for such systems when they are mass excited is,

[MI{X(£)} + [CI{X(t)} + [KI{X(t)} = [P(t)} (1-1)

where [M] = System Mass Matrix

[€] = System Damping Matrix

[K] = System Stiffness Matrix

{X} = System Displacement Vector
{P(t)} = System Forcing Vector

When {P(t)} is deterministic {X(t)} will be as well.

Lin (1), Crandali (2), and Papoulis (3) all address the stationary
and transient response of such linear systems for both stationary and
nonstationary loadings. Single-degree-of-freedom, (SDOF), systems may
be solved using the system's impulse response function. Multiple-
degrea-of -freedom, (MDOF), systems are analyzed via their normal modes.
Expressions for the autocorrelation functions and first passage proba-
bilities of the response ar: developed as well as the expressions for
the mean responses. In a more recent work Vanmarke (4) addresses the
extension of this work to include first crossing probabilities for both
stationary and nonstationary envelopes about the process. Elishakoff
(5) provides an excellent text for quantifying the response statistics
for both static and dynamic loads as well as a discussion of the Monte
Carlo method of analysis, Soong (6) expresses the solution of differen-
t1al equations with random coefficients as a function of the coeffi-

cients. The mean of the solution at any time may then be obtained by
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integrating the product of the solution and the joinrt probability den-
sity function of the coefficients over the range of the coefficients.
The variance may be obtained in a similar manner. However, the result-
ing integrals may have to be evaluated numerically at each time step.

Several studies have addressed the quantification of structural
uncertainties. MacGregor, Mirza and E1lingwood (7) compiled information
on the means and variances for concrete strength, steel yield strength,
error in steel placement and total resistance. Ellingwood (8) has also
examined the statistical properties of reinforced concrete beam col-
umns. These studies were based on tests of existing structures and
laboratory specimens.

An analytical study was performed by Grant, Mirza and MacGregor (9)
to examine the strength of concrete columns based on the underlying ran-
dom variables. The formula for the strength of the columns was evalua-
ted repeatedly with a Monte Carlo procedure to determine the mean and
variance, Ramsey, Mirza and MacGregor (10) applied a similar technique
to the computation of deflections of concrete beams. Mlakar (11) used a
Taylor series expansion about the mean to evaluate the mean and variance
of the resistance of a beam column. Thielen (12) used a similar tech-
nique to examine the behavior of concrete beams near the limit state.

The consideration of structural uncertainties in response analysis
1s fairly recent. The building codes have recognized strength variation
through the specification of strength reduction factors and working

stresses well below the average values. The field of reliability and
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cafety analysis was among the first to handle the uncertainties explic-
itly.

Studies within this field have concentrated on the proper design
loads and strengths to use for structures in routine circumstances. Ang
and Cornell (13) investigated the influence random properties such as
yield, bond and shear strength have on structural reliability and proper
design levels. Ellingwood and Ang (14) proposed procedures for rick
based design as did Ravionda, Lind and Siu (15). Moses (16) examined
the reliability of structural systems.

There have been few studies concerned with the calculation ci the
moments of the dynamic response of a system with random stiffness and
damping. Collins and Thompson (17) addressed the problem of random eig-
envalues and eignevectors for a system such as Equation (1-1) with a
random stiffness matrix. Hasselman and Hart (18) developed expressions
for the modal response of MDOF systems based on random eigenvectors.

In both of these papers the expressions for the eigenvalue means
were taken to be the same values that would result from the determin-
istic expression and the variances were evaluated by Taylor series
expansions about the means. Hisada and Nakgiri (19) used a Taylor
series expansion about the means to quantify the effects of node loca-
tion uncertainty on the stiffness matrix and resulting stresses and
strains for the static case. Handa and Anderson (20) developed an
approximation for solving the static problem by separating the random
variables into a deterministic variable equal to the mean and a random

variable with mean zerc hut a variance equal to the variance of the
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original random variable. However, the cross-correlation between the
stiffness and deflection is ignored. This results in the mean response
being equal to the response of the system when the system parameters are
treated as being deterministic and equal to their means. This is known
to be incorrect.

There are many papers related to first passage probabilities and
peak values for stochastic processes. The topic is also well covered in
many of the basic texts listed earlier.

In a classic paper Rice (21) developed the expressions for first
passage times of a white noise process. Karlin and Taylor (22) devel-
oped expressions for first passage probabilities of a random process
represented by Brownian motion with a drift in the mean. Corotis, Van-
marke and Cornell (23) developed expressions for the first passage of
nonstationary random processes. Crandall, Chandiramani and Cook (24)
used a numerical simulation technique to examine first passage prob-
abilities of the responsze of a SDOF system., The system was linear,
elastic and the system properties were deterministic. The loading was
repeatedly applied in a Monte Carlo style and the statistics of the res-
poase including the expected time to first passage beyond a barrier com-
puted. & number of types of barriers were investigated as were the zero
and statiopary start conditions. These authors also developed a model
where the sample #vece is divided into cells and the probability mass is

receatedly redistribuced in accerdance with thaoretically derived tran-

4
2
p
4
4

sition probabilities, krenk, Madsen and Madsen (25) developed a method
for modifying stationary crossing frequencies for use in transient res-
P
@ panse eavelopes. Ang (78) developed a method for computing the response




moments of a linear system, and then developed first passage probabil-

ities based on these. Simple nonlinear elastic structures were

examined.



CHAPTER 2

RESPONSE OF SDOF SYSTEMS WITH RANDOM
STIFFNESS AND DAMPING

2.1 INTRODUCTION

In this chapter a new method is developed for analyzing linear,
elastic, SDOF systems with random stiffness and damping. The system may
be excited by either a deterministic signal or random process. In
either case the response of the system will be a stochastic process.
Such processes may frequently be satisfactorily characterized by their
first two moments, the mean and variance. For the processes considered
here these will vary as functions of time,

The method developed involves the rep.acement of the random vari-
ables appearing in the system's equation of motion with two new vari-
ables. The first of the new variables is deterministic and equal to the
mean of the original random variable. The second variable is random
with mean zero and has a variance equal to that of the original random
variable.

This substitution has been used by Handa and Anderson (20) for

analyzing the static loading of structures but this is its first appli-

cation to the dynamic response of structures. Handa and Anderson also
neglect the correlation between the randomness in the system parameters
and the rando ness in the response introducing an error in the mean
which they acknowledge. The correlation is included here and hence the
mean generated is the true mean.

The results of the method are the mean and variance of the system's
displacement and velocity as functions of time. The correlation between

: the displacement and velocity may be readily computed as well,
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The details of the transformation of the random variables appearing

in the equation of motion are explained in Section 2.2. The resulting
transformed equation of motion is solved using forward differences, the
details of this operation are explained in Section 2.3. A computer code
was developed to perform the computations and its basic numerical algor-
ithm is provided in Section 2.4. The effects of some higher order terms
which have been neglected in the computation of the variance are exam-
ined in Section 2.5. Several numerical examples varifying the method
are provided in Section 2.6. The method will be referred to as the
transformation method.

The following assumptions are made concerning the system's param-
eters and response characteristics,

a) The mass of the system is deterministic.

b) The system response is twice mean square differentiable
with respect to time.

c) The system's damping and stiffness are random variables
whose values are not functions of time. The two may be
correlated or uncorrelated.

d) When the forcing function is stochastic it has an auto-
correlation function with one factor which is a delta function,

e) The forcing function is independent of the system parameters.
2.2 TRANSFORMATION OF THE EQUATIONS OF MOTION

The equation of motion of a mass excited SDOF system is,

MX + CX + KX = F(t) (2-1)
where, M = System Mass
C = Damping Resistance
K = Stiffness
X(t) = System Displacement
F(t) = Forcing Function



When K and C are deterministic Equation /2-1) may be solved exactly
for either deterministic or stochastic forciny functions. When K and C
are random variables the responsez, %(t), is a stochastic process, the
mean and variance of which may be evaluted by the method of Soong (6).
However, this method wiil in general require numerical inteyration at
each time of interest.

To develop expressicns for the mean and mean square values of X(t)
a substitution is made in Equation (2-1) for the random variables. The
substitution replaces the original variables with the sum of two other
variables, one of which is deterministic and equal to the mean of the
original variable; the second variable is random with mean zero and
variance equal Lo the variances of the original variable. The substitu-
tion is made for X, C, X(t), i(t), Y(t) and F(t).

The deterministic portion of the response X(t) is represented by
u(t) and the random portion by 6(t). Hence the substitution for X(t)
is,

X(t) = u(t) + &(t) (2-2)
Taking the expected value of Equation (2-2) yields,

E{X(t))

i
m
—
=
—
ot
—
~—

+ E(8(t)) (2-3a)
= u(t) +0 . (2-3b)

To develop an expression tor the mean square value of the response one

squares Equation (2-2) which yields,

X(t)% = u(t)? + 2u(t)s{t)+s(t)? . (2-4)

11
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Taking the expected value of Equation (2-4) yields an expression for the

mean square response of X(t)

E(X(T)2) = u(t)? + 2u{t)-0 + E(s8(t)?) (2-5a)
E(X(£)2) = w(t)? + E(a(t)?) (2-5b)

The variance of X{t) is given by,
Var(X(t)) = E(X(t)?) - E{x/t))? (2-6)
Substituting the expressions in Equation (2-%b) for E(X(t)z) and

Equation (2-3b) for E{X{t)) yields,

Var(x(t)) = E(s(t)?) (2-7)

Similar substitutions may be developed for the derivatives of X(t)

by differentiating Equation (2-2). This yields for the velocity,

X(t) = u(t) + &(t) (2-8)
And for the acceieration,
X(t) = %u(t) + s(t) (2-9)

Taking the expected value of Equation (2-8) yields an expression

tor the mean of the velocity,

E(X(t)) = E(a(t)) + E{8(t)) (2-10)
Since u(t) is deterministic its derivatives are as well, hence,
a E{u{t)) = a(t) (2-11)
y“ Since X{t; and thus &{t} have been assumed mean square differentiable

the expectation and differentration gperations may be interchanged. And

Cantilai it o il sl i
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since E(§(t)) is zero for all times the expected value of the change of

§(t) with time must also be zero, yielding,
E(s(t)) =0 . (2-12)

When the relation in Equations (2-11) and (2-12) are substituted into
Equation (2-10) the resulting expression for the mean of the velocity
*is’

E(X(t)) = a(t) . (2-13)

Squaring Equation (2-8) and taking the expected valu: provides the

expression for the mean square value of the velocity,
E(X(t)2) = i(t)? + E{s(£)?) . (2-18)

Similar expressions for the mean and mean square values of the
acceleration may be developed from Equation (2-9)., The expected value

of the acceleration is,

The mean sauare value of the acceleration is given by,
E(X(t)2) =%(t)% + E(5(%)2) . (2-16)

Representing the stiffness k as the sum of Kp and Ky with Kp

deterministic and Kp a random variable with mean zero yields,

K=Ky + K (217
Taking the expected value of Equation (2-17) yields,
E(K) = Ky * E(KR) i ENTY




And since Kp is mean zero,

E(K) = Ky - (2-19)

Squaring Equation (2-17) to develop an expression for the square of K

yields,

2 _ 2 2
K* = KD + ZKRKD+KP . (2-20)

Taking the expected value of Equation (2-20) yields

E(K2) = xg + E(Kﬁ) . (2-21)

!pon rearranging one has the expression for the variance of K.

Var{K)

E(K2)-E(K)? (2-22a)

"

E(KR) . (2-22b)

For the damping, C, let Cp and CR be the deterministic and
random portions, respectively. Then following the development used for

the stiffness, the expressions for C, the mean of C, and the variance of

C are,
C=Cp+Co (2-23)
E(C) = (2-24)
Var(C) = E(cﬁ) . (2-25)

The substitution for the forcing function, F(t), consists of the
deterministic portion P(t) and a random portion q{t). Making this sub-

stitut1on and following the development above results 1n the following
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expressions feor the forcing function, F(t), the mean forcing function,

P(t), and the variance of the forcing function,

F(t) = P(t)+q(t) (2-26)
E(F(t)) = P(t) (2-27)
Vor(F(t)) = E(q2(t)) . (2-28)

Substituting the results of Equations (2-2), (2-8), (2-9), (2-17),
(2-23), and (2-26) into tne equation of motion, Equation (2-1), results
in,

M(urs) + (CprC)(itd) + (KK )(wrs) = P(t) + a(t) . (2-29)

lilen the system parameters and response are considered correlated

the expected value of Equation (2-29) is,

M+ Cpin + Kgu + E(Kp6) + E(cRé) = P(t) . (2-30)

D D

A solution for u(t), the mean respcnse of the system, may be sought
based on this expression,
To develop an expression for &(t) one may subtract Equation (2-30)

from Equation (2-29) yielding the result,

[ M§ + CDG +Kpe t SRT + KRT = q(t) - KRu - CR“ (2-31a)
L
» where CRT = cRé-E(cRé) (2-31b)
;

. KRT = KRG-E(KRG) . (2-31¢)

MR A e
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The term CRT represents the fluctuation of the random nortion of the
damping force about its mean. The fluctuation of the random portion of
the stiffness force is represented by KRT.

When the random portions of the restoring forces are considered
smail ir “mparison tc the deterministic porticns, CDﬁ and KDu, the
fluctuations may be considered negligible and set to zero. This assump-
tion is made in the development of the technique. The implications
of the assumption are examined in Section 2.5 and the examples in
Section 2.6.

When the CRT and KRT terms are neglected Equation (2-31a) becomes,

M§ + cDé + Kpd = q(t) - Kpu = Cpi (2-32)

The response characteristic of interest in this analysis is
E(G\t)z). Furthermore, the equations for u(t) and 5(t) ae coupled in
that u(t) appears in the expression for 6(t) and vice versa. The sep-
arate the equations and permit the computation of u(t) and E(G(t)z) the
forward difference technique will be applied as explained in the follow-
ing section.

2.3 APPLICATION OF FINITE DIFFERENCES

Many structural mechanics problems involve differential equations.
They arise in both static and dynamic analysis and may be solved dir-
ectly for a relatively small number of cases. For thuse cases which may
not be solved directly, various numerical integration schemes have been
developed., A common method of performing the integration is the appli-
cation of tinite differences. This technique may be applied to a
ditferential equation provided the function dand 1ts derivatives as they

appedr 1n the equation are cuntlnuous,



Consider the definition of a derivative:

df(y) _ lim_ f(y+ay) - f(y)
dy ~ Ay+o Ay (2-33)

When Ay approaches a small, fixed value, s, rather than zero an

approximation to the derivative of f(y) is:

df(Y) . fly+s) - fly)
dy - S L] (2"34)
This expression is the basis for the forward difference technique.
If one considers a time, t, vo equal nAt, where n is a positive integer
and At is a small, positive time constant, the expressions for f(t) and

its derivatives are,

f(t) = f (2-35)

. Fo-f

fr) = 2D (2-36)

N fo-2f L+ 1Af

flr) =2l 0 (2-37)
at?

For further information on che finite difference approach and its appli-
cations Wang (31) provides a good introductory discussion. Rathe (32)

addresses numerical integration schemes in conside~able detail as well.
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To develop the relations required to evaluate u(t), Equations
(2-35), (2-36), and (2-37) are applied to Equation (2-30) in place of

u{t) and its derivatives resulting in,

C

M D -

Z;E (M2 2Hgar i) * 7 (Mpay=vg) * Kp () =
= Pn - E(KRG)n - E(CRG)n . (2-38)

Combining terms and solving for up4o yields,
-1 - - ; -

My = = (Pn E(KRG)n E(CRG)n + Alun+l+A2un) . (2-39a)
where M = M/at? (2-39b)
Cp = Cp/at (2-39¢)
A = M-C,y (2-39d)
A2 = CD-M-KD (2-39e)

Equation (2-39a) provides an expression by which u(t) may be calcu-

lated in a step-by-step manner, based on information calculated at pro-

vious time steps, provided that information can be developed. The main
difficulty lies in the calculation of E(KRG)n and E(CRé)n. These are

the terms which have been ignored or assumed zero in many previous stud-

Tr T Yy

® 1es. Their inclusion here represents an improvement over previous

approxtmctions, The means for calculating these terms will be discussed

- ~ Y

shortly.

T VT
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Applying the finite difference relations of Equations (2-35),
(2-36), and (2-37) to &(t) and its derivatives in Equation (2-32)

yields,
M(6n+2—26n+1+6n) + CD(6n+1-6n) + KD(Gn) = qn = KRun - CRun . (2'40)

Rearranging and solving for &p42,

Spe2 = = (G Kpup= Coup + A+ AS) (2-41)

=] |

Since an expression for 8(t)? is sought, Equation (2-41) is squared

resulting in,

2 _ 1 2 _ . .
She2 = 5 (ap - 2a,Kgu, - 2q,Cour 29,718 4
M

¥ 2q.R8, + Kﬁ“ﬁ b 2Kplre ki

- 2u K A 2,2

= 2upKRASney - QupKphos, + Cruy
- RS - 2R AS,
2 2 2 .2
* R Syl 2RSS 8+ RS 8 ) (2-42)
| @

When expected values are taken in the above expression some terms
on the right side will be zero. Due to the assumption outlined at the
end of Section 2.1, terms involving a product of Kp and gn or Cp and

o
- qn will be zero, for the randomness in the loading is independent of the
|

W R ey
eoor .




system parameters. Hence, when the expected value of Equation (2-42) is
taken the result is,

1 .
E(6,,5) == [Var(F,) +u var(k) + i VarC
M

+ Zunﬁn Cov(K,C) - 2u A E(K:S )

- ZunA E(KRSn) - ZunAlE(CR6n+1)

-2 AE(Ces ) + AJE(s %)

2 2
+ ABE(82) + 2R ALE(6 18 ) + 2AJE(q 6, .,)

+ 2AE(q 8 )] (2-43)

Note in Equation (2-43) that all terms which involve the randomness
of the system parameters are multiplied by the mean response or its
derivatives. Hence, when the system has a zero mean response the vari-
ance and mean square values are functions of the randomress of the exci-
tation only. This is due to the assumptions regarding the terms desig-
nated CRT and KRT in Equations (2-31a), (2-31b), and (2-31c). These
terms are discussed .urther in Section 2.5.

The terms Var(K), Var(C), Cov(K,C) and E(q%) must be specified

prior to commencing the solution. The terms involving E(6n+12) and

E(an) on the right hand sice are the results of Equation (2-43) at
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previous time steps. The formulation of the remaining terms, E(CRén),

E(KRGn), E(6n+16n), and E(qnén) proceeds as follows. Consider Equation

(2-41) with the index shifted by one. This provides an expression for
Sn+1-

() =

n+l tA

=i |-

St AL ) - (2-84)

(qn-l = Knar = CR¥pay 1
Multiplying this expression by Kp yields

K

=| lr—a

_ 2 :
ROn+1 = (Kpdn.1 = KReno1 = RCRépo1

HAKS +AKS ) (2-45)

Taking the expected value of both sides results in,
. L :
E(KgSpsy) = - (-Var(K)un_1 - un_ICov(K,C)

+ A E(K

1 + A E(KRG

o) A, O (2-46)

Ne-

This expression may then be readily evaluated in a step-by-step manner

from the zero start condition. The expression for E(CR6n+1) is devel-
oped similarly and results in,
L 2
E(Ca8 ) * - (=u,_Cov(K,C) -u _ Var(C)
+ AlE(CRGn) + AZE(CRGn_l)) (2-47)

The expression for E(6n+16n) is developed in a similar manner. It

is,

E‘5n+16n) : (°“nw1E(KR5n) - hn«lE(CRGn)

Xt |

+ AJE(S2) + (8.8, ) (2-48)
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11'1
.f The expression for E(qn6n+1) is
] .
T E(a 8 ,)) = - (E(aya,.1) - Ela K, 4
M) B E(qncR)“n-l ¥ AIE(qnsn)
3 + A2E(qn6n_1)] (2-49)
’
b However, since the loading is independent of the system parimeters and
uncorrelated with itself for any time shift, all terms in the above
- expression are zero. Hence,
| ]
( = = -
i E(qé ) =E(qé ) =0 (2-50)
‘{ Since these terms are zero the randomness in the response due to the
g loading and that due to the system parameters are independent. Thus
"; they may be computed separately and combined merely by adding the two
o independent variances.
O
3 The expressions for the variance of the velocity may be developed
from Equations (2-48), (2-43) and the finite different approximation to
° the velocity.
. 6n+1 - dn
(Sn = .—__———At (2-37)
bl
A Squaring and taking the expected value yields,
4 2 E(5n+21) h 2E(6n+16n) * E(afl)
f E(s2) = - (2-51)
@ At
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Hence the method of transforming the random variables by a shift
ahout the mean provides expressions which enatle the analyst to evaluate
the means, variances and covariance of displacement and velocity. Note
these expressions are independent of the distribution of the system
parameters and the loading function. This is due to the linearization
of the solution to the equation of motion at each time ster.

An algorithm for computing the mean and variance of the displace-
ment response of SDOF systems is outlined in the following section.

2.4 TYE COMPUTATION ALGORITHM

The following algorithm was developed to compute the mean and vari-
ance of the displacement response of an SDOF system. The system stiff-
ness and damping are considered random. They are described in terms of
their means and variances, which are input at the beginning of the calc-
ulation as is their correlation coefficient. The randomness in the
loading is described in terms of its mean and variance which are defined
at the beginning of the calculation as well. These may vary with time
provided the function describing the variation is defined.

The algorithm is based on a zero start condition and proceeds as
follows,

1. Read input parameters;

K, Var(K), C, Var(C), Cov(K,C)
M, At, and problem duration.

2. Initialize all variables for zero
start condition.

3. Set, NT, the total number of time steps
equal to the problem duration/at.



i M S

4. Do for each step N=1,NT
a) Compute the mean and variance of the loading
function based on predetermined functions.

b) Compute E(& ) from Equation (2-48).

n+16n
c) Compute Moeo from Equation (2-39a).

d) Compute E(6n+§) from Equation (2-43).
e) Compute E(KR6n+2) from Equation (2-46).
f) compute E(CR6n+2) from Equation (2-47).
g) Write desired results.

h) Time = Time + At.

i) Go to step 4a until
Time = Problem duration.

This computational algorithm is implemented in the computer program

RSDOF, a listing of which is included in Appendix A. Numerical examples

in Section 2.6 use the code to varify the adequacy of the method as well

as to investigate the influence the random system parameters have on the

response moments,

2.5 THE EFFECT OF HIGHER ORDER TERMS

This section discusses the effects of the assumptions rade in

Section 2.2 regarding the fluctuations in the random portion of the

system's stiffness and damping restoring forces.

Equation (2-31a) may be rewritten as,

M + cDé + Kpd = qlt) - Kou - Cpii = CRT - KRT

where CRT = Cps - E(CRG)

KRT = K6 - E(K,8)

R R

(2-52)

(2-31b)

(2-31c¢)
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In Section 2.2 KRT and <RT were assumed to be zero. Hence, tney do

In

Equation (2-41) and E(6n+§), Equation (2-43) in Section 2.3. 1
s of CRT and

not appear in the development of the finite different expressions for

6n+2’
the following development no assumptions regarding the value
d they are included in the development of new expressions

KRT are made an

2
for 6., and E(6n+2).
when the difference expressions are substituted for &(t) and its

derivativas on the left hand side of Equation (2-52) the result is.

26n+1+6n) * cD(Gn+l'6nJ * KD5n

M_(6n+2 B
= q, - Kpup~ Caiyy = ORT - KRT  {2~53)
Solving Equation (2-53) for &p+2 yields,
5 4p % (a, - Keiip = Caig = TRT = KRT + Arg + Ayé,) (2-54)
to the &(%)

Note the difference exprecsions could have been appiied

terms in CRT and KRT as well, hut this would only complicate the algebra

without changing the results.
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To develop an expression for the variance of the response one first

squares Equation (2-54) resulting in,

(q - 29 Kouy - 29 CR“n *2q.R 804

+

2q,A,8, * KRu + 2HpCpun by

- - \ 2.2- .
2R KaSne1 = 2R2KR 8 my ¥ Gy = AL GRS Ly

> 2.2
2AyCa8al, + APS LT+ A8 6+ ATSE

-+

{CRT? + 2CRTKRT + KRT?Z - 2q CRT

+ 2u KaCRT + 201 CoCRT = 2A; 6 CRT
- 2R,8 CRT - 2q KRT + 2K u KRT
+ 2u CoKRT = 2A, 6 KRT - 2A,8 KRT})  (2-55)

Equation (2-55) is identical to Equation (2-42) developed in
Section 2.3 with the exception of the terms involving CRT and KRT
contained within the brackets, { }, above. Hence when one takes the
expected value of Equation (2-55) to determine the variance of the
response the result is Equation (2-43) plus the expected value of the
terms within the brackets. Thus the expected value of the terms within
the brackets provides an estimate of the error in the variance of the
response due to assuming CRT and KRT are zero. Designating this term

REM one finds,




REM

2 2
E {CRTn + ZCRTnKRTn + KRTn

1
noow

2(KR“n+ CR“n " - A16n+1 - AZGn) CRTn

+

<+

. ) i -
2(KRun + CRun q, A15n+1 Azén)KRTn} (2-5€)

Evaluating the right hand side of Equation (2-56) term by term yields,

E(CRTZ) = E[(Coé - E(Cp8))?]
= Var(Cp6)
Likewise,
E(KRT?) = Var(Kp$) (2-58)
And,
E(KRTCRT) = E[(Cps - E(Cp8))(Ke8-E(Kps))]
= Cov(Kp8,Co8) (2-59)

For the remaining terms on the right hand side of Equation (2-56)

involving CRT one gnts,

n
=
£
=
o
>
o
g
o
0
—-‘
>
—
1
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Since E(KR), E(CR), E(5n+1), and E(Gn) are all zero, and the E(CRG)n is
deterministic the result is,

E((KR“n ¥ CRﬁn "0 T A16n+1 B A26n)CRTn) )

- : Y :
= upE(Kelpsy) + “nE(CRan) - Eq Cpsy)

- AE(S

) §C.) - ALE(S 5§ C.) (2-61)

n+l n nnR
The corresponding expression for the terms involving KRT in Equation
(2-56) is,

E((Kpup * CRity = G = ApSpyy = A8 )KRT ) =

- 2 .
- “nE(KRsn) * "nE(KRCRGn) - E(quR‘sn)

- AlE(cn+1anKR) - A2E(5n6nKR) (2-62)

Combining Equations (2-57), (2-58), (2-59), (2-61) and (2-62) the

resulting expression for the remainder terms, REM is,

REM = (Var(kze), + Var(CRé)n + 2Cov(KR6,CRé)n)

%1'»;

+2{u [E(KCos ) + E(KEs )] + iy [E(KCo8,) + E(CFS )]

e L i ;
E‘anRsn) E(quch) Al[E(cn+16ncR)

+ E(6,,16,Ke) ] = A [E(8ZK) + E(8,6 Co) ]} (2-63)

St e s o

This expression may be further reduced since g 15 1ndependent of

the system parameters CR and KR and 1s 1ndependent of 6n+l and dn as

well,




Hence,

E(q CRGn)

0 E(q )E(Cps )

And,
E(q kp¢) = E(q JE(KSS )

However, since gqp is mean zero,

]
o

E(q,Ca8,) =

And,

E(quch) 0

Thus Equation (2-63) is reduced to,

_ 1 : :
REM = —— (Var(Kp8)  + Var(Cp8) + 2Cov(Kp8,Cp8),
H
2
+ E(KDCRG + E(Ke8, )]
. 2'
+u [E(KRCas ) + E(Cps )]

8.C) + E(S 16 Ko)]

- A[E(s n+150 KR

n+l

A

[E(87Ky) + E( cncR)] } )

2 R

(2-54)

(2-65)

(2-66)

(2-67)

(2-68)

Examination of the terms on the right hand side of Equation (2-68)

reveals that these terms provide a means for the uncertaintics 1n the

system parameters entering the computation of the response's variance

when the response 1S mean zeru,




When the variation of the response is small compared to its mean
then one would expect that the value of Var(Kps) would be small com-
pared to that of E(Ké)uz. Similarly one would expect that the Var(CRG)
would be small compared tu t(Cé)u2 and Cov(KRG,CRé)n would be small in
comparison to E(KRCR)ﬁnun. Hence one would expect that these terms have
little influence on the response, Similar arguments may be made for
discounting the rest of the terms in Equation (2-68) as they all have
corresponding terms which one would expect to be much larger in Equation
(2-43).

Several of the following examples verify this assumption by compar-
ing the results of the computer code RSDOF to analytical methods which
do not ignore the terms included in Equation (2-68).

2.6 NUMERICAL EXAMPLES

This section includes examples of the transformation technique
developed earlier in this chapter applied to the solution of specific
problems. The following problems are covered.

1) Response of deterministic random systems to a

white noise loading.

2} Response of a random system to a deterministic
constant loading.

3) Response of a random system to a determ nistic blast loading.

Tne first two problems were used as a method of checking the

results of tie technique. These examples were also used to quantify the
effects the random system parameters have on the response. The third

demonstrates the use of the technique 1n a practical application.

Clane Jam ‘e aan
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EXAMPLE 1 ~ White Noise Excitation of An SDOF System
Consider the system diagramed in Figure 2-1. A1l system parameters
are unitless. When F(t) is white noise with spectral density ¢ the mean

square response of the system with deterministic parameters, is given by

Lin (1) as,
exp(-2ew t)
E(X(t)2) = —’19:3—5— 1 [
2€wo m (DD
+ 2(ew sinugt)? + ew sinZupt] } (2-69)
where € = S — (2-70)
2 J KM
. [X
w, = M (2-71)
wy = ug | 1-€? (2-72)
As the response reaches its stationary value Equation (2-69)
reduces to,
£, (x(1)7) = (2-73)
Zsmgmz

To model the response of the system one first has to develop a
suitable modc! tor the white noise excitation, A white noise random
process with spectral density ¢ has an autocorrelation function, RFF(r)
of,

R Vor 20¢8( 1) (2-74)

P ()

where §{c) 1s the dirac delta function.
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When one wishes to excite a structure using a white noise input and
perform response computations in a discrete time framework he can model
the input as a frequency of independent, identically distributed random
variables applied to the structure at At time intervals. This is an IID
(independent identically distributed) random process (sometimes referred
to as a band-limited white noise random process). Let {Fj = F(jat),
j=20,1, 2, ...} be an IID random process. The random process has mean

zero and autocorrelation function,

u

Rep((§-K)at) = { @ 1ok (2-75)

jz k
(2-76)
where 5j-k is the Kronecker delta (equal to zero when the subscript is

nonzero, and equal to one when the subscript is zero). The spectral

density of this random process is,

2
S AT (2-77)
S (w) =
FF 0 elsewhere

In view of this, the IID random process is equivalent to the white noise

random process if g2 is chosen as follows,

2
o* =1%o (2-78)

2 jnsures equivalence between the white noise

This gefinition for ¢
and 11D random process in terms of their spectral densities. However,
equivalence in terms of the structural response these inputs excite is

only guaranteed for certain values of At.
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Specifically, the cutoff frequency of the IID random process, w/At,
must be much greater than the natural frequency of the structure being
excited in order for the IID random process to appear similar to the
white noise input, as far as structural response is concerned. This
establishes the requirement,

w

At << ;ﬂ (2-79)

where w, is the natural frequency of the structure being excited.

To address the issue of how small a time step, At, is equired to
insure an adequate approximation of the structural response character-
jstics a series of calculations with decreasing values ¢~ At were per-
formed. The ratio of the natural period to the time step is termed N.
The computations were run for the case of C = 20, (e = 0.2), until the
recyonse became stationary. With ¢ = 100/At, K = 500, and M = 5, the
exact solution for the mean square value of the response, ES(X(t)Z),
as defined in Equation (2-73) is 0.005. The values for Eg(X(t)2) com-
puted for successive values of N are plotted vs In(N) in Figure 2-2,

As At becomes small (that is as N becomes large), the values
obtained from the computations very closely approximate the exact solu-
tion, being in error by less than 1% for values of N greater than 1500.

To examine the variation of the error with time the results of com-
putations for different values of the damping parameter C, were compared

to the exact solution as given by Equation (2-69). the values of C

{ chosen for the comparison correspond to values of €, the critical damp-

ing ratio, of 0.05, 0.10, and 0.2. The computed values of E(X(t)z) are

g
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1
1
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plotted versus time in Figure 2-3. The relative error, E, was computed

i - . time step by,

x 100 (2-80)

where E(X(t)z) is the value of the mean square response as computed

comp

and E(X(t)z) is the value for the mean square response given by

exac
Equation (2-69). The error was found to be monotonically increasing
with time for all three cases, reaching its maximum value when the sys-
tem reached the point of stationary response.

The values for Emax’ the maximum error for the three cases are lis-
ted ir Table (2-1). The maximum error was found to increase with de-
creasing values of e. However, since the mean square response goes to
infinity as ¢ goes to zero this is not surprising. A smaller value of
At would result in smaller errors for the very lightly damped system.

If one now considers the system diagramed in Figure 2-1 to have
both random stiffness K and damping C the values obtained from Equation
(2-42) for the mean square response will be the same as for when the
system is deterministic. This is due to the assumption made in Section
2.1 regarding the variations of the random components of the restoring
forces. Specifically it was assumed that,

CRG

E(cREs)




™ .

e ¥ N

« VN W

-

L AN

37

buipeo asioN

3311YyM 40} 3sudsay saenbg ueay g-z 9unblL4
(ssap3tun) JWIL
9 ) v € 14 1
G00'0 = 390BX3
010°0 = 328x3
0¢0°0 = 3oEX3

506~

010"

020~

5¢20°0




e

TABLE

2-1

MAX ERROR IN THE COMPUTED VALUE OF
E(X{t)2) FOR VARIOUS VALUES OF €

M agh Sh ab e aam St g

2
€ E(X(t) )comp Max error
[ 0.05 0.020472 2.55%
0.10 0.010128 1.28%
0.20 0.005032 C.64%
N = 2500 for all cases.
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These assumptions have no effect on the mean response of the system
but do result in the contribution of the randomness in the stiffness and
damping to the randomness of the response being multiplied by a factor
containing the mean response. Hence when the mean response is zero the
effects of the randomness in tihe system parameters is lost.

To answer the question as to how significant this error is one may
write the expression for the mean square response of the stationary sys-

tem as a function of K and C. Rearranging Equation (2-73) results in,

2y _ _T¢
E(X(t)%) = 3¢ (2-82)

For purposes of illustration cne may consider K random and C deter-
ministic, resulting in Equation (2-82) being a function of the random

variable K. Taking the expected value of Equation (2-82) results in,

E(E(X(0)) = B E() (2-83)

And since the expectation of an expected value is the expected value the

left hand side may be rewritten and Equation (2-83) becomes,

E((X(t:2) = B E( ¢ ) (2-84)

The E(:-) depends on the distribution of K. When the mean stiff-

i

ness KD’ is equal to 500 and the coefficient of variation §, is 0.15,

K
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and K is uniformly distributed with upper bound KU

E(%J is given by,

K
1, _ fuo1 1
EGR) = { x span K

where SPAN = Ky - K_ and is given by

Var K =-% (SPAN)2
And since,
Var K = (0.15)2KD2
Var K = 5625
The span of the distribution is,
SPAN = 259.8

and lower band KL’

(2-85)

(2-86)

(2-87)

(2-88)

Yielding values of Ku and KL the upper and lower limits of the distribu-

tion of,

629.9 }
370.1

ta e
—
1}

The resulting value for E( %-) is thus,

E(

|

488,7

) = 0.002046 = —r2—r

(2-89)

(2-90)

this differs from —%—- by only 2.35%. Thus the true value for the sta-
D

tion any mean square response of a white noise excited system with
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random stiffness is underpredicted by only about 2.35% for the case

illustrated. A suitable rule of thumb would be

2 ¢ 2
B8] = g (14 ) (2-91)
where GK is the coefficient of variation for K and KD is the mean value.

This example provides considerable reassurance that the assumptions made

in Section 2.1 will produce only a smail ei.ur.
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EXAMPLE 2 - Comparison of the Results of the Transformation Method to
the Exact Solution for the Response of an SDOF System with
Random Parameters
The objective of this example is the verification of the
transformation method by comparing its results with those obtained by
numerically integrating an exact solution for the mean and variance of

the system response.

The system under consideration has the following unitless mean

values,
KD = 500
e = 0.1
M =5

and zero initial conditions,

The loading function used for the comparison was deterministic,
The load was instantaneously applied at time 0 and remained in place
indefinitely. The loading function is diagramed in Figure 2-4.

The system response to such a loading is,

Ew

- F o .
X(t) = ¢ (1 - exP('swot)(ZE— sinupt + COSth)) (2-92)
where w_ = K (2-93)
o v M
! = 2
- wy = w, l-¢ (2-94)
o . : .
; The first comparison consists of evaluating the response of the
g SDOF system using the code RSDOF with the randomness in the system par-
g ameters set to zero. The results of this computation were plotted with
(
i values obtain. from Equation (2-92) 1n Figure 2-5, As can be seen in
{ the figure t  plots are Indistinguishable.
|
.0

M il e S S
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For the second comparison the stiffness was treated as a random
variable with a coefficient of variation of 0.1. To generate the exact
solution for the mean and variance of X(t) Equation (2-92) was treated

as a function of K at any time t. Thus,

X(t) = G(K)
And E(X(t)) = E(6(K)) = _.J” 6(K)P, o (2-95)
And E(R2 (1)) = E(62(K)) =_J G2(K)P, dK (2-96)
var(X(t)) = E(62(K)) - E(G(k))? (2-97)

where Py is the probability density function for K.

One notes that the exact values for E(X(t)) and Var(X(t)) are
functions of the probability distribution function of K. This informa-
tion is not included in the equations of the transformation method since
the method replaces the derivatives with linear approximations. The
means ard variances of the resulting linear equations are independent of
the distributions.

The integrations of Equations (2-95) and (2-96) were performed for
two different distributions of the random variable K. The first of
these was the uniform distribution. The probahility density function

for K is then,

u - oL (2-98)

= 0 elsewhere

‘..ll.ll‘l'llllii rm ill Bante b susine ks o oado gt o0 ol o e PRI GOP Ay - P PSPy
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where KU is the upper limit of integration and KL the Tower. Values of
KK and KU were 413.4 and 586.6 respectively. These yield a mean value
of K of 500 and a coefficient of variation of .l.

The numerical integration was performed using Newton-Quotes algor-
ithm available via the QUANC8 subroutine available on the University of
New Mexico's VSPC computer system.

The resulting means and standard deviations for approximately 2.5
cycles of response are plotted in Figures 2-6 and 2-7 respectively. The
means are indistinguishable. The transformation method appears to ser-
iously undershoot the troughs of the standard deviation curve. However,
since the response at or near the peaks is of primary concern to the
engineer this is not considered a serious shortcoming.

For a second comparison the stiffness K was assumed to have a trun-
cated normal distribution. The probability density function for K is
then,

1.00067 -1
e = L enp (s (e 7]

KOJT 20

for KL ¢ K < KU

(2-99)

0 elsewhere

The means are once again indistinguishable, and are plotted in
Figure 2-8. The standard deviations are plotted in Figure 2-9, Once
again the transformation method undershoots the troughs of tne standard
deviation vs time curve.

B8ased on the above information the transformation method provides
an adequate approximation for the mean and standard deviation, or vari-

ance, of an SDOF system with random parameters.

------
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EXAMPLE 3 - Evaluation of the Influence of Random Stiffness and Damping
on the Response Statistics for an SDOF System

This example consists of a set of computations of the mean and
standard deviation for an SDOF system. The system's mean stiffness and
mass were held constant. The loading function was the same as in
Example 2 and is shown in Figure 2-4. The mean damping ratio, the
standard deviations for the stiffness and damping, and the correlation
coefficient between the stiffness and damping were varied in individual
cases. The values used for these parameters in each case are shown in
Table 2-2.

The results of cases 1 and 2 and the deterministic case were used
to examine the influence of the randomness in the stiffness on the ran-
domness of the response. The resulting values for the mean, u(t), and
the standard deviation, o(t), for each case are plotted in Figures 2-10,
and 2-11. The deterministic case was discussed in Example 2 and its
mean response is plotteu in Figure 2-5, One notes that the value for
the peak response increases as the standard deviation of the stiffness
increases. Furthermore the standard deviation curve lags behind the
response curve though they are of similar shape. The trend of increas-
ing peak response is evident by comparing the values for the peak res-
ponse obtained for cases 1 and 2 and the deterministic value. Howevar,
the variation between these cases is smalier than it would be for the
static case, hence the variation in the stiffness has a smaller effect
on the peak dynamic response than it does on the static. Furthermorzs
the values obtained from the code are at preselected times based on the

period of the response as determined by 1ts mean parameters, whon the
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TABLE 2-2

PARAMETERS USED IN CASE STUDIES

Case € O¢ O’K PKC
1 0.1 0 50 0
2 0.1 0 100 0
3 0.5 0 100 0
4 0.1 0.01 0 0
5 0.1 0.02 0 0
6 0.5 0.02 0 0
7 0.1 0.01 50 0
8 0.1 0.01 50 1.0
9 0.1 0.01 50 -1.0

54




55

system has random parameters there can be a slight phase shift resulting
in the peak values printed being off by one or two time steps from the
true peaks.

The peak response for each of the cases, o, = 0, 50, 100 are listed
in Table 2-3.

The results of cases 4, 5, and 6 allow one to examine the influence
of the randomness in the damping on the randomness of the response. The
means and standard deviations for these cases are plotted in Figures
2-12, 2-13, and 2-14 respectively.

By comparing the results of cases 1 and 4 one notes that the values
obtained for oy(t) resulting from a random stiffness are an order of
magnitude larger than those obtained for random damping. Cases 2 and 5
show the same effect for larger variations in the stiffness and damp-
ing. However, one must note that these results are for a system with
damping which is only 10% of the critical value, When the damping is
increased to 50% of critical as in cases 3 and 6, plotted in Figures
2-15 and 2-14 respectively, the resulting values for oy(t) resulting
from randomness in the stiffness and damping are still not of the same
magnitude,

From these results one concludes that for lightly damped systems
which do not have a zero mean, the effects on response of randomness in
the damping are minimal compared to those resulting from a randomness in
the stiffness. For the case of white noise response the effects of
randomness in K and randomness in C will be the same when the

coefficients of variation of K and C are equal.
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TABLE 2-3

STANDARD DEVIATION OF K AND
CORRESPONDING PEAK RESPONSE VALUES

OK Peak Response
0 0.3473

50 0.3485

100 0.3521




P—p——

-.,-__,
-
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Furthermore while the randomness in the stiffness effects the res-
ponse for its entire duration, the effects of the random damping dissi-
pate as the system converces to its static deflection which is indepen-
dent of the damping. However, when the loading is transitory the
effects of the random stiffness will also dissipate as the system re-
turns to its initial state.

The results cf cases 7, 8, and 9 allow one to assess the impact of
correlation between the stiffness and damping. In these cases the cor-
relation coefficient between the stiffness and damping, Pxp, was given
the values of 0, 1, and -1, respectively.

The difference between these cases were too small to be effectively
plotted, however, case 8, Pgc = 1, produced the largest values of both
ux(t) and ox(t). Case 9, PKC = -1, produced the smallest values of u(t)
and oy(t).

B-sed on these results one concludes that ox(t) at time of peak
response increases with increasing correlation between the stiffness and
damping. The values for the mean and standard deviation at the time of

peak response are provided in Table 2-4 as an illustration.
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TABLE 2-4

MEAN AND STANDARD DEVIATION OF
X(t) AT TIME OF PEAK RESPONSE

« u(t) g, (t)
-1 0.3479 0.276
0 0.3486 0.326
1 0.3493 0.370




EXAMPLE 4 - Blast Loading of a Simply Supported Beam

This example illustrates the application of the methodology devel-
oped in the previous sections to a problem of practical interest.

The structure considered is a simply supported reinforced concrete
beam. The loading is a simplified approximation to a blast loading.
The structure and its loading time history are shown in Figure 2-16.

B deterministic solution using standard analysis procedures is pro-
vided in Biggs (33). The peak deflection resulting from the determin-
istic and stochastic solutions are compared.

When modeling such a structure with an SDOF system the stiffness
is,

- _384E1

(2-100)
5.3

for the present case this yields a value of Kp of 2.08 x 108 1b/in.
The stiffness is assumed to have a coefficient of variation of 0.15,
This results in the variance of K,E(Kg?), being 9.734 x 10!° 1b?%/in2,
The damping was assumed deterministic and equal to 8% of critical.
The results of the stochastic computation, the mean of the midspan
deflection and its standard deviation are plotted in Figure 2-17. The
maximum value obtained for the mean deflection was 0.2450". Biggs esti-
mated an upper bound of 0.2726" for the undamped structure.
The key question of interest for the engineer is, "what is the pro-
bability of the peak response exceeding a desired level, b?". This
question 1s addressed in Example 2 of Chapter 4 where the passage prob-

abtlities for this problem are computed.
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CHAPTER 3

RESPONSE OF MDOF SYSTEMS WITH
RANDOM STIFFNESS AND DAMPING

3.1 INTRODUCTION

In this chapter the transformation method developed in Chapter 2 is
expanded to MDOF sytems. This introduces a number of complications in-
volving the correlation between the random variables describing the
system and the response parameters. Expressions for the general case
where the correlation between system parameters may be user specified
and for a simpler case of individual terms of the system matrices being
uncorrelated are developed. The latter case is used in the comptuer
code developed simply to reduce computation times.

The assumptions regarding the stochastic nature of the displacement
response, X(t), and of the loading, F(t), for the SDUF system of Chapter
2 to apply to {X(t)}, the vector displacement response, and {F(t)}, the
forcing function vector as well,

The desired results of the computation are the mean response vec-
tor, {u(t)}, and the Covariance Matrix, Cov({X(z)},{X(t)}T) as func-
tions of time.

No attempt is made to model the distribution of the response vector
or to detemine the correlation between values at different times,

3.2 TRANSFORMATION OF THE EQUATIONS OF MOTION

The equation of motion for a mass excited MDOF system is,

MIXCE)E+ CR(E) ]+ (K){x(t)} = (FLt)] (3-1)
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where [M] = System Mass Matrix
[C] = System Damping Matrix
[K] = System Stiffness Matrix
{X(t)} = System Displacement Vector
{F(t)} = Forcing Function Vector
When [X] and [C] are deterministic the response of the system may

be obtained by several methods. For a deterministic loading {F(t)},
Equation (3-1) may be solved by a variety of numerical schemes including
modal decomposition, explicit integration, and implicit integration.

Wren {F(t)} is a stochastic process modal decomposition is the
method most frequently used. However when [K] and [C] are matrices of
random variables the solution of Equation (3-1) is not readily avail-
able.

The transformation method developed in Chapter 2 provides a new
method for addressing this problem.

Following the development of Section 2.2 results in,
{x(t)} = {u(c)} + {8(t)} (3-2)

Taking the expected value of Equation (3-2) yields,

E{x(t)} = E{u(t)} + E{&(t)} (3-3a)

= {u(t)} (3-3b)

To develop an expresion for the mean square value of the response

one multiplies Equation (3-2) by its transpose yielding,

(3-4)
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Taking the expected value of Equation (3-4) yields,

The covariance matrix of the response is given by,
Cov[ {X(O)},{X()}T] = E[{x(t)H{X(t)}T] - E{x(t)} - E{x(t)}T (3-6a)
Cov[{X(t)},{x(t)}T] = E[{s(t)}{s(t}}T] (3-6b)

One notes that the expressions in Equation (3-6b) are nxn matrices
for a system with n degrses of freedom. The diagonal terms in the
matrices are the variances of the displacement responses at the degrees
of freedom, and the off diagonal terms are the covariances between
displacement responses at the degrees of freedom.

A similar substitution results in the expression for the mean and

covariance terms for the velocity vector, {i(t)}, which are,

{X()} = {i(t)} + {8(t)) (3-7)
E{X(t)} = {u(t)} (3-8)
Cov({X(t)},{X(t)}T) = E[{&(t){E(e)} ) (3-9)

The expressions for the mean and covariance of the acceleration

vector, {X(t)} are similarly derived and are,

(X)) = (W)} + {8(t)) (3-19)
E{X(t)} = {u(t)} (3-11)
Cov( {X(t)},{X(t)1T) = e({S()Hs(t)}T) (3 12)

N W L . . T A Y
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Representing the stiffness matrix, [K], as the sum of [Kj] and [Kp]

with [K.] deterministic and [K

o] 3

zero yields,

Taking the expected value of Equation (3-13) yields
(K] = E[K)] + E[K,]
And since [Kp] is mean zero,

£[K] = [K,]

a matrix of random variables with mean

(3-13)

(3-14)

(3-15)

To develop covariance terms one must consider individual elements

in the matrix [K]. Let (K)i' denote the element in the iEﬂ row and th

J
column of [K]. Then,

(K)ij = (KD)ij + (KR)ij

The product between this and the arbitrary element (K)ypm is,

()55 gm = 91500 D * ()i 5K d g * (Kedi5(Kp) g
* )15
Taking the expected value of Equation (3-17) yields,
E[(K)ij( )Zm] : (KD)iJ(KD)zm * E[(KR)ij(KR)mf

(3-16)

{(3-17)

(3-18)
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because the random components are mean zero. This quantity is the

correlation between the random variables (K)ij and (K) The covari-

m*
ance between random variabiz pairs is its correlation minus the product

of means. In the present case this is,

Cov[(K) 50 (K) gl = EL(Kg) (K (3-19)

i3KR) gm]

Similar expressions are developed for the damping matrix, [C], with
[Cy] and [Cp] representing the deterministic and random, mean zero terms

respectively,
[c]=[cy] + [Cf] (3-20)
The resulting expression for the mean damping matrix is,

E[c] = [Cp] (3-21)

The covariance between terms of [C] is,

Cov[(€)5(€) ] = E[(CR);5(Cg ) g (3-22)

The substitution for the vector of forcing functions, {F(t)}, con-
sists of the sum of deterministic mean portion {P(t)]} and the random
portion {q(t)!. Making this substitution and following the development

above results in the following expressions for {F(t)] its mean and co-

variance,
{F(t)} = (P(T)} + {aq(t)} (3-23)
E{F(t)} = {P(T)} (3-24)
Cov({F{t) HF(T) = EC{att)plale) ) (3-25)
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Substituting the results of Equations (3-2), (3-7), (3-10), (3-13),
(3-20), and (3-23) into Equation (3-1) yields,

[M{RF+{81) + (Lo BIC (I +{B1 + [T kT {{u}+{s}} =

= {P(t)} + {qit)} { 3-26)

When the system parameters and response are considered correlated

the expected value of Equation (3-26) is,
(M () + [cplind + [keMub + E([xRIs}) + E([CRl{5})

= {P(t)} (3-27)

A solution for {u(t)}, the mean response vector may be sought dased on
this expression.
To develop an expression for {G(t)} one may subtract Equation

(3-27) from Equation (3-26) resulting in,

(MI{8) + [cl{8) + [Kpl{e} « {CRT} + {xRT} =
= {alV)} - [Kel{uy - [Cl{u} (3-28a)
where {erT} = [col{s} - E([cql{sh) (3-28b)

{KRT} = [Kp]{e} - E{[xp]{6}) (3-28¢)
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The terms in Equations (3-28b) and {3-28c) may be considered very
small and may be neglected under the arguments presented in Sections

2.2, and 2.5, resulting in,
(M8} + [col {8} + [kpTe} = {a(®)} - [Kl{u} - [Colli} (3-29)

The forward difference method is used to solve Equation (3-27) for
the mean response of the system. The expression for the variance of the
response is developed by applying the forward difference equations to
Equation (3-29), yielding an expression for {6(t)} in terms of the
underlying random variables, and {§(t)} at earlier times. This expres-
sion is then muiliplied by its transpose, and the expected value of the
result is equal to th: variance at time t.

The details of this wevelopment are provided in Section 3.4 after
some comments on the development of the system matrices in Section 3.3.
3.3 FORMULATTON OF THE SYSTEM MATRICES

The finite element methoc was uscd to deveiop the system's stiff-
ness, damping and mass matrices. The structure of interest is repre-
sented as the combination of a number of place frame elements. Each

element has the six deqrees of freedom shown in Figure 3-1.
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The stiffness matrix, [K], for such an element is,

AE/L 0 0 -AE/L 0 0
0 12e1/L3  6EI/L? 0 ~12E1/L3  6EI/L2
0 6EI/LZ  4EI/L 0 -6EI/L%  2EI/L
k] = | -AZ/L 0 0 AE/L 0 0 (3-30)
0 -12e1/L3  -6E1/L? 0 12E1/L2 -6E1/L?
0 6EI/12  2EI/L 0 -6EI/L2  4EI/L
where N-AE = Extensional Pigidity of the Element
EI = Flextural Rigidity of the Element
L = Length of the Element

When EI and AE are random variables each term of [k] consists of a
random component with mean zero and a deterministic component equal to
the values obtained from Equation (3-30) evaluated at the mean values of

£1 and AE. Thus,
[k] = [kg] *+ [kp] (3-31)

Takinc the expected value of Equation (3-30) yields,

E(k] = E[kg ] + E[ky] (3-32)
And since [k | 1s mean zero and [ky| 1s deterministic,
Elk] = [kgy] (3-33)
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When individual realizations of EI and AE appearing in Equation
(3-30) are assumed uncorrelated then the elements of [kR] are indepen-
dent of one another, This assumption is made for ease of computation
only. In fact the correlation functions between the terms of the system
stiffness matrix will seldom be known in practice. The method developed
in the following sections may be applied to cases where the terms in the
stiffross matrix are correlated, provided the correlation functions are
determined and stored for use at each time step. This becomes apparent
in the formulation of the finite difference expressions and is discussed
in detail in Section 3.4,

The system stiffness matrix, [K], is formed by summing the contri-
butions of each element for each degree of freedom. When the orienta-
tion of the system degrees of freedom differ by an angle y from the
element degrees of freedom the matrix defined by Equation (3-30) must be
rotated to the proper coordinates. This rotation is accomplished by
pre- and post-multiplying [k] by a transformation matrix [T]., When one
considers an element oriented as in Figure 3-2 the stiffness matrix
expresses the relations between forces and displacements in the X and Y
direction.

The transformation matrix [T], used to develop the rotated stif-
fness matrix, [k'], wnich expresses the relations between forces and

displacements in the X' and Y' directions is,

cosy  siny 0 0 0 0 ]
-s1ny oSy 0 0 0 0
0 0 1 0 0 0
[T] = 0 " 0 cos;  <iny 0 (3-34)
G 0 9  -siny  cosy 0
] 0 0 0 U Q0 1 ]
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And the rotated stiffness natrix is,

k'] = [Tk 2CT]

(3-35)

Sinca [k] has a deterministic and random components [k'] will as well.

Thus [k'] may be expressed as,
(k'] = [kg']+ [kp']

with the random component [kp'] given by,

and the deterministic component [Kp'] given by
USERUNNIL
D D

The expected value of [K'] is

The covariance of [k'][k']T is given by,

Cov k' (k'] = €k "1l

Replacing [kg'] with the Equation (3-27) yields

kg kg1 = E(T) (kg T ITI [ 7T

(3-36)

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)
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However, [T] is orthogonal to [T]T so [TILTIT = [1] resulting in,

£k 1k 1 = E[T]" [kg 1 (kg 1" [T] (3-42)
And since [t] is deterministic

Elkg" Jkg' 1T = [T1TE( (ke (kg 1T (3-03)
Resulting in

Covik' Itk 3" = [T1T(CovlkIKIT)(T] (3-44)

However due to the manner in which [KR] appears in the expressions
developed in the following section the properties of interest are the
variance of each term of [K] and hence each term of [k']. The 1j££ com-

ponent of [k'] may be written using indicial notation as

T .
] = -
k i Tiz le ij (3-45)
Hence the Var(kij) may be expressed as
T
Var(k'..) = (T;,)2 V T..)? -4

when the terms of k are independent as assumed earlier. When this is

not the case the values of the covariances of (kiJk must be known.

w)
When tne correlation between AE and EI 1s known these may be readily
computed from Equation (3-30). However, thera will be 6* of them. The
final asse7bly of the global matrices woula result 1n n* terms of the

form Cov {KjjKgp).

(4]




The system stiffness matrix is assembled by summing the components
of the element stiffness matrices at each degree of freedom. Thus [K]

may be written as,

k'], (3-47)

12

Kl =

i=]

where [k|]i is the stiffness matrix for the 1£ﬂ element, and 2 is the
total number of elements.,

Similar expressions for the random, [K;] and deterministic, [KD],
components of [K] are,

(K (3-48)
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And

(AU (3-49)

The variance of each term Kij is the sum of the variances of k'mp for
each element where element degrees of freedoms m and p correspond to
system degrees of freedom i and j respectively.

The mass matrix for a frame element may take one of several forms.
The one chosen for use here is presented by Cook (33). The matrix is
diajonal with no zero entries which makes it trivial to invert as well
as offering several other advantages 1n forming the finite difference
expressio.s. The terms of the mass matrix m  are given by,

(m) = ‘3%5“ (210 210 L2 210 210 1) (3-50)
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where M is the total mass of the element. When required (M) may be

rotated as was [k] in Equation (3-35). This results in,

(') = (11" (m) [T] (3-51)

The system mass matrix, (M) will also be diagonal and is formed by sum-
ming the element matrices at appropriate degrees of freedom. Thus (M)

may be expressed as

(m"); (3-52)

th
Where (m)i is the mass matrix of the i~ element and 2 is the total
number of elements.
The system damping matrix is a linear combination of [K] and [M].

This formulation is called Rayleigh damping and results in,

[C] = a[K] + 8(M) (3-53)
where a and B are deterministic constants. Substituting Equations
(3-20) and (3-13) for [C] and [K] above yields.

[Cly + [Cx) = a[kp] + alKg] + B(M) (3-54)
Tak*ng the expected value of Equation (3-54) yields
[Cly = alkp] * 8(M) (3-55)
and hence the randem comporient of [C] 1s

] (3-56)
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Alpha and Beta may be chosen such that the damping of the system is
a predetermined portion of crilical at two separate frequencies.
Considering the frequencies w; and wy with corresponding percentages of
critical damping e, and ¢;, B and a are given by,

2(w - )
\ = 2%2 ~ 1% (3-57)

ap? - w?

- 2 -
Zwlel auy (3-58)

™
]

Once the system matrices, [Ky], (Kp]» [Cpls [Cp]s and (M) have been
obtained the forward difference method is used to compute the mean
{u(t)}, and covariance {X(t)}{X(t)}T of the response. The details of
this computation are explained in the following section,

3.4 APPLICATION OF FINITE DIFFERENCES

The forward difference technique is used to express the equations
of motion generated in Section 3.2. The resulting expressions are thus
evaluated in a step-by-step manner to yield values for the mean and
variance of the response over times

Let t, =nat, r =0, 1, ..., At a "small value", be a discretized
time variable., The vector forms of the differenc: expressions developed

in Section 2,2 are,

{flt )} = . ) (3-59)

(F(e )} =~ Ufa ) - (F]) (3-60)

e )b e = Ut = ean, ) i) (3-61)
NE
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To develop the relations required to evaluate {u(tn)} and its deri-

vatives in Equation (3-27). This yields,

) (o yp) - 20y d * Do D)+ 18] (a1 1)

+ [Kpugh = 1P} - ECIK Me, 1) - E([cg1{8, 1) (3-62a)

where 1
M) = ez (M) (3-62b)
[¢y] = = [Cp] (3-62¢)

If the relationship between [Ky] and [C,] as defined in Equation

(3-56) is twow imposed, Equaticn (3-62a) reduces to,

™) ({Un+2‘ 2upy t “n}) + [Eb]({un+1 - "n}) + [KD]{“n} =

(P} - E([Kg Hnp D) (3-63a)

where (ng) = 6,1+ afs,} (3-63b)
Solving Equation (3-63a) for {”n+2} yields,

(e b= 00 (P} - ECIK I D)+ (A Hay b * (A ) 1) (3-64a)

(3-64b)

where (Al =2 (M) - [C

(A, = (Cp] - (D) - [x,] (3-04c)




Replacing [Cp] with Equation (3-55) yields,

~—
p-J
—
—
]}

(2-at8) (M) - () Kpl (3-65a)

(at-1) () + (5) (K]  (3-650)

Equation (3-64a) provides an expression by which {”n+2} may be
evaluated in a step-by-step manner similar to that used for the SDOF
system ciscussed in Chapter 2. The values for {u .} and {u,} are
available from previous time steps.

The expected value of [K;i{n } may be developed from the expres-
sions for {8,} which now follows.

The process {&(t)} is implicitly defined by Equation (3-29).
Applying the forward difference relations to {6(t)] and its derivatives

results in,
M) ({eqep) - 208, b+ {8,0) + [Cpl(H8,,, } - {8, 1) + [Ky1{s,)
= la,} - (K 1z, } (3-66a)

where {z,} = {un} + a{hn} (3-66b)

(o} = 0 Uag) = [HZE+ (A s 1 Ry 108 1) (3-67)
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To evaluate the expected value of the product (KR)\j(6n+2)k one

writes the expression for (6 K by evaluating Equation (3-67) for its

n+2)

kth element and multiplying by (KR) . and taking the expected value.

iJ
The equation for tie k ., element of {8n+2} is,

(8pe2dk = M (Lag)y = (K)o (Z) g + (A (8400,
* () (8)) (3-68)

Premuitinlying both sides by (kg)jj ylelds,

-1

+ (K )y (A (8 )+ (K (Rp) 0 (800)  (3-69)

Taking the expected value of Equation (3-68) yields,

-]
ECKR) 15 8nan i) = (Mg (BCIKR)350ap)y ) - ECCk)45(Kp)y J(Z),

* A E(RR ) (8nen ) nCr (R) B (IR ) 5080 )] (3-700

And since [KR] is independent of {qn} Equation (3-70) reduces to,

-l
EKRY gy (8 )k) = (M) FECIRR D3 (g )y J(Z0) g+ (A ) (K )5y (8ay ) )

* (A E LK) (80,0 (3-71)
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Thus, the n3 terms of the E((KR)ij(6n+2)k) may be evaluated in a
step-by-step manner. However, the evaluation will require n? calcula-
tions for each of the n3 terms. To reduce the number of computations a
simplifying assumption may be imposed. The assumption is that the
deflection at Jdegree-of-freedom, (DOF), k is independent of the entries
of the random stiffness matrix at dof's other than k.

This may be written

E((KR)ij(5n+2)k) =0 when k # i (3-72)

or k #]

When k = i the E((KR)ij(6n+2)k) is equal to E((KR)kj(6n+2)k) and is,

-1
E((R )5 8nan)) = E(R ) KR e JZ Yy + (A (B LK) 5080 ) )

2 kp KR)kJ (3-73)

(no sum on k or j)
Due to the independence of the elements of [Kp] the expected value of

(KR)kj(KR)kg 15 zero unless & = j then

= E(K (3-74)

BRI kj(Kp)g) = ElR);
Furthermore, by taking advantage of the assumptinn expressed in Equation
(3-71) for the terms (KR)ki(8n+1)r and KR)xj(6n)y,

Equation (3-73) may be rewritten as,

, -1 2
ECR N (8na2 i) = M TERR D5 (Z0) 5+ (A B LK) (80000 )

+
—
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{no sum cn k or J)
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When we consider the case of k=j Equation (3-71) may be written,

1
(K )15(80)5) = ()55 LUK 450K ) 5,002,

+ (A E (R84 )p) + () o (UKD 5(8,). )] (3-76)

Once again taking advantage of the independence of the elements of

\

[K,] and the assumption expressed in Equation (3-72), Equation (3-76) is

r)
reduced to

-1
E((KR)ij(6n+2)j)=(m [-E((Kg) R)13KR V) @p) g + (A)) jE((KR)iJ-(Gn,,l)J-)

+ () E()45(804)4) + () E LK)y 5(81)4) (3-77)

no sum on j or i

However, the expressions in Equations (3-75) and (3-77) allow the
2n? terms of (KR)ij(Gn)k for k=j and k=i to be evaluated at each point
in time., When i=j, Equation (3-71) with the assumption of Equation
(3-71) yields,

1
E((K )5 5080420 4) = Mgy [E(RRDF(Z )5+ (A 4iE((Ky ) 44084y )

+ (A) 4iE((K) 1106 ,41)4] (3-78)

However, if one considers a slightly more restrictive assumption
tnan that of Equation (3-72) the calculations may be reduced still
turther,

Consider the product (KR)ij(G ).; this 1s the conponent of the ran-

nJ
dom portion of the static restoring force at DOF i due to a deflection




at DOFj. If one considers the product (KR) (8 ) there is no such clear

1]
physical meaning. One may therefore say that the terms involving
and are the terms of primary interest. Since the terms involving

will be representative of the uncertainties in actual forces

(KR)ij(Gn)i have no such clear physical meaning it is assumed they will
not have a significant effect on the solution of the problem. The
assumption is made for computational convenience. The more liberal
assumption of E[(KR)ij(sn)i] and E[(KR)ij(Gn)j] are both not equal zero
would be more accurate provided computation and storage capabilities
exist to execute it. The means for doing so are provided by Equations
(3-75) and (3-77). The full set of n3 terms, E[(KR)ij(Gn)k] may also
be assembled at each time step by Equation (3-71), provided once «gain
tuat sufficient storage and computation capabilities are available.

Evaluating Equation (3-71) under the constraint,
E((KR)ij(én)j) =0 k =] (3-79)
yields,

E[(KR)13 nt2’j ] - (—)JJ [ R 1J(KR)J£](Z )1

) BT 15 (8ne) e T+ (A2 5B LK) 150800, ] (3-80)

Applying Equation (3-79) to the Kré terms on the right hand side
of Equation (3-80) yields,

-1
E((Kg) 15080400 ,) = (ﬁJJJ [-E((Kgy Mg 0 )2,

A Ry eauy) ) e () R LR D 5800 )] (3-81)
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and due to the independence of the terms of (KR) when j#i this yields,

-1
E((K) 5508042 3) = (M55 [(A))55EC(KR) 15080400 5)

+ (AI)JJE((KR)'IJ(SH)J)] (3"82)
And so when E(KR)ij(sn)j)o= 0, i.e. the case of zero start, Equation
(3-82) results in,
E((Kg)i3(8p4p)g) =0 all n. (3-83)

then i=j Equation (3-81) becomes,

-1
E((KR) 3 (8nup) i) = Mgy [E(Kgyi) 225+ (A §1E (KR (8,00)5)

+ ()5 E((Kg) 5 (804104)] (3-84)

Hence through the assumption of independent elements in the stiff-
ness matrix and the constraint of Equation (3-79) the expression of
Equazion (3-71) involving n® terms requiring a total of n> (n2 per
term), computations per time step is reduced to n terms involving a
total of n computations per time step.

Equation (3-34) now allows one to evaluate Equation (3-64a) for the

mean response since E[Ky J{¢ } is a vector whose i term s given by

afE (K )i (6 .0
Elkgling )y = —— o+ By (e)i0- =) (3-89)




To develop an expression for the variance of the response ane first

multiplies Equation (3-67), the expression for {6n+2} by its transpose

and then takes the expected value of the resulting expression.

results in,
T
)

E({‘sn+2}{6n+2}

v (6] + [E5] + [E5]7 + ELG 12 HZ T[]

= M7 € Ha } - (5] - ]+ [Ey)

This

- (6] = (£ ) - (B} = [Eg]T + EA Mo,y Hop AT + [E)T+ [Eg]

where (€,] = E({a,HZ, T [k 1"
[€,] = E({a,Ha, 1 [A,]7)
(£3] = £({a,Hop ) (A1)
(4] = ELK HZ Hp 1 (AT

—
m
(=)}
H
m
—
——
>
P
f—
——
O
=
FS
—
——
(o]
>
——
—
—
x>
(]
—

(3-86a)

(3-86b)

(3-86¢)

(3-86d)

(3-86€)

(3-86f)

(3-869)
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Since the loading and stiffness are independent [E1] may be

written,

(€)1 = Ela Hz,} e[k (3-87)
And since {qn} and [KR] are mean zero,
[E,] = (0] (3-88)

Upon examination of Equation (3-67) one notes that {6}, is independent

of {qn-l} and {qn}. Hence [E,] and [E3] may be written as

]

[€,] = E{q }E{s, 1 [A,] (3-89)
[£,] = Elq}E(8,,,) [A)] (3-90)
And since {q }, {8} and {6 ,}" are all mean zero,
(€, = (0] (3-51)
and
(€] = (0] (3.92)

To evaluate [E,] one may write out the expression for its in 3
term,

T

(E4)55 = ELKR) 3402705 (804905 (A) )p5) (2-93)
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However, from Equation (3-84) this reduces o,

(Bgig = ELURQD14 (841 ) 204y 1 (3-94)
Similarly,
(Eg); 5 = EC(KR) 15 (804 Zpihpid (3-35)

The matrix [Eg] may be written as

[E6) = (A E (18,01 o 1 )AL (3-96)
Note that {8,4+1} may be written

(e} = 7 ey} = (K HZpy b+ (A 18,0+ (A 18,1 1) (3-97)

Postmultiplying the above by {Gn}T yields,

(8,0 Mo 1T = )7 a_ Mo, 1T - (Re 1z, He, 1+ (A, s M,

+ (A 1(8,_, He 1) (3-98)
Taking the expected value yields,
(8, 1o, T = (M7H[0 - Erka1(z, e 1T+ TA E(s }s, )
* Ay(Ef8, (e, )] (3-99)




MMM tale Sl Bak vaiC vadiC it i Al ek Sef ndl kil Al et et B k- i s B g B

nand side evaluated at the previous time step. The E([KR]IZn_l]{Gn}')

is a diagonal matrix whose entries are,

T
(E[KR]{ZH_I}{Gn} )-i-i = (Zn-l)iE((KR)(Gn)i) (3'100)
The expression E[KR]{Zn}{Z“}T[KR]T may be written in tensor nota-
tion as
T - T
EC(KR)4(20) o (Z0) o (KR D51 = () o (Z0) JE(Kes Kpps) (3-101)
And since E(KRingpj) = 0 unless j-i, p=%, Equation (3-101) reduces to a
diagonal matrix with entries given by
T T . 2,
Bk Iz HE P I g = E(KRij) Zni

Equation {3-86c) may now be evaluated at each time step yielding an.
expression for the Cov{{X(t)}{X(t)}T) at euch time step.

The numerical algerithm for performing the computation is presented
in Section 3.5. The computation provides the expected value of the dis-
placement response at each degree of freedom and the covariance between

the responses at various degrees of freedom.




- 5 - 1 A A A R S L S Y Yt MR Y Al sl el s b DM dih S A vt el Staio it adbdea sl o M calan e Jng
S . . L. - Al "~ Sl . paiic ol bt sadd

3.5 THE MULTIPLE DEGREE OF FREEDOM COMPUTATIONAL ALGORITHM
The following algorithm is used to evaluate the mean response,

{u(t)}, and the covariance of {X{t)} using the forward difference equa-

3 Anme ~ om
(SR RVAA B ] Tved

[

tion 3.4, Tne algorithm is impiementad in the
code RMDOF., A listing of the code is provided in Appendix B.

The algerithm is based on a zero start condition 2nd praceeds as
follows,

1. Read the problem description parameters, the number
of nodes, the number Of elements and the nunber of restraints.,

2. Read the nodal locations.

3. For each element, read fhe nodes to which it is
connected, the material properties, and their
uncertainties., Formulate tha element sti1f¥nass
matrix and compute the variance of each term in the
stiffness matrix. Sum these into the ¢iobal
matrices. Formulate the element mass matrix and
sum the results into the gigbal mass matrix,

4. Read the damping parameters, w , €,, w,, 5, and calculate o
and 8 from Equations (3-57) and {3-58),

5. Formulate the problem solution natrices [Ay| and [Ap!
defined in Equations {3-653) 2ad {3-63h).

6. Impose the ronstraint conditions,
7. For each time step do the following:

a) Update time and the index on the arrays {vmi],

or
s
-
<
=
==
At
——
c—

Knl{8peot) from Louation (3-85).

H
i

ot
T



d) Compute {un+2} from Equation (3-64a).
e} Compute E[{8n+p}{6n+2}7] from Equation (3-86a).
f) Write appropriate results.
8. Repeat 7 until the problem is completed.
3.6 NUMERICAL EXAMPLES

This section presents the results of two example problems which
illustrate the ar (1ysis of MDOF systems with random stiffness and damp-
ing. In both examples the random portion of any element of the global
stiffness matrix, (K], was assumed to be perfectl: .orrelated with the
random portion of the corresponding element in the damping matrix.

This assumptirn of independent terms has a serious shortcoming in
that a rigid body displacement of any element will contribute to the
variances of the displacements,

The random properties of each element of the stiffness and damping
matrices were assumed independent of all other entries of these mat-
rices.

These assumptions were made for reasons of computational covenience
only. When one is modeling simple structures such as honmogeneous bars
and beams where the random properties are assumed nighly correlated
along their length, ithese assumptions may not be valid.

However, in the examples balow the elements are considered to be
condensed representations of many beams, columns and girders. For
example, if one were to model a larye building the axial and fiextural
properties of several bays and stories may be combined and represented
by a single frame element. Thnus a large structure may be modeled in an
economical manner, Suon subassembly wodeling 1¢ common fur large struc-

tures anCiuding arrcratt, smips, and dams as weli as buridings,

&
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EXAMPLE 1 - Deflection of a Non-Prismatic Cantilever Beam.

The structure considered here is shown in Figure 3-3. All dimen-
sions are unitless. The structure possesses six degrees of freadom.
However, the discussion here will concern the micdpoint and tip deflec-
tion, The mean and standard deviation of the tip deflection are plotted
in Figure 3-4., The mean and standard deviation of the midpoint deflec-
tion are plotted in Figure 3-5.

The correlation coefficient between the two is plotted in Figure 3-6,

The mean and standard deviations for this problem follow the same
basic trend as that observed for the SDOF examples, namely that the
standard deviation curve has the same basic shape as the mean curve.
However, the standard deviation curves do not lag behind the mean curves 3
as in the SDOF cases. Furthermore the standard deviation does not dis-
play the secondary peaks which were indicated in the SDOF case.

The ratio betwee: the midpoint and tip deflections appear to be
about a factor of 1/8. The standard deviation at the tip is approxi-
mately 1/3 the value of the mea., The standard deviation at the mid-
point on the other hand is approximately 1/2 the mean. The coefficient
of variation of the stiffness and damping were 0,15, Since more elem-
ents contributed to the stiffness at the midpoint, and the stiffness of
the elements is independent, it is not surprising that the midpoint has
a larger coefficient of variation.

The coefficient of variation at the tip, however, is still approxi-
mately doubie, (1/3 vs 0.15) what would be expected based on the results
of the SDOF computations. However the assumption of independen:e of
terms within the stiffness matrix, means only positive terms, .peci-

fically those of Equation [3-102} erter the computations, If the terms
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of the stiffness matrix were to be considered perfectiy correlated then
negative terms would enter the computation as well, reducing the overail
variance. The SDOF approximation to this same problem would in effect
assume perfect correlation between the random variables, thus the
results would not be comparable.

The correlation between the tip and midpint deflections approaches
a constant value of 0.615. The correlation remains positive since the
deflections always are in phase, and tied to one another in that the
deflected shape of the structure is well defined for this particular

problem,




EXAMPLE 2 - Axial Response of a Prismatic Bar.

The structure of interest for this problem is shown in Figure 3-7.
A1l dimensions are unitless. The response parameters of interest were
the midpoint and tip deflections. Two loading conditions were investi-
gated, the first being a loading applied suddenly to the midpoint and
the second being a loading applied suddenly to the end. The loading in
both cases had a value of .l.

For the case of the loading at the midpoint the mean and standard
deviation for the deflection at the tip are plotted in Figure 3-8. The
mean and standard deviation for the midpoint are plotted in Figure 3-9,
and the correlation between them is plotted in Figure 3-10. The same
information for loading at the tip is plotted in Figures 3-11, 3-12, and
3-13.

Examination of Figures 3-8 and 3-9 indicate that the standard devi-
ation of the tip deflection is significantly higher than that at the
midpoint even though the deflection are nearing their final values. The
increase in the tip deflection's standard deviation is due to the
assumption of independent entries of the stiffness matrix. Hence while
the end element has undergone only a rigid body deformation once the
oscillations are damped out this has still contributed to the final
standard deviations.

The resulting means are oscillating about a point which is approxi-
mately 7% greater than their deterministic static deflection. This is
due to the impact of the uncertainties on the mean response.

The correlation coefficient for both cases is approaching a cons-

tant value of 0.5. The standard deviations for the case of the end

101
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loading are higher than those for the midpoint loading. This is due to
larger deflections on the second half of the bar for the case of an end
loading. The mean value of the midpoint defiection is also greater for
the rase of an end loading than the case of a midpoint loading, but by
only a few percent. This is due once again to the effect of the ran-

domness of the system parameters on the mean values.
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CHAPTER 4

PASSAGE PROBABILITIES FOR NONSTATIONARY RANDOM PROCESSES

4.1 INTRODUCTION

This chapter presents a new method for estimating the probability
of passage beyond a barrier level, b, by the ronstationary random
process X(t).

When the barrier b represents a predetermined failure level then
the probability of passing beyond this barrier is identical to the
probability of failure,

The method of computing the passage probabilities for the
nonstationary random process, X(t), presented in this chapter is a new
extension of existing methods us.d for stationary processes. The
extension involves the application of conditional probabilities and the
assumption that the process X{t) appears stationary during short time
intervals,

The calculation of passage probabilities ror stationary procasses
is discussed in Secticn 4,2, The extension of this to nonstationary
processes is presented in Section 4,3 with the computational algorithm
for implementing the new method presented in Section 4,4, Numerical
examples of the applicatior of the technique are provided in Section
3.5,

4.2 PASSAGE PHOBABILITIES FOR STATICNARY RANDOM PRNOCESSES

The methedotogy for approximating the passayge probabilities for

stetionary rardmn processes has been well developed by Rice (21) and

others,  Tne mernrod Jdeveloped by Rice is summarized below.




T . V¥ g W W

—\'
~

A e -

L e

I

If orne considers the random process X{t) to be weakly stationary

then its mean, ux(t), and varijance, oxz(t), are constant values for all
vatues of t, Furthermore the process defining its derivative with
regard to t, i(t), is independent of X(t).

The characteristic of interest of X(t) is the collection of its
random peaks which fall above a predetermined level, b, where b)px. Let
N(b.t) be a counting process associated with the crossing of the barrier
level b. Thus every crossing of b by X(t) is counted by N(b,t). Speci-
fically it is assumed that N(b,t) is a Poisscn counting process.

The events counted by a Poisson counting process, in this case the
crossings of b by X(t), are assumed to have the following properties:

a) The events occur independently, hence knowing an event has just
occurred provides no information regarding the probability of
when the next event will occur,

b) The probability of one event occurring in a time interval dt is
Ap(t)dt where dt << 1, and A(t)p is the mean crossing rate.

When X(t) is stationary Ap(t) = Ap a constant,

c) The probability of more than one event occurring in a time
interval dt is negligible.

Assumption (a) above is arbitrary for structural response since the
realizations of the process X(t) are not independent. When X(t) is at
or near a barrier level then X(t+dt) will be as well for dt << 1, This
effect is called “clumping" and is addressed by Vanmarke (4) and

others. However, this effect was neglected by Rice and will be neglec-

ted in the following sections as well,




The Poisson process, N(b,t), has the following prubability

function,

j
(Apt)

T (4-1)

PN(j,t) = exp (-Abt)

where j is the number of events counted, that is the number of times
X(t) crosses the barrier level b.
The probability of not crossing the barrier in the interval {o,t)

is provided by Equation (4-1) with j=o. This yields,

PN(o,t) = exp (—Abt) (4-2)

Let PN(F,t) be the probability nf crossing the barrier level at

least once in the increment (o,t), then,

Pu(F,t) =1 - exp (-Abt) (4-3)

N

A1l that now remains is to compute the mean crossing rate, \p.

The mean crossing rate at any time (t), Ap(t), if given by,

b (t) =-m[ ‘x' Pyy (DaX,t)dx (8-4)
where Pyy (b,x,t) is the joint probability density function of X(t) and
X(t) evaluated at X(t) = b. Since the random processes X(t) and X(t)
have been assumed stationary, Ap(t) = Ap, and Equation (4-4) may be

reduced to,

@«©

= 0 ix TSV -
AD ) ‘x. Pyx (b,x)dx. (4-5)

-
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Wnen X(t), i(t) are independent, mean zero, normal random processes

their joint density is given by,

2 .2

1 =X X
Pe o (Xx) = g exp (— - ) (4-6)
XX T 99y 20X2 zokz

Substituting this expression into Equation (4-5) yields,

1 %x -b?
)\b = - o exp ( 2) (4-7)
X 20X

Equation (4-7) now defines the mean crossing rate of a barrier b by
the stationary mean zero random process X(t). However, this rate
reflects crossing the barrier from hcth above and below and since the
engineer is only concerned with crossings from below the crossing rate
must be modified. Fortunately this is straightforward since for a
stationary random process all crossings from below must be paired with a
crossing from above. Hence the medan c¢inssing rate from below, x; is

merely half the total mean crossing rate,

gy 2
1 %X -b
\g T 5w 5 exp (=—) (4-8)
X Zox
The resulting probability of crossing the barrier level b from
below within the 1ncrement (o,t) is then

+

N (Fot) =1 - exp (-Agt) (4-9)

P

These results may now be expanded to include the presant case of
interest, the norstationdry response of a structure with random

stittness and damping,

113
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4,3 THE NONSTATIONARY CASE
A new method for computing the probability of having crossed a
barrier, b, at least once in the interval (o,t) for a nonstationary
prccess will now be presented. The barrier b is greater than the
largest values of ux(t). When uX(t) is greater than b, the probability
of passage is assumed to be 1.
The method is formulated under the following assumptions,
a) The nonstationary random process X(t) and i(t) are continuous.
Hence their values may not instantaneously jump at any time.
This is completely appropriate for processes defining stru. “ural
displacement and velocity response under most loadings of
interest, but excludes processes such as Brownian motion and
quite possibly buckling responses.
b) The means and variances of X(t) and X(t) vary only slightly over
increments of time, At, which are small in comparison to the
response time of the structure.

c) X(t) and X(t) are correlated normal random processes whose
means, ux(t), “i(t)’ standard deviations, ox(t). oi(t).and

correlation coefficient r(t) are known.

Such a function obviously does not allow the direct use of Equation
(4-9) to calculate the probability of passage beyond a barrier, b.
Equation (4-4) will still provide the mean crossing rate at any time t.
However, consider the behavior of X(t) over a short period of time. For

example the interval (t,t+At). Then as At becomes small,

LX(T) = Ux(T+At) (4'10)

and ox(') a ox(r+At) (4-11)
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Considering the approximations of Equations (4-10} and (4-11) the
mean and standard deviation of X(t) within the increment (t,t+At) may be

approximated by,

ux(t) = ux('r) T <t < oTHAL (4-12)

ox(t) = ox('r) T <t < At . (4-13)

The values for ux(r+At) and oX(T+At) could have been used for the
right hand sides of Equations (4-12) and (4-13). However, this would
only result in the final results being shifted to the left on the time
axis by an amount At,

The similar expressions for the process i(t) are,

ui(t) = u)'((r) 1<t < At (4-14)

and

c)’((t) = o)'((r) T <t < THAt (4-15)

The approximations of Equations (4-12) through (4-15) will have the
largest error when the response begins, that is as the structure moves
away from the deterministic zero start condition. However, since the
probab1lity of exceeding a barrier in a time At when starting from a
zero position is approximately zero, the errors occurring at early times
will in effect be "laundered out" by the computations.

Consider the random processes X(t) and i(t), with the properties
outlined above, The mean upcrossing rate of a barrier b at an instant

of time, 1, is then

T’(D,Q)di (4-16)
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where PXi T(b,x)dx is,

b

N 1 S or (2% ATk
XX,T( »X) = 7;3;3;; exp {- 202 [( 5 ) -2r (“3;‘)( 93 )
X-u)'( 2
+ = ) ]} (4-17a)
X
and My = ux(r) (4-17b)
g = ug(T) (4-17c¢)
oy = UX(T) (4-17d)
oy = Uk(T) (4-17e)
r=r(t) (4-171)
p = [ l-r 4-17g)
Letting, b-ux
b' = (4-18)
OUX
and, ;<-u)’(
1= 5 (4-19)
X
5 Equation (4-16) may be written,
-
®
f* + 1 o . 1 1 ]
A1) = 5 j (poyZtuy) exp{- 5 [22-2rb'Z+b* 2] }dz (4-20)
X -ug
!O
t'
:
f‘
)
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Completing the square of the exponential term in the integral yields,
+ exp {- %'(pzb|2)} ” 1 2
Ab(r) = Zﬂdx ‘f (pGXZ + “k) exp {- 5 (Z-rb')“}dz (4-21)
X
POy
Now letting,
Z-rb' =S (4-22)
and,
'“i
—— =~-rb' =S5 (4-23)
POy L
where S is the new lower bound of integration yields,
+ expl- 5 (o%0'2)} = -~
Ap(t) = Zroy . [ (ooy(rbes)+uy exp{~ = (S)°}dS (4-24)

L

Expanding this expression to two integrals,

1 2,42
exp{ - 5 p°b! } ® 1
A (1) = o [(poyebtus) [ exp{- 5 52}ds

Upon solution this yields,

1 .
. expl - 5 p%b'?} _ 1,
MplT) = 2nay [DOX exp{ - 7 5L b - SLPOX

o

- S0y [ exp{- 5 S2ds] (4-26)

St
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The integral on the right hand sice of Equation (4-24) may be evaluated

in terms of the error function, erf(x) where,

erf(x) = S fx exp (- %-yz)dy (4-27)
J2n o
and,
erf (=) = 3 (4-28)
Hence, Equation (4-24) becomes,
. 1 2,02
i O T PRV
where,
G =5 - erf(SL) 0 < SL (4-29b)
or,
G = 7 * erf(SL) § <o (4.29¢)

Now replacing b' with its definition, Equation (4-18), Equation (4-29a)

becomes
payexp _h.2
(1) = e g G2} [ew 787 - W 6] (-0)

where S| is defined by Equation (4-23) and G is defined by Equations
(4-29b) and {4-29c). The value of erf(x) is available as a computer

generated function.
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Then the probability of crossing the barrier b at least once during
the interval (t,t+At), P(b,t,at), is

+

P(b,t,at) =1 - Ay

(t)at . (4-31)

Having the probability of at least one crossing occurring in the
time (o,t) may now be developed. Let tn=nAt, where n is a positive in-
teger, and At is a small positive time. Let the event a be the crossing
of the barrier at lest once in the interval (o,tn). Let the event B8
be the crossing of the barrier at least once in the interval (o,tp.1).

The probability of a, P(a) may be written as a the sum of probabil-

ilities conditioned on 8. This results in,

P(a) = P(a/B)P(8) + P(a/8°)P(8°) (4-32)

where P(a/8) is the probability that a occurs given that 8 has occurred
and P(a/BC) is the probability that a occurs given g did not occur,
Since P(a/B) is the probability of at least one crossing in the

interval (o,t,) given at least one crossing in (o,tp.1),

P(a/B) =1 (4-33)

119
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And Equation (4-32) becomes,

P(a) = P() + P(a/8%)P(8°) (4-34)

However since the only way for a passage to occur in the interval
(o,tn) given that none occurred in the interval (O’tn-l) is for the pas-
sage to occur in the interval (tn-l’tn)' This is given by Equation 3
(4-31) evaluated for r=tn_1. Hence
g (4-35)

Pla) = P(B) + (1-A[(t__ )at)p(s

n-1

Letting PXb(j) be the probability of X(t) achieving at least one

crossing of the barrier b by the end of the jEﬁ time step yields,

P(a) = Py, (n) (4-36a)
P(8) = Py, (n-1) (4-36b)
P(B¢) = 1-P(g) = 1-Pyp (n-1) (4-36¢)

Substituting the above into Equation (4-35) yields the recurrence

relation,

+

- Pyp(n) = Pyp(n-1) + (1+Ab(tn_1)At)(1—PXb(n-1)) (84-37)
r.

[ This expression may now be evaluated in & step-by-step manner to

; yield the probability of X(t) crossing a barrier b by the time tp.

’. The computational algorithm for implementing Equation (4-37) 1s

provided in Section 4.4 and some numerical examples are provided and

discussed in Section 4.4,
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4.4 THE COMPUTATIONAL ALGORITHM

The following algorithm was developed to evaluate Equation (4-37)
to compute the probability of passage beyond a barrier b. The algorithm
is implemented in the code RSDOF. A 1listing of RSDOF is included in

Appendix A,
1) Let n=0, set barrier level of interest
2) Let n=n+l, tp=nat

3) Get the values for cx(tn), Gi(tn)’ ux(tn), ‘&(tn)‘
r(tn) as computed in Chapter 2.

4) Evaluate B of Equation (4-20c) to determine whicn
expression for A; to use

5) 1f B < o use x;(tn) as defined in Equation (4-30)

Wt L

+

6) If B > o use Ay

(tn) as defined in Equation (4~29)

7) Compute the probability of crossing a barrier b during
this time step by Equatica (4-31).

8) Compute the probability of crossing the barrier in the
interval (o,tp) from Equation (4-37)

9) Go to Step 2 until problem complete.

The results obtained by implementing the above algorithm are

discussed in the followng sections.
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4.5 NUMERICAL EXAMPLES

This section presents the results of five calculations using the
method developed in the previous sections of this chapter.

The first example consisted of three calculations. The probability
of having achieved at least one crossing of a barrier was computed for
Cases 7, 8, and 9 of Example 2 in Chapter 2. These cases had the param-
eters shown in Table 2-2. The barrier level was 0.36, which is 90% of
the peak response for the undamped system. The only variaticn between
cases was the correlation between the random stiffness and damping.

The resulting passage probabilities are plotted in Figure 4-1, The
probibiiities rapidly reach a value that is close to their final value
as the response reaches its first peak. The probabilities increase
slightly with each additional peak but are assymt-tically approaching a
final value,

The probability of passage for the case of a negative correlation
between the stiffness and damping is the largest of the three cases fol-
Towed by the case of independent stiffness and damping, with positively
corrclated stiffness and damping yielding the smallest probability of
passuge.

The second example is the probability of the system detfine! in
Example 3 of Chapter 2 exceeding the peak level obtained by the deter-
ministic calculation,

The resulting passage probability is plotted in Figure 4-2, These
values are for the system with 8% damping and a coefficient of variation

for the stiffness of 0.15, the values used in Chapter 2.

e L i
ettt e,
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Hence there is almost a 40% chance of this ctructure failing when
failure is defined as exceeding the peak determinist response. The
second calculation computed the probability of exceeding the value of
0.2884", which is the deflection resulting from twice the peak load when

it is applied as a static load,

2 x 300,000

(4-38)
2.08 x 108

0.2884" =
The results of this computation are plotted in Figure 4-3. The
shape of tne curve is similar to that of Figure 4-2; however, the
resulting probability of passage is now only about .32. Hence an in-
crease in the barrier level of less than 6% decreased the passage prob-

ability by 20%.
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CHAPTER 5
SUMMARY, CONCLUSIONS AND RECOMMENUATIONS

5.1 SUMMARY

A technique to explicitly account for the randomness of structural
stiffness and damping in the computation of tne structural response was
developed. The technique is suitable for use in cases of both single
and multiple degrees of freedom.

The technique was applied to several problems in Chapters 2 and 3
to demonstrate the influence of these underlying uncertainties on the
response of typical structures.

The results of some of these computations were used to compute the
probability of the response exceeding a given value using a new method
developed in Chapter 4,

The methods of Chapters 2 and 3 are limited to linear elastic
structures, however they may be readily extended to cases of nonlinear-
ity or plastic response.

The method for computing the passage probabilities developed in
Chapter 4 may be applied t¢ any continuous nonstationary random process
which satisfies the assumptions made in Chapter 4,

5.2 CONCLUSIONS

The randomness of a systems stiffness and damping will effect the
mean and standard deviation of (»iat systems response. The uncertainties
will have only minimal influence when the system response is mean zero.
This is to be expected since the systems stiffness and damping only

enter the problem when the system 1s displaced.
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The relative influence of the system stiffness appears constant for

all non-zero deflections. The mean at any time may pe approximated by,

u = Xy o (1 + Covk) (5-1)

where uy is the mean of X, Xp is the deterministic value and covg
is the coefficient of variation for the stiffness.

The relative influence of the damping depends on the level of damp-
ing, and has no effect on the static deflections. For lightly damped
systems, € < 0,15, the influence of the randomness of the damping may
probably be ignored for most problems.

The resulcs of Chapter 4 indicate that the randomness in the stiff-
ness must be accounted for when a high degree of survivability is
required. A blast excited slab had a significant probability of exceed-
ing the theoretical maximum vaiue obtained for the deterministic system.
5.3 RECOMMENDATIONS

The problem of MDOF system response needs more work, specifically
an efficient method of accounting for the correlation of the random var-
iables within the stiffness and damping matrices., This may be easier in
a plane strain or plane stress computation where the system is a con-
tinuous medium,

A method for accounting for sytem uncertainties in cases where the
response is not mean zero shouid aiso be developed. This includes suc:

important cases as the response to earthquake, anc turbulence.




APPENDIX A
PROGRAM RSDOF
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