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CHAPTER I

INTRODUCTION

1.1 OBJECTIVES AND SCOPE

The objective of this dissertation is to develop a method for

determining the first and second moments of the dynamic response of

"structural systems with random parameters.

The randomness in the response of structural systems is due to two

primary factors. The first of these is the randomness in the loading

which has been discussed extensively in the past. The other is the ran-

domntess associated with the structure and has usually been ignored in

computing the moments of the response.

The dissertation will develop a new method for including the struc-

tural uncertainties directly in the computation of the response moments.

The systems under study are limited to those with linear, elastic

properties. The random structural properties considered are the stiff-

ness and damping. The response parameters of interest are the deflec-

tions at key points on the structure. The desired results are the mean

and covariances of the deflections as functions of time.

The method developed will not require knowledge of the distribution

of the structural parameter other than their means and variances. Sim-

ilarly the distribution of the response wiNl not be computed. For the

computation of first passage probabilities the response will be assumed

Gaussian.

1.2 MOTIVATION

The randomness in structural parameters, such as stiffness,

strength and ddmplng, has long been realized by designers. For typical
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structures which are designed to resist normal fluctuations in environ-

mental loads, such uncertainties may be safely accounted for by using

conservative values for the stiffness or strength rather than the mean

values. However, for structures which must resist extreme loads such as

earthquakes, accidental blast, or weapons effects, such a conservative

approach is often economically impractical. A preferable approach

establishes a probability of failure that is deemed acceptable, and the

structure is designed to insure such a probability is not exceeded.

For the engineer to design a structure with a specific probability

of failure three things are required. The first of these is a probab-

ilistic description of the loading; secondly, the probabilistic charac-

terization of the structure is required. Third, and the most difficult,

is a method for computing the moments of the response and, hence, the

probability of failure.

The probability of failure is the probability that a response par-

ameter will exceed an allowable value which may or may not be a random

variable. When the allowable value is deterministic the moments of the

response plus the assumptiin or computation of its distribution function

will be sufficient to compute the probability or failure. When the

*0 allowable value is a random variable then the joint distribution of the

allowable value and the response valu2s is required.

Typical response parameters of interest in computing structural

* failure include strains, stresses, displacements, velocities, accelera-

tions, number of stress reversals a:id ductility ratios. Strains,

stresses and ductility ratios are usually of interest when examining the

* Possibility of overload resulting in breaking of a member. Stress

K
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reversals may be of interest in examining fatigue failure. Displace-

ment, velocity and acceleration are of interest when examining

"stability, service or shock isolation type failures. For example when

the deflection of a shock isolated piece of equipment exceeds available

rattlespace the system may be assumed to have failed. Similarly a tall

building may suffer a service failure if the displacement of the upper

"floors in high winds results in the occupants feeling uncomfortable.

This type of failure may occur when the stresses and strains are still

well below a dangerous level.

While much work has been done in the area _, load modeling for

earthquakes, wind and blast loads, and in the calculation of the res-

ponse of deterministic systems to random loads, little has been done in

establishing techniques for computing the response moments in the pres-

ence of randomness in the structural parameters.

Recent studies described in the literature review which follows

have concentrated on quantifying the structural uncertainties, but not

on their effects on response uncertainties.

1.3 LITERATURE REVIEW

This review deals with studies on the theory and calculation of

*@ random dynamic structural response. Books of general interest will be

discussed first followed by papL-s (duling with the quantification of

structural uncertainties. Papers involving the computation of response

* characteristics in the presence of structural uncertainties will then be

discussed. Finally, some papers dealing with the first passage and peak

values of structural response will be reviewed.

* The theory of random vibrations of linear Pjastic structures with

deterministic mass, damping and stitfness properties is well developed.
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The equation of motion for such systems when they are mass excited is,

[M]{X(t)} + [C]{X(t)} + [K]{X(t)} = {P(t)} (1-1)

where [M] = System Mass Matrix

[C] = System Damping Matrix

[K] = System Stiffness Matrix

{X} = System Displacement Vector

{P(t)} = System Forcing Vector

When {P(t)} is deterministic {X(t)} will be as well.

Lin (1), Crandali (2), and Papoulis (3) all address the stationary

S and transient response of such linear systems for both stationary and

nonstationary loadings. Single-degree-of-freedom, (SDOF), systems may

be solved using the system's impulse response function. Multiple-

degree-of-freedom, (MDOF), systems are analyzed via their normal modes.

Expressions for the autocorrflation functions and first passage proba-

bilities of the response arý developed as well as the expressions for

the mean responses. In a more recent work Vanmarke (4) addresses the

extension of this work to include first crossing probabilities for both

stationary and nonstationary envelopes about the process. Elishakoff

(5) provides an excellent text for quantifying the response statistics

for both static and dynamic loads as well as a discussion of the Monte

Carlo method of analysis. Soong (6i expresses the solution of differen-
0

tial equations with random coefficients as a function of the coeffi-

cients. The mean of the solution at any time may then be obtained by

S
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integrating the product of the solution and the joirt probability den-

sity function of the coefficients over the range of the coefficients.

The variance may be obtained in a similar manner. However, the result-

ing integrals may have to be evaluated numerically at each time step.

Several studies have addressed the quantification of structural

uncertainties. MacGregor, Mirza and Ellingwood (7) compiled information

on the means and variances for concrete strength, steel yield strength,

error in steel placement and total resistance. Ellingwood (8) has also

examined the statistical properties of reinforced concrete beam col-

umns. These studies were based on tests of existing structures and

* laboratory specimens.

An analytical study was performed by Grant, Mirza and MacGregor (9)

to examine the strength of concrete columns based on the underlying ran-

dom variables. The formula for the strength of the columns was evalua-

ted repeatedly with a Monte Carlo procedure to determine the mean and

variance. Ramsey, Mirza and MacGregor (10) applied a similar technique

*• to the computation of deflections of concrete beams. Mlakar (11) used a

Taylor series expansion about the mean to evaluate the mean and variance

of the resistance of a beam column. Thielen (12) used a similar tech-

* nique to examine the behavior of concrete beams near the limit state.

The consideration of structural uncertainties in response analysis

is fairly recent. The building codes have recognized strength variation

* through the specification of strength reduction factors and working

stresses well below the average values. The field of reliability and
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safety analysis was among the first to hdndle the uncertainties explic-

itly.

Studies within this field have concentrated on the proper design

loads and strengths to use for structures in routine circumstances. Ang

and Cornell (13) investigated the influence random properties such as

yield, bond and shear strength have on structural reliability and proper

design levels. Ellingwood and Ang (14) proposed procedures for risk

based design as did Ravionda, Lind and Siu (15). Moses (16) examined

the reliability of structural systems.

There have been few studies concerned with the calculation c, the

moments of the dynamic response of a system with random stiffness and

damping. Collins and Thompson (17) addressed the problem of random eig-

envalues and eignevectors for a system such as Equation (1-1) with a

random stiffness matrix. Hasselman and Hart (18) developed expressions

for the modal response of MDOF systems based on random eigenvectors.

In both of these papers the expressions for the eigenvalue means

were taken to be the same values that would result from the determin-

"istic expression and the variances were evaluated by Taylor series

expansions about the means. Hisada and Nakgiri (19) used a Taylor

series expansion about the means to quantify the effects of node loca-

tion uncertainty on the stiffness matrix and resulting stresses and

strains for the static case. Handa and Anderson (20) developed an

approximation for solving the static problem by separating the random

variables into a deterministic variable equal to the mean and a random

variable with mean zero hut a variance equal to the variance of the
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original random variable. However, the cross-corrPlation between the

stiffness and deflection is ignored. This results in the mean response

being equal to the response of the system when the system parameters are

treated as being deterministic and equal to their means. This is known

to be incorrect.

There are many papers related to first passage probabilities and

peak values for stochastic processes. The topic is also well covered in

many of the basic texts listed earlier.

Lii a classic paper Rice (21) developed the expressions for first

passage times of a white noise process. Karlin and Taylor (22) devel-

* oped expressions for first passage probabilities of a random process

represented by Brownian motion with a drift in the mean. Corotis, Van-

marke and Cornell (23) developed expressions for the first passage of

nonstationary random processes. Crandall, Chandiramani and Cook (24)

used a numerical simulation technique to examine first passage prob-

abilities of the response of a SDOF system. The system was linear,

elastic and the system properties were deterministic. The loading was

repeiitedly applied in a Mornte Carlo style and the statistics of the res-

ponse including the expected time to first passage beyond a barrier com-

puted. A number of types of barriers were investigated as were the zero

and stationary start conditions. These authors also developed a model

where the sample ,p•ce is divided into cells and the probability mass is

* •repeat•l-Jy redistribi'ced in accordiace with tneoretically derived tran-

sitio,' probabilities. ýrenk, Madsets and Madsen (25) developed a method

for ,sodif i •,tationary crossing frequencies for use in transient res-

* panse envelopes. Aý)g (26) developed a method for computing the response
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moments of a linear system, and then developed first passage probabil-

ities based on these. Simple nonlinear elastic structures were

examined.



"CHAPTER 2

RESPONSE OF SDOF SYSTEMS WITH RANDOM
STIFFNESS AND DAMPING

2.1 INTRODUCTION

In this chapter a new method is developed for analyzing linear,

elastic, SDOF systems with random stiffness and damping. The system may

be excited by either a deterministic signal or random process. In

either case the response of the system will be a stochastic process.

Such processes may frequently be satisfactorily characterized by their

first two moments, the mean and variance. For the processes considered

here these will vary as functions of time.

The method developed involves the replacement of the random vari-

ables appearing in the system's equation of motion with two new vari-

ables. The first of the new variables is deterministic and equal to the

mean of the original random variable. The second variable is random

with mean zero and has a variance equal to that of the original random

variable.

This substitution has been used by Handa and Anderson (20) for

analyzing the static loading of structures but this is its first appli-

cation to the dynamic response of structures. Handa and Anderson also

neglect the correlation between the randomness in the system parameters

and the randoiiess in the response introducing an error in the mean
S

which they acknowledge. The correlation is included here and hence the

mean generated is the true mean.

The results of the method are the mean and variance of the system's

displacement and velocity as functions of time. The correlation between

the displacement and velocity may be readily computed as well.
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"The details of the transformation of the random variables appearing

in the equation of motion are explained in Section 2.2. The resulting

transformed equation of motion is solved using forward differences, the

details of this operation are explained in Section 2.3. A computer code

was developed to perform the computations and its basic numerical algor-

ithm is provided in Section 2.4. The effects of some higher order terms

which have been neglected in the computation of the variance are exam-

ined in Section 2.5. Several numerical examples varifying the method

are provided in Section 2.6. The method will be referred to as the

transformation method.

The following assumptions are made concerning the system's param-0

eters and response characteristics,

a) The mass of the system is deterministic.

b) The system response is twice mean square differentiable
with respect to time.

c) The system's damping and stiffness are random variables
whose values are not functions of time. The two may be
correlated or uncorrelated.

d) When the forcing function is stochastic it has an auto-
correlation function with one factor which is a delta function.

e) The forcing function is independent of the system parameters.

2,2 TRANSFORMATION OF THE EQUATIONS OF MOTION

The equation of motion of a mass excited SDOF system is,

M" + Cd + KX = F(t) (2-1)

where, M = System Mass

C = Damping Resistance

K = Stiffness

X(t) = System Displacement

F(t) = Forcing Function
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When K and C are deterministic Equation (2-1) may be solved exactly

for either deterministic or stochastic forciny functions. When K and C

are random variables the response, X(t), is a stochastic process, the

mean and variance of Whnich may be! evaluted by the method of Soong (6).

However, this method wili in general require numerical integration at

each time of interest.

To develop expressibns for the mean and mean square values of X(t)

a substitution is made in Equation (2-1) for the random variables. The

substitution replaces the original variables with the sum of two other

variables, one of which is deterministic and equal to the mean of the

original variable; the second variable is random with mean zero and

variance equal to the variances of the original variable. The substitu-

tion is made for K, C, X(t), X(t), X(t) and F(t).

The deterministic portion of the response X(t) is represented by

". V(t) and the random portion by 6(t). Hence the substitution for X(t)

is,

X(t) = 1(t) * 6(t) (2-2)

Taking the expected value of Equation (2-2) yields,

* E(X(t)) = E(U(t)) + E(6(t)) (2-3a)

= 11(t) + 0 . (2-3b)

To develop an expression Tor the mean square value of the response one
0

squares Equation (2-2) which yields,

X(t)2 = •(t) 2 + 2p(t)6(t)+6(t) 2 . (2-4)
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Taking the expected value of Equation (2-4) yields an expression for the

mean square response of X(t)

E(X(T) 2) = v(t) 2 + 2p'(t)-O + E(6(t) 2) (2-5a)

E EX(t)J= ,!(t)2 + E~a(t) 2 ) (2-5b)

The variance of X(t) is given by,

Var(X(t)) = E(X(t) 2) - E(X't)) 2  (2-6)

Substituting the expressions in Equation (2-5b) for E(X(t) 2 ) and

Equation (2-3b) for E(X(t)) yields,

Var(X(t)) = E(6(t) 2 ) (2-7)
I

Similar substitutions may be developed for the derivatives of X(t)

by differentiating Eqtuation (2-2). This yields for the velocity,

X(t) 1 1(t) + 6(t) (2-8)

And for the acceleration,

)(( ) :" +t 't (2-9)

Taking the expected value of Equat;on (2-8) yields an expression

for' the mean of the velocity,

Eix(t)) = E(U'(t)) + E(i(t))(2-0)

Since p(t) is deterministic its derivatives are as well, hence,

E "(t)) : (t 2-1

Since X(t) and thus 6(t) have been assumed mean square differentiable

the expeftation and differentiation operations may be interchanged. And

I
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since E(S(t)) is zero for all times the expected value of the change of

6(t) with time must also 5e zero, yielding,

E(6(t)) = 0 . (2-12)

When the relation in Equations (2-11) and (2-12) are substituted into

Equation (2-10) the resulting expression for the mean of the velocity

A- >

E(X(t)) -•(t) . (2-13)

Sqi.aring Equation (2-8) and taking the expected valu'. provides the

expression for the mean square value of the velocity,

E(X(t) 2 ) : •(t) 2 + E(+(t) 2 ) . (2-14)

Similar expressions for the mean and mean square values of the

. acceleration may be developed from Equation (2-9). The expected value

of the acceleration is,

•- E(X(t)) ='i(t) . (2-15)

The mean square value of the acceleration is giv,!n by,

S(t)2) E()) (2-16)

Representing the stiffness K as the sum of KD and KR with KD

deterministic and KR a random variable with mean zero yields,

K = KD + KR (2-1?

faking the expected value of Equation (2-17) yields,

E(K) = K0 + E(K-1) I') i
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And since KR is mean zero,

E(K) : KD . (2-19)

Squaring Equation (2-17) to develop an expression for the square of K

yields,

K 2K K +K~ 2 (2-20)

raking the expected value of Equation (2-20) yields

E(K2 ) = K' + E(K). (2-21)

Upon rearranging one has the expression for the variance of K.

Var(K) = E(K2 )-E(K) 2  (2-22a)

= E(K ) . (2-22b)

For the damping, C, let CD and CR be the deterministic and

random portions, respectively. Then following the development used for

the stiffness, the expressions for C, the mean of C, and the variance of

C are,

SC = CD + CR (2-23)

E(C) = CD (2-24)

Var(C) E(C2) . (2-25)

The substitution for the forcing function, F(t), consists of the

deterministic purtion P(t) and d random portion q(t). Mdking this sub-

stItution drid tolIrmwing the development anove results in the following
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expressions fcr the forcing function, F(t), the mean forcing function,

P(t), and the variance of the forcing function,

F(t) = P(t)+q(t) (2-26)

E(F(t)) = P(t) (2-27)

"V-r(F(t)) = E(q2 (t)) . (2-28)

Substituting the results of Equations (2-2), (2-8), (2-9), (2-17),

(2-23), and (2-26), into the equation of motion, Equation (2-1), results

in,

* M(U+6) + (CD+CR)(+•) + (KD+KR)(Ij+6) = P(t) + q(t) . (2-29)

t,'en the system parameters and response are considered correlated

the expected value of Equation (2-29) is,

M" + C + KDM + E(KRS) + E(CR6) = P(t) . (2-30)

A solution for p(t), the mean response of the system, may be sought

based on this expression.

To develop an expression for' 6(t) one may subtract Equation (2-30)

from Equation (2-29) yielding the result,

Mý + CD + KD6 + 2RT + KRT = q(t) - KR -C (2-31a)

where CRT = CR6-E(CR6) (2-31b)

KRT = KR5-E(KR6) (2-31c)

I.



* '7~ 4¶ T..7

16

The term CRT represents the fluctuation of the random portion of the

damping force about its mean. The fluctuation of the random portion of

the stiffness force is represented by KRT.

When the random portions of the restoring forces are considered

small ir. ,mparison to the deterministic porticns, C D and KDp, the

fluctuations may be considered negligible and set to zero. This assump-

tion is made in the development of the technique. The implications

of the assumption are examined in Section 2.5 and the examples in

Section 2.6.

When the CRT and KRT terms are neglected Equatioi (2-31a) becomes,

tM4 + CD + KD 6 = q(t) - KR" - CRO (2-32)

The response characteristic of interest in this analysis is

E(6kt) 2 ). Furthermore, the equations for V(t) and 6(t) a..'e coupled in

that ji(t) appears in the expression for 6(t) and vice versa. The sep-

arate the equations and permit the computation of P(t) and E(6(t) 2 ) the

forward difference technique will be applied as explained in the follow-

ing section.

2.3 APPLICATION OF FINITE DIFFERENCES

Many structural mechanics problems involve differential equations.

They arise in both static and dynamic analysis and may be s3lved dir-

ectly for a relatively small number of cases. For thuse cases which may

not be solved directly, various numerical integration schemes have been

developed. A common nmthod of performing the integration is the appli-

cation of finite differences. This technique may be applied to a

ditferential equation provided the function and its derivatlves as they

appear in the equatlor are continuous.
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Consider the definition of a derivative:

df(y) - lim f(y+Ay) f(y) (2-33)
dy Ay+o Ay (

When Ay approaches a small, Fixed value, s, rather than zero an

approximation to the derivative of f(y) is:

df(Y) f(y+s) - f(y) (2-34)
dy S"

This expression is the basis for the forward difference technique.

If one considers a time, T, co equal nAt, where n is a positive integer

and At is a small, positive time constant, the expressions for f(T) and

its derivatives are,

f(T) = fn (2-35)

f('r) :n+1 n (2-36)
At

'(T) = f n+2 - 2fn+1 + ifn (2-37)
At2

.4 For further information on che finite difference approach and its appli-

cations Wang (31) provides a good introductory discussion. Bathe (32)

addresses numerical integration schemes in conside'able detail as well.
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*.• To develop the relations required to evaluate u(t), Equations

(2-35), (2-36), and (2-37) are applied to Equation (2-30) in place of

p(t) and its derivatives resulting in,

.oD

At (ln+221n+lln) +1'*1 (n1l-in) + KD(u=n)

= n - E(KR6)n - E(CR6)n (2-38)

Combining terms and solving for un+2 yields,

S (P- E(KRS) - E(CRS) + A +A (2-39a)Un+2 -- (n- ER )n Rn I "n++A2"n)
• M

where M-= M/At 2  (2-39b)

_a CD = C D/At (2-39c)

AI = 2M-CD (2-39d)

A2 = C-D-M-KD (2-39e)

Equation (2-39a) provides an expression by which u(t) may be calcu-,

lated in a step-by-step manner, based on information calculated at pre-

vious time steps, provided that information can be developed. The main

difficulty lies in the calculation of E(KR6)n and E(C R6)n. These are

the terms which have been ignored or assumed zero in many previous stud-

ies. Their inclusion here represents an improvement over previous

approxlnii,,tions. The medns for calculating these terms will be discussed

shortly.
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Applying the finite difference relations of Equations (2-35),

(2-36), and (2-37) to 6(t) and its derivatives in Equation (2-32)

yields,

n+2 26 nl+n16 ) + _D(6n+l-6n) + (n): - Kn - CRn " (2-40)

Rearranging and solving for 6n+2,

1
6- (q -Ki u A6 n+1 A26 (2-41)S~M

Since an expression for 6(t)2 is sought, Equation (2-41) is squared

resulting in,

I 2 2qnKR 2qn + 2q2Al66n+2 -- 2 n n Rn n- n+1
M

+ 2 qnA2
6 n + KRVn i 2 KRCR)nin

- 2 nKRA16n+l 2p K A 6 + c2-2

*0] - 2CR~nAI6n+1 p 2CRnA2
6n

+ A2 6 2 + 2AIA2 6n + A2 62 (2-42)1 n+1 1Ai2 n+1 n 2~ n~)(-2

When expected values are taken in the above expression some terms

on the right side will be zero. Due to the assumption outlined at the

end of Section 2.1, terms involving a product of KR and qn or CR and

qn will be zero, for the randomness in the loading is independent of the



20

system parameters. Hence, when the expected value of Equation (2-42) is

taken the result is,

E(6n+2) -• [Var(Fn) + jin Var(K) + P2 VarC

M

+ 2ýn~n Cov(K,C) - 211 n AIE(KRn+I)

2P -2;,AE(K R n) 2- 2nA'1n E(CR6 n+1)

-2p nA 2E(CR6n) + A1E(6n+

2+ A2E( n) + 2AIA2E(6n+I6n) + 2AiE(qn6~n 1 )

+ 2A2E(qn6 n)] (2-43)

Note in Equation (2-43) that all terms which involve the randomness

of the system parameters are multiplied by the mean response or its

derivatives. Hence, when the system has a zpro mean response the vari-

ance and mean square values are functions of the randomness of the exci-

tation only. This is due to the assumptions regarding the terms desig-

nated CRT and KRT in Equations (2-31a), (2-31b), and (2-31c). These

terms are discussed urther in Section 2.5.
The terms Var(K), Var(C), Cov(K,C) and E(q2n) must be specified

prior to commencing the solution. The terms involving E(6n+l 2 ) and

E(6n 2 ) on the right hand side are the results of Equation (2-43) at

e

K
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previous time steps. The formulation of the remaining terms, E(CR ,n)

E(KR6 n), E(6 n+16 n), and E(qn 6 n) proceeds as follows. Consider Equation

(2-41) with the index shifted by one. This provides an expression for
6n+1.

1n+ (qn1 Kn-1 K RIn-1 R- C Rn-1 A 1A6 n + A26n-) . (2-44)

Multiplying this expression by KR yields

KR6 n+1 1 2 -

R RKql KIn-1 KRCR~n-1

+ AIKR6 n + A2 KR'n.I) . (2-45)
0

Taking the expected value of both sides results in,
=1

E(KR6 Rn+I : (-Var(K) n-i - n'I Cov(KC)

+ A E(KR 6n) + A2E(KR n-1 (2-46)

This expression may then be readily evaluated in a step-by-step manner

from the zero start condition. The expression for E(CR 6 n+) is devel-

oped similarly and results in,

E(CR6 n+1) _ (P _ n-1Cov(K,C) -_n-1 Var(C)

+ AIE(CR 6 ) + A2 E(CR6n-1)) (2-47)

The expression for E(6 n+16 n) is developed in a similar manner. It

is,

E,&n+l 6 n) ±(_Pn E(KR6n) - ýAnlE(CRn)
M

+ A E(6'n) + A2E(6n-1)) (2-48)

I n
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The expression for E(qn6n+1) is

E(qn6 (E(q1 q E(q K )V

n n+1nn-nRn1

- E(q nC)R)1n-1l + A1E(qn6n)

+ A2 E(qn6n 1 )) (2-49)

However, since the loading is independent of the system parameters and

uncorrelated with itself for any time shift, all terms in the above

expression are zero. Hence,

E(q6 ) 6 E(q6) = 0 (2-50)
n n+1 n n

Since these terms are zero the randomness in the response due to the

loading and that due to the system parameters are independent. Thus

they may be computed separately and combined merely by adding the two

independent variances.

The expressions for the variance of the velocity may be developed

from Equations (2-48), (2-43) and the finite different approximation to

the velocity.

, 6 -6

n+1 n (2-37)

Squaring and taking the expected value yields,

E(6 2) - 2E(6 6) + E(62)

E(6 ) n+1 n+1 n n (2-51)n*t2
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"Hence the method of transforming the random variables by a shift

aiout the mean provides expressions which enable the analyst to evaluate

the means, variances and covariance of displacement and velocity. Note

these expressions are independent of the distribution of the system

parameters and the loading function. This is due to the linearization

of the solution to the equation of motion at each time step.

An algorithm for computing the mean and variance of the displace-

ment response of SDOF systems is outlined in the following section.

2.4 TPE COMPUTATION ALGORITHM

The following algorithm was developed to compute the mean and vari-

ance of the displacement response of an SDOF system. The system stiff-0

ness and damping are considered random. They are described in terms of

their means and variances, which are input at the beginning of the calc-

ulation as is their correlation coefficient. The randomness in the

loading is described in terms of its mean and variance which are defined

at the beginning of the calculation as well. These may vary with time

*7 provided the function describing the variation is defined.

The algorithm is based on a zero start condition and proceeds as

follows,

1. Read input parameters;
K, Var(K), C, Var(C), Cov(K,C)
M, At, and problem duration.

2. Initialize all variables for zero
start condition.

3. Set, NT, the total number of time steps
equal to the problem duration/At.
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4. Do for each step N=I,NT
a) Compute the mean and variance of the loading

function based on predetermined functions.
b) Compute E(6 n+6 n) from Equation (2-48).

c) Compute p n+2 from Equation (2-39a).

d) Compute E(6n+ 2) from Equation (2-43).

n+2

e) Compute E(KR6 n+2) from Equation (2-46).

f) compute E(CR n+2) from Equation (2-47).

g) Write desired results.

h) Time = Time + At.

i) Go to step 4a until
Time = Problem duration.

This computational algorithm is implemented in the computer program

RSDOF, a listing of which is included in Appendix A. Numerical examples

in Section 2.6 use the code to varify the adequacy of the method as well

as to investigate the influence the random system parameters have on the

response moments.

2.5 THE EFFECT OF HIGHER ORDER TERMS

This section discusses the effects of the assumptions rade in

Section 2.2 regarding the fluctuations in the random portion of the

system's stiffness and damping restoring forces.

Equation (2-31a) may be rewritten as,

M6 + CD + KD6 = q(t) - KR1 - CRO - CRT - KRT (2-52)

where CRT = CRY - E(CRS) (2-31b)

KRT = KR6 - E(KR6) (2-31c)
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"In Section 2.2 KRT and CRT were assumed to be zero. Hence, tney do

not appear in the development of the finite different expressions for

6n+2' Equation (2-41) and E(S 2), Equation (2-43) in Section 2.3. In
n+29 n+2)

the following development no assumptions regarding the values of CRT and

KRT are made and they are included in the development of new expressions

...- 'for 6r+ and E( 2+).•

"* When the difference expressions are substituted for 6((t) and its

derivatives on the left hand side of Equation (2-52) the result i"-

iR(6n+2 26n,+i+6 n) + TD('n+1 6n ) + K D%

q KRLn CRi "CRT -KRT (2-53)

Solving Equation (2-53) for 6 n+2 yields,

6n =I 1 Cn I CRT - KRT+ ARnn+I + A2 6A ) (2-54)•n+2 = qn R"n KR nI +1+n

* -'_ Note the difference exprecsions could have been applied to the &(t)

terms in CRT and KRT as well, but this would only complicate the algebra

without changing the results.

S
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To develop an expression for the variance of the response one first

squares Equation (2-54) resulting in,

6 2 1 (q_ - 2 qnK1In 2q C I +6n+ i2 n n2qnnCR nn + Iq ln+1

+ 2qnA2 n + 2+ 2 KRCRln~n

" 2AIKRn+I - 2A2KR 6n n + Cn- 2AInR~n+]'n

- 2A2CR6nr + A26 2 + 2AIA2  6 + A2o22Rnn I °n+l 12n+1l 2 n

+ {CRT 2 + 2CRTKRT + KRT 2 - 2qnCRT

+ 2pnKRCRT + 2nCRnCRT - 2A 6 n+ICRT

. 2A26nCRT - 2qnKRT 4 2KRInKRT

+ + 2nnCRKRT - 2A1 6n+1KRT - 2A2 6nKRT}) (2-55)

Equation (2-55) is identical to Equation (2-42) developed in

Section 2.3 with the exception of the terms involving CRT and KRT

contained within the brackets, { }, above. Hence when one takes the

expected value of Equation (2-55) to determine the variance of the

response the result is Equation (2-43) plus the expected value of the

* terms within the brackets. Thus the expected value of the terms within

the brackets provides an estimate of the error in the variance of the

response due to assuming CRT and KRT are zero. Designating this term

* REM ine finds,

o
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1
REMn E {CRT2n + 2CRT KRT + KRT 2

+ 2 (KR n + CR~n - q-n " A1n+ - A 26) CRTn

+ 2 (KRIn + CRn - q " AS6 An)KRT (2-56)
R n Ru n 1 n+1 2 n Tn

- - Evaluating the right hand side of Equation (2-56) term by term yields,

aE(CRT 2 ) = E[(CRS - E(CRj)) 2 ]

= Var(CRS)

Likewise,

E(KRT 2 ) = Var(KRS) (2-58)

And,

E(KRTCRT) = E[(CR6 - E(CR6))(KR6-E(KR6))]

= Cov(KR6,CR6) (2-59)

For the remaininq terms on the right hand side of Equation (2-56)

involving CRT one gets,

* E((KRpn + CRIn" qn n Al n+1 - A2 6n)CRTn) =

= E((KRn + CRzn q n A16n+1 - 2an)(CR )n)

' E(K p C W q A " A 2 )E(CRn) (2-60)
R n R n n 1 n+1 2 n R n
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Since E(KR), E(CR), E(Sn+l), and E(6 n) are all zero, and the E(CR )n is

"deterministic the result is,

E((KR1n + CR~n - 'in - A16 n+1 - A2 6n)CRTn) :

P pnE(KRCR n) + inE(C6n) - E(qnCR6n)

- AlE(6n+I nCR) - a2 E(6 nnCR) (2-61)

The corresponding expression for the terms involving KRT in Equation

(2-56) is,

E((KR~n + CRIn - qn " Al-n+i " A2 6n)KRTn)=

P nE(K 2 &n) + •nE(KRC - E(qnK 6

n R n n R R n n E RqK nl

- AiE(6n+16 nKR) - A2 E(6n 6 nnKR) (2-62)

"Combining Equations (2-57), (2-53), (2-59), (2-61) and (2-62) the

resulting expression for the remainder terms, REM is,

REM 1 (Var(KR6)n + Var(CR6) + 2Cov(KR6,CR6)n)

* + 2 {Un[E(KRCRan) + E(K2n)] + 1n[E(KRCRan) + E(C2n)]

- E(qnCR6n) - E(qnKRn) - AI[E(6n+I~nCR)

+ E(6 +I6 KR)]- A2 [E(2KR) + E( n~nCR)]I (2-63)

This expression may be further reduced since qn Is independent of
S

the system pardIlmeters CR and KR and is Independent of 6n+1 dnd 6n as

well.
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Hence,

E(qnCR6n) = E(qn)E(CR6 n) (2-64)

And,

E(qnKR6) = E(qR)E(K 6n) (2-65)

However, since qn is mean zero,

E(qn CR•) n 0 (2-66)

And,

E(q nKR6 n = 0 (2-67)

Thus Equation (2-63) is reduced to,

REM (Var(KR6) + Var(CR6 )n + 2Cov(KR6,CR•)n2E R n Rn

+ 2{n [E(KPCR6n) + E(K62)]

+ IR[E(KRC6n + E(C

- Al[E(6n+6 nCR) + E(n+l n KR)]

- A a[ E(62K 6C(-8
2 n R) + E(1n6 CR)] } I (2-68)

Examination of the tprms on the right hand side of Equation (2-68)

reveals that these 'erms provide a meons for the uncertaintice in the

system parameters enterinr the computdtion of the response's variance

when the response iS mean zero.
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When the variation of the response is small compared to its mean

then one would expect that the value of Var(KRO) would be small com-

pared to that of E(K2)4 2 . Similarly one would expect that the Var(CR6)

would be small compared tu E(C2 )p2 and CoV(KR6,C 6) would be small inR R R n

comparison to E(KRCR)ln n. Hence one would expect that these terms have

little influence on the response. Similar arguments may be made for

discounting the rest of the terms in Equation (2-68) as they all have

corresponding terms which one would expect to be much larger in Equation

"(2-43).

Several of the following examples verify this assumption by compar-

ing the results of the computer code RSDOF to analytical methods which

do not ignore the terms included in Equation (2-68).

"2.6 NUMERICAL EXAMPLES

This section includes examples of the transformation technique

developed earlier in this chapter applied to the solution of specific

problems. The following problems are covered.

1) Response of deterministic random systems to a
white noise loading.

2) Response of a random system to a deterministic
constant loading.

3) Response of a random system to a deterministic blast loading.

Tne first two problems were used as a rmetnod of checking the

results of te technique. These examples were also used to quantify the

effects the random system parameters have on the response. The third

demonstrates the use ot the technique in a practical application.

r
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EXAMPLE I - White Noise Excitation of An SDOF System

Consider the system diagramed in Figure 2-1. All system parameters

are unitless. When F(t) is white noise with spectral density , the mean

square response of the system with deterministic parameters, is given by

Lin (1) as,

E(X(t) 2 ) : 11- exp(-2•'t)[
2  o3m2  2 D

+ 2(eow0sinw Dt) 2 + wo0 sin2wDt] } (2-69)

where E: C (2-70)• 2 ,]"KM

0= 0 K (2-71)

WD ioýI-E2 (2-72)

As the response reaches its stationary value Equation (2-69)

0 reduces to,

Es(X(t) 2 ) = - (2-73)

2ew03 m
2

0

To model the response of the system one first has to develop a

suitable mod,! for the white noise excitation. A white noise random

* process with spectral density , has an autocorrelation function, RFF(T)

of,

RFF(t) 2Ts(T) (2-74)

where r) i is the dirac dJelt function.
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When one wishes to excite a structure using a white noise input and

perform response computations in a discrete time framework he can model

the input as a frequency of independent, identically distributed random

variables applied to the structure at At time intervals. This is an lID

(independent identically distributed) random process (sometimes referred

to as a band-limited white noise random process). Let {F = F(jAt),

j = 0, 1, 2, ... } be an lID random process. The random process has mean

zero and autocorrelation function,

R (j-k)jt) = j k (2-75)

FF(j 0o j k

- a 2  6 j-k (2-76)

where 6 j-k is the Kronecker delta (equal to zero when the subscript is

nonzero, and equal to one when the subscript is zero). The spectral

density of this random process is,

Ato2  < W <i (2-77)
2w A~t - -At

*] S (W
FF elsewhere

In view of this, the ID random process is equivalent to the white noise

random process if a2 is chosen as follows,

(2: €21 (?-78)

Th~s aefinition for a2 insures equivalence between the white noise

and 1ID random process in terms of their spectral densities. However,

equivalence in terms of the structural response these inputs excite is

only guaranteed for certain values of Lt.
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Specifically, the cutoff frequency of the lID random process, r/At,

must be much greater than the natural frequency of the structure being

excited in order for the lID random process to appear similar to the

white noise input, as far as structural response is concerned. This

establishes the requirement,

At << (2-79)

where wn is the natural frequency of the structure being excited.

To address the issue of how small a time step, At, is ,equired to

insure an adequate approximation of the structural response character-

istics a series of calculations with decreasing values C At were per-0
formed. The ratio of the natural period to the time step is termed N.

The computations were run for the case of C = 20, (c = 0.2), until the

recponse became stationary. With a2 = 100/At, K = 500, and M = 5, the

exact solution for the mean square value of the response, Es(X(t) 2 ),

as defined in Equation (2-73) is 0.005. The values for Es(X(t) 2 ) com-

puted for successive values of N are plotted vs ln(N) in Figure 2-2.

As At becomes small (that is as N becomes large), the values

obtained from the computations very closely approximate the exact solu-

tion, being in error by less than 1% for values of N greater than 1500.

To examine the variation of the error with time the results of com-

putations for different values of the damping parameter C, were compared

to the exact solution as given by Equation (2-69). the values of C

chosen for the comparison correspond to values of E, the critical damp-

ing ratio, of 0.05, 0.10, and 0.2. The computed values of E(X(t) 2) are
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plotted versus time in Figure 2-3. The relative error, E, was computed

time step by,

E(X(t) 2 )COMP - E(X(t) 2 )exac
E- x 100 (2-80)

E(X(t) 2 )exac

where E(X(t) 2 ) is the value of the mean square response as computedcomp

Sand E(X(t) 2 )exac is the value for the mean square response given by

Equation (2-69). The error was found to be monotonically increasing

with time for all three cases, reaching its maximum value when the sys-

tem reached the point of stationary response.

The values for E max, the maximum error for the three cases are lis-

ted irt Table (2-1). The maximum error was found to increase with de-

creasing values of F. However, since the mean square response goes to

infinity as e goes to zero this is not surprising. A smaller value of

At would result in smaller errors for the very lightly damped system.

If one now considers the system diagramed in Figure 2-1 to have

both random stiffness K and damping C the values obtained from Equation

(2-42) for the mean square response will be the same as for when the

system is deterministic. This is due to the assumption made in Section

2.1 regarding the variations of the random components of the restoring

forces. Specifically it was assumed that,

E(CR 6) = CR6

and (2-81)

E(KR6) = KR6
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TABLE 2-1

MAX ERROR IN THE COMPUTED VALUE OF
ErX(t)2'3 FOR VARIOUS VALUES OF f

E(X(t) 2 )comp Max error

0.05 0.020472 2.55%

0 0.10 0.010128 1.28%

0.20 0.005032 0.64%

N = 2500 for all cases.

S

S4

S

[S
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These assumptions have no effect on the mean response of the system

but do result in the contribution of the randomness in the stiffness and

damping to the randomness of the response being multiplied by a factor

containing the mean response. Hence when the mean response is zero the

effects of the randomness in the system parameters is lost.

To answer the question as to how significant this error is one may

write the expression for the mean square response of the stationary sys-

tem as a function of K and C. Rearranging Equation (2-73) results in,

Es(X(t) 2 ) (2-82)2KC

For purposes of illustration one may consider K random and C deter-

-' ministic, resulting in Equation (2-82) being a function of the random

variable K. Taking the expected value of Equation (2-82) results in,

E(EM(X(t) 2 )) E( (2-83)

And since the expectation of an expected value is the expected value the

left hand side may be rewritten and Equation (2-83) becomes,

"Es(X(t " ) - E( ) (2-84)

The EE( 1) depends on the distribution of K. When the mean stiff-

ness KD, is equal to 500 and the coefficient of variation 6K is 0.15,

So
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and K is uniformly distributed with upper bound Ku and lower band KL,

E()is given by,

K u 1 1)= K K SPAN dK ý2-85)
L

* where SPAN : KU - KL and is given by

Var K T (SPAN) 2  (2-86)

And since,

Var K = (0.15) 2 KD2

*i Var K = 5625 } (2-87)

The span of the distribution is,

SPAN = 259.8 (2-88)

Yielding values of Ku and KL the upper and lower limits of the distribu-

tion of,

Ku = 629.9 (2-89)

KL = 370.1

The resulting value for E( -) is thus,

E(- ) = 0.002046 =488.7 (2-90)

this differs fromK by only 2.35%. Thus the true value for the sta-
KD

tion any mean square response of a white noise excited system with

0
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random stiffness is underpredicted by only about 2.35% for the case

illustrated. A suitable rule of thumb would be

E s(x(t) 2) = + •2) (2-91)

where 6K is the coefficient of variation for K and KD is the mean value.

This example provides considerable reassurance that the assumptions made

in Section 2.1 will produce only a small t,,r.
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EXAMPLE 2 - Comparison of the Results of the Transformation Method to
the Exact Solution for the Response of an SDOF System with
Random Parameters

The objective of this example is the verification of the

transformation method by comparing its results with those obtained by

numerically integrating an exact solution for the mean and variance of

the system response.

The system under consideration has the following unitless mean

values,

KD = 500

= 0.1

* M = 5

and zero initial conditions.

The loading function used for the comparison was deterministic.

The load was instantaneously applied at time 0 and remained in place

indefinitely. The loading function is diagramed in Figure 2-4.

The system response to such a loading is,

X(t) L -. C1 - exp(-EW t)(--a sinwDt + coswDt)) (2-92)

:where K (2-93)

WD = • E1•2  (2-94)

The first comparison consists of evaluating the response of the

SDOF system using the code RSDOF with the randomness in the system par-

ameters set to zero, The results of thiý colllputdtIO,' were plotted with

values obtain, from Equdtlon (2-92) in Figure 2-5. As can be seen in

the tigure t plots are indIstlnguIShdDle.

La-
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For the second comparison the stiffness was treated as a random

variable with a coefficient of variation of 0.1. To generate the exact

solution for the mean and variance of X(t) Equation (2-92) was treated

as a function of K at any time t. Thus,

"X(t) : G(K)

And E(X(t)) = E(G(K)) = . G(K)PK dK (2-95)

And E(X2(t)) : E(G2(K)) =.J- G2(K)PK dK (2-96)

Var(X(t)) : E(G2 (K)) - E(G(k)) 2  (2-97)

• where PK is the probability density function for K.

One notes that the exact values for E(X(t)) and Var(X(t)) are

functions of the probability distribution function of K. This informa-

tion is not included in the equations of the transformation method since

the method replaces the derivatives with linear approximations. The

means and variances of the resulting linear equations are independent of

the distributions.

The integrations of Equations (2-95) and (2-96) were performed for

two different distributions of the ran~dom variable K. The first of

these was the uniform distribution. The probability density function

for K is then,

P K K K K L < K < K U
KU KL - -(2-98)

= 1 elsewhere
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where KU is the upper limit of integration and KL the lower. Values of

"K and KU were 413.4 and 586.6 respectively. These yield a mean value

of K of 500 and a coefficient of variation of .1.

*-"The numerical integration was performed using Newton-Quotes algor-

ithm available via the QUANC8 subroutine available on the University of

New Mexico's VSPC computer system.

The resulting means and standard deviations for approximately 2.5

cycles of response are plotted in Figures 2-6 and 2-7 respectively. The

means are indistinguishable. The transformation method appears to ser-

iously undershoot the troughs of the standard deviation curve. However,

since the response at or near the peaks is of primary concern to the0

engineer this is not considered a serious shortcoming.

For a second comparison the stiffness K was assumed to have a trun-

cated normal distribution. The probability density function for K is

"then,

PK = 1.00067 exp 1 (K._K)2]

a xp7 [902 (2-99)

for KL < K < K U

= 0 elsewhere

The means are once again indistinguishable, and are plotted in

Figure 2-8. The standard deviations are plotted in Figure 2-9. Once

* again the transformation method undershoots the troughs of tne standard

deviation vs time curve.

Based on the abovr information the transformation method provides

an adequate approximation for the mean and standard deviation, or vari-

ance, of an SDOF system with random parameters.
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"EXAMPLE 3 - Evaluation of the Influence of Random Stiffness and Damping

on the Response Statistics for an SDOF System

This example consists of a set of computations of the mean and

standard deviation for an SDOF system. The system's mean stiffness and

mass were held constant. The loading function was the same as in

Example 2 and is shown in Figure 2-4. The mean damping ratio, the

standard deviations for the stiffness and damping, and the correlation

coefficient between the stiffness and damping were varied in individual

cases. The values used for these parameters in each case are shown in

Table 2-2.

The results of cases 1 and 2 and the deterministic case were used

to examine the influence of the randomness in the stiffness on the ran-

domness of the response. The resulting values for the mean, p(t), and

the standard deviation, o(t), for each case are plotted in Figures 2-10,

and 2-11. The deterministic case was discussed in Example 2 and its

mean response is plotted in Figure 2-5. One notes that the value for

the peak response increases as the standard deviation of the stiffness

increases. Furthermore the standard deviation curve lags behind the

response curve though they are of similar shape. The trend of increas-

ing peak response is evident by comparing the values for the peak res-

ponse obtained for cases 1 and 2 and the deterministic value. However,

the variation between these cases is smaller than it would be for the

static case, hence the variation in the stiffness has a smaller effect

on the peak dynamic response than it does on the static. Furthermore

the values obtained from the code are at preselected times based on the

period of the response as determined by it; mean parameters, whion the
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TABLE 2-2

PARAMETERS USED IN CASE STUDIES

Case E aE UK PKG

1 0.1 0 50 0

2 0.1 0 100 0

3 0.5 0 100 0

4 0.1 0.01 0 0

5 0.1 0.02 0 0

6 0.5 0.02 0 0

7 0.1 0.01 50 0

8 0.1 0.01 50 1.0

9 0.1 0.01 50 -1.0

-6'

0

0

o
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system has random parameters there can be a slight phase shift resulting

in the peak values printed being off by one or two time steps from the

true peaks.

The peak response for each of the cases, ak 0, 50, 100 are listed

in Table 2-3.

The results of cases 4, 5, and 6 allow one to examine the influence

of the randomness in the damping on t:he randomness of the response. The

means and standard deviations for these cases are plotted in Figures

2-12, 2-13, and 2-14 respectively.

By comparing the results of cases 1 and 4 one notes that the values

obtained for qx(t) resulting from a random stiffness are an order of

magnitude larger than those obtained for random damping. Cases 2 and 5

show the same effect for larger variations in the stiffness and damp-

ing. However, one must note that these results are for a system with

damping which is only 10% of the critical value. When the damping is

increased to 50% of critical as in cases 3 and 6, plotted in Figures

2-15 and 2-14 respectively, the resulting values for qx(t) resulting

,*' from randomness in the stiffness and damping are still not of the same

magnitude.

From these results one concludes that for lightly damped systems

which do not have a zero mean, the effects on response of randomness in

the damping are minimal compared to those resulting from a randomness in

the stiffness. For the case of white noise response the effecLs of

randomness in K and randomness in C will be the same when the

coefficients of variation of K and C are equal.

6
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TABLE 2-3

STANDARD DEVIATION OF K AND
CORRESPONDING PEAK RESPONSE VALUES

UK Peak Response

0 0.3473

50 0.3485

100 0.3521

-n
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Furthermore while the randomness in the stiffness effects the res-

ponse for its entire duration, the effects of the random damping dissi-

pate as the system converces to its static deflection which is indepen-

dent of the damping. However, when the loading is transitory the

effects of the random stiffness will also dissipate as the system re-

turns to its initial state.

The results cf cases 7, 8, and 9 allow one to assess the impact of

correlatiop between the stiffness and damping. In these cases the cor-

relation coefficient between the stiffness and damping, PKD, was given

the values of 0, 1, and -1, respectively.

The difference between these cases were too small to be effectively

plotted, however, case 8, PKC = 1, produced the largest valjes of both

jx(t) and aX(t). Case 9, PKC = -1, produced the smallest values of P(t)

and aX(t).

B'sed on these results one concludes that aX(t) at time of peak

response increases with increasing correlation between the stiffness and

damping. The values for the mean and standard deviation at the time of

peak response are provided in Table 2-4 as an illustration.
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Ji

TABLE 2-4

MEAN AND STANDARD DEVIATION OF
X(t) AT TIME OF PEAK RESPONSE

P PKC /I Wt orK(t)

• -1 0.3479 0.276

0 0.3486 0.326

1 0.3493 0.370
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EXAMPLE 4 - Blast Loading of a Simply Supported Beam

"This example illustrates the application of the methodology devel-

oped in the previous sections to a problem of practical interest.

The structure considered is a simply supported reinforced concrete

beam. The loading is a simplified approximation to a blast loading.

The structure and its loading time history are shown in Figure 2-16.

A deterministic solution using standard analysis procedures is pro-

vided in Biggs (33). The peak deflection resulting from the determin-

istic and stochastic solutions are compared.

When modeling sucn a structure with an SDOF system the stiffness

is,
S

K _ 384ED (2-100)5L3

for the present case this yields a value of KD of 2.08 x 106 lb/in.

The stiffness is assumed to have a coefficient of variation of 0.15.

"This results in the variance of K,E(KR 2), being 9,734 x 1010 lb 2/in 2.

The damping was assumed deterministic and equal to 8% of critical.

The results of the stochastic computation, the mean of the midspan

deflection and its standard deviation are plotted in Figure 2-17. The

maximum value obtained for the mean deflection was 0.2450". Biggs esti-

mated an upper bound of 0.2726" for the undamped structure.

The key question of interest for the engineer is, "what is the pro-
S

bability of the peak response exceeding a desired level, b?". This

question is addressed in Eyample 2 of Chapter 4 where the passage prob-

abilitles for this problem are computed.
S
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CHAPTER 3

RESPONSE OF MDOF SYSTEMS WITH
RANDOM STIFFNESS AND DAMPING

3.1 INTRODUCTION

In this chapter the transformation method developed in Chapter 2 is

expanded to MDOF sytems. This introduces a number of complications in-

volving the correlation between the random variables describing the

system and the response parameters. Expressions for the general case

where the correlation between system parameters may be user specified

and for a simpler case of individual terms of the system matrices being

uncorrelated are developed. The latter case is used in the comptuer

code developed simply to reduce computation times.

The assumptions regarding the stochastic nature of the displacement

response, X(t), and of the loading, F(t), for the SDOF system of Chapter

2 to apply to {X(t)}, the vector displacement response, and {F(t)}, the

forcing function vector as well.

The desired results of the computation are the mean response vec-

tor, {u(t)}, and the Covariance Matrix, Cov({X(t)1}, {X(t) T) as func-

tions of time.

No attempt is made to model the distribution of the response vector

or to detemine the correlation between values at difterent times.

3,2 TRANSFORMATION OF THE EQUATIONS OF MOTION

The equation of motion for a mass excited MDOF system is,

[M]'X(t)I + LC]{X(t)} + [K]{X(t)} = {F(t) } (3-1)
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where [M] = System Mass Matrix

[C] = System Damping Matrix

[K] = System Stiffness Matrix

{X(t)} = System Displacement Vector

{F(t)} = Forcing Function Vector

When [K] and [C] are deterministic the response of the system may

be obtained by several methods. For a deterministic loading {F(t)},

Equation (3-1) may be solved by a variety of numerical schemes including

modal decomposition, explicit integration, and implicit integration.

When {F(t)} is a stochastic process modal decomposition is the

method most frequently used. However when [K] and [C] are matrices of

random variables the solution of Equation (3-1) is not readily avail-

able.

The transformation method developed in Chapter 2 provides a new

* method for addressing this problem.

Following the development of Section 2.2 results in,

{X(t)} = {V(c) + {6(t)} (3-2)

Taking the expected value of Equation (3-2) yields,

E{X(t)} = E{ii(t)} + E{6(t)} (3-3a)

= 1001) (3-3b)

* To develop an expresion for the mean square value of the response

one multiplies Equation (3-2) by its transpose yielding,
{X(t)}{X(t)}T ={ (t)}{P(t)}T +T

+ {6(t)}lV(t)IT + {6(t)}j6(t)}:r (3-4)
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Taking the expected value of Equation (3-4) yields,

E[{X(t)}{X(t)}T] : E[{p(t)}{u(t)}T] + E[{j(t)}{6(t)}T] (3-5)

The covariance matrix of the response is given by,

Cov[{X(t)}.{X(t)} T] = E[{X(t)}{X(t)} T] - E{X(t)} • E{X(t)}T (3-6a)

Cov[{X(t)}.{X(t)}T] = E[{c(t)}{N(t)}T] (3-6b)

One notes that the expressions in Equation (3-6b) are nxn matrices

for a system with n degrees of freedom. The diagonal terms in the

matrices are the variances of the displacement responses at the degrees

* of freedom, and the off diagonal terms are the covariances between

displacement responses at the degrees of freedom.

A similar substitution results in the expression for the mean and

covariance terms for the velocity vector, {X(t)}, which are,

{((t)} = {I(t)} + {s(t)} (3-7)

E{X(t)} = {•(t)} (3-8)

Cov({I((t)},{X(t)} T  E[18(t)}{j;(t)}T] (3-9)

The expressions for the mean and covariance of the acceleration

vector, {X(t)} are similarly derived and are,

{X'(t)} = {•(t)} + {('"t)} (3-10)

E{jX(t)} 1-ý(t)} (3-11)

Cov({'X'(t)}.{'X(t)}T) E({6(t)}{'6"(t)}T) (3 12)
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"Representing the stiffness matrix, [K], as the sum of [KD] and [KR]

with [KD] deterministic and [KR] a matrix of random variables with mean

zero yields,

[K] = [KD] + [KR] (3-13)

Taking the expected value of Equation (3-13) yields

E[K] = E[KD] + E[KR] (3-14)

And since [KR] is mean zero,

E[K] = [KD] (3-15)

To develop covariance terms one must consider individual elements
' th .th
in the matrix [K]. Let (K)ij denote the element in the i- row and j-

m13

column of [K]. Then,

(K)ij = (KD)ij + (KR)ij (3-16)
.D

The product between this and the arbitrary element (K)Im is,

(K)ij(K) = (KD)ij (KD)I'm + (KD)ij(KR)Xm + (KR)ij(KD)Xm

+ (KR)ij (KR)Xm (3-17)

0

Taking the expected value of Equation (3-17) yields,

E[(K)ij(K)}m] = (K D)ij(KD)m + E[(KR).Ij KR)m] (3-18)
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because the random components are mean zero. This quantity is the

" correlation between the random variables (K).. and (K) The covari-

ance between random variable pairs is its correlation minus the product

of means. In the present case this is,

Cov[(K)ij,(K)•m] = E[(KR)ij(KR)Zm] (3-19)

Similar expressions are developed for the damping matrix, [C], with

[CD] and [CR] representing the deterministic and random, mean zero terms

respect i vely,

[C] = [CD] + [CR] (3-20)

0

The resulting expression for the mean damping matrix is,

E[C] = [CD] (3-21)

The covariance between terms of [C] is,

SCov[(C)ij(C)zm] = E[(CR)ij(CR)Lm] (3-22)

The substitution for the vector of forcing functions, {F(t)}, con-

*.0 sists of the sum of deterministic mean portion {P(t)} and the random

portion {q(t),. Making this substitution and following the development

above results in the following expressions for {F(t') its mean and co-

* variance.

{F(t)} = {P(T)} + {q(t)} (3-23)

E{F(t)} = {P(T)I (3-24)

Cov({F(t) }{F(t)•T: ET { t(t)}q((t) jT '(3-25)

0
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Substituting the results of Equations (3-2), (3-7), (3-10), (3-13),

(3-20), and (3-23) into Equation (3-1) yields,

S+ [[CD]+ECRJ]{{1}+{ ý}i + [[K D]+[K Rl 110 +16} 1

: {P(t)} + {q(t)} (3-26)

When the system parameters and response are considered correlated

the expected value of Equation (3-26) is,

[M]{I} + [CD]{•i} + [Kc]{I} + E([KRI{61) + E([CR]{6})

= {P(t)} (3-27)

A solution for j•t)}, the mean response vector may be sought oased on

this expression.

To develop an expression for {6(t)} one may subtract Equation

(3-27) from Equation (3-26) resulting in,

rM]{'" + [CD]{•} + [KD]{6} D{CRT} + {KRT} :

= {q(t)} -[KR]{11 - [CR]{p} (3-28a)

where {CRT} = [CR]{61 - E([CRI{6}) (3-28b)

{KRTI = [KR]{6} - E([KR]{6}) (3-28c)
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The terms in Equations (3-28b) and (3-28c) may be considered very

small and may be neglected under the arguments presented in Sections

2.2, and ?.5, resulting in,

[M]{'} + [CD]{6} + [KD]{6} -- {q(t)} - [KR]{} -U[CR]{J} (3-29)

The forward difference method is used to solve Equation (3-27) for

the mean response of the system. The expression for the variance of the

response is developed by applying the forward difference equations to

Equation (3.-29), yielding an expression for {6(t)} in terms of the

underlying random variables, and {6(t)} at earlier times. This expres-

sion is then mul.Liplied by its transpose, and the expected value of the

result is equal to th, variance at time t.

The details of this jevelopment are provided in Section 3.4 after

some comments on the development of the system matrices in Section 3.3.

3.3 FORMILATTON OF THE SYSTEM MATRICES

The finite element metho(c was used to develop the system's stiff-

ness, damping and mass matrices. The structure of interest is repre-

sented as the combination of a number of place frame elements. Each

element has the six degrees of freedom shown in Figure 3-1.

9



73

E
0

U-

4.-

4-
C'

0)
E
to

S.-
LL-

to



74

The stiffness matrix, [K], for such an element is,

AE/L 0 0 -AE/L 0 0

"0 12EI/L 3  6EI/L 2  0 -12EI/L 3  6EI/L 2

0 6EI/L 2  4EI/L 0 -6EI/L 2  2EI/L

[k] : -AI/L 0 0 AE/L 0 0 (3-30)

0 -12EI/L 3  -6EI/L 2  0 12EI/L 2 -6EI/L 2

0 6E1/1 2  2EI/L 0 -6EI/L 2  4EI/L

IL
where AE = Extensional Rigidity of the Element

El = Flextural Rigidity of the Element

L = Length of the Element

When El and AE are random variables each term of [k] consists of a

random component with mean zero and a deterministic component equal to

the values obtained from Equation (3-30) evaluated at the mean values of

El and AE. Thus,

[k] = [kR] + [kD] (3-31)

Takinc the expected value of Equation (3-30) yields,

E[k] = E[kRI + E[kD] (3-32)

And since [kR] is -ean zero and [kD] is deterministic,

E[k] = [kD] (3-33)

S

S•K ii i i m••• •• mr• • • •m••• i m
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When individual realizations of El and AE appearing in Equation

(3-30) are assumed uncorrelated then the elements of [kR] are indepen-

dent of one another. This assumption is made for ease of computation

only. In fact the correlation functions between the terms of the system

stiffness matrix will seldom be known in practice. The method developed

in the following sections may be applied to cases where the terms in the

stiffr-ss matrix are correlated, provided the correlation functions are

determined and stored for use at each time step. This becomes apparent

in the formulation of the finite difference expressions and is discussed

in detail in Section 3.4.

The system stiffness matrix, [K], is formed by summing the contri-
0

butions of each element for each degree of freedom. When the orienta-

tion of the system degrees of freedom differ by an angle y from the

element degrees of freedom the matrix defined by Equation (3-30) must be

rotated to the proper coordinates. This rotation is accomplished by

pre- and post-multiplying [k] by a transformation matrix [T]. When one

considers an element oriented as in Figure 3-2 the stiffness matrix

expresses the relations between forces and displacements in the X and Y

di rection.

The transformation matrix [T], used to develop the rotated stif-

fness matrix, [k'], which expresses the relations between forces and

displacements in the X' and Y' dirprtlons is,

" cosy sny 0 0 0 0

-siny cosy 0 0 0 0

0 0 1. 0 0 0

[T] = 0 1 0 COS( -nj 0 (3-341

0 0 0 -siný cos;j 0

L 0 0 1
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And the rotated stiffness matrix is,

[k'] = [T]TMk]ET] (3-35)

Sinc3 [k] has a deterministic and random components [k'] will as well.

Thus [k'] may be expressed as,

[k'] = [kR'I + [kD] (3-36)

with the random component [kR'] given by,

[kR'] = [T]T[kR][T] (3-37)

and the deterministic component [KD'] given by

[K 1 ]D [T]T[kD][T] (3-38)

The expected value of [K'] is

E[k'] [k D ] = [T] {kD][T] (3-39)

The covariance of [k'][k']T is given by,

* Cov[k' [k' ]T E[kR ][kR 1T (3-40)

Replacing [kR'] with the Equation (3-27) yields

E[kR' I[kR']T = E[T]T [kR ][T [T]T [kRIT[T] (3-41)

S

0
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However, [T] is orthogonal to [T]T so [T][T]T [I] resulting in,

SE[kR.][kR]T= E[T]T[kR][kR]T[T] (3-42)

And since [t] is deterministic

E[kR,][kR ] T = [T]TE([kR][kRIT)[T] (3-43)

Resulting in

Cov[K'][k']T = ET]T(Cov[k][k]T)[T] (3-44)

However due to the manner in which [KR] appears in the expressions

• developed in the following section the properties of interest are the

thvariance of each term of [K] and hence each term of [k']. The ijt- com-

ponent of [k'] may be written using indicial notation as

k' = T T (3-45)ii it 3tp Tpi

Hence the Var(kij) may be expressed as

Var(k'ij) = (Tit)2 Var(k V)(T pj (3-46)

*0 when the terms of k are independent as assuned earlier. When this is

not the case the values of the covariances of (k ijkp) must be known.

When t;ie correlation between AE and El is known these may be readily

computed from Equation (3-30). However, there will be 64 of them. The

final asse.ibly of the global matrices woula result in n4 terms of the

torm Cov(KijKip>
C

O



79

The system stiffness matrix is assembled by summing the components

of the element stiffness matrices at each degree of freedom. Thus [K]

may be written as,

[K] = E [k']i (3-47)
i=1

where [k']i is the stiffness matrix for the ith element, and X is the

total number of elements.

Similar expressions for the random, [KR] and deterministic, [KD],

components of [K] are,

[KR] [ka'Ri (3-48)

And

"[KD] =I [kDI]i (3-49)
i:I

The variance of each term K.i. is the sum of the variances of k' for

•j mp

each element where element degrees of freedoms m and p correspond to

system degrees of freedom i and j respectively.

The mass matrix for a frame element may take one of several forms.

The one chosen for use here is presented by Cook (33). The matrix is

dia.ional with no zero entries which makes it trivial to invert as well

* as ottering several other advantages in forming the finite difference

expressios. The terms of the mass matrix m are given by,

MZ2 40 '210 '21U L2  210 21U 12) (3-5 )

42
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where M is the total mass of the element. When required (M) may be

rotated as was [kM in Equation (3-35). This results in,

(i') = [T]T (m) [T] (3-51)

The system mass matrix, (M) will also be diagonal and is formed by sum-

ming the element matrices at appropriate degrees of freedom. Thus (M)

may be expressed as

(M) : Z (M'). (3-52)
i=1 1

th

Where (m)i is the mass matrix of the i "element and t is the total

number of elements.

The system damping matrix is a linear combination of [K] and [M].

This formulation is called Rayleigh damping and results in,

[C] = a[K] + s(M) (3-53)

* where a and a are deterministic constants. Substituting Equations

(3-20) and (3-13" for [C] and [K] above yields.

[CID + [CR] = a[KD] + a[KR] + 8(M) (3-54)

Taking the expected value of Equation (3-54) yields

S[CID = c[KD] + a(M) (3-55)

and hence the randuti comportent uf [C] ii,

(3b
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Alpha and Beta may be chosen such that the damping of the system is

a predetermined portion of crilical at two separate frequen:ies.

Considering the frequencies w, and W2 with corresponding percentages of

critical damping el and ei, 0 and a are given by,

2(w~ 2  Y (3-57)

"2 2

2 : I - 1112 (3-58)

Once the system matrices, [KD], [KR], [CD], [CR], and (M) have been

* obtained the forward difference method is used to compute the mean

{j(t)}, and covariance {X(t)}{X(t)}T of the response. The details of

this computation are explained in the following section.

3.4 APPLICATION OF FINITE DIFFERENCES

The forward difference technique is used to express the equations

of motion generated in Section 3.2. The resulting expressions are thus

* evaluated in a step-by-step manner to yield values for the mean and

variance of the response over times

Let tn = nat, r = 0, 1, ... , At a "small value", be a discretized

*0 time variable. The vector forms of the difference expressions developed

in Section 2,2 are,

{f(tn)} = 11fJ (3-59)

I

{f(t )l 1=YtF H{fn+-11 - n (3-60)

, • - (n (,3 if
r ,(t' r+Ijr
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To develop the relations required to evaluate {U(tn)I and its deri-

vatives in Equation (3-27). This yields,

(M) U{'n+21 - 2{In+1} + {1n}) + [CD] I'un+l }' {I n })

+ [KD]{u : {Pn} - E([KR]{6n}) - E([CR]{6n}) (3-62a)

where
F(M At2 (M) (3-62b)

!1
[CD] : - [CD] (3-62c)

If the relationship between [KR] and [CR] as defined in Equation

(3-56) is tow imposed, Equation (3-62a) reduces to,

(2) ({Pn+2 2Un+1 + Pn}1 + [[•D]({uI,,+ - un}) + [KD]{in} =

= {PR} - E([KR]{nn) (3-63a)

where (n ) = 16n} + (3-63b)

Solving Equation (3-63a) for {Un+2} yields,

.0
-1

{fn+l} -M) IPnl - E([KR]{nnl) + [A1 ]{n+l} + [A2 ]{n}) (3-64a)

where [All = 2 (M) - [CD] (3-64b)

[A2 ] CDj ( - [KU (3-o4c)
S

l
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Replacing [CD] with Equation (3-55) yields,

[Al (2-AtB) -M - (-M) ta [KD] (3-65a)

[A2 ] (BAt-l) (-M) + a-t) [KD] (3-65b)

Equation (3-64a) provides an expression ty which {•n+2I may be

evaluated in a step-by-step manner similar to that used for the SDOF

system discussed in Chapter 2. The values for {I'n+l} and {lunI are

available from previous time steps.

The expected value of [KR]{nn} may be developed from the expres-

sions Fcr {6n 1 which now follows.

The process {6(t)} is implicitly defined by Equation (3-29).

Applying the forward difference relations to {6(t)} and its derivatives

results in,

M n+ - 216n+i} + I'n')+ 1[-(D][ 1{n+1}- t- n) + [K D1160

{qn} - [KR]{Zn} (3-66a)

where {Z} z {'n} + aU•nI (3-66b)

Solving Equation (3-65a) for 16n+2} yields,

-1

6 {6m+2} '1~) (iqn} '[KR]{Znl + [Ai{6n+l}+ [A 2 ]j&n}) (3-67)

+

S
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To evaluate the expected value of the product (KR).jCsn+2)k one

writes the expression for (6 +2)k by evaluating Equation (3-67) for its

kth element and multiplying by (KR)ij and taking the expected value.

The e4uation for t ie kth element of {6n+2} is,

-1

"'n+2)k C)kk ((q)k - (KR)kt(Zn)t + (A,)kr(Sn+l)r

+ (A2)kp(Sn)p) (3-68)

Pramuitilglying both sides by (KR)ij yields,

* -1

(KR)ij(6n+2)k (--kk ((KR)ij (q n)k - (KR)ij(KR)kt(Zn)z

+ (KR)ij(A,)kr(Sn+l)r + (KR)ij (A2 )kp(6n)p) (3-69)

Taking the expected value of Equation (3-68) yields,
-1

E((KR)ij(6n+l)k) = Rkk (E((KR)ij(qfn)k) - E((KR)ij(KR)kk)(Zn)t

+ (Al)krE((KR)ij(6n+l)r( + (A2 ) kpE((KR)ij(6n)p)) (3-70,

And since [KR] is independent of {qn} Equation (3-70) reduces to,

-IE((K R)ij(6n+2 )k) : (R) kk (-E((K R)ij(K R)kt)(Zn)t + (A, kE((KR i ( +l r

+ (A 2)kpE((KR)lj(6n)p) (3-71)

II
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A

Thus, the n3 terms of the E((KR)ij(n+2 )k) may be evaluated in(

step-by-step manner. However, the evaluation will require n2 calcula-

tions for each of the n3 terms. To reduce the number of computations a

simplifying assumption may be imposed. The assumption is that the

deflection at degree-of-freedom, (DOF), k is independent of the entries

of the random stiffness matrix at dof's other than k.

This may be written

E((KR )ij(6n+2)k) = 0 when k * i (3-72)

or k *j

When k = i the E((KR)ij(6n+2)k) is equal to E((KR)kj(6n+2)k and is,

E(I n+2(KR E(AR E(6 (6-1

E((KR)kj(6n+ 2 )k) =T)kk[ )kj(KR)k)Z'I (A+)krE((KR)kj (n+l)r)

+ (A2 )kpE((KR)kj(6n)p)] (3-73)

(no sum on k or j)

Due to the independence of the elements of [KR] the expected value of

(KR)kj(KR)kz is zero unless Z = j then

E((KR)kj(KR)lt) = E(KR)kj (3-74W

Furthermore, by taking advantage of the assumption expressed in Equation

(3-71) for the terms (KR)ki(6n+l)r and KR)kj(6n)p,

Equation (3-73) may be rewritLen as,

-)-1 2
(,) (6 Mj [-E(K R k (Zn)j + (AI)k kE((•

SE((Kj)k (n+2)k) Kk ) kKj nn+1 k

+'no (A (AK Rk orZn(A)kjE((KR)kj(6~l )j + ( 2)kkE((R)kj(&r)k

6~~ + 0Ak~ KR)kj( & ) )'

'(no Sumf On k or j),
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A

When we consider the case of k=j Equation (3-71) may be written,

-1
E((KR)ij(6n)j) = M)jj [E ((KR )ij(KR)jt)(Zn)t

+ (Al)jrE((KR)ij( 6n+l)r) + (A2 )jpE((KR)ij(6n)p)] (3-76)

Once again taking advantage of the independence of the elements of

[KR] and the assumption expressed in Equation (3-72), Equation (3-76) is

reduced to

-1
E((KR)ij(6n+2)j) (M)ij- [-E((KR)ij(KR)kl)(Zn)t + (Al)ijE((KR)ij(6n+I)j)

+ (A1)jiE((KR)ij( n+l)i) + (A2 )jjE((KR)ij(6n)i) (3-77)

no sum on j or i

However, the expressions in Equations (3-75) and (3-77) allow the

2n2 terms of (KR)ij(6n)k for k=j and k=i to be evaluated at each point

in time. When i=j, Equation (3-71) with the assumption of Equation

S•-(3-71) yields,

-lC-2i E-(RF (A~ ((KR)ii (nli

E((KR)ij(6n+2 )i) 1 C)ii ['E(KR)i(Zn)i + alii6n+l)i)

+ (A2 )iiEI((KR)ii(6n+l)il (3-78)

However, if one considers a slightly more restrictive assumption

tnan that of Equation (3-72) the calculations may be reduced still

further.

Consider the product (KR)ij(6n)J; this Is the colnponent of the ran-

domr portion ot the static restoring force at DOF i due to a deflection
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at DOFj. If one considers the product (KR)ij(6n )ithere is no such clear

physical meaning. One may therefore say that the terms involving

(KR)ij(dn)j will be representative of the uncertainties in actual forces

and are the terms of primary interest. Since the terms involving

(KR)ij(6 )i have no such clear physical meaning it is assumed they will

not have a significant effect on the solution of the problem. The

assumption is made for computational convenience. The more liberal

' assumption of E[(KR)ij(5n)i ] and E[(KR)ij(6n)j] are both not equal zero

would be more accurate provided computation and storage capabilities

exist to execute it. The means for doing so are provided by Equations

(3-75) and (3-77). The full set of n3 terms, E[(KR)ij(6n)kl may also

be assembled at each time step by Equation (3-71), provided once Cgain

tiat sufficient storage and computation capabilities are available.

Evaluating Equation (3-71) under the constraint,

E((K R)ij(6n)j) = 0 k - j (3-79)

yields,

E[(KR)ij(6n+2)j] = (M-)jj [-E(KR) ij(KR)jt](Zn)

S+ (a1) jrE,[(KR)ij(6n+))r] + (A2 jpE[(KR)i (6n)p] (3-80)

Applying Equation (3-79) to the KR6 terms on the right hand side

of Equation (3-80) yields,

-1
E((KRi(n2j = -M)jj [-E,((KR j(K~j))Zn) •

S(AI)j E (n Rij Aj Kn )-

+ (Al)JE((KR (6 + (A ) E((K )k6) 3~1
13I n+1 j jji R '.j n I
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"and due to the independence of the terms of (KR) when joi this yields,

-1

E((KR)ij(6n+2 )j) = (')jj [(Al)jjE((KR)ij(Rn+l)j)

+ (AI)jjE((KR)ij(6n)j)] (3-82)

And so when E(KR)ij(6n)j)o= 0, i.e. the case of zero start, Equation

(3-82) results in,

E((KR)ij(6n+2 )j) = 0 all n. (3-83)

then i=j Equation (3-81) becomes,

-1
* E((KR)ii(6n+2)i) 1(M-)i ['E(KRii) 2 (Zn)i + (Al)iiE(KRii)(6n&l)i)

+ (A2) iE ((KR)ii (6n+l)i)] (3-84)

Hence through the assumption of independent elements in the stiff-

ness matrix and the constraint of Equation (3-79) the expression of

Equa ion (3-71) involving n3 terms requiring a total of ns (n2 per

term), computations per time step is reduced to n terms involving a

total of n computat 4ons per time step.

Equation (3-84) Pow allows one to evaluate Equation (3-64a) for the

thmean response sinre E[KR]{In} is a vector whose i-' term is given by

aE(KR)ii(6n+l)i* (E[KR]{nn})i At + E(KR)ii(6n)i(l- -•t) (3-85)
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To develop an expression for the variance of the response one first

multiplies Equation (3-67), the expression for is n+2}I by its transpose

and then takes the expected value of the resulting expression. This

results in,

-i• E({ }{6n+ 2 }T) = M-)- (E{qn)}{qn} T - [El]T- [E1 ] + [E2]

+ [E2]T + [E3] + [E3 ]T + E[KRI{Zn}{Zn} T [KR] T

-[E 4 ]- [E T - [E] -[E5T + E[A ]{6n+I}{6n+I}T[A IT + [E6 ]T + [E6]

.+ E[A2 ]{6n}{ 6nT[a2 ]) (T["I (3-86a)

where [El] - E({qn}{Zn}T[KR]T (3-86b)

[E2 ]- E({qn}{n6 }T[A2]T) (3-86c)

[E3 ] = £({qn}{6n+l}T[Al]T) (3-86d)

• [E4][ E(JKR]{ZR}{6+IT [A T) (3-86e)

IE5] = E([KR]{Z }{6}T [A 2T) (3-86f)

[E6] E([A1 ]{6n+1 }6n}T [A2 ] ) (3-86g)

0
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Since the loading and stiffness are independent [El] may be

written,

[El] : E{qn}{Zn}TE[KR]T (3-87)

And since {qn} and [KR] are mean zero,

[El] = [0] (3-88)

Upon examination of Equation (3-67) one notes that {6}n is independent

of {qn-11 and {qn1. Hence [E2] and [E3] may be written as

[E2] E{q}E{6n} T[A2]T (3-89)

[E3 ] 3 E{qn}E{n+l} T[A 1]T (3-90)

And since {qn} {6n} and {In+l}T are all mean zero,

[E2] = [0] (3-91)

and

[E3] = [0] (3-92)

To evaluate [E4] one may write out the expression for its in ijth

term,

(E4 )ij TR)ix(Zn)(n+l ()-93)
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However, from Equation (3-84) this reduces to,

(E4 )ij = E((KR)ii(6n+l))ZniAlij (3-94)

Similarly,
5)ij= E(KR)ii(6n+i)Zni AT9j

The matrix [E6 ] may be written as

[E6 ] = [A1]E({6n+I}{6n}T)(A 2]T (3-96)

Note that {1n+1} may be written

{6n+l} = (M- 1 ({qnl} - [KR]{Znl} + [A1]{6n} + [A2 ]{6n-1}) (3-97)

Postmultiplying the above by {6n}T yields,

{I6n+1}{6n}T q } 6 T . [KR]{Z. 1 }{6R}T + [A2]16n}{6n}

+ [A2 ]{6 n-1 }{6n)T) (3-98)

Taking the expected value yields,

E[6R+I}{6R}T (q) - [K R{Zn_ }16n1 T + [A 1]E{6 n}{6n T

+ A2 (E{ 6 n}{6 1 1T)T] (3-99)

0
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The expression (E{dn{t6 lTT is merely the transpose of the left

nand side evaluated at the previous time step. The E([KR]FZn-lj{6n}T)

is a diagonal matrix whose entries are,

(E[KR]{ZnRI}{6n} T )ii = (Zn-l)iE((KR)(6n)i) (3-100)

The expression E[KR]{Zn}{Zn}T[KR] T may be written in tensor nota-

tion as

E((gZpj) Z ) (Zn) E(K KTp.) (3-101)

E(R). (Z4 n (Z R ((T) .1 I np Ri ZRpj

And since E(KRLK T) = 0 unless j-i, p=I, Equation (3-101) reduces to a

diagonal matrix with entries given by

E[K]{Zn}{Zn} T[KR]I T E(KRij) z 2

Equation (3-86c) may now be evaluated at each time step yielding an

expression for the Cov({X(t)}{X(t)}T) at euch time step.

The numerical algorithm for performing the computation is presented

in Section 3.5. The computation provides the expected value of the dis-

placement response at each degree of freedom and the covariance between

the responses at various degrees of freedom.

0
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3.5 THE MULTIPLE DEGREE OF FREEDOM COMPUTATIONAL ALGORITHM

The following algorithrm is used to evaluate the mean resionse,

ji(t)}, and the covariance of {X(t)} using the forward difference equa-

- t, udevelopd i4 Section 3.4, The aigorithm is impiemented in the

code RMDOF. A listing of the code is provided in Appendix B.

The algorithm is based on a zero start condition dnd proceeds as

follows,

1. Read the problem description parameters, the rnumber
of nodes, the number of elements and the nurwber of restraints.

2. Read the nodal locations.

3. For each element. read the nodes to which it is
connected, the material properties, and their
uncertainties. Formulate the element stiflfness
matrix and compute the viriance of each term In the
stiffness matrix, Sum these into the 9lob31
matrices. Formulate the elewent mass m.trix and
sum the results into the globall mass matrix.

4. Read the damping parameters, w,, ej, w, S,, and calculate a
and 0 from Equations (3-57) and (3-58).

5. Formulate the problem solutioi nmatrices [A)] and [A2!
defined in Equations (3-65a) nid (3-155h).

6. Impose the ronstraint conditions.

7. For each time step do the following:

a) Update time and the index nn the arrays {r+i,

{11n}, Ef{16n+÷16 n1, TI n T,

b) Form E([K,]16n+2Hf from pquit hk {3-85).

c) Compute L M, .rom F~uat oo (2-9S).
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d) Compute {11n+2} from Equation (3-64a).

e) Compute E[{6n+2}{6n+2}T] from Equation (3-86a).

f) Write appropriate results.

8. Repeat 7 until the problem is completed.

3.6 NUMERICAL EXAMPLES

This section presents the results of two example problems which

illustrate the arl)sis of MDOF systems with random stiffness and damp-

ing. In both examples the random portion of any element of the global

stiffness matrix, [K], was assumed to be perictl;o -irrelated with the

random portion of the corresponding element in the damping matrix.

-*0 This assumptipn of independent terms has a serious shortcoming in

that a rigid body displacement of any element will contribute to the

variances of the displacements.

The random properties of each element of the stiffness and damping

matrices were assumed independent of all other entries of these mat-

rices.

These assumptions were made for reasons of computational covenience

only. When one is modeling simple structures such as homogeneous bars

and beams where the random properties are assumed highly correlated

o along their length., these assumptions may not be valid.

However, in the examples below the elements are considered to be

condensed representations of many beams, columns and girders. For

example, if one were to model d larye buildiny the axial and flextural

properties of several bays and stories may be combined and represented

ty a siriyle frame element. Thus a large structure may be modeled in an

ecorlomicafl maoner. Sucr; subissembily iudelinq iS com,,,oi fur 1dar-e struc-

cures nCu•dIn9 alrcrdtt, sni ps, ard dadMs as well as ?buildiny.

4tI
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EXAMPLE 1 - Deflection of a Non-Prismatic Cantilever Beam.

The structure considered here is shown in Figure 3-3. All dimen-

sions are unitless. The structure possesses six degrees of freedom.

However, the discussion here will concern the midpoint and tip deflec-

tion. The mean and standard deviation of the tip deflection are plotted

in Figure 3-4. The mean and standard deviation of the midpoint deflec-

tion are plotted in Figure 3-5.

The correlation coefficient between the two is plotted in Figure 3-6.

The mean and standard deviations for this problem follow the same

basic trend as that observed for the SDOF examples, namely that thb

standard deviation curve has the same basic shape as the nean curve.

However, the standard deviation curves do not lag behind the mean curves

as in the SDOF cases. Furthermore the standard deviation does not dis-

play the secondary peaks which were indicated in the SDOF case.

The ratio betwee, the midpoint and tip deflections appear to be

about a factor of 1/8. The standard deviation at the tip is approxi-

mately 1/3 the value of the mea,'. The standard deviation at the mid-

point on the other hand is approximately 1/2 the mean. The coefficient

of variation of the stiffness and damping were 0.15, Since more elem-

ents contributed to the stiffness at the midpoint, and the stiffness of

the elements is independent, it is not surprising that the midpoint has

a larger coefficient of variation.

The coefficient of variation at the tip, however, is still approxi-

mately double, (1/3 vs 0.15) whdt would be expected based on the results

of the SDOF computations. However the assumption of independen;e of

terms within the stiffness matrix, means only positive terms, ,peci-

lically those of Equation (3-102; erner the computationb. If the terms



96

0D
CD

C~

wI 0

m C.'

cT 110

LUL,



97

CC

E

x
LU

N-_ 0

C!-
C-) )

'4--
(U

o 0J

0

U,)

C*=J

C!,

C) co )



98

Lfn

Cj

0

CL

% 0-

00

CD

CD CD



99

t-4

D 4-

r-,0

1p
4-)

4-

U, ,

"O c

a)

U

4--
'4-
'4-

o 4-)
U, 0

* 4-) C

CCj

L.-

CC

CLC



100

"of the stiffness matrix were to be considered perfectly correlated then

negative terms would enter the computation as well, reducing the overall

variance. The SDOF approximation to this same problem would in effect

assume perfect correlation between the random variables, thus the

results would not be comparable.

"The correlation between the tip and midpint deflections approaches

a constant value of 0.615. The correlation remains positive since the

deflections always are in phase, and tied to one another in that the

deflected shape of the structure is well defined for this particular

problem.

0
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EXAMPLE 2 - Axial Response of a Prismatic Bar.

The structure of interest for this problem is shown in Figure 3-7.

All dimensions are unitless. The response parameters of interest were

the midpoint and tip deflections. Two loading conditions were investi-

gated, the first being a loading applied suddenly to the midpoint and

the second being a loading applied suddenly to the end. The loading in

both cases had a value of .1.

For the case of the loading at the midpoint the mean and standard

deviation for the deflection at the tip are plotted in Figure 3-8. The

mean and standard deviation for the midpoint are plotted in Figure 3-9,

and the correlation between them is plotted in Figure 3-10. The same

information for loading at the tip is plotted in Figures 3-11, 3-12, and

3-13.

Examination of Figures 3-8 and 3-9 indicate that the standard devi-

ation of the tip deflection is significantly higher than that at the

midpoint even though the deflection are nearing their final values. The

* increase in the tip deflection's standard deviation is due to the

assumption of independent entries of the stiffness matrix. Hence while

the end element has undergone only a rigid body deformation once the

oscillations are damped out this has still contributed to the final

standard deviations.

The resulting means are oscillating about a point which is approxi-

mately 7% greater than their deterministic static deflection. This is

due to the impact of the uncertainties on the mean response.

The correlation coefficient for both cases is approaching a cons-

tant value of 0.5. The standard deviations for the case of the end
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loading are higher than those for the midpoint loading. This is due to

larger deflections on the second half of the bar for +he case of an end

loading. The mean value of the midpoint deflection is also greater for

the case of an end loading than the case of a midpoint loading, hut by

only a few percent. This is due once again to the effect of the ran-

domness of the system parameters on the mean values.

0
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"CHAPTER 4

"PASSAGE PROBABILITIES FOR NONSTATIONARY RANDOM PROCESSES

4.1 INTRODUCTION

This chapter presents a new method for estimating the probability

of passage beyond a barrier level, h, by the ronstationary random

process X(t).

When the barrier b represents a predetermined failure level then

the probability of passing beyond this barrier is identical to the

probability of failure.

The method of computing the passage probabilities for the

nonstationary random process, X(t), presented in this chapter is a new

extension of existing methods usjd for stationary pro'esses. The

* extension involves the application of conditional probabilities and the

assumption that the process X(t) appears stationary during short time

intervals.

The calculation of passage probabilities 1-ar stationary processes

is discussed in Section 4,2. The extension of this to nonstationary

processes is presented in Section 4.3 with the computational algorithm

for implementing the new method presented in Section 4.4. Numerical

examples of the applicatiun of the technique are provided in Section

4°5,

* •,2 ? PASSAGE PROBABILITIES FOP STAT!ONARY R.ANDOM POCESSES

Thý Ttncfdoloqy for, approximating the pass•y• probabilities for

st-tiondr? rrdoo processes has been well developed by Rice (21) and

. r;. mýo ,nenod developed by Rice is summarized below.
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If one considers the random process X(t) to be weakly stationary

then its mean, iix(t), and variauce, ax 2(t), are constant values for all

values of t. Furthermore the process defining its derivative with

regard to t, X(t), is independent of X(t).

The characteristic of interest of X(t) is the collection of its

random peaks which fall above a predetermined level, b, where b>p X. Let

N(b-T) be a counting process associated with the crossing of the barrier

level b. Thus every crossing of b by X(t) is counted by N(b,t). Speci-

fically it is assumed that N(b,t) is a Poisson counting process.

The events counted by a Poisson counting process, in this case the

crossings of b by X(t), are assumed to have the following properties:

a) The events occur independently, hence knowing an event has just
occurred provides no information regarding the probability of
when the next event will occur,

b) The probability of one event occurring in a time interval dt is
Xb(t)dt where dt << 1, and X(t)b is the mean crossing rate.
When X(t) is stationary Xb(t) = Xb a constant.

c) The probability of more than one event occurring in a time
interval dt is negligible.

Assumption (a) above is arbitrary for structural response since the

realizations of the process X(t) are not independent. When X(t) is at

or near a barrier level then X(t+dt) will be as well for dt << 1. This

effect is called "clumping" and is addressed by Vanmarke (4) and

others. However, this effect was neglected by Rice and will be neglec-

ted in the following sections as well.
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The Poisson process, N(b,t), has the following probability

function,

: - t) _•~tJ (4-1)

PN(Ot) = exp (-xb) .b

where j is the number of events counted, that is the number of times

X(t) crosses the barrier level b.

The probability of not crossing the barrier in the interval (o,t)

is provided by Equation (4-1) with j=o. This yields,

PN(o,t) = exp (-Ibt) (4-2)

Let PN(F,t) be the probability of crossing the barrier level at

least once in the increment (o,t), then,

PN(F,t) = 1 - exp (-Xbt) (4-3)

All that now remains is to compute the mean crossing rate, Xb.

The mean crossing rate at any time (t), Xb(t), if given by,

xb(t) = f iX PX)x (b,x,t)dx (4-4)

where pXX (b,x,t) is the joint probability density function of X(t) and

x(t) evaluated at X(t) = b. Since the random processes X(t) and X(t)

have been assumed stationary, Xb(t) = Xb, and Equation (4-4) may be

reduced to,

f b p, , P bX )d,'. (4-5)

In x
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When X(t), X(t) are independent, mean zero, normOl random processes

their joint density is given by,

_2 •

P (xx) : xxl exp (2a 2X 2  (4-6)S(sx 21ra 2X2

-,•i'Substituting this expression into Equation (4-5) yields,

2

1 • O e xp -b ) (4-7)

Equation (4-7) now defines the mean crossing rate of a barrier b by

* the stationary mean zero random process X(t). However, this rate

reflpcts crossing the barrier from bcth above and below dnd since the

engineer is only concerned with crossings from below the crossing rate

must be modified. Fortunately this is straightforward since for a

stationary random process all crossings from below must be paired with a

crossing from above. Hence the mean c:issing rate from below, 'b is

merely half the total meal crossing rate,

+ 1 O-b (4-8)

X 2a x

The resulting probability of crossing the barrier level b from

below within the increment (o,t) is then
+

PN (F,t) = I - exp (-Abt) (4-9)

These results may now he expanded to include the prese-nt case of

interest, the nortationary resporise of a structure with random

st ittriess arid dadM)PlIg.
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4.3 THE NONSTATIONARY CASE

A new method for computing the probability of having crossed a

barrier, b, at least once in the interval (o,t) for a nonstationary

prccess will now be presented. The barrier b is greater than the

largest values of px(t). When ux(t) is greater than b, the probability

of passage is assumed to be 1.

The method is formulated under the following assumptions,

a) The nonstationary random process X(t) and X(t) are continuous.
Hence their values may not instantaneously jump at any time.
This is completely appropriate for processes defining stru "ural
displacement and velocity response under most loadings of
interest, but excludes processes such as Brownian motion and
quite possibly buckling responses.

b) The means and variances of X(t) and X(t) vary only slightly over
increments of time, At, which are small in comparison to the
response time of the structure.

c) X(t) and X(t) are correlated normal random processes whose
means, ux(t), p(t), standard deviations, ax(t), aX(t).and

correlation coefficient r(t) are known.

Such a function obviously does not allow the direct use of Equation

(4-9) to calculate the probability of passage beyond a barrier, b.

Equation (4-4) will still provide the mean crossing rate at any time t.

However, consider tne behavior of X(t) over a short period of time. For

example the interval (T,T+At). Then as At becomes small,

X(T) I X(T+At) (4-10)

and OX() ox(t+At) (4-11)

6
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Considering the approximations of Equations (4-10) and (4-11) the

mean and standard deviation of X(t) within the increment (-,T+At) may be

approximated by,

Ux(t) = UX(T) T <t < T+At (4-12)

Tx(t) = aX(T) T < t < T+At . (4-13)

The values for UX(T+At) and aX(T+At) could have been used for the

right hand sides of Equations (4-12) and (4-13). However, this would

only result in the final results being shifted to the left on the time

axis by an amount At.

The similar expressions for the process X(t) are,

SV#(t) = Pj(T) T_< t < T+At (4-14)

and

a•(t) =aj(T) T _ t < _ At (4-15)

The approximations of Equations (4-12) through (4-15) will have the

largest error when the response begins, that is as the structure moves

away from the deterministic zero start condition. However, since the

probability of exceeding a barrier in a time At when starting from a

zero position is approximately zero, the errors occurring at early times

will in effect be "laundered out" by the computations.

Consider the random processes X(t) and X(t), with the properties
0

outlined above. The mean upcrossing rate of a barrier b at an instant

of time, •, is then

+
A XXP'(,;)x (4-1b)
b~r X , T ~ xd

r
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where P (bx)dx is,

PX(,•(b,x) = X xp 2p 2I 2r

2 taxc• XP2 CFx2

+ x- pi 2
+ X ] (4-17a)

and PX : X(= ) (4-17b)

=: Ni('r) (4-17c)

* 0x : aX(t) (4-17d)

= : '(T) (4-17e)

r = r(T) (4-17f)

p = 1- (4-17g)

SLetting, b-ljxben- (4-18)

and, x-
- (4-19)

a aX

Equation (4-16) may be written,

+1
b r) . (poxZ+p*) exp{- ½ [Z2-2rb'Z+b' 2 ]}dZ (4-20)
b 2 o

0 "
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.- , Completing the square of the exponential term in the integral yields,

S exp {_- L (P2b'2  1
+ 2 ))

Xb(T) 27ro X f (poaZ + px) exp {- (Z-rb') 2 }dz (4-21)

Now letting,

Z-rb' = S (4-22)

and,
III

p rb' = S (4-23)

where SL is the new lower bound of integration yields,

exp{-( (p2 b' 2)} f (Pa•(rb+s)+P.X exp{-½ (S) 2 }dS (4-24)
b(t) - aX SL

Expanding this expression to two integrals,

+ exp{- 00p2 b, 2 }X1 +'()= 2O [(Paipb+)jx] f exp-{- I S2}IdS

L

+ Pa. r S exp{- S2} (4-25)
0 +PO SL 2(4)

Upon solution this yields,

exp{- 1 p2 b' 2}1
X(r) + 2(TX [po' expl- 1 SL2} - SLPO•

o0

SLP i f exp{- S 2 }dS] (4-26)
SL
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The integral on the right hand side of Equation (4-24) may be evaluated

in terms of the error function, erf(x) where,

x
1__1 1

erf(x) - 1 f exp(- ½y 2 )dy (4-27)

and,

erf (®) : (4-28)

Hence, Equation (4-24) becomes,

•a• exp {--12Pb' 2 } 1 2 (4-29a)

bT 2IO [exp{- - SL 21 S

where,

G= - erf(SL) o < SL (4-29b)

or,

G + erf(SL) SL < o (4.29c)

Now replacing b' with its definition, Equation (4-18), Equation (4-29a)

becomes

pa exp 1 xb 2 1 2
b ( [exp {- SL2 } SL fi- - G ] (4-30)

where SL is defined by Equation (4-23) and G is defined by Equations

* (4-29b) and (4 -29c). The value of erf(x) is available as a computer

1 generated function.

6K
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Then the probability of crossing the barrier b at least once during

the interval (-r,+At), P(b,t,At), is

P(b,T,At) 1 1 - Xb(T),At (4-31)

Having the probability of at least one crossing occurring in the

time (o,t) may now be developed. Let t =nAt, where n is a positive in-

teger, and At is a small positive time. Let the event a be the crossing

of the barrier at lest once in the interval (O,tn). Let the event a

be the crossing of the barrier at least once in the interval (O,tn.l).

The probability of a, P(a) may be written as a the sum of probabil-

ilities conditioned on a. This results in,

P(a) = P(W/O)P(W) + P(w/ac)P(mc) (4-32)

where P(a/ý) is the probability that a occurs given that 0 has occurred

"* and P(a/ac) is the probability that a occurs given a did not occur.

Since P(a/ý) is the probability of at least one crossing in the

interval (O,tn) given at least one crossing in (O,tn.l),

P(a/0) 1 1 (4-33)

6
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And Equation (4-32) becomes,

P(cx) : P() + P(a/aC)P(5c) (4-34)

However since the only way for a passage to occur in the interval

(o,t ) given that none occurred in the interval (otn.) is for the pas-n -

sage to occur in the interval (t t ). This is given by Equationn-i' n

(4-31) evaluated for T=tn_1* Hence

P(a) = P(O) + (14-+,(tn )At)P( C) (4-35)

Letting PXb(J) be the probability of X(t) achieving at least one

th
crossing of the barrier b by the end of the j! time step yields,

P(a) = PXb(n) (4-36a)

P(s) P PXb(n-1) (4-36b)

P() -P() l-Pxb(n-1) (4-36c)

Substituting the above into Equation (4-35) yields the recurrence

"relation,

Pxb(n) = Pxb(n-l) + (+ ((tn)At)li-PXb(n-1)) (4-37)

This expression may now be evaluated in a step-by-step manner to

yield the probability of X(t) crossing a barrier b by the time tn.

The computational algorithmi for imiplementing Equation (4-37) is

provided in Section 4.4 and some numerical examples are provided and

discussed in Section 4.4.
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4.4 THE COMPUTATIONAL ALGORITHM

The following algorithm was developed to evaluate Equation (4-37)

to compute the probability of passage beyond a barrier b. The algorithm

is implemented in the code RSDOF. A listing of RSDOF is included in

Appendix A.

1) Let n=o, set barrier level of interest

2) Let n=n+l, tn=nAt

3) Get the values for aX(tn), a(tn), 1X(tn), •(tn).

r(t n) as computed in Chapter 2.

4) Evaluate B of Equation (4-20c) to determine whicn

expression for X to use

+

5) If B < o use Xb(tn) as defined in Equation (4.'0)

6) If B > o use xb(tn) as defined in Equation (4-29)

7) Compute the probability of crossing a barrier b during
this time step by Equatiova (4-31).

8) Compute the probability of crossing the barrier in the
interval (o,tn) from Equation (4-37)

9) Go to Step 2 until problem complete.

The results obtained by implementing the above algorithm are

* discussed in the followng sections.

0
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4.5 NUMERICAL EXAMPLES

This section presents the results of five calculations using the

method developed in the previous sections of this chapter.

The first example consisted of three calculations. The probability

of having achieved at least one crossing of a barrier was computed for

Cases 7, 8, and 9 of Example 2 in Chapter 2. These cases had the param-

eters shown in Table 2-2. The barrier level was 0.36, which is 90% of

the peak response for the undamped system. The only variaticn between

cases was the correlation between the random stiffness and damping.

The resulting passage probabilities are plotted in Figure 4-1. The

probabilities rapidly reach a value that is close to their final value

-is the response reaches its first peak. The probabilities increase

slightly with each additional peak but are assymt-tically approaching a

final value.

The probability of passage for the case of a negative correlation

between the stiffness and damping is the largest of the three cases fol-

lowed by the case of independent stiffness and damping, with positively

correlated stiffness and damping yielding the smallest probability of

passuge.

The second example is the probability of the system define! in

Example 3 of Chapter 2 exceeding the peak level obtained by the deter-

"ministic calculation.

The resulting passage probability is plotted in Figure 4-2. These

values are for the system with 8% damping and a coefficient of variation

for the stiffness of 0.15, the values used in Chapter 2.

[9

I
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A

Hence there is almost a 40% chance of this -tructure failing when

failure is defined as exceeding the peak determinist response. The

second calculation computed the probability of exceeding the value of

0.2884", which is the deflection resulting from twice the peak load when

it is applied as a static load,

0.2884" 2 x 300,000 (4-38V
"2.08 x 106

The results of this computation are plotted in Figure 4-3. The

shape of tne curve is similar to that of Figure 4-2; however, the

resulting probability of passage is now only about .32. Hence an in-

crease in the barrier level of less than 6% decreased the passage prob-

ability by 20%.

i

IlI



CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENUATIONS

5.1 SUMMARY

A technique to explicitly account for the randomness of structural

stiffness and damping in the computation of the structural response was

developed. The technique is suitable for use in cases of both single

and multiple degrees of freedom.

The technique was applied to several problems in Chapters 2 and 3

to demonstrate the influence of these underlying uncertainties on the

response of typical structures.

The results of some of these computations were used to compute the

probability of the response exceeding a given value using a new method

developed in Chapter 4.

The methods of Chapters 2 and 3 are limited to linear elastic

structures, however they may be readily extended to cases of nonlinear-

ity or plastic response.

The method for computing the passage probabilities developed in

Chapter 4 may be applied tG any continuous nonstationary random process

which satisfies the assumptions made in Chapter 4.

5.2 CONCLUSIONS

The randomness of a systems stiffness and damping will effect the

mean and standard deviation of tiat systems response. The uncertainties

will have only minimal influence when the system response is mean zero.

This is to he expected since the systems stiffness and damping only

enter the problem when the system is displaced.
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The relative influence of the system stiffness appears constant for

all non-zero deflections. The mean at any time may De approximated by,

"D (1 + Cov2) (5-1)

where iix is the mean of X, XD is the deterministic value and covK

is the coefficient of variation for the stiffness.

The relative influence of the damping depends on the level of damp-

ing, and has no effect on the static deflections. For lightly damped

systems, e < 0.15, the influence of the randomness of the damping may

probably be ignored for most problems.

The resul~s of Chapter 4 indicate that the randomness in the stiff-

ness must be accounted for when a high degree of survivability is

required. A blast excited slab had a significant probability of exceed-

ing the theoretical maximum vaiue obtained for the deterministic system.

5.3 RECOMMENDATIONS

The problem of MDOF system response needs more work, specifically

an efficient method of accounting for the correlation of the random var-

iables within the stiffness and damping matrices. This may be easier in

a plane strain or plane stress computdtion where the system is a con-

o* tinuous medium.

A method for accounting for sytem uncertainties in cases where the

response is not mean zero Shoutd daso be developed. This includes suc.

important cases as the response to eirthquake, and turbulence.



A

APPENDIX A

PROGRAM RSDOF
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