ACOUSTIC GRAVITY WAVE CHEMISTRY MODEL FOR THE RAYTRACE CODE

Thomas E. Old
Mission Research Corporation
P.O. Drawer 719
Santa Barbara, CA 93102-0719

1 March 1984
Technical Report

CONTRACT No. DNA 001-80-C-0022

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B322083466 S99OMXBB00028 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000

85 5 03 064
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, DC 20305-1000, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 DNA-TR-R4-127

2. **GOVT ACCESSION NO.**
 AD-A158-485

3. **RECIPIENT'S CATALOG NUMBER**
 DNA 001-80-C-0022

4. **TITLE (and Subtitle)**
 ACOUSTIC GRAVITY WAVE CHEMISTRY MODEL FOR THE RAYTRACE CODE

5. **TYPE OF REPORT & PERIOD COVERED**
 Technical Report for Period 30 June 83 - 31 July 84

6. **PERFORMING ORG. REPORT NUMBER**
 MRC-R-815

7. **AUTHOR(S)**
 Thomas E. Old

8. **CONTRACT OR GRANT NUMBER(S)**
 Task S9QMX88-00028

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 Mission Research Corporation
 P.O. Drawer 719
 Santa Barbara, California 93102-0719

10. **PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS**
 Task S9QMX88-00028

11. **CONTROLLING OFFICE NAME AND ADDRESS**
 Director
 Defense Nuclear Agency
 Washington, D.C. 20335-1000

12. **REPORT DATE**
 1 March 1984

13. **NUMBER OF PAGES**
 40

14. **MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)**

15. **SPECIAL REPORTING REQUIREMENTS**
 UNCLASSIFIED

16. **DISTRIBUTION STATEMENT (of this report)**
 Approved for public release; distribution is unlimited.

17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)**

18. **SPECIAL NOTES**
 This work was sponsored by the Defense Nuclear Agency under RDTE PMSS Code B3220B3646 S9QMXB8000J28 H2590D.

19. **KEY WORDS (Continue on reverse side if necessary and identify by block number)**
 F-Region
 Nuclear Explosion
 High Frequency Radio Propagation
 Acoustic Gravity Waves

20. **ABSTRACT (Continue on reverse side if necessary and identify by block number)**
 This report discusses the implementation of F-region electron chemistry in the acoustic gravity wave model of the code RAYTRACE. The chemistry consists of three dominant reactions that control electron depletion in an F-region parcel that is pushed down into the higher density E-region atmosphere by the passage of a large amplitude gravity wave. The effect of electron depletion on the propagation of high frequency radio waves is shown by comparison of RAYTRACE radio propagation calculations with and without chemistry.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>5</td>
</tr>
<tr>
<td>CHEMISTRY MODEL INCORPORATION</td>
<td>7</td>
</tr>
<tr>
<td>CHEMISTRY MODEL</td>
<td>8</td>
</tr>
<tr>
<td>MULTIBURST MODEL CHEMISTRY</td>
<td>10</td>
</tr>
<tr>
<td>COMPARISON OF AGW ENVIRONMENTS WITH AND WITHOUT CHEMISTRY</td>
<td>12</td>
</tr>
<tr>
<td>SINGLE BURST EXAMPLE</td>
<td>18</td>
</tr>
<tr>
<td>CHEMISTRY MODEL DEFICIENCIES</td>
<td>30</td>
</tr>
<tr>
<td>IMPLEMENTATION OF AGW CHEMISTRY INTO RAYTRACE CODE</td>
<td>30</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plot of height versus time for ion parcel moving under the combined effects of three nuclear bursts.</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Model approximation to parcel dynamics given in Figure 1.</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Integral of recombination coefficient for multiburst case discussed in text. The solid line is true integral value, the X's are the model approximation.</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Critical frequency contours without chemistry.</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Critical frequency contours with chemistry.</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Electron density at height of 250 km as a function of time after burst time in a multiburst scenario. Chemistry is included. Passage of first gravity wave occurs at about 20 minutes after the first burst.</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Same as Figure 6 but at an altitude of 350 km.</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Same as Figure 6 but at an altitude of 450 km.</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>Electron density at height of 250 km as a function of time after burst time in a multiburst scenario. Same as Figure 6 except no chemistry is included. Passage of first gravity wave occurs at about 20 minutes after the first burst.</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Same as Figure 9 but at an altitude of 350 km</td>
<td>23</td>
</tr>
<tr>
<td>11</td>
<td>Same as Figure 9 but at an altitude of 450 km</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>Contours of critical frequency from passage of a gravity wave from a single 4 Mt explosion. No chemistry calculations are performed.</td>
<td>26</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>13</td>
<td>Same as Figure 12 except with chemistry turned on.</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td>A fan of HF propagation rays at 15 MHz transmitted from ground zero through the electron environment described in Figure 12.</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>Same as Figure 14 except that rays are propagating through the environment in Figure 13.</td>
<td>27</td>
</tr>
<tr>
<td>16</td>
<td>Electron density height profiles taken at 1000 km from the burst point through the 30 minute environment with no chemistry.</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>Same as Figure 16 except the environment had chemistry turned on.</td>
<td>29</td>
</tr>
</tbody>
</table>
ACOUSTIC GRAVITY WAVE CHEMISTRY MODEL
FOR THE RAYTRACE CODE

INTRODUCTION

Nuclear explosions in the atmosphere are known to generate large amplitude internal gravity waves which propagate great distances from the explosion point and may cause modification of the ionosphere as they pass by. Such modifications may result in substantial impact on HF radio communications that use that part of the ionosphere as a reflecting point. Typical impacts on HF transmissions include: introduction of multipath, reduction in the MUF, and changes in absorption.

A detailed computer model has been generated to describe the dynamics of the acoustic gravity wave from its creation to its propagation through the ionosphere. The model is implemented in the MRC HF communications computer code RAYTRACE1. This note describes enhancements to this AGW model to include appropriate F-region electron density depletion chemistry.

BACKGROUND

For distances far from a nuclear explosion little is known about mechanisms causing the acoustic gravity wave. For distances closer to the explosion our understanding is better. In the model developed by McCartor, et al., in Reference 1, available data is combined with the general theoretical knowledge of the properties of the AGW to describe its dynamics. Some of the most important properties of an AGW incorporated into the RAYTRACE model and pertinent to the question of chemistry are:
1. Long period, freely propagation gravity modes dominate the distant disturbances launched from low altitude sources. These modes give a fairly constant period fluctuation at a fixed range.

2. The long period waves tend to bend around the earth's surface.

3. The intensity of the AGW disturbances changes with altitude. It tends to grow exponentially with altitude up to about 300 km and then decreases above 300 km due to viscous dissipation.

4. Ionospheric plasma driven by atmospheric motion is largely confined to motion along the magnetic field lines.

5. The disturbances show a nearly sinusoidal variation with one or two cycles.

6. AGW's show a nearly constant period for individual stations which increased with increasing distances from the burst.

7. The initial motion of the ionosphere (up or down) seemed to be fixed by the magnetic field orientation.

In general, good agreement was found between the model and existing data sets on gravity waves from nuclear explosions. Not included in the implemented model however is the effect of chemistry on an electron population when it is pushed into denser atmosphere by gravity wave passage (property 4 above). F-region recombination chemistry is expected to greatly deplete the electron density for waves that have sufficient amplitude to push F-region electron parcels below about 200 km for tens of minutes.
CHEMISTRY MODEL INCORPORATION

The RAYTRACE computer program was initially developed by Jones and Stephenson at the Department of Commerce for studying HF radio communications in natural environments and was adapted to handle nuclear explosion disturbed environments by M. Froelli of Mission Research Corporation. The program traces rays through an anisotropic medium whose index of refraction varies continuously in three dimensions. The program calculates ray paths by numerically integrating Hamilton's equations. It can represent the refractive index by either the Appleton-Hartree or the Sen-Wyller formula, and has several ionospheric models for electron density (including the AGW model), perturbations to the electron density, the earth's magnetic field, and electron collision frequency.

Since the code performs numerical integration to trace radio waves along a propagation path, it takes a number of small time steps in high gradient regions normally encountered in disturbed ionospheres to assure path correctness. Thus for each small spatial/time step the electron density and its gradient must be determined. This means that the AGW electron density model must be called for each integration point two or more times. Typical single bounce HF transmission calculations through a disturbed environment may require as many as one hundred thousand calls to the AGW model. Because of this large number of calls to the model, it was designed to run extremely fast. It did not contain any F-region chemistry which would slow the code. There are conditions however such as multiple bursts, large yields or a path close to a burst when plasma at high altitudes is pushed down to altitudes where an electron depletion can occur in one or two cycles of the AGW. Under such circumstances the incorporation of F-region chemistry is necessary to give an accurate picture of the HF propagation effects. For this reason it was felt that F-region chemistry should be available as a model option for large yield cases where chemistry may be important.
It is important however that the addition of the necessary chemistry not add significant running time to the AGW model in RAYTRACE. In fact because of the already substantial run time required to perform a RAYTRACE calculation through a modestly disturbed environment, the chemistry was chosen to be exceedingly simple and include only the dominant reactions pertinent to electron depletion. Also to avoid undo computational complexity only the nighttime chemistry (no sources) is presently implemented in the code.

CHEMISTRY MODEL

The F-region chemistry reactions have been reduced to the simple set of three reactions:

\[\begin{align*}
N_2 + O^+ &\rightarrow NO^+ + N \quad (1a) \\
O_2 + O^+ &\rightarrow O_2^+ + O \quad (1b) \\
NO^+ + e &\rightarrow N + O \quad (2)
\end{align*} \]

where the speed of the first two reactions is much slower than the last and determines the final electron density, \(N_e \). A solution for the electron density at any time \(t \) given the initial density \(N_{e0} \) at \(t = 0 \) is given by

\[N_e = N_{e0} \exp(-\int_0^t \alpha dt) \quad (3) \]

where \(\alpha \) is the effective recombination coefficient given by

\[\alpha = K_1[N_2] + K_2[O_2] \quad (4) \]
where
\[k_1 = 1.3 \times 10^{-12} \] \hspace{2cm} (5)

and
\[k_2 = 2.1 \times 10^{-11} \] \hspace{2cm} (6)

Since the electron parcel is moving up and down with the motion of the gravity wave, the \([N_2]\) and \([O_2]\) densities are functions of time.

The procedure developed to estimate densities has been to initially fit the neutral \([N_2]\) and \([O_2]\) densities with an exponential function of height \(h\) between the regions of 100 and 500 km as:

\[[N_2] = Ae^{Bh(t)} \] \hspace{2cm} (7)
\[[O_2] = Ce^{Dh(t)} \] \hspace{2cm} (8)

The recombination coefficient then becomes
\[\alpha(t) = k_1 Ae^{Bh(t)} + k_2 Ce^{Dh(t)} \] \hspace{2cm} (9)

The height, \(h\), is the instantaneous altitude of the air parcel at time \(t\) and is given for a single burst by
\[h(t) = \Delta Z_{mx} \sin \left(\omega(t-x/c) \right) + Z_0 \] \hspace{2cm} (10)

where \(Z_{mx}\) is the maximum displacement of the parcel at distance \(x\) from the burst; \(Z_0\) is the initial height of the air parcel and \(\omega = 2\pi/\tau Bx\). For the single burst case using equations (9) and (10), the integral in equation (3) can be carried out analytically for the case where the wave has gone through two cycles. The result for that case is
\[
\alpha_{mx} = \int_0^t \alpha(t)dt = 2 \exp[-K_1Ae^{BZ_0}i0(8\Delta Z_{mx})]
\]

\[
+ \exp[-K_2Ce^{DZ_0}i0(0\Delta Z_{mx})]
\]

where \(I_0 \) is the zero order Bessel function with imaginary argument.

The result can be interpolated to a time \(t \) between zero and two cycles of the AGW by using the following approximation:

\[
\int_0^t \alpha dt = \alpha_{mx} + A[\cos(\omega(t-x/c)-1)\cos \phi \sin \theta]
\]

where \(A \) is given by the approximate value determined by fitting equation (12) to exact calculations as

\[A = .08 \alpha_{mx} \]

\(\phi \) is the magnetic azimuth and \(\theta \) is the magnetic dip angle.

The single burst model for integral of \(\alpha(t) \) agrees to within a few percent of the exact value determined by direct time integration of the dynamical equations. The model runs very quickly requiring only the evaluation of equations (11) and (12).

MULTIBURST MODEL CHEMISTRY

The above simple model is accurate for the single burst model since the motion of the electron parcel can be closely approximated by a single sinusoidal function that can then be integrated analytically. For the multiburst case the motion of the electron parcel is the result of a
Figure 11. Same as Figure 9 but at an altitude of 450 km.
ELECTRON DENSITY AT 350 KM AT (40,-95) — NO CHEMISTRY

Figure 10. Same as Figure 9 but at an altitude of 350 km.
Figure 9. Electron density at height of 250 km as a function of time after burst time in a multiburst scenario. Same as Figure 6 except no chemistry is included. Passage of first gravity wave occurs at about 20 minutes after the first burst.
Figure 8. Same as Figure 6 but at an altitude of 450 km.
Figure 7. Same as Figure 6 but at an altitude of 350 km.
Figure 6. Electron density at height of 250 km as a function of time after burst time in a multiburst scenario. Chemistry is included. Passage of first gravity wave occurs at about 20 minutes after the first burst.
minutes after the passage of a very large amplitude gravity wave. The wave resulted from a combination of 100 MT and 30 MT explosions detonated in a region about the zero tic on the figure. (Details of the explosion scenario have been discussed in Reference 1.)

Figure 4 shows critical frequency contours without the effect of chemistry. Figure 5 shows the same region and time but with the F region chemistry included. The chemistry model assumes a night time ionosphere with no electron production sources. It is seen in Figure 10 that large regions of electron depletion (small critical frequency) remain after the passage of the gravity wave. These regions persist for the entire night. As the wave continues to move outward from the explosion point it continues to create an expanding depletion region. This depletion region resulting from the inclusion of chemistry considerably simplifies the disturbed electron density height profile that would have been present from the passage of the gravity wave without chemistry (Figure 4). The simplified electron density height profile may reduce the absorption and multipath but may tend to increase the doppler shift in the HF signal.

Electron density time histories for the multiburst scenario used to generate Figures 4 and 5 are given in Figures 6 through 11 for slices at three heights. Figures 6, 7 and 8 show electron density time histories at 250, 350 and 450 km respectively with the chemistry turned on. Figures 9, 10, and 11 show the same slices but without chemistry. At 250 km altitude electron density is entirely depleted after the passage of the gravity wave. At higher altitudes there is less effect on the electron density resulting in an occasional depletion hole.

SINGLE BURST EXAMPLE

The effect of the passage of a gravity wave through a section of the ionosphere can be seen somewhat more clearly by looking at the
Figure 5. Critical frequency contours with chemistry.
Figure 4. Critical frequency contours without chemistry.
Figure 3. Integral of recombination coefficient for multiburst case discussed in text.
The solid line is true integral value, the X's are the model approximation.
Figure 2. Model approximation to parcel dynamics given in Figure 1.
Figure 1. Plot of height versus time for ion parcel moving under the combined effects of three nuclear bursts.
The amplitude value, \(<\Delta Z_{mx}> \), is the frequency weighted mean amplitude of events

\[
<\Delta Z_{mx}> = \frac{\sum_{i=1}^{N_B} \Delta Z_{mx_i}}{\sum_{i=1}^{N_B} \omega_i} / \left(\frac{1}{\omega_i} \right)
\]

(16)

is the minimum of the \(\omega_i \)'s for the interval, and \(x_{max} \) is the distance associated with the \(\omega_i \) minimum.

An example of the motion of a parcel during multiburst scenario is given in Figure 1. Three events were interacting; they had yields of 10 Mt, 1200 km due north of the point of interest, 15 Mt, 1500 km nearly due south, and 5 Mt 2000 km at 60 degrees azimuth.

The approximate fit to the parcel height using the multiburst model is given in Figure 2. In general the fit is quite good except for a single region near 5000 seconds where equal and nearly opposite motion drive the parcel in a way that cannot be well predicted by the simplified model.

Figure 3 shows the exact integral of \(a(t) \) (eq(12)) for the multiburst case. The approximate integral is given by the X marks for selected times. The fit of the integral is more accurate than our knowledge of either the neutral atmospheric model or the simplified chemistry model.

COMPARISON OF AGW ENVIRONMENTS WITH AND WITHOUT CHEMISTRY

Examples of the effect of F-region chemistry in the wake of a large amplitude gravity wave are seen by examining Figures 4 and 5. Figure 4 shows the critical frequency contours at 15 minutes and 30
superposition of multiple sinusoidal functions that in general will have distinct amplitudes, periods, phases and arrival times at the point of interest. Thus for multiple bursts the model becomes somewhat more complicated but can still be made to maintain most of the character of single burst chemistry model.

The primary consideration in the multiburst case is to get an accurate time history of the vertical motion of the parcel at the point of interest. This motion which is the result of the passage of the multiple AGW's past the point of interest can be expressed as the sum of sine waves i.e.,

\[h(t) = \sum_{i=1}^{N_B} \Delta Z_{mX_i} \sin \omega_i (t - \frac{x_i}{c}) + Z_0 \]

where index, \(i \), runs over all bursts that have

\[\frac{x_i}{c} < t < \left(\frac{x_i}{c} + \frac{2x_i\tau}{Z} \right) \]

Using equation (14) in equation (9) results in an integral that cannot be evaluated exactly. A procedure was adopted where the summation is approximated over a few discrete intervals over which the integral can be done analytically. The intervals are determined by the arrival times of the gravity waves from the various bursts and the departure of the waves. Essentially a new interval is created when either a wave arrives or leaves the parcel region of interest. In a given interval the parcel position is given by

\[h(t) = \langle \Delta Z_{mX} \rangle \sin \omega \left(\frac{x_{\text{max}}}{c} \right) + Z_0 \]
effect of the gravity wave from a single burst. Figures 12 and 13 show contours of critical frequency without and with chemistry respectively after the passage of a gravity wave 30 minutes after a 4 Mt surface explosion. As in the multiburst case the ionosphere is greatly disturbed. The chemistry has the effect of depleting the electrons below about 250 km as seen in Figure 13.

The effect on propagation through the two environments shown in Figures 12 and 13 is illustrated in Figures 14 and 15 respectively by a fan of rays at 15 MHz propagating in a southward direction from a transmitter located at the burst point. To avoid a confusing number of lines on one plot, only the rays are plotted and not the critical frequency contours. Propagation paths can be correlated to environment by overlaying the ray paths on the appropriate Figure 12 or 13. Contrary to our initial expectations, the introduction of chemistry does not greatly improve the number of HF radio waves that propagate, although the environment is greatly simplified and many gradients are removed. The introduction of chemistry does improve somewhat the distance of waves that do propagate merely because it moves the reflection layer higher.

The effect of the chemistry is further illustrated by electron density height profiles shown in Figures 16 and 17 for the single burst scenario. The profiles shown are considered nighttime profiles that have densities normally seen in daytime. They are taken at a point 1000 km south of the burst point at times labeled on the figures. Each profile at succeeding times is offset by 10 from the previous time to accommodate putting many times on a single frame. The profiles that result from the passage of the gravity wave when no chemistry is running are fairly smooth with height. Profiles that result when chemistry is running have large reductions in density between 100 km (the bottom of the model) and about 250 km. The straight vertical line in the profiles taken with chemistry indicate that the electron density is pegged at 1000 cm^{-3}.

25
Figure 12. Contours of critical frequency from passage of a gravity wave from a single 4 Mt explosion. No chemistry calculations are performed.

Figure 13. Same as Figure 12 except with chemistry turned on.
Figure 14. A fan of HF propagation rays at 15 MHz transmitted from ground zero through the electron environment described in Figure 12.

Figure 15. Same as Figure 14 except that rays are propagating through the environment in Figure 13.
Figure 16. Electron density height profiles taken at 1000 km from the burst point through the 30 minute environment with no chemistry.
Figure 17. Same as Figure 16 except the environment had density turned on.
CHEMISTRY MODEL DEFICIENCIES

A major drawback of the model as it is now implemented is that the chemistry model is very simple and the ionosphere is not always stable to application of the model. This defect can be overcome by putting an ionosphere into the code and running it for a sufficiently long simulation time to bring the ionosphere to equilibrium and then using this ionosphere as the one through which the gravity wave propagates. This method has the defect that the exact ionospheric conditions desired may not be simulated. A more correct procedure would be to modify the chemistry such that the user-specified ionosphere is left stable. This procedure is considerably more difficult than modifying the ionosphere to fit the simple chemistry and it may also add considerable run time to a RAYTRACE calculation.

IMPLEMENTATION OF AGW CHEMISTRY INTO RAYTRACE CODE

The RAYTRACE code is organized in a modular fashion so that calculations can be performed using input-selected environment models for electron density and electron density perturbations.

There is only one input flag that needs to be set to turn on the AGW chemistry model and that is word 103 in the "W" array which is loaded on input (see the RAYTRACE documentation, reference 6). The internal flag name is CHMFLG. AGW chemistry is turned on when W103 (CHMFLG) is set to 1. No other parameters or data are required to run the AGW chemistry.
REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Assistant to the Secy of Defense, Atomic Energy
ATTN: Executive Asst

Defense Advanced Rsch Proj Agency
ATTN: GSO, R. Alewone
ATTN: STG, W. Kurowski

Defense Communications Agency
ATTN: Code 230
ATTN: Code 205
ATTN: J300 for Yen-Sun Fu

Defense Communications Engineer Ctr
ATTN: Code R410
ATTN: Code R410, N. Jones
ATTN: Code R123, Tech Lib

Defense Intelligence Agency
ATTN: DR-KL
ATTN: DB, R. Wise
ATTN: DCT-18
ATTN: D/J
ATTN: DC-78

Defense Nuclear Agency
ATTN: SNA
ATTN: RLA
ATTN: NAW
ATTN: PAR-1, L. Lunn
ATTN: NAII
ATTN: RAE-1, W. Schwartz
ATTN: RAO
ATTN: CT/VS

National Technical Info Ctr
ATTN: OU

Office, Ind. Contr & Intell
ATTN: Dir of Intelligence Sys

Lawrence Livermore National Lab
ATTN: FO

Field Commands, DNA
ATTN: FCR
ATTN: FCTE
ATTN: FCTT, W. Summa

Interservice Nuclear Weapons School
ATTN: TV

Joint Chiefs of Staff
ATTN: CJS
ATTN: CJS, Evaluation Office, Hq DoD

Joint Data System Support Ctr
ATTN: OSIO, G. Jones
ATTN: C-312, R. Mason
ATTN: C-510, F. Bird
ATTN: C-500

WARMCCS System Engineering Org
ATTN: R. Crawford

DEPARTMENT OF DEFCENSE (Continued)

Joint Strat Tgt Planning Staff
ATTN: JPPFD
ATTN: JPSS
ATTN: JPTM
ATTN: JLAA
ATTN: JLKS
ATTN: JLX, DNA Rep

National Security Agency
ATTN: B-43, L. Godeke
ATTN: W-36, O. Bartlett

Under Secy of Def for Rsch & Engrg
ATTN: Strat & Space Sys (OSO)
ATTN: Strat & Theater Nuc

DEPARTMENT OF THE ARMY

Army Logistics Management Ctr
ATTN: DLSIE

Atmospheric Sciences Lab
ATTN: DELAS-ED, F. Miles

BMD Advanced Tech Ctr
ATTN: ATC-O, W. Davies
ATTN: ATC-T, M. Capps
ATTN: ATC-R, W. Dickinson
ATTN: ATC-R, D. Russ

BMD Systems Command
ATTN: BMDC-LE, R. Webb
2 cy ATTN: BMDC-WH

Dep Ch of Staff for Ops & Plans
ATTN: DAMD-TC, C3 Div

Harry Diamond Laboratories
ATTN: DELDO-WN-R, R. Williams, 22100
2 cy ATTN: DELDO-WN-P, 22140

US Army Comm-Elec Engr Instal Agency
ATTN: CC-CE-TW, W. Nair

US Army Communications Command
ATTN: CC-OPS-NR, H. Wilson
ATTN: CC-OPS-W

US Army Communications R&D Command
ATTN: DRC-UNCY, W. Kesselman

US Army Foreign Science & Tech Ctr
ATTN: DRSST-SD

US Army Material Command
ATTN: DRMLC, J. Bender

US Army Nuclear & Chemical Agency
ATTN: Library

US Army White Sands Missile Range
ATTN: STEMS-TM, K. Cummings

USA Missile Command
ATTN: DRSMI-YSO, J. Gamble
Department of the Navy

Naval Electronic Systems Command
ATTN: Code 501A
ATTN: Code 3101, T. Hughes
ATTN: PPE 117-20
ATTN: PPE 106-4, S. Kearney
ATTN: PPE 117-211, B. Kruger
ATTN: PPE 117-2012, G. Burnhart
ATTN: PPE 106, F. Diederich

Naval Intelligence Support Center
ATTN: NISC-50

Naval Ocean Systems Ctr
ATTN: Code 5333, J. Ferguson
ATTN: Code 5322, M. Paulson
ATTN: Code 532

Naval Research Laboratory
ATTN: Code 4720, J. Davis
ATTN: Code 4700, S. Osakow
ATTN: Code 7300, B. Cawd
ATTN: Code 4700
ATTN: Code 4137
ATTN: Code 7350, J. Goodman
ATTN: Code 4700
ATTN: Code 4108, E. Szuszewicz

Naval Telecommunications Command
ATTN: Code 341

Office of the Deputy Chief of Naval Operations
ATTN: Code 412, W. Condell
ATTN: Code 412, W. Condell

Office of Naval Research
ATTN: Code 412, W. Condell

Office of Strategic Systems Project Office
ATTN: Code 412, W. Condell

Theater Nuclear Warfare Project Office
ATTN: Code 412, W. Condell

Department of the Air Force

Air Force Geophysics Laboratory
ATTN: OPQ-1
ATTN: LYO, K. Champion
ATTN: OPQ, H. Gardiner
ATTN: LEO, J. Buchau
ATTN: R. Bohlman
ATTN: R. O'Neill

Air Force Technical Applications Center
ATTN: TN

Air Force Weapons Laboratory
ATTN: SUL
ATTN: NTN

Air Force Wright Aeronautical Lab/AAAD
ATTN: W. Hunt
ATTN: A. Johnson

Air Logistics Command
ATTN: OO-ALC/MM

Air University Library
ATTN: AUL-LSE

Asst Chief of Staff, Studies & Analysis
ATTN: AFPSASC/C.R. Rightmeyer

Deputy Chief of Staff
ATTN: AFRODS Space Sys & C3 Div

Deputy Chief of Staff
ATTN: Plans and Operations
ATTN: AFPRODS
ATTN: APXOD

Electronic Systems Div
ATTN: SCS-2, G. Vinkels
ATTN: SCS-3

Foreign Technology Div
ATTN: NII Library
ATTN: T720, B. Ballard

Rome Air Development Center
ATTN: TISD
ATTN: DCSA, R. Schmelbe
ATTN: DCS, V. Coyle

Rome Air Development Center
ATTN: EEP, J. Rasmussen
ATTN: EEPS, R. Kossey

Strategic Air Command
ATTN: ADWA
ATTN: DCX
ATTN: DCS

Strategic Intelligence and Information Library
ATTN: XPSC
ATTN: XPS
ATTN: XPQ

Department of Energy

Department of Energy, GTN
ATTN: DP-233

Other Government Agencies

Central Intelligence Agency
ATTN: OSWR/MSD
ATTN: OSWR/SBD for K. Feuerpfel

Department of Commerce
National Oceanic & Atmospheric Admin
ATTN: R. Grubbell

Department of Commerce, National Bureau of Standards
ATTN: Sec Ofc for R. Moore

Institute for Telecommunications Sciences
ATTN: A. Jean
ATTN: L. Berry
ATTN: W. Utlauf
DEPARTMENT OF ENERGY CONTRACTORS

University of California
Lawrence Livermore National Lab
ATTN: L-31, R. Hager
ATTN: Tech Info Dept Library

Los Alamos National Laboratory
ATTN: D. Sappenfield
ATTN: J. Holcomb
ATTN: R. Jeffries
ATTN: P. Keaton
ATTN: D. Simons
ATTN: G-6, E. Jones
ATTN: MS664, J. Zinn
ATTN: J. Hopkins
ATTN: T. Kunkle, ESS-5

Sandia National Laboratories
ATTN: T. Cook
ATTN: B. Murphey
ATTN: R. Grossman

Sandia National Laboratories
ATTN: D. Dahlgren
ATTN: Space Project Div
ATTN: Tech Lib, 3141
ATTN: D. Thorburn
ATTN: Org 4321, T. Wright
ATTN: Org 1250, W. Brown
ATTN: Org 1231, R. Backstrom

DEPARTMENT OF DEFENSE CONTRACTORS

Analytical Systems Engineering Corp
ATTN: Security

Analytical Systems Engineering Corp
ATTN: Radu Sciences

Austin Research Assoc
ATTN: J. Thompson
ATTN: B. Moore
ATTN: M. Sloan
ATTN: J. Ulram

EDM Corp
ATTN: L. Jacobs
ATTN: T. Neighbors

Berkeley Rsh Associates, Inc
ATTN: J. Workmen
ATTN: C. Prettie
ATTN: S. Brecht

Boeing Co
ATTN: MS 87-63, D. Clauson
ATTN: MS BK-85, S. Taschira

Boeing Co
ATTN: G. Hall

BR Communications
ATTN: J. McLaughlin

University of California at San Diego
ATTN: H. Booker

California Research & Technology, Inc
ATTN: M. Rosenblatt

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Computer Sciences Corp
ATTN: F. Eisenbarth

Electrospace Systems, Inc
ATTN: P. Phillips
ATTN: M. Logston

EOS Technologies, Inc
ATTN: B. Gambard
ATTN: W. Lelevier

General Research Corp
ATTN: B. Bennett

GTE Communications Products Corp
ATTN: H. Gelman
ATTN: A. Murphy

GTE Government Systems Corp
ATTN: R. Steinhoff

Harris Corp
ATTN: E. Knick

Honeywell, Inc
ATTN: A. Kears, MS924-3
ATTN: G. Terry, Avionics Dept

Horizons Technology, Inc
ATTN: R. Krueger

IBM Corp
ATTN: M. Ulander

Institute for Defense Analyses
ATTN: E. Bauer
ATTN: M. Wolfrath
ATTN: J. Aetn
ATTN: M. Gates

ITT Corp
ATTN: G. Wetmore

ITT Corp
ATTN: Technical Library

JAYCOR
ATTN: H. Dickinson

JAYCOR
ATTN: J. Sperling

Johns Hopkins University
ATTN: K. Potocki
ATTN: T. Evans
ATTN: J. Newland
ATTN: R. Stokes
ATTN: J. Phillips
ATTN: C. Meng

Kaman Sciences Corp
ATTN: E. Conrad

Kaman Tempo
ATTN: DASIC
ATTN: B. Gambard
ATTN: W. McNamara

35
<table>
<thead>
<tr>
<th>Company Name</th>
<th>ATTN:</th>
<th>Company Name</th>
<th>ATTN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanian Tempo</td>
<td></td>
<td>Lockheed Missiles & Space Co., Inc</td>
<td></td>
</tr>
<tr>
<td>ATTN: DASIAC</td>
<td></td>
<td>ATTN: Dept 60-12</td>
<td></td>
</tr>
<tr>
<td>ATTN: J. Kumer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Sears</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI Lincoln Lab</td>
<td>ATTN:</td>
<td>ATTN: G. Ganong</td>
<td></td>
</tr>
<tr>
<td>ATTN: D. Towle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: V. Vittor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: N. Doherty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/A Com Linkabit Inc</td>
<td>ATTN:</td>
<td>ATTN: B. Yoon</td>
<td></td>
</tr>
<tr>
<td>ATTN: I. Jacobs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: H. Van Trees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: A. Viterdi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnavox Govt & Indus Electronics Co</td>
<td>ATTN:</td>
<td>ATTN: J. Kumer</td>
<td></td>
</tr>
<tr>
<td>ATTN: G. White</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxim Technologies, Inc</td>
<td>ATTN:</td>
<td>ATTN: R. Halprin</td>
<td></td>
</tr>
<tr>
<td>ATTN: J. Marshall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: E. Tsui</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Morganstern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonnell Douglas Corp</td>
<td>ATTN:</td>
<td>ATTN: Technical Library Services</td>
<td></td>
</tr>
<tr>
<td>ATTN: M. Olyn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Malnorin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteor Communications Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Leader</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission Research Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: G. McFarland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: F. Guigliardo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Tech library</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: F. Fajen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: P. Bagusch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Hendrick</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: D. Kreyer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Kilp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: S. Gertz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Basa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: C. Laue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Byong</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Doc Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitre Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: S. Kammel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: L. Nording</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: My. J. Shaw, M. Deso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: C. Lellah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitre Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: A. all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: W. Foster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: J. Weller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: M. Herrick</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific-Sierra Research Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: E. F. Jr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: F. Merry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: H. Breed, Chairman PAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Defense Contractors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockheed Missiles & Space Co., Inc</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: G. Ganong</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: B. Yoon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: M. Ganstweg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: C. Greifinger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: F. Gilmore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: H. Dry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Turco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: W. Wright</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: W. Kerzog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: G. St. Cyn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: F. Neas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rand Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: B. Bennett</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rand Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: C. Crum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: D. Devits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rockwell International Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: E. Fchanger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rockwell International Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: S. Johnson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Applications Intl.</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: J. Jekayame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Applications, Inc</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: T. Smith</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: D. Hurley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: F. Starkey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: L. Johnson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Applications, Inc</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: M. Fiskel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRI International</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: L. Lima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: J. Hestrick</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: D. Niede</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: F. Sockel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: J. Livingston</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: M. Broom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: P. Oscebrand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: W. Chaseby</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: D. Goce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: M. Ayer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: A. Braun</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: G. Price</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: F. Tsutoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: J. Zickev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Sibbi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: L. Halpin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: R. Huppi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology International Corp</td>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: W. Bousquet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vinton, Inc
ATTN: H. Smith
ATTN: J. Carpenter
ATTN: W. Reid
ATTN: J. Shepard
ATTN: C. Murphy

Toyon Research Corp
ATTN: J. Garbarino
ATTN: J. Ise