NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS
WESTCONNAUG RESERVOIR. (U) CORPS OF ENGINEERS WALTHAM
MA NEW ENGLAND DIV MAR 81

UNCLASSIFIED
PAWTUXET RIVER BASIN
(NORTH BRANCH)
FOSTER, RHODE ISLAND

WESTCONNAUG RESERVOIR DAM
RI 01201

PHASE 1 INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS.

MARCH 1981

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
Westconnaug Reservoir Dam Inspection Report

Title: Westconnaug Reservoir Dam

Type of Report & Period Covered: Inspection Report

Performing Organization: U.S. Army Corps of Engineers

Program Element, Project, Task Area & Work Unit Numbers:

Controlling Office: DEPT. OF THE ARMY, CORPS OF ENGINEERS New England Division, NEDED 424 Trawelo Road, Waltham, MA 02254

Report Date: March 1981

Number of Pages: 67

Distribution Statement (of this report): UNCLASSIFIED

Security Classification (of this report): UNCLASSIFIED

DISTRIBUTION STATEMENT (of the abstract entered in Block 30, if different from Report): UNCLASSIFIED

Supplementary Notes:
Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

Key Words:
Dams, Inspection, Dam Safety,
- Pawtuxet River Basin (North Branch)
- Foster, Rhode Island
- Providence Water Supply Board

Abstract:
The dam is an earth embankment dam with a downstream stone masonry wall. The dam is about 320 ft. long and 17 ft. high. The dam is considered to be in generally good condition. The overall rating must be fair, however, due to the spillway inadequacy. It is intermediate in size with a high hazard potential. The test flood for the dam is the PMF.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Honorable J. Joseph Garrahy
Governor of the State of Rhode Island
State House
Providence, Rhode Island 02903

Dear Governor Garrahy:

Inclosed is a copy of the Westconnaug Reservoir Dam (RI-01201) Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. The report is based upon a visual inspection, a review of past performance, and a preliminary hydrological analysis. A brief assessment is included at the beginning of the report.

The preliminary hydrologic analysis has indicated that the spillway capacity for the Westconnaug Reservoir Dam would likely be exceeded by floods greater than 4 percent of the Probable Maximum Flood (PMF). Our screening criteria specifies that a dam of this class which does not have sufficient spillway capacity to discharge fifty percent of the PMF, should be adjudged as having a seriously inadequate spillway and the dam assessed as unsafe, non-emergency, until more detailed studies prove otherwise or corrective measures are completed.

The term "unsafe" applied to a dam because of an inadequate spillway does not indicate the same degree of emergency as that term would if applied because of structural deficiency. It does indicate, however, that a severe storm may cause overtopping and possible failure of the dam, with significant damage and potential loss of life downstream.

It is recommended that within twelve months from the date of this report the owner of the dam engage the services of a professional or consulting engineer to determine by more sophisticated methods and procedures the magnitude of the spillway deficiency. Based on this determination, appropriate remedial mitigating measures should be designed and completed within 24 months of this date of notification. In the interim a detailed emergency operation plan and warning system should be promptly developed. During periods of unusually heavy precipitation, round-the-clock surveillance should be provided.
Honorable J. Joseph Garrahy

I have approved the report and support the findings and recommendations described in Section 7, with qualifications as noted above. I request that you keep me informed of the actions taken to implement these recommendations since this follow-up is an important part of the non-Federal Dam Inspection Program.

A copy of this report has been forwarded to the Department of Environmental Management, the cooperating agency for the State of Rhode Island. This report has also been furnished to the owner of the project, Providence Water Supply Board, Providence, RI.

Copies of this report will be made available to the public, upon request to this office, under the Freedom of Information Act, thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Management for the cooperation extended in carrying out this program.

Sincerely,

C. E. Edgar, III
Colonel, Corps of Engineers
Division Engineer
NATIONAL DAM INSPECTION PROGRAM

PHASE I - INSPECTION REPORT

Identification No.: RI 01201
Name of Dam: Westconnaug Reservoir Dam
Town: Foster
County & State: Providence, Rhode Island
Stream: Westconnaug Brook
Owner: Providence Water Supply Board
Date of Inspection: 1 December 1980

BRIEF ASSESSMENT

Westconnaug Reservoir Dam is an earth embankment dam with a downstream stone masonry wall. The dam is approximately 320 feet long, 17 feet high above the stream bed, and 16 feet wide at the crest. A portion of the upstream slope is protected by a concrete apron poured over riprap, approximately 100 feet to the left and 75 feet to the right of the spillway. The downstream stone masonry wall was originally constructed of dry masonry; joints were later concreted. The spillway is approximately 16 feet wide and has 3 foot high masonry training walls on both sides. A 16" diameter outlet conduit passes through the base of the dam on the right side of the spillway. The outlet control structure consists of a gate chamber with a grated inlet. A gate valve located within the structure is manually operated through a gate box on top of the dam.

The facility is a part of the Scituate Reservoir System. Its reservoir has a maximum storage capacity of 1,950 acre-feet at the top of the dam, and its drainage area is approximately 4 square miles. The dam was designed and constructed in 1845 for power generation purposes. Later it was used for water supply purposes by a private company until it was purchased by the Providence Water Supply Board during the 1920's. In 1964 there was a general upgrading program and later, during 1974, a repair was instituted on the dam.

As a result of the visual inspection, hydrologic and hydraulic computations, and the review of available data regarding this facility, the dam is considered to be in generally good condition structurally. The overall rating must
be FAIR, however, due to the spillway inadequacy. To
assure the long-term performance of the structure, there
are a number of items which require attention. Adequate
spillway capacity should be provided or the dam should be
designed to structurally withstand overtopping. It is
important to monitor the flow from the drainpipe at the
base of the dam to determine the saturation levels within
the dam and to monitor seepage on a regular basis. Trees
growing downstream of the dam should be cut, and saplings
and brush growing on the upstream embankment should also
be cleared. The alignment of the downstream masonry wall
should be checked periodically in order to determine any
horizontal movement.

The dam is classified as INTERMEDIATE in size and as having
a HIGH hazard potential, in accordance with the recommended
guidelines established by the Corps of Engineers.

The test flood for this dam is the Probable Maximum Flood.
This test flood has an inflow of 7,450 cfs and an outflow
discharge of 6,390 cfs, which will overtop the dam by 3.7
feet. The maximum outflow capacity of the spillway and low
level discharge pipe, when water level is at the top of the
dam, is 260 cfs. This represents 4% of the test flood out-
flow.

It is recommended that the Owner retain the services of a
registered professional engineer to perform the tasks out-
lined in Section 7 of this report. These recommendations
and any further remedial measures should be instituted
within one year of the Owner's receipt of this report.

LENARD & DILAJ ENGINEERING, INC.

By: John F. Lenard, P.E.
 President

Michael Dilaj, P.E., Vice President
Project Manager
This Phase I Inspection Report on Westconnaug Reservoir Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval.

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

JOSEPH W. FINEGAN, JR., MEMBER
Water Control Branch
Engineering Division

ARAMAT MAHTESIAN, CHAIRMAN
Geotechnical Engineering Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation. However, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions will be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and downstream damage potential.

The Phase I Investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.
TABLE OF CONTENTS

LETTER OF TRANSMITTAL
BRIEF ASSESSMENT
REVIEW BOARD PAGE
PREFACE
TABLE OF CONTENTS
OVERVIEW PHOTO
LOCATION MAP

REPORT

SECTION 1 - PROJECT INFORMATION

1.1 General
a. Authority
b. Purpose of Inspection Program
c. Scope of Inspection Program

1.2 Description of Project
a. Location
b. Description of Dam and Appurtenances
c. Size Classification
d. Hazard Classification
e. Ownership
f. Operator
g. Purpose of Project
h. Design and Construction History
 i. Normal Operational Procedures

1.3 Pertinent Data
a. Drainage
b. Discharge at Dam Site
c. Elevations
d. Reservoir Length
e. Storage
f. Reservoir Surface Area
g. Dam
SECTION 2 - ENGINEERING DATA

2.1 Design 8
2.2 Construction 8
2.3 Operation 8
2.4 Evaluation 9
 a. Availability
 b. Adequacy
 c. Validity

SECTION 3 - VISUAL INSPECTION

3.1 Findings 10
 a. General
 b. Dam
 c. Appurtenant Structures
 d. Reservoir Area
 e. Downstream Channel

3.2 Evaluation 12

SECTION 4 - OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures 13
 a. General
 b. Description of any Warning System in Effect

4.2 Maintenance Procedures 13
 a. General
 b. Operating Facilities

4.3 Evaluation 13

SECTION 5 - EVALUATION HYDRAULICS/HYDROLOGIC FEATURES

5.1 General 14
5.2 Design Data 14
5.3 Experience Data 14
A horizontal drain was placed 13.6 feet to the right of the spillway and its discharge at the time of inspection was minor (Photo 10). At the upstream end of the horizontal drain there is a vertical standpipe extending to the crest of the dam. The standpipe has been monitored in the past (See Appendix B), indicating that the water level is at the bottom of the pipe, i.e., that the horizontal drain has remained open. Two observation wells located in a line about 7 feet from the spillway wall have also been monitored in the past (See Appendix B). One of the wells, however, dropped about 6 inches since its installation. The horizontal drain is about 5 feet further from the spillway than the line of the two observation wells. Observation Well 2, about 5.5 feet from the drain, indicates a water level about 5 feet higher than the drain elevation. Thus the efflorescence and seepage observed through the downstream wall between the drain and the spillway are consistent with the observation well readings. The water level behind the concrete and stone walls is probably at an elevation of about 4 to 5 feet above the base of the wall immediately to the right of the spillway.

At about 15 to 20 feet downstream of the dam there is seepage and standing water along most of the length of the dam left of the spillway and also immediately to the right of the spillway (Photos 11, 12, and aerial photo). Flowing water can be observed in some locations after removal of leaves and twigs covering the area. No silt transportation was observed. Because of the wetland characteristics of this area, however, the amount of seepage directly attributable to the dam could not be estimated.

The left downstream stone wall is bulging somewhat about half-way between the spillway and the end of the dam. It is uncertain whether it was constructed in this manner or whether frost and other physical actions may have moved it out of alignment.

c. Appurtenant Structures: The spillway training walls are in good condition (Photo 6). The downstream wall of the spillway is also in good condition with evidence of only minor seepage.

The intake and gate structure, rebuilt in 1964, appear to be in good condition. To prevent damage by vandalism there is a permanent concrete cover with a 4-inch pipe sleeve for inserting a key to operate the gate valve. Thus, the gate valve mechanism cannot be inspected on a regular basis. The corner of the concrete is chipped (Photo 11).
SECTION 3

VISUAL INSPECTION

3.1 Findings:

a. General: An inspection of the Westconnauq Reservoir Dam was performed on December 1, 1980 by Lenard & Dilaj Engineering, Inc. with the assistance of Geotechnical Engineers, Inc. The weather was clear and sunny with temperatures in the 30°F range. At the time of inspection the water level in the reservoir was practically at the spillway crest.

b. Dam: The dam is an earth embankment type with a downstream ashlar masonry wall. The joints of the downstream wall have been covered with mortar over most of the dam. Immediately to the right of the spillway a concrete wall was built in 1964, adjacent to the upstream side of the stone wall, in order to decrease seepage. During 1970 more extensive seepage occurred and it was found that this new wall had been undermined, with large cavities eroded beneath it. Additional walls were installed parallel to the spillway and the downstream wall to a greater depth than the previous walls. Observation wells were also installed at this time to monitor groundwater levels (see discussion later). There was no extensive seepage observed since this repair.

The upstream slope has riprap covered by a concrete facing (constructed in 1974) from the crest to about one foot below the spillway crest level. The concrete facing is in good condition with a few minor cracks (Photo 3). The crest of the dam is partially covered with grass, with vehicle tracks to the right of the spillway and footpaths to the left of the spillway. There is minor erosion at the left abutment at the end of the downstream wall.

The downstream wall is of cut masonry, apparently dry when originally constructed. The joints were later patched with mortar. The wall is in generally good condition (Photo 7). Because of the normally irregular wall surface it is not possible to ascertain if minor bulging of the wall may have occurred. The wall surface shows evidence of seepage or efflorescence on both sides of the spillway. There are a few locations where the mortar has fallen leaving open joints as shown in Photos 8 and 9.
2.4 Evaluation:

a. Availability: Interviews were conducted by the dam safety engineer of the Commission of Land Resources and Development Board. There was little utilization of the material data.

b. Accuracy: The aerial photography and engineering data available did not permit an in-depth investigation. Therefore, the study could not be assessed in terms of the project design and construction. No definitive evidence on the visual inspection of the project, information from the project team and sound environmental data.

c. Validity: A comparison of the site data, photographs, and other construction documentation and visual observation reveals no observable significant discrepancies in the record data.
SECTION 2
ENGINEERING DATA

2.1 Design: According to information from the Providence Water Supply Board, the dam was probably designed and constructed during the end of the past century for power generation. Later it was used for water supply purposes by a private company, until the reservoir was purchased by the Providence Water Supply Board during the 1920's. During 1964 there was a general upgrading program of the entire water supply system, and within this system, Westconnaug Reservoir was also improved. Plans for this upgrading are attached in the Appendix. Subsequently, a serious leak developed on the east side of the spillway and further improvements were made. Plans for these improvements along with photographs are enclosed in this report.

2.2 Construction: Very little is known about the original construction, other than the plans shown in this report. The material make-up of the dam is unknown. As indicated above, reconstruction of the dam took place during 1964 and it was again repaired during 1974. Photographs and plans for these two phases of construction are available and shown in this report. Indications are that at some time prior to the 1964 construction the dam was raised approximately 18" along its entire length. This is based on the layer of stone slightly offset from the face of the downstream ashlar masonry wall.

2.3 Operation: The dam and appurtenant works are operated by the Providence Water Supply Board. The general area is patrolled and maintained by the watershed management personnel, and the facilities are regularly inspected by the engineering department. The sluiceway is opened only during times when water from the reservoir is utilized. The reservoir is usually kept full for the basic purpose of storing water for the system. In case water is needed, the sluiceway is opened and the water runs down into the other reservoirs of the system. A flow chart of the system, showing the contribution of this reservoir, is attached in the appendix of this report. According to information from the Water Supply Board, the dam has never been overtopped.
6. Zoning: Unknown
7. Impervious core: Unknown
8. Cutoff Unknown
9. Grout curtain: Unknown

h. **Diversion and Regulating Tunnel:** N/A

i. **Spillway:**
 1. **Type:** Concrete, broad crest
 2. **Length of weir:** 16 feet
 3. **Crest elevation (without flashboards):** 454.2
 4. **Gates:** None
 5. **U/S channel:** Reservoir bottom
 6. **D/S channel:** Natural bed

j. **Regulating outlets:**
 1. **Invert:** 440.3
 2. **Size:** 16" diameter
 3. **Description:** Cast iron pipe
 4. **Control mechanism:** Gate valve
 5. **Other:** The gate valve is located in a chamber at the upstream end of the outlet conduit and must be operated manually.
8. Top of dam: 457.2
9. Test flood surcharge: 460.9

d. Reservoir (Length in Feet):
 1. Normal pool: 8,100
 2. Flood control pool: N/A
 3. Spillway crest pool: 8,100
 4. Top of dam: 8,400
 5. Test flood pool: 10,600

e. Storage (acre-feet):
 1. Normal pool: 1,390
 2. Flood control pool: N/A
 3. Spillway crest pool: 1,390
 4. Top of dam: 1,950
 5. Test flood pool: 2,750

f. Reservoir Surface (acres):
 1. Normal pool: 170
 2. Flood control pool: N/A
 3. Spillway crest: 170
 4. Test flood pool: 240
 5. Top of dam: 200

g. Dam:
 1. Type: Earth embankment
 2. Length: 320 feet
 3. Height: 17 feet
 4. Top width: 16 feet
 5. Side slopes:
 Upstream: 3H:1V
 Downstream: Vertical
b. **Discharge at Dam Site:** No discharge records are maintained at this facility. The gates are opened when additional water is needed for the water supply system. Listed below are calculated discharge data for the spillway and outlet works:

1. **Outlet works:**
 - **Size:** 16" diameter cast iron pipe
 - **Invert Elev.:** 440.3 feet
 - **Discharge capacity:** 33 cfs (at spillway Elev.)

2. **Maximum known flood at dam site:** Discharge unknown

3. **Un gated spillway capacity at top of dam:** 220 cfs at Elev. 457.2

4. **Un gated spillway capacity at test flood elevation:** 740 cfs at Elev. 460.9

5. **Outlet works capacity at normal pool elevation:** 36 cfs at Elev. 454.2

6. **Outlet works capacity at test flood elevation:** 40 cfs at Elev. 460.9

7. **Total discharge capacity at test flood elevation:** 790 cfs at Elev. 460.9

8. **Total project discharge at top of dam:** 256 cfs at Elev. 457.2

9. **Total project discharge at test flood elevation:** 6,390 cfs at Elev. 460.9

c. **Elevation (feet above National Geodetic Vertical Datum):**

1. **Streambed at toe of dam:** 440.3

2. **Bottom of cutoff:** Unknown

3. **Maximum tailwater:** Unknown

4. **Normal pool:** 454.2

5. **Full flood control pool:** M/A

6. **Spillway crest:** 454.2

7. **Design surcharge:** Unknown
g. **Purpose of Dam:** The dam at Westconnaug Reservoir impounds water from Westconnaug Brook. It is used as the water supply for the Providence Water Supply System.

h. **Design and Construction History:** The dam was constructed in 1845 for power generation purposes. It was later purchased by a private water company for water supply purposes. During the 1920's it was purchased by the present owner, the Providence Water Supply Board. In 1964 there was a general upgrading program and the dam was considerably improved. Later, a serious leak developed on the right side of the spillway and further improvements were implemented. Design plans, construction records, and photographs showing the upgrading and repairs are presented in this report. They were made available by the Providence Water Supply Board. A brief history of the original construction is also presented under the engineering data.

i. **Normal Operating Procedure:** Normally the water level is maintained at spillway elevation, unless there is a projected hurricane or extensive precipitation. In this case, the outlet conduit is reportedly opened and the water level is lowered in anticipation of the storm event. In case there is need for the water in the system, it is discharged through the outlet conduit and into Scituate Reservoir, from which it passes into the Providence system.

Excess water in the reservoir passes over the spillway crest and into the brook downstream of the dam. Normal operating procedures do not provide low flow releases to the stream below the dam.

1.3 **Pertinent Data:**

a. **Drainage Area:** Westconnaug Reservoir Dam is located in the Town of Foster in western Rhode Island. The drainage basin is generally irregular in shape with a length of approximately 2.3 miles along its long (north-south) axis and a width of 2 miles. The total drainage area is 3.87 square miles. The topography consists of rolling terrain with elevations ranging from 454 feet at the spillway crest to a high of 690 feet at the western divide. Basin slopes are moderate to steep with grades of 5% to 25%. The average time of concentration for the entire drainage basin is estimated to be about 5.1 hours.
16" diameter outlet conduit on the right side of the spillway passing beneath the main body of the dam. The outlet control structure consists of a gate chamber with a grated inlet and a reinforced concrete structure with a cover cast permanently in place. There is a small hole (gate box) through the top of the structure to insert a key to operate a gate valve on the pipe. There is no access to the valve chamber for maintenance purposes. Water level is normally maintained at spillway elevation. The gate valve is reportedly opened when there is need downstream for water or an extraordinary storm is anticipated. Water passing over the spillway or through the outlet conduit discharges into Westconnaug Brook.

c. Size Classification: With the pool level at the top of the dam, the impoundment capacity of the reservoir is 1,950 acre-feet. The height of the dam above the stream bed is 17 feet. The dam is therefore classified as an INTERMEDIATE structure, based on impoundment, in accordance with the recommended guidelines of the Corps of Engineers.

d. Hazard Classification: The dam is classified as having a HIGH hazard potential, because the failure discharge can cause damage due to high velocity, impact from debris, and flooding to 6 or 7 homes, 3 roads (State Road #94, Field Road and Tunk Hill Road) and public utilities. The failure could also cause the potential loss of more than a few lives, since the anticipated water depth at the homes may be 2 to 3 feet. Loss of the surface water supply will also cause an impact on the Providence Water Supply System. The estimated increase in water depths due to the dam failure discharge of 11,300 cfs may range from 17 feet at the dam to 9 feet at a distance of 1,300 feet downstream.

e. Ownership: Westconnaug Reservoir Dam is owned by the Providence Water Supply Board, 552 Academy Avenue, Providence, RI 02908

f. Operator: Operating personnel for the dam are under the direction of Wiley Archer, Chief Engineer, Providence Water Supply Board, 552 Academy Avenue, Providence, RI 02908, telephone (401) 521-6300.

The watershed is controlled by the Watershed Division under Hans T. Bergey, Watershed Manager, telephone (401) 821-8050.
3. Computations concerning the hydraulics and hydrology of the facility and its relationship to the calculated flood through the existing spillway.

4. An assessment of the condition of the facility and corrective measures required.

It should be noted that this report does not pass judgment on the safety or stability of the dam other than on a visual basis. The inspection is to identify those features of the dam which need corrective action and/or further study.

1.2 Description of the Project:

a. Location: The project is located on Westconnaug Brook, a tributary to Scituate Reservoir located approximately 1.5 miles downstream of Westconnaug Reservoir. The reservoir and dam are located in the Town of Foster, County of Providence and State of Rhode Island. The dam is located just south of Route 94 (Plainfield Pike) and Field Road, and is shown on the Clayville, Rhode Island USGS quadrangle map, having coordinates 41° 46' 21" (north latitude) and 71° 40' 40" (west longitude).

b. Description of Dam and Appurtenances: The dam at Westconnaug Reservoir is approximately 320 feet in length; it is an earth embankment dam with a vertical downstream stone masonry wall. The dam is 17 feet high at the discharge pipe near the spillway. The average height is approximately 11 feet, with a crest width of about 16 feet. The typical upstream slope is about 1 vertical to 3 horizontal. It is protected by a concrete apron extending approximately 100 feet to the left and 75 feet to the right of the spillway. A reinforced concrete spillway is located to the right of the center of the dam. It is 16 feet wide and the two vertical masonry training walls are approximately 3 feet high. The spillway is located approximately at the original stream known as Westconnaug Brook. This brook flows into the Scituate Reservoir system approximately 1.5 miles downstream from this facility. There is a
PHASE 1 INSPECTION REPORT

SECTION I - PROJECT INFORMATION

1.1 General:

a. Authority: Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Lenard & Dilaj Engineering, Inc. has been retained by the New England Division to inspect and report on selected dams in the States of Connecticut and Rhode Island. Authorization and notice to proceed were issued to Lenard & Dilaj Engineering, Inc. under a letter of 6 November, 1980 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-81-C-0014 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection Program: The purposes of the program are to:

1. Perform technical inspection and evaluation of non-federal dams to identify conditions requiring correction in a timely manner by non-federal interest.

2. Encourage and prepare the states to quickly initiate effective dam inspection programs for non-federal dams.

3. To update, verify and complete the National Inventory of Dams.

c. Scope of Inspection Program: The scope of this Phase I inspection report includes:

1. Gathering, reviewing and presenting all available data as can be obtained from the owners, previous owners, the state and other associated parties.

2. A field inspection of the facility detailing the visual condition of the dam, embankments and appurtenant structures.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Test Flood Analysis</td>
<td>14</td>
</tr>
<tr>
<td>5.5</td>
<td>Dam Failure Analysis</td>
<td>15</td>
</tr>
<tr>
<td>SECTION 6</td>
<td>EVALUATION OF STRUCTURAL STABILITY</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Visual Observation</td>
<td>16</td>
</tr>
<tr>
<td>6.2</td>
<td>Design and Construction Data</td>
<td>16</td>
</tr>
<tr>
<td>6.3</td>
<td>Post Construction Changes</td>
<td>16</td>
</tr>
<tr>
<td>6.4</td>
<td>Seismic Stability</td>
<td>16</td>
</tr>
<tr>
<td>SECTION 7</td>
<td>ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Dam Assessment</td>
<td>17</td>
</tr>
<tr>
<td>7.2</td>
<td>Recommendations</td>
<td>17</td>
</tr>
<tr>
<td>7.3</td>
<td>Remedial Measures</td>
<td>17</td>
</tr>
<tr>
<td>7.4</td>
<td>Alternatives</td>
<td>18</td>
</tr>
</tbody>
</table>

APPENDICES

APPENDIX A - INSPECTION CHECKLIST

APPENDIX B - ENGINEERING DATA

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS

APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS
d. Reservoir: There is no visual evidence of instability along the edge of the reservoir in the vicinity of the dam.

e. Downstream Channel: The downstream channel is the natural stream bed and does not have significant obstructions to the flow.

3.2 Evaluation: On the basis of the visual inspection, the dam is judged to be in good condition. The proper operation of the single drainage pipe immediately to the right of the spillway is an important feature for the integrity of this section of the downstream concrete and stone walls. If the drainage pipe were to become clogged, water pressures could increase behind these walls. The seepage observed downstream of the dam presents no immediate threat to the dam but merits periodic observation.

The trees growing downstream of the dam could, after they die out, cause foundation seepage to concentrate along decaying roots. Saplings and brush have started to grow on the upstream side of the dam and could eventually cause the same type of seepage problems.

The permanent concrete cap on the valve vault does not allow maintenance or repair of the gate structure.

There is some bulging on the left downstream wall, which must be monitored to determine whether or not a problem exists.
SECTION 4
OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures:

a. General: The Providence Water Supply Board watershed management is responsible for patrolling and maintaining the watershed, including the dam. The physical maintenance of the dam and the operation of the valves is supervised by the engineering staff of the Providence Water Supply Board. Water is generally maintained at spillway level unless there is a need for the water stored in the reservoir, in which case the gate valve is opened and water is discharged into the channel.

b. Description of Any Warning System in Effect: Emergency action and/or warning would be coordinated through the Providence Water Supply Board through their offices in Providence, Rhode Island. No formal emergency or contingency plan is in effect to reduce or minimize the downstream impact of flood flows in emergency situations. Monitoring of the approach of intense storm activity is normally through the U.S. Weather Service or local weather forecast.

4.2 Maintenance Procedures:

a. General: The phreatic surface near the spillway is monitored on an intermittent basis by the three observation wells on the dam. Maintenance is generally carried out as required. There are a few small trees growing on the dam not exceeding three inches in diameter. There is considerable tree growth on the downstream side, but away from the ashlar masonry wall. There is more maintenance needed on the downstream side.

b. Operating Facilities: To protect the gate valve from vandalism, a concrete cap was cast for the valve chamber. Consequently, there is no access to the chamber itself. The concrete cap would have to be removed with a jack hammer before the gate valve were to become accessible. There is a trash rack in front of the intake which is cleaned intermittently. All the joints in the masonry wall on the downstream side appear to have been filled with grout. Many of these joints are now cracked and the grout has been removed by water seepage.

4.3 Evaluation: Operational and maintenance procedures are generally satisfactory. Nevertheless, it should be systemized, and emergency warning procedures should be developed.
SECTION 5
EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General: Westconnaug Reservoir Dam is an earth embankment dam with a vertical stone masonry face on the downstream side. The dam is approximately 320 feet long and an average of 11 feet high. The highest point is at the spillway, where the dam reaches a height of 17 feet. The spillway is 16 feet wide and the crest is 3 feet below the top of the dam. For purposes of hydraulic calculations, the spillway weir was considered as a broad crest. A 16-inch discharge pipe passes beneath the right abutment of the dam adjacent to the spillway and is controlled by a gate valve.

The downstream channel is approximately 16 feet wide at the base of the dam and spreads out into a ponded swampy area about 100 feet further downstream. The channel is in fairly good condition, but the banks are overgrown with trees and brush.

The watershed encompasses an area of 3.87 square miles and is basically undeveloped. A few houses can be found along the major roads passing through the watershed area.

At spillway elevation, Westconnaug Reservoir has a storage capacity of 1,390 acre-feet; this increases to 1,952 acre-feet at the top of the dam.

5.2 Design Data: No design data was found to be available for the original construction of this dam. Some records of the repairs were found to be available and have been included in the Appendix.

5.3 Experience Data: No records, other than the observations of the well points since the 1964 installation, were found to be available. Although no specific records could be found, the dam reportedly has never been overtopped since the reservoir has been under the observation of the Providence Water Supply Board.

5.4 Test Flood Analysis: Based on the "Recommended Guidelines for Safety Inspection of Dams", the dam is classified as INTERMEDIATE in size with a HIGH hazard potential. The test flood for these conditions is the Probable Maximum Flood (PMF).

Using the HEC-1 Flood Hydrograph Computer Program developed by the Army Corps of Engineers for dam safety investigations, the inflow and outflow for the test flood were found to be 7,450 cfs and 6,390 cfs, respectively. As a basis of comparison, the Probable Maximum Flood resulted in an inflow of 3,730 cfs and an
outflow of 2,630 cfs. The outflow capacity of the spillway and low level outlet at Westconnaug Reservoir Dam is 256 cfs with the water level at the top of the dam. This represents 4% of the test flood outflow. The maximum overtopping associated with the test flood outflow is 3.7 feet over the top of the dam. The duration of the overtopping would be approximately 35 hours.

In development of the inflow hydrograph, it was assumed that the wetland areas just to the south of the reservoir would have no effect on the peak inflow. Although there is some storage available, the effect would be negligible during the occurrence of the PMF. Consequently, this simplified view of the inflow hydrograph gives a more conservative estimate of the effects at Westconnaug Reservoir Dam.

5.5 Dam Failure Analysis: A dam failure analysis was performed using the "Rule of Thumb" method for estimating downstream dam failure hydrographs, as developed by the Corps of Engineers. Failure was assumed to occur when the water level in the reservoir was at the level of the top of the dam. The calculated dam failure discharge is 11,300 cfs and will produce an increase in the depth of flow of approximately 9 feet at a point 1,300 feet downstream of the dam. The failure analysis covered a distance of 7,000 feet downstream, as shown by the calculations in Appendix D. The increase in the depth of flow at that point (a short distance before entering Scituate Reservoir) was calculated to be 6 feet for the dam failure. The depth of flow resulting from the pre-failure discharge of 256 cfs would be about 0.5 feet and 1 foot, respectively, for the sections mentioned above.

The dam breach would cause appreciable damage downstream of the dam and might result in the loss of more than a few lives. Several houses immediately downstream, in the vicinity of Field Road and Plainfield Pike, could be flooded to depths of 2 to 3 feet due to these flows, which could result in the loss of lives if adequate forewarning were not provided. Serious damage to the bridge on Field Road and three additional road crossings further downstream could also result.
SECTION 6
EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations: The visual inspection did not disclose any indication of present structural instability. Future stability in the section of the dam immediately to the right of the spillway depends on the proper operation of the horizontal drain.

The slight misalignment at the center of the left downstream stone wall may be caused by physical forces rather than construction irregularity. Future monitoring of this wall may reveal whether inadequate drainage behind the wall causes this problem.

6.2 Design and Construction Data: There is no available design and construction data on the original construction of the dam.

6.3 Post-Construction Changes: In 1964 a new inlet and gate structure were built as shown in drawings made available by the owner. Drawings and photographs of repairs made in 1974 were also reviewed. The 1974 repairs consisted principally of:

1. Reconstruction of the spillway slab that had been undermined by piping of soil through the downstream wall.

2. Construction of a concrete wall along the downstream stone wall and spillway-dam contact, immediately to the right of the spillway.

3. Installation of two observation wells and a horizontal drain in the same section of the dam.

4. Placement of a concrete facing over the riprap.

5. Grouting of joints in the downstream masonry wall, which should not have taken place because it could raise the phreatic surface within the dam.

6.4 Seismic Stability: The dam is located near the boundary between seismic zones 1 and 2 and, in accordance with the Phase I inspection guidelines, does not warrant seismic stability analysis.
SECTION 7

ASSESSMENT, RECOMMENDATIONS AND REMEDIAL PROCEDURES

7.1 Dam Assessment:

a. Condition: On the basis of the visual inspection and a review of available information the dam is judged to be in good condition structurally, but must be rated FAIR overall because of the spillway inadequacy. Recommendations are presented in Section 7.3 to monitor the continuing operation of a drain and the seepage downstream of the dam which could affect its future integrity.

b. Adequacy of Information: The evaluation presented in this report is based on the visual inspection and on a review of the available information concerning the 1964 and 1974 repairs of the dam.

c. Urgency: The recommendations presented below should be carried out within one year after receipt of this report by the Owner.

7.2 Recommendations: The following should be carried out under the direction of a qualified registered engineer:

a. The alignment of the left downstream stone masonry wall should be monitored to determine if the bulging is caused by horizontal movement or if it was built in its present form.

b. As shown in the hydrologic and hydraulic calculations, the spillway is only capable of handling 4% of the test flood outflow. A qualified engineer should therefore perform a detailed hydrologic-hydraulic investigation to assess further the potential of overtopping the dam and the need for and the means to increase the project discharge capacity.

c. Any future grouting operations or repairs on the downstream masonry wall should be done under the supervision of an engineer.

d. Remove all trees, brush and debris from the dam and within 20 feet of the toe. Any resulting voids from root removal should be backfilled with a suitable compacted material, and a protective vegetative cover should be established over all bare areas.
7.3 Remedial Measures:

a. Operation and Maintenance Procedures: A formal operation and maintenance program should be established. The program should include:

1. Monitoring of flow out of the downstream drain right of the spillway every two months.

2. Observation of seepage areas for indications of concentrated flow and soil transport every two months.

3. Continue the present technical inspections on an annual basis, or more frequently if necessary.

4. Develop an "Emergency Action Plan" that will include an effective preplanned downstream warning system, locations of emergency equipment, materials and manpower, authorities to contact and potential areas that require evacuation.

7.4 Alternatives: There are no practical alternatives to the above listed recommendations in Sections 7.2 and 7.3.
APPENDIX A

INSPECTION CHECKLIST
VISUAL INSPECTION CHECKLIST
PARTY ORGANIZATION

PROJECT_________________________ DATE DECEMBER 1, 19__
DATE ___________________________ TIME _______ p.m.
TIME ___________________________ WEATHER ________
WEATHER ______________________ W.S. ELEV. _______ U.S. _______ DN.S.

PARTY:

1. John Smith - L.E.P.T.
2. Mary Johnson - L.E.P.T.
4. Sarah Carter - G.E.
5. ______________________________
6. Edward Rodriguez - President
 Water Supply Board
7. John T. Brown - President of Water
 Supply Board
8. ______________________________
9. ______________________________
10. ______________________________

PROJECT FEATURE

1. ______________________________
2. ______________________________
3. ______________________________
4. ______________________________
5. ______________________________
6. ______________________________
7. ______________________________
8. ______________________________
9. ______________________________
10. ______________________________

INSPECTED BY REMARKS

______________________________ ______________________________
______________________________ ______________________________
______________________________ ______________________________
______________________________ ______________________________
______________________________ ______________________________
______________________________ ______________________________
______________________________ ______________________________
______________________________ ______________________________
______________________________ ______________________________
______________________________ ______________________________
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>Reported, no control</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>Bone showed</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Bone showed</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>Permitted any building or excavation</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or Near Toe</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Piping or Roils</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Permitted to Prop.</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Dike Elevation</td>
<td>There is no dike at this location.</td>
</tr>
<tr>
<td>Crest Elevation</td>
<td></td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td></td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td></td>
</tr>
<tr>
<td>Surface Cracks</td>
<td></td>
</tr>
<tr>
<td>Pavement Condition</td>
<td></td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td></td>
</tr>
<tr>
<td>Lateral Movement</td>
<td></td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td></td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td></td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td></td>
</tr>
<tr>
<td>Indications of Movement of Structural Items, on Slopes</td>
<td></td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td></td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td></td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td></td>
</tr>
<tr>
<td>Physical Movement or Cracking at or near toe</td>
<td></td>
</tr>
<tr>
<td>Physical Movement or Downstream Slide</td>
<td></td>
</tr>
<tr>
<td>Draining or Leaks</td>
<td></td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td></td>
</tr>
<tr>
<td>Fine Grains</td>
<td></td>
</tr>
<tr>
<td>Instrumentation System</td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td></td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>Slope Conditions</td>
<td></td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td></td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td></td>
</tr>
<tr>
<td>Log Boom</td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td></td>
</tr>
<tr>
<td>Drains or Open Holes</td>
<td></td>
</tr>
<tr>
<td>b. Intake Structure</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Stop Loos and Slots</td>
<td></td>
</tr>
<tr>
<td>Rock Slides or Falls None observed. Under water.</td>
<td></td>
</tr>
<tr>
<td>Log Boom Good. Check at interface with concrete.</td>
<td></td>
</tr>
<tr>
<td>Debris None.</td>
<td></td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OUTLET WORKS - CONTROL TOWER</td>
<td>See intake structure. There is no control tower at this location.</td>
</tr>
<tr>
<td>a. Concrete and Structural</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td></td>
</tr>
<tr>
<td>Condition of Joints</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Rusting or Staining of Concrete</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Joint Alignment</td>
<td></td>
</tr>
<tr>
<td>Unusual Seepage or Leaks in Gate Chamber</td>
<td></td>
</tr>
<tr>
<td>Cracks</td>
<td></td>
</tr>
<tr>
<td>Rusting or Corrosion of Steel</td>
<td></td>
</tr>
<tr>
<td>b. Mechanical and Electrical</td>
<td></td>
</tr>
<tr>
<td>Air Vents</td>
<td></td>
</tr>
<tr>
<td>Float Wells</td>
<td></td>
</tr>
<tr>
<td>Crane Hoist</td>
<td></td>
</tr>
<tr>
<td>Elevator</td>
<td></td>
</tr>
<tr>
<td>Hydraulic System</td>
<td></td>
</tr>
<tr>
<td>Service Gates</td>
<td></td>
</tr>
<tr>
<td>Emergency Gates</td>
<td></td>
</tr>
<tr>
<td>Lightning Protection System</td>
<td></td>
</tr>
<tr>
<td>Emergency Power System</td>
<td></td>
</tr>
<tr>
<td>Wiring and Lighting System</td>
<td></td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OUTLET WORKS - TRANSITION AND CONDUIT</td>
<td>See outlet structure and outlet channel.</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining on Concrete</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td></td>
</tr>
<tr>
<td>Alignment of Monoliths</td>
<td></td>
</tr>
<tr>
<td>Alignment of Joints</td>
<td></td>
</tr>
<tr>
<td>Numbering of Monoliths</td>
<td></td>
</tr>
</tbody>
</table>
During routine inspection of the dams of the reservoirs above the main Scituate Reservoir made in March 24, 1974, the Westconnaug Reservoir in Foster showed depression on top of the dam about 6 feet east from the east wall of the spillway and 22 feet north of draw off chamber. Closer examination of the downstream wall revealed a leak about 13 feet east of the east wall of the spillway. All evidence showed that the east portion of the dam had developed serious leakage and dam fill material was out.

Further investigation showed that the leakage originated in draw off chamber, and on May 6, 1974, the Westconnaug Reservoir draw off 16-inch gate was opened to drain the reservoir. To properly determine the extent of damage and the required repair work, authority was obtained from the Board of Contract and Supply to employ outside contractual assistance in conducting exploratory investigations and to make the necessary repairs. The services of the Fanning and Doorley Construction Company of Central Falls, Rhode Island were obtained on a cost plus basis. Consulting Engineers from CE Xaguirre, Inc. were engaged to provide assistance for the best solution to stop and control the leakage.

The work included extensive excavation along inside face of the spillway east wall and inner face of the east downstream rubble masonry wall, removal of approach slab at the spillway channel and cleaning of boulders from inlet approach to the draw off structure. Repairs included cement concrete sealing of the inner face of the east spillway wall and downstream rubble masonry wall, installation of three (3) \(\frac{3}{4} \) inch well points and \(\frac{1}{2} \) inch pipe outlet through rubble wall where leak was discovered, sealing all joints inside the draw off structure, securing all rip-rap along upstream with concrete cement and installation of trash racks to protect draw off structure inlet from future obstructions.

The work was completed on June 27, 1974 at a total cost of $18,008.71 and refilling of the reservoir began on June 25, 1974.
CROSS SECTION IN WESTCONNAUG RESERVOIR DAM IN FOSTER.

FROM DAM INSPECTION FILES OF STATE OF RHODE ISLAND

E-1-46

DATE: 1906
SCALE: 1" = 8'
LONGITUDINAL SECTIONS IN WESTCONNAUG RESERVOIR DAM,
IN FOSTER, SHOWING ROLLWAY AND DRAW-OFF PIPE.
SCALE 8 FT. TO ONE INCH.

FROM DAM INSPECTION FILES OF STATE OF RHODE ISLAND

E-1-45
DATE: 1906
SCALE: 1"=8'
CROSS SECTION IN ROLLWAY OF DAM AT WESTCONNAUG RESERVOIR IN FOSTER.

FROM DAM INSPECTION FILES OF STATE OF RHODE ISLAND

E-1-44
DATE: 1906
SCALE: 1" = 8'
HISTORY OF WESTCONNAUG RESERVOIR DAM

Around 1843 the Westconnau Reservoir Company was incorporated in Rhode Island. Land was purchased in and around Granbury Brook by the Company. When the local residents were told to leave their land for the new reservoir, one man killed himself as he felt intensely attached to the land of his forebears.

The earliest reference to the Westconnau Reservoir is found in a warrantee deed from Josiah Whitaker to the trustees of the Westconnau Reservoir Company in November 1845. The dam was built sometime between 1846 and 1847. A report of the State Dam Commission in 1885 described the body of water formed by the dam as covering 175 acres with a 15 foot depth at the dam.

The original Westconnau Dam was constructed for more reliable water power at the nearby, downstream Clayville Mills. Whitaker had expanded his Clayville Mill and thus needed the increased water flow in the drier months between June and October.

It is difficult to research the historical background of the dam as records are divided between the towns of Scituate and Foster. Mary Matthews, the President of the Foster Historical Society, has tried to trace back several of the Clayville Mills with limited success.

1 Foster Historical Society Map, 1799.
APPENDIX B

ENGINEERING DATA
PERIODIC INSPECTION CHECKLIST

PROJECT	**ABRUZZESI'S DISTRIBUTED DAM**	**DATE**	**DECEMBER 1, 19**
PROJECT FEATURE | | **NAME** |
DISCIPLINE | | **NAME** |

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SERVICE BRIDGE</td>
<td>There is no service bridge at this location.</td>
</tr>
<tr>
<td>a. Super Structure</td>
<td></td>
</tr>
<tr>
<td>Bearsings</td>
<td></td>
</tr>
<tr>
<td>Anchor Bolts</td>
<td></td>
</tr>
<tr>
<td>Bridge Seat</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Members</td>
<td></td>
</tr>
<tr>
<td>Underside of Deck</td>
<td></td>
</tr>
<tr>
<td>Secondary Bracing</td>
<td></td>
</tr>
<tr>
<td>Deck</td>
<td></td>
</tr>
<tr>
<td>Drainage System</td>
<td></td>
</tr>
<tr>
<td>Railings</td>
<td></td>
</tr>
<tr>
<td>Expansion Joints</td>
<td></td>
</tr>
<tr>
<td>Paint</td>
<td></td>
</tr>
<tr>
<td>b. Abutment & Piers</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Alignment of Abutment</td>
<td></td>
</tr>
<tr>
<td>Approach to Bridge</td>
<td></td>
</tr>
<tr>
<td>Condition of Seat & Backwall</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECKLIST

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>DISCIPLINE</th>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSYRAMAII RESERVOIR DAM</td>
<td>DISCIPLINE</td>
<td>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loose Rock Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trees Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floor of Approach Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Weir and Training Walls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drain Holes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Discharge Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loose Rock Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trees Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floor of Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Obstructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Comments</td>
<td></td>
</tr>
</tbody>
</table>

- General Condition: Not observed.
- Loose Rock Overhanging Channel: Not observed.
- Trees Overhanging Channel: Not observed.
- Floor of Approach Channel: Not observed.
- General Condition: Cut stone masonry walls. Good condition.
- Rust or Staining: None observed.
- Spalling: None observed.
- Any Visible Reinforcing: Not applicable.
- Any Seepage or Efflorescence: Not observed.
- Drain Holes: None observed.
- General Condition: Good.
- Loose Rock Overhanging Channel: None observed.
- Trees Overhanging Channel: None observed.
- Floor of Channel: None observed.
- Other Obstructions: None observed.
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>To be done</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>None observed</td>
</tr>
<tr>
<td>Spalling</td>
<td>None observed</td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td>None observed</td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td>None observed</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>None observed</td>
</tr>
<tr>
<td>Condition at Joints</td>
<td>Not observable</td>
</tr>
<tr>
<td>Drain holes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Channel</td>
<td>Natural streamlined</td>
</tr>
<tr>
<td>Loose Rock or Trees Overhanging Channel</td>
<td>Some trees.</td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td>Clean. Discharge conduit is an old cast iron pipe. See drawing. Stone box outlet new conduit. New pipe installed at site, grouted into existing.</td>
</tr>
</tbody>
</table>
GROUND WATER ELEVATIONS

AT WESTCONNAUG RESERVOIR DAM

FOR MONTH

OF 1971

<table>
<thead>
<tr>
<th>GSB WELL NO.</th>
<th>WELL ELEVATION</th>
<th>MEASUREMENT</th>
<th>GR.WATER ELEV.</th>
<th>DEPTH OF WELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>456.84</td>
<td>4/20</td>
<td>454.27</td>
<td>5.70 ft.</td>
</tr>
<tr>
<td>#2</td>
<td>456.96</td>
<td>-</td>
<td>-</td>
<td>6.70 ft.</td>
</tr>
<tr>
<td>#3</td>
<td>457.06</td>
<td>10.67</td>
<td>454.47</td>
<td>10.40 ft.</td>
</tr>
</tbody>
</table>

TAKEN BY

RECORDED BY

RESERVOIR SPILLWAY ELEVATION - 454.17
RESERVOIR ELEVATION - TODAY 454.81
GROUN D W A T E R E V E L A T I O N S
A T W E S T C O N G A U G R E S E V O I R D A M
F O R M O N T H
O F M A Y

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># 1</td>
<td>456.84</td>
<td>4.18</td>
<td>45.2%</td>
<td>5.70 ft.</td>
</tr>
<tr>
<td># 2</td>
<td>456.96</td>
<td></td>
<td></td>
<td>6.70 ft.</td>
</tr>
<tr>
<td># 3</td>
<td>457.06</td>
<td>10.07</td>
<td>4.26%</td>
<td>10.40 ft.</td>
</tr>
</tbody>
</table>

TAKEN BY
RECORDED BY

RESERVOIR SPILLWAY ELEVATION - 454.17
RESERVOIR ELEVATION - TODAY 454.91
GROUND WATER ELEVATIONS
AT WESTCONNAUG RESERVOIR DAM
FOR MONTH
OF [Month]

<table>
<thead>
<tr>
<th>GSR WELL NO.</th>
<th>WELL ELEVATION</th>
<th>MEASUREMENT</th>
<th>GR. WATER ELEV.</th>
<th>DEPTH OF WELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>456.84</td>
<td>41.46</td>
<td>415.41</td>
<td>5.70 ft.</td>
</tr>
<tr>
<td>#2</td>
<td>456.96</td>
<td>41.46</td>
<td>415.41</td>
<td>6.70 ft.</td>
</tr>
<tr>
<td>#3</td>
<td>457.06</td>
<td>31.61</td>
<td>415.41</td>
<td>10.40 ft.</td>
</tr>
</tbody>
</table>

TAKEN BY [Signature]
RECORDED BY [Signature]

RESERVOIR SPILL WAY ELEVATION - 454.17
RESERVOIR ELEVATION - TODAY [Date]
GROUND WATER ELEVATIONS
AT WESTCOOMAUG RESERVOIR DAM
FOR MONTH
OF **September**

<table>
<thead>
<tr>
<th>CSB WELL NO.</th>
<th>WELL ELEVATION</th>
<th>MEASUREMENT</th>
<th>GR. WATER ELEV.</th>
<th>DEPTH OF WELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>456.84</td>
<td></td>
<td></td>
<td>5.70 ft.</td>
</tr>
<tr>
<td>#2</td>
<td>456.96</td>
<td></td>
<td></td>
<td>6.70 ft.</td>
</tr>
<tr>
<td>#3</td>
<td>457.06</td>
<td>10.04</td>
<td>447.02</td>
<td>10.40 ft.</td>
</tr>
</tbody>
</table>

TAKEN BY [Signature]
RECORDED BY [Signature]

RESERVOIR SPILL'AY ELEVATION - 454.17
RESERVOIR ELEVATION - TODAY - 452.89

#1 Remove to Levee end
#2 Pipe fixed with stones
GROUND WATER ELEVATIONS

AT WESTCONGAUD RESERVOIR DAM

FOR MONTH

OF

<table>
<thead>
<tr>
<th>CSB WELL NO</th>
<th>WELL ELEVATION</th>
<th>MEASUREMENT</th>
<th>GR. WATER ELEV.</th>
<th>DEPTH OF WELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>456.84</td>
<td>5.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>456.96</td>
<td></td>
<td>6.70 ft.</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>457.06</td>
<td>10.03</td>
<td>47.03</td>
<td>10.40 ft.</td>
</tr>
</tbody>
</table>

RESERVOIR SPILL WAY ELEVATION - 454.17

RESERVOIR ELEVATION - TODAY - 453.74
GROUND WATER ELEVATIONS
AT WESTCONNAGH RESERVOIR DAM
FOR MONTH
OF [FACRY]

<table>
<thead>
<tr>
<th>CSB WELL NO.</th>
<th>WELL ELEVATION</th>
<th>MEASUREMENT</th>
<th>GR. WATER ELEV.</th>
<th>DEPTH OF WELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>456.84</td>
<td>4.36</td>
<td>452.48</td>
<td>5.70 ft.</td>
</tr>
<tr>
<td>#2</td>
<td>456.96</td>
<td></td>
<td></td>
<td>6.70 ft.</td>
</tr>
<tr>
<td>#3</td>
<td>457.06</td>
<td>10.06</td>
<td>447.00</td>
<td>10.40 ft.</td>
</tr>
</tbody>
</table>

TAKEN BY [Signature]
RECORDED BY [Signature]

RESERVOIR SPILLWAY ELEVATION - 451.17
RESERVOIR ELEVATION - TODAY 453.37

* Pipe has dropped about 6 inches below ground level.

* Pipe full of small stones - unable to take reading. Possibility that WSD may want to replace this pipe with a functional one.

E. H. S. (Signature)
Photo 1

General view of concrete fill abutment. Picture taken at the downstream stone masonry wall.

Photo 2

Spillway looking downstream. View of right training wall. Photos of left training wall are also presented in this report.
Note concrete covered slope. Also note intake structure with concrete top.
Photo 6 - Downstream stone masonry wall looking toward right abutment. Note indentation on upper 18" of dam. It may be assumed that this was an addition to the original height of the dam.

Photo 7 - Left training wall of spillway. Note concrete paving on upstream slope and railings growing on slope.
left wingwall of town-and-splitway channel. Note concrete columns and joints.

Photo B

NATIONAL PROGRAM OF
INSPECTION OF
NON-FED DAMS
Photo 9 - Downstream wall of dam between discharge pipe of Observation Well No.3 and spillway. Note efflorescence and seepage. Ruler is inserted into 2½' deep crack.
NATIONAL PROGRAM OF INSPECTION OF NON-FED DAMS
V*
*#
0
UMI
ct
o
720
It
ari
.
20
IU~
L0
cc C,
vi
0
-
0
4
..-
I
37
La.
"A%
I< -
0.
0
323
4
4
CI 0I
a 0
In
aC
cj
OL
2
u
00
0
0
1/
0

HLY-COCHAPP DATA

P= 3.06 CP= .53 K= .0

RECESSION DATA

UNIT HYDROCHAXM DATA

TP= 0.06 CP= .53 K= .0

END-OF-PERIOD FLOW

END-OF-PERIOD FLOW
DETERMINATION OF SPILLWAY TEST FLOOD*

A. SIZE CLASSIFICATION

Based on either storage or height

- Small
 - Storage: 50-999 Ac.-Ft.
 - Height: 25-39 Ft.

- Intermediate
 - Storage: 1,000-50,000 Ac.-Ft.
 - Height: 40-100 Ft.

- Large
 - Storage: More than 50,000 Ac.-Ft.
 - Height: Greater than 100 Ft.

B. HAZARD POTENTIAL CLASSIFICATION

- Category
 - Low
 - Loss of Life: None expected
 - Economic Loss: Minimal
 - Significant
 - Loss of Life: Few
 - Economic Loss: Appreciable
 - High
 - Loss of Life: More than few
 - Economic Loss: Excessive

C. HYDROLOGIC EVALUATION GUIDELINES

- Hazard
 - Low
 - Size: Small
 - Spillway Test Flood: 50 to 100-Year Frequency
 - Intermediate
 - Spillway Test Flood: 100-Year Frequency to ½ PMF
 - Large
 - Spillway Test Flood: ½ PMF to PMF
 - Significant
 - Size: Small
 - Spillway Test Flood: 100-Year Frequency to ½ PMF
 - Intermediate
 - Spillway Test Flood: ½ PMF to PMF
 - Large
 - Spillway Test Flood: PMF
 - High
 - Size: Small
 - Spillway Test Flood: PMF
 - Intermediate
 - Spillway Test Flood: PMF to PMF
 - Large
 - Spillway Test Flood: PMF

* Based upon "Recommended Guidelines for Safety Inspection of Dams" Department of the Army, Office of the Chief of Engineers, November 1976.
APPENDIX D

THE HYDRAULIC

...
1970 REPAIR OF LEAK NEAR SPILLWAY
1970 REPAIR OF LEAK NEAR SPILLWAY
REPAIRS OF DAM DURING 1964
1964 UPGRADING PROGRAM
WESTCONNAUG RESERVOIR DAM

Date of Last Complete Analysis

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Elevation</th>
<th>Time of Day</th>
<th>Time of Day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>8.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

United Computing Systems, Inc.
WATERSHED AREA

CLAYVILLE QUAD:

1038
1161
207 grades → 0.01 S.M.

1055
1256
297 grades → 0.31 S.M.

395
325
400 grades → 2.01 S.M.

TOTAL 2.87 S.M.
Reservoir Surface Areas

Ele. 454 (Cuirillou):

\[
\begin{align*}
0.248 & \quad 0.129 \\
110 \text{ grads} &= 174 \text{ Ac.} \\
0.365 & \quad 0.243 \\
117 \text{ grads} &= 171 \text{ Ac.}
\end{align*}
\]

173 Ac.

Ele. 460:

\[
\begin{align*}
0.061 & \quad 0.746 \\
155 \text{ grads} &= 227 \text{ Ac.} \\
1.058 & \quad 0.222 \\
155 \text{ grads} &= 226 \text{ Ac.}
\end{align*}
\]

227 Ac.

Ele. 470:

\[
\begin{align*}
1828 & \quad 0.258 \\
279 \text{ grads} &= 325 \text{ Ac.} \\
1.03 & \quad 0.325 \\
279 \text{ grads} &= 324 \text{ Ac.} \\
12.31 & \quad 12.31 \\
273 \text{ yrs.} &= 399 \text{ Ac.}
\end{align*}
\]

395 Ac.
SURFACE AREAS (CONT.)

ELEVATION

470
460
450
440
430
420
400

ACRES

100 200 300 400

466
464
462
460
458
456
454
452
448
446
444
442
440
438
436
434
432
430
428
426
424
422
420
418
416
414
412
410
408
406
404
402
400
320
275
250
227
220
190
173
120

230 (PMF LEVEL)

NOTE: SURFACE ELEVATIONS SHOWN ARE 1200' OD - FLAT
CHANGE AT 100' OD = 5 FT. 1952 AC. FT.
Precipitation

U.S. Weather Bureau
Tech. Paper No. 40

PMF - 6 Hour
10 sq. mi.

25 inches

Lag Time (Snyder's)

t_p = C_z (L/L_{CA})^{0.3}

C_z = 2.0

L = 17,700' / 5280' = 3.35 mi.

L_{CA} = 6500' / 5280' = 1.23 mi.

t_p = 2.0 \left(3.35/1.23\right)^{0.3}

t_p = 3.06 hrs.
Spillway

Top Dam Elevation: 457.2

Spillway Crest Elevation: 454.2

Discharge: \(Q = C_L H^{1.5} \)

<table>
<thead>
<tr>
<th>Elevation</th>
<th>(C_L)</th>
<th>(L)</th>
<th>(H)</th>
<th>(Q) (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>454.2</td>
<td>2.5</td>
<td>16'</td>
<td>0'</td>
<td>0</td>
</tr>
<tr>
<td>455.2</td>
<td>2.7</td>
<td></td>
<td>1'</td>
<td>43.2</td>
</tr>
<tr>
<td>456.2</td>
<td>2.64</td>
<td></td>
<td>2'</td>
<td>119.6</td>
</tr>
<tr>
<td>458.0</td>
<td>2.64</td>
<td></td>
<td>3.8'</td>
<td>219.5</td>
</tr>
<tr>
<td>460.0</td>
<td>2.64</td>
<td></td>
<td>4.8'</td>
<td>312.0</td>
</tr>
<tr>
<td>462.0</td>
<td>2.64</td>
<td></td>
<td>5.8'</td>
<td>444.2</td>
</tr>
<tr>
<td>464.0</td>
<td>2.64</td>
<td></td>
<td>6.8'</td>
<td>550.0</td>
</tr>
<tr>
<td>466.0</td>
<td>2.64</td>
<td></td>
<td>7.8'</td>
<td>541.1</td>
</tr>
<tr>
<td>468.0</td>
<td>2.64</td>
<td>16'</td>
<td>8.8'</td>
<td>1325.3</td>
</tr>
<tr>
<td>470.0</td>
<td>2.65</td>
<td></td>
<td>9.8'</td>
<td>1725.7</td>
</tr>
</tbody>
</table>

- PMF Level
LOW LEVEL OUTLET

Control: 16" Dia. Pipe Opening

\[Q = A \sqrt{\frac{2gh}{C}} \]

\[A = \pi r^2 = \pi \left(\frac{16}{2}\right)^2 = 1.40 \, ft^2 \]

\[g = 32.2 \, ft/s^2 \]

\[\frac{1}{C} = 1.6 \]

Data:

<table>
<thead>
<tr>
<th>Elevation</th>
<th>A</th>
<th>g</th>
<th>k</th>
<th>h</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>454.2</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>12.9</td>
<td>23.1</td>
</tr>
<tr>
<td>450.2</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>14.9</td>
<td>24.3</td>
</tr>
<tr>
<td>456.2</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>15.9</td>
<td>25.4</td>
</tr>
<tr>
<td>457.2</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>16.9</td>
<td>26.5</td>
</tr>
<tr>
<td>458.0</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>17.7</td>
<td>27.4</td>
</tr>
<tr>
<td>459.0</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>18.7</td>
<td>28.4</td>
</tr>
<tr>
<td>460.0</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>19.7</td>
<td>29.4</td>
</tr>
<tr>
<td>462.0</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>21.7</td>
<td>31.4</td>
</tr>
<tr>
<td>464.0</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>22.7</td>
<td>33.4</td>
</tr>
<tr>
<td>466.0</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>23.7</td>
<td>35.4</td>
</tr>
</tbody>
</table>

Note: Elevation = 440.3'

DVF Level:

<table>
<thead>
<tr>
<th>Elevation</th>
<th>A</th>
<th>g</th>
<th>k</th>
<th>h</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>440.0</td>
<td>140</td>
<td>32.2</td>
<td>1.6</td>
<td>20.6</td>
<td>40.3</td>
</tr>
</tbody>
</table>
DAM LENGTH

DAM LENGTH = TOTAL LENGTH - SPILLWAY WIDTH

DAM LENGTH = 191' + 115' = L

L = 306'

Dissolved CO2 Fficient over DAM

C = 2.5
Discharge Summary

<table>
<thead>
<tr>
<th>ELEV</th>
<th>Q<sub>Spillway</sub></th>
<th>Q<sub>Pipe</sub></th>
<th>Q<sub>Total</sub> (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>404.2</td>
<td>0</td>
<td>33.1</td>
<td>33.1</td>
</tr>
<tr>
<td>405.2</td>
<td>43.2</td>
<td>34.3</td>
<td>77.5</td>
</tr>
<tr>
<td>406.2</td>
<td>115.5</td>
<td>35.4</td>
<td>154.9</td>
</tr>
<tr>
<td>407.2</td>
<td>219.5</td>
<td>36.5</td>
<td>256.0</td>
</tr>
<tr>
<td>408.2</td>
<td>312.0</td>
<td>37.4</td>
<td>349.3</td>
</tr>
<tr>
<td>409.0</td>
<td>444.2</td>
<td>38.4</td>
<td>482.6</td>
</tr>
<tr>
<td>410.0</td>
<td>590.0</td>
<td>39.4</td>
<td>629.4</td>
</tr>
<tr>
<td>411.0</td>
<td>741.1</td>
<td>41.4</td>
<td>782.5</td>
</tr>
<tr>
<td>412.0</td>
<td>1325.3</td>
<td>43.2</td>
<td>1368.5</td>
</tr>
<tr>
<td>413.0</td>
<td>1751.1</td>
<td>45.0</td>
<td>1776.1</td>
</tr>
<tr>
<td>446.3</td>
<td></td>
<td>40.3</td>
<td>775.6</td>
</tr>
</tbody>
</table>

PMF Level
Fail Analysis

Strength (at top of weld): $W = 1552 \text{ kips}$

Peak Failure Criterion:

$C_{u1} = \frac{W}{(d/8)\sqrt{g}} \geq f_{y}^{3/2}$

Where:

$W = 0.4 \times 240 = 96 \text{ kips}$

$d/8 = 2.2 / 8 = 0.275$

$g = 17 / 8$

$C_{u1} = \frac{96}{0.275 \times 17 / 8} \geq f_{y}^{3/2}$

$C_{u1} = 11.264 \geq f_{y}$
FLOOD CONTROL CYLINDER

D = DIAMETER OF CYLINDER = 0.858 m

L = LENGTH OF CYLINDER = 1952 m

C = CIRCUMFERENCE = 13.53 m

F = AREA OF CIRCUMFERENCE = 11.31 m²

h = DEPTH OF WATER = 7.7 m

A = CROSS SECTIONAL AREA = 3.55 m²

E = DISPLACEMENT IN RIVER = 100.0 m³

Q = VOLUML OF WATER DISPLACED = 79.7 m³

Q = FLOW RATE = 9.4 m³/s

M = METER = 3200

A = ACCUMULATED FLOW = 1742
<table>
<thead>
<tr>
<th>H</th>
<th>A</th>
<th>WP</th>
<th>R</th>
<th>V</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>155</td>
<td>105</td>
<td>1.5</td>
<td>7.1</td>
<td>1104</td>
</tr>
<tr>
<td>4</td>
<td>440</td>
<td>160</td>
<td>2.6</td>
<td>10.5</td>
<td>4402</td>
</tr>
<tr>
<td>6</td>
<td>725</td>
<td>216</td>
<td>3.7</td>
<td>13.1</td>
<td>16151</td>
</tr>
<tr>
<td>8</td>
<td>1380</td>
<td>271</td>
<td>4.7</td>
<td>15.5</td>
<td>13888</td>
</tr>
<tr>
<td>12</td>
<td>1715</td>
<td>321</td>
<td>5.8</td>
<td>17.1</td>
<td>35243</td>
</tr>
<tr>
<td>14</td>
<td>2740</td>
<td>381</td>
<td>7.1</td>
<td>20.1</td>
<td>52224</td>
</tr>
<tr>
<td>16</td>
<td>3215</td>
<td>382</td>
<td>8.1</td>
<td>22.3</td>
<td>75377</td>
</tr>
<tr>
<td>18</td>
<td>4140</td>
<td>432</td>
<td>9.6</td>
<td>25.3</td>
<td>152337</td>
</tr>
<tr>
<td>20</td>
<td>4385</td>
<td>471</td>
<td>11.5</td>
<td>28.2</td>
<td>142186</td>
</tr>
<tr>
<td>22</td>
<td>4800</td>
<td>500</td>
<td>11.7</td>
<td>28.9</td>
<td>173053</td>
</tr>
</tbody>
</table>

\[H = 2.545 \]
\[Q = 0.0275 \]
\[L = 1300 \]
Westconnaug Reservoir - Section 2

Discharge (1000 cfs)

Area (square ft.)

Scale
FLOOD ROUTING SECTION 2

\[n = \text{ Manning's Coefficient} \quad = 0.045 \]

\[S = \text{ Storage at Time of Failure} \quad = 1952 \text{ Ac. Ft} \]

\[L = \text{ Length of Reach} \quad = 1600 \text{ Ft.} \]

\[Q_{p2} = \text{ Inflow into Reach} \quad = 10,743 \text{ Ft.}^3/\text{Sec} \]

\[H_2 = \text{ Depth of Flow} \quad = 6.2 \text{ Ft.} \]

\[A_2 = \text{ Cross Sectional Area} \quad = 850 \text{ Sq. Ft.} \]

\[V_2 = \text{ Volume of Reach} \quad = 31.2 \text{ Ac. Ft.} \]

\[Q_{p3} (\text{Trial}) = \text{ Trial Reach Outflow} \quad = 10,571 \text{ Ft.}^3/\text{Sec} \]

\[H (\text{Trial}) = \text{ Trial Depth of Flow} \quad = 6.0 \text{ Ft.} \]

\[A (\text{Trial}) = \text{ Trial Cross Sectional Area} \quad = 800 \text{ Sq. Ft.} \]

\[V (\text{Trial}) = \text{ Trial Storage in Reach} \quad = 29.4 \text{ Ac. Ft.} \]

\[D_2 = \text{ Reach storage} - Q_{p2} (1 - \frac{V_{p2}}{V_2}) \quad = 10,516 \text{ Ft.}^3 \]

\[H_3 = \text{ Depth of Flow} \quad = 6.0 \text{ Ft.} \]
WESTCONNANG RESERVOIR - SECTION 3 -

SCALE

<table>
<thead>
<tr>
<th>T =</th>
<th>A</th>
<th>WP</th>
<th>R</th>
<th>V</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>430</td>
<td>230</td>
<td>1.7</td>
<td>5.1</td>
<td>2,306</td>
</tr>
<tr>
<td>4</td>
<td>720</td>
<td>260</td>
<td>3.5</td>
<td>8.2</td>
<td>7,564</td>
</tr>
<tr>
<td>6</td>
<td>1410</td>
<td>291</td>
<td>5.2</td>
<td>10.1</td>
<td>15,342</td>
</tr>
<tr>
<td>8</td>
<td>2350</td>
<td>321</td>
<td>6.5</td>
<td>12.3</td>
<td>15,653</td>
</tr>
<tr>
<td>10</td>
<td>2750</td>
<td>351</td>
<td>7.5</td>
<td>14.0</td>
<td>13,513</td>
</tr>
<tr>
<td>12</td>
<td>3385</td>
<td>397</td>
<td>9.0</td>
<td>15.2</td>
<td>52,579</td>
</tr>
<tr>
<td>14</td>
<td>1790</td>
<td>422</td>
<td>10.2</td>
<td>14.6</td>
<td>71,336</td>
</tr>
<tr>
<td>16</td>
<td>545</td>
<td>451</td>
<td>11.3</td>
<td>17.7</td>
<td>92,462</td>
</tr>
<tr>
<td>18</td>
<td>4410</td>
<td>473</td>
<td>12.4</td>
<td>19.0</td>
<td>116,347</td>
</tr>
<tr>
<td>20</td>
<td>1125</td>
<td>523</td>
<td>13.5</td>
<td>20.2</td>
<td>143,357</td>
</tr>
</tbody>
</table>

M = 0.025

S = 0.14

L = 2,500
WESTONNAUG RESERVOIR - SECTION 3

Discharge (1000 cfs)

Depth of Flow (ft)

Discharge

Area (in square cfs)
FLOOD ROUTING SECTION 2

$n = \text{Manning's Coefficient} = 0.050$

$S = \text{Slope at Time of Failure} = 1952 \text{ ft/ft}$

$L = \text{Length of Reach} = 2500 \text{ ft}$

$Q_{by} = \text{Volume into Reach} = 10,576 \text{ cfs}$

$H_3 = \text{Depth of Flow} = 4.7 \text{ ft}$

$A_3 = \text{Cross Sectional Area} = 1,100 \text{ ft}^2$

$V_3 = \text{Volume in Reach} = 63.1 \text{ acre ft}$

$Q_{by \ (\text{trial})} = \text{Trial Reach Outflow} = 10,234 \text{ cfs}$

$H_1 = \text{Trial Depth of Flow} = 4.6 \text{ ft}$

$A_1 = \text{Trial Cross Sectional Area} = 1,050 \text{ ft}^2$

$V_1 = \text{Trial Storage in Reach} = 60.3 \text{ acre ft}$

$Q_{by} = \text{Reach Outflow} - (1 - V_3/V_1) = 10,242 \text{ cfs}$

$H_3 = \text{Depth of Flow} = 4.6 \text{ ft}$
Westconnaug Reservoir Dam: Section 11

Table

<table>
<thead>
<tr>
<th>H</th>
<th>A</th>
<th>VIP</th>
<th>P</th>
<th>V</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>65</td>
<td>0.9</td>
<td>5.1</td>
<td>295</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>80</td>
<td>1.6</td>
<td>7.6</td>
<td>989</td>
</tr>
<tr>
<td>3</td>
<td>218</td>
<td>95</td>
<td>2.3</td>
<td>9.6</td>
<td>2090</td>
</tr>
<tr>
<td>4</td>
<td>880</td>
<td>110</td>
<td>2.9</td>
<td>11.2</td>
<td>3596</td>
</tr>
<tr>
<td>5</td>
<td>188</td>
<td>176</td>
<td>2.5</td>
<td>12.7</td>
<td>5546</td>
</tr>
<tr>
<td>6</td>
<td>510</td>
<td>141</td>
<td>4.0</td>
<td>14.0</td>
<td>10935</td>
</tr>
<tr>
<td>7</td>
<td>380</td>
<td>111</td>
<td>5.1</td>
<td>16.5</td>
<td>14472</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>201</td>
<td>6.2</td>
<td>15.1</td>
<td>23270</td>
</tr>
<tr>
<td>9</td>
<td>225</td>
<td>552</td>
<td>7.1</td>
<td>21.1</td>
<td>55426</td>
</tr>
<tr>
<td>10</td>
<td>475</td>
<td>552</td>
<td>9.3</td>
<td>24.8</td>
<td>117642</td>
</tr>
</tbody>
</table>

\[\frac{H}{V} = 0.95 \]

\[\frac{Q}{L} = 0.05 + 1 \]

\[L = 1600 \]
WEST CONNAUG RESERVOIR DAM - SECTION 4

DISCHARGE (1000 cfs)

DEPTH OF FLOW (feet)

Area

discharge

FLOW (thousand c.f.s.)
FLOOD ROUTING - SECTION 1

n - Manning Coefficient = 0.050
S - Slope of channel = 152 ft
L - Length of reach = 1600 ft
Qp - Width and reach = 10,242 ft
Hh - Depth of flow = 6.7 ft
Aq - Cross sectional area = 690 ft²
Vq - Storage in reach = 25.3 ft³

Qout = Total reach outflow = 10,109 ft³
Hh (final) = Final depth of flow = 6.7 ft
S (final) = Final slope of reach = 690 ft
V = Total storage in reach = 25.3 ft³
Q = Flow from outlet = 10,109 ft³
h = Depth = 6.7 ft
APPENDIX E

INFORMATION AS CONTAINED IN THE
NATIONAL INVENTORY OF DAMS
NOT AVAILABLE AT THIS TIME
END

FILMED

8-85

DTIC