Arctic Dam
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

U.S. ARMY CORPS OF ENGINEERS
NEW ENGLAND DIVISION

DEPT. OF THE ARMY, CORPS OF ENGINEERS
NEW ENGLAND DIVISION, NEDED
424 TRAPELO ROAD, WALTHAM, MA. 02254

January 1981

April 1980

UNCLASSIFIED

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

The dam is 30 ft. high with a total length of 174 ft. long. It is small in size with a high hazard potential. The dam is considered to be in fair condition. No evidence of instability of the project was observed. There are items which require repair and/or maintenance.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Honorable J. Joseph Garrahy
Governor of the State of Rhode Island
State House
Providence, Rhode Island 02903

Dear Governor Garrahy:

Inclosed is a copy of the Arctic Dam (RI-03802) Phase I Inspection Report, prepared under the National Program for Inspection of Non-Federal Dams. This report is based upon a visual inspection, a review of past performance, and a preliminary hydrological analysis.

The preliminary hydrologic analysis indicates that the spillway capacity for the Arctic Dam would likely be exceeded by floods greater than 13 percent of the Probable Maximum Flood (PMF). Our screening criteria specifies that a dam classified as high hazard with a spillway capacity insufficient to discharge fifty percent of the PMF be judged as having a seriously inadequate spillway. As a result this dam is assessed as unsafe, non-emergency until more detailed studies prove otherwise or corrective measures are completed.

The term "unsafe" applied to a dam because of an inadequate spillway does not indicate the same degree of emergency as it would if applied because of structural deficiency. It does indicate, however, that a severe storm may cause overtopping and possible failure of the dam, with significant damage and potential loss of life downstream.

We recommend that within twelve months from the date of this report the owner of the dam engage the services of a qualified registered engineer to determine further the potential of overtopping the dam and the need for and the means to increase project discharge capacity. Based on this determination, appropriate remedial mitigating measures should be designed and completed within 24 months of this date of notification. In the interim a detailed emergency operation plan and warning system should be promptly developed and round-the-clock surveillance be provided during periods of heavy precipitation or high project discharge.
NEDED

Honorable J. Joseph Garrahy

I approve the report and support the findings and recommendations described in Section 7, with qualifications as noted above. I request that you keep me informed of the actions taken to implement these recommendations since this follow-up is an important part of the program.

Copies of this report have been forwarded to the Department of Environmental Management and to the owner, Arctic Development Corporation, West Warwick, RI. Copies will be available to the public in thirty days.

I wish to thank you and the Department of Environmental Management for your cooperation in this program.

Sincerely,

C. E. EDGAR, III
Colonel, Corps of Engineers
Commander and Division Engineer
BRIEF ASSESSMENT

PHASE 1 INSPECTION REPORT

NATIONAL PROGRAM OF INSPECTION OF DAMS

Name of Dam: ARCTIC DAM
Inventory Number: RI 03802
State: RHODE ISLAND
County: KENT
Town: WEST WARWICK
Stream: SOUTH BRANCH PAWTUXET RIVER
Owner: ARCTIC DEVELOPMENT CORPORATION
Date of Inspection: OCTOBER 8, 1980
Inspection Team: PETER HEYNEN, P.E.
HECTOR MORENO, P.E.
THEODORE STEVENS
FRANK SEGALINE

Arctic Dam was built around 1885 to generate electricity, but is not presently used for this purpose. The 30 foot high dam has a total length of 174 feet, consisting of a 110 foot long stone masonry spillway centered between two stone masonry and earthfill non-overflow sections. The top of the right non-overflow section is approximately 0.4 foot higher than the top of the left non-overflow section and 5.7 feet above the masonry spillway crest. Permanent stop planks, two feet in height, are mounted on the spillway crest. The low-level outlet for the dam is a 48 inch diameter steel pipe through the left non-overflow section. There are factory buildings adjacent to each end of the dam and masonry walls lining the downstream channel.

In accordance with Army Corps of Engineers' Guidelines, Arctic Dam is classified as a small size, high hazard dam. The test flood range to be considered is from one-half to full Probable Maximum Flood (PMF). The test flood for Arctic Dam is equivalent to the 1/2 PMF. Peak inflow to the impoundment at test flood is 16,500 cubic feet per second (cfs); peak outflow is 16,500 cfs with the dam overtopped by 7.6 feet. The spillway capacity above the permanent stop planks with the reservoir level to the top of the dam is 2200 cfs, which is equivalent to 13% of the routed test flood outflow.

Based upon the visual inspection at the site and past performance, the project is in fair condition. No evidence of instability of the project was observed.
There are items which require repair and/or maintenance, such as the deteriorated low-level outlet, gate, and gate housing mechanism, leached out mortar joints on the downstream face of the left non-overflow section, undermining of the wall on the right side of the downstream channel, and brush, saplings and trees growing on the dam and appurtenances.

It is recommended that the owner retain the services of a registered professional engineer to perform a more detailed hydraulic/hydrologic analysis of the existing project discharge capacity. Other items of importance are the restoration of the low-level outlet facilities, repair of leached mortar joints, repair of the undermined channel wall, and removal of trees from the dam and appurtenances.

The above recommendations and further remedial measures presented in Section 7.3 should be implemented within one year of the owner's receipt of this report.

Peter M. Heynen, P.E.
Project Manager - Geotechnical
Cahn Engineers, Inc.

C. Michael Horton, P.E.
Chief Engineer
Cahn Engineers, Inc.
This Phase I Inspection Report on Arctic Dam (RI-03802) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval.

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

JOSEPH W. FINEGAN, JR., MEMBER
Water Control Branch
Engineering Division

ARAMAST MAHTESIAN, CHAIRMAN
Geotechnical Engineering Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspection. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam would necessarily represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions will be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Test Flood is based on the estimated "Possible Maximum Flood" for the region (greatest reasonably likely storm runoff), or fraction thereof. Because of the infrequency and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood may be a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with FMA rules and regulations is also excluded.
The information contained in this report is based on the limited investigation described above and is not warranted to indicate the actual condition of the dam. The integrity of the dam can only be determined by a means of a monitoring program and/or a detailed physical investigation. The accuracy of available data is assumed where not in obvious conflict with facts observable during the visual inspection.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>i, ii</td>
<td>Letter of Transmittal</td>
<td>i, ii</td>
</tr>
<tr>
<td>iii</td>
<td>Sheet of Assessment</td>
<td>iii</td>
</tr>
<tr>
<td>iv, v</td>
<td>View Board Signature Page</td>
<td>iv, v</td>
</tr>
<tr>
<td>vi-viii</td>
<td>List of Contents</td>
<td>vi-viii</td>
</tr>
<tr>
<td>ix</td>
<td>Review Photo</td>
<td>ix</td>
</tr>
<tr>
<td>x</td>
<td>Section Map</td>
<td>x</td>
</tr>
</tbody>
</table>

SECTION 1: PROJECT INFORMATION

1.1 General ... 1-1
 a. Authority
 b. Purpose of Inspection Program
 c. Scope of Inspection Program

1.2 Description of Project 1-2
 a. Location
 b. Description of Dam and Appurtenances
 c. Size Classification
 d. Hazard Classification
 e. Ownership
 f. Operator
 g. Purpose of Dam
 h. Design and Construction History
 i. Normal Operational Procedures

1.3 Pertinent Data .. 1-4
 a. Drainage Area
 b. Discharge at Damsite
 c. Elevations
 d. Reservoir Length
 e. Reservoir Storage
 f. Reservoir Surface
 g. Dam
 h. Diversion and Regulating Tunnel
 i. Spillway
 j. Regulating Outlets

SECTION 2: ENGINEERING DATA

2.1 Design Data ... 2-1

2.2 Construction Data 2-1

2.3 Operation Data 2-1
c. Appurtenant Structures - The operability of the low-level outlet gate for the dam is questionable and the 48 inch steel low-level outlet pipe appears to be in poor condition. The control mechanism, a rack-with-pinion gatenost mounted on the upstream of all the left non-overflow section, is rusted and the wooden gate support is rotted (Photo 4). The handle for the control mechanism is not in place and the owner is not sure of its location. Approximately 200 gallons per minute (gpm) or more were flowing from the downstream end of the low-level outlet pipe (Photo 2), indicating that either the gate leaks or that it is not tightly closed, or possibly that there is seepage from the body of the dam into the pipe. Observed from its downstream end, the pipe is in poor condition. Although it protrudes approximately 5 feet from the downstream face of the dam, extensive corrosion of the octom of the pipe allows some of the flow through the pipe to be discharged onto the masonry face of the dam, causing leaching of the mortar. Also, as previously mentioned, there is a clump of small trees growing on top of the pipe at its point of exit from the dam.

The factory buildings at each end of the dam appear to be in good condition, with no notable signs of deterioration. The old tailrace channel under the factory to the right of the dam is filled in and now serves as a parking area. There were no observable problems in this area.

d. Reservoir Area - The reservoir has steep-sided, wooded banks and the land at the top of the banks is heavily developed.

e. Downstream Channel - The downstream channel is broad and deep, although the normal flow is shallow. The channel bottom is bouldery and the channel sides are masonry walls for about 100 feet to the bridge. Brush and small trees are growing from the benches of the walls on either side of the river, and it appears that the right side wall is being undermined (Photos 5 and 6). The concrete arch bridge appears to be in good condition and does not appear to constrict the river channel.

2 EVALUATION

Based upon the visual inspection, the project is in fair condition. The manner in which the features identified in Section 3 could affect the future condition and/or stability of the project is as follows.

1. The root systems of the small trees on the left non-overflow section could provide paths for seepage through the dam, especially if they are allowed to grow to be large.
SECTION 3: VISUAL INSPECTION

1. EASINGS

a. General - The general condition of the project is fair. Inspection revealed several areas in need of maintenance. At the time of inspection the upstream water level was at elevation 148.8, with approximately 2 inches of water flowing over the stop wall and masonry spillway.

b. Dam

Top of Dam - The top of the right non-overflow section is in good condition, with a regular surface and good grass cover locally. A wooden railing on top of the masonry wall and extending from the upstream edge of the dam to the bridge 100 feet downstream of the dam is in fair condition, with slight rotting of the wood.

The top of the left non-overflow section is in poor condition with a dense growth of small trees, saplings and underbrush and several footpaths due to trespassing (Overview Photo).

Upstream Face - The upstream faces of both the right and left non-overflow sections are in good condition with no displacement of masonry and only minor leaching and cracking of the mortar joints.

Downstream Face - The downstream face of the right non-overflow section is in good condition. No leaching or cracking of mortar joints or displacement of masonry was observed.

The downstream face of the left section is in poor condition. In the area beneath the low-level outlet pipe, mortar has been almost totally leached out of the joints in the masonry core 21. This appears to be caused by seepage from the pipe onto the outside of the wall, rather than by seepage from the body of the water through the wall. A clump of small trees, the roots of which extend through the masonry core into the body of the dam, is growing on top of the outlet pipe. Water exits from the dam, rather than in the area of the outlet. The downstream face core to be in good condition, although it is obscured by game and growth.

Spillway - Even though it appears to be in good condition, the spillway prevented close inspection of the downstream core and toe. No irregularities of the tiered downstream core were seen and the abutments with the non-overflow sections appeared well, except for some leaching of mortar due to contact with water over the spillway. The masonry spillway crest appears in good condition, but the stop planks are somewhat leaky and deteriorated. The stop plank supports, though rusted on one side, do not show any significant deterioration. Also, approximately 4 feet apart, they are closely spaced, and all are in
SECTION 2: ENGINEERING DATA

2.1 DESIGN DATA

The available data consists of inventory data by the State of Rhode Island and inspection reports dated March 27, 1946 and September 11, 1978 by the State of Rhode Island (See Appendix B).

2.2 CONSTRUCTION DATA

No information is available.

2.3 OPERATIONS DATA

According to the 1946 inspection report a river gage was read every hour daily from 7 A.M. to 11 P.M. These records were not available.

2.4 EVALUATION OF DATA

a. Availability - Available data was provided by the State of Rhode Island and the owner. The owner made the project available for visual inspection.

b. Adequacy - The limited amount of detailed engineering data available was generally inadequate to perform an in-depth assessment of the dam, therefore, the final assessment of this dam must be based primarily on visual inspection, performance history, hydraulic computations of spillway capacity and hydrologic estimates.

c. Validity - A comparison of record data and visual observations reveals no significant discrepancies in the record data.
7. Regulating Outlets

Low-level outlet

1. Invert: 93.8
2. Size: 48 inch diameter
3. Description: Steel pipe
4. Control mechanism: Rack with pinion gate hoist
5. Other: Operability questionable
 Location of handle unknown
5. Test flood pool: 28+ acres

9. Dam

1. Type: Stone masonry gravity and earthfill
2. Length: 174 ft.
3. Height: 30 ft.
4. Top width: 70+ ft.
5. Side slopes: Vertical
6. Zoning: Upstream and downstream masonry walls with center earthfill
7. Impervious core: N/A
8. Cutoff: Not known
9. Grout curtain: N/A
10. Other: Adjacent factory buildings close overflow profile

h. Diversion and Regulating Tunnel - N/A

i. Spillway

1. Type: Broad-crested masonry weir with 2 feet high permanent stop planks
2. Length of weir: 110 ft.
3. Crest elevation: 108.0-top of stop planks 106.0-masonry crest
4. Gates: N/A
5. Upstream channel: Shallow, gravel bottom
6. Downstream channel: Bouldery river bed with masonry retaining walls
7. General: Tiered downstream face. Bridge pier in approach channel
3. Maximum tailwater: Not known
4. Normal pool: 108.0
5. Full flood control pool: N/A
6. Spillway crest (ungated)
 Top of stop planks: 108.0 (assumed datum)
 Masonry crest: 106.0
7. Design surcharge (original design): Not known
8. Top of dam: 111.3+
9. Test flood surcharge: 118.9
d. Reservoir Length
 1. Normal pool: 2300+ ft.
 2. Flood control pool: N/A
 3. Spillway crest pool:
 (top of stop planks) 2300+ ft.
 5. Test flood pool: 3500+ ft.
e. Reservoir Storage
 1. Normal pool: 175+ acre-ft.
 2. Flood control pool: N/A
 3. Spillway crest pool:
 (top of stop planks) 175+ acre-ft.
 5. Test flood pool: 425+ acre-ft.
t. Reservoir Surface
 1. Normal pool: 12+ acres
 2. Flood control pool: N/A
 3. Spillway crest pool:
 (Top of stop planks) 12+ acres
 4. Top of dam pool: 17+ acres
indicates that the gate is not closed tightly or that it leaks, or possibly that there is seepage from the body of the dam into the pipe. No formal operational procedures exist.

1.3 PERTINENT DATA

a. Drainage Area - The drainage area is 73.4 square miles of largely undeveloped to heavily developed, flat and coastal terrain including large swamps. Significant upstream impoundments are Tiogue Lake, Stump Pond, Flat River Reservoir and Quidnik Reservoir.

b. Discharge at Damsite - Discharge is over the spillway and through the low-level outlet.

1. Outlet Works (conduits)
 48 inch diameter steel low-level outlet pipe @ invert el. 93.8+: 280 cfs (upstream water level at top of dam)

2. Maximum known flood at damsite: Since 1960 to about 1 foot below top of right non-overflow section (See Section 5.3)

3. Ungated spillway capacity @ top of dam el. 111.3: 2200 cfs

4. Ungated spillway capacity @ test flood el. 118.9: 13,100 cfs

5. Gated spillway capacity @ normal pool: N/A

6. Gated spillway capacity @ test flood: N/A

7. Total spillway capacity @ test flood el. 118.9: 13,100 cfs

8. Total project discharge @ top of dam el. 111.3: 2,480 cfs

9. Total project discharge @ test flood el. 118.9: 16,500 cfs

c. Elevations - Elevations are on National Geodetic Vertical Datum (NGVD), based on an assumed elevation of 108.0 at the top of the stop planks, corresponding to the upstream water level shown on the USGS Crompton Quadrangle Map, 1970.

 1. Streambed at toe of dam: 81.7+

 2. Bottom of cutoff: Not Known
overflow section is the low point of the top of the dam. At elevation 111.3, it is 3.3 feet higher than the top of the stop planks and 0.4 foot lower than the top of the right non-overflow section.

A rack-with-pinion gate hoist is located on the top of the upstream masonry wall near the left end of the dam. The gate controls flow through a 48 inch diameter steel pipe which exits at invert elevation 93.8+ from the downstream face of the left non-overflow section. The type and size of the gate are not known, but judging from the operating mechanism, it is probably a sluice gate.

c. Size Classification - (SMALL) - The dam is approximately 30 feet in height and with the upstream water level to the top of the dam, it impounds approximately 230 acre-feet of water. According to recommended guidelines, a dam between 25 and 40 feet in height and with a storage capacity between 50 and 1000 acre-feet is classified as small in size.

d. Hazard Classification - (HIGH) - If the dam were breached, there is potential for extensive property damage and economic loss as well as potential for loss of more than a few lives at industrial buildings located approximately 2500 and 3900 feet downstream of the dam. A breach of the dam could cause these buildings to be rapidly inundated with as much as 5 feet of water.

e. Ownership - Arctic Development Corporation
33 Factory Street
West Warwick, Rhode Island
Mr. Robert Galkin, President
Mr. Warren Galkin, Vice President (401) 828-0300

The present owner purchased the dam from American Tourister Company in 1960. Westover Fabric Company was an earlier owner.

f. Operator - The owners are responsible for the operations of the project.

g. Purpose of Dam - Although the dam is not presently in use, a feasibility study to restore its hydropower generation capabilities is in progress.

h. Design and Construction History - Very little is known of the design and construction of the project. It is estimated that the dam was built around 1885. Originally there was a bridge across the spillway approach channel. The bridge was later removed but the date of removal is not known. The power generation facilities were shut down sometime before 1960 and the headrace channel filled around 1972.

i. Normal Operational Procedures - It appears that the low-level outlet for the dam is kept in a closed position and normal flow is over the stop planks. However, observed flow from the pipe
1.2 DESCRIPTION OF PROJECT

a. Location - The project is located on the South Branch of the Pawtuxet River in an industrial area of the City of West Warwick, County of Kent, State of Rhode Island. The dam is shown on the U.S.G.S. Crompton Quadrangle Map having coordinates latitude N 41° 42.4' and longitude W 71° 31.3'.

b. Description of Dam and Appurtenances - As shown on Sheet B-1, the 30 foot high dam is a stone-masonry gravity structure probably founded on bedrock for its entire length. The project is approximately 174 feet in length, consisting of a 110 foot long masonry spillway section centered between left and right masonry and earthfill non-overflow sections 42 and 22 feet in length, respectively. The low-level outlet is a 48 inch steel pipe through the left non-overflow section of the dam. Abandoned appurtenances are an old masonry bridge pier near the center of the spillway approach channel, and a filled-in headrace channel at the right end of the dam. Factory buildings are adjacent to both ends of the dam, masonry walls line the downstream channel, and a concrete arch roadway bridge crosses the river approximately 100 feet downstream of the dam.

The factory buildings at each end of the dam have first floor elevations approximately level with the top of the dam. It appears that these buildings are built on embankments which extend slightly in from the original river banks and are contiguous with the dam. The degree to which these structures contribute to the impoundment of water on the upstream side of the dam is not determined, but for this inspection the exterior walls of the buildings are considered to be the endpoints of the dam; i.e., the length of the dam is equal to the distance between the two buildings.

The spillway is a broad crested masonry weir of trapezoidal cross-section, with permanently attached wooden stop planks. The top of the stop planks, at elevation 108, are approximately 2 feet higher than the masonry spillway crest. The spillway approach channel is shallow and gently sloping with an approximately 20 foot long by 5 foot wide masonry bridge pier near the center of the approach channel. The downstream face of the spillway is tiered and spillway discharge is onto the boulder-strewn natural river bottom. The river banks on each side of the downstream channel, between the dam and the roadway bridge consist of approximately 30 foot high vertical masonry retaining walls, with 5 to 8 foot wide benches at mid-height.

The right and left non-overflow sections of the dam each consist of upstream, downstream, and spillway-facing vertical masonry walls and a center earthfill. The masonry faces adjacent to each end of the spillway serve as training walls, the downstream faces connect to the retaining walls on each side of the downstream channel, and the upstream face of the right non-overflow section connects to the old headrace channel. The top of the left non-
PHASE I INSPECTION REPORT
ARTIC DAM
SECTION I - PROJECT INFORMATION

1.1 GENERAL

a. Authority - Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Cahn Engineers, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Cahn Engineers, Inc. under a letter of April 14, 1980 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW 33-80-C-0052 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection Program - The purposes of the program are to:

1. Perform technical inspection and evaluation of non-federal dams to identify conditions requiring correction in a timely manner by non-federal interests.

2. Encourage and prepare the States to quickly initiate effective dam inspection programs for non-federal dams.

3. To update, verify and complete the National Inventory of Dams.

c. Scope of Inspection Program - The scope of this Phase I inspection report includes:

1. Gathering, reviewing and presenting all available data as can be obtained from the owners, previous owners, the state and other associated parties.

2. A field inspection of the facility detailing the visual condition of the dam, embankments and appurtenant structures.

3. Computations concerning the hydraulics and hydrology of the facility and its relationship to the calculated flood through the existing spillway.

4. An assessment of the condition of the facility and corrective measures required.

It should be noted that this report passes judgment only on those factors of safety and stability which can be determined by a visual surface examination. The inspection is to identify those visually apparent features of the dam which evidence the need for corrective action and/or further study and investigation.
<table>
<thead>
<tr>
<th>DATE</th>
<th>JAN. '81</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Warwick</td>
<td>Rhode Island</td>
</tr>
<tr>
<td>CE * 27,785 KG</td>
<td></td>
</tr>
</tbody>
</table>

National Program of Inspection of Non-Fed Dams

Arctic Dam

S. Br. Pawtuxet River
SECTION 7: ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES

7.1 Dam Assessment ... 7-1
 a. Condition
 b. Adequacy of Information
 c. Urgency

7.2 Recommendations ... 7-1

7.3 Remedial Measures ... 7-2

7.4 Alternatives ... 7-2

APPENDICES

APPENDIX A: INSPECTION CHECKLIST A-1 to A-6

APPENDIX B: ENGINEERING DATA AND CORRESPONDENCE
 Dam Plan, Profile and Section
 Summary of Data and Correspondence
 Data and Correspondence Sheet B-1
 B-1
 B-2 to B-5

APPENDIX C: DETAIL PHOTOGRAPHS
 Photograph Location Plan
 Photographs .. Sheet C-1
 C-1 to C-3

APPENDIX D: HYDRAULIC/HYDROLOGIC COMPUTATIONS
 Drainage Area Map
 Impact Area Map
 Computations
 Preliminary Guidance for Estimating
 Maximum Probable Discharges Sheet D-1
 Sheet D-2
 D-1 to D-10
 i to viii

APPENDIX E: INFORMATION AS CONTAINED IN THE
 NATIONAL INVENTORY OF DAMS E-1

viii
SECTION 3: VISUAL INSPECTION

3.1 Findings 3-1
 a. General
 b. Dam
 c. Appurtenant Structures
 d. Reservoir Area
 e. Downstream Channel

3.2 Evaluation .. 3-2

SECTION 4: OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures 4-1
 a. General
 b. Description of Warning System in Effect

4.2 Maintenance Procedures 4-1
 a. General
 b. Operating Facilities

4.3 Evaluation 4-1

SECTION 5: EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General .. 5-1

5.2 Design Data 5-1

5.3 Experience Data 5-1

5.4 Test Flood Analysis 5-1

5.5 Dam Failure Analysis 5-1

SECTION 6: EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations 6-1

6.2 Design and Construction Data 6-1

6.3 Post Construction Changes 6-1

6.4 Seismic Stability 6-1
trees. Also, they could be uprooted, causing damage to the dam.

2. The footpaths on the left non-overflow section are susceptible to erosion should this portion of the dam be overtopped.

3. The downstream masonry wall of the left non-overflow section could be weakened by leaching of the mortar joints.

4. Roots of the clump of small trees growing on top of the low-level outlet pipe could further penetrate the adjacent downstream wall of the dam, causing displacement of masonry.

5. Branches and debris at the toe of the left non-overflow section prevent close inspection of this area.

6. Further leaching of mortar joints of the masonry walls adjacent to each end of the spillway could weaken these walls.

7. Small trees growing on the masonry pier in the spillway approach channel could reduce the spillway capacity, especially if allowed to grow to be large trees.

8. If the low-level outlet gate is inoperable, it prevents lowering of the upstream water level should the need occur.

9. Continued rusting of the low-level outlet pipe along with possible leakage of the outlet gate could cause water to leak from the pipe into the body of the dam, possibly causing internal erosion of the dam.

10. The roots of brush and trees growing from the walls on each side of the downstream channel could cause displacement of masonry.

11. Undermining of the masonry wall along the right side of the downstream channel could threaten the stability of this wall.
SECTION 4: OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 OPERATIONAL PROCEDURES

a. General - Lake level readings are not taken and no regulating procedures are followed at the dam.

b. Description of Any Warning System in Effect - No formal downstream warning system is in effect.

4.2 MAINTENANCE PROCEDURES

a. General - Other than the regular cutting of grass on the right non-overflow section, and periodic removal of debris from the area of the spillway, there is no formal program of maintenance. The dam was inspected in September, 1978 by the State of Rhode Island Department of Environmental Management.

b. Operating Facilities - No formal program for maintenance of the operating facilities is in effect. It is not known when the low-level outlet gate was last operated.

4.3 EVALUATION

The operation and maintenance procedures are generally poor. A formal program of operations and maintenance procedures should be implemented, including documentation to provide complete records for future reference. Also, a formal warning system should be developed and implemented within the time frame indicated in Section 7.1c. Remedial operation and maintenance recommendations are presented in Section 7.3.
SECTION 5: EVALUATION OF HYDRAULIC-HYDROLOGIC FEATURES

5.1 GENERAL

The Arctic Dam watershed is 73.4 square miles of flat and coastal wooded terrain, typically containing large swamps and impoundments (Tiogue Lake, Stump Pond, Flat River and Quindick Reservoirs) which contribute to the sluggish runoff characteristics of the watershed.

The dam is a masonry and earthfill dam with a masonry spillway. It is basically a low surcharge storage - high spillage type project. The reservoir area of approximately 12 acres is small in relation to the drainage area and consequently the surcharge storage of the project is too small to have an appreciable effect in reducing the \(\frac{1}{4} \) PMF outflow of 16,500 cubic feet per second (cfs).

5.2 DESIGN DATA

No computations could be found for the original design of the dam.

5.3 EXPERIENCE DATA

The owner reports that since 1960, the highest observed water level was approximately 1 foot below the top of the right non-overflow section. This water level is about \(\frac{1}{4} \) foot below the first point of overtopping of the left non-overflow section and may correspond to the flow of 2,000 cfs recorded on the river in 1968.

5.4 TEST FLOOD ANALYSIS

Based upon the watershed classification (Flat and Coastal), and the watershed area of 73.4 square miles; and utilizing the guide curve (Appendix D, p. v) in the U.S. Army Corps of Engineers "Preliminary Guidance for Estimating Maximum Probable Discharges", a PMF of 33,000 cfs or 450 cfs per square mile is estimated at the damsite. In accordance with the size (small) and hazard (high) classification, the range of test floods to be considered is from the \(\frac{1}{4} \) PMF to the PMF. Based on the degree of hazard associated with breach of the dam, the test flood for Arctic Dam is equivalent to the \(\frac{1}{4} \) PMF. The pond level at the state of the test flood is considered to be at the top of the stop planks at elevation 106.6. The peak outflow for the test flood is estimated at 16,500 cfs and this flow will overtop the dam by 7.6 feet. Based on hydraulic computations, the spillway capacity above the stop planks to the top of the dam is 2,200 cfs which is equivalent to 13% of the routed test flood outflow (Appendix D-4).
5.3 DAM FAILURE ANALYSIS

Upon failure of Arctic Dam, the downstream impoundment consists of two industrial buildings located 2500 and 3500 feet downstream of Arctic Dam. Both of these buildings are constructed adjacent to dams and portions of both buildings extend along the upstream impoundments as well as along the downstream discharge channels of their respective dams. At each location, the first floor elevation of the portion of the building upstream of the dam is approximately level with the top of the dam and 5 feet above the spillway crest. On the downstream side of each dam, the elevation above the spillway discharge channel of the first floors of these buildings is 7 feet at the upper dam and 11 feet at the lower dam.

The dam failure analysis is based on the April, 1976 Army Corps of Engineers "Rule of Thumb Guidance for Estimating Downstream Dam Failure Hydrographs". With the pond level at the top of the dam, peak outflow before failure of the dam would be about 2,400 cfs and the peak failure outflow from the dam breaching would total about 18,300 cfs.

Prior to failure of Arctic Dam the depth of flow over the spillway at the upper of the two downstream impoundments would be approximately 3.2 feet, or 1.8 feet below the first floor elevation of the adjacent building. Failure of Arctic dam would result in a 6.7 foot increase in water level to a depth of 9.9 feet above the spillway crest. This rapid increase in water level will inundate the building by approximately 4.9 feet.

At the spillway of the lower downstream impoundment, the prefailure flow depth would be approximately 3.6 feet, or 1.4 feet below the first floor elevation of the adjacent building. Failure of Arctic Dam would result in a 5.1 foot increase in water level to a depth of 8.7 feet above the spillway crest, inundating the building by approximately 3.7 feet.

Inundation of portions of these buildings has the potential to cause economic losses and the loss of more than a few lives. Therefore, Arctic Dam is classified as a high hazard dam (Appendix D-9).
SECTION 6: EVALUATION OF STRUCTURAL STABILITY

6.1 VISUAL OBSERVATIONS

The dam is a masonry gravity structure and appears to be founded on bedrock. The configuration of the upstream face of the spillway is not known and the downstream face is tiered, giving the masonry spillway section a base width of at least 15 feet, if the upstream face is vertical. The non-overflow sections of the dam have vertical masonry walls around their perimeters and inner earthfill. The masonry walls have top widths of approximately 3 feet, but their base widths are not known. Although several design features are not known, there are no visual indications of a structurally unstable design.

The areas of deterioration described in Section 3 are not considered to be stability concerns at the present time. However, if left unchecked, leaching of mortar joints and leakage from the low-level outlet pipe could cause instability of the left non-overflow section, and continued undermining of the masonry wall along the right side of the downstream channel could cause it to become unstable.

6.2 DESIGN AND CONSTRUCTION DATA

No information is available.

6.3 POST-CONSTRUCTION CHANGES

Post-construction changes to the project include filling of the headrace channel at the right end of the dam and removal of a bridge across the spillway approach channel. Neither of these changes appears to affect the stability of the structure. No other post-construction changes are known.

6.4 SEISMIC STABILITY

The project is located near the boundary between Seismic Zones 1 and 2 and, according to U.S. Army Corps of Engineers Recommended Guidelines, need not be evaluated for seismic stability.
SECTION 7: ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Condition - Based upon the visual inspection of the site and past performance, the dam is in fair condition. No evidence of immediate structural instability was observed in the dam or appurtenances; however, there are areas which require repair and/or maintenance.

Based upon the Army Corps of Engineers' "Preliminary Guidance for Estimating Maximum Probable Discharges" dated March, 1978, the watershed classification and hydraulic/hydrologic computations, peak inflow to the pond at test flood is 16,500 cubic feet per second (cfs); peak outflow is 16,500 cfs with the dam overtopped 7.6 feet. Based upon our hydraulic computations, the spillway capacity to the top of dam is 2200 cfs, which is equivalent to approximately 13% of the routed test flood outflow. This indicates an inadequate spillway capacity.

b. Adequacy of Information - The information available is such that an assessment of the condition and stability of the project must be based solely on visual inspection, past performance and sound engineering judgement.

c. Urgency - It is recommended that the measures presented in Section 7.2 and 7.3 be implemented within one year of the owner's receipt of this report.

7.2 RECOMMENDATIONS

It is recommended that further studies pertaining to the following items be made by a registered professional engineer qualified in dam design and inspection. Recommendations made by the engineer should be implemented by the owner.

1. A detailed hydraulic/hydrologic analysis to determine the adequacy of the project discharge capacity and overtopping potential.

2. Inspection of the downstream face and toe of the spillway section with the upstream water level just below the spillway crest.

3. Inspection of the inside of the 48 inch steel low-level outlet pipe, determination of the source of leakage through the pipe, and repair or replacement of the pipe.

4. Determination of the cause of leaching of the mortar from joints in the masonry, particularly near the low-level outlet pipe's exit from the downstream face of the dam and repair of the mortar joints.
5. Repair or replacement of the low-level outlet gate and gate hoisting mechanism.

6. Repair of undermined areas of the masonry wall along the right side of the downstream channel.

7. Removal of all trees from the dam and from within 10 feet of the toe of the dam, including proper backfilling with selected material.

7.3 REMEDIAL MEASURES

Operation and Maintenance Procedures - The following measures should be undertaken by the owner within the length of time indicated in Section 7.1.c, and continued on a regular basis.

1. Round-the-clock surveillance should be provided during periods of heavy precipitation or high project discharge. A formal downstream warning system should be developed to be used in case of emergencies at the dam.

2. A formal program of operation and maintenance procedures should be instituted and fully documented to provide accurate records for future reference.

3. A comprehensive program of inspection by a registered professional engineer qualified in dam inspection should be instituted on an annual basis.

4. Brush and saplings should be removed from the dam and appurtenant structures and from within 10 feet of the toe of the dam.

5. Grass cover should be established on the left non-overflow section.

6. Branches and debris should be removed from an area extending to approximately 10 feet from the toe of the left non-overflow section so that the toe can be inspected.

7. Leached or cracked mortar joints on the dam and appurtenant structures should be repaired and maintained as part of normal maintenance procedures at the site.

8. The practice of clearing debris from the spillway crest from the downstream face of the spillway, and from the toe of the spillway should be continued as part of normal maintenance procedures at the site.

9. The rotted wooden railing along the top of the right non-overflow section should be repaired.

4 ALTERNATIVES

This study has identified no practical alternatives to the above recommendations.
APPENDIX A

INSPECTION CHECKLIST
VISUAL INSPECTION CHECK LIST
PARTY ORGANIZATION

PROJECT Arctic Dam DATE: Oct. 8, 1980
TIME: 9:30 am
WEATHER: Fair 50°
W.S. ELEV. 1082 + U.S. 82.01 DN. S

PARTY: INITIALS: DISCIPLINE:
1. Peter Heynen PH Geotechnical
2. Theodore Stevens TS Geotechnical
3. Hector Moreno HM Hydraulics
4. Frank Segeline FS Survey
5.
6.

PROJECT FEATURE INSPECTED BY REMARKS
1. Right Non-overflow Section TS, PH, HM
2. Left Non-overflow Section TS, PH, HM
3. Intake Structure TS, PH, HM
4. Low-level Outlet TS, PH, HM
Spillway TS, PH, HM

A-1
PERIODIC INSPECTION CHECK LIST

PROJECT Arctic Dam
DATE 10-8-60
PROJECT FEATURE Right Non-overflow Section by LG PH HM

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>111.7±</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>108.2±</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>110.4± (since 1960)</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None observed</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>N/A</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>None observed</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None observed</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Appears good</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Appears good</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Appears good-at building</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>N/A</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>N/A</td>
</tr>
<tr>
<td>Slouging or Erosion of Slopes or Abutments</td>
<td>None observed</td>
</tr>
<tr>
<td>Rock Slope Protection-Alpaca Failures</td>
<td>N/A</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or Near Toes</td>
<td>None observed</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>N/A</td>
</tr>
<tr>
<td>Piping or Boils</td>
<td>N/A</td>
</tr>
<tr>
<td>Foundation Drainage Feature</td>
<td>None observed</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>N/A</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>N/A</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>X: EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Ear Elevation</td>
<td>111.3 ±</td>
</tr>
<tr>
<td>Front Pool Elevation</td>
<td>108.2 ±</td>
</tr>
<tr>
<td>XA: Impoundment to Date</td>
<td>110.4 ± (since 1960)</td>
</tr>
<tr>
<td>Slope Cracks</td>
<td>None observed</td>
</tr>
<tr>
<td>Movement Condition</td>
<td>N/A</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>None observed</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None observed</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Appears good</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Appears good</td>
</tr>
<tr>
<td>Location at Abutment and at Concrete Structures</td>
<td>Appears good-at building</td>
</tr>
<tr>
<td>Locations of Movement of Structural Elements on Slopes</td>
<td>N/A</td>
</tr>
<tr>
<td>Location on Slopes</td>
<td>Footpaths on top</td>
</tr>
<tr>
<td>Movement of Slopes or Elements</td>
<td>None observed</td>
</tr>
<tr>
<td>Locations of Elements on</td>
<td>N/A</td>
</tr>
<tr>
<td>Elements</td>
<td>Toe obscured by debris</td>
</tr>
<tr>
<td>Seepage through low-level outlet onto E/S face of dam</td>
<td>None observed</td>
</tr>
<tr>
<td>Cause of leaching at joints</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OUTLET WORKS-INTAKE CHANNEL AND INTAKE STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>a) Approach Channel</td>
<td>Approach channel under water - could not observe</td>
</tr>
<tr>
<td>Slope Conditions</td>
<td></td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td></td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td></td>
</tr>
<tr>
<td>Log Boom</td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td></td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td></td>
</tr>
<tr>
<td>b) Intake Structure</td>
<td>Masonry intact - no deterioration</td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td>Gate hoisting mechanism (rack-with-pinion) in poor condition - rusted steel, rotting wood. Location of handle not known</td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECK LIST

PROJECT Arctic Dam

DATE 10-3-80

PROJECT FEATURE Low-level Outlet

BY TS, PH, HM

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORKS-OUTLET STRUCTURE AND OUTLET CHANNEL</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td>Masonry - fair condition - leaching of mortar joints</td>
</tr>
<tr>
<td>for Staining</td>
<td>Severe rusting of 48” pipe N/A</td>
</tr>
<tr>
<td>Line</td>
<td>None observed N/A</td>
</tr>
<tr>
<td>Erosion of Cavitation</td>
<td>None observed</td>
</tr>
<tr>
<td>Steel Reinforcing</td>
<td>Poor-leached out N/A</td>
</tr>
<tr>
<td>Seepage or Efflorescence</td>
<td>Many small trees near outlet</td>
</tr>
<tr>
<td>Deposition at Joints</td>
<td>N/A - Discharge almost directly to D/S channel</td>
</tr>
<tr>
<td>Holes</td>
<td></td>
</tr>
<tr>
<td>Weeds</td>
<td></td>
</tr>
<tr>
<td>Rock or Trees Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECK LIST

PROJECT Arctic Dam
PROJECT FEATURE Spillway

AREA EVALUATED

<table>
<thead>
<tr>
<th>LET WORK-SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach Channel</td>
</tr>
<tr>
<td>General Condition</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
</tr>
<tr>
<td>Weir and Training Walls</td>
</tr>
<tr>
<td>General Condition of Masonry</td>
</tr>
<tr>
<td>Rust or Staining</td>
</tr>
<tr>
<td>Spalling</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
</tr>
<tr>
<td>Drain Holes</td>
</tr>
<tr>
<td>Discharge Channel</td>
</tr>
<tr>
<td>General Condition</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
</tr>
<tr>
<td>Floor of Channel</td>
</tr>
<tr>
<td>Other Obstructions</td>
</tr>
</tbody>
</table>

CONDITION

- **Good**
- **No**
- **Small trees on pier**
- **Shallow, sandy**
- **Good**
- **Minor staining of walls from spay**
- **None observed**
- **N/A**
- **None observed**
- **N/A**
- **Shallow, broad, bouldery**
- **No**
- **Minor Boulders**
- **None observed**
Photo 5 - Benched channel bank retaining wall between arch bridge at left and dam at right (10/8/80).

Photo 6 - Undermining at base of retaining wall. Note depth of flow and pattern of current under wall (10/8/80).
Photo 3 - Downstream face of spillway, spillway crest with permanent stop planks, and bridge pier in approach channel (10/8/80).

Photo 4 - Rack-with-pinion gate hoisting mechanism (10/8/80).
Photo 1 - Right non-overflow section of dam and adjacent factory building (10/8/80).

Photo 2 - Downstream end of low-level outlet pipe. Rot-deterioration of pipe and washed-out mortar joints on
APPENDIX C

DETAIL PHOTOGRAPHS
Dam Inspection:

General: Dam built in 1885 for industrial power use.

Current Pool Elevation: 2" above crest of spillway.

Embankment: The spillway spans the entire width of river with mill buildings on both sides.

Outlet: Draw-off; located on left (west) side of spillway. "rack and pinion" type gear mechanism is currently intact and although its operability was not tested, it appears to be mechanically sound. The rack timber is beginning to show signs of age, and its replacement is suggested (photo 2).

Sluiceway Gates: Located on right (east) side of spillway has been completely filled in - date unknown. The approach to the draw-off gate is clear and unobstructed. The outlet is through a large (3') metal pipe discharging back into river directly below spillway. There is presently a small amount of water flowing from the outlet structure indicating that the gate is slightly open (or leaking).

Spillway: The approach to the spillway is clear and unobstructed. There are no visible deficiencies across the crest of the spillway. The spillway is constructed of heavy granite block with stepped masonry face (photo 4). The stability of the crest and face was determined because of the full flow condition; however, there were no visible deficiencies which give any doubt as to its structural integrity.

The heavy masonry abutment walls on both sides of spillway were not be structurally sound. However, there is a heavy growth of brush and shrubs on the left side which should be removed. The spillway discharge is clear and unobstructed.

Findings/Recommendations: The spillway structure appears to be in generally good condition. It is recommended, however, that the owner investigate the possible leaking condition of the draw-off gate and repair if necessary - along with the replacement of the rack timber. Also, removal of brush and shrubs from the top of the left abutment is suggested.
<table>
<thead>
<tr>
<th>Dam No.</th>
<th>Name of Watershed (K youngest nearest)</th>
<th>Bank Discharge Rate at Lester (cfs)</th>
<th>Capacity of Spillway (cfs)</th>
<th>Grossly Capacity (cfs)</th>
<th>Water in Spillway</th>
<th>Net Effective Height</th>
<th>Net Rated Head</th>
<th>Net Effective Head</th>
<th>Dam Crest Width</th>
<th>Dam Crest Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IZIv</td>
<td>73.1</td>
<td>4844</td>
<td>108.6</td>
<td>14</td>
<td>100</td>
<td>27</td>
<td>24</td>
<td>4</td>
<td>58.44</td>
</tr>
<tr>
<td></td>
<td>(ft.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note: All measurements are in feet and cubic feet per second (cfs).
Survey of Farms in Rhode Island

Pawtuxet River Basin (South Branch)

Drainage Area: 73.4 Sq. Mi.

February 1948

Spillway

Estimated extreme freshet: 4844 c.c.s.
R.I. DEPARTMENT OF PUBLIC WORKS
DIVISION OF HARBORS & DRAWS

SPECIAL INSPECTION REPORT

DAM NO. 140

ML. FLAT HARVICK

ON FIREWOOD & PONTRAVN

WATERED PERIODICALLY

TEST HARVICK, P.O., Tel. VAL. 600

ON NEW CONSTRUCTION

APPROVED CONSTRUCT.

INSPECTION ONLY

LOSS IN WATTAGE (ALL IN GOOD CONDITION, REMADE 1945) 79TH PERMANENT FLASH BOARD NOW IN PLACE (BROKEN WITH IRON SUPPORT). TWO WHEELS AVAILABLE FOR POWER CAN DEVELOP 500 H.P.

REQUEST FROM ATTORNEY-GENERAL FOUNDATION (AT RIVERPOINT FINISHING CO., PLANT, NEXT DOOR - 2147) AS TO ANY KNOWLEDGE OF A BREAK IN FLASH BOARD AT RESTORATION #145 ON MARCH 2, 1947, CAUSING LOSS OF CONSIDERABLE CLOTH AND FLOODING OF THEIR MILL. THIS OFFICE HAS RECEIVED NO NOTICE OF THIS FAILURE.
HYDROLOGIC, HYDRAULIC INVESTIGATION

A. SITE ANALYSIS

1) PERFORMANCE AT LOW FLOOD INTENSITY

i) PROBABLE MAXIMUM FLOOD (PMF)

2) WATERSHED CLASSIFIED AS "WATERSHED, FLATLAND, RIVER AND SHORELAND" WITH HIGHER INTENSITY AND INCREASED FLOOD INTENSITY

B. DESIGN AREA

C. FLOODS

NOTE: A.F. FROM U.S. GOVERNMENT WATER RESOURCES RESEARCH "SURVEY OF CIVIL ENGINEERING" LIBRARY. ALL R.D. AREAS ARE DOWNSTREAM.

1) Floods from River Source: 1950 = 150 "PMF"

2) "PMF = 25,000 ""PMF"

3) "PMF = 16 ""PMF"

C. "CLIMATIC AT LOW FLOOD INTENSITY"

D. FROM RATING CURVES

E. DESIGN AND ACCEPTABLE FLOOD INTENSITY

NOTE: A.F. ELEVATION IS ELEVATED ON THE U.S. GOVERNMENT 1.0 "% PMF" ELEVATIONS IS ASSUMED TO BE THE TOP OF THE RIVER. ELEVATION IS NATIONAL R.E. 3/8 "PMF" DATUM (NVD)

D. S. DAVI
Assume C = 3.3 for the hallway. (K. W. Han and Z. Y. Wu) We sight a left movement.

New data from CIE observations on

r.61 2.35

Revised

Arctic SWS
Approximate Overload Profile

(1) The overload values will be shown on material data.

\[C = 3.3 \times 6 - 12(3.3 - 3.0) + 5.8 (3.0 - 3.7) \]

(2) The overload values will be shown on material data.
6. UNCHARGE DRAIN TO POND W/INCREASE CH9 CH14

6(a) \(Q = PHF - 0.03 \times 0.001 \)

6(b) \(Q = QHF - 0.03 \times 0.001 \)

6(c) EFFECT OF UNCHARGE - POND DRAINAGE

LAKE AREA - (ACRES)

ELEVATION - (FT - NGVD)

STORAGE - (1000 ACRE-FT)

DATA FROM U.S. GEOLOGICAL SURVEY - NORTHERN CALIFORNIA

ALSO ON ACE U.S. INVENTORY - (Feb.) - NORMAL STORAGE - 1,176,000 ACRE-FT

AREA MEASURED ON U.S.G.S. QUAD. - NOTE SHEET PREPARED.

* SEE NOTE P. D-1
(iv) Peak Surplus (Q_p vs Q_p')

The studies showed that the peak surplus water Q_p and Q_p' would occur approximately at the following conditions:

$Q_p = 53,000$ ft³/sec $H_s = 10'$

$Q_p' = 16,500$ ft³/sec $H_s' = 12.1'$

3) Spillway Capacity Data (to be continued)
Arctic Dam

II) Downstream Failure Hazard

1) Potential Impact Area

Two large industrial buildings are located on the south bank of the Pawtucket River, (2) k=500 and (3) k=700, respectively, at the Arctic Dam. Two other dams, (4) and (5) k=200, located near these buildings, enhance the threat posed by Arctic Dam. Water level readings (1.5' below the first floor of the buildings) on the k=500 toe of these foundations are higher than the k=700 toe from the dam, and k=500 and k=200, respectively, showing the water level of the river and the flood channel is from the dam. These structures constitute the potential impact area in case of failure of Arctic Dam.

2) Failure at Arctic Dam

Assume breach at toe of dam, i.e., 150 3' wide

a) Height of Dam - 35'

b) Height of foundation beam - 15'

Assume flow pressure of 0.5 psi (DEHN: RIVNO = HIZ R-B-1000 360)

b) Mid height length = C = 150'

e) Breach width (see nod 4) and failure volume

\[V = 0.4 \times 155 \times 3.5 \times 15 \]

\[V = 34,025 \text{ cubic feet} \]

a) Assumed failure height at time of failure: 46' (value of k=700

b) Spillway discharge at time of failure

1. Temporary failure (assumed remaining for 0.5' to 1.0' - P.A. 194)

2. After failure (assumed remaining for 1.0' to 1.5' - P.A. 194)

*From CE Measurements on 10/19/80 by Gr. T. A. F.S.
2) BREACH FORMATION

\[h = \frac{\gamma}{\gamma_d} \cdot h_d + h_{soil} \]

\[h = \frac{5}{9} \cdot 12 \cdot 20 = 10 \text{ ft} \]

3) PEAK FAILURE TOUGHNESS \(C_p \) TO \(\text{BRANCH PRODUCT}\)

\[C_p = C_g + C_b = 15 \times 10 \text{ ft} \]

4) GOOD DEPTH X IMMEDIATE X % FROM DAM

\[y = 0.44 \times 10 = 4.4 \text{ ft} \]

(From retaining wall theory applied to dam failure)

4) ESTIMATE of \% FAILURE conditions at potential impact area.

See NED-1161 guidelines for estimating (rainfall hydrograph)

5) The A.A. of the potential impact area is the same distance from the dam to the potential impact area. It consists of a

Tributaries: P1 and P2. It can be seen that the river is conical. Therefore, the area can be calculated as

\[A = \frac{\pi r^2}{2} \]

At the mouth of the tributaries, P1 and P2, the river is conical. Therefore, the area can be calculated as

\[A = \frac{\pi r^2}{2} \]

From the A.A. and the A.A. of the dam, the equation

\[A = \frac{\pi r^2}{2} \]

c) ESTIMATE of \% FAILURE

\[\text{Failure} \ = \ \text{damage} \]
1) APPROXIMATE VOLUME AT POTENTIAL CORE AREA AFTER FAILURE

2) REACH % STUDY FROM K.B. DAM #147

Assume Not Lake Area (A) within the expected failure core = 140 ft

\[A = 140 \times 2500 = 35000 \text{ ft}^2 = 5 \text{ ac} \]

The total overflow from K.B. Dam #147 is approximated by

\[Q_{(147)} = 3500 H^{3/2} \]

Approximate routing (see NEO-USC guidelines) of the peak failure outflow gives

\[\left(\frac{Q}{Q_0} \right) = \left(1 - \frac{H}{H_0} \right) = \frac{12000}{2} \rightarrow \left(\frac{Q}{Q_0} \right) = 2 \times \left(\frac{Q}{Q_0} \right) \]

(c) 3rd REACH % STUDY FROM K.B. DAM #146

As the \(Q = 3.2 \) and \(H = 2.2 \) for the spillway flow and by

ADJACENT TERRAIN OVERFLOW

Assume Not Lake Area (A) within the expected surface

\[A = 150 \times 1500 = 225000 \text{ ft}^2 = 5 \text{ ac} \]

The total overflow from K.B. Dam #146 is approximated by

\[Q_{(146)} = 3200 H^{1/2} + 1200 \left(H - 5 \right)^{3/2} \]

Approximate routing of the peak overflow gives:

\[\left(\frac{Q}{Q_0} \right) = \frac{1500}{2} \rightarrow \left(\frac{Q}{Q_0} \right) = \frac{1500}{2} \]
3) Approximate stage elevation on peak flow:

 a) 1st Reach: 44.35' (9.52 m, 31.5 ft)

 b) 2nd Reach: 45.1' (13.75 m, 48 ft)

4) Stage in stage #4 from existing dam:

 a) 1st Reach: (AH) = 51' (15.5 m, 151 ft)

 b) 2nd Reach: (AH) = 51' (15.5 m, 151 ft)
Arctic Dam

III) Selection of Test Flood

1) Classification of Dam According to \textit{NEC} Design Guidelines:

- **Size:**
 - Storage (Max) $\approx 230,000$ ft3 \hspace{1cm} ($50 < c < 1000$ ft3)
 - Height $\approx 30'$ \hspace{1cm} ($25 < H < 40'$)

 Size Classification: Small

2) Hazard Potential: As a result of the \textit{SE} fails to classify and in view of the impact that failure of Arctic Dam may have on the potential impact area (p. D-5), the dam is classified as having:

Hazard Classification: High

2) Test Flood: \(v_p \text{PMF} = 16,500 \text{ cfs} \)

This selection is based on the results of the previous analysis and classification.
AKCHE DAM

II SUMMARY

1. INTRODUCTION (P.I. 2 11/78)

This report contains details for the AKCHE DAM, including information about its construction and operation. (Note: This information is also summarized below.)

II PERFORMANCE AT PEAK FLOOD CONDITIONS:

a) Peak Inflows: \(Q_p = 3500 \text{ cfs} \)
\(Q_p = \frac{1}{2} Q_T - 16200 \text{ cfs} \)

b) Peak Outflows: \(Q_T = 53000 \text{ cfs} \)
\(Q_T = \frac{1}{2} Q_p - 16200 \text{ cfs} \)

c) Dike Wall Capacity (See Table p. 21)

ii) PERFORMANCE

1) AT TEST HYDRO: OVERFLOWED (2.76') (US. REV. BR. NO. 1)

2) AT P.T. HYDRO: OVERFLOWED (2.135') (US. REV. BR. NO. 6)

III DOWNSTREAM FAILURE CONDITIONS:

1) Peak Flow Condition: \(Q_p = 18300 \text{ cfs} \)

2) Water Depth over the dam: \(6.7' \) (US. REV. BR. NO. 12)

3) Conditions 1 from Ref. 466

4) Initial Second Failure \(H_2 \) at 1.5' above normal water level: \(H_2 = 3.0' \)

5) Initial Water Failure: \(H_3 = 5.7' \) above normal water level: \(H_3 = 2.0' \)

6) Conditions 1 from Ref. 466

7) Initial Before Failure: \(H_4 = 3.6' \) above normal water level: \(H_4 = 1.0' \)

8) Initial After Failure: \(H_5 = 8.7' \) above normal water level: \(H_5 = 5.7' \)

9) Initial Maximum Failure: \(H_6 = 12.0' \)
PRELIMINARY GUIDANCE
FOR ESTIMATING
MAXIMUM PROBABLE DISCHARGES
IN
PHASE I DAM SAFETY
INVESTIGATIONS

New England Division
Corps of Engineers

March 1978
MAXIMUM PROBABLE FLOOD INFLOWS NEV RESERVOIRS

<table>
<thead>
<tr>
<th>Project</th>
<th>Q (cfs)</th>
<th>D.A. (sq. mi.)</th>
<th>MPF cfs/sq. mi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ball Meadow Brook</td>
<td>26,600</td>
<td>17.2</td>
<td>1,546</td>
</tr>
<tr>
<td>2. East Branch</td>
<td>15,500</td>
<td>9.25</td>
<td>1,675</td>
</tr>
<tr>
<td>3. Thomason</td>
<td>158,000</td>
<td>97.2</td>
<td>1,625</td>
</tr>
<tr>
<td>4. Northfield Brook</td>
<td>9,000</td>
<td>5.7</td>
<td>1,580</td>
</tr>
<tr>
<td>5. Black Rock</td>
<td>35,000</td>
<td>20.4</td>
<td>1,715</td>
</tr>
<tr>
<td>6. Hancock Brook</td>
<td>20,700</td>
<td>12.0</td>
<td>1,725</td>
</tr>
<tr>
<td>7. Hop Brook</td>
<td>26,400</td>
<td>16.4</td>
<td>1,610</td>
</tr>
<tr>
<td>8. Tully</td>
<td>47,000</td>
<td>50.0</td>
<td>940</td>
</tr>
<tr>
<td>9. Barre Falls</td>
<td>61,000</td>
<td>55.0</td>
<td>1,109</td>
</tr>
<tr>
<td>10. Conant Brook</td>
<td>11,900</td>
<td>7.8</td>
<td>1,525</td>
</tr>
<tr>
<td>11. Knightville</td>
<td>160,000</td>
<td>162.0</td>
<td>987</td>
</tr>
<tr>
<td>12. Littleville</td>
<td>98,000</td>
<td>52.3</td>
<td>1,870</td>
</tr>
<tr>
<td>13. Colebrook River</td>
<td>165,000</td>
<td>118.0</td>
<td>1,600</td>
</tr>
<tr>
<td>14. Mad River</td>
<td>30,000</td>
<td>18.2</td>
<td>1,650</td>
</tr>
<tr>
<td>15. Sucker Brook</td>
<td>6,500</td>
<td>3.43</td>
<td>1,895</td>
</tr>
<tr>
<td>16. Union Village</td>
<td>110,000</td>
<td>126.0</td>
<td>873</td>
</tr>
<tr>
<td>17. North Hartland</td>
<td>199,000</td>
<td>220.0</td>
<td>904</td>
</tr>
<tr>
<td>18. North Springfield</td>
<td>157,000</td>
<td>158.0</td>
<td>994</td>
</tr>
<tr>
<td>19. Ball Mountain</td>
<td>190,000</td>
<td>172.0</td>
<td>1,105</td>
</tr>
<tr>
<td>20. Townshend</td>
<td>228,000</td>
<td>106.0 (278 total)</td>
<td>820</td>
</tr>
<tr>
<td>21. Surry Mountain</td>
<td>63,000</td>
<td>100.0</td>
<td>630</td>
</tr>
<tr>
<td>22. Otter Brook</td>
<td>45,000</td>
<td>47.0</td>
<td>957</td>
</tr>
<tr>
<td>23. Birch Hill</td>
<td>88,500</td>
<td>175.0</td>
<td>505</td>
</tr>
<tr>
<td>24. East Brimfield</td>
<td>73,900</td>
<td>67.5</td>
<td>1,095</td>
</tr>
<tr>
<td>25. Westville</td>
<td>38,400</td>
<td>99.5 (32 net)</td>
<td>1,200</td>
</tr>
<tr>
<td>26. West Thompson</td>
<td>85,000</td>
<td>173.5 (74 net)</td>
<td>1,150</td>
</tr>
<tr>
<td>27. Boones Village</td>
<td>35,600</td>
<td>31.1</td>
<td>1,145</td>
</tr>
<tr>
<td>28. Bumfumville</td>
<td>36,500</td>
<td>26.5</td>
<td>1,377</td>
</tr>
<tr>
<td>29. Mansfield Hollow</td>
<td>125,000</td>
<td>159.0</td>
<td>786</td>
</tr>
<tr>
<td>30. West Hill</td>
<td>26,000</td>
<td>28.0</td>
<td>928</td>
</tr>
<tr>
<td>31. Franklin Falls</td>
<td>210,000</td>
<td>1000.0</td>
<td>210</td>
</tr>
<tr>
<td>32. Blackwater</td>
<td>66,500</td>
<td>128.0</td>
<td>520</td>
</tr>
<tr>
<td>33. Hopkinton</td>
<td>135,000</td>
<td>426.0</td>
<td>316</td>
</tr>
<tr>
<td>34. Everett</td>
<td>68,000</td>
<td>64.0</td>
<td>1,062</td>
</tr>
<tr>
<td>35. MacDowell</td>
<td>36,300</td>
<td>44.0</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>SPF (cfs)</td>
<td>D.A. (sq. mi.)</td>
<td>MPF (cfs/sq. mi.)</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1. Pawtuxet River</td>
<td>19,000</td>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>2. Mill River (R.I.)</td>
<td>8,500</td>
<td>34</td>
<td>500</td>
</tr>
<tr>
<td>3. Peters River (R.I.)</td>
<td>3,200</td>
<td>13</td>
<td>490</td>
</tr>
<tr>
<td>4. Kettle Brook</td>
<td>8,000</td>
<td>30</td>
<td>530</td>
</tr>
<tr>
<td>5. Sudbury River.</td>
<td>11,700</td>
<td>86</td>
<td>270</td>
</tr>
<tr>
<td>6. Indian Brook (Hopk.)</td>
<td>1,000</td>
<td>5.9</td>
<td>340</td>
</tr>
<tr>
<td>7. Charles River.</td>
<td>6,000</td>
<td>184</td>
<td>65</td>
</tr>
<tr>
<td>8. Blackstone River.</td>
<td>43,000</td>
<td>416</td>
<td>200</td>
</tr>
<tr>
<td>9. Quinebaug River</td>
<td>55,000</td>
<td>331</td>
<td>330</td>
</tr>
</tbody>
</table>
TIMING EFFECT OF SURCHARGE STORAGE ON MAXIMUM PROBABLE DISCHARGES

1: Determine Peak Inflow \((Q_{p1})\) from Guide Curves.

2: a. Determine Surcharge Height To Pass ""\(Q_{p1}\)"".
 b. Determine Volume of Surcharge \((STOR_1)\) in Inches of Runoff.
 c. Maximum Probable Flood Runoff In New England equals Approx. 19", Therefore:

\[
Q_{p2} = Q_{p1} \times (1 - \frac{STOR_1}{19})
\]

3: a. Determine Surcharge Height and ""\(STOR_2\)"" To Pass ""\(Q_{p2}\)"
 b. Average ""\(STOR_1\)"" and ""\(STOR_2\)"" and Determine Average Surcharge and Resulting Peak Outflow ""\(Q_{p3}\)"".
MAXIMUM PROBABLE FLOOD PEAK FLOW RATES

X5 - NED DAM IDENTIFICATION
⊙7' - TWICE SPF AT INDICATED SITES
DEC. 1977
SURCHARGE STORAGE ROUTING SUPPLEMENT

STEP 3: a. Determine Surcharge Height and "STOR₂" To Pass "Qₚ₂"

b. Avg "STOR₁" and "STOR₂" and Compute "Qₚ₃".

c. If Surcharge Height for Qₚ₃ and "STOR AVG" agree O.K. If Not:

STEP 4: a. Determine Surcharge Height and "STOR₃" To Pass "Qₚ₃"

b. Avg. "Old STOR AVG" and "STOR₃" and Compute "Qₚ₄"

c. Surcharge Height for Qₚ₄ and "New STOR AVG" should Agree closely
SURCHARGE STORAGE ROUTING ALTERNATE

\[Q_{p2} = Q_{p1} \times \left(1 - \frac{\text{STOR}}{19}\right) \]

\[Q_{p2} = Q_{p1} - Q_{p1} \left(\frac{\text{STOR}}{19}\right) \]

FOR KNOWN \(Q_{p1} \) AND 19″ R.O.

<table>
<thead>
<tr>
<th>(Q_{p2})</th>
<th>(\text{STOR})</th>
<th>(\text{EL.})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"RULE OF THUMB" GUIDANCE FOR ESTIMATING DOWNSTREAM DAM FAILURE HYDROGRAPHS

\[\frac{1}{2} Q_p T = 12 \text{ S} \]

STEP 1: DETERMINE OR ESTIMATE RESERVOIR STORAGE \((S)\) IN AC-FT AT TIME OF FAILURE.

STEP 2: DETERMINE PEAK FAILURE OUTFLOW \((Q_{P1})\):

\[Q_{P1} = \frac{8}{27} W_b \sqrt{g} Y_0^{3/2} \]

- \(W_b\) = BREACH WIDTH - SUGGEST VALUE NOT GREATER THAN 40% OF DAM LENGTH ACROSS RIVER AT MID HEIGHT.
- \(Y_0\) = TOTAL HEIGHT FROM RIVER BED TO POOL LEVEL AT FAILURE.

STEP 3: USING USGS TOPO OR OTHER DATA, DEVELOP REPRESENTATIVE STAGE-DISCHARGE RATING FOR SELECTED DOWNSTREAM RIVER REACH.

STEP 4: ESTIMATE REACH OUTFLOW \((Q_{P2})\) USING FOLLOWING ITERATION.

A. APPLY \(Q_{P1}\) TO STAGE RATING, DETERMINE STAGE AND ACCOMPANYING VOLUME \((V_1)\) IN REACH IN AC-FT. (NOTE: IF \(V_1\) EXCEEDS 1/2 OF \(S\), SELECT SHORTER REACH.)

B. DETERMINE TRIAL \(Q_{P2}\):

\[Q_{P2} (\text{TRIAL}) = Q_{P1} (1 - \frac{V_1}{S}) \]

C. COMPUTE \(V_2\) USING \(Q_{P2} (\text{TRIAL})\).

D. AVERAGE \(V_1\) AND \(V_2\) AND COMPUTE \(Q_{P2}\):

\[Q_{P2} = Q_{P1} (1 - \frac{V_{12}}{S}) \]

STEP 5: FOR SUCCEEDING REACHES REPEAT STEPS 3 AND 4.

APRIL 1978
APPENDIX E

INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS
INVENTORY OF DAMS IN THE UNITED STATES

<table>
<thead>
<tr>
<th>STATE</th>
<th>IDENTITY NUMBER</th>
<th>DIVISION</th>
<th>STATE</th>
<th>COUNTY</th>
<th>COUNTY</th>
<th>COUNTY</th>
<th>NAME</th>
<th>LATITUDE (NORTH)</th>
<th>LONGITUDE (WEST)</th>
<th>REPORT DATE DAY</th>
<th>NO</th>
<th>YR</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT</td>
<td>01</td>
<td>P</td>
<td>RI</td>
<td>DE</td>
<td>DE</td>
<td>DE</td>
<td>AHCITIC DAM</td>
<td>41-4 71-31</td>
<td>054-081</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POPULAR NAME

- FACTORY STREET DAM

NAME OF IMPOUNDMENT

- PANTUCKET RIVER-SOUTH BRANCH

<table>
<thead>
<tr>
<th>REGION/BASIN</th>
<th>RIVER OR STREAM</th>
<th>NEAREST DOWNSTREAM CITY-TOWN-VILLAGE</th>
<th>D/M FROM DAM</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 09</td>
<td>PANTUCKET RIVER-SOUTH BRANCH</td>
<td>WEST MAINE</td>
<td>0</td>
<td>24323</td>
</tr>
</tbody>
</table>

TYPE OF DAM

- OT

<table>
<thead>
<tr>
<th>TYPE OF DAM</th>
<th>YEAR COMPLETED</th>
<th>PURPOSES</th>
<th>EROSION CONTROL</th>
<th>HYDRAULIC CHARACTERISTICS</th>
<th>IMPOUNGING CAPACITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>1985</td>
<td>0</td>
<td>39</td>
<td>40</td>
<td>210</td>
</tr>
</tbody>
</table>

REMARKS

- 21 MASONRY AND EARTH FILL 23 INDUSTRIAL WATER

NAVIGATION LOCKS

<table>
<thead>
<tr>
<th>D/S</th>
<th>MAX. SPOILWAY HEIGHT (FEET)</th>
<th>MAXIMUM DISCHARGE (CFT/SEC)</th>
<th>VOLUME OF DAM (C.Y.)</th>
<th>POWER CAPACITY</th>
<th>NAVIGATION LOCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OWNER

- AHCITIC DEVELOPMENT CORP.

ENGINEERING BY

- UNKNOWN

CONSTRUCTION BY

- UNKNOWN

REGULATORY AGENCY

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>CONSTRUCTION</th>
<th>OPERATION</th>
<th>MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>RI DEM</td>
<td>RI DEM</td>
<td></td>
</tr>
</tbody>
</table>

INSPECTION BY

<table>
<thead>
<tr>
<th>Cahn Engineering INC</th>
<th>Inspection Date Day</th>
<th>Authority for Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cahn Engineering INC</td>
<td>02-367</td>
<td>PL</td>
</tr>
</tbody>
</table>

REMARKS